xref: /openbmc/linux/mm/swapfile.c (revision 8795a739)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 
43 #include <asm/pgtable.h>
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47 
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 				 unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52 
53 DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57  * Some modules use swappable objects and may try to swap them out under
58  * memory pressure (via the shrinker). Before doing so, they may wish to
59  * check to see if any swap space is available.
60  */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65 
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70 
71 /*
72  * all active swap_info_structs
73  * protected with swap_lock, and ordered by priority.
74  */
75 PLIST_HEAD(swap_active_head);
76 
77 /*
78  * all available (active, not full) swap_info_structs
79  * protected with swap_avail_lock, ordered by priority.
80  * This is used by get_swap_page() instead of swap_active_head
81  * because swap_active_head includes all swap_info_structs,
82  * but get_swap_page() doesn't need to look at full ones.
83  * This uses its own lock instead of swap_lock because when a
84  * swap_info_struct changes between not-full/full, it needs to
85  * add/remove itself to/from this list, but the swap_info_struct->lock
86  * is held and the locking order requires swap_lock to be taken
87  * before any swap_info_struct->lock.
88  */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91 
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93 
94 static DEFINE_MUTEX(swapon_mutex);
95 
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99 
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101 
102 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104 	if (type >= READ_ONCE(nr_swapfiles))
105 		return NULL;
106 
107 	smp_rmb();	/* Pairs with smp_wmb in alloc_swap_info. */
108 	return READ_ONCE(swap_info[type]);
109 }
110 
111 static inline unsigned char swap_count(unsigned char ent)
112 {
113 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
114 }
115 
116 /* Reclaim the swap entry anyway if possible */
117 #define TTRS_ANYWAY		0x1
118 /*
119  * Reclaim the swap entry if there are no more mappings of the
120  * corresponding page
121  */
122 #define TTRS_UNMAPPED		0x2
123 /* Reclaim the swap entry if swap is getting full*/
124 #define TTRS_FULL		0x4
125 
126 /* returns 1 if swap entry is freed */
127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
128 				 unsigned long offset, unsigned long flags)
129 {
130 	swp_entry_t entry = swp_entry(si->type, offset);
131 	struct page *page;
132 	int ret = 0;
133 
134 	page = find_get_page(swap_address_space(entry), offset);
135 	if (!page)
136 		return 0;
137 	/*
138 	 * When this function is called from scan_swap_map_slots() and it's
139 	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140 	 * here. We have to use trylock for avoiding deadlock. This is a special
141 	 * case and you should use try_to_free_swap() with explicit lock_page()
142 	 * in usual operations.
143 	 */
144 	if (trylock_page(page)) {
145 		if ((flags & TTRS_ANYWAY) ||
146 		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148 			ret = try_to_free_swap(page);
149 		unlock_page(page);
150 	}
151 	put_page(page);
152 	return ret;
153 }
154 
155 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156 {
157 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
158 	return rb_entry(rb, struct swap_extent, rb_node);
159 }
160 
161 static inline struct swap_extent *next_se(struct swap_extent *se)
162 {
163 	struct rb_node *rb = rb_next(&se->rb_node);
164 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165 }
166 
167 /*
168  * swapon tell device that all the old swap contents can be discarded,
169  * to allow the swap device to optimize its wear-levelling.
170  */
171 static int discard_swap(struct swap_info_struct *si)
172 {
173 	struct swap_extent *se;
174 	sector_t start_block;
175 	sector_t nr_blocks;
176 	int err = 0;
177 
178 	/* Do not discard the swap header page! */
179 	se = first_se(si);
180 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182 	if (nr_blocks) {
183 		err = blkdev_issue_discard(si->bdev, start_block,
184 				nr_blocks, GFP_KERNEL, 0);
185 		if (err)
186 			return err;
187 		cond_resched();
188 	}
189 
190 	for (se = next_se(se); se; se = next_se(se)) {
191 		start_block = se->start_block << (PAGE_SHIFT - 9);
192 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
193 
194 		err = blkdev_issue_discard(si->bdev, start_block,
195 				nr_blocks, GFP_KERNEL, 0);
196 		if (err)
197 			break;
198 
199 		cond_resched();
200 	}
201 	return err;		/* That will often be -EOPNOTSUPP */
202 }
203 
204 static struct swap_extent *
205 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206 {
207 	struct swap_extent *se;
208 	struct rb_node *rb;
209 
210 	rb = sis->swap_extent_root.rb_node;
211 	while (rb) {
212 		se = rb_entry(rb, struct swap_extent, rb_node);
213 		if (offset < se->start_page)
214 			rb = rb->rb_left;
215 		else if (offset >= se->start_page + se->nr_pages)
216 			rb = rb->rb_right;
217 		else
218 			return se;
219 	}
220 	/* It *must* be present */
221 	BUG();
222 }
223 
224 /*
225  * swap allocation tell device that a cluster of swap can now be discarded,
226  * to allow the swap device to optimize its wear-levelling.
227  */
228 static void discard_swap_cluster(struct swap_info_struct *si,
229 				 pgoff_t start_page, pgoff_t nr_pages)
230 {
231 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
232 
233 	while (nr_pages) {
234 		pgoff_t offset = start_page - se->start_page;
235 		sector_t start_block = se->start_block + offset;
236 		sector_t nr_blocks = se->nr_pages - offset;
237 
238 		if (nr_blocks > nr_pages)
239 			nr_blocks = nr_pages;
240 		start_page += nr_blocks;
241 		nr_pages -= nr_blocks;
242 
243 		start_block <<= PAGE_SHIFT - 9;
244 		nr_blocks <<= PAGE_SHIFT - 9;
245 		if (blkdev_issue_discard(si->bdev, start_block,
246 					nr_blocks, GFP_NOIO, 0))
247 			break;
248 
249 		se = next_se(se);
250 	}
251 }
252 
253 #ifdef CONFIG_THP_SWAP
254 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
255 
256 #define swap_entry_size(size)	(size)
257 #else
258 #define SWAPFILE_CLUSTER	256
259 
260 /*
261  * Define swap_entry_size() as constant to let compiler to optimize
262  * out some code if !CONFIG_THP_SWAP
263  */
264 #define swap_entry_size(size)	1
265 #endif
266 #define LATENCY_LIMIT		256
267 
268 static inline void cluster_set_flag(struct swap_cluster_info *info,
269 	unsigned int flag)
270 {
271 	info->flags = flag;
272 }
273 
274 static inline unsigned int cluster_count(struct swap_cluster_info *info)
275 {
276 	return info->data;
277 }
278 
279 static inline void cluster_set_count(struct swap_cluster_info *info,
280 				     unsigned int c)
281 {
282 	info->data = c;
283 }
284 
285 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
286 					 unsigned int c, unsigned int f)
287 {
288 	info->flags = f;
289 	info->data = c;
290 }
291 
292 static inline unsigned int cluster_next(struct swap_cluster_info *info)
293 {
294 	return info->data;
295 }
296 
297 static inline void cluster_set_next(struct swap_cluster_info *info,
298 				    unsigned int n)
299 {
300 	info->data = n;
301 }
302 
303 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
304 					 unsigned int n, unsigned int f)
305 {
306 	info->flags = f;
307 	info->data = n;
308 }
309 
310 static inline bool cluster_is_free(struct swap_cluster_info *info)
311 {
312 	return info->flags & CLUSTER_FLAG_FREE;
313 }
314 
315 static inline bool cluster_is_null(struct swap_cluster_info *info)
316 {
317 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
318 }
319 
320 static inline void cluster_set_null(struct swap_cluster_info *info)
321 {
322 	info->flags = CLUSTER_FLAG_NEXT_NULL;
323 	info->data = 0;
324 }
325 
326 static inline bool cluster_is_huge(struct swap_cluster_info *info)
327 {
328 	if (IS_ENABLED(CONFIG_THP_SWAP))
329 		return info->flags & CLUSTER_FLAG_HUGE;
330 	return false;
331 }
332 
333 static inline void cluster_clear_huge(struct swap_cluster_info *info)
334 {
335 	info->flags &= ~CLUSTER_FLAG_HUGE;
336 }
337 
338 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
339 						     unsigned long offset)
340 {
341 	struct swap_cluster_info *ci;
342 
343 	ci = si->cluster_info;
344 	if (ci) {
345 		ci += offset / SWAPFILE_CLUSTER;
346 		spin_lock(&ci->lock);
347 	}
348 	return ci;
349 }
350 
351 static inline void unlock_cluster(struct swap_cluster_info *ci)
352 {
353 	if (ci)
354 		spin_unlock(&ci->lock);
355 }
356 
357 /*
358  * Determine the locking method in use for this device.  Return
359  * swap_cluster_info if SSD-style cluster-based locking is in place.
360  */
361 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
362 		struct swap_info_struct *si, unsigned long offset)
363 {
364 	struct swap_cluster_info *ci;
365 
366 	/* Try to use fine-grained SSD-style locking if available: */
367 	ci = lock_cluster(si, offset);
368 	/* Otherwise, fall back to traditional, coarse locking: */
369 	if (!ci)
370 		spin_lock(&si->lock);
371 
372 	return ci;
373 }
374 
375 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
376 					       struct swap_cluster_info *ci)
377 {
378 	if (ci)
379 		unlock_cluster(ci);
380 	else
381 		spin_unlock(&si->lock);
382 }
383 
384 static inline bool cluster_list_empty(struct swap_cluster_list *list)
385 {
386 	return cluster_is_null(&list->head);
387 }
388 
389 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
390 {
391 	return cluster_next(&list->head);
392 }
393 
394 static void cluster_list_init(struct swap_cluster_list *list)
395 {
396 	cluster_set_null(&list->head);
397 	cluster_set_null(&list->tail);
398 }
399 
400 static void cluster_list_add_tail(struct swap_cluster_list *list,
401 				  struct swap_cluster_info *ci,
402 				  unsigned int idx)
403 {
404 	if (cluster_list_empty(list)) {
405 		cluster_set_next_flag(&list->head, idx, 0);
406 		cluster_set_next_flag(&list->tail, idx, 0);
407 	} else {
408 		struct swap_cluster_info *ci_tail;
409 		unsigned int tail = cluster_next(&list->tail);
410 
411 		/*
412 		 * Nested cluster lock, but both cluster locks are
413 		 * only acquired when we held swap_info_struct->lock
414 		 */
415 		ci_tail = ci + tail;
416 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
417 		cluster_set_next(ci_tail, idx);
418 		spin_unlock(&ci_tail->lock);
419 		cluster_set_next_flag(&list->tail, idx, 0);
420 	}
421 }
422 
423 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
424 					   struct swap_cluster_info *ci)
425 {
426 	unsigned int idx;
427 
428 	idx = cluster_next(&list->head);
429 	if (cluster_next(&list->tail) == idx) {
430 		cluster_set_null(&list->head);
431 		cluster_set_null(&list->tail);
432 	} else
433 		cluster_set_next_flag(&list->head,
434 				      cluster_next(&ci[idx]), 0);
435 
436 	return idx;
437 }
438 
439 /* Add a cluster to discard list and schedule it to do discard */
440 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
441 		unsigned int idx)
442 {
443 	/*
444 	 * If scan_swap_map() can't find a free cluster, it will check
445 	 * si->swap_map directly. To make sure the discarding cluster isn't
446 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
447 	 * will be cleared after discard
448 	 */
449 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
450 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
451 
452 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
453 
454 	schedule_work(&si->discard_work);
455 }
456 
457 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
458 {
459 	struct swap_cluster_info *ci = si->cluster_info;
460 
461 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
462 	cluster_list_add_tail(&si->free_clusters, ci, idx);
463 }
464 
465 /*
466  * Doing discard actually. After a cluster discard is finished, the cluster
467  * will be added to free cluster list. caller should hold si->lock.
468 */
469 static void swap_do_scheduled_discard(struct swap_info_struct *si)
470 {
471 	struct swap_cluster_info *info, *ci;
472 	unsigned int idx;
473 
474 	info = si->cluster_info;
475 
476 	while (!cluster_list_empty(&si->discard_clusters)) {
477 		idx = cluster_list_del_first(&si->discard_clusters, info);
478 		spin_unlock(&si->lock);
479 
480 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
481 				SWAPFILE_CLUSTER);
482 
483 		spin_lock(&si->lock);
484 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
485 		__free_cluster(si, idx);
486 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
487 				0, SWAPFILE_CLUSTER);
488 		unlock_cluster(ci);
489 	}
490 }
491 
492 static void swap_discard_work(struct work_struct *work)
493 {
494 	struct swap_info_struct *si;
495 
496 	si = container_of(work, struct swap_info_struct, discard_work);
497 
498 	spin_lock(&si->lock);
499 	swap_do_scheduled_discard(si);
500 	spin_unlock(&si->lock);
501 }
502 
503 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
504 {
505 	struct swap_cluster_info *ci = si->cluster_info;
506 
507 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
508 	cluster_list_del_first(&si->free_clusters, ci);
509 	cluster_set_count_flag(ci + idx, 0, 0);
510 }
511 
512 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
513 {
514 	struct swap_cluster_info *ci = si->cluster_info + idx;
515 
516 	VM_BUG_ON(cluster_count(ci) != 0);
517 	/*
518 	 * If the swap is discardable, prepare discard the cluster
519 	 * instead of free it immediately. The cluster will be freed
520 	 * after discard.
521 	 */
522 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
523 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
524 		swap_cluster_schedule_discard(si, idx);
525 		return;
526 	}
527 
528 	__free_cluster(si, idx);
529 }
530 
531 /*
532  * The cluster corresponding to page_nr will be used. The cluster will be
533  * removed from free cluster list and its usage counter will be increased.
534  */
535 static void inc_cluster_info_page(struct swap_info_struct *p,
536 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
537 {
538 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
539 
540 	if (!cluster_info)
541 		return;
542 	if (cluster_is_free(&cluster_info[idx]))
543 		alloc_cluster(p, idx);
544 
545 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
546 	cluster_set_count(&cluster_info[idx],
547 		cluster_count(&cluster_info[idx]) + 1);
548 }
549 
550 /*
551  * The cluster corresponding to page_nr decreases one usage. If the usage
552  * counter becomes 0, which means no page in the cluster is in using, we can
553  * optionally discard the cluster and add it to free cluster list.
554  */
555 static void dec_cluster_info_page(struct swap_info_struct *p,
556 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
557 {
558 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559 
560 	if (!cluster_info)
561 		return;
562 
563 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
564 	cluster_set_count(&cluster_info[idx],
565 		cluster_count(&cluster_info[idx]) - 1);
566 
567 	if (cluster_count(&cluster_info[idx]) == 0)
568 		free_cluster(p, idx);
569 }
570 
571 /*
572  * It's possible scan_swap_map() uses a free cluster in the middle of free
573  * cluster list. Avoiding such abuse to avoid list corruption.
574  */
575 static bool
576 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
577 	unsigned long offset)
578 {
579 	struct percpu_cluster *percpu_cluster;
580 	bool conflict;
581 
582 	offset /= SWAPFILE_CLUSTER;
583 	conflict = !cluster_list_empty(&si->free_clusters) &&
584 		offset != cluster_list_first(&si->free_clusters) &&
585 		cluster_is_free(&si->cluster_info[offset]);
586 
587 	if (!conflict)
588 		return false;
589 
590 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
591 	cluster_set_null(&percpu_cluster->index);
592 	return true;
593 }
594 
595 /*
596  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
597  * might involve allocating a new cluster for current CPU too.
598  */
599 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
600 	unsigned long *offset, unsigned long *scan_base)
601 {
602 	struct percpu_cluster *cluster;
603 	struct swap_cluster_info *ci;
604 	bool found_free;
605 	unsigned long tmp, max;
606 
607 new_cluster:
608 	cluster = this_cpu_ptr(si->percpu_cluster);
609 	if (cluster_is_null(&cluster->index)) {
610 		if (!cluster_list_empty(&si->free_clusters)) {
611 			cluster->index = si->free_clusters.head;
612 			cluster->next = cluster_next(&cluster->index) *
613 					SWAPFILE_CLUSTER;
614 		} else if (!cluster_list_empty(&si->discard_clusters)) {
615 			/*
616 			 * we don't have free cluster but have some clusters in
617 			 * discarding, do discard now and reclaim them
618 			 */
619 			swap_do_scheduled_discard(si);
620 			*scan_base = *offset = si->cluster_next;
621 			goto new_cluster;
622 		} else
623 			return false;
624 	}
625 
626 	found_free = false;
627 
628 	/*
629 	 * Other CPUs can use our cluster if they can't find a free cluster,
630 	 * check if there is still free entry in the cluster
631 	 */
632 	tmp = cluster->next;
633 	max = min_t(unsigned long, si->max,
634 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
635 	if (tmp >= max) {
636 		cluster_set_null(&cluster->index);
637 		goto new_cluster;
638 	}
639 	ci = lock_cluster(si, tmp);
640 	while (tmp < max) {
641 		if (!si->swap_map[tmp]) {
642 			found_free = true;
643 			break;
644 		}
645 		tmp++;
646 	}
647 	unlock_cluster(ci);
648 	if (!found_free) {
649 		cluster_set_null(&cluster->index);
650 		goto new_cluster;
651 	}
652 	cluster->next = tmp + 1;
653 	*offset = tmp;
654 	*scan_base = tmp;
655 	return found_free;
656 }
657 
658 static void __del_from_avail_list(struct swap_info_struct *p)
659 {
660 	int nid;
661 
662 	for_each_node(nid)
663 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
664 }
665 
666 static void del_from_avail_list(struct swap_info_struct *p)
667 {
668 	spin_lock(&swap_avail_lock);
669 	__del_from_avail_list(p);
670 	spin_unlock(&swap_avail_lock);
671 }
672 
673 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
674 			     unsigned int nr_entries)
675 {
676 	unsigned int end = offset + nr_entries - 1;
677 
678 	if (offset == si->lowest_bit)
679 		si->lowest_bit += nr_entries;
680 	if (end == si->highest_bit)
681 		si->highest_bit -= nr_entries;
682 	si->inuse_pages += nr_entries;
683 	if (si->inuse_pages == si->pages) {
684 		si->lowest_bit = si->max;
685 		si->highest_bit = 0;
686 		del_from_avail_list(si);
687 	}
688 }
689 
690 static void add_to_avail_list(struct swap_info_struct *p)
691 {
692 	int nid;
693 
694 	spin_lock(&swap_avail_lock);
695 	for_each_node(nid) {
696 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
697 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
698 	}
699 	spin_unlock(&swap_avail_lock);
700 }
701 
702 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
703 			    unsigned int nr_entries)
704 {
705 	unsigned long end = offset + nr_entries - 1;
706 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
707 
708 	if (offset < si->lowest_bit)
709 		si->lowest_bit = offset;
710 	if (end > si->highest_bit) {
711 		bool was_full = !si->highest_bit;
712 
713 		si->highest_bit = end;
714 		if (was_full && (si->flags & SWP_WRITEOK))
715 			add_to_avail_list(si);
716 	}
717 	atomic_long_add(nr_entries, &nr_swap_pages);
718 	si->inuse_pages -= nr_entries;
719 	if (si->flags & SWP_BLKDEV)
720 		swap_slot_free_notify =
721 			si->bdev->bd_disk->fops->swap_slot_free_notify;
722 	else
723 		swap_slot_free_notify = NULL;
724 	while (offset <= end) {
725 		frontswap_invalidate_page(si->type, offset);
726 		if (swap_slot_free_notify)
727 			swap_slot_free_notify(si->bdev, offset);
728 		offset++;
729 	}
730 }
731 
732 static int scan_swap_map_slots(struct swap_info_struct *si,
733 			       unsigned char usage, int nr,
734 			       swp_entry_t slots[])
735 {
736 	struct swap_cluster_info *ci;
737 	unsigned long offset;
738 	unsigned long scan_base;
739 	unsigned long last_in_cluster = 0;
740 	int latency_ration = LATENCY_LIMIT;
741 	int n_ret = 0;
742 
743 	if (nr > SWAP_BATCH)
744 		nr = SWAP_BATCH;
745 
746 	/*
747 	 * We try to cluster swap pages by allocating them sequentially
748 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
749 	 * way, however, we resort to first-free allocation, starting
750 	 * a new cluster.  This prevents us from scattering swap pages
751 	 * all over the entire swap partition, so that we reduce
752 	 * overall disk seek times between swap pages.  -- sct
753 	 * But we do now try to find an empty cluster.  -Andrea
754 	 * And we let swap pages go all over an SSD partition.  Hugh
755 	 */
756 
757 	si->flags += SWP_SCANNING;
758 	scan_base = offset = si->cluster_next;
759 
760 	/* SSD algorithm */
761 	if (si->cluster_info) {
762 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
763 			goto checks;
764 		else
765 			goto scan;
766 	}
767 
768 	if (unlikely(!si->cluster_nr--)) {
769 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
770 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
771 			goto checks;
772 		}
773 
774 		spin_unlock(&si->lock);
775 
776 		/*
777 		 * If seek is expensive, start searching for new cluster from
778 		 * start of partition, to minimize the span of allocated swap.
779 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
780 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
781 		 */
782 		scan_base = offset = si->lowest_bit;
783 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
784 
785 		/* Locate the first empty (unaligned) cluster */
786 		for (; last_in_cluster <= si->highest_bit; offset++) {
787 			if (si->swap_map[offset])
788 				last_in_cluster = offset + SWAPFILE_CLUSTER;
789 			else if (offset == last_in_cluster) {
790 				spin_lock(&si->lock);
791 				offset -= SWAPFILE_CLUSTER - 1;
792 				si->cluster_next = offset;
793 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
794 				goto checks;
795 			}
796 			if (unlikely(--latency_ration < 0)) {
797 				cond_resched();
798 				latency_ration = LATENCY_LIMIT;
799 			}
800 		}
801 
802 		offset = scan_base;
803 		spin_lock(&si->lock);
804 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
805 	}
806 
807 checks:
808 	if (si->cluster_info) {
809 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
810 		/* take a break if we already got some slots */
811 			if (n_ret)
812 				goto done;
813 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
814 							&scan_base))
815 				goto scan;
816 		}
817 	}
818 	if (!(si->flags & SWP_WRITEOK))
819 		goto no_page;
820 	if (!si->highest_bit)
821 		goto no_page;
822 	if (offset > si->highest_bit)
823 		scan_base = offset = si->lowest_bit;
824 
825 	ci = lock_cluster(si, offset);
826 	/* reuse swap entry of cache-only swap if not busy. */
827 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
828 		int swap_was_freed;
829 		unlock_cluster(ci);
830 		spin_unlock(&si->lock);
831 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
832 		spin_lock(&si->lock);
833 		/* entry was freed successfully, try to use this again */
834 		if (swap_was_freed)
835 			goto checks;
836 		goto scan; /* check next one */
837 	}
838 
839 	if (si->swap_map[offset]) {
840 		unlock_cluster(ci);
841 		if (!n_ret)
842 			goto scan;
843 		else
844 			goto done;
845 	}
846 	si->swap_map[offset] = usage;
847 	inc_cluster_info_page(si, si->cluster_info, offset);
848 	unlock_cluster(ci);
849 
850 	swap_range_alloc(si, offset, 1);
851 	si->cluster_next = offset + 1;
852 	slots[n_ret++] = swp_entry(si->type, offset);
853 
854 	/* got enough slots or reach max slots? */
855 	if ((n_ret == nr) || (offset >= si->highest_bit))
856 		goto done;
857 
858 	/* search for next available slot */
859 
860 	/* time to take a break? */
861 	if (unlikely(--latency_ration < 0)) {
862 		if (n_ret)
863 			goto done;
864 		spin_unlock(&si->lock);
865 		cond_resched();
866 		spin_lock(&si->lock);
867 		latency_ration = LATENCY_LIMIT;
868 	}
869 
870 	/* try to get more slots in cluster */
871 	if (si->cluster_info) {
872 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
873 			goto checks;
874 		else
875 			goto done;
876 	}
877 	/* non-ssd case */
878 	++offset;
879 
880 	/* non-ssd case, still more slots in cluster? */
881 	if (si->cluster_nr && !si->swap_map[offset]) {
882 		--si->cluster_nr;
883 		goto checks;
884 	}
885 
886 done:
887 	si->flags -= SWP_SCANNING;
888 	return n_ret;
889 
890 scan:
891 	spin_unlock(&si->lock);
892 	while (++offset <= si->highest_bit) {
893 		if (!si->swap_map[offset]) {
894 			spin_lock(&si->lock);
895 			goto checks;
896 		}
897 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
898 			spin_lock(&si->lock);
899 			goto checks;
900 		}
901 		if (unlikely(--latency_ration < 0)) {
902 			cond_resched();
903 			latency_ration = LATENCY_LIMIT;
904 		}
905 	}
906 	offset = si->lowest_bit;
907 	while (offset < scan_base) {
908 		if (!si->swap_map[offset]) {
909 			spin_lock(&si->lock);
910 			goto checks;
911 		}
912 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
913 			spin_lock(&si->lock);
914 			goto checks;
915 		}
916 		if (unlikely(--latency_ration < 0)) {
917 			cond_resched();
918 			latency_ration = LATENCY_LIMIT;
919 		}
920 		offset++;
921 	}
922 	spin_lock(&si->lock);
923 
924 no_page:
925 	si->flags -= SWP_SCANNING;
926 	return n_ret;
927 }
928 
929 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
930 {
931 	unsigned long idx;
932 	struct swap_cluster_info *ci;
933 	unsigned long offset, i;
934 	unsigned char *map;
935 
936 	/*
937 	 * Should not even be attempting cluster allocations when huge
938 	 * page swap is disabled.  Warn and fail the allocation.
939 	 */
940 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
941 		VM_WARN_ON_ONCE(1);
942 		return 0;
943 	}
944 
945 	if (cluster_list_empty(&si->free_clusters))
946 		return 0;
947 
948 	idx = cluster_list_first(&si->free_clusters);
949 	offset = idx * SWAPFILE_CLUSTER;
950 	ci = lock_cluster(si, offset);
951 	alloc_cluster(si, idx);
952 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
953 
954 	map = si->swap_map + offset;
955 	for (i = 0; i < SWAPFILE_CLUSTER; i++)
956 		map[i] = SWAP_HAS_CACHE;
957 	unlock_cluster(ci);
958 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
959 	*slot = swp_entry(si->type, offset);
960 
961 	return 1;
962 }
963 
964 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
965 {
966 	unsigned long offset = idx * SWAPFILE_CLUSTER;
967 	struct swap_cluster_info *ci;
968 
969 	ci = lock_cluster(si, offset);
970 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
971 	cluster_set_count_flag(ci, 0, 0);
972 	free_cluster(si, idx);
973 	unlock_cluster(ci);
974 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
975 }
976 
977 static unsigned long scan_swap_map(struct swap_info_struct *si,
978 				   unsigned char usage)
979 {
980 	swp_entry_t entry;
981 	int n_ret;
982 
983 	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
984 
985 	if (n_ret)
986 		return swp_offset(entry);
987 	else
988 		return 0;
989 
990 }
991 
992 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
993 {
994 	unsigned long size = swap_entry_size(entry_size);
995 	struct swap_info_struct *si, *next;
996 	long avail_pgs;
997 	int n_ret = 0;
998 	int node;
999 
1000 	/* Only single cluster request supported */
1001 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1002 
1003 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1004 	if (avail_pgs <= 0)
1005 		goto noswap;
1006 
1007 	if (n_goal > SWAP_BATCH)
1008 		n_goal = SWAP_BATCH;
1009 
1010 	if (n_goal > avail_pgs)
1011 		n_goal = avail_pgs;
1012 
1013 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1014 
1015 	spin_lock(&swap_avail_lock);
1016 
1017 start_over:
1018 	node = numa_node_id();
1019 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1020 		/* requeue si to after same-priority siblings */
1021 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1022 		spin_unlock(&swap_avail_lock);
1023 		spin_lock(&si->lock);
1024 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1025 			spin_lock(&swap_avail_lock);
1026 			if (plist_node_empty(&si->avail_lists[node])) {
1027 				spin_unlock(&si->lock);
1028 				goto nextsi;
1029 			}
1030 			WARN(!si->highest_bit,
1031 			     "swap_info %d in list but !highest_bit\n",
1032 			     si->type);
1033 			WARN(!(si->flags & SWP_WRITEOK),
1034 			     "swap_info %d in list but !SWP_WRITEOK\n",
1035 			     si->type);
1036 			__del_from_avail_list(si);
1037 			spin_unlock(&si->lock);
1038 			goto nextsi;
1039 		}
1040 		if (size == SWAPFILE_CLUSTER) {
1041 			if (!(si->flags & SWP_FS))
1042 				n_ret = swap_alloc_cluster(si, swp_entries);
1043 		} else
1044 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1045 						    n_goal, swp_entries);
1046 		spin_unlock(&si->lock);
1047 		if (n_ret || size == SWAPFILE_CLUSTER)
1048 			goto check_out;
1049 		pr_debug("scan_swap_map of si %d failed to find offset\n",
1050 			si->type);
1051 
1052 		spin_lock(&swap_avail_lock);
1053 nextsi:
1054 		/*
1055 		 * if we got here, it's likely that si was almost full before,
1056 		 * and since scan_swap_map() can drop the si->lock, multiple
1057 		 * callers probably all tried to get a page from the same si
1058 		 * and it filled up before we could get one; or, the si filled
1059 		 * up between us dropping swap_avail_lock and taking si->lock.
1060 		 * Since we dropped the swap_avail_lock, the swap_avail_head
1061 		 * list may have been modified; so if next is still in the
1062 		 * swap_avail_head list then try it, otherwise start over
1063 		 * if we have not gotten any slots.
1064 		 */
1065 		if (plist_node_empty(&next->avail_lists[node]))
1066 			goto start_over;
1067 	}
1068 
1069 	spin_unlock(&swap_avail_lock);
1070 
1071 check_out:
1072 	if (n_ret < n_goal)
1073 		atomic_long_add((long)(n_goal - n_ret) * size,
1074 				&nr_swap_pages);
1075 noswap:
1076 	return n_ret;
1077 }
1078 
1079 /* The only caller of this function is now suspend routine */
1080 swp_entry_t get_swap_page_of_type(int type)
1081 {
1082 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1083 	pgoff_t offset;
1084 
1085 	if (!si)
1086 		goto fail;
1087 
1088 	spin_lock(&si->lock);
1089 	if (si->flags & SWP_WRITEOK) {
1090 		atomic_long_dec(&nr_swap_pages);
1091 		/* This is called for allocating swap entry, not cache */
1092 		offset = scan_swap_map(si, 1);
1093 		if (offset) {
1094 			spin_unlock(&si->lock);
1095 			return swp_entry(type, offset);
1096 		}
1097 		atomic_long_inc(&nr_swap_pages);
1098 	}
1099 	spin_unlock(&si->lock);
1100 fail:
1101 	return (swp_entry_t) {0};
1102 }
1103 
1104 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1105 {
1106 	struct swap_info_struct *p;
1107 	unsigned long offset;
1108 
1109 	if (!entry.val)
1110 		goto out;
1111 	p = swp_swap_info(entry);
1112 	if (!p)
1113 		goto bad_nofile;
1114 	if (!(p->flags & SWP_USED))
1115 		goto bad_device;
1116 	offset = swp_offset(entry);
1117 	if (offset >= p->max)
1118 		goto bad_offset;
1119 	return p;
1120 
1121 bad_offset:
1122 	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1123 	goto out;
1124 bad_device:
1125 	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1126 	goto out;
1127 bad_nofile:
1128 	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1129 out:
1130 	return NULL;
1131 }
1132 
1133 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1134 {
1135 	struct swap_info_struct *p;
1136 
1137 	p = __swap_info_get(entry);
1138 	if (!p)
1139 		goto out;
1140 	if (!p->swap_map[swp_offset(entry)])
1141 		goto bad_free;
1142 	return p;
1143 
1144 bad_free:
1145 	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1146 	goto out;
1147 out:
1148 	return NULL;
1149 }
1150 
1151 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1152 {
1153 	struct swap_info_struct *p;
1154 
1155 	p = _swap_info_get(entry);
1156 	if (p)
1157 		spin_lock(&p->lock);
1158 	return p;
1159 }
1160 
1161 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1162 					struct swap_info_struct *q)
1163 {
1164 	struct swap_info_struct *p;
1165 
1166 	p = _swap_info_get(entry);
1167 
1168 	if (p != q) {
1169 		if (q != NULL)
1170 			spin_unlock(&q->lock);
1171 		if (p != NULL)
1172 			spin_lock(&p->lock);
1173 	}
1174 	return p;
1175 }
1176 
1177 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1178 					      unsigned long offset,
1179 					      unsigned char usage)
1180 {
1181 	unsigned char count;
1182 	unsigned char has_cache;
1183 
1184 	count = p->swap_map[offset];
1185 
1186 	has_cache = count & SWAP_HAS_CACHE;
1187 	count &= ~SWAP_HAS_CACHE;
1188 
1189 	if (usage == SWAP_HAS_CACHE) {
1190 		VM_BUG_ON(!has_cache);
1191 		has_cache = 0;
1192 	} else if (count == SWAP_MAP_SHMEM) {
1193 		/*
1194 		 * Or we could insist on shmem.c using a special
1195 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1196 		 */
1197 		count = 0;
1198 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1199 		if (count == COUNT_CONTINUED) {
1200 			if (swap_count_continued(p, offset, count))
1201 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1202 			else
1203 				count = SWAP_MAP_MAX;
1204 		} else
1205 			count--;
1206 	}
1207 
1208 	usage = count | has_cache;
1209 	p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1210 
1211 	return usage;
1212 }
1213 
1214 /*
1215  * Check whether swap entry is valid in the swap device.  If so,
1216  * return pointer to swap_info_struct, and keep the swap entry valid
1217  * via preventing the swap device from being swapoff, until
1218  * put_swap_device() is called.  Otherwise return NULL.
1219  *
1220  * The entirety of the RCU read critical section must come before the
1221  * return from or after the call to synchronize_rcu() in
1222  * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1223  * true, the si->map, si->cluster_info, etc. must be valid in the
1224  * critical section.
1225  *
1226  * Notice that swapoff or swapoff+swapon can still happen before the
1227  * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1228  * in put_swap_device() if there isn't any other way to prevent
1229  * swapoff, such as page lock, page table lock, etc.  The caller must
1230  * be prepared for that.  For example, the following situation is
1231  * possible.
1232  *
1233  *   CPU1				CPU2
1234  *   do_swap_page()
1235  *     ...				swapoff+swapon
1236  *     __read_swap_cache_async()
1237  *       swapcache_prepare()
1238  *         __swap_duplicate()
1239  *           // check swap_map
1240  *     // verify PTE not changed
1241  *
1242  * In __swap_duplicate(), the swap_map need to be checked before
1243  * changing partly because the specified swap entry may be for another
1244  * swap device which has been swapoff.  And in do_swap_page(), after
1245  * the page is read from the swap device, the PTE is verified not
1246  * changed with the page table locked to check whether the swap device
1247  * has been swapoff or swapoff+swapon.
1248  */
1249 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1250 {
1251 	struct swap_info_struct *si;
1252 	unsigned long offset;
1253 
1254 	if (!entry.val)
1255 		goto out;
1256 	si = swp_swap_info(entry);
1257 	if (!si)
1258 		goto bad_nofile;
1259 
1260 	rcu_read_lock();
1261 	if (!(si->flags & SWP_VALID))
1262 		goto unlock_out;
1263 	offset = swp_offset(entry);
1264 	if (offset >= si->max)
1265 		goto unlock_out;
1266 
1267 	return si;
1268 bad_nofile:
1269 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1270 out:
1271 	return NULL;
1272 unlock_out:
1273 	rcu_read_unlock();
1274 	return NULL;
1275 }
1276 
1277 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1278 				       swp_entry_t entry, unsigned char usage)
1279 {
1280 	struct swap_cluster_info *ci;
1281 	unsigned long offset = swp_offset(entry);
1282 
1283 	ci = lock_cluster_or_swap_info(p, offset);
1284 	usage = __swap_entry_free_locked(p, offset, usage);
1285 	unlock_cluster_or_swap_info(p, ci);
1286 	if (!usage)
1287 		free_swap_slot(entry);
1288 
1289 	return usage;
1290 }
1291 
1292 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1293 {
1294 	struct swap_cluster_info *ci;
1295 	unsigned long offset = swp_offset(entry);
1296 	unsigned char count;
1297 
1298 	ci = lock_cluster(p, offset);
1299 	count = p->swap_map[offset];
1300 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1301 	p->swap_map[offset] = 0;
1302 	dec_cluster_info_page(p, p->cluster_info, offset);
1303 	unlock_cluster(ci);
1304 
1305 	mem_cgroup_uncharge_swap(entry, 1);
1306 	swap_range_free(p, offset, 1);
1307 }
1308 
1309 /*
1310  * Caller has made sure that the swap device corresponding to entry
1311  * is still around or has not been recycled.
1312  */
1313 void swap_free(swp_entry_t entry)
1314 {
1315 	struct swap_info_struct *p;
1316 
1317 	p = _swap_info_get(entry);
1318 	if (p)
1319 		__swap_entry_free(p, entry, 1);
1320 }
1321 
1322 /*
1323  * Called after dropping swapcache to decrease refcnt to swap entries.
1324  */
1325 void put_swap_page(struct page *page, swp_entry_t entry)
1326 {
1327 	unsigned long offset = swp_offset(entry);
1328 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1329 	struct swap_cluster_info *ci;
1330 	struct swap_info_struct *si;
1331 	unsigned char *map;
1332 	unsigned int i, free_entries = 0;
1333 	unsigned char val;
1334 	int size = swap_entry_size(hpage_nr_pages(page));
1335 
1336 	si = _swap_info_get(entry);
1337 	if (!si)
1338 		return;
1339 
1340 	ci = lock_cluster_or_swap_info(si, offset);
1341 	if (size == SWAPFILE_CLUSTER) {
1342 		VM_BUG_ON(!cluster_is_huge(ci));
1343 		map = si->swap_map + offset;
1344 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1345 			val = map[i];
1346 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1347 			if (val == SWAP_HAS_CACHE)
1348 				free_entries++;
1349 		}
1350 		cluster_clear_huge(ci);
1351 		if (free_entries == SWAPFILE_CLUSTER) {
1352 			unlock_cluster_or_swap_info(si, ci);
1353 			spin_lock(&si->lock);
1354 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1355 			swap_free_cluster(si, idx);
1356 			spin_unlock(&si->lock);
1357 			return;
1358 		}
1359 	}
1360 	for (i = 0; i < size; i++, entry.val++) {
1361 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1362 			unlock_cluster_or_swap_info(si, ci);
1363 			free_swap_slot(entry);
1364 			if (i == size - 1)
1365 				return;
1366 			lock_cluster_or_swap_info(si, offset);
1367 		}
1368 	}
1369 	unlock_cluster_or_swap_info(si, ci);
1370 }
1371 
1372 #ifdef CONFIG_THP_SWAP
1373 int split_swap_cluster(swp_entry_t entry)
1374 {
1375 	struct swap_info_struct *si;
1376 	struct swap_cluster_info *ci;
1377 	unsigned long offset = swp_offset(entry);
1378 
1379 	si = _swap_info_get(entry);
1380 	if (!si)
1381 		return -EBUSY;
1382 	ci = lock_cluster(si, offset);
1383 	cluster_clear_huge(ci);
1384 	unlock_cluster(ci);
1385 	return 0;
1386 }
1387 #endif
1388 
1389 static int swp_entry_cmp(const void *ent1, const void *ent2)
1390 {
1391 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1392 
1393 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1394 }
1395 
1396 void swapcache_free_entries(swp_entry_t *entries, int n)
1397 {
1398 	struct swap_info_struct *p, *prev;
1399 	int i;
1400 
1401 	if (n <= 0)
1402 		return;
1403 
1404 	prev = NULL;
1405 	p = NULL;
1406 
1407 	/*
1408 	 * Sort swap entries by swap device, so each lock is only taken once.
1409 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1410 	 * so low that it isn't necessary to optimize further.
1411 	 */
1412 	if (nr_swapfiles > 1)
1413 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1414 	for (i = 0; i < n; ++i) {
1415 		p = swap_info_get_cont(entries[i], prev);
1416 		if (p)
1417 			swap_entry_free(p, entries[i]);
1418 		prev = p;
1419 	}
1420 	if (p)
1421 		spin_unlock(&p->lock);
1422 }
1423 
1424 /*
1425  * How many references to page are currently swapped out?
1426  * This does not give an exact answer when swap count is continued,
1427  * but does include the high COUNT_CONTINUED flag to allow for that.
1428  */
1429 int page_swapcount(struct page *page)
1430 {
1431 	int count = 0;
1432 	struct swap_info_struct *p;
1433 	struct swap_cluster_info *ci;
1434 	swp_entry_t entry;
1435 	unsigned long offset;
1436 
1437 	entry.val = page_private(page);
1438 	p = _swap_info_get(entry);
1439 	if (p) {
1440 		offset = swp_offset(entry);
1441 		ci = lock_cluster_or_swap_info(p, offset);
1442 		count = swap_count(p->swap_map[offset]);
1443 		unlock_cluster_or_swap_info(p, ci);
1444 	}
1445 	return count;
1446 }
1447 
1448 int __swap_count(swp_entry_t entry)
1449 {
1450 	struct swap_info_struct *si;
1451 	pgoff_t offset = swp_offset(entry);
1452 	int count = 0;
1453 
1454 	si = get_swap_device(entry);
1455 	if (si) {
1456 		count = swap_count(si->swap_map[offset]);
1457 		put_swap_device(si);
1458 	}
1459 	return count;
1460 }
1461 
1462 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1463 {
1464 	int count = 0;
1465 	pgoff_t offset = swp_offset(entry);
1466 	struct swap_cluster_info *ci;
1467 
1468 	ci = lock_cluster_or_swap_info(si, offset);
1469 	count = swap_count(si->swap_map[offset]);
1470 	unlock_cluster_or_swap_info(si, ci);
1471 	return count;
1472 }
1473 
1474 /*
1475  * How many references to @entry are currently swapped out?
1476  * This does not give an exact answer when swap count is continued,
1477  * but does include the high COUNT_CONTINUED flag to allow for that.
1478  */
1479 int __swp_swapcount(swp_entry_t entry)
1480 {
1481 	int count = 0;
1482 	struct swap_info_struct *si;
1483 
1484 	si = get_swap_device(entry);
1485 	if (si) {
1486 		count = swap_swapcount(si, entry);
1487 		put_swap_device(si);
1488 	}
1489 	return count;
1490 }
1491 
1492 /*
1493  * How many references to @entry are currently swapped out?
1494  * This considers COUNT_CONTINUED so it returns exact answer.
1495  */
1496 int swp_swapcount(swp_entry_t entry)
1497 {
1498 	int count, tmp_count, n;
1499 	struct swap_info_struct *p;
1500 	struct swap_cluster_info *ci;
1501 	struct page *page;
1502 	pgoff_t offset;
1503 	unsigned char *map;
1504 
1505 	p = _swap_info_get(entry);
1506 	if (!p)
1507 		return 0;
1508 
1509 	offset = swp_offset(entry);
1510 
1511 	ci = lock_cluster_or_swap_info(p, offset);
1512 
1513 	count = swap_count(p->swap_map[offset]);
1514 	if (!(count & COUNT_CONTINUED))
1515 		goto out;
1516 
1517 	count &= ~COUNT_CONTINUED;
1518 	n = SWAP_MAP_MAX + 1;
1519 
1520 	page = vmalloc_to_page(p->swap_map + offset);
1521 	offset &= ~PAGE_MASK;
1522 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1523 
1524 	do {
1525 		page = list_next_entry(page, lru);
1526 		map = kmap_atomic(page);
1527 		tmp_count = map[offset];
1528 		kunmap_atomic(map);
1529 
1530 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1531 		n *= (SWAP_CONT_MAX + 1);
1532 	} while (tmp_count & COUNT_CONTINUED);
1533 out:
1534 	unlock_cluster_or_swap_info(p, ci);
1535 	return count;
1536 }
1537 
1538 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1539 					 swp_entry_t entry)
1540 {
1541 	struct swap_cluster_info *ci;
1542 	unsigned char *map = si->swap_map;
1543 	unsigned long roffset = swp_offset(entry);
1544 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1545 	int i;
1546 	bool ret = false;
1547 
1548 	ci = lock_cluster_or_swap_info(si, offset);
1549 	if (!ci || !cluster_is_huge(ci)) {
1550 		if (swap_count(map[roffset]))
1551 			ret = true;
1552 		goto unlock_out;
1553 	}
1554 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1555 		if (swap_count(map[offset + i])) {
1556 			ret = true;
1557 			break;
1558 		}
1559 	}
1560 unlock_out:
1561 	unlock_cluster_or_swap_info(si, ci);
1562 	return ret;
1563 }
1564 
1565 static bool page_swapped(struct page *page)
1566 {
1567 	swp_entry_t entry;
1568 	struct swap_info_struct *si;
1569 
1570 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1571 		return page_swapcount(page) != 0;
1572 
1573 	page = compound_head(page);
1574 	entry.val = page_private(page);
1575 	si = _swap_info_get(entry);
1576 	if (si)
1577 		return swap_page_trans_huge_swapped(si, entry);
1578 	return false;
1579 }
1580 
1581 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1582 					 int *total_swapcount)
1583 {
1584 	int i, map_swapcount, _total_mapcount, _total_swapcount;
1585 	unsigned long offset = 0;
1586 	struct swap_info_struct *si;
1587 	struct swap_cluster_info *ci = NULL;
1588 	unsigned char *map = NULL;
1589 	int mapcount, swapcount = 0;
1590 
1591 	/* hugetlbfs shouldn't call it */
1592 	VM_BUG_ON_PAGE(PageHuge(page), page);
1593 
1594 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1595 		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1596 		if (PageSwapCache(page))
1597 			swapcount = page_swapcount(page);
1598 		if (total_swapcount)
1599 			*total_swapcount = swapcount;
1600 		return mapcount + swapcount;
1601 	}
1602 
1603 	page = compound_head(page);
1604 
1605 	_total_mapcount = _total_swapcount = map_swapcount = 0;
1606 	if (PageSwapCache(page)) {
1607 		swp_entry_t entry;
1608 
1609 		entry.val = page_private(page);
1610 		si = _swap_info_get(entry);
1611 		if (si) {
1612 			map = si->swap_map;
1613 			offset = swp_offset(entry);
1614 		}
1615 	}
1616 	if (map)
1617 		ci = lock_cluster(si, offset);
1618 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1619 		mapcount = atomic_read(&page[i]._mapcount) + 1;
1620 		_total_mapcount += mapcount;
1621 		if (map) {
1622 			swapcount = swap_count(map[offset + i]);
1623 			_total_swapcount += swapcount;
1624 		}
1625 		map_swapcount = max(map_swapcount, mapcount + swapcount);
1626 	}
1627 	unlock_cluster(ci);
1628 	if (PageDoubleMap(page)) {
1629 		map_swapcount -= 1;
1630 		_total_mapcount -= HPAGE_PMD_NR;
1631 	}
1632 	mapcount = compound_mapcount(page);
1633 	map_swapcount += mapcount;
1634 	_total_mapcount += mapcount;
1635 	if (total_mapcount)
1636 		*total_mapcount = _total_mapcount;
1637 	if (total_swapcount)
1638 		*total_swapcount = _total_swapcount;
1639 
1640 	return map_swapcount;
1641 }
1642 
1643 /*
1644  * We can write to an anon page without COW if there are no other references
1645  * to it.  And as a side-effect, free up its swap: because the old content
1646  * on disk will never be read, and seeking back there to write new content
1647  * later would only waste time away from clustering.
1648  *
1649  * NOTE: total_map_swapcount should not be relied upon by the caller if
1650  * reuse_swap_page() returns false, but it may be always overwritten
1651  * (see the other implementation for CONFIG_SWAP=n).
1652  */
1653 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1654 {
1655 	int count, total_mapcount, total_swapcount;
1656 
1657 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1658 	if (unlikely(PageKsm(page)))
1659 		return false;
1660 	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1661 					      &total_swapcount);
1662 	if (total_map_swapcount)
1663 		*total_map_swapcount = total_mapcount + total_swapcount;
1664 	if (count == 1 && PageSwapCache(page) &&
1665 	    (likely(!PageTransCompound(page)) ||
1666 	     /* The remaining swap count will be freed soon */
1667 	     total_swapcount == page_swapcount(page))) {
1668 		if (!PageWriteback(page)) {
1669 			page = compound_head(page);
1670 			delete_from_swap_cache(page);
1671 			SetPageDirty(page);
1672 		} else {
1673 			swp_entry_t entry;
1674 			struct swap_info_struct *p;
1675 
1676 			entry.val = page_private(page);
1677 			p = swap_info_get(entry);
1678 			if (p->flags & SWP_STABLE_WRITES) {
1679 				spin_unlock(&p->lock);
1680 				return false;
1681 			}
1682 			spin_unlock(&p->lock);
1683 		}
1684 	}
1685 
1686 	return count <= 1;
1687 }
1688 
1689 /*
1690  * If swap is getting full, or if there are no more mappings of this page,
1691  * then try_to_free_swap is called to free its swap space.
1692  */
1693 int try_to_free_swap(struct page *page)
1694 {
1695 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1696 
1697 	if (!PageSwapCache(page))
1698 		return 0;
1699 	if (PageWriteback(page))
1700 		return 0;
1701 	if (page_swapped(page))
1702 		return 0;
1703 
1704 	/*
1705 	 * Once hibernation has begun to create its image of memory,
1706 	 * there's a danger that one of the calls to try_to_free_swap()
1707 	 * - most probably a call from __try_to_reclaim_swap() while
1708 	 * hibernation is allocating its own swap pages for the image,
1709 	 * but conceivably even a call from memory reclaim - will free
1710 	 * the swap from a page which has already been recorded in the
1711 	 * image as a clean swapcache page, and then reuse its swap for
1712 	 * another page of the image.  On waking from hibernation, the
1713 	 * original page might be freed under memory pressure, then
1714 	 * later read back in from swap, now with the wrong data.
1715 	 *
1716 	 * Hibernation suspends storage while it is writing the image
1717 	 * to disk so check that here.
1718 	 */
1719 	if (pm_suspended_storage())
1720 		return 0;
1721 
1722 	page = compound_head(page);
1723 	delete_from_swap_cache(page);
1724 	SetPageDirty(page);
1725 	return 1;
1726 }
1727 
1728 /*
1729  * Free the swap entry like above, but also try to
1730  * free the page cache entry if it is the last user.
1731  */
1732 int free_swap_and_cache(swp_entry_t entry)
1733 {
1734 	struct swap_info_struct *p;
1735 	unsigned char count;
1736 
1737 	if (non_swap_entry(entry))
1738 		return 1;
1739 
1740 	p = _swap_info_get(entry);
1741 	if (p) {
1742 		count = __swap_entry_free(p, entry, 1);
1743 		if (count == SWAP_HAS_CACHE &&
1744 		    !swap_page_trans_huge_swapped(p, entry))
1745 			__try_to_reclaim_swap(p, swp_offset(entry),
1746 					      TTRS_UNMAPPED | TTRS_FULL);
1747 	}
1748 	return p != NULL;
1749 }
1750 
1751 #ifdef CONFIG_HIBERNATION
1752 /*
1753  * Find the swap type that corresponds to given device (if any).
1754  *
1755  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1756  * from 0, in which the swap header is expected to be located.
1757  *
1758  * This is needed for the suspend to disk (aka swsusp).
1759  */
1760 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1761 {
1762 	struct block_device *bdev = NULL;
1763 	int type;
1764 
1765 	if (device)
1766 		bdev = bdget(device);
1767 
1768 	spin_lock(&swap_lock);
1769 	for (type = 0; type < nr_swapfiles; type++) {
1770 		struct swap_info_struct *sis = swap_info[type];
1771 
1772 		if (!(sis->flags & SWP_WRITEOK))
1773 			continue;
1774 
1775 		if (!bdev) {
1776 			if (bdev_p)
1777 				*bdev_p = bdgrab(sis->bdev);
1778 
1779 			spin_unlock(&swap_lock);
1780 			return type;
1781 		}
1782 		if (bdev == sis->bdev) {
1783 			struct swap_extent *se = first_se(sis);
1784 
1785 			if (se->start_block == offset) {
1786 				if (bdev_p)
1787 					*bdev_p = bdgrab(sis->bdev);
1788 
1789 				spin_unlock(&swap_lock);
1790 				bdput(bdev);
1791 				return type;
1792 			}
1793 		}
1794 	}
1795 	spin_unlock(&swap_lock);
1796 	if (bdev)
1797 		bdput(bdev);
1798 
1799 	return -ENODEV;
1800 }
1801 
1802 /*
1803  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1804  * corresponding to given index in swap_info (swap type).
1805  */
1806 sector_t swapdev_block(int type, pgoff_t offset)
1807 {
1808 	struct block_device *bdev;
1809 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1810 
1811 	if (!si || !(si->flags & SWP_WRITEOK))
1812 		return 0;
1813 	return map_swap_entry(swp_entry(type, offset), &bdev);
1814 }
1815 
1816 /*
1817  * Return either the total number of swap pages of given type, or the number
1818  * of free pages of that type (depending on @free)
1819  *
1820  * This is needed for software suspend
1821  */
1822 unsigned int count_swap_pages(int type, int free)
1823 {
1824 	unsigned int n = 0;
1825 
1826 	spin_lock(&swap_lock);
1827 	if ((unsigned int)type < nr_swapfiles) {
1828 		struct swap_info_struct *sis = swap_info[type];
1829 
1830 		spin_lock(&sis->lock);
1831 		if (sis->flags & SWP_WRITEOK) {
1832 			n = sis->pages;
1833 			if (free)
1834 				n -= sis->inuse_pages;
1835 		}
1836 		spin_unlock(&sis->lock);
1837 	}
1838 	spin_unlock(&swap_lock);
1839 	return n;
1840 }
1841 #endif /* CONFIG_HIBERNATION */
1842 
1843 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1844 {
1845 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1846 }
1847 
1848 /*
1849  * No need to decide whether this PTE shares the swap entry with others,
1850  * just let do_wp_page work it out if a write is requested later - to
1851  * force COW, vm_page_prot omits write permission from any private vma.
1852  */
1853 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1854 		unsigned long addr, swp_entry_t entry, struct page *page)
1855 {
1856 	struct page *swapcache;
1857 	struct mem_cgroup *memcg;
1858 	spinlock_t *ptl;
1859 	pte_t *pte;
1860 	int ret = 1;
1861 
1862 	swapcache = page;
1863 	page = ksm_might_need_to_copy(page, vma, addr);
1864 	if (unlikely(!page))
1865 		return -ENOMEM;
1866 
1867 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1868 				&memcg, false)) {
1869 		ret = -ENOMEM;
1870 		goto out_nolock;
1871 	}
1872 
1873 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1874 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1875 		mem_cgroup_cancel_charge(page, memcg, false);
1876 		ret = 0;
1877 		goto out;
1878 	}
1879 
1880 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1881 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1882 	get_page(page);
1883 	set_pte_at(vma->vm_mm, addr, pte,
1884 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1885 	if (page == swapcache) {
1886 		page_add_anon_rmap(page, vma, addr, false);
1887 		mem_cgroup_commit_charge(page, memcg, true, false);
1888 	} else { /* ksm created a completely new copy */
1889 		page_add_new_anon_rmap(page, vma, addr, false);
1890 		mem_cgroup_commit_charge(page, memcg, false, false);
1891 		lru_cache_add_active_or_unevictable(page, vma);
1892 	}
1893 	swap_free(entry);
1894 	/*
1895 	 * Move the page to the active list so it is not
1896 	 * immediately swapped out again after swapon.
1897 	 */
1898 	activate_page(page);
1899 out:
1900 	pte_unmap_unlock(pte, ptl);
1901 out_nolock:
1902 	if (page != swapcache) {
1903 		unlock_page(page);
1904 		put_page(page);
1905 	}
1906 	return ret;
1907 }
1908 
1909 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1910 			unsigned long addr, unsigned long end,
1911 			unsigned int type, bool frontswap,
1912 			unsigned long *fs_pages_to_unuse)
1913 {
1914 	struct page *page;
1915 	swp_entry_t entry;
1916 	pte_t *pte;
1917 	struct swap_info_struct *si;
1918 	unsigned long offset;
1919 	int ret = 0;
1920 	volatile unsigned char *swap_map;
1921 
1922 	si = swap_info[type];
1923 	pte = pte_offset_map(pmd, addr);
1924 	do {
1925 		struct vm_fault vmf;
1926 
1927 		if (!is_swap_pte(*pte))
1928 			continue;
1929 
1930 		entry = pte_to_swp_entry(*pte);
1931 		if (swp_type(entry) != type)
1932 			continue;
1933 
1934 		offset = swp_offset(entry);
1935 		if (frontswap && !frontswap_test(si, offset))
1936 			continue;
1937 
1938 		pte_unmap(pte);
1939 		swap_map = &si->swap_map[offset];
1940 		vmf.vma = vma;
1941 		vmf.address = addr;
1942 		vmf.pmd = pmd;
1943 		page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, &vmf);
1944 		if (!page) {
1945 			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1946 				goto try_next;
1947 			return -ENOMEM;
1948 		}
1949 
1950 		lock_page(page);
1951 		wait_on_page_writeback(page);
1952 		ret = unuse_pte(vma, pmd, addr, entry, page);
1953 		if (ret < 0) {
1954 			unlock_page(page);
1955 			put_page(page);
1956 			goto out;
1957 		}
1958 
1959 		try_to_free_swap(page);
1960 		unlock_page(page);
1961 		put_page(page);
1962 
1963 		if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1964 			ret = FRONTSWAP_PAGES_UNUSED;
1965 			goto out;
1966 		}
1967 try_next:
1968 		pte = pte_offset_map(pmd, addr);
1969 	} while (pte++, addr += PAGE_SIZE, addr != end);
1970 	pte_unmap(pte - 1);
1971 
1972 	ret = 0;
1973 out:
1974 	return ret;
1975 }
1976 
1977 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1978 				unsigned long addr, unsigned long end,
1979 				unsigned int type, bool frontswap,
1980 				unsigned long *fs_pages_to_unuse)
1981 {
1982 	pmd_t *pmd;
1983 	unsigned long next;
1984 	int ret;
1985 
1986 	pmd = pmd_offset(pud, addr);
1987 	do {
1988 		cond_resched();
1989 		next = pmd_addr_end(addr, end);
1990 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1991 			continue;
1992 		ret = unuse_pte_range(vma, pmd, addr, next, type,
1993 				      frontswap, fs_pages_to_unuse);
1994 		if (ret)
1995 			return ret;
1996 	} while (pmd++, addr = next, addr != end);
1997 	return 0;
1998 }
1999 
2000 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2001 				unsigned long addr, unsigned long end,
2002 				unsigned int type, bool frontswap,
2003 				unsigned long *fs_pages_to_unuse)
2004 {
2005 	pud_t *pud;
2006 	unsigned long next;
2007 	int ret;
2008 
2009 	pud = pud_offset(p4d, addr);
2010 	do {
2011 		next = pud_addr_end(addr, end);
2012 		if (pud_none_or_clear_bad(pud))
2013 			continue;
2014 		ret = unuse_pmd_range(vma, pud, addr, next, type,
2015 				      frontswap, fs_pages_to_unuse);
2016 		if (ret)
2017 			return ret;
2018 	} while (pud++, addr = next, addr != end);
2019 	return 0;
2020 }
2021 
2022 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2023 				unsigned long addr, unsigned long end,
2024 				unsigned int type, bool frontswap,
2025 				unsigned long *fs_pages_to_unuse)
2026 {
2027 	p4d_t *p4d;
2028 	unsigned long next;
2029 	int ret;
2030 
2031 	p4d = p4d_offset(pgd, addr);
2032 	do {
2033 		next = p4d_addr_end(addr, end);
2034 		if (p4d_none_or_clear_bad(p4d))
2035 			continue;
2036 		ret = unuse_pud_range(vma, p4d, addr, next, type,
2037 				      frontswap, fs_pages_to_unuse);
2038 		if (ret)
2039 			return ret;
2040 	} while (p4d++, addr = next, addr != end);
2041 	return 0;
2042 }
2043 
2044 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2045 		     bool frontswap, unsigned long *fs_pages_to_unuse)
2046 {
2047 	pgd_t *pgd;
2048 	unsigned long addr, end, next;
2049 	int ret;
2050 
2051 	addr = vma->vm_start;
2052 	end = vma->vm_end;
2053 
2054 	pgd = pgd_offset(vma->vm_mm, addr);
2055 	do {
2056 		next = pgd_addr_end(addr, end);
2057 		if (pgd_none_or_clear_bad(pgd))
2058 			continue;
2059 		ret = unuse_p4d_range(vma, pgd, addr, next, type,
2060 				      frontswap, fs_pages_to_unuse);
2061 		if (ret)
2062 			return ret;
2063 	} while (pgd++, addr = next, addr != end);
2064 	return 0;
2065 }
2066 
2067 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2068 		    bool frontswap, unsigned long *fs_pages_to_unuse)
2069 {
2070 	struct vm_area_struct *vma;
2071 	int ret = 0;
2072 
2073 	down_read(&mm->mmap_sem);
2074 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2075 		if (vma->anon_vma) {
2076 			ret = unuse_vma(vma, type, frontswap,
2077 					fs_pages_to_unuse);
2078 			if (ret)
2079 				break;
2080 		}
2081 		cond_resched();
2082 	}
2083 	up_read(&mm->mmap_sem);
2084 	return ret;
2085 }
2086 
2087 /*
2088  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2089  * from current position to next entry still in use. Return 0
2090  * if there are no inuse entries after prev till end of the map.
2091  */
2092 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2093 					unsigned int prev, bool frontswap)
2094 {
2095 	unsigned int i;
2096 	unsigned char count;
2097 
2098 	/*
2099 	 * No need for swap_lock here: we're just looking
2100 	 * for whether an entry is in use, not modifying it; false
2101 	 * hits are okay, and sys_swapoff() has already prevented new
2102 	 * allocations from this area (while holding swap_lock).
2103 	 */
2104 	for (i = prev + 1; i < si->max; i++) {
2105 		count = READ_ONCE(si->swap_map[i]);
2106 		if (count && swap_count(count) != SWAP_MAP_BAD)
2107 			if (!frontswap || frontswap_test(si, i))
2108 				break;
2109 		if ((i % LATENCY_LIMIT) == 0)
2110 			cond_resched();
2111 	}
2112 
2113 	if (i == si->max)
2114 		i = 0;
2115 
2116 	return i;
2117 }
2118 
2119 /*
2120  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2121  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2122  */
2123 int try_to_unuse(unsigned int type, bool frontswap,
2124 		 unsigned long pages_to_unuse)
2125 {
2126 	struct mm_struct *prev_mm;
2127 	struct mm_struct *mm;
2128 	struct list_head *p;
2129 	int retval = 0;
2130 	struct swap_info_struct *si = swap_info[type];
2131 	struct page *page;
2132 	swp_entry_t entry;
2133 	unsigned int i;
2134 
2135 	if (!si->inuse_pages)
2136 		return 0;
2137 
2138 	if (!frontswap)
2139 		pages_to_unuse = 0;
2140 
2141 retry:
2142 	retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2143 	if (retval)
2144 		goto out;
2145 
2146 	prev_mm = &init_mm;
2147 	mmget(prev_mm);
2148 
2149 	spin_lock(&mmlist_lock);
2150 	p = &init_mm.mmlist;
2151 	while (si->inuse_pages &&
2152 	       !signal_pending(current) &&
2153 	       (p = p->next) != &init_mm.mmlist) {
2154 
2155 		mm = list_entry(p, struct mm_struct, mmlist);
2156 		if (!mmget_not_zero(mm))
2157 			continue;
2158 		spin_unlock(&mmlist_lock);
2159 		mmput(prev_mm);
2160 		prev_mm = mm;
2161 		retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2162 
2163 		if (retval) {
2164 			mmput(prev_mm);
2165 			goto out;
2166 		}
2167 
2168 		/*
2169 		 * Make sure that we aren't completely killing
2170 		 * interactive performance.
2171 		 */
2172 		cond_resched();
2173 		spin_lock(&mmlist_lock);
2174 	}
2175 	spin_unlock(&mmlist_lock);
2176 
2177 	mmput(prev_mm);
2178 
2179 	i = 0;
2180 	while (si->inuse_pages &&
2181 	       !signal_pending(current) &&
2182 	       (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2183 
2184 		entry = swp_entry(type, i);
2185 		page = find_get_page(swap_address_space(entry), i);
2186 		if (!page)
2187 			continue;
2188 
2189 		/*
2190 		 * It is conceivable that a racing task removed this page from
2191 		 * swap cache just before we acquired the page lock. The page
2192 		 * might even be back in swap cache on another swap area. But
2193 		 * that is okay, try_to_free_swap() only removes stale pages.
2194 		 */
2195 		lock_page(page);
2196 		wait_on_page_writeback(page);
2197 		try_to_free_swap(page);
2198 		unlock_page(page);
2199 		put_page(page);
2200 
2201 		/*
2202 		 * For frontswap, we just need to unuse pages_to_unuse, if
2203 		 * it was specified. Need not check frontswap again here as
2204 		 * we already zeroed out pages_to_unuse if not frontswap.
2205 		 */
2206 		if (pages_to_unuse && --pages_to_unuse == 0)
2207 			goto out;
2208 	}
2209 
2210 	/*
2211 	 * Lets check again to see if there are still swap entries in the map.
2212 	 * If yes, we would need to do retry the unuse logic again.
2213 	 * Under global memory pressure, swap entries can be reinserted back
2214 	 * into process space after the mmlist loop above passes over them.
2215 	 *
2216 	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2217 	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2218 	 * at its own independent pace; and even shmem_writepage() could have
2219 	 * been preempted after get_swap_page(), temporarily hiding that swap.
2220 	 * It's easy and robust (though cpu-intensive) just to keep retrying.
2221 	 */
2222 	if (si->inuse_pages) {
2223 		if (!signal_pending(current))
2224 			goto retry;
2225 		retval = -EINTR;
2226 	}
2227 out:
2228 	return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2229 }
2230 
2231 /*
2232  * After a successful try_to_unuse, if no swap is now in use, we know
2233  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2234  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2235  * added to the mmlist just after page_duplicate - before would be racy.
2236  */
2237 static void drain_mmlist(void)
2238 {
2239 	struct list_head *p, *next;
2240 	unsigned int type;
2241 
2242 	for (type = 0; type < nr_swapfiles; type++)
2243 		if (swap_info[type]->inuse_pages)
2244 			return;
2245 	spin_lock(&mmlist_lock);
2246 	list_for_each_safe(p, next, &init_mm.mmlist)
2247 		list_del_init(p);
2248 	spin_unlock(&mmlist_lock);
2249 }
2250 
2251 /*
2252  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2253  * corresponds to page offset for the specified swap entry.
2254  * Note that the type of this function is sector_t, but it returns page offset
2255  * into the bdev, not sector offset.
2256  */
2257 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2258 {
2259 	struct swap_info_struct *sis;
2260 	struct swap_extent *se;
2261 	pgoff_t offset;
2262 
2263 	sis = swp_swap_info(entry);
2264 	*bdev = sis->bdev;
2265 
2266 	offset = swp_offset(entry);
2267 	se = offset_to_swap_extent(sis, offset);
2268 	return se->start_block + (offset - se->start_page);
2269 }
2270 
2271 /*
2272  * Returns the page offset into bdev for the specified page's swap entry.
2273  */
2274 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2275 {
2276 	swp_entry_t entry;
2277 	entry.val = page_private(page);
2278 	return map_swap_entry(entry, bdev);
2279 }
2280 
2281 /*
2282  * Free all of a swapdev's extent information
2283  */
2284 static void destroy_swap_extents(struct swap_info_struct *sis)
2285 {
2286 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2287 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2288 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2289 
2290 		rb_erase(rb, &sis->swap_extent_root);
2291 		kfree(se);
2292 	}
2293 
2294 	if (sis->flags & SWP_ACTIVATED) {
2295 		struct file *swap_file = sis->swap_file;
2296 		struct address_space *mapping = swap_file->f_mapping;
2297 
2298 		sis->flags &= ~SWP_ACTIVATED;
2299 		if (mapping->a_ops->swap_deactivate)
2300 			mapping->a_ops->swap_deactivate(swap_file);
2301 	}
2302 }
2303 
2304 /*
2305  * Add a block range (and the corresponding page range) into this swapdev's
2306  * extent tree.
2307  *
2308  * This function rather assumes that it is called in ascending page order.
2309  */
2310 int
2311 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2312 		unsigned long nr_pages, sector_t start_block)
2313 {
2314 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2315 	struct swap_extent *se;
2316 	struct swap_extent *new_se;
2317 
2318 	/*
2319 	 * place the new node at the right most since the
2320 	 * function is called in ascending page order.
2321 	 */
2322 	while (*link) {
2323 		parent = *link;
2324 		link = &parent->rb_right;
2325 	}
2326 
2327 	if (parent) {
2328 		se = rb_entry(parent, struct swap_extent, rb_node);
2329 		BUG_ON(se->start_page + se->nr_pages != start_page);
2330 		if (se->start_block + se->nr_pages == start_block) {
2331 			/* Merge it */
2332 			se->nr_pages += nr_pages;
2333 			return 0;
2334 		}
2335 	}
2336 
2337 	/* No merge, insert a new extent. */
2338 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2339 	if (new_se == NULL)
2340 		return -ENOMEM;
2341 	new_se->start_page = start_page;
2342 	new_se->nr_pages = nr_pages;
2343 	new_se->start_block = start_block;
2344 
2345 	rb_link_node(&new_se->rb_node, parent, link);
2346 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2347 	return 1;
2348 }
2349 EXPORT_SYMBOL_GPL(add_swap_extent);
2350 
2351 /*
2352  * A `swap extent' is a simple thing which maps a contiguous range of pages
2353  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2354  * is built at swapon time and is then used at swap_writepage/swap_readpage
2355  * time for locating where on disk a page belongs.
2356  *
2357  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2358  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2359  * swap files identically.
2360  *
2361  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2362  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2363  * swapfiles are handled *identically* after swapon time.
2364  *
2365  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2366  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2367  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2368  * requirements, they are simply tossed out - we will never use those blocks
2369  * for swapping.
2370  *
2371  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2372  * prevents users from writing to the swap device, which will corrupt memory.
2373  *
2374  * The amount of disk space which a single swap extent represents varies.
2375  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2376  * extents in the list.  To avoid much list walking, we cache the previous
2377  * search location in `curr_swap_extent', and start new searches from there.
2378  * This is extremely effective.  The average number of iterations in
2379  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2380  */
2381 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2382 {
2383 	struct file *swap_file = sis->swap_file;
2384 	struct address_space *mapping = swap_file->f_mapping;
2385 	struct inode *inode = mapping->host;
2386 	int ret;
2387 
2388 	if (S_ISBLK(inode->i_mode)) {
2389 		ret = add_swap_extent(sis, 0, sis->max, 0);
2390 		*span = sis->pages;
2391 		return ret;
2392 	}
2393 
2394 	if (mapping->a_ops->swap_activate) {
2395 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2396 		if (ret >= 0)
2397 			sis->flags |= SWP_ACTIVATED;
2398 		if (!ret) {
2399 			sis->flags |= SWP_FS;
2400 			ret = add_swap_extent(sis, 0, sis->max, 0);
2401 			*span = sis->pages;
2402 		}
2403 		return ret;
2404 	}
2405 
2406 	return generic_swapfile_activate(sis, swap_file, span);
2407 }
2408 
2409 static int swap_node(struct swap_info_struct *p)
2410 {
2411 	struct block_device *bdev;
2412 
2413 	if (p->bdev)
2414 		bdev = p->bdev;
2415 	else
2416 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2417 
2418 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2419 }
2420 
2421 static void setup_swap_info(struct swap_info_struct *p, int prio,
2422 			    unsigned char *swap_map,
2423 			    struct swap_cluster_info *cluster_info)
2424 {
2425 	int i;
2426 
2427 	if (prio >= 0)
2428 		p->prio = prio;
2429 	else
2430 		p->prio = --least_priority;
2431 	/*
2432 	 * the plist prio is negated because plist ordering is
2433 	 * low-to-high, while swap ordering is high-to-low
2434 	 */
2435 	p->list.prio = -p->prio;
2436 	for_each_node(i) {
2437 		if (p->prio >= 0)
2438 			p->avail_lists[i].prio = -p->prio;
2439 		else {
2440 			if (swap_node(p) == i)
2441 				p->avail_lists[i].prio = 1;
2442 			else
2443 				p->avail_lists[i].prio = -p->prio;
2444 		}
2445 	}
2446 	p->swap_map = swap_map;
2447 	p->cluster_info = cluster_info;
2448 }
2449 
2450 static void _enable_swap_info(struct swap_info_struct *p)
2451 {
2452 	p->flags |= SWP_WRITEOK | SWP_VALID;
2453 	atomic_long_add(p->pages, &nr_swap_pages);
2454 	total_swap_pages += p->pages;
2455 
2456 	assert_spin_locked(&swap_lock);
2457 	/*
2458 	 * both lists are plists, and thus priority ordered.
2459 	 * swap_active_head needs to be priority ordered for swapoff(),
2460 	 * which on removal of any swap_info_struct with an auto-assigned
2461 	 * (i.e. negative) priority increments the auto-assigned priority
2462 	 * of any lower-priority swap_info_structs.
2463 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2464 	 * which allocates swap pages from the highest available priority
2465 	 * swap_info_struct.
2466 	 */
2467 	plist_add(&p->list, &swap_active_head);
2468 	add_to_avail_list(p);
2469 }
2470 
2471 static void enable_swap_info(struct swap_info_struct *p, int prio,
2472 				unsigned char *swap_map,
2473 				struct swap_cluster_info *cluster_info,
2474 				unsigned long *frontswap_map)
2475 {
2476 	frontswap_init(p->type, frontswap_map);
2477 	spin_lock(&swap_lock);
2478 	spin_lock(&p->lock);
2479 	setup_swap_info(p, prio, swap_map, cluster_info);
2480 	spin_unlock(&p->lock);
2481 	spin_unlock(&swap_lock);
2482 	/*
2483 	 * Guarantee swap_map, cluster_info, etc. fields are valid
2484 	 * between get/put_swap_device() if SWP_VALID bit is set
2485 	 */
2486 	synchronize_rcu();
2487 	spin_lock(&swap_lock);
2488 	spin_lock(&p->lock);
2489 	_enable_swap_info(p);
2490 	spin_unlock(&p->lock);
2491 	spin_unlock(&swap_lock);
2492 }
2493 
2494 static void reinsert_swap_info(struct swap_info_struct *p)
2495 {
2496 	spin_lock(&swap_lock);
2497 	spin_lock(&p->lock);
2498 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2499 	_enable_swap_info(p);
2500 	spin_unlock(&p->lock);
2501 	spin_unlock(&swap_lock);
2502 }
2503 
2504 bool has_usable_swap(void)
2505 {
2506 	bool ret = true;
2507 
2508 	spin_lock(&swap_lock);
2509 	if (plist_head_empty(&swap_active_head))
2510 		ret = false;
2511 	spin_unlock(&swap_lock);
2512 	return ret;
2513 }
2514 
2515 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2516 {
2517 	struct swap_info_struct *p = NULL;
2518 	unsigned char *swap_map;
2519 	struct swap_cluster_info *cluster_info;
2520 	unsigned long *frontswap_map;
2521 	struct file *swap_file, *victim;
2522 	struct address_space *mapping;
2523 	struct inode *inode;
2524 	struct filename *pathname;
2525 	int err, found = 0;
2526 	unsigned int old_block_size;
2527 
2528 	if (!capable(CAP_SYS_ADMIN))
2529 		return -EPERM;
2530 
2531 	BUG_ON(!current->mm);
2532 
2533 	pathname = getname(specialfile);
2534 	if (IS_ERR(pathname))
2535 		return PTR_ERR(pathname);
2536 
2537 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2538 	err = PTR_ERR(victim);
2539 	if (IS_ERR(victim))
2540 		goto out;
2541 
2542 	mapping = victim->f_mapping;
2543 	spin_lock(&swap_lock);
2544 	plist_for_each_entry(p, &swap_active_head, list) {
2545 		if (p->flags & SWP_WRITEOK) {
2546 			if (p->swap_file->f_mapping == mapping) {
2547 				found = 1;
2548 				break;
2549 			}
2550 		}
2551 	}
2552 	if (!found) {
2553 		err = -EINVAL;
2554 		spin_unlock(&swap_lock);
2555 		goto out_dput;
2556 	}
2557 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2558 		vm_unacct_memory(p->pages);
2559 	else {
2560 		err = -ENOMEM;
2561 		spin_unlock(&swap_lock);
2562 		goto out_dput;
2563 	}
2564 	del_from_avail_list(p);
2565 	spin_lock(&p->lock);
2566 	if (p->prio < 0) {
2567 		struct swap_info_struct *si = p;
2568 		int nid;
2569 
2570 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2571 			si->prio++;
2572 			si->list.prio--;
2573 			for_each_node(nid) {
2574 				if (si->avail_lists[nid].prio != 1)
2575 					si->avail_lists[nid].prio--;
2576 			}
2577 		}
2578 		least_priority++;
2579 	}
2580 	plist_del(&p->list, &swap_active_head);
2581 	atomic_long_sub(p->pages, &nr_swap_pages);
2582 	total_swap_pages -= p->pages;
2583 	p->flags &= ~SWP_WRITEOK;
2584 	spin_unlock(&p->lock);
2585 	spin_unlock(&swap_lock);
2586 
2587 	disable_swap_slots_cache_lock();
2588 
2589 	set_current_oom_origin();
2590 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2591 	clear_current_oom_origin();
2592 
2593 	if (err) {
2594 		/* re-insert swap space back into swap_list */
2595 		reinsert_swap_info(p);
2596 		reenable_swap_slots_cache_unlock();
2597 		goto out_dput;
2598 	}
2599 
2600 	reenable_swap_slots_cache_unlock();
2601 
2602 	spin_lock(&swap_lock);
2603 	spin_lock(&p->lock);
2604 	p->flags &= ~SWP_VALID;		/* mark swap device as invalid */
2605 	spin_unlock(&p->lock);
2606 	spin_unlock(&swap_lock);
2607 	/*
2608 	 * wait for swap operations protected by get/put_swap_device()
2609 	 * to complete
2610 	 */
2611 	synchronize_rcu();
2612 
2613 	flush_work(&p->discard_work);
2614 
2615 	destroy_swap_extents(p);
2616 	if (p->flags & SWP_CONTINUED)
2617 		free_swap_count_continuations(p);
2618 
2619 	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2620 		atomic_dec(&nr_rotate_swap);
2621 
2622 	mutex_lock(&swapon_mutex);
2623 	spin_lock(&swap_lock);
2624 	spin_lock(&p->lock);
2625 	drain_mmlist();
2626 
2627 	/* wait for anyone still in scan_swap_map */
2628 	p->highest_bit = 0;		/* cuts scans short */
2629 	while (p->flags >= SWP_SCANNING) {
2630 		spin_unlock(&p->lock);
2631 		spin_unlock(&swap_lock);
2632 		schedule_timeout_uninterruptible(1);
2633 		spin_lock(&swap_lock);
2634 		spin_lock(&p->lock);
2635 	}
2636 
2637 	swap_file = p->swap_file;
2638 	old_block_size = p->old_block_size;
2639 	p->swap_file = NULL;
2640 	p->max = 0;
2641 	swap_map = p->swap_map;
2642 	p->swap_map = NULL;
2643 	cluster_info = p->cluster_info;
2644 	p->cluster_info = NULL;
2645 	frontswap_map = frontswap_map_get(p);
2646 	spin_unlock(&p->lock);
2647 	spin_unlock(&swap_lock);
2648 	frontswap_invalidate_area(p->type);
2649 	frontswap_map_set(p, NULL);
2650 	mutex_unlock(&swapon_mutex);
2651 	free_percpu(p->percpu_cluster);
2652 	p->percpu_cluster = NULL;
2653 	vfree(swap_map);
2654 	kvfree(cluster_info);
2655 	kvfree(frontswap_map);
2656 	/* Destroy swap account information */
2657 	swap_cgroup_swapoff(p->type);
2658 	exit_swap_address_space(p->type);
2659 
2660 	inode = mapping->host;
2661 	if (S_ISBLK(inode->i_mode)) {
2662 		struct block_device *bdev = I_BDEV(inode);
2663 
2664 		set_blocksize(bdev, old_block_size);
2665 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2666 	}
2667 
2668 	inode_lock(inode);
2669 	inode->i_flags &= ~S_SWAPFILE;
2670 	inode_unlock(inode);
2671 	filp_close(swap_file, NULL);
2672 
2673 	/*
2674 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2675 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2676 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2677 	 */
2678 	spin_lock(&swap_lock);
2679 	p->flags = 0;
2680 	spin_unlock(&swap_lock);
2681 
2682 	err = 0;
2683 	atomic_inc(&proc_poll_event);
2684 	wake_up_interruptible(&proc_poll_wait);
2685 
2686 out_dput:
2687 	filp_close(victim, NULL);
2688 out:
2689 	putname(pathname);
2690 	return err;
2691 }
2692 
2693 #ifdef CONFIG_PROC_FS
2694 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2695 {
2696 	struct seq_file *seq = file->private_data;
2697 
2698 	poll_wait(file, &proc_poll_wait, wait);
2699 
2700 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2701 		seq->poll_event = atomic_read(&proc_poll_event);
2702 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2703 	}
2704 
2705 	return EPOLLIN | EPOLLRDNORM;
2706 }
2707 
2708 /* iterator */
2709 static void *swap_start(struct seq_file *swap, loff_t *pos)
2710 {
2711 	struct swap_info_struct *si;
2712 	int type;
2713 	loff_t l = *pos;
2714 
2715 	mutex_lock(&swapon_mutex);
2716 
2717 	if (!l)
2718 		return SEQ_START_TOKEN;
2719 
2720 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2721 		if (!(si->flags & SWP_USED) || !si->swap_map)
2722 			continue;
2723 		if (!--l)
2724 			return si;
2725 	}
2726 
2727 	return NULL;
2728 }
2729 
2730 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2731 {
2732 	struct swap_info_struct *si = v;
2733 	int type;
2734 
2735 	if (v == SEQ_START_TOKEN)
2736 		type = 0;
2737 	else
2738 		type = si->type + 1;
2739 
2740 	for (; (si = swap_type_to_swap_info(type)); type++) {
2741 		if (!(si->flags & SWP_USED) || !si->swap_map)
2742 			continue;
2743 		++*pos;
2744 		return si;
2745 	}
2746 
2747 	return NULL;
2748 }
2749 
2750 static void swap_stop(struct seq_file *swap, void *v)
2751 {
2752 	mutex_unlock(&swapon_mutex);
2753 }
2754 
2755 static int swap_show(struct seq_file *swap, void *v)
2756 {
2757 	struct swap_info_struct *si = v;
2758 	struct file *file;
2759 	int len;
2760 
2761 	if (si == SEQ_START_TOKEN) {
2762 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2763 		return 0;
2764 	}
2765 
2766 	file = si->swap_file;
2767 	len = seq_file_path(swap, file, " \t\n\\");
2768 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2769 			len < 40 ? 40 - len : 1, " ",
2770 			S_ISBLK(file_inode(file)->i_mode) ?
2771 				"partition" : "file\t",
2772 			si->pages << (PAGE_SHIFT - 10),
2773 			si->inuse_pages << (PAGE_SHIFT - 10),
2774 			si->prio);
2775 	return 0;
2776 }
2777 
2778 static const struct seq_operations swaps_op = {
2779 	.start =	swap_start,
2780 	.next =		swap_next,
2781 	.stop =		swap_stop,
2782 	.show =		swap_show
2783 };
2784 
2785 static int swaps_open(struct inode *inode, struct file *file)
2786 {
2787 	struct seq_file *seq;
2788 	int ret;
2789 
2790 	ret = seq_open(file, &swaps_op);
2791 	if (ret)
2792 		return ret;
2793 
2794 	seq = file->private_data;
2795 	seq->poll_event = atomic_read(&proc_poll_event);
2796 	return 0;
2797 }
2798 
2799 static const struct file_operations proc_swaps_operations = {
2800 	.open		= swaps_open,
2801 	.read		= seq_read,
2802 	.llseek		= seq_lseek,
2803 	.release	= seq_release,
2804 	.poll		= swaps_poll,
2805 };
2806 
2807 static int __init procswaps_init(void)
2808 {
2809 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2810 	return 0;
2811 }
2812 __initcall(procswaps_init);
2813 #endif /* CONFIG_PROC_FS */
2814 
2815 #ifdef MAX_SWAPFILES_CHECK
2816 static int __init max_swapfiles_check(void)
2817 {
2818 	MAX_SWAPFILES_CHECK();
2819 	return 0;
2820 }
2821 late_initcall(max_swapfiles_check);
2822 #endif
2823 
2824 static struct swap_info_struct *alloc_swap_info(void)
2825 {
2826 	struct swap_info_struct *p;
2827 	unsigned int type;
2828 	int i;
2829 
2830 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2831 	if (!p)
2832 		return ERR_PTR(-ENOMEM);
2833 
2834 	spin_lock(&swap_lock);
2835 	for (type = 0; type < nr_swapfiles; type++) {
2836 		if (!(swap_info[type]->flags & SWP_USED))
2837 			break;
2838 	}
2839 	if (type >= MAX_SWAPFILES) {
2840 		spin_unlock(&swap_lock);
2841 		kvfree(p);
2842 		return ERR_PTR(-EPERM);
2843 	}
2844 	if (type >= nr_swapfiles) {
2845 		p->type = type;
2846 		WRITE_ONCE(swap_info[type], p);
2847 		/*
2848 		 * Write swap_info[type] before nr_swapfiles, in case a
2849 		 * racing procfs swap_start() or swap_next() is reading them.
2850 		 * (We never shrink nr_swapfiles, we never free this entry.)
2851 		 */
2852 		smp_wmb();
2853 		WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2854 	} else {
2855 		kvfree(p);
2856 		p = swap_info[type];
2857 		/*
2858 		 * Do not memset this entry: a racing procfs swap_next()
2859 		 * would be relying on p->type to remain valid.
2860 		 */
2861 	}
2862 	p->swap_extent_root = RB_ROOT;
2863 	plist_node_init(&p->list, 0);
2864 	for_each_node(i)
2865 		plist_node_init(&p->avail_lists[i], 0);
2866 	p->flags = SWP_USED;
2867 	spin_unlock(&swap_lock);
2868 	spin_lock_init(&p->lock);
2869 	spin_lock_init(&p->cont_lock);
2870 
2871 	return p;
2872 }
2873 
2874 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2875 {
2876 	int error;
2877 
2878 	if (S_ISBLK(inode->i_mode)) {
2879 		p->bdev = bdgrab(I_BDEV(inode));
2880 		error = blkdev_get(p->bdev,
2881 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2882 		if (error < 0) {
2883 			p->bdev = NULL;
2884 			return error;
2885 		}
2886 		p->old_block_size = block_size(p->bdev);
2887 		error = set_blocksize(p->bdev, PAGE_SIZE);
2888 		if (error < 0)
2889 			return error;
2890 		p->flags |= SWP_BLKDEV;
2891 	} else if (S_ISREG(inode->i_mode)) {
2892 		p->bdev = inode->i_sb->s_bdev;
2893 	}
2894 
2895 	inode_lock(inode);
2896 	if (IS_SWAPFILE(inode))
2897 		return -EBUSY;
2898 
2899 	return 0;
2900 }
2901 
2902 
2903 /*
2904  * Find out how many pages are allowed for a single swap device. There
2905  * are two limiting factors:
2906  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2907  * 2) the number of bits in the swap pte, as defined by the different
2908  * architectures.
2909  *
2910  * In order to find the largest possible bit mask, a swap entry with
2911  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2912  * decoded to a swp_entry_t again, and finally the swap offset is
2913  * extracted.
2914  *
2915  * This will mask all the bits from the initial ~0UL mask that can't
2916  * be encoded in either the swp_entry_t or the architecture definition
2917  * of a swap pte.
2918  */
2919 unsigned long generic_max_swapfile_size(void)
2920 {
2921 	return swp_offset(pte_to_swp_entry(
2922 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2923 }
2924 
2925 /* Can be overridden by an architecture for additional checks. */
2926 __weak unsigned long max_swapfile_size(void)
2927 {
2928 	return generic_max_swapfile_size();
2929 }
2930 
2931 static unsigned long read_swap_header(struct swap_info_struct *p,
2932 					union swap_header *swap_header,
2933 					struct inode *inode)
2934 {
2935 	int i;
2936 	unsigned long maxpages;
2937 	unsigned long swapfilepages;
2938 	unsigned long last_page;
2939 
2940 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2941 		pr_err("Unable to find swap-space signature\n");
2942 		return 0;
2943 	}
2944 
2945 	/* swap partition endianess hack... */
2946 	if (swab32(swap_header->info.version) == 1) {
2947 		swab32s(&swap_header->info.version);
2948 		swab32s(&swap_header->info.last_page);
2949 		swab32s(&swap_header->info.nr_badpages);
2950 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2951 			return 0;
2952 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2953 			swab32s(&swap_header->info.badpages[i]);
2954 	}
2955 	/* Check the swap header's sub-version */
2956 	if (swap_header->info.version != 1) {
2957 		pr_warn("Unable to handle swap header version %d\n",
2958 			swap_header->info.version);
2959 		return 0;
2960 	}
2961 
2962 	p->lowest_bit  = 1;
2963 	p->cluster_next = 1;
2964 	p->cluster_nr = 0;
2965 
2966 	maxpages = max_swapfile_size();
2967 	last_page = swap_header->info.last_page;
2968 	if (!last_page) {
2969 		pr_warn("Empty swap-file\n");
2970 		return 0;
2971 	}
2972 	if (last_page > maxpages) {
2973 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2974 			maxpages << (PAGE_SHIFT - 10),
2975 			last_page << (PAGE_SHIFT - 10));
2976 	}
2977 	if (maxpages > last_page) {
2978 		maxpages = last_page + 1;
2979 		/* p->max is an unsigned int: don't overflow it */
2980 		if ((unsigned int)maxpages == 0)
2981 			maxpages = UINT_MAX;
2982 	}
2983 	p->highest_bit = maxpages - 1;
2984 
2985 	if (!maxpages)
2986 		return 0;
2987 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2988 	if (swapfilepages && maxpages > swapfilepages) {
2989 		pr_warn("Swap area shorter than signature indicates\n");
2990 		return 0;
2991 	}
2992 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2993 		return 0;
2994 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2995 		return 0;
2996 
2997 	return maxpages;
2998 }
2999 
3000 #define SWAP_CLUSTER_INFO_COLS						\
3001 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3002 #define SWAP_CLUSTER_SPACE_COLS						\
3003 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3004 #define SWAP_CLUSTER_COLS						\
3005 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3006 
3007 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3008 					union swap_header *swap_header,
3009 					unsigned char *swap_map,
3010 					struct swap_cluster_info *cluster_info,
3011 					unsigned long maxpages,
3012 					sector_t *span)
3013 {
3014 	unsigned int j, k;
3015 	unsigned int nr_good_pages;
3016 	int nr_extents;
3017 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3018 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3019 	unsigned long i, idx;
3020 
3021 	nr_good_pages = maxpages - 1;	/* omit header page */
3022 
3023 	cluster_list_init(&p->free_clusters);
3024 	cluster_list_init(&p->discard_clusters);
3025 
3026 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3027 		unsigned int page_nr = swap_header->info.badpages[i];
3028 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3029 			return -EINVAL;
3030 		if (page_nr < maxpages) {
3031 			swap_map[page_nr] = SWAP_MAP_BAD;
3032 			nr_good_pages--;
3033 			/*
3034 			 * Haven't marked the cluster free yet, no list
3035 			 * operation involved
3036 			 */
3037 			inc_cluster_info_page(p, cluster_info, page_nr);
3038 		}
3039 	}
3040 
3041 	/* Haven't marked the cluster free yet, no list operation involved */
3042 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3043 		inc_cluster_info_page(p, cluster_info, i);
3044 
3045 	if (nr_good_pages) {
3046 		swap_map[0] = SWAP_MAP_BAD;
3047 		/*
3048 		 * Not mark the cluster free yet, no list
3049 		 * operation involved
3050 		 */
3051 		inc_cluster_info_page(p, cluster_info, 0);
3052 		p->max = maxpages;
3053 		p->pages = nr_good_pages;
3054 		nr_extents = setup_swap_extents(p, span);
3055 		if (nr_extents < 0)
3056 			return nr_extents;
3057 		nr_good_pages = p->pages;
3058 	}
3059 	if (!nr_good_pages) {
3060 		pr_warn("Empty swap-file\n");
3061 		return -EINVAL;
3062 	}
3063 
3064 	if (!cluster_info)
3065 		return nr_extents;
3066 
3067 
3068 	/*
3069 	 * Reduce false cache line sharing between cluster_info and
3070 	 * sharing same address space.
3071 	 */
3072 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3073 		j = (k + col) % SWAP_CLUSTER_COLS;
3074 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3075 			idx = i * SWAP_CLUSTER_COLS + j;
3076 			if (idx >= nr_clusters)
3077 				continue;
3078 			if (cluster_count(&cluster_info[idx]))
3079 				continue;
3080 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3081 			cluster_list_add_tail(&p->free_clusters, cluster_info,
3082 					      idx);
3083 		}
3084 	}
3085 	return nr_extents;
3086 }
3087 
3088 /*
3089  * Helper to sys_swapon determining if a given swap
3090  * backing device queue supports DISCARD operations.
3091  */
3092 static bool swap_discardable(struct swap_info_struct *si)
3093 {
3094 	struct request_queue *q = bdev_get_queue(si->bdev);
3095 
3096 	if (!q || !blk_queue_discard(q))
3097 		return false;
3098 
3099 	return true;
3100 }
3101 
3102 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3103 {
3104 	struct swap_info_struct *p;
3105 	struct filename *name;
3106 	struct file *swap_file = NULL;
3107 	struct address_space *mapping;
3108 	int prio;
3109 	int error;
3110 	union swap_header *swap_header;
3111 	int nr_extents;
3112 	sector_t span;
3113 	unsigned long maxpages;
3114 	unsigned char *swap_map = NULL;
3115 	struct swap_cluster_info *cluster_info = NULL;
3116 	unsigned long *frontswap_map = NULL;
3117 	struct page *page = NULL;
3118 	struct inode *inode = NULL;
3119 	bool inced_nr_rotate_swap = false;
3120 
3121 	if (swap_flags & ~SWAP_FLAGS_VALID)
3122 		return -EINVAL;
3123 
3124 	if (!capable(CAP_SYS_ADMIN))
3125 		return -EPERM;
3126 
3127 	if (!swap_avail_heads)
3128 		return -ENOMEM;
3129 
3130 	p = alloc_swap_info();
3131 	if (IS_ERR(p))
3132 		return PTR_ERR(p);
3133 
3134 	INIT_WORK(&p->discard_work, swap_discard_work);
3135 
3136 	name = getname(specialfile);
3137 	if (IS_ERR(name)) {
3138 		error = PTR_ERR(name);
3139 		name = NULL;
3140 		goto bad_swap;
3141 	}
3142 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3143 	if (IS_ERR(swap_file)) {
3144 		error = PTR_ERR(swap_file);
3145 		swap_file = NULL;
3146 		goto bad_swap;
3147 	}
3148 
3149 	p->swap_file = swap_file;
3150 	mapping = swap_file->f_mapping;
3151 	inode = mapping->host;
3152 
3153 	/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3154 	error = claim_swapfile(p, inode);
3155 	if (unlikely(error))
3156 		goto bad_swap;
3157 
3158 	/*
3159 	 * Read the swap header.
3160 	 */
3161 	if (!mapping->a_ops->readpage) {
3162 		error = -EINVAL;
3163 		goto bad_swap;
3164 	}
3165 	page = read_mapping_page(mapping, 0, swap_file);
3166 	if (IS_ERR(page)) {
3167 		error = PTR_ERR(page);
3168 		goto bad_swap;
3169 	}
3170 	swap_header = kmap(page);
3171 
3172 	maxpages = read_swap_header(p, swap_header, inode);
3173 	if (unlikely(!maxpages)) {
3174 		error = -EINVAL;
3175 		goto bad_swap;
3176 	}
3177 
3178 	/* OK, set up the swap map and apply the bad block list */
3179 	swap_map = vzalloc(maxpages);
3180 	if (!swap_map) {
3181 		error = -ENOMEM;
3182 		goto bad_swap;
3183 	}
3184 
3185 	if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3186 		p->flags |= SWP_STABLE_WRITES;
3187 
3188 	if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3189 		p->flags |= SWP_SYNCHRONOUS_IO;
3190 
3191 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3192 		int cpu;
3193 		unsigned long ci, nr_cluster;
3194 
3195 		p->flags |= SWP_SOLIDSTATE;
3196 		/*
3197 		 * select a random position to start with to help wear leveling
3198 		 * SSD
3199 		 */
3200 		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3201 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3202 
3203 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3204 					GFP_KERNEL);
3205 		if (!cluster_info) {
3206 			error = -ENOMEM;
3207 			goto bad_swap;
3208 		}
3209 
3210 		for (ci = 0; ci < nr_cluster; ci++)
3211 			spin_lock_init(&((cluster_info + ci)->lock));
3212 
3213 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3214 		if (!p->percpu_cluster) {
3215 			error = -ENOMEM;
3216 			goto bad_swap;
3217 		}
3218 		for_each_possible_cpu(cpu) {
3219 			struct percpu_cluster *cluster;
3220 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3221 			cluster_set_null(&cluster->index);
3222 		}
3223 	} else {
3224 		atomic_inc(&nr_rotate_swap);
3225 		inced_nr_rotate_swap = true;
3226 	}
3227 
3228 	error = swap_cgroup_swapon(p->type, maxpages);
3229 	if (error)
3230 		goto bad_swap;
3231 
3232 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3233 		cluster_info, maxpages, &span);
3234 	if (unlikely(nr_extents < 0)) {
3235 		error = nr_extents;
3236 		goto bad_swap;
3237 	}
3238 	/* frontswap enabled? set up bit-per-page map for frontswap */
3239 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3240 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3241 					 sizeof(long),
3242 					 GFP_KERNEL);
3243 
3244 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3245 		/*
3246 		 * When discard is enabled for swap with no particular
3247 		 * policy flagged, we set all swap discard flags here in
3248 		 * order to sustain backward compatibility with older
3249 		 * swapon(8) releases.
3250 		 */
3251 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3252 			     SWP_PAGE_DISCARD);
3253 
3254 		/*
3255 		 * By flagging sys_swapon, a sysadmin can tell us to
3256 		 * either do single-time area discards only, or to just
3257 		 * perform discards for released swap page-clusters.
3258 		 * Now it's time to adjust the p->flags accordingly.
3259 		 */
3260 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3261 			p->flags &= ~SWP_PAGE_DISCARD;
3262 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3263 			p->flags &= ~SWP_AREA_DISCARD;
3264 
3265 		/* issue a swapon-time discard if it's still required */
3266 		if (p->flags & SWP_AREA_DISCARD) {
3267 			int err = discard_swap(p);
3268 			if (unlikely(err))
3269 				pr_err("swapon: discard_swap(%p): %d\n",
3270 					p, err);
3271 		}
3272 	}
3273 
3274 	error = init_swap_address_space(p->type, maxpages);
3275 	if (error)
3276 		goto bad_swap;
3277 
3278 	/*
3279 	 * Flush any pending IO and dirty mappings before we start using this
3280 	 * swap device.
3281 	 */
3282 	inode->i_flags |= S_SWAPFILE;
3283 	error = inode_drain_writes(inode);
3284 	if (error) {
3285 		inode->i_flags &= ~S_SWAPFILE;
3286 		goto bad_swap;
3287 	}
3288 
3289 	mutex_lock(&swapon_mutex);
3290 	prio = -1;
3291 	if (swap_flags & SWAP_FLAG_PREFER)
3292 		prio =
3293 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3294 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3295 
3296 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3297 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3298 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3299 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3300 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3301 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3302 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3303 		(frontswap_map) ? "FS" : "");
3304 
3305 	mutex_unlock(&swapon_mutex);
3306 	atomic_inc(&proc_poll_event);
3307 	wake_up_interruptible(&proc_poll_wait);
3308 
3309 	error = 0;
3310 	goto out;
3311 bad_swap:
3312 	free_percpu(p->percpu_cluster);
3313 	p->percpu_cluster = NULL;
3314 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3315 		set_blocksize(p->bdev, p->old_block_size);
3316 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3317 	}
3318 	destroy_swap_extents(p);
3319 	swap_cgroup_swapoff(p->type);
3320 	spin_lock(&swap_lock);
3321 	p->swap_file = NULL;
3322 	p->flags = 0;
3323 	spin_unlock(&swap_lock);
3324 	vfree(swap_map);
3325 	kvfree(cluster_info);
3326 	kvfree(frontswap_map);
3327 	if (inced_nr_rotate_swap)
3328 		atomic_dec(&nr_rotate_swap);
3329 	if (swap_file) {
3330 		if (inode) {
3331 			inode_unlock(inode);
3332 			inode = NULL;
3333 		}
3334 		filp_close(swap_file, NULL);
3335 	}
3336 out:
3337 	if (page && !IS_ERR(page)) {
3338 		kunmap(page);
3339 		put_page(page);
3340 	}
3341 	if (name)
3342 		putname(name);
3343 	if (inode)
3344 		inode_unlock(inode);
3345 	if (!error)
3346 		enable_swap_slots_cache();
3347 	return error;
3348 }
3349 
3350 void si_swapinfo(struct sysinfo *val)
3351 {
3352 	unsigned int type;
3353 	unsigned long nr_to_be_unused = 0;
3354 
3355 	spin_lock(&swap_lock);
3356 	for (type = 0; type < nr_swapfiles; type++) {
3357 		struct swap_info_struct *si = swap_info[type];
3358 
3359 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3360 			nr_to_be_unused += si->inuse_pages;
3361 	}
3362 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3363 	val->totalswap = total_swap_pages + nr_to_be_unused;
3364 	spin_unlock(&swap_lock);
3365 }
3366 
3367 /*
3368  * Verify that a swap entry is valid and increment its swap map count.
3369  *
3370  * Returns error code in following case.
3371  * - success -> 0
3372  * - swp_entry is invalid -> EINVAL
3373  * - swp_entry is migration entry -> EINVAL
3374  * - swap-cache reference is requested but there is already one. -> EEXIST
3375  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3376  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3377  */
3378 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3379 {
3380 	struct swap_info_struct *p;
3381 	struct swap_cluster_info *ci;
3382 	unsigned long offset;
3383 	unsigned char count;
3384 	unsigned char has_cache;
3385 	int err = -EINVAL;
3386 
3387 	p = get_swap_device(entry);
3388 	if (!p)
3389 		goto out;
3390 
3391 	offset = swp_offset(entry);
3392 	ci = lock_cluster_or_swap_info(p, offset);
3393 
3394 	count = p->swap_map[offset];
3395 
3396 	/*
3397 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3398 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3399 	 */
3400 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3401 		err = -ENOENT;
3402 		goto unlock_out;
3403 	}
3404 
3405 	has_cache = count & SWAP_HAS_CACHE;
3406 	count &= ~SWAP_HAS_CACHE;
3407 	err = 0;
3408 
3409 	if (usage == SWAP_HAS_CACHE) {
3410 
3411 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3412 		if (!has_cache && count)
3413 			has_cache = SWAP_HAS_CACHE;
3414 		else if (has_cache)		/* someone else added cache */
3415 			err = -EEXIST;
3416 		else				/* no users remaining */
3417 			err = -ENOENT;
3418 
3419 	} else if (count || has_cache) {
3420 
3421 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3422 			count += usage;
3423 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3424 			err = -EINVAL;
3425 		else if (swap_count_continued(p, offset, count))
3426 			count = COUNT_CONTINUED;
3427 		else
3428 			err = -ENOMEM;
3429 	} else
3430 		err = -ENOENT;			/* unused swap entry */
3431 
3432 	p->swap_map[offset] = count | has_cache;
3433 
3434 unlock_out:
3435 	unlock_cluster_or_swap_info(p, ci);
3436 out:
3437 	if (p)
3438 		put_swap_device(p);
3439 	return err;
3440 }
3441 
3442 /*
3443  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3444  * (in which case its reference count is never incremented).
3445  */
3446 void swap_shmem_alloc(swp_entry_t entry)
3447 {
3448 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3449 }
3450 
3451 /*
3452  * Increase reference count of swap entry by 1.
3453  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3454  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3455  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3456  * might occur if a page table entry has got corrupted.
3457  */
3458 int swap_duplicate(swp_entry_t entry)
3459 {
3460 	int err = 0;
3461 
3462 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3463 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3464 	return err;
3465 }
3466 
3467 /*
3468  * @entry: swap entry for which we allocate swap cache.
3469  *
3470  * Called when allocating swap cache for existing swap entry,
3471  * This can return error codes. Returns 0 at success.
3472  * -EBUSY means there is a swap cache.
3473  * Note: return code is different from swap_duplicate().
3474  */
3475 int swapcache_prepare(swp_entry_t entry)
3476 {
3477 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3478 }
3479 
3480 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3481 {
3482 	return swap_type_to_swap_info(swp_type(entry));
3483 }
3484 
3485 struct swap_info_struct *page_swap_info(struct page *page)
3486 {
3487 	swp_entry_t entry = { .val = page_private(page) };
3488 	return swp_swap_info(entry);
3489 }
3490 
3491 /*
3492  * out-of-line __page_file_ methods to avoid include hell.
3493  */
3494 struct address_space *__page_file_mapping(struct page *page)
3495 {
3496 	return page_swap_info(page)->swap_file->f_mapping;
3497 }
3498 EXPORT_SYMBOL_GPL(__page_file_mapping);
3499 
3500 pgoff_t __page_file_index(struct page *page)
3501 {
3502 	swp_entry_t swap = { .val = page_private(page) };
3503 	return swp_offset(swap);
3504 }
3505 EXPORT_SYMBOL_GPL(__page_file_index);
3506 
3507 /*
3508  * add_swap_count_continuation - called when a swap count is duplicated
3509  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3510  * page of the original vmalloc'ed swap_map, to hold the continuation count
3511  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3512  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3513  *
3514  * These continuation pages are seldom referenced: the common paths all work
3515  * on the original swap_map, only referring to a continuation page when the
3516  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3517  *
3518  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3519  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3520  * can be called after dropping locks.
3521  */
3522 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3523 {
3524 	struct swap_info_struct *si;
3525 	struct swap_cluster_info *ci;
3526 	struct page *head;
3527 	struct page *page;
3528 	struct page *list_page;
3529 	pgoff_t offset;
3530 	unsigned char count;
3531 	int ret = 0;
3532 
3533 	/*
3534 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3535 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3536 	 */
3537 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3538 
3539 	si = get_swap_device(entry);
3540 	if (!si) {
3541 		/*
3542 		 * An acceptable race has occurred since the failing
3543 		 * __swap_duplicate(): the swap device may be swapoff
3544 		 */
3545 		goto outer;
3546 	}
3547 	spin_lock(&si->lock);
3548 
3549 	offset = swp_offset(entry);
3550 
3551 	ci = lock_cluster(si, offset);
3552 
3553 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3554 
3555 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3556 		/*
3557 		 * The higher the swap count, the more likely it is that tasks
3558 		 * will race to add swap count continuation: we need to avoid
3559 		 * over-provisioning.
3560 		 */
3561 		goto out;
3562 	}
3563 
3564 	if (!page) {
3565 		ret = -ENOMEM;
3566 		goto out;
3567 	}
3568 
3569 	/*
3570 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3571 	 * no architecture is using highmem pages for kernel page tables: so it
3572 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3573 	 */
3574 	head = vmalloc_to_page(si->swap_map + offset);
3575 	offset &= ~PAGE_MASK;
3576 
3577 	spin_lock(&si->cont_lock);
3578 	/*
3579 	 * Page allocation does not initialize the page's lru field,
3580 	 * but it does always reset its private field.
3581 	 */
3582 	if (!page_private(head)) {
3583 		BUG_ON(count & COUNT_CONTINUED);
3584 		INIT_LIST_HEAD(&head->lru);
3585 		set_page_private(head, SWP_CONTINUED);
3586 		si->flags |= SWP_CONTINUED;
3587 	}
3588 
3589 	list_for_each_entry(list_page, &head->lru, lru) {
3590 		unsigned char *map;
3591 
3592 		/*
3593 		 * If the previous map said no continuation, but we've found
3594 		 * a continuation page, free our allocation and use this one.
3595 		 */
3596 		if (!(count & COUNT_CONTINUED))
3597 			goto out_unlock_cont;
3598 
3599 		map = kmap_atomic(list_page) + offset;
3600 		count = *map;
3601 		kunmap_atomic(map);
3602 
3603 		/*
3604 		 * If this continuation count now has some space in it,
3605 		 * free our allocation and use this one.
3606 		 */
3607 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3608 			goto out_unlock_cont;
3609 	}
3610 
3611 	list_add_tail(&page->lru, &head->lru);
3612 	page = NULL;			/* now it's attached, don't free it */
3613 out_unlock_cont:
3614 	spin_unlock(&si->cont_lock);
3615 out:
3616 	unlock_cluster(ci);
3617 	spin_unlock(&si->lock);
3618 	put_swap_device(si);
3619 outer:
3620 	if (page)
3621 		__free_page(page);
3622 	return ret;
3623 }
3624 
3625 /*
3626  * swap_count_continued - when the original swap_map count is incremented
3627  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3628  * into, carry if so, or else fail until a new continuation page is allocated;
3629  * when the original swap_map count is decremented from 0 with continuation,
3630  * borrow from the continuation and report whether it still holds more.
3631  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3632  * lock.
3633  */
3634 static bool swap_count_continued(struct swap_info_struct *si,
3635 				 pgoff_t offset, unsigned char count)
3636 {
3637 	struct page *head;
3638 	struct page *page;
3639 	unsigned char *map;
3640 	bool ret;
3641 
3642 	head = vmalloc_to_page(si->swap_map + offset);
3643 	if (page_private(head) != SWP_CONTINUED) {
3644 		BUG_ON(count & COUNT_CONTINUED);
3645 		return false;		/* need to add count continuation */
3646 	}
3647 
3648 	spin_lock(&si->cont_lock);
3649 	offset &= ~PAGE_MASK;
3650 	page = list_entry(head->lru.next, struct page, lru);
3651 	map = kmap_atomic(page) + offset;
3652 
3653 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3654 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3655 
3656 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3657 		/*
3658 		 * Think of how you add 1 to 999
3659 		 */
3660 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3661 			kunmap_atomic(map);
3662 			page = list_entry(page->lru.next, struct page, lru);
3663 			BUG_ON(page == head);
3664 			map = kmap_atomic(page) + offset;
3665 		}
3666 		if (*map == SWAP_CONT_MAX) {
3667 			kunmap_atomic(map);
3668 			page = list_entry(page->lru.next, struct page, lru);
3669 			if (page == head) {
3670 				ret = false;	/* add count continuation */
3671 				goto out;
3672 			}
3673 			map = kmap_atomic(page) + offset;
3674 init_map:		*map = 0;		/* we didn't zero the page */
3675 		}
3676 		*map += 1;
3677 		kunmap_atomic(map);
3678 		page = list_entry(page->lru.prev, struct page, lru);
3679 		while (page != head) {
3680 			map = kmap_atomic(page) + offset;
3681 			*map = COUNT_CONTINUED;
3682 			kunmap_atomic(map);
3683 			page = list_entry(page->lru.prev, struct page, lru);
3684 		}
3685 		ret = true;			/* incremented */
3686 
3687 	} else {				/* decrementing */
3688 		/*
3689 		 * Think of how you subtract 1 from 1000
3690 		 */
3691 		BUG_ON(count != COUNT_CONTINUED);
3692 		while (*map == COUNT_CONTINUED) {
3693 			kunmap_atomic(map);
3694 			page = list_entry(page->lru.next, struct page, lru);
3695 			BUG_ON(page == head);
3696 			map = kmap_atomic(page) + offset;
3697 		}
3698 		BUG_ON(*map == 0);
3699 		*map -= 1;
3700 		if (*map == 0)
3701 			count = 0;
3702 		kunmap_atomic(map);
3703 		page = list_entry(page->lru.prev, struct page, lru);
3704 		while (page != head) {
3705 			map = kmap_atomic(page) + offset;
3706 			*map = SWAP_CONT_MAX | count;
3707 			count = COUNT_CONTINUED;
3708 			kunmap_atomic(map);
3709 			page = list_entry(page->lru.prev, struct page, lru);
3710 		}
3711 		ret = count == COUNT_CONTINUED;
3712 	}
3713 out:
3714 	spin_unlock(&si->cont_lock);
3715 	return ret;
3716 }
3717 
3718 /*
3719  * free_swap_count_continuations - swapoff free all the continuation pages
3720  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3721  */
3722 static void free_swap_count_continuations(struct swap_info_struct *si)
3723 {
3724 	pgoff_t offset;
3725 
3726 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3727 		struct page *head;
3728 		head = vmalloc_to_page(si->swap_map + offset);
3729 		if (page_private(head)) {
3730 			struct page *page, *next;
3731 
3732 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3733 				list_del(&page->lru);
3734 				__free_page(page);
3735 			}
3736 		}
3737 	}
3738 }
3739 
3740 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3741 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3742 				  gfp_t gfp_mask)
3743 {
3744 	struct swap_info_struct *si, *next;
3745 	if (!(gfp_mask & __GFP_IO) || !memcg)
3746 		return;
3747 
3748 	if (!blk_cgroup_congested())
3749 		return;
3750 
3751 	/*
3752 	 * We've already scheduled a throttle, avoid taking the global swap
3753 	 * lock.
3754 	 */
3755 	if (current->throttle_queue)
3756 		return;
3757 
3758 	spin_lock(&swap_avail_lock);
3759 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3760 				  avail_lists[node]) {
3761 		if (si->bdev) {
3762 			blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3763 						true);
3764 			break;
3765 		}
3766 	}
3767 	spin_unlock(&swap_avail_lock);
3768 }
3769 #endif
3770 
3771 static int __init swapfile_init(void)
3772 {
3773 	int nid;
3774 
3775 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3776 					 GFP_KERNEL);
3777 	if (!swap_avail_heads) {
3778 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3779 		return -ENOMEM;
3780 	}
3781 
3782 	for_each_node(nid)
3783 		plist_head_init(&swap_avail_heads[nid]);
3784 
3785 	return 0;
3786 }
3787 subsys_initcall(swapfile_init);
3788