1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shmem_fs.h> 18 #include <linux/blkdev.h> 19 #include <linux/random.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/security.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mutex.h> 29 #include <linux/capability.h> 30 #include <linux/syscalls.h> 31 #include <linux/memcontrol.h> 32 #include <linux/poll.h> 33 #include <linux/oom.h> 34 #include <linux/frontswap.h> 35 #include <linux/swapfile.h> 36 #include <linux/export.h> 37 38 #include <asm/pgtable.h> 39 #include <asm/tlbflush.h> 40 #include <linux/swapops.h> 41 #include <linux/page_cgroup.h> 42 43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 44 unsigned char); 45 static void free_swap_count_continuations(struct swap_info_struct *); 46 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 47 48 DEFINE_SPINLOCK(swap_lock); 49 static unsigned int nr_swapfiles; 50 atomic_long_t nr_swap_pages; 51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 52 long total_swap_pages; 53 static int least_priority; 54 static atomic_t highest_priority_index = ATOMIC_INIT(-1); 55 56 static const char Bad_file[] = "Bad swap file entry "; 57 static const char Unused_file[] = "Unused swap file entry "; 58 static const char Bad_offset[] = "Bad swap offset entry "; 59 static const char Unused_offset[] = "Unused swap offset entry "; 60 61 struct swap_list_t swap_list = {-1, -1}; 62 63 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 64 65 static DEFINE_MUTEX(swapon_mutex); 66 67 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 68 /* Activity counter to indicate that a swapon or swapoff has occurred */ 69 static atomic_t proc_poll_event = ATOMIC_INIT(0); 70 71 static inline unsigned char swap_count(unsigned char ent) 72 { 73 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ 74 } 75 76 /* returns 1 if swap entry is freed */ 77 static int 78 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) 79 { 80 swp_entry_t entry = swp_entry(si->type, offset); 81 struct page *page; 82 int ret = 0; 83 84 page = find_get_page(swap_address_space(entry), entry.val); 85 if (!page) 86 return 0; 87 /* 88 * This function is called from scan_swap_map() and it's called 89 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. 90 * We have to use trylock for avoiding deadlock. This is a special 91 * case and you should use try_to_free_swap() with explicit lock_page() 92 * in usual operations. 93 */ 94 if (trylock_page(page)) { 95 ret = try_to_free_swap(page); 96 unlock_page(page); 97 } 98 page_cache_release(page); 99 return ret; 100 } 101 102 /* 103 * swapon tell device that all the old swap contents can be discarded, 104 * to allow the swap device to optimize its wear-levelling. 105 */ 106 static int discard_swap(struct swap_info_struct *si) 107 { 108 struct swap_extent *se; 109 sector_t start_block; 110 sector_t nr_blocks; 111 int err = 0; 112 113 /* Do not discard the swap header page! */ 114 se = &si->first_swap_extent; 115 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 116 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 117 if (nr_blocks) { 118 err = blkdev_issue_discard(si->bdev, start_block, 119 nr_blocks, GFP_KERNEL, 0); 120 if (err) 121 return err; 122 cond_resched(); 123 } 124 125 list_for_each_entry(se, &si->first_swap_extent.list, list) { 126 start_block = se->start_block << (PAGE_SHIFT - 9); 127 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 128 129 err = blkdev_issue_discard(si->bdev, start_block, 130 nr_blocks, GFP_KERNEL, 0); 131 if (err) 132 break; 133 134 cond_resched(); 135 } 136 return err; /* That will often be -EOPNOTSUPP */ 137 } 138 139 /* 140 * swap allocation tell device that a cluster of swap can now be discarded, 141 * to allow the swap device to optimize its wear-levelling. 142 */ 143 static void discard_swap_cluster(struct swap_info_struct *si, 144 pgoff_t start_page, pgoff_t nr_pages) 145 { 146 struct swap_extent *se = si->curr_swap_extent; 147 int found_extent = 0; 148 149 while (nr_pages) { 150 struct list_head *lh; 151 152 if (se->start_page <= start_page && 153 start_page < se->start_page + se->nr_pages) { 154 pgoff_t offset = start_page - se->start_page; 155 sector_t start_block = se->start_block + offset; 156 sector_t nr_blocks = se->nr_pages - offset; 157 158 if (nr_blocks > nr_pages) 159 nr_blocks = nr_pages; 160 start_page += nr_blocks; 161 nr_pages -= nr_blocks; 162 163 if (!found_extent++) 164 si->curr_swap_extent = se; 165 166 start_block <<= PAGE_SHIFT - 9; 167 nr_blocks <<= PAGE_SHIFT - 9; 168 if (blkdev_issue_discard(si->bdev, start_block, 169 nr_blocks, GFP_NOIO, 0)) 170 break; 171 } 172 173 lh = se->list.next; 174 se = list_entry(lh, struct swap_extent, list); 175 } 176 } 177 178 static int wait_for_discard(void *word) 179 { 180 schedule(); 181 return 0; 182 } 183 184 #define SWAPFILE_CLUSTER 256 185 #define LATENCY_LIMIT 256 186 187 static unsigned long scan_swap_map(struct swap_info_struct *si, 188 unsigned char usage) 189 { 190 unsigned long offset; 191 unsigned long scan_base; 192 unsigned long last_in_cluster = 0; 193 int latency_ration = LATENCY_LIMIT; 194 int found_free_cluster = 0; 195 196 /* 197 * We try to cluster swap pages by allocating them sequentially 198 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 199 * way, however, we resort to first-free allocation, starting 200 * a new cluster. This prevents us from scattering swap pages 201 * all over the entire swap partition, so that we reduce 202 * overall disk seek times between swap pages. -- sct 203 * But we do now try to find an empty cluster. -Andrea 204 * And we let swap pages go all over an SSD partition. Hugh 205 */ 206 207 si->flags += SWP_SCANNING; 208 scan_base = offset = si->cluster_next; 209 210 if (unlikely(!si->cluster_nr--)) { 211 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 212 si->cluster_nr = SWAPFILE_CLUSTER - 1; 213 goto checks; 214 } 215 if (si->flags & SWP_PAGE_DISCARD) { 216 /* 217 * Start range check on racing allocations, in case 218 * they overlap the cluster we eventually decide on 219 * (we scan without swap_lock to allow preemption). 220 * It's hardly conceivable that cluster_nr could be 221 * wrapped during our scan, but don't depend on it. 222 */ 223 if (si->lowest_alloc) 224 goto checks; 225 si->lowest_alloc = si->max; 226 si->highest_alloc = 0; 227 } 228 spin_unlock(&si->lock); 229 230 /* 231 * If seek is expensive, start searching for new cluster from 232 * start of partition, to minimize the span of allocated swap. 233 * But if seek is cheap, search from our current position, so 234 * that swap is allocated from all over the partition: if the 235 * Flash Translation Layer only remaps within limited zones, 236 * we don't want to wear out the first zone too quickly. 237 */ 238 if (!(si->flags & SWP_SOLIDSTATE)) 239 scan_base = offset = si->lowest_bit; 240 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 241 242 /* Locate the first empty (unaligned) cluster */ 243 for (; last_in_cluster <= si->highest_bit; offset++) { 244 if (si->swap_map[offset]) 245 last_in_cluster = offset + SWAPFILE_CLUSTER; 246 else if (offset == last_in_cluster) { 247 spin_lock(&si->lock); 248 offset -= SWAPFILE_CLUSTER - 1; 249 si->cluster_next = offset; 250 si->cluster_nr = SWAPFILE_CLUSTER - 1; 251 found_free_cluster = 1; 252 goto checks; 253 } 254 if (unlikely(--latency_ration < 0)) { 255 cond_resched(); 256 latency_ration = LATENCY_LIMIT; 257 } 258 } 259 260 offset = si->lowest_bit; 261 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 262 263 /* Locate the first empty (unaligned) cluster */ 264 for (; last_in_cluster < scan_base; offset++) { 265 if (si->swap_map[offset]) 266 last_in_cluster = offset + SWAPFILE_CLUSTER; 267 else if (offset == last_in_cluster) { 268 spin_lock(&si->lock); 269 offset -= SWAPFILE_CLUSTER - 1; 270 si->cluster_next = offset; 271 si->cluster_nr = SWAPFILE_CLUSTER - 1; 272 found_free_cluster = 1; 273 goto checks; 274 } 275 if (unlikely(--latency_ration < 0)) { 276 cond_resched(); 277 latency_ration = LATENCY_LIMIT; 278 } 279 } 280 281 offset = scan_base; 282 spin_lock(&si->lock); 283 si->cluster_nr = SWAPFILE_CLUSTER - 1; 284 si->lowest_alloc = 0; 285 } 286 287 checks: 288 if (!(si->flags & SWP_WRITEOK)) 289 goto no_page; 290 if (!si->highest_bit) 291 goto no_page; 292 if (offset > si->highest_bit) 293 scan_base = offset = si->lowest_bit; 294 295 /* reuse swap entry of cache-only swap if not busy. */ 296 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 297 int swap_was_freed; 298 spin_unlock(&si->lock); 299 swap_was_freed = __try_to_reclaim_swap(si, offset); 300 spin_lock(&si->lock); 301 /* entry was freed successfully, try to use this again */ 302 if (swap_was_freed) 303 goto checks; 304 goto scan; /* check next one */ 305 } 306 307 if (si->swap_map[offset]) 308 goto scan; 309 310 if (offset == si->lowest_bit) 311 si->lowest_bit++; 312 if (offset == si->highest_bit) 313 si->highest_bit--; 314 si->inuse_pages++; 315 if (si->inuse_pages == si->pages) { 316 si->lowest_bit = si->max; 317 si->highest_bit = 0; 318 } 319 si->swap_map[offset] = usage; 320 si->cluster_next = offset + 1; 321 si->flags -= SWP_SCANNING; 322 323 if (si->lowest_alloc) { 324 /* 325 * Only set when SWP_PAGE_DISCARD, and there's a scan 326 * for a free cluster in progress or just completed. 327 */ 328 if (found_free_cluster) { 329 /* 330 * To optimize wear-levelling, discard the 331 * old data of the cluster, taking care not to 332 * discard any of its pages that have already 333 * been allocated by racing tasks (offset has 334 * already stepped over any at the beginning). 335 */ 336 if (offset < si->highest_alloc && 337 si->lowest_alloc <= last_in_cluster) 338 last_in_cluster = si->lowest_alloc - 1; 339 si->flags |= SWP_DISCARDING; 340 spin_unlock(&si->lock); 341 342 if (offset < last_in_cluster) 343 discard_swap_cluster(si, offset, 344 last_in_cluster - offset + 1); 345 346 spin_lock(&si->lock); 347 si->lowest_alloc = 0; 348 si->flags &= ~SWP_DISCARDING; 349 350 smp_mb(); /* wake_up_bit advises this */ 351 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING)); 352 353 } else if (si->flags & SWP_DISCARDING) { 354 /* 355 * Delay using pages allocated by racing tasks 356 * until the whole discard has been issued. We 357 * could defer that delay until swap_writepage, 358 * but it's easier to keep this self-contained. 359 */ 360 spin_unlock(&si->lock); 361 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING), 362 wait_for_discard, TASK_UNINTERRUPTIBLE); 363 spin_lock(&si->lock); 364 } else { 365 /* 366 * Note pages allocated by racing tasks while 367 * scan for a free cluster is in progress, so 368 * that its final discard can exclude them. 369 */ 370 if (offset < si->lowest_alloc) 371 si->lowest_alloc = offset; 372 if (offset > si->highest_alloc) 373 si->highest_alloc = offset; 374 } 375 } 376 return offset; 377 378 scan: 379 spin_unlock(&si->lock); 380 while (++offset <= si->highest_bit) { 381 if (!si->swap_map[offset]) { 382 spin_lock(&si->lock); 383 goto checks; 384 } 385 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 386 spin_lock(&si->lock); 387 goto checks; 388 } 389 if (unlikely(--latency_ration < 0)) { 390 cond_resched(); 391 latency_ration = LATENCY_LIMIT; 392 } 393 } 394 offset = si->lowest_bit; 395 while (++offset < scan_base) { 396 if (!si->swap_map[offset]) { 397 spin_lock(&si->lock); 398 goto checks; 399 } 400 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 401 spin_lock(&si->lock); 402 goto checks; 403 } 404 if (unlikely(--latency_ration < 0)) { 405 cond_resched(); 406 latency_ration = LATENCY_LIMIT; 407 } 408 } 409 spin_lock(&si->lock); 410 411 no_page: 412 si->flags -= SWP_SCANNING; 413 return 0; 414 } 415 416 swp_entry_t get_swap_page(void) 417 { 418 struct swap_info_struct *si; 419 pgoff_t offset; 420 int type, next; 421 int wrapped = 0; 422 int hp_index; 423 424 spin_lock(&swap_lock); 425 if (atomic_long_read(&nr_swap_pages) <= 0) 426 goto noswap; 427 atomic_long_dec(&nr_swap_pages); 428 429 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { 430 hp_index = atomic_xchg(&highest_priority_index, -1); 431 /* 432 * highest_priority_index records current highest priority swap 433 * type which just frees swap entries. If its priority is 434 * higher than that of swap_list.next swap type, we use it. It 435 * isn't protected by swap_lock, so it can be an invalid value 436 * if the corresponding swap type is swapoff. We double check 437 * the flags here. It's even possible the swap type is swapoff 438 * and swapon again and its priority is changed. In such rare 439 * case, low prority swap type might be used, but eventually 440 * high priority swap will be used after several rounds of 441 * swap. 442 */ 443 if (hp_index != -1 && hp_index != type && 444 swap_info[type]->prio < swap_info[hp_index]->prio && 445 (swap_info[hp_index]->flags & SWP_WRITEOK)) { 446 type = hp_index; 447 swap_list.next = type; 448 } 449 450 si = swap_info[type]; 451 next = si->next; 452 if (next < 0 || 453 (!wrapped && si->prio != swap_info[next]->prio)) { 454 next = swap_list.head; 455 wrapped++; 456 } 457 458 spin_lock(&si->lock); 459 if (!si->highest_bit) { 460 spin_unlock(&si->lock); 461 continue; 462 } 463 if (!(si->flags & SWP_WRITEOK)) { 464 spin_unlock(&si->lock); 465 continue; 466 } 467 468 swap_list.next = next; 469 470 spin_unlock(&swap_lock); 471 /* This is called for allocating swap entry for cache */ 472 offset = scan_swap_map(si, SWAP_HAS_CACHE); 473 spin_unlock(&si->lock); 474 if (offset) 475 return swp_entry(type, offset); 476 spin_lock(&swap_lock); 477 next = swap_list.next; 478 } 479 480 atomic_long_inc(&nr_swap_pages); 481 noswap: 482 spin_unlock(&swap_lock); 483 return (swp_entry_t) {0}; 484 } 485 486 /* The only caller of this function is now susupend routine */ 487 swp_entry_t get_swap_page_of_type(int type) 488 { 489 struct swap_info_struct *si; 490 pgoff_t offset; 491 492 si = swap_info[type]; 493 spin_lock(&si->lock); 494 if (si && (si->flags & SWP_WRITEOK)) { 495 atomic_long_dec(&nr_swap_pages); 496 /* This is called for allocating swap entry, not cache */ 497 offset = scan_swap_map(si, 1); 498 if (offset) { 499 spin_unlock(&si->lock); 500 return swp_entry(type, offset); 501 } 502 atomic_long_inc(&nr_swap_pages); 503 } 504 spin_unlock(&si->lock); 505 return (swp_entry_t) {0}; 506 } 507 508 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 509 { 510 struct swap_info_struct *p; 511 unsigned long offset, type; 512 513 if (!entry.val) 514 goto out; 515 type = swp_type(entry); 516 if (type >= nr_swapfiles) 517 goto bad_nofile; 518 p = swap_info[type]; 519 if (!(p->flags & SWP_USED)) 520 goto bad_device; 521 offset = swp_offset(entry); 522 if (offset >= p->max) 523 goto bad_offset; 524 if (!p->swap_map[offset]) 525 goto bad_free; 526 spin_lock(&p->lock); 527 return p; 528 529 bad_free: 530 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); 531 goto out; 532 bad_offset: 533 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); 534 goto out; 535 bad_device: 536 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); 537 goto out; 538 bad_nofile: 539 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); 540 out: 541 return NULL; 542 } 543 544 /* 545 * This swap type frees swap entry, check if it is the highest priority swap 546 * type which just frees swap entry. get_swap_page() uses 547 * highest_priority_index to search highest priority swap type. The 548 * swap_info_struct.lock can't protect us if there are multiple swap types 549 * active, so we use atomic_cmpxchg. 550 */ 551 static void set_highest_priority_index(int type) 552 { 553 int old_hp_index, new_hp_index; 554 555 do { 556 old_hp_index = atomic_read(&highest_priority_index); 557 if (old_hp_index != -1 && 558 swap_info[old_hp_index]->prio >= swap_info[type]->prio) 559 break; 560 new_hp_index = type; 561 } while (atomic_cmpxchg(&highest_priority_index, 562 old_hp_index, new_hp_index) != old_hp_index); 563 } 564 565 static unsigned char swap_entry_free(struct swap_info_struct *p, 566 swp_entry_t entry, unsigned char usage) 567 { 568 unsigned long offset = swp_offset(entry); 569 unsigned char count; 570 unsigned char has_cache; 571 572 count = p->swap_map[offset]; 573 has_cache = count & SWAP_HAS_CACHE; 574 count &= ~SWAP_HAS_CACHE; 575 576 if (usage == SWAP_HAS_CACHE) { 577 VM_BUG_ON(!has_cache); 578 has_cache = 0; 579 } else if (count == SWAP_MAP_SHMEM) { 580 /* 581 * Or we could insist on shmem.c using a special 582 * swap_shmem_free() and free_shmem_swap_and_cache()... 583 */ 584 count = 0; 585 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 586 if (count == COUNT_CONTINUED) { 587 if (swap_count_continued(p, offset, count)) 588 count = SWAP_MAP_MAX | COUNT_CONTINUED; 589 else 590 count = SWAP_MAP_MAX; 591 } else 592 count--; 593 } 594 595 if (!count) 596 mem_cgroup_uncharge_swap(entry); 597 598 usage = count | has_cache; 599 p->swap_map[offset] = usage; 600 601 /* free if no reference */ 602 if (!usage) { 603 if (offset < p->lowest_bit) 604 p->lowest_bit = offset; 605 if (offset > p->highest_bit) 606 p->highest_bit = offset; 607 set_highest_priority_index(p->type); 608 atomic_long_inc(&nr_swap_pages); 609 p->inuse_pages--; 610 frontswap_invalidate_page(p->type, offset); 611 if (p->flags & SWP_BLKDEV) { 612 struct gendisk *disk = p->bdev->bd_disk; 613 if (disk->fops->swap_slot_free_notify) 614 disk->fops->swap_slot_free_notify(p->bdev, 615 offset); 616 } 617 } 618 619 return usage; 620 } 621 622 /* 623 * Caller has made sure that the swapdevice corresponding to entry 624 * is still around or has not been recycled. 625 */ 626 void swap_free(swp_entry_t entry) 627 { 628 struct swap_info_struct *p; 629 630 p = swap_info_get(entry); 631 if (p) { 632 swap_entry_free(p, entry, 1); 633 spin_unlock(&p->lock); 634 } 635 } 636 637 /* 638 * Called after dropping swapcache to decrease refcnt to swap entries. 639 */ 640 void swapcache_free(swp_entry_t entry, struct page *page) 641 { 642 struct swap_info_struct *p; 643 unsigned char count; 644 645 p = swap_info_get(entry); 646 if (p) { 647 count = swap_entry_free(p, entry, SWAP_HAS_CACHE); 648 if (page) 649 mem_cgroup_uncharge_swapcache(page, entry, count != 0); 650 spin_unlock(&p->lock); 651 } 652 } 653 654 /* 655 * How many references to page are currently swapped out? 656 * This does not give an exact answer when swap count is continued, 657 * but does include the high COUNT_CONTINUED flag to allow for that. 658 */ 659 int page_swapcount(struct page *page) 660 { 661 int count = 0; 662 struct swap_info_struct *p; 663 swp_entry_t entry; 664 665 entry.val = page_private(page); 666 p = swap_info_get(entry); 667 if (p) { 668 count = swap_count(p->swap_map[swp_offset(entry)]); 669 spin_unlock(&p->lock); 670 } 671 return count; 672 } 673 674 /* 675 * We can write to an anon page without COW if there are no other references 676 * to it. And as a side-effect, free up its swap: because the old content 677 * on disk will never be read, and seeking back there to write new content 678 * later would only waste time away from clustering. 679 */ 680 int reuse_swap_page(struct page *page) 681 { 682 int count; 683 684 VM_BUG_ON(!PageLocked(page)); 685 if (unlikely(PageKsm(page))) 686 return 0; 687 count = page_mapcount(page); 688 if (count <= 1 && PageSwapCache(page)) { 689 count += page_swapcount(page); 690 if (count == 1 && !PageWriteback(page)) { 691 delete_from_swap_cache(page); 692 SetPageDirty(page); 693 } 694 } 695 return count <= 1; 696 } 697 698 /* 699 * If swap is getting full, or if there are no more mappings of this page, 700 * then try_to_free_swap is called to free its swap space. 701 */ 702 int try_to_free_swap(struct page *page) 703 { 704 VM_BUG_ON(!PageLocked(page)); 705 706 if (!PageSwapCache(page)) 707 return 0; 708 if (PageWriteback(page)) 709 return 0; 710 if (page_swapcount(page)) 711 return 0; 712 713 /* 714 * Once hibernation has begun to create its image of memory, 715 * there's a danger that one of the calls to try_to_free_swap() 716 * - most probably a call from __try_to_reclaim_swap() while 717 * hibernation is allocating its own swap pages for the image, 718 * but conceivably even a call from memory reclaim - will free 719 * the swap from a page which has already been recorded in the 720 * image as a clean swapcache page, and then reuse its swap for 721 * another page of the image. On waking from hibernation, the 722 * original page might be freed under memory pressure, then 723 * later read back in from swap, now with the wrong data. 724 * 725 * Hibration suspends storage while it is writing the image 726 * to disk so check that here. 727 */ 728 if (pm_suspended_storage()) 729 return 0; 730 731 delete_from_swap_cache(page); 732 SetPageDirty(page); 733 return 1; 734 } 735 736 /* 737 * Free the swap entry like above, but also try to 738 * free the page cache entry if it is the last user. 739 */ 740 int free_swap_and_cache(swp_entry_t entry) 741 { 742 struct swap_info_struct *p; 743 struct page *page = NULL; 744 745 if (non_swap_entry(entry)) 746 return 1; 747 748 p = swap_info_get(entry); 749 if (p) { 750 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) { 751 page = find_get_page(swap_address_space(entry), 752 entry.val); 753 if (page && !trylock_page(page)) { 754 page_cache_release(page); 755 page = NULL; 756 } 757 } 758 spin_unlock(&p->lock); 759 } 760 if (page) { 761 /* 762 * Not mapped elsewhere, or swap space full? Free it! 763 * Also recheck PageSwapCache now page is locked (above). 764 */ 765 if (PageSwapCache(page) && !PageWriteback(page) && 766 (!page_mapped(page) || vm_swap_full())) { 767 delete_from_swap_cache(page); 768 SetPageDirty(page); 769 } 770 unlock_page(page); 771 page_cache_release(page); 772 } 773 return p != NULL; 774 } 775 776 #ifdef CONFIG_HIBERNATION 777 /* 778 * Find the swap type that corresponds to given device (if any). 779 * 780 * @offset - number of the PAGE_SIZE-sized block of the device, starting 781 * from 0, in which the swap header is expected to be located. 782 * 783 * This is needed for the suspend to disk (aka swsusp). 784 */ 785 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 786 { 787 struct block_device *bdev = NULL; 788 int type; 789 790 if (device) 791 bdev = bdget(device); 792 793 spin_lock(&swap_lock); 794 for (type = 0; type < nr_swapfiles; type++) { 795 struct swap_info_struct *sis = swap_info[type]; 796 797 if (!(sis->flags & SWP_WRITEOK)) 798 continue; 799 800 if (!bdev) { 801 if (bdev_p) 802 *bdev_p = bdgrab(sis->bdev); 803 804 spin_unlock(&swap_lock); 805 return type; 806 } 807 if (bdev == sis->bdev) { 808 struct swap_extent *se = &sis->first_swap_extent; 809 810 if (se->start_block == offset) { 811 if (bdev_p) 812 *bdev_p = bdgrab(sis->bdev); 813 814 spin_unlock(&swap_lock); 815 bdput(bdev); 816 return type; 817 } 818 } 819 } 820 spin_unlock(&swap_lock); 821 if (bdev) 822 bdput(bdev); 823 824 return -ENODEV; 825 } 826 827 /* 828 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 829 * corresponding to given index in swap_info (swap type). 830 */ 831 sector_t swapdev_block(int type, pgoff_t offset) 832 { 833 struct block_device *bdev; 834 835 if ((unsigned int)type >= nr_swapfiles) 836 return 0; 837 if (!(swap_info[type]->flags & SWP_WRITEOK)) 838 return 0; 839 return map_swap_entry(swp_entry(type, offset), &bdev); 840 } 841 842 /* 843 * Return either the total number of swap pages of given type, or the number 844 * of free pages of that type (depending on @free) 845 * 846 * This is needed for software suspend 847 */ 848 unsigned int count_swap_pages(int type, int free) 849 { 850 unsigned int n = 0; 851 852 spin_lock(&swap_lock); 853 if ((unsigned int)type < nr_swapfiles) { 854 struct swap_info_struct *sis = swap_info[type]; 855 856 spin_lock(&sis->lock); 857 if (sis->flags & SWP_WRITEOK) { 858 n = sis->pages; 859 if (free) 860 n -= sis->inuse_pages; 861 } 862 spin_unlock(&sis->lock); 863 } 864 spin_unlock(&swap_lock); 865 return n; 866 } 867 #endif /* CONFIG_HIBERNATION */ 868 869 static inline int maybe_same_pte(pte_t pte, pte_t swp_pte) 870 { 871 #ifdef CONFIG_MEM_SOFT_DIRTY 872 /* 873 * When pte keeps soft dirty bit the pte generated 874 * from swap entry does not has it, still it's same 875 * pte from logical point of view. 876 */ 877 pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte); 878 return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty); 879 #else 880 return pte_same(pte, swp_pte); 881 #endif 882 } 883 884 /* 885 * No need to decide whether this PTE shares the swap entry with others, 886 * just let do_wp_page work it out if a write is requested later - to 887 * force COW, vm_page_prot omits write permission from any private vma. 888 */ 889 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 890 unsigned long addr, swp_entry_t entry, struct page *page) 891 { 892 struct page *swapcache; 893 struct mem_cgroup *memcg; 894 spinlock_t *ptl; 895 pte_t *pte; 896 int ret = 1; 897 898 swapcache = page; 899 page = ksm_might_need_to_copy(page, vma, addr); 900 if (unlikely(!page)) 901 return -ENOMEM; 902 903 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, 904 GFP_KERNEL, &memcg)) { 905 ret = -ENOMEM; 906 goto out_nolock; 907 } 908 909 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 910 if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) { 911 mem_cgroup_cancel_charge_swapin(memcg); 912 ret = 0; 913 goto out; 914 } 915 916 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 917 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 918 get_page(page); 919 set_pte_at(vma->vm_mm, addr, pte, 920 pte_mkold(mk_pte(page, vma->vm_page_prot))); 921 if (page == swapcache) 922 page_add_anon_rmap(page, vma, addr); 923 else /* ksm created a completely new copy */ 924 page_add_new_anon_rmap(page, vma, addr); 925 mem_cgroup_commit_charge_swapin(page, memcg); 926 swap_free(entry); 927 /* 928 * Move the page to the active list so it is not 929 * immediately swapped out again after swapon. 930 */ 931 activate_page(page); 932 out: 933 pte_unmap_unlock(pte, ptl); 934 out_nolock: 935 if (page != swapcache) { 936 unlock_page(page); 937 put_page(page); 938 } 939 return ret; 940 } 941 942 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 943 unsigned long addr, unsigned long end, 944 swp_entry_t entry, struct page *page) 945 { 946 pte_t swp_pte = swp_entry_to_pte(entry); 947 pte_t *pte; 948 int ret = 0; 949 950 /* 951 * We don't actually need pte lock while scanning for swp_pte: since 952 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 953 * page table while we're scanning; though it could get zapped, and on 954 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 955 * of unmatched parts which look like swp_pte, so unuse_pte must 956 * recheck under pte lock. Scanning without pte lock lets it be 957 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 958 */ 959 pte = pte_offset_map(pmd, addr); 960 do { 961 /* 962 * swapoff spends a _lot_ of time in this loop! 963 * Test inline before going to call unuse_pte. 964 */ 965 if (unlikely(maybe_same_pte(*pte, swp_pte))) { 966 pte_unmap(pte); 967 ret = unuse_pte(vma, pmd, addr, entry, page); 968 if (ret) 969 goto out; 970 pte = pte_offset_map(pmd, addr); 971 } 972 } while (pte++, addr += PAGE_SIZE, addr != end); 973 pte_unmap(pte - 1); 974 out: 975 return ret; 976 } 977 978 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 979 unsigned long addr, unsigned long end, 980 swp_entry_t entry, struct page *page) 981 { 982 pmd_t *pmd; 983 unsigned long next; 984 int ret; 985 986 pmd = pmd_offset(pud, addr); 987 do { 988 next = pmd_addr_end(addr, end); 989 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 990 continue; 991 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 992 if (ret) 993 return ret; 994 } while (pmd++, addr = next, addr != end); 995 return 0; 996 } 997 998 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 999 unsigned long addr, unsigned long end, 1000 swp_entry_t entry, struct page *page) 1001 { 1002 pud_t *pud; 1003 unsigned long next; 1004 int ret; 1005 1006 pud = pud_offset(pgd, addr); 1007 do { 1008 next = pud_addr_end(addr, end); 1009 if (pud_none_or_clear_bad(pud)) 1010 continue; 1011 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 1012 if (ret) 1013 return ret; 1014 } while (pud++, addr = next, addr != end); 1015 return 0; 1016 } 1017 1018 static int unuse_vma(struct vm_area_struct *vma, 1019 swp_entry_t entry, struct page *page) 1020 { 1021 pgd_t *pgd; 1022 unsigned long addr, end, next; 1023 int ret; 1024 1025 if (page_anon_vma(page)) { 1026 addr = page_address_in_vma(page, vma); 1027 if (addr == -EFAULT) 1028 return 0; 1029 else 1030 end = addr + PAGE_SIZE; 1031 } else { 1032 addr = vma->vm_start; 1033 end = vma->vm_end; 1034 } 1035 1036 pgd = pgd_offset(vma->vm_mm, addr); 1037 do { 1038 next = pgd_addr_end(addr, end); 1039 if (pgd_none_or_clear_bad(pgd)) 1040 continue; 1041 ret = unuse_pud_range(vma, pgd, addr, next, entry, page); 1042 if (ret) 1043 return ret; 1044 } while (pgd++, addr = next, addr != end); 1045 return 0; 1046 } 1047 1048 static int unuse_mm(struct mm_struct *mm, 1049 swp_entry_t entry, struct page *page) 1050 { 1051 struct vm_area_struct *vma; 1052 int ret = 0; 1053 1054 if (!down_read_trylock(&mm->mmap_sem)) { 1055 /* 1056 * Activate page so shrink_inactive_list is unlikely to unmap 1057 * its ptes while lock is dropped, so swapoff can make progress. 1058 */ 1059 activate_page(page); 1060 unlock_page(page); 1061 down_read(&mm->mmap_sem); 1062 lock_page(page); 1063 } 1064 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1065 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 1066 break; 1067 } 1068 up_read(&mm->mmap_sem); 1069 return (ret < 0)? ret: 0; 1070 } 1071 1072 /* 1073 * Scan swap_map (or frontswap_map if frontswap parameter is true) 1074 * from current position to next entry still in use. 1075 * Recycle to start on reaching the end, returning 0 when empty. 1076 */ 1077 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1078 unsigned int prev, bool frontswap) 1079 { 1080 unsigned int max = si->max; 1081 unsigned int i = prev; 1082 unsigned char count; 1083 1084 /* 1085 * No need for swap_lock here: we're just looking 1086 * for whether an entry is in use, not modifying it; false 1087 * hits are okay, and sys_swapoff() has already prevented new 1088 * allocations from this area (while holding swap_lock). 1089 */ 1090 for (;;) { 1091 if (++i >= max) { 1092 if (!prev) { 1093 i = 0; 1094 break; 1095 } 1096 /* 1097 * No entries in use at top of swap_map, 1098 * loop back to start and recheck there. 1099 */ 1100 max = prev + 1; 1101 prev = 0; 1102 i = 1; 1103 } 1104 if (frontswap) { 1105 if (frontswap_test(si, i)) 1106 break; 1107 else 1108 continue; 1109 } 1110 count = si->swap_map[i]; 1111 if (count && swap_count(count) != SWAP_MAP_BAD) 1112 break; 1113 } 1114 return i; 1115 } 1116 1117 /* 1118 * We completely avoid races by reading each swap page in advance, 1119 * and then search for the process using it. All the necessary 1120 * page table adjustments can then be made atomically. 1121 * 1122 * if the boolean frontswap is true, only unuse pages_to_unuse pages; 1123 * pages_to_unuse==0 means all pages; ignored if frontswap is false 1124 */ 1125 int try_to_unuse(unsigned int type, bool frontswap, 1126 unsigned long pages_to_unuse) 1127 { 1128 struct swap_info_struct *si = swap_info[type]; 1129 struct mm_struct *start_mm; 1130 unsigned char *swap_map; 1131 unsigned char swcount; 1132 struct page *page; 1133 swp_entry_t entry; 1134 unsigned int i = 0; 1135 int retval = 0; 1136 1137 /* 1138 * When searching mms for an entry, a good strategy is to 1139 * start at the first mm we freed the previous entry from 1140 * (though actually we don't notice whether we or coincidence 1141 * freed the entry). Initialize this start_mm with a hold. 1142 * 1143 * A simpler strategy would be to start at the last mm we 1144 * freed the previous entry from; but that would take less 1145 * advantage of mmlist ordering, which clusters forked mms 1146 * together, child after parent. If we race with dup_mmap(), we 1147 * prefer to resolve parent before child, lest we miss entries 1148 * duplicated after we scanned child: using last mm would invert 1149 * that. 1150 */ 1151 start_mm = &init_mm; 1152 atomic_inc(&init_mm.mm_users); 1153 1154 /* 1155 * Keep on scanning until all entries have gone. Usually, 1156 * one pass through swap_map is enough, but not necessarily: 1157 * there are races when an instance of an entry might be missed. 1158 */ 1159 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) { 1160 if (signal_pending(current)) { 1161 retval = -EINTR; 1162 break; 1163 } 1164 1165 /* 1166 * Get a page for the entry, using the existing swap 1167 * cache page if there is one. Otherwise, get a clean 1168 * page and read the swap into it. 1169 */ 1170 swap_map = &si->swap_map[i]; 1171 entry = swp_entry(type, i); 1172 page = read_swap_cache_async(entry, 1173 GFP_HIGHUSER_MOVABLE, NULL, 0); 1174 if (!page) { 1175 /* 1176 * Either swap_duplicate() failed because entry 1177 * has been freed independently, and will not be 1178 * reused since sys_swapoff() already disabled 1179 * allocation from here, or alloc_page() failed. 1180 */ 1181 if (!*swap_map) 1182 continue; 1183 retval = -ENOMEM; 1184 break; 1185 } 1186 1187 /* 1188 * Don't hold on to start_mm if it looks like exiting. 1189 */ 1190 if (atomic_read(&start_mm->mm_users) == 1) { 1191 mmput(start_mm); 1192 start_mm = &init_mm; 1193 atomic_inc(&init_mm.mm_users); 1194 } 1195 1196 /* 1197 * Wait for and lock page. When do_swap_page races with 1198 * try_to_unuse, do_swap_page can handle the fault much 1199 * faster than try_to_unuse can locate the entry. This 1200 * apparently redundant "wait_on_page_locked" lets try_to_unuse 1201 * defer to do_swap_page in such a case - in some tests, 1202 * do_swap_page and try_to_unuse repeatedly compete. 1203 */ 1204 wait_on_page_locked(page); 1205 wait_on_page_writeback(page); 1206 lock_page(page); 1207 wait_on_page_writeback(page); 1208 1209 /* 1210 * Remove all references to entry. 1211 */ 1212 swcount = *swap_map; 1213 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 1214 retval = shmem_unuse(entry, page); 1215 /* page has already been unlocked and released */ 1216 if (retval < 0) 1217 break; 1218 continue; 1219 } 1220 if (swap_count(swcount) && start_mm != &init_mm) 1221 retval = unuse_mm(start_mm, entry, page); 1222 1223 if (swap_count(*swap_map)) { 1224 int set_start_mm = (*swap_map >= swcount); 1225 struct list_head *p = &start_mm->mmlist; 1226 struct mm_struct *new_start_mm = start_mm; 1227 struct mm_struct *prev_mm = start_mm; 1228 struct mm_struct *mm; 1229 1230 atomic_inc(&new_start_mm->mm_users); 1231 atomic_inc(&prev_mm->mm_users); 1232 spin_lock(&mmlist_lock); 1233 while (swap_count(*swap_map) && !retval && 1234 (p = p->next) != &start_mm->mmlist) { 1235 mm = list_entry(p, struct mm_struct, mmlist); 1236 if (!atomic_inc_not_zero(&mm->mm_users)) 1237 continue; 1238 spin_unlock(&mmlist_lock); 1239 mmput(prev_mm); 1240 prev_mm = mm; 1241 1242 cond_resched(); 1243 1244 swcount = *swap_map; 1245 if (!swap_count(swcount)) /* any usage ? */ 1246 ; 1247 else if (mm == &init_mm) 1248 set_start_mm = 1; 1249 else 1250 retval = unuse_mm(mm, entry, page); 1251 1252 if (set_start_mm && *swap_map < swcount) { 1253 mmput(new_start_mm); 1254 atomic_inc(&mm->mm_users); 1255 new_start_mm = mm; 1256 set_start_mm = 0; 1257 } 1258 spin_lock(&mmlist_lock); 1259 } 1260 spin_unlock(&mmlist_lock); 1261 mmput(prev_mm); 1262 mmput(start_mm); 1263 start_mm = new_start_mm; 1264 } 1265 if (retval) { 1266 unlock_page(page); 1267 page_cache_release(page); 1268 break; 1269 } 1270 1271 /* 1272 * If a reference remains (rare), we would like to leave 1273 * the page in the swap cache; but try_to_unmap could 1274 * then re-duplicate the entry once we drop page lock, 1275 * so we might loop indefinitely; also, that page could 1276 * not be swapped out to other storage meanwhile. So: 1277 * delete from cache even if there's another reference, 1278 * after ensuring that the data has been saved to disk - 1279 * since if the reference remains (rarer), it will be 1280 * read from disk into another page. Splitting into two 1281 * pages would be incorrect if swap supported "shared 1282 * private" pages, but they are handled by tmpfs files. 1283 * 1284 * Given how unuse_vma() targets one particular offset 1285 * in an anon_vma, once the anon_vma has been determined, 1286 * this splitting happens to be just what is needed to 1287 * handle where KSM pages have been swapped out: re-reading 1288 * is unnecessarily slow, but we can fix that later on. 1289 */ 1290 if (swap_count(*swap_map) && 1291 PageDirty(page) && PageSwapCache(page)) { 1292 struct writeback_control wbc = { 1293 .sync_mode = WB_SYNC_NONE, 1294 }; 1295 1296 swap_writepage(page, &wbc); 1297 lock_page(page); 1298 wait_on_page_writeback(page); 1299 } 1300 1301 /* 1302 * It is conceivable that a racing task removed this page from 1303 * swap cache just before we acquired the page lock at the top, 1304 * or while we dropped it in unuse_mm(). The page might even 1305 * be back in swap cache on another swap area: that we must not 1306 * delete, since it may not have been written out to swap yet. 1307 */ 1308 if (PageSwapCache(page) && 1309 likely(page_private(page) == entry.val)) 1310 delete_from_swap_cache(page); 1311 1312 /* 1313 * So we could skip searching mms once swap count went 1314 * to 1, we did not mark any present ptes as dirty: must 1315 * mark page dirty so shrink_page_list will preserve it. 1316 */ 1317 SetPageDirty(page); 1318 unlock_page(page); 1319 page_cache_release(page); 1320 1321 /* 1322 * Make sure that we aren't completely killing 1323 * interactive performance. 1324 */ 1325 cond_resched(); 1326 if (frontswap && pages_to_unuse > 0) { 1327 if (!--pages_to_unuse) 1328 break; 1329 } 1330 } 1331 1332 mmput(start_mm); 1333 return retval; 1334 } 1335 1336 /* 1337 * After a successful try_to_unuse, if no swap is now in use, we know 1338 * we can empty the mmlist. swap_lock must be held on entry and exit. 1339 * Note that mmlist_lock nests inside swap_lock, and an mm must be 1340 * added to the mmlist just after page_duplicate - before would be racy. 1341 */ 1342 static void drain_mmlist(void) 1343 { 1344 struct list_head *p, *next; 1345 unsigned int type; 1346 1347 for (type = 0; type < nr_swapfiles; type++) 1348 if (swap_info[type]->inuse_pages) 1349 return; 1350 spin_lock(&mmlist_lock); 1351 list_for_each_safe(p, next, &init_mm.mmlist) 1352 list_del_init(p); 1353 spin_unlock(&mmlist_lock); 1354 } 1355 1356 /* 1357 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 1358 * corresponds to page offset for the specified swap entry. 1359 * Note that the type of this function is sector_t, but it returns page offset 1360 * into the bdev, not sector offset. 1361 */ 1362 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 1363 { 1364 struct swap_info_struct *sis; 1365 struct swap_extent *start_se; 1366 struct swap_extent *se; 1367 pgoff_t offset; 1368 1369 sis = swap_info[swp_type(entry)]; 1370 *bdev = sis->bdev; 1371 1372 offset = swp_offset(entry); 1373 start_se = sis->curr_swap_extent; 1374 se = start_se; 1375 1376 for ( ; ; ) { 1377 struct list_head *lh; 1378 1379 if (se->start_page <= offset && 1380 offset < (se->start_page + se->nr_pages)) { 1381 return se->start_block + (offset - se->start_page); 1382 } 1383 lh = se->list.next; 1384 se = list_entry(lh, struct swap_extent, list); 1385 sis->curr_swap_extent = se; 1386 BUG_ON(se == start_se); /* It *must* be present */ 1387 } 1388 } 1389 1390 /* 1391 * Returns the page offset into bdev for the specified page's swap entry. 1392 */ 1393 sector_t map_swap_page(struct page *page, struct block_device **bdev) 1394 { 1395 swp_entry_t entry; 1396 entry.val = page_private(page); 1397 return map_swap_entry(entry, bdev); 1398 } 1399 1400 /* 1401 * Free all of a swapdev's extent information 1402 */ 1403 static void destroy_swap_extents(struct swap_info_struct *sis) 1404 { 1405 while (!list_empty(&sis->first_swap_extent.list)) { 1406 struct swap_extent *se; 1407 1408 se = list_entry(sis->first_swap_extent.list.next, 1409 struct swap_extent, list); 1410 list_del(&se->list); 1411 kfree(se); 1412 } 1413 1414 if (sis->flags & SWP_FILE) { 1415 struct file *swap_file = sis->swap_file; 1416 struct address_space *mapping = swap_file->f_mapping; 1417 1418 sis->flags &= ~SWP_FILE; 1419 mapping->a_ops->swap_deactivate(swap_file); 1420 } 1421 } 1422 1423 /* 1424 * Add a block range (and the corresponding page range) into this swapdev's 1425 * extent list. The extent list is kept sorted in page order. 1426 * 1427 * This function rather assumes that it is called in ascending page order. 1428 */ 1429 int 1430 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1431 unsigned long nr_pages, sector_t start_block) 1432 { 1433 struct swap_extent *se; 1434 struct swap_extent *new_se; 1435 struct list_head *lh; 1436 1437 if (start_page == 0) { 1438 se = &sis->first_swap_extent; 1439 sis->curr_swap_extent = se; 1440 se->start_page = 0; 1441 se->nr_pages = nr_pages; 1442 se->start_block = start_block; 1443 return 1; 1444 } else { 1445 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 1446 se = list_entry(lh, struct swap_extent, list); 1447 BUG_ON(se->start_page + se->nr_pages != start_page); 1448 if (se->start_block + se->nr_pages == start_block) { 1449 /* Merge it */ 1450 se->nr_pages += nr_pages; 1451 return 0; 1452 } 1453 } 1454 1455 /* 1456 * No merge. Insert a new extent, preserving ordering. 1457 */ 1458 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 1459 if (new_se == NULL) 1460 return -ENOMEM; 1461 new_se->start_page = start_page; 1462 new_se->nr_pages = nr_pages; 1463 new_se->start_block = start_block; 1464 1465 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 1466 return 1; 1467 } 1468 1469 /* 1470 * A `swap extent' is a simple thing which maps a contiguous range of pages 1471 * onto a contiguous range of disk blocks. An ordered list of swap extents 1472 * is built at swapon time and is then used at swap_writepage/swap_readpage 1473 * time for locating where on disk a page belongs. 1474 * 1475 * If the swapfile is an S_ISBLK block device, a single extent is installed. 1476 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 1477 * swap files identically. 1478 * 1479 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 1480 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1481 * swapfiles are handled *identically* after swapon time. 1482 * 1483 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1484 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1485 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1486 * requirements, they are simply tossed out - we will never use those blocks 1487 * for swapping. 1488 * 1489 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1490 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1491 * which will scribble on the fs. 1492 * 1493 * The amount of disk space which a single swap extent represents varies. 1494 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1495 * extents in the list. To avoid much list walking, we cache the previous 1496 * search location in `curr_swap_extent', and start new searches from there. 1497 * This is extremely effective. The average number of iterations in 1498 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1499 */ 1500 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1501 { 1502 struct file *swap_file = sis->swap_file; 1503 struct address_space *mapping = swap_file->f_mapping; 1504 struct inode *inode = mapping->host; 1505 int ret; 1506 1507 if (S_ISBLK(inode->i_mode)) { 1508 ret = add_swap_extent(sis, 0, sis->max, 0); 1509 *span = sis->pages; 1510 return ret; 1511 } 1512 1513 if (mapping->a_ops->swap_activate) { 1514 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 1515 if (!ret) { 1516 sis->flags |= SWP_FILE; 1517 ret = add_swap_extent(sis, 0, sis->max, 0); 1518 *span = sis->pages; 1519 } 1520 return ret; 1521 } 1522 1523 return generic_swapfile_activate(sis, swap_file, span); 1524 } 1525 1526 static void _enable_swap_info(struct swap_info_struct *p, int prio, 1527 unsigned char *swap_map) 1528 { 1529 int i, prev; 1530 1531 if (prio >= 0) 1532 p->prio = prio; 1533 else 1534 p->prio = --least_priority; 1535 p->swap_map = swap_map; 1536 p->flags |= SWP_WRITEOK; 1537 atomic_long_add(p->pages, &nr_swap_pages); 1538 total_swap_pages += p->pages; 1539 1540 /* insert swap space into swap_list: */ 1541 prev = -1; 1542 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) { 1543 if (p->prio >= swap_info[i]->prio) 1544 break; 1545 prev = i; 1546 } 1547 p->next = i; 1548 if (prev < 0) 1549 swap_list.head = swap_list.next = p->type; 1550 else 1551 swap_info[prev]->next = p->type; 1552 } 1553 1554 static void enable_swap_info(struct swap_info_struct *p, int prio, 1555 unsigned char *swap_map, 1556 unsigned long *frontswap_map) 1557 { 1558 frontswap_init(p->type, frontswap_map); 1559 spin_lock(&swap_lock); 1560 spin_lock(&p->lock); 1561 _enable_swap_info(p, prio, swap_map); 1562 spin_unlock(&p->lock); 1563 spin_unlock(&swap_lock); 1564 } 1565 1566 static void reinsert_swap_info(struct swap_info_struct *p) 1567 { 1568 spin_lock(&swap_lock); 1569 spin_lock(&p->lock); 1570 _enable_swap_info(p, p->prio, p->swap_map); 1571 spin_unlock(&p->lock); 1572 spin_unlock(&swap_lock); 1573 } 1574 1575 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 1576 { 1577 struct swap_info_struct *p = NULL; 1578 unsigned char *swap_map; 1579 unsigned long *frontswap_map; 1580 struct file *swap_file, *victim; 1581 struct address_space *mapping; 1582 struct inode *inode; 1583 struct filename *pathname; 1584 int i, type, prev; 1585 int err; 1586 1587 if (!capable(CAP_SYS_ADMIN)) 1588 return -EPERM; 1589 1590 BUG_ON(!current->mm); 1591 1592 pathname = getname(specialfile); 1593 if (IS_ERR(pathname)) 1594 return PTR_ERR(pathname); 1595 1596 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 1597 err = PTR_ERR(victim); 1598 if (IS_ERR(victim)) 1599 goto out; 1600 1601 mapping = victim->f_mapping; 1602 prev = -1; 1603 spin_lock(&swap_lock); 1604 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) { 1605 p = swap_info[type]; 1606 if (p->flags & SWP_WRITEOK) { 1607 if (p->swap_file->f_mapping == mapping) 1608 break; 1609 } 1610 prev = type; 1611 } 1612 if (type < 0) { 1613 err = -EINVAL; 1614 spin_unlock(&swap_lock); 1615 goto out_dput; 1616 } 1617 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 1618 vm_unacct_memory(p->pages); 1619 else { 1620 err = -ENOMEM; 1621 spin_unlock(&swap_lock); 1622 goto out_dput; 1623 } 1624 if (prev < 0) 1625 swap_list.head = p->next; 1626 else 1627 swap_info[prev]->next = p->next; 1628 if (type == swap_list.next) { 1629 /* just pick something that's safe... */ 1630 swap_list.next = swap_list.head; 1631 } 1632 spin_lock(&p->lock); 1633 if (p->prio < 0) { 1634 for (i = p->next; i >= 0; i = swap_info[i]->next) 1635 swap_info[i]->prio = p->prio--; 1636 least_priority++; 1637 } 1638 atomic_long_sub(p->pages, &nr_swap_pages); 1639 total_swap_pages -= p->pages; 1640 p->flags &= ~SWP_WRITEOK; 1641 spin_unlock(&p->lock); 1642 spin_unlock(&swap_lock); 1643 1644 set_current_oom_origin(); 1645 err = try_to_unuse(type, false, 0); /* force all pages to be unused */ 1646 clear_current_oom_origin(); 1647 1648 if (err) { 1649 /* re-insert swap space back into swap_list */ 1650 reinsert_swap_info(p); 1651 goto out_dput; 1652 } 1653 1654 destroy_swap_extents(p); 1655 if (p->flags & SWP_CONTINUED) 1656 free_swap_count_continuations(p); 1657 1658 mutex_lock(&swapon_mutex); 1659 spin_lock(&swap_lock); 1660 spin_lock(&p->lock); 1661 drain_mmlist(); 1662 1663 /* wait for anyone still in scan_swap_map */ 1664 p->highest_bit = 0; /* cuts scans short */ 1665 while (p->flags >= SWP_SCANNING) { 1666 spin_unlock(&p->lock); 1667 spin_unlock(&swap_lock); 1668 schedule_timeout_uninterruptible(1); 1669 spin_lock(&swap_lock); 1670 spin_lock(&p->lock); 1671 } 1672 1673 swap_file = p->swap_file; 1674 p->swap_file = NULL; 1675 p->max = 0; 1676 swap_map = p->swap_map; 1677 p->swap_map = NULL; 1678 p->flags = 0; 1679 frontswap_map = frontswap_map_get(p); 1680 frontswap_map_set(p, NULL); 1681 spin_unlock(&p->lock); 1682 spin_unlock(&swap_lock); 1683 frontswap_invalidate_area(type); 1684 mutex_unlock(&swapon_mutex); 1685 vfree(swap_map); 1686 vfree(frontswap_map); 1687 /* Destroy swap account informatin */ 1688 swap_cgroup_swapoff(type); 1689 1690 inode = mapping->host; 1691 if (S_ISBLK(inode->i_mode)) { 1692 struct block_device *bdev = I_BDEV(inode); 1693 set_blocksize(bdev, p->old_block_size); 1694 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 1695 } else { 1696 mutex_lock(&inode->i_mutex); 1697 inode->i_flags &= ~S_SWAPFILE; 1698 mutex_unlock(&inode->i_mutex); 1699 } 1700 filp_close(swap_file, NULL); 1701 err = 0; 1702 atomic_inc(&proc_poll_event); 1703 wake_up_interruptible(&proc_poll_wait); 1704 1705 out_dput: 1706 filp_close(victim, NULL); 1707 out: 1708 putname(pathname); 1709 return err; 1710 } 1711 1712 #ifdef CONFIG_PROC_FS 1713 static unsigned swaps_poll(struct file *file, poll_table *wait) 1714 { 1715 struct seq_file *seq = file->private_data; 1716 1717 poll_wait(file, &proc_poll_wait, wait); 1718 1719 if (seq->poll_event != atomic_read(&proc_poll_event)) { 1720 seq->poll_event = atomic_read(&proc_poll_event); 1721 return POLLIN | POLLRDNORM | POLLERR | POLLPRI; 1722 } 1723 1724 return POLLIN | POLLRDNORM; 1725 } 1726 1727 /* iterator */ 1728 static void *swap_start(struct seq_file *swap, loff_t *pos) 1729 { 1730 struct swap_info_struct *si; 1731 int type; 1732 loff_t l = *pos; 1733 1734 mutex_lock(&swapon_mutex); 1735 1736 if (!l) 1737 return SEQ_START_TOKEN; 1738 1739 for (type = 0; type < nr_swapfiles; type++) { 1740 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 1741 si = swap_info[type]; 1742 if (!(si->flags & SWP_USED) || !si->swap_map) 1743 continue; 1744 if (!--l) 1745 return si; 1746 } 1747 1748 return NULL; 1749 } 1750 1751 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 1752 { 1753 struct swap_info_struct *si = v; 1754 int type; 1755 1756 if (v == SEQ_START_TOKEN) 1757 type = 0; 1758 else 1759 type = si->type + 1; 1760 1761 for (; type < nr_swapfiles; type++) { 1762 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 1763 si = swap_info[type]; 1764 if (!(si->flags & SWP_USED) || !si->swap_map) 1765 continue; 1766 ++*pos; 1767 return si; 1768 } 1769 1770 return NULL; 1771 } 1772 1773 static void swap_stop(struct seq_file *swap, void *v) 1774 { 1775 mutex_unlock(&swapon_mutex); 1776 } 1777 1778 static int swap_show(struct seq_file *swap, void *v) 1779 { 1780 struct swap_info_struct *si = v; 1781 struct file *file; 1782 int len; 1783 1784 if (si == SEQ_START_TOKEN) { 1785 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 1786 return 0; 1787 } 1788 1789 file = si->swap_file; 1790 len = seq_path(swap, &file->f_path, " \t\n\\"); 1791 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 1792 len < 40 ? 40 - len : 1, " ", 1793 S_ISBLK(file_inode(file)->i_mode) ? 1794 "partition" : "file\t", 1795 si->pages << (PAGE_SHIFT - 10), 1796 si->inuse_pages << (PAGE_SHIFT - 10), 1797 si->prio); 1798 return 0; 1799 } 1800 1801 static const struct seq_operations swaps_op = { 1802 .start = swap_start, 1803 .next = swap_next, 1804 .stop = swap_stop, 1805 .show = swap_show 1806 }; 1807 1808 static int swaps_open(struct inode *inode, struct file *file) 1809 { 1810 struct seq_file *seq; 1811 int ret; 1812 1813 ret = seq_open(file, &swaps_op); 1814 if (ret) 1815 return ret; 1816 1817 seq = file->private_data; 1818 seq->poll_event = atomic_read(&proc_poll_event); 1819 return 0; 1820 } 1821 1822 static const struct file_operations proc_swaps_operations = { 1823 .open = swaps_open, 1824 .read = seq_read, 1825 .llseek = seq_lseek, 1826 .release = seq_release, 1827 .poll = swaps_poll, 1828 }; 1829 1830 static int __init procswaps_init(void) 1831 { 1832 proc_create("swaps", 0, NULL, &proc_swaps_operations); 1833 return 0; 1834 } 1835 __initcall(procswaps_init); 1836 #endif /* CONFIG_PROC_FS */ 1837 1838 #ifdef MAX_SWAPFILES_CHECK 1839 static int __init max_swapfiles_check(void) 1840 { 1841 MAX_SWAPFILES_CHECK(); 1842 return 0; 1843 } 1844 late_initcall(max_swapfiles_check); 1845 #endif 1846 1847 static struct swap_info_struct *alloc_swap_info(void) 1848 { 1849 struct swap_info_struct *p; 1850 unsigned int type; 1851 1852 p = kzalloc(sizeof(*p), GFP_KERNEL); 1853 if (!p) 1854 return ERR_PTR(-ENOMEM); 1855 1856 spin_lock(&swap_lock); 1857 for (type = 0; type < nr_swapfiles; type++) { 1858 if (!(swap_info[type]->flags & SWP_USED)) 1859 break; 1860 } 1861 if (type >= MAX_SWAPFILES) { 1862 spin_unlock(&swap_lock); 1863 kfree(p); 1864 return ERR_PTR(-EPERM); 1865 } 1866 if (type >= nr_swapfiles) { 1867 p->type = type; 1868 swap_info[type] = p; 1869 /* 1870 * Write swap_info[type] before nr_swapfiles, in case a 1871 * racing procfs swap_start() or swap_next() is reading them. 1872 * (We never shrink nr_swapfiles, we never free this entry.) 1873 */ 1874 smp_wmb(); 1875 nr_swapfiles++; 1876 } else { 1877 kfree(p); 1878 p = swap_info[type]; 1879 /* 1880 * Do not memset this entry: a racing procfs swap_next() 1881 * would be relying on p->type to remain valid. 1882 */ 1883 } 1884 INIT_LIST_HEAD(&p->first_swap_extent.list); 1885 p->flags = SWP_USED; 1886 p->next = -1; 1887 spin_unlock(&swap_lock); 1888 spin_lock_init(&p->lock); 1889 1890 return p; 1891 } 1892 1893 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 1894 { 1895 int error; 1896 1897 if (S_ISBLK(inode->i_mode)) { 1898 p->bdev = bdgrab(I_BDEV(inode)); 1899 error = blkdev_get(p->bdev, 1900 FMODE_READ | FMODE_WRITE | FMODE_EXCL, 1901 sys_swapon); 1902 if (error < 0) { 1903 p->bdev = NULL; 1904 return -EINVAL; 1905 } 1906 p->old_block_size = block_size(p->bdev); 1907 error = set_blocksize(p->bdev, PAGE_SIZE); 1908 if (error < 0) 1909 return error; 1910 p->flags |= SWP_BLKDEV; 1911 } else if (S_ISREG(inode->i_mode)) { 1912 p->bdev = inode->i_sb->s_bdev; 1913 mutex_lock(&inode->i_mutex); 1914 if (IS_SWAPFILE(inode)) 1915 return -EBUSY; 1916 } else 1917 return -EINVAL; 1918 1919 return 0; 1920 } 1921 1922 static unsigned long read_swap_header(struct swap_info_struct *p, 1923 union swap_header *swap_header, 1924 struct inode *inode) 1925 { 1926 int i; 1927 unsigned long maxpages; 1928 unsigned long swapfilepages; 1929 1930 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 1931 printk(KERN_ERR "Unable to find swap-space signature\n"); 1932 return 0; 1933 } 1934 1935 /* swap partition endianess hack... */ 1936 if (swab32(swap_header->info.version) == 1) { 1937 swab32s(&swap_header->info.version); 1938 swab32s(&swap_header->info.last_page); 1939 swab32s(&swap_header->info.nr_badpages); 1940 for (i = 0; i < swap_header->info.nr_badpages; i++) 1941 swab32s(&swap_header->info.badpages[i]); 1942 } 1943 /* Check the swap header's sub-version */ 1944 if (swap_header->info.version != 1) { 1945 printk(KERN_WARNING 1946 "Unable to handle swap header version %d\n", 1947 swap_header->info.version); 1948 return 0; 1949 } 1950 1951 p->lowest_bit = 1; 1952 p->cluster_next = 1; 1953 p->cluster_nr = 0; 1954 1955 /* 1956 * Find out how many pages are allowed for a single swap 1957 * device. There are two limiting factors: 1) the number 1958 * of bits for the swap offset in the swp_entry_t type, and 1959 * 2) the number of bits in the swap pte as defined by the 1960 * different architectures. In order to find the 1961 * largest possible bit mask, a swap entry with swap type 0 1962 * and swap offset ~0UL is created, encoded to a swap pte, 1963 * decoded to a swp_entry_t again, and finally the swap 1964 * offset is extracted. This will mask all the bits from 1965 * the initial ~0UL mask that can't be encoded in either 1966 * the swp_entry_t or the architecture definition of a 1967 * swap pte. 1968 */ 1969 maxpages = swp_offset(pte_to_swp_entry( 1970 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 1971 if (maxpages > swap_header->info.last_page) { 1972 maxpages = swap_header->info.last_page + 1; 1973 /* p->max is an unsigned int: don't overflow it */ 1974 if ((unsigned int)maxpages == 0) 1975 maxpages = UINT_MAX; 1976 } 1977 p->highest_bit = maxpages - 1; 1978 1979 if (!maxpages) 1980 return 0; 1981 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 1982 if (swapfilepages && maxpages > swapfilepages) { 1983 printk(KERN_WARNING 1984 "Swap area shorter than signature indicates\n"); 1985 return 0; 1986 } 1987 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 1988 return 0; 1989 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 1990 return 0; 1991 1992 return maxpages; 1993 } 1994 1995 static int setup_swap_map_and_extents(struct swap_info_struct *p, 1996 union swap_header *swap_header, 1997 unsigned char *swap_map, 1998 unsigned long maxpages, 1999 sector_t *span) 2000 { 2001 int i; 2002 unsigned int nr_good_pages; 2003 int nr_extents; 2004 2005 nr_good_pages = maxpages - 1; /* omit header page */ 2006 2007 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2008 unsigned int page_nr = swap_header->info.badpages[i]; 2009 if (page_nr == 0 || page_nr > swap_header->info.last_page) 2010 return -EINVAL; 2011 if (page_nr < maxpages) { 2012 swap_map[page_nr] = SWAP_MAP_BAD; 2013 nr_good_pages--; 2014 } 2015 } 2016 2017 if (nr_good_pages) { 2018 swap_map[0] = SWAP_MAP_BAD; 2019 p->max = maxpages; 2020 p->pages = nr_good_pages; 2021 nr_extents = setup_swap_extents(p, span); 2022 if (nr_extents < 0) 2023 return nr_extents; 2024 nr_good_pages = p->pages; 2025 } 2026 if (!nr_good_pages) { 2027 printk(KERN_WARNING "Empty swap-file\n"); 2028 return -EINVAL; 2029 } 2030 2031 return nr_extents; 2032 } 2033 2034 /* 2035 * Helper to sys_swapon determining if a given swap 2036 * backing device queue supports DISCARD operations. 2037 */ 2038 static bool swap_discardable(struct swap_info_struct *si) 2039 { 2040 struct request_queue *q = bdev_get_queue(si->bdev); 2041 2042 if (!q || !blk_queue_discard(q)) 2043 return false; 2044 2045 return true; 2046 } 2047 2048 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2049 { 2050 struct swap_info_struct *p; 2051 struct filename *name; 2052 struct file *swap_file = NULL; 2053 struct address_space *mapping; 2054 int i; 2055 int prio; 2056 int error; 2057 union swap_header *swap_header; 2058 int nr_extents; 2059 sector_t span; 2060 unsigned long maxpages; 2061 unsigned char *swap_map = NULL; 2062 unsigned long *frontswap_map = NULL; 2063 struct page *page = NULL; 2064 struct inode *inode = NULL; 2065 2066 if (swap_flags & ~SWAP_FLAGS_VALID) 2067 return -EINVAL; 2068 2069 if (!capable(CAP_SYS_ADMIN)) 2070 return -EPERM; 2071 2072 p = alloc_swap_info(); 2073 if (IS_ERR(p)) 2074 return PTR_ERR(p); 2075 2076 name = getname(specialfile); 2077 if (IS_ERR(name)) { 2078 error = PTR_ERR(name); 2079 name = NULL; 2080 goto bad_swap; 2081 } 2082 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 2083 if (IS_ERR(swap_file)) { 2084 error = PTR_ERR(swap_file); 2085 swap_file = NULL; 2086 goto bad_swap; 2087 } 2088 2089 p->swap_file = swap_file; 2090 mapping = swap_file->f_mapping; 2091 2092 for (i = 0; i < nr_swapfiles; i++) { 2093 struct swap_info_struct *q = swap_info[i]; 2094 2095 if (q == p || !q->swap_file) 2096 continue; 2097 if (mapping == q->swap_file->f_mapping) { 2098 error = -EBUSY; 2099 goto bad_swap; 2100 } 2101 } 2102 2103 inode = mapping->host; 2104 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */ 2105 error = claim_swapfile(p, inode); 2106 if (unlikely(error)) 2107 goto bad_swap; 2108 2109 /* 2110 * Read the swap header. 2111 */ 2112 if (!mapping->a_ops->readpage) { 2113 error = -EINVAL; 2114 goto bad_swap; 2115 } 2116 page = read_mapping_page(mapping, 0, swap_file); 2117 if (IS_ERR(page)) { 2118 error = PTR_ERR(page); 2119 goto bad_swap; 2120 } 2121 swap_header = kmap(page); 2122 2123 maxpages = read_swap_header(p, swap_header, inode); 2124 if (unlikely(!maxpages)) { 2125 error = -EINVAL; 2126 goto bad_swap; 2127 } 2128 2129 /* OK, set up the swap map and apply the bad block list */ 2130 swap_map = vzalloc(maxpages); 2131 if (!swap_map) { 2132 error = -ENOMEM; 2133 goto bad_swap; 2134 } 2135 2136 error = swap_cgroup_swapon(p->type, maxpages); 2137 if (error) 2138 goto bad_swap; 2139 2140 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 2141 maxpages, &span); 2142 if (unlikely(nr_extents < 0)) { 2143 error = nr_extents; 2144 goto bad_swap; 2145 } 2146 /* frontswap enabled? set up bit-per-page map for frontswap */ 2147 if (frontswap_enabled) 2148 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long)); 2149 2150 if (p->bdev) { 2151 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) { 2152 p->flags |= SWP_SOLIDSTATE; 2153 p->cluster_next = 1 + (prandom_u32() % p->highest_bit); 2154 } 2155 2156 if ((swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 2157 /* 2158 * When discard is enabled for swap with no particular 2159 * policy flagged, we set all swap discard flags here in 2160 * order to sustain backward compatibility with older 2161 * swapon(8) releases. 2162 */ 2163 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 2164 SWP_PAGE_DISCARD); 2165 2166 /* 2167 * By flagging sys_swapon, a sysadmin can tell us to 2168 * either do single-time area discards only, or to just 2169 * perform discards for released swap page-clusters. 2170 * Now it's time to adjust the p->flags accordingly. 2171 */ 2172 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 2173 p->flags &= ~SWP_PAGE_DISCARD; 2174 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 2175 p->flags &= ~SWP_AREA_DISCARD; 2176 2177 /* issue a swapon-time discard if it's still required */ 2178 if (p->flags & SWP_AREA_DISCARD) { 2179 int err = discard_swap(p); 2180 if (unlikely(err)) 2181 printk(KERN_ERR 2182 "swapon: discard_swap(%p): %d\n", 2183 p, err); 2184 } 2185 } 2186 } 2187 2188 mutex_lock(&swapon_mutex); 2189 prio = -1; 2190 if (swap_flags & SWAP_FLAG_PREFER) 2191 prio = 2192 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 2193 enable_swap_info(p, prio, swap_map, frontswap_map); 2194 2195 printk(KERN_INFO "Adding %uk swap on %s. " 2196 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 2197 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 2198 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 2199 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 2200 (p->flags & SWP_DISCARDABLE) ? "D" : "", 2201 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 2202 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 2203 (frontswap_map) ? "FS" : ""); 2204 2205 mutex_unlock(&swapon_mutex); 2206 atomic_inc(&proc_poll_event); 2207 wake_up_interruptible(&proc_poll_wait); 2208 2209 if (S_ISREG(inode->i_mode)) 2210 inode->i_flags |= S_SWAPFILE; 2211 error = 0; 2212 goto out; 2213 bad_swap: 2214 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 2215 set_blocksize(p->bdev, p->old_block_size); 2216 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2217 } 2218 destroy_swap_extents(p); 2219 swap_cgroup_swapoff(p->type); 2220 spin_lock(&swap_lock); 2221 p->swap_file = NULL; 2222 p->flags = 0; 2223 spin_unlock(&swap_lock); 2224 vfree(swap_map); 2225 if (swap_file) { 2226 if (inode && S_ISREG(inode->i_mode)) { 2227 mutex_unlock(&inode->i_mutex); 2228 inode = NULL; 2229 } 2230 filp_close(swap_file, NULL); 2231 } 2232 out: 2233 if (page && !IS_ERR(page)) { 2234 kunmap(page); 2235 page_cache_release(page); 2236 } 2237 if (name) 2238 putname(name); 2239 if (inode && S_ISREG(inode->i_mode)) 2240 mutex_unlock(&inode->i_mutex); 2241 return error; 2242 } 2243 2244 void si_swapinfo(struct sysinfo *val) 2245 { 2246 unsigned int type; 2247 unsigned long nr_to_be_unused = 0; 2248 2249 spin_lock(&swap_lock); 2250 for (type = 0; type < nr_swapfiles; type++) { 2251 struct swap_info_struct *si = swap_info[type]; 2252 2253 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 2254 nr_to_be_unused += si->inuse_pages; 2255 } 2256 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 2257 val->totalswap = total_swap_pages + nr_to_be_unused; 2258 spin_unlock(&swap_lock); 2259 } 2260 2261 /* 2262 * Verify that a swap entry is valid and increment its swap map count. 2263 * 2264 * Returns error code in following case. 2265 * - success -> 0 2266 * - swp_entry is invalid -> EINVAL 2267 * - swp_entry is migration entry -> EINVAL 2268 * - swap-cache reference is requested but there is already one. -> EEXIST 2269 * - swap-cache reference is requested but the entry is not used. -> ENOENT 2270 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 2271 */ 2272 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 2273 { 2274 struct swap_info_struct *p; 2275 unsigned long offset, type; 2276 unsigned char count; 2277 unsigned char has_cache; 2278 int err = -EINVAL; 2279 2280 if (non_swap_entry(entry)) 2281 goto out; 2282 2283 type = swp_type(entry); 2284 if (type >= nr_swapfiles) 2285 goto bad_file; 2286 p = swap_info[type]; 2287 offset = swp_offset(entry); 2288 2289 spin_lock(&p->lock); 2290 if (unlikely(offset >= p->max)) 2291 goto unlock_out; 2292 2293 count = p->swap_map[offset]; 2294 has_cache = count & SWAP_HAS_CACHE; 2295 count &= ~SWAP_HAS_CACHE; 2296 err = 0; 2297 2298 if (usage == SWAP_HAS_CACHE) { 2299 2300 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 2301 if (!has_cache && count) 2302 has_cache = SWAP_HAS_CACHE; 2303 else if (has_cache) /* someone else added cache */ 2304 err = -EEXIST; 2305 else /* no users remaining */ 2306 err = -ENOENT; 2307 2308 } else if (count || has_cache) { 2309 2310 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 2311 count += usage; 2312 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 2313 err = -EINVAL; 2314 else if (swap_count_continued(p, offset, count)) 2315 count = COUNT_CONTINUED; 2316 else 2317 err = -ENOMEM; 2318 } else 2319 err = -ENOENT; /* unused swap entry */ 2320 2321 p->swap_map[offset] = count | has_cache; 2322 2323 unlock_out: 2324 spin_unlock(&p->lock); 2325 out: 2326 return err; 2327 2328 bad_file: 2329 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); 2330 goto out; 2331 } 2332 2333 /* 2334 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 2335 * (in which case its reference count is never incremented). 2336 */ 2337 void swap_shmem_alloc(swp_entry_t entry) 2338 { 2339 __swap_duplicate(entry, SWAP_MAP_SHMEM); 2340 } 2341 2342 /* 2343 * Increase reference count of swap entry by 1. 2344 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 2345 * but could not be atomically allocated. Returns 0, just as if it succeeded, 2346 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 2347 * might occur if a page table entry has got corrupted. 2348 */ 2349 int swap_duplicate(swp_entry_t entry) 2350 { 2351 int err = 0; 2352 2353 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 2354 err = add_swap_count_continuation(entry, GFP_ATOMIC); 2355 return err; 2356 } 2357 2358 /* 2359 * @entry: swap entry for which we allocate swap cache. 2360 * 2361 * Called when allocating swap cache for existing swap entry, 2362 * This can return error codes. Returns 0 at success. 2363 * -EBUSY means there is a swap cache. 2364 * Note: return code is different from swap_duplicate(). 2365 */ 2366 int swapcache_prepare(swp_entry_t entry) 2367 { 2368 return __swap_duplicate(entry, SWAP_HAS_CACHE); 2369 } 2370 2371 struct swap_info_struct *page_swap_info(struct page *page) 2372 { 2373 swp_entry_t swap = { .val = page_private(page) }; 2374 BUG_ON(!PageSwapCache(page)); 2375 return swap_info[swp_type(swap)]; 2376 } 2377 2378 /* 2379 * out-of-line __page_file_ methods to avoid include hell. 2380 */ 2381 struct address_space *__page_file_mapping(struct page *page) 2382 { 2383 VM_BUG_ON(!PageSwapCache(page)); 2384 return page_swap_info(page)->swap_file->f_mapping; 2385 } 2386 EXPORT_SYMBOL_GPL(__page_file_mapping); 2387 2388 pgoff_t __page_file_index(struct page *page) 2389 { 2390 swp_entry_t swap = { .val = page_private(page) }; 2391 VM_BUG_ON(!PageSwapCache(page)); 2392 return swp_offset(swap); 2393 } 2394 EXPORT_SYMBOL_GPL(__page_file_index); 2395 2396 /* 2397 * add_swap_count_continuation - called when a swap count is duplicated 2398 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 2399 * page of the original vmalloc'ed swap_map, to hold the continuation count 2400 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 2401 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 2402 * 2403 * These continuation pages are seldom referenced: the common paths all work 2404 * on the original swap_map, only referring to a continuation page when the 2405 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 2406 * 2407 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 2408 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 2409 * can be called after dropping locks. 2410 */ 2411 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 2412 { 2413 struct swap_info_struct *si; 2414 struct page *head; 2415 struct page *page; 2416 struct page *list_page; 2417 pgoff_t offset; 2418 unsigned char count; 2419 2420 /* 2421 * When debugging, it's easier to use __GFP_ZERO here; but it's better 2422 * for latency not to zero a page while GFP_ATOMIC and holding locks. 2423 */ 2424 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 2425 2426 si = swap_info_get(entry); 2427 if (!si) { 2428 /* 2429 * An acceptable race has occurred since the failing 2430 * __swap_duplicate(): the swap entry has been freed, 2431 * perhaps even the whole swap_map cleared for swapoff. 2432 */ 2433 goto outer; 2434 } 2435 2436 offset = swp_offset(entry); 2437 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 2438 2439 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 2440 /* 2441 * The higher the swap count, the more likely it is that tasks 2442 * will race to add swap count continuation: we need to avoid 2443 * over-provisioning. 2444 */ 2445 goto out; 2446 } 2447 2448 if (!page) { 2449 spin_unlock(&si->lock); 2450 return -ENOMEM; 2451 } 2452 2453 /* 2454 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 2455 * no architecture is using highmem pages for kernel pagetables: so it 2456 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps. 2457 */ 2458 head = vmalloc_to_page(si->swap_map + offset); 2459 offset &= ~PAGE_MASK; 2460 2461 /* 2462 * Page allocation does not initialize the page's lru field, 2463 * but it does always reset its private field. 2464 */ 2465 if (!page_private(head)) { 2466 BUG_ON(count & COUNT_CONTINUED); 2467 INIT_LIST_HEAD(&head->lru); 2468 set_page_private(head, SWP_CONTINUED); 2469 si->flags |= SWP_CONTINUED; 2470 } 2471 2472 list_for_each_entry(list_page, &head->lru, lru) { 2473 unsigned char *map; 2474 2475 /* 2476 * If the previous map said no continuation, but we've found 2477 * a continuation page, free our allocation and use this one. 2478 */ 2479 if (!(count & COUNT_CONTINUED)) 2480 goto out; 2481 2482 map = kmap_atomic(list_page) + offset; 2483 count = *map; 2484 kunmap_atomic(map); 2485 2486 /* 2487 * If this continuation count now has some space in it, 2488 * free our allocation and use this one. 2489 */ 2490 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 2491 goto out; 2492 } 2493 2494 list_add_tail(&page->lru, &head->lru); 2495 page = NULL; /* now it's attached, don't free it */ 2496 out: 2497 spin_unlock(&si->lock); 2498 outer: 2499 if (page) 2500 __free_page(page); 2501 return 0; 2502 } 2503 2504 /* 2505 * swap_count_continued - when the original swap_map count is incremented 2506 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 2507 * into, carry if so, or else fail until a new continuation page is allocated; 2508 * when the original swap_map count is decremented from 0 with continuation, 2509 * borrow from the continuation and report whether it still holds more. 2510 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock. 2511 */ 2512 static bool swap_count_continued(struct swap_info_struct *si, 2513 pgoff_t offset, unsigned char count) 2514 { 2515 struct page *head; 2516 struct page *page; 2517 unsigned char *map; 2518 2519 head = vmalloc_to_page(si->swap_map + offset); 2520 if (page_private(head) != SWP_CONTINUED) { 2521 BUG_ON(count & COUNT_CONTINUED); 2522 return false; /* need to add count continuation */ 2523 } 2524 2525 offset &= ~PAGE_MASK; 2526 page = list_entry(head->lru.next, struct page, lru); 2527 map = kmap_atomic(page) + offset; 2528 2529 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 2530 goto init_map; /* jump over SWAP_CONT_MAX checks */ 2531 2532 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 2533 /* 2534 * Think of how you add 1 to 999 2535 */ 2536 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 2537 kunmap_atomic(map); 2538 page = list_entry(page->lru.next, struct page, lru); 2539 BUG_ON(page == head); 2540 map = kmap_atomic(page) + offset; 2541 } 2542 if (*map == SWAP_CONT_MAX) { 2543 kunmap_atomic(map); 2544 page = list_entry(page->lru.next, struct page, lru); 2545 if (page == head) 2546 return false; /* add count continuation */ 2547 map = kmap_atomic(page) + offset; 2548 init_map: *map = 0; /* we didn't zero the page */ 2549 } 2550 *map += 1; 2551 kunmap_atomic(map); 2552 page = list_entry(page->lru.prev, struct page, lru); 2553 while (page != head) { 2554 map = kmap_atomic(page) + offset; 2555 *map = COUNT_CONTINUED; 2556 kunmap_atomic(map); 2557 page = list_entry(page->lru.prev, struct page, lru); 2558 } 2559 return true; /* incremented */ 2560 2561 } else { /* decrementing */ 2562 /* 2563 * Think of how you subtract 1 from 1000 2564 */ 2565 BUG_ON(count != COUNT_CONTINUED); 2566 while (*map == COUNT_CONTINUED) { 2567 kunmap_atomic(map); 2568 page = list_entry(page->lru.next, struct page, lru); 2569 BUG_ON(page == head); 2570 map = kmap_atomic(page) + offset; 2571 } 2572 BUG_ON(*map == 0); 2573 *map -= 1; 2574 if (*map == 0) 2575 count = 0; 2576 kunmap_atomic(map); 2577 page = list_entry(page->lru.prev, struct page, lru); 2578 while (page != head) { 2579 map = kmap_atomic(page) + offset; 2580 *map = SWAP_CONT_MAX | count; 2581 count = COUNT_CONTINUED; 2582 kunmap_atomic(map); 2583 page = list_entry(page->lru.prev, struct page, lru); 2584 } 2585 return count == COUNT_CONTINUED; 2586 } 2587 } 2588 2589 /* 2590 * free_swap_count_continuations - swapoff free all the continuation pages 2591 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 2592 */ 2593 static void free_swap_count_continuations(struct swap_info_struct *si) 2594 { 2595 pgoff_t offset; 2596 2597 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 2598 struct page *head; 2599 head = vmalloc_to_page(si->swap_map + offset); 2600 if (page_private(head)) { 2601 struct list_head *this, *next; 2602 list_for_each_safe(this, next, &head->lru) { 2603 struct page *page; 2604 page = list_entry(this, struct page, lru); 2605 list_del(this); 2606 __free_page(page); 2607 } 2608 } 2609 } 2610 } 2611