1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shm.h> 18 #include <linux/blkdev.h> 19 #include <linux/random.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/module.h> 25 #include <linux/rmap.h> 26 #include <linux/security.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mutex.h> 29 #include <linux/capability.h> 30 #include <linux/syscalls.h> 31 #include <linux/memcontrol.h> 32 33 #include <asm/pgtable.h> 34 #include <asm/tlbflush.h> 35 #include <linux/swapops.h> 36 #include <linux/page_cgroup.h> 37 38 static DEFINE_SPINLOCK(swap_lock); 39 static unsigned int nr_swapfiles; 40 long nr_swap_pages; 41 long total_swap_pages; 42 static int swap_overflow; 43 static int least_priority; 44 45 static const char Bad_file[] = "Bad swap file entry "; 46 static const char Unused_file[] = "Unused swap file entry "; 47 static const char Bad_offset[] = "Bad swap offset entry "; 48 static const char Unused_offset[] = "Unused swap offset entry "; 49 50 static struct swap_list_t swap_list = {-1, -1}; 51 52 static struct swap_info_struct swap_info[MAX_SWAPFILES]; 53 54 static DEFINE_MUTEX(swapon_mutex); 55 56 /* 57 * We need this because the bdev->unplug_fn can sleep and we cannot 58 * hold swap_lock while calling the unplug_fn. And swap_lock 59 * cannot be turned into a mutex. 60 */ 61 static DECLARE_RWSEM(swap_unplug_sem); 62 63 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page) 64 { 65 swp_entry_t entry; 66 67 down_read(&swap_unplug_sem); 68 entry.val = page_private(page); 69 if (PageSwapCache(page)) { 70 struct block_device *bdev = swap_info[swp_type(entry)].bdev; 71 struct backing_dev_info *bdi; 72 73 /* 74 * If the page is removed from swapcache from under us (with a 75 * racy try_to_unuse/swapoff) we need an additional reference 76 * count to avoid reading garbage from page_private(page) above. 77 * If the WARN_ON triggers during a swapoff it maybe the race 78 * condition and it's harmless. However if it triggers without 79 * swapoff it signals a problem. 80 */ 81 WARN_ON(page_count(page) <= 1); 82 83 bdi = bdev->bd_inode->i_mapping->backing_dev_info; 84 blk_run_backing_dev(bdi, page); 85 } 86 up_read(&swap_unplug_sem); 87 } 88 89 /* 90 * swapon tell device that all the old swap contents can be discarded, 91 * to allow the swap device to optimize its wear-levelling. 92 */ 93 static int discard_swap(struct swap_info_struct *si) 94 { 95 struct swap_extent *se; 96 int err = 0; 97 98 list_for_each_entry(se, &si->extent_list, list) { 99 sector_t start_block = se->start_block << (PAGE_SHIFT - 9); 100 sector_t nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 101 102 if (se->start_page == 0) { 103 /* Do not discard the swap header page! */ 104 start_block += 1 << (PAGE_SHIFT - 9); 105 nr_blocks -= 1 << (PAGE_SHIFT - 9); 106 if (!nr_blocks) 107 continue; 108 } 109 110 err = blkdev_issue_discard(si->bdev, start_block, 111 nr_blocks, GFP_KERNEL); 112 if (err) 113 break; 114 115 cond_resched(); 116 } 117 return err; /* That will often be -EOPNOTSUPP */ 118 } 119 120 /* 121 * swap allocation tell device that a cluster of swap can now be discarded, 122 * to allow the swap device to optimize its wear-levelling. 123 */ 124 static void discard_swap_cluster(struct swap_info_struct *si, 125 pgoff_t start_page, pgoff_t nr_pages) 126 { 127 struct swap_extent *se = si->curr_swap_extent; 128 int found_extent = 0; 129 130 while (nr_pages) { 131 struct list_head *lh; 132 133 if (se->start_page <= start_page && 134 start_page < se->start_page + se->nr_pages) { 135 pgoff_t offset = start_page - se->start_page; 136 sector_t start_block = se->start_block + offset; 137 sector_t nr_blocks = se->nr_pages - offset; 138 139 if (nr_blocks > nr_pages) 140 nr_blocks = nr_pages; 141 start_page += nr_blocks; 142 nr_pages -= nr_blocks; 143 144 if (!found_extent++) 145 si->curr_swap_extent = se; 146 147 start_block <<= PAGE_SHIFT - 9; 148 nr_blocks <<= PAGE_SHIFT - 9; 149 if (blkdev_issue_discard(si->bdev, start_block, 150 nr_blocks, GFP_NOIO)) 151 break; 152 } 153 154 lh = se->list.next; 155 if (lh == &si->extent_list) 156 lh = lh->next; 157 se = list_entry(lh, struct swap_extent, list); 158 } 159 } 160 161 static int wait_for_discard(void *word) 162 { 163 schedule(); 164 return 0; 165 } 166 167 #define SWAPFILE_CLUSTER 256 168 #define LATENCY_LIMIT 256 169 170 static inline unsigned long scan_swap_map(struct swap_info_struct *si) 171 { 172 unsigned long offset; 173 unsigned long scan_base; 174 unsigned long last_in_cluster = 0; 175 int latency_ration = LATENCY_LIMIT; 176 int found_free_cluster = 0; 177 178 /* 179 * We try to cluster swap pages by allocating them sequentially 180 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 181 * way, however, we resort to first-free allocation, starting 182 * a new cluster. This prevents us from scattering swap pages 183 * all over the entire swap partition, so that we reduce 184 * overall disk seek times between swap pages. -- sct 185 * But we do now try to find an empty cluster. -Andrea 186 * And we let swap pages go all over an SSD partition. Hugh 187 */ 188 189 si->flags += SWP_SCANNING; 190 scan_base = offset = si->cluster_next; 191 192 if (unlikely(!si->cluster_nr--)) { 193 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 194 si->cluster_nr = SWAPFILE_CLUSTER - 1; 195 goto checks; 196 } 197 if (si->flags & SWP_DISCARDABLE) { 198 /* 199 * Start range check on racing allocations, in case 200 * they overlap the cluster we eventually decide on 201 * (we scan without swap_lock to allow preemption). 202 * It's hardly conceivable that cluster_nr could be 203 * wrapped during our scan, but don't depend on it. 204 */ 205 if (si->lowest_alloc) 206 goto checks; 207 si->lowest_alloc = si->max; 208 si->highest_alloc = 0; 209 } 210 spin_unlock(&swap_lock); 211 212 /* 213 * If seek is expensive, start searching for new cluster from 214 * start of partition, to minimize the span of allocated swap. 215 * But if seek is cheap, search from our current position, so 216 * that swap is allocated from all over the partition: if the 217 * Flash Translation Layer only remaps within limited zones, 218 * we don't want to wear out the first zone too quickly. 219 */ 220 if (!(si->flags & SWP_SOLIDSTATE)) 221 scan_base = offset = si->lowest_bit; 222 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 223 224 /* Locate the first empty (unaligned) cluster */ 225 for (; last_in_cluster <= si->highest_bit; offset++) { 226 if (si->swap_map[offset]) 227 last_in_cluster = offset + SWAPFILE_CLUSTER; 228 else if (offset == last_in_cluster) { 229 spin_lock(&swap_lock); 230 offset -= SWAPFILE_CLUSTER - 1; 231 si->cluster_next = offset; 232 si->cluster_nr = SWAPFILE_CLUSTER - 1; 233 found_free_cluster = 1; 234 goto checks; 235 } 236 if (unlikely(--latency_ration < 0)) { 237 cond_resched(); 238 latency_ration = LATENCY_LIMIT; 239 } 240 } 241 242 offset = si->lowest_bit; 243 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 244 245 /* Locate the first empty (unaligned) cluster */ 246 for (; last_in_cluster < scan_base; offset++) { 247 if (si->swap_map[offset]) 248 last_in_cluster = offset + SWAPFILE_CLUSTER; 249 else if (offset == last_in_cluster) { 250 spin_lock(&swap_lock); 251 offset -= SWAPFILE_CLUSTER - 1; 252 si->cluster_next = offset; 253 si->cluster_nr = SWAPFILE_CLUSTER - 1; 254 found_free_cluster = 1; 255 goto checks; 256 } 257 if (unlikely(--latency_ration < 0)) { 258 cond_resched(); 259 latency_ration = LATENCY_LIMIT; 260 } 261 } 262 263 offset = scan_base; 264 spin_lock(&swap_lock); 265 si->cluster_nr = SWAPFILE_CLUSTER - 1; 266 si->lowest_alloc = 0; 267 } 268 269 checks: 270 if (!(si->flags & SWP_WRITEOK)) 271 goto no_page; 272 if (!si->highest_bit) 273 goto no_page; 274 if (offset > si->highest_bit) 275 scan_base = offset = si->lowest_bit; 276 if (si->swap_map[offset]) 277 goto scan; 278 279 if (offset == si->lowest_bit) 280 si->lowest_bit++; 281 if (offset == si->highest_bit) 282 si->highest_bit--; 283 si->inuse_pages++; 284 if (si->inuse_pages == si->pages) { 285 si->lowest_bit = si->max; 286 si->highest_bit = 0; 287 } 288 si->swap_map[offset] = 1; 289 si->cluster_next = offset + 1; 290 si->flags -= SWP_SCANNING; 291 292 if (si->lowest_alloc) { 293 /* 294 * Only set when SWP_DISCARDABLE, and there's a scan 295 * for a free cluster in progress or just completed. 296 */ 297 if (found_free_cluster) { 298 /* 299 * To optimize wear-levelling, discard the 300 * old data of the cluster, taking care not to 301 * discard any of its pages that have already 302 * been allocated by racing tasks (offset has 303 * already stepped over any at the beginning). 304 */ 305 if (offset < si->highest_alloc && 306 si->lowest_alloc <= last_in_cluster) 307 last_in_cluster = si->lowest_alloc - 1; 308 si->flags |= SWP_DISCARDING; 309 spin_unlock(&swap_lock); 310 311 if (offset < last_in_cluster) 312 discard_swap_cluster(si, offset, 313 last_in_cluster - offset + 1); 314 315 spin_lock(&swap_lock); 316 si->lowest_alloc = 0; 317 si->flags &= ~SWP_DISCARDING; 318 319 smp_mb(); /* wake_up_bit advises this */ 320 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING)); 321 322 } else if (si->flags & SWP_DISCARDING) { 323 /* 324 * Delay using pages allocated by racing tasks 325 * until the whole discard has been issued. We 326 * could defer that delay until swap_writepage, 327 * but it's easier to keep this self-contained. 328 */ 329 spin_unlock(&swap_lock); 330 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING), 331 wait_for_discard, TASK_UNINTERRUPTIBLE); 332 spin_lock(&swap_lock); 333 } else { 334 /* 335 * Note pages allocated by racing tasks while 336 * scan for a free cluster is in progress, so 337 * that its final discard can exclude them. 338 */ 339 if (offset < si->lowest_alloc) 340 si->lowest_alloc = offset; 341 if (offset > si->highest_alloc) 342 si->highest_alloc = offset; 343 } 344 } 345 return offset; 346 347 scan: 348 spin_unlock(&swap_lock); 349 while (++offset <= si->highest_bit) { 350 if (!si->swap_map[offset]) { 351 spin_lock(&swap_lock); 352 goto checks; 353 } 354 if (unlikely(--latency_ration < 0)) { 355 cond_resched(); 356 latency_ration = LATENCY_LIMIT; 357 } 358 } 359 offset = si->lowest_bit; 360 while (++offset < scan_base) { 361 if (!si->swap_map[offset]) { 362 spin_lock(&swap_lock); 363 goto checks; 364 } 365 if (unlikely(--latency_ration < 0)) { 366 cond_resched(); 367 latency_ration = LATENCY_LIMIT; 368 } 369 } 370 spin_lock(&swap_lock); 371 372 no_page: 373 si->flags -= SWP_SCANNING; 374 return 0; 375 } 376 377 swp_entry_t get_swap_page(void) 378 { 379 struct swap_info_struct *si; 380 pgoff_t offset; 381 int type, next; 382 int wrapped = 0; 383 384 spin_lock(&swap_lock); 385 if (nr_swap_pages <= 0) 386 goto noswap; 387 nr_swap_pages--; 388 389 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { 390 si = swap_info + type; 391 next = si->next; 392 if (next < 0 || 393 (!wrapped && si->prio != swap_info[next].prio)) { 394 next = swap_list.head; 395 wrapped++; 396 } 397 398 if (!si->highest_bit) 399 continue; 400 if (!(si->flags & SWP_WRITEOK)) 401 continue; 402 403 swap_list.next = next; 404 offset = scan_swap_map(si); 405 if (offset) { 406 spin_unlock(&swap_lock); 407 return swp_entry(type, offset); 408 } 409 next = swap_list.next; 410 } 411 412 nr_swap_pages++; 413 noswap: 414 spin_unlock(&swap_lock); 415 return (swp_entry_t) {0}; 416 } 417 418 swp_entry_t get_swap_page_of_type(int type) 419 { 420 struct swap_info_struct *si; 421 pgoff_t offset; 422 423 spin_lock(&swap_lock); 424 si = swap_info + type; 425 if (si->flags & SWP_WRITEOK) { 426 nr_swap_pages--; 427 offset = scan_swap_map(si); 428 if (offset) { 429 spin_unlock(&swap_lock); 430 return swp_entry(type, offset); 431 } 432 nr_swap_pages++; 433 } 434 spin_unlock(&swap_lock); 435 return (swp_entry_t) {0}; 436 } 437 438 static struct swap_info_struct * swap_info_get(swp_entry_t entry) 439 { 440 struct swap_info_struct * p; 441 unsigned long offset, type; 442 443 if (!entry.val) 444 goto out; 445 type = swp_type(entry); 446 if (type >= nr_swapfiles) 447 goto bad_nofile; 448 p = & swap_info[type]; 449 if (!(p->flags & SWP_USED)) 450 goto bad_device; 451 offset = swp_offset(entry); 452 if (offset >= p->max) 453 goto bad_offset; 454 if (!p->swap_map[offset]) 455 goto bad_free; 456 spin_lock(&swap_lock); 457 return p; 458 459 bad_free: 460 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); 461 goto out; 462 bad_offset: 463 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); 464 goto out; 465 bad_device: 466 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); 467 goto out; 468 bad_nofile: 469 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); 470 out: 471 return NULL; 472 } 473 474 static int swap_entry_free(struct swap_info_struct *p, swp_entry_t ent) 475 { 476 unsigned long offset = swp_offset(ent); 477 int count = p->swap_map[offset]; 478 479 if (count < SWAP_MAP_MAX) { 480 count--; 481 p->swap_map[offset] = count; 482 if (!count) { 483 if (offset < p->lowest_bit) 484 p->lowest_bit = offset; 485 if (offset > p->highest_bit) 486 p->highest_bit = offset; 487 if (p->prio > swap_info[swap_list.next].prio) 488 swap_list.next = p - swap_info; 489 nr_swap_pages++; 490 p->inuse_pages--; 491 mem_cgroup_uncharge_swap(ent); 492 } 493 } 494 return count; 495 } 496 497 /* 498 * Caller has made sure that the swapdevice corresponding to entry 499 * is still around or has not been recycled. 500 */ 501 void swap_free(swp_entry_t entry) 502 { 503 struct swap_info_struct * p; 504 505 p = swap_info_get(entry); 506 if (p) { 507 swap_entry_free(p, entry); 508 spin_unlock(&swap_lock); 509 } 510 } 511 512 /* 513 * How many references to page are currently swapped out? 514 */ 515 static inline int page_swapcount(struct page *page) 516 { 517 int count = 0; 518 struct swap_info_struct *p; 519 swp_entry_t entry; 520 521 entry.val = page_private(page); 522 p = swap_info_get(entry); 523 if (p) { 524 /* Subtract the 1 for the swap cache itself */ 525 count = p->swap_map[swp_offset(entry)] - 1; 526 spin_unlock(&swap_lock); 527 } 528 return count; 529 } 530 531 /* 532 * We can write to an anon page without COW if there are no other references 533 * to it. And as a side-effect, free up its swap: because the old content 534 * on disk will never be read, and seeking back there to write new content 535 * later would only waste time away from clustering. 536 */ 537 int reuse_swap_page(struct page *page) 538 { 539 int count; 540 541 VM_BUG_ON(!PageLocked(page)); 542 count = page_mapcount(page); 543 if (count <= 1 && PageSwapCache(page)) { 544 count += page_swapcount(page); 545 if (count == 1 && !PageWriteback(page)) { 546 delete_from_swap_cache(page); 547 SetPageDirty(page); 548 } 549 } 550 return count == 1; 551 } 552 553 /* 554 * If swap is getting full, or if there are no more mappings of this page, 555 * then try_to_free_swap is called to free its swap space. 556 */ 557 int try_to_free_swap(struct page *page) 558 { 559 VM_BUG_ON(!PageLocked(page)); 560 561 if (!PageSwapCache(page)) 562 return 0; 563 if (PageWriteback(page)) 564 return 0; 565 if (page_swapcount(page)) 566 return 0; 567 568 delete_from_swap_cache(page); 569 SetPageDirty(page); 570 return 1; 571 } 572 573 /* 574 * Free the swap entry like above, but also try to 575 * free the page cache entry if it is the last user. 576 */ 577 int free_swap_and_cache(swp_entry_t entry) 578 { 579 struct swap_info_struct *p; 580 struct page *page = NULL; 581 582 if (is_migration_entry(entry)) 583 return 1; 584 585 p = swap_info_get(entry); 586 if (p) { 587 if (swap_entry_free(p, entry) == 1) { 588 page = find_get_page(&swapper_space, entry.val); 589 if (page && !trylock_page(page)) { 590 page_cache_release(page); 591 page = NULL; 592 } 593 } 594 spin_unlock(&swap_lock); 595 } 596 if (page) { 597 /* 598 * Not mapped elsewhere, or swap space full? Free it! 599 * Also recheck PageSwapCache now page is locked (above). 600 */ 601 if (PageSwapCache(page) && !PageWriteback(page) && 602 (!page_mapped(page) || vm_swap_full())) { 603 delete_from_swap_cache(page); 604 SetPageDirty(page); 605 } 606 unlock_page(page); 607 page_cache_release(page); 608 } 609 return p != NULL; 610 } 611 612 #ifdef CONFIG_HIBERNATION 613 /* 614 * Find the swap type that corresponds to given device (if any). 615 * 616 * @offset - number of the PAGE_SIZE-sized block of the device, starting 617 * from 0, in which the swap header is expected to be located. 618 * 619 * This is needed for the suspend to disk (aka swsusp). 620 */ 621 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 622 { 623 struct block_device *bdev = NULL; 624 int i; 625 626 if (device) 627 bdev = bdget(device); 628 629 spin_lock(&swap_lock); 630 for (i = 0; i < nr_swapfiles; i++) { 631 struct swap_info_struct *sis = swap_info + i; 632 633 if (!(sis->flags & SWP_WRITEOK)) 634 continue; 635 636 if (!bdev) { 637 if (bdev_p) 638 *bdev_p = bdget(sis->bdev->bd_dev); 639 640 spin_unlock(&swap_lock); 641 return i; 642 } 643 if (bdev == sis->bdev) { 644 struct swap_extent *se; 645 646 se = list_entry(sis->extent_list.next, 647 struct swap_extent, list); 648 if (se->start_block == offset) { 649 if (bdev_p) 650 *bdev_p = bdget(sis->bdev->bd_dev); 651 652 spin_unlock(&swap_lock); 653 bdput(bdev); 654 return i; 655 } 656 } 657 } 658 spin_unlock(&swap_lock); 659 if (bdev) 660 bdput(bdev); 661 662 return -ENODEV; 663 } 664 665 /* 666 * Return either the total number of swap pages of given type, or the number 667 * of free pages of that type (depending on @free) 668 * 669 * This is needed for software suspend 670 */ 671 unsigned int count_swap_pages(int type, int free) 672 { 673 unsigned int n = 0; 674 675 if (type < nr_swapfiles) { 676 spin_lock(&swap_lock); 677 if (swap_info[type].flags & SWP_WRITEOK) { 678 n = swap_info[type].pages; 679 if (free) 680 n -= swap_info[type].inuse_pages; 681 } 682 spin_unlock(&swap_lock); 683 } 684 return n; 685 } 686 #endif 687 688 /* 689 * No need to decide whether this PTE shares the swap entry with others, 690 * just let do_wp_page work it out if a write is requested later - to 691 * force COW, vm_page_prot omits write permission from any private vma. 692 */ 693 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 694 unsigned long addr, swp_entry_t entry, struct page *page) 695 { 696 struct mem_cgroup *ptr = NULL; 697 spinlock_t *ptl; 698 pte_t *pte; 699 int ret = 1; 700 701 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) { 702 ret = -ENOMEM; 703 goto out_nolock; 704 } 705 706 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 707 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) { 708 if (ret > 0) 709 mem_cgroup_cancel_charge_swapin(ptr); 710 ret = 0; 711 goto out; 712 } 713 714 inc_mm_counter(vma->vm_mm, anon_rss); 715 get_page(page); 716 set_pte_at(vma->vm_mm, addr, pte, 717 pte_mkold(mk_pte(page, vma->vm_page_prot))); 718 page_add_anon_rmap(page, vma, addr); 719 mem_cgroup_commit_charge_swapin(page, ptr); 720 swap_free(entry); 721 /* 722 * Move the page to the active list so it is not 723 * immediately swapped out again after swapon. 724 */ 725 activate_page(page); 726 out: 727 pte_unmap_unlock(pte, ptl); 728 out_nolock: 729 return ret; 730 } 731 732 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 733 unsigned long addr, unsigned long end, 734 swp_entry_t entry, struct page *page) 735 { 736 pte_t swp_pte = swp_entry_to_pte(entry); 737 pte_t *pte; 738 int ret = 0; 739 740 /* 741 * We don't actually need pte lock while scanning for swp_pte: since 742 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 743 * page table while we're scanning; though it could get zapped, and on 744 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 745 * of unmatched parts which look like swp_pte, so unuse_pte must 746 * recheck under pte lock. Scanning without pte lock lets it be 747 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 748 */ 749 pte = pte_offset_map(pmd, addr); 750 do { 751 /* 752 * swapoff spends a _lot_ of time in this loop! 753 * Test inline before going to call unuse_pte. 754 */ 755 if (unlikely(pte_same(*pte, swp_pte))) { 756 pte_unmap(pte); 757 ret = unuse_pte(vma, pmd, addr, entry, page); 758 if (ret) 759 goto out; 760 pte = pte_offset_map(pmd, addr); 761 } 762 } while (pte++, addr += PAGE_SIZE, addr != end); 763 pte_unmap(pte - 1); 764 out: 765 return ret; 766 } 767 768 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 769 unsigned long addr, unsigned long end, 770 swp_entry_t entry, struct page *page) 771 { 772 pmd_t *pmd; 773 unsigned long next; 774 int ret; 775 776 pmd = pmd_offset(pud, addr); 777 do { 778 next = pmd_addr_end(addr, end); 779 if (pmd_none_or_clear_bad(pmd)) 780 continue; 781 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 782 if (ret) 783 return ret; 784 } while (pmd++, addr = next, addr != end); 785 return 0; 786 } 787 788 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 789 unsigned long addr, unsigned long end, 790 swp_entry_t entry, struct page *page) 791 { 792 pud_t *pud; 793 unsigned long next; 794 int ret; 795 796 pud = pud_offset(pgd, addr); 797 do { 798 next = pud_addr_end(addr, end); 799 if (pud_none_or_clear_bad(pud)) 800 continue; 801 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 802 if (ret) 803 return ret; 804 } while (pud++, addr = next, addr != end); 805 return 0; 806 } 807 808 static int unuse_vma(struct vm_area_struct *vma, 809 swp_entry_t entry, struct page *page) 810 { 811 pgd_t *pgd; 812 unsigned long addr, end, next; 813 int ret; 814 815 if (page->mapping) { 816 addr = page_address_in_vma(page, vma); 817 if (addr == -EFAULT) 818 return 0; 819 else 820 end = addr + PAGE_SIZE; 821 } else { 822 addr = vma->vm_start; 823 end = vma->vm_end; 824 } 825 826 pgd = pgd_offset(vma->vm_mm, addr); 827 do { 828 next = pgd_addr_end(addr, end); 829 if (pgd_none_or_clear_bad(pgd)) 830 continue; 831 ret = unuse_pud_range(vma, pgd, addr, next, entry, page); 832 if (ret) 833 return ret; 834 } while (pgd++, addr = next, addr != end); 835 return 0; 836 } 837 838 static int unuse_mm(struct mm_struct *mm, 839 swp_entry_t entry, struct page *page) 840 { 841 struct vm_area_struct *vma; 842 int ret = 0; 843 844 if (!down_read_trylock(&mm->mmap_sem)) { 845 /* 846 * Activate page so shrink_inactive_list is unlikely to unmap 847 * its ptes while lock is dropped, so swapoff can make progress. 848 */ 849 activate_page(page); 850 unlock_page(page); 851 down_read(&mm->mmap_sem); 852 lock_page(page); 853 } 854 for (vma = mm->mmap; vma; vma = vma->vm_next) { 855 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 856 break; 857 } 858 up_read(&mm->mmap_sem); 859 return (ret < 0)? ret: 0; 860 } 861 862 /* 863 * Scan swap_map from current position to next entry still in use. 864 * Recycle to start on reaching the end, returning 0 when empty. 865 */ 866 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 867 unsigned int prev) 868 { 869 unsigned int max = si->max; 870 unsigned int i = prev; 871 int count; 872 873 /* 874 * No need for swap_lock here: we're just looking 875 * for whether an entry is in use, not modifying it; false 876 * hits are okay, and sys_swapoff() has already prevented new 877 * allocations from this area (while holding swap_lock). 878 */ 879 for (;;) { 880 if (++i >= max) { 881 if (!prev) { 882 i = 0; 883 break; 884 } 885 /* 886 * No entries in use at top of swap_map, 887 * loop back to start and recheck there. 888 */ 889 max = prev + 1; 890 prev = 0; 891 i = 1; 892 } 893 count = si->swap_map[i]; 894 if (count && count != SWAP_MAP_BAD) 895 break; 896 } 897 return i; 898 } 899 900 /* 901 * We completely avoid races by reading each swap page in advance, 902 * and then search for the process using it. All the necessary 903 * page table adjustments can then be made atomically. 904 */ 905 static int try_to_unuse(unsigned int type) 906 { 907 struct swap_info_struct * si = &swap_info[type]; 908 struct mm_struct *start_mm; 909 unsigned short *swap_map; 910 unsigned short swcount; 911 struct page *page; 912 swp_entry_t entry; 913 unsigned int i = 0; 914 int retval = 0; 915 int reset_overflow = 0; 916 int shmem; 917 918 /* 919 * When searching mms for an entry, a good strategy is to 920 * start at the first mm we freed the previous entry from 921 * (though actually we don't notice whether we or coincidence 922 * freed the entry). Initialize this start_mm with a hold. 923 * 924 * A simpler strategy would be to start at the last mm we 925 * freed the previous entry from; but that would take less 926 * advantage of mmlist ordering, which clusters forked mms 927 * together, child after parent. If we race with dup_mmap(), we 928 * prefer to resolve parent before child, lest we miss entries 929 * duplicated after we scanned child: using last mm would invert 930 * that. Though it's only a serious concern when an overflowed 931 * swap count is reset from SWAP_MAP_MAX, preventing a rescan. 932 */ 933 start_mm = &init_mm; 934 atomic_inc(&init_mm.mm_users); 935 936 /* 937 * Keep on scanning until all entries have gone. Usually, 938 * one pass through swap_map is enough, but not necessarily: 939 * there are races when an instance of an entry might be missed. 940 */ 941 while ((i = find_next_to_unuse(si, i)) != 0) { 942 if (signal_pending(current)) { 943 retval = -EINTR; 944 break; 945 } 946 947 /* 948 * Get a page for the entry, using the existing swap 949 * cache page if there is one. Otherwise, get a clean 950 * page and read the swap into it. 951 */ 952 swap_map = &si->swap_map[i]; 953 entry = swp_entry(type, i); 954 page = read_swap_cache_async(entry, 955 GFP_HIGHUSER_MOVABLE, NULL, 0); 956 if (!page) { 957 /* 958 * Either swap_duplicate() failed because entry 959 * has been freed independently, and will not be 960 * reused since sys_swapoff() already disabled 961 * allocation from here, or alloc_page() failed. 962 */ 963 if (!*swap_map) 964 continue; 965 retval = -ENOMEM; 966 break; 967 } 968 969 /* 970 * Don't hold on to start_mm if it looks like exiting. 971 */ 972 if (atomic_read(&start_mm->mm_users) == 1) { 973 mmput(start_mm); 974 start_mm = &init_mm; 975 atomic_inc(&init_mm.mm_users); 976 } 977 978 /* 979 * Wait for and lock page. When do_swap_page races with 980 * try_to_unuse, do_swap_page can handle the fault much 981 * faster than try_to_unuse can locate the entry. This 982 * apparently redundant "wait_on_page_locked" lets try_to_unuse 983 * defer to do_swap_page in such a case - in some tests, 984 * do_swap_page and try_to_unuse repeatedly compete. 985 */ 986 wait_on_page_locked(page); 987 wait_on_page_writeback(page); 988 lock_page(page); 989 wait_on_page_writeback(page); 990 991 /* 992 * Remove all references to entry. 993 * Whenever we reach init_mm, there's no address space 994 * to search, but use it as a reminder to search shmem. 995 */ 996 shmem = 0; 997 swcount = *swap_map; 998 if (swcount > 1) { 999 if (start_mm == &init_mm) 1000 shmem = shmem_unuse(entry, page); 1001 else 1002 retval = unuse_mm(start_mm, entry, page); 1003 } 1004 if (*swap_map > 1) { 1005 int set_start_mm = (*swap_map >= swcount); 1006 struct list_head *p = &start_mm->mmlist; 1007 struct mm_struct *new_start_mm = start_mm; 1008 struct mm_struct *prev_mm = start_mm; 1009 struct mm_struct *mm; 1010 1011 atomic_inc(&new_start_mm->mm_users); 1012 atomic_inc(&prev_mm->mm_users); 1013 spin_lock(&mmlist_lock); 1014 while (*swap_map > 1 && !retval && !shmem && 1015 (p = p->next) != &start_mm->mmlist) { 1016 mm = list_entry(p, struct mm_struct, mmlist); 1017 if (!atomic_inc_not_zero(&mm->mm_users)) 1018 continue; 1019 spin_unlock(&mmlist_lock); 1020 mmput(prev_mm); 1021 prev_mm = mm; 1022 1023 cond_resched(); 1024 1025 swcount = *swap_map; 1026 if (swcount <= 1) 1027 ; 1028 else if (mm == &init_mm) { 1029 set_start_mm = 1; 1030 shmem = shmem_unuse(entry, page); 1031 } else 1032 retval = unuse_mm(mm, entry, page); 1033 if (set_start_mm && *swap_map < swcount) { 1034 mmput(new_start_mm); 1035 atomic_inc(&mm->mm_users); 1036 new_start_mm = mm; 1037 set_start_mm = 0; 1038 } 1039 spin_lock(&mmlist_lock); 1040 } 1041 spin_unlock(&mmlist_lock); 1042 mmput(prev_mm); 1043 mmput(start_mm); 1044 start_mm = new_start_mm; 1045 } 1046 if (shmem) { 1047 /* page has already been unlocked and released */ 1048 if (shmem > 0) 1049 continue; 1050 retval = shmem; 1051 break; 1052 } 1053 if (retval) { 1054 unlock_page(page); 1055 page_cache_release(page); 1056 break; 1057 } 1058 1059 /* 1060 * How could swap count reach 0x7fff when the maximum 1061 * pid is 0x7fff, and there's no way to repeat a swap 1062 * page within an mm (except in shmem, where it's the 1063 * shared object which takes the reference count)? 1064 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4. 1065 * 1066 * If that's wrong, then we should worry more about 1067 * exit_mmap() and do_munmap() cases described above: 1068 * we might be resetting SWAP_MAP_MAX too early here. 1069 * We know "Undead"s can happen, they're okay, so don't 1070 * report them; but do report if we reset SWAP_MAP_MAX. 1071 */ 1072 if (*swap_map == SWAP_MAP_MAX) { 1073 spin_lock(&swap_lock); 1074 *swap_map = 1; 1075 spin_unlock(&swap_lock); 1076 reset_overflow = 1; 1077 } 1078 1079 /* 1080 * If a reference remains (rare), we would like to leave 1081 * the page in the swap cache; but try_to_unmap could 1082 * then re-duplicate the entry once we drop page lock, 1083 * so we might loop indefinitely; also, that page could 1084 * not be swapped out to other storage meanwhile. So: 1085 * delete from cache even if there's another reference, 1086 * after ensuring that the data has been saved to disk - 1087 * since if the reference remains (rarer), it will be 1088 * read from disk into another page. Splitting into two 1089 * pages would be incorrect if swap supported "shared 1090 * private" pages, but they are handled by tmpfs files. 1091 */ 1092 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) { 1093 struct writeback_control wbc = { 1094 .sync_mode = WB_SYNC_NONE, 1095 }; 1096 1097 swap_writepage(page, &wbc); 1098 lock_page(page); 1099 wait_on_page_writeback(page); 1100 } 1101 1102 /* 1103 * It is conceivable that a racing task removed this page from 1104 * swap cache just before we acquired the page lock at the top, 1105 * or while we dropped it in unuse_mm(). The page might even 1106 * be back in swap cache on another swap area: that we must not 1107 * delete, since it may not have been written out to swap yet. 1108 */ 1109 if (PageSwapCache(page) && 1110 likely(page_private(page) == entry.val)) 1111 delete_from_swap_cache(page); 1112 1113 /* 1114 * So we could skip searching mms once swap count went 1115 * to 1, we did not mark any present ptes as dirty: must 1116 * mark page dirty so shrink_page_list will preserve it. 1117 */ 1118 SetPageDirty(page); 1119 unlock_page(page); 1120 page_cache_release(page); 1121 1122 /* 1123 * Make sure that we aren't completely killing 1124 * interactive performance. 1125 */ 1126 cond_resched(); 1127 } 1128 1129 mmput(start_mm); 1130 if (reset_overflow) { 1131 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n"); 1132 swap_overflow = 0; 1133 } 1134 return retval; 1135 } 1136 1137 /* 1138 * After a successful try_to_unuse, if no swap is now in use, we know 1139 * we can empty the mmlist. swap_lock must be held on entry and exit. 1140 * Note that mmlist_lock nests inside swap_lock, and an mm must be 1141 * added to the mmlist just after page_duplicate - before would be racy. 1142 */ 1143 static void drain_mmlist(void) 1144 { 1145 struct list_head *p, *next; 1146 unsigned int i; 1147 1148 for (i = 0; i < nr_swapfiles; i++) 1149 if (swap_info[i].inuse_pages) 1150 return; 1151 spin_lock(&mmlist_lock); 1152 list_for_each_safe(p, next, &init_mm.mmlist) 1153 list_del_init(p); 1154 spin_unlock(&mmlist_lock); 1155 } 1156 1157 /* 1158 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 1159 * corresponds to page offset `offset'. 1160 */ 1161 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset) 1162 { 1163 struct swap_extent *se = sis->curr_swap_extent; 1164 struct swap_extent *start_se = se; 1165 1166 for ( ; ; ) { 1167 struct list_head *lh; 1168 1169 if (se->start_page <= offset && 1170 offset < (se->start_page + se->nr_pages)) { 1171 return se->start_block + (offset - se->start_page); 1172 } 1173 lh = se->list.next; 1174 if (lh == &sis->extent_list) 1175 lh = lh->next; 1176 se = list_entry(lh, struct swap_extent, list); 1177 sis->curr_swap_extent = se; 1178 BUG_ON(se == start_se); /* It *must* be present */ 1179 } 1180 } 1181 1182 #ifdef CONFIG_HIBERNATION 1183 /* 1184 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1185 * corresponding to given index in swap_info (swap type). 1186 */ 1187 sector_t swapdev_block(int swap_type, pgoff_t offset) 1188 { 1189 struct swap_info_struct *sis; 1190 1191 if (swap_type >= nr_swapfiles) 1192 return 0; 1193 1194 sis = swap_info + swap_type; 1195 return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0; 1196 } 1197 #endif /* CONFIG_HIBERNATION */ 1198 1199 /* 1200 * Free all of a swapdev's extent information 1201 */ 1202 static void destroy_swap_extents(struct swap_info_struct *sis) 1203 { 1204 while (!list_empty(&sis->extent_list)) { 1205 struct swap_extent *se; 1206 1207 se = list_entry(sis->extent_list.next, 1208 struct swap_extent, list); 1209 list_del(&se->list); 1210 kfree(se); 1211 } 1212 } 1213 1214 /* 1215 * Add a block range (and the corresponding page range) into this swapdev's 1216 * extent list. The extent list is kept sorted in page order. 1217 * 1218 * This function rather assumes that it is called in ascending page order. 1219 */ 1220 static int 1221 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1222 unsigned long nr_pages, sector_t start_block) 1223 { 1224 struct swap_extent *se; 1225 struct swap_extent *new_se; 1226 struct list_head *lh; 1227 1228 lh = sis->extent_list.prev; /* The highest page extent */ 1229 if (lh != &sis->extent_list) { 1230 se = list_entry(lh, struct swap_extent, list); 1231 BUG_ON(se->start_page + se->nr_pages != start_page); 1232 if (se->start_block + se->nr_pages == start_block) { 1233 /* Merge it */ 1234 se->nr_pages += nr_pages; 1235 return 0; 1236 } 1237 } 1238 1239 /* 1240 * No merge. Insert a new extent, preserving ordering. 1241 */ 1242 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 1243 if (new_se == NULL) 1244 return -ENOMEM; 1245 new_se->start_page = start_page; 1246 new_se->nr_pages = nr_pages; 1247 new_se->start_block = start_block; 1248 1249 list_add_tail(&new_se->list, &sis->extent_list); 1250 return 1; 1251 } 1252 1253 /* 1254 * A `swap extent' is a simple thing which maps a contiguous range of pages 1255 * onto a contiguous range of disk blocks. An ordered list of swap extents 1256 * is built at swapon time and is then used at swap_writepage/swap_readpage 1257 * time for locating where on disk a page belongs. 1258 * 1259 * If the swapfile is an S_ISBLK block device, a single extent is installed. 1260 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 1261 * swap files identically. 1262 * 1263 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 1264 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1265 * swapfiles are handled *identically* after swapon time. 1266 * 1267 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1268 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1269 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1270 * requirements, they are simply tossed out - we will never use those blocks 1271 * for swapping. 1272 * 1273 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1274 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1275 * which will scribble on the fs. 1276 * 1277 * The amount of disk space which a single swap extent represents varies. 1278 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1279 * extents in the list. To avoid much list walking, we cache the previous 1280 * search location in `curr_swap_extent', and start new searches from there. 1281 * This is extremely effective. The average number of iterations in 1282 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1283 */ 1284 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1285 { 1286 struct inode *inode; 1287 unsigned blocks_per_page; 1288 unsigned long page_no; 1289 unsigned blkbits; 1290 sector_t probe_block; 1291 sector_t last_block; 1292 sector_t lowest_block = -1; 1293 sector_t highest_block = 0; 1294 int nr_extents = 0; 1295 int ret; 1296 1297 inode = sis->swap_file->f_mapping->host; 1298 if (S_ISBLK(inode->i_mode)) { 1299 ret = add_swap_extent(sis, 0, sis->max, 0); 1300 *span = sis->pages; 1301 goto done; 1302 } 1303 1304 blkbits = inode->i_blkbits; 1305 blocks_per_page = PAGE_SIZE >> blkbits; 1306 1307 /* 1308 * Map all the blocks into the extent list. This code doesn't try 1309 * to be very smart. 1310 */ 1311 probe_block = 0; 1312 page_no = 0; 1313 last_block = i_size_read(inode) >> blkbits; 1314 while ((probe_block + blocks_per_page) <= last_block && 1315 page_no < sis->max) { 1316 unsigned block_in_page; 1317 sector_t first_block; 1318 1319 first_block = bmap(inode, probe_block); 1320 if (first_block == 0) 1321 goto bad_bmap; 1322 1323 /* 1324 * It must be PAGE_SIZE aligned on-disk 1325 */ 1326 if (first_block & (blocks_per_page - 1)) { 1327 probe_block++; 1328 goto reprobe; 1329 } 1330 1331 for (block_in_page = 1; block_in_page < blocks_per_page; 1332 block_in_page++) { 1333 sector_t block; 1334 1335 block = bmap(inode, probe_block + block_in_page); 1336 if (block == 0) 1337 goto bad_bmap; 1338 if (block != first_block + block_in_page) { 1339 /* Discontiguity */ 1340 probe_block++; 1341 goto reprobe; 1342 } 1343 } 1344 1345 first_block >>= (PAGE_SHIFT - blkbits); 1346 if (page_no) { /* exclude the header page */ 1347 if (first_block < lowest_block) 1348 lowest_block = first_block; 1349 if (first_block > highest_block) 1350 highest_block = first_block; 1351 } 1352 1353 /* 1354 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 1355 */ 1356 ret = add_swap_extent(sis, page_no, 1, first_block); 1357 if (ret < 0) 1358 goto out; 1359 nr_extents += ret; 1360 page_no++; 1361 probe_block += blocks_per_page; 1362 reprobe: 1363 continue; 1364 } 1365 ret = nr_extents; 1366 *span = 1 + highest_block - lowest_block; 1367 if (page_no == 0) 1368 page_no = 1; /* force Empty message */ 1369 sis->max = page_no; 1370 sis->pages = page_no - 1; 1371 sis->highest_bit = page_no - 1; 1372 done: 1373 sis->curr_swap_extent = list_entry(sis->extent_list.prev, 1374 struct swap_extent, list); 1375 goto out; 1376 bad_bmap: 1377 printk(KERN_ERR "swapon: swapfile has holes\n"); 1378 ret = -EINVAL; 1379 out: 1380 return ret; 1381 } 1382 1383 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 1384 { 1385 struct swap_info_struct * p = NULL; 1386 unsigned short *swap_map; 1387 struct file *swap_file, *victim; 1388 struct address_space *mapping; 1389 struct inode *inode; 1390 char * pathname; 1391 int i, type, prev; 1392 int err; 1393 1394 if (!capable(CAP_SYS_ADMIN)) 1395 return -EPERM; 1396 1397 pathname = getname(specialfile); 1398 err = PTR_ERR(pathname); 1399 if (IS_ERR(pathname)) 1400 goto out; 1401 1402 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); 1403 putname(pathname); 1404 err = PTR_ERR(victim); 1405 if (IS_ERR(victim)) 1406 goto out; 1407 1408 mapping = victim->f_mapping; 1409 prev = -1; 1410 spin_lock(&swap_lock); 1411 for (type = swap_list.head; type >= 0; type = swap_info[type].next) { 1412 p = swap_info + type; 1413 if (p->flags & SWP_WRITEOK) { 1414 if (p->swap_file->f_mapping == mapping) 1415 break; 1416 } 1417 prev = type; 1418 } 1419 if (type < 0) { 1420 err = -EINVAL; 1421 spin_unlock(&swap_lock); 1422 goto out_dput; 1423 } 1424 if (!security_vm_enough_memory(p->pages)) 1425 vm_unacct_memory(p->pages); 1426 else { 1427 err = -ENOMEM; 1428 spin_unlock(&swap_lock); 1429 goto out_dput; 1430 } 1431 if (prev < 0) { 1432 swap_list.head = p->next; 1433 } else { 1434 swap_info[prev].next = p->next; 1435 } 1436 if (type == swap_list.next) { 1437 /* just pick something that's safe... */ 1438 swap_list.next = swap_list.head; 1439 } 1440 if (p->prio < 0) { 1441 for (i = p->next; i >= 0; i = swap_info[i].next) 1442 swap_info[i].prio = p->prio--; 1443 least_priority++; 1444 } 1445 nr_swap_pages -= p->pages; 1446 total_swap_pages -= p->pages; 1447 p->flags &= ~SWP_WRITEOK; 1448 spin_unlock(&swap_lock); 1449 1450 current->flags |= PF_SWAPOFF; 1451 err = try_to_unuse(type); 1452 current->flags &= ~PF_SWAPOFF; 1453 1454 if (err) { 1455 /* re-insert swap space back into swap_list */ 1456 spin_lock(&swap_lock); 1457 if (p->prio < 0) 1458 p->prio = --least_priority; 1459 prev = -1; 1460 for (i = swap_list.head; i >= 0; i = swap_info[i].next) { 1461 if (p->prio >= swap_info[i].prio) 1462 break; 1463 prev = i; 1464 } 1465 p->next = i; 1466 if (prev < 0) 1467 swap_list.head = swap_list.next = p - swap_info; 1468 else 1469 swap_info[prev].next = p - swap_info; 1470 nr_swap_pages += p->pages; 1471 total_swap_pages += p->pages; 1472 p->flags |= SWP_WRITEOK; 1473 spin_unlock(&swap_lock); 1474 goto out_dput; 1475 } 1476 1477 /* wait for any unplug function to finish */ 1478 down_write(&swap_unplug_sem); 1479 up_write(&swap_unplug_sem); 1480 1481 destroy_swap_extents(p); 1482 mutex_lock(&swapon_mutex); 1483 spin_lock(&swap_lock); 1484 drain_mmlist(); 1485 1486 /* wait for anyone still in scan_swap_map */ 1487 p->highest_bit = 0; /* cuts scans short */ 1488 while (p->flags >= SWP_SCANNING) { 1489 spin_unlock(&swap_lock); 1490 schedule_timeout_uninterruptible(1); 1491 spin_lock(&swap_lock); 1492 } 1493 1494 swap_file = p->swap_file; 1495 p->swap_file = NULL; 1496 p->max = 0; 1497 swap_map = p->swap_map; 1498 p->swap_map = NULL; 1499 p->flags = 0; 1500 spin_unlock(&swap_lock); 1501 mutex_unlock(&swapon_mutex); 1502 vfree(swap_map); 1503 /* Destroy swap account informatin */ 1504 swap_cgroup_swapoff(type); 1505 1506 inode = mapping->host; 1507 if (S_ISBLK(inode->i_mode)) { 1508 struct block_device *bdev = I_BDEV(inode); 1509 set_blocksize(bdev, p->old_block_size); 1510 bd_release(bdev); 1511 } else { 1512 mutex_lock(&inode->i_mutex); 1513 inode->i_flags &= ~S_SWAPFILE; 1514 mutex_unlock(&inode->i_mutex); 1515 } 1516 filp_close(swap_file, NULL); 1517 err = 0; 1518 1519 out_dput: 1520 filp_close(victim, NULL); 1521 out: 1522 return err; 1523 } 1524 1525 #ifdef CONFIG_PROC_FS 1526 /* iterator */ 1527 static void *swap_start(struct seq_file *swap, loff_t *pos) 1528 { 1529 struct swap_info_struct *ptr = swap_info; 1530 int i; 1531 loff_t l = *pos; 1532 1533 mutex_lock(&swapon_mutex); 1534 1535 if (!l) 1536 return SEQ_START_TOKEN; 1537 1538 for (i = 0; i < nr_swapfiles; i++, ptr++) { 1539 if (!(ptr->flags & SWP_USED) || !ptr->swap_map) 1540 continue; 1541 if (!--l) 1542 return ptr; 1543 } 1544 1545 return NULL; 1546 } 1547 1548 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 1549 { 1550 struct swap_info_struct *ptr; 1551 struct swap_info_struct *endptr = swap_info + nr_swapfiles; 1552 1553 if (v == SEQ_START_TOKEN) 1554 ptr = swap_info; 1555 else { 1556 ptr = v; 1557 ptr++; 1558 } 1559 1560 for (; ptr < endptr; ptr++) { 1561 if (!(ptr->flags & SWP_USED) || !ptr->swap_map) 1562 continue; 1563 ++*pos; 1564 return ptr; 1565 } 1566 1567 return NULL; 1568 } 1569 1570 static void swap_stop(struct seq_file *swap, void *v) 1571 { 1572 mutex_unlock(&swapon_mutex); 1573 } 1574 1575 static int swap_show(struct seq_file *swap, void *v) 1576 { 1577 struct swap_info_struct *ptr = v; 1578 struct file *file; 1579 int len; 1580 1581 if (ptr == SEQ_START_TOKEN) { 1582 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 1583 return 0; 1584 } 1585 1586 file = ptr->swap_file; 1587 len = seq_path(swap, &file->f_path, " \t\n\\"); 1588 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 1589 len < 40 ? 40 - len : 1, " ", 1590 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ? 1591 "partition" : "file\t", 1592 ptr->pages << (PAGE_SHIFT - 10), 1593 ptr->inuse_pages << (PAGE_SHIFT - 10), 1594 ptr->prio); 1595 return 0; 1596 } 1597 1598 static const struct seq_operations swaps_op = { 1599 .start = swap_start, 1600 .next = swap_next, 1601 .stop = swap_stop, 1602 .show = swap_show 1603 }; 1604 1605 static int swaps_open(struct inode *inode, struct file *file) 1606 { 1607 return seq_open(file, &swaps_op); 1608 } 1609 1610 static const struct file_operations proc_swaps_operations = { 1611 .open = swaps_open, 1612 .read = seq_read, 1613 .llseek = seq_lseek, 1614 .release = seq_release, 1615 }; 1616 1617 static int __init procswaps_init(void) 1618 { 1619 proc_create("swaps", 0, NULL, &proc_swaps_operations); 1620 return 0; 1621 } 1622 __initcall(procswaps_init); 1623 #endif /* CONFIG_PROC_FS */ 1624 1625 #ifdef MAX_SWAPFILES_CHECK 1626 static int __init max_swapfiles_check(void) 1627 { 1628 MAX_SWAPFILES_CHECK(); 1629 return 0; 1630 } 1631 late_initcall(max_swapfiles_check); 1632 #endif 1633 1634 /* 1635 * Written 01/25/92 by Simmule Turner, heavily changed by Linus. 1636 * 1637 * The swapon system call 1638 */ 1639 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 1640 { 1641 struct swap_info_struct * p; 1642 char *name = NULL; 1643 struct block_device *bdev = NULL; 1644 struct file *swap_file = NULL; 1645 struct address_space *mapping; 1646 unsigned int type; 1647 int i, prev; 1648 int error; 1649 union swap_header *swap_header = NULL; 1650 unsigned int nr_good_pages = 0; 1651 int nr_extents = 0; 1652 sector_t span; 1653 unsigned long maxpages = 1; 1654 unsigned long swapfilepages; 1655 unsigned short *swap_map = NULL; 1656 struct page *page = NULL; 1657 struct inode *inode = NULL; 1658 int did_down = 0; 1659 1660 if (!capable(CAP_SYS_ADMIN)) 1661 return -EPERM; 1662 spin_lock(&swap_lock); 1663 p = swap_info; 1664 for (type = 0 ; type < nr_swapfiles ; type++,p++) 1665 if (!(p->flags & SWP_USED)) 1666 break; 1667 error = -EPERM; 1668 if (type >= MAX_SWAPFILES) { 1669 spin_unlock(&swap_lock); 1670 goto out; 1671 } 1672 if (type >= nr_swapfiles) 1673 nr_swapfiles = type+1; 1674 memset(p, 0, sizeof(*p)); 1675 INIT_LIST_HEAD(&p->extent_list); 1676 p->flags = SWP_USED; 1677 p->next = -1; 1678 spin_unlock(&swap_lock); 1679 name = getname(specialfile); 1680 error = PTR_ERR(name); 1681 if (IS_ERR(name)) { 1682 name = NULL; 1683 goto bad_swap_2; 1684 } 1685 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); 1686 error = PTR_ERR(swap_file); 1687 if (IS_ERR(swap_file)) { 1688 swap_file = NULL; 1689 goto bad_swap_2; 1690 } 1691 1692 p->swap_file = swap_file; 1693 mapping = swap_file->f_mapping; 1694 inode = mapping->host; 1695 1696 error = -EBUSY; 1697 for (i = 0; i < nr_swapfiles; i++) { 1698 struct swap_info_struct *q = &swap_info[i]; 1699 1700 if (i == type || !q->swap_file) 1701 continue; 1702 if (mapping == q->swap_file->f_mapping) 1703 goto bad_swap; 1704 } 1705 1706 error = -EINVAL; 1707 if (S_ISBLK(inode->i_mode)) { 1708 bdev = I_BDEV(inode); 1709 error = bd_claim(bdev, sys_swapon); 1710 if (error < 0) { 1711 bdev = NULL; 1712 error = -EINVAL; 1713 goto bad_swap; 1714 } 1715 p->old_block_size = block_size(bdev); 1716 error = set_blocksize(bdev, PAGE_SIZE); 1717 if (error < 0) 1718 goto bad_swap; 1719 p->bdev = bdev; 1720 } else if (S_ISREG(inode->i_mode)) { 1721 p->bdev = inode->i_sb->s_bdev; 1722 mutex_lock(&inode->i_mutex); 1723 did_down = 1; 1724 if (IS_SWAPFILE(inode)) { 1725 error = -EBUSY; 1726 goto bad_swap; 1727 } 1728 } else { 1729 goto bad_swap; 1730 } 1731 1732 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 1733 1734 /* 1735 * Read the swap header. 1736 */ 1737 if (!mapping->a_ops->readpage) { 1738 error = -EINVAL; 1739 goto bad_swap; 1740 } 1741 page = read_mapping_page(mapping, 0, swap_file); 1742 if (IS_ERR(page)) { 1743 error = PTR_ERR(page); 1744 goto bad_swap; 1745 } 1746 swap_header = kmap(page); 1747 1748 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 1749 printk(KERN_ERR "Unable to find swap-space signature\n"); 1750 error = -EINVAL; 1751 goto bad_swap; 1752 } 1753 1754 /* swap partition endianess hack... */ 1755 if (swab32(swap_header->info.version) == 1) { 1756 swab32s(&swap_header->info.version); 1757 swab32s(&swap_header->info.last_page); 1758 swab32s(&swap_header->info.nr_badpages); 1759 for (i = 0; i < swap_header->info.nr_badpages; i++) 1760 swab32s(&swap_header->info.badpages[i]); 1761 } 1762 /* Check the swap header's sub-version */ 1763 if (swap_header->info.version != 1) { 1764 printk(KERN_WARNING 1765 "Unable to handle swap header version %d\n", 1766 swap_header->info.version); 1767 error = -EINVAL; 1768 goto bad_swap; 1769 } 1770 1771 p->lowest_bit = 1; 1772 p->cluster_next = 1; 1773 1774 /* 1775 * Find out how many pages are allowed for a single swap 1776 * device. There are two limiting factors: 1) the number of 1777 * bits for the swap offset in the swp_entry_t type and 1778 * 2) the number of bits in the a swap pte as defined by 1779 * the different architectures. In order to find the 1780 * largest possible bit mask a swap entry with swap type 0 1781 * and swap offset ~0UL is created, encoded to a swap pte, 1782 * decoded to a swp_entry_t again and finally the swap 1783 * offset is extracted. This will mask all the bits from 1784 * the initial ~0UL mask that can't be encoded in either 1785 * the swp_entry_t or the architecture definition of a 1786 * swap pte. 1787 */ 1788 maxpages = swp_offset(pte_to_swp_entry( 1789 swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1; 1790 if (maxpages > swap_header->info.last_page) 1791 maxpages = swap_header->info.last_page; 1792 p->highest_bit = maxpages - 1; 1793 1794 error = -EINVAL; 1795 if (!maxpages) 1796 goto bad_swap; 1797 if (swapfilepages && maxpages > swapfilepages) { 1798 printk(KERN_WARNING 1799 "Swap area shorter than signature indicates\n"); 1800 goto bad_swap; 1801 } 1802 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 1803 goto bad_swap; 1804 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 1805 goto bad_swap; 1806 1807 /* OK, set up the swap map and apply the bad block list */ 1808 swap_map = vmalloc(maxpages * sizeof(short)); 1809 if (!swap_map) { 1810 error = -ENOMEM; 1811 goto bad_swap; 1812 } 1813 1814 memset(swap_map, 0, maxpages * sizeof(short)); 1815 for (i = 0; i < swap_header->info.nr_badpages; i++) { 1816 int page_nr = swap_header->info.badpages[i]; 1817 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) { 1818 error = -EINVAL; 1819 goto bad_swap; 1820 } 1821 swap_map[page_nr] = SWAP_MAP_BAD; 1822 } 1823 1824 error = swap_cgroup_swapon(type, maxpages); 1825 if (error) 1826 goto bad_swap; 1827 1828 nr_good_pages = swap_header->info.last_page - 1829 swap_header->info.nr_badpages - 1830 1 /* header page */; 1831 1832 if (nr_good_pages) { 1833 swap_map[0] = SWAP_MAP_BAD; 1834 p->max = maxpages; 1835 p->pages = nr_good_pages; 1836 nr_extents = setup_swap_extents(p, &span); 1837 if (nr_extents < 0) { 1838 error = nr_extents; 1839 goto bad_swap; 1840 } 1841 nr_good_pages = p->pages; 1842 } 1843 if (!nr_good_pages) { 1844 printk(KERN_WARNING "Empty swap-file\n"); 1845 error = -EINVAL; 1846 goto bad_swap; 1847 } 1848 1849 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) { 1850 p->flags |= SWP_SOLIDSTATE; 1851 p->cluster_next = 1 + (random32() % p->highest_bit); 1852 } 1853 if (discard_swap(p) == 0) 1854 p->flags |= SWP_DISCARDABLE; 1855 1856 mutex_lock(&swapon_mutex); 1857 spin_lock(&swap_lock); 1858 if (swap_flags & SWAP_FLAG_PREFER) 1859 p->prio = 1860 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 1861 else 1862 p->prio = --least_priority; 1863 p->swap_map = swap_map; 1864 p->flags |= SWP_WRITEOK; 1865 nr_swap_pages += nr_good_pages; 1866 total_swap_pages += nr_good_pages; 1867 1868 printk(KERN_INFO "Adding %uk swap on %s. " 1869 "Priority:%d extents:%d across:%lluk %s%s\n", 1870 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio, 1871 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 1872 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 1873 (p->flags & SWP_DISCARDABLE) ? "D" : ""); 1874 1875 /* insert swap space into swap_list: */ 1876 prev = -1; 1877 for (i = swap_list.head; i >= 0; i = swap_info[i].next) { 1878 if (p->prio >= swap_info[i].prio) { 1879 break; 1880 } 1881 prev = i; 1882 } 1883 p->next = i; 1884 if (prev < 0) { 1885 swap_list.head = swap_list.next = p - swap_info; 1886 } else { 1887 swap_info[prev].next = p - swap_info; 1888 } 1889 spin_unlock(&swap_lock); 1890 mutex_unlock(&swapon_mutex); 1891 error = 0; 1892 goto out; 1893 bad_swap: 1894 if (bdev) { 1895 set_blocksize(bdev, p->old_block_size); 1896 bd_release(bdev); 1897 } 1898 destroy_swap_extents(p); 1899 swap_cgroup_swapoff(type); 1900 bad_swap_2: 1901 spin_lock(&swap_lock); 1902 p->swap_file = NULL; 1903 p->flags = 0; 1904 spin_unlock(&swap_lock); 1905 vfree(swap_map); 1906 if (swap_file) 1907 filp_close(swap_file, NULL); 1908 out: 1909 if (page && !IS_ERR(page)) { 1910 kunmap(page); 1911 page_cache_release(page); 1912 } 1913 if (name) 1914 putname(name); 1915 if (did_down) { 1916 if (!error) 1917 inode->i_flags |= S_SWAPFILE; 1918 mutex_unlock(&inode->i_mutex); 1919 } 1920 return error; 1921 } 1922 1923 void si_swapinfo(struct sysinfo *val) 1924 { 1925 unsigned int i; 1926 unsigned long nr_to_be_unused = 0; 1927 1928 spin_lock(&swap_lock); 1929 for (i = 0; i < nr_swapfiles; i++) { 1930 if (!(swap_info[i].flags & SWP_USED) || 1931 (swap_info[i].flags & SWP_WRITEOK)) 1932 continue; 1933 nr_to_be_unused += swap_info[i].inuse_pages; 1934 } 1935 val->freeswap = nr_swap_pages + nr_to_be_unused; 1936 val->totalswap = total_swap_pages + nr_to_be_unused; 1937 spin_unlock(&swap_lock); 1938 } 1939 1940 /* 1941 * Verify that a swap entry is valid and increment its swap map count. 1942 * 1943 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as 1944 * "permanent", but will be reclaimed by the next swapoff. 1945 */ 1946 int swap_duplicate(swp_entry_t entry) 1947 { 1948 struct swap_info_struct * p; 1949 unsigned long offset, type; 1950 int result = 0; 1951 1952 if (is_migration_entry(entry)) 1953 return 1; 1954 1955 type = swp_type(entry); 1956 if (type >= nr_swapfiles) 1957 goto bad_file; 1958 p = type + swap_info; 1959 offset = swp_offset(entry); 1960 1961 spin_lock(&swap_lock); 1962 if (offset < p->max && p->swap_map[offset]) { 1963 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) { 1964 p->swap_map[offset]++; 1965 result = 1; 1966 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) { 1967 if (swap_overflow++ < 5) 1968 printk(KERN_WARNING "swap_dup: swap entry overflow\n"); 1969 p->swap_map[offset] = SWAP_MAP_MAX; 1970 result = 1; 1971 } 1972 } 1973 spin_unlock(&swap_lock); 1974 out: 1975 return result; 1976 1977 bad_file: 1978 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); 1979 goto out; 1980 } 1981 1982 struct swap_info_struct * 1983 get_swap_info_struct(unsigned type) 1984 { 1985 return &swap_info[type]; 1986 } 1987 1988 /* 1989 * swap_lock prevents swap_map being freed. Don't grab an extra 1990 * reference on the swaphandle, it doesn't matter if it becomes unused. 1991 */ 1992 int valid_swaphandles(swp_entry_t entry, unsigned long *offset) 1993 { 1994 struct swap_info_struct *si; 1995 int our_page_cluster = page_cluster; 1996 pgoff_t target, toff; 1997 pgoff_t base, end; 1998 int nr_pages = 0; 1999 2000 if (!our_page_cluster) /* no readahead */ 2001 return 0; 2002 2003 si = &swap_info[swp_type(entry)]; 2004 target = swp_offset(entry); 2005 base = (target >> our_page_cluster) << our_page_cluster; 2006 end = base + (1 << our_page_cluster); 2007 if (!base) /* first page is swap header */ 2008 base++; 2009 2010 spin_lock(&swap_lock); 2011 if (end > si->max) /* don't go beyond end of map */ 2012 end = si->max; 2013 2014 /* Count contiguous allocated slots above our target */ 2015 for (toff = target; ++toff < end; nr_pages++) { 2016 /* Don't read in free or bad pages */ 2017 if (!si->swap_map[toff]) 2018 break; 2019 if (si->swap_map[toff] == SWAP_MAP_BAD) 2020 break; 2021 } 2022 /* Count contiguous allocated slots below our target */ 2023 for (toff = target; --toff >= base; nr_pages++) { 2024 /* Don't read in free or bad pages */ 2025 if (!si->swap_map[toff]) 2026 break; 2027 if (si->swap_map[toff] == SWAP_MAP_BAD) 2028 break; 2029 } 2030 spin_unlock(&swap_lock); 2031 2032 /* 2033 * Indicate starting offset, and return number of pages to get: 2034 * if only 1, say 0, since there's then no readahead to be done. 2035 */ 2036 *offset = ++toff; 2037 return nr_pages? ++nr_pages: 0; 2038 } 2039