xref: /openbmc/linux/mm/swapfile.c (revision 80ecbd24)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37 
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/page_cgroup.h>
42 
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 				 unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47 
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
54 static atomic_t highest_priority_index = ATOMIC_INIT(-1);
55 
56 static const char Bad_file[] = "Bad swap file entry ";
57 static const char Unused_file[] = "Unused swap file entry ";
58 static const char Bad_offset[] = "Bad swap offset entry ";
59 static const char Unused_offset[] = "Unused swap offset entry ";
60 
61 struct swap_list_t swap_list = {-1, -1};
62 
63 struct swap_info_struct *swap_info[MAX_SWAPFILES];
64 
65 static DEFINE_MUTEX(swapon_mutex);
66 
67 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
68 /* Activity counter to indicate that a swapon or swapoff has occurred */
69 static atomic_t proc_poll_event = ATOMIC_INIT(0);
70 
71 static inline unsigned char swap_count(unsigned char ent)
72 {
73 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
74 }
75 
76 /* returns 1 if swap entry is freed */
77 static int
78 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
79 {
80 	swp_entry_t entry = swp_entry(si->type, offset);
81 	struct page *page;
82 	int ret = 0;
83 
84 	page = find_get_page(swap_address_space(entry), entry.val);
85 	if (!page)
86 		return 0;
87 	/*
88 	 * This function is called from scan_swap_map() and it's called
89 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
90 	 * We have to use trylock for avoiding deadlock. This is a special
91 	 * case and you should use try_to_free_swap() with explicit lock_page()
92 	 * in usual operations.
93 	 */
94 	if (trylock_page(page)) {
95 		ret = try_to_free_swap(page);
96 		unlock_page(page);
97 	}
98 	page_cache_release(page);
99 	return ret;
100 }
101 
102 /*
103  * swapon tell device that all the old swap contents can be discarded,
104  * to allow the swap device to optimize its wear-levelling.
105  */
106 static int discard_swap(struct swap_info_struct *si)
107 {
108 	struct swap_extent *se;
109 	sector_t start_block;
110 	sector_t nr_blocks;
111 	int err = 0;
112 
113 	/* Do not discard the swap header page! */
114 	se = &si->first_swap_extent;
115 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
116 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
117 	if (nr_blocks) {
118 		err = blkdev_issue_discard(si->bdev, start_block,
119 				nr_blocks, GFP_KERNEL, 0);
120 		if (err)
121 			return err;
122 		cond_resched();
123 	}
124 
125 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
126 		start_block = se->start_block << (PAGE_SHIFT - 9);
127 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
128 
129 		err = blkdev_issue_discard(si->bdev, start_block,
130 				nr_blocks, GFP_KERNEL, 0);
131 		if (err)
132 			break;
133 
134 		cond_resched();
135 	}
136 	return err;		/* That will often be -EOPNOTSUPP */
137 }
138 
139 /*
140  * swap allocation tell device that a cluster of swap can now be discarded,
141  * to allow the swap device to optimize its wear-levelling.
142  */
143 static void discard_swap_cluster(struct swap_info_struct *si,
144 				 pgoff_t start_page, pgoff_t nr_pages)
145 {
146 	struct swap_extent *se = si->curr_swap_extent;
147 	int found_extent = 0;
148 
149 	while (nr_pages) {
150 		struct list_head *lh;
151 
152 		if (se->start_page <= start_page &&
153 		    start_page < se->start_page + se->nr_pages) {
154 			pgoff_t offset = start_page - se->start_page;
155 			sector_t start_block = se->start_block + offset;
156 			sector_t nr_blocks = se->nr_pages - offset;
157 
158 			if (nr_blocks > nr_pages)
159 				nr_blocks = nr_pages;
160 			start_page += nr_blocks;
161 			nr_pages -= nr_blocks;
162 
163 			if (!found_extent++)
164 				si->curr_swap_extent = se;
165 
166 			start_block <<= PAGE_SHIFT - 9;
167 			nr_blocks <<= PAGE_SHIFT - 9;
168 			if (blkdev_issue_discard(si->bdev, start_block,
169 				    nr_blocks, GFP_NOIO, 0))
170 				break;
171 		}
172 
173 		lh = se->list.next;
174 		se = list_entry(lh, struct swap_extent, list);
175 	}
176 }
177 
178 static int wait_for_discard(void *word)
179 {
180 	schedule();
181 	return 0;
182 }
183 
184 #define SWAPFILE_CLUSTER	256
185 #define LATENCY_LIMIT		256
186 
187 static unsigned long scan_swap_map(struct swap_info_struct *si,
188 				   unsigned char usage)
189 {
190 	unsigned long offset;
191 	unsigned long scan_base;
192 	unsigned long last_in_cluster = 0;
193 	int latency_ration = LATENCY_LIMIT;
194 	int found_free_cluster = 0;
195 
196 	/*
197 	 * We try to cluster swap pages by allocating them sequentially
198 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
199 	 * way, however, we resort to first-free allocation, starting
200 	 * a new cluster.  This prevents us from scattering swap pages
201 	 * all over the entire swap partition, so that we reduce
202 	 * overall disk seek times between swap pages.  -- sct
203 	 * But we do now try to find an empty cluster.  -Andrea
204 	 * And we let swap pages go all over an SSD partition.  Hugh
205 	 */
206 
207 	si->flags += SWP_SCANNING;
208 	scan_base = offset = si->cluster_next;
209 
210 	if (unlikely(!si->cluster_nr--)) {
211 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
212 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
213 			goto checks;
214 		}
215 		if (si->flags & SWP_PAGE_DISCARD) {
216 			/*
217 			 * Start range check on racing allocations, in case
218 			 * they overlap the cluster we eventually decide on
219 			 * (we scan without swap_lock to allow preemption).
220 			 * It's hardly conceivable that cluster_nr could be
221 			 * wrapped during our scan, but don't depend on it.
222 			 */
223 			if (si->lowest_alloc)
224 				goto checks;
225 			si->lowest_alloc = si->max;
226 			si->highest_alloc = 0;
227 		}
228 		spin_unlock(&si->lock);
229 
230 		/*
231 		 * If seek is expensive, start searching for new cluster from
232 		 * start of partition, to minimize the span of allocated swap.
233 		 * But if seek is cheap, search from our current position, so
234 		 * that swap is allocated from all over the partition: if the
235 		 * Flash Translation Layer only remaps within limited zones,
236 		 * we don't want to wear out the first zone too quickly.
237 		 */
238 		if (!(si->flags & SWP_SOLIDSTATE))
239 			scan_base = offset = si->lowest_bit;
240 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
241 
242 		/* Locate the first empty (unaligned) cluster */
243 		for (; last_in_cluster <= si->highest_bit; offset++) {
244 			if (si->swap_map[offset])
245 				last_in_cluster = offset + SWAPFILE_CLUSTER;
246 			else if (offset == last_in_cluster) {
247 				spin_lock(&si->lock);
248 				offset -= SWAPFILE_CLUSTER - 1;
249 				si->cluster_next = offset;
250 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
251 				found_free_cluster = 1;
252 				goto checks;
253 			}
254 			if (unlikely(--latency_ration < 0)) {
255 				cond_resched();
256 				latency_ration = LATENCY_LIMIT;
257 			}
258 		}
259 
260 		offset = si->lowest_bit;
261 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
262 
263 		/* Locate the first empty (unaligned) cluster */
264 		for (; last_in_cluster < scan_base; offset++) {
265 			if (si->swap_map[offset])
266 				last_in_cluster = offset + SWAPFILE_CLUSTER;
267 			else if (offset == last_in_cluster) {
268 				spin_lock(&si->lock);
269 				offset -= SWAPFILE_CLUSTER - 1;
270 				si->cluster_next = offset;
271 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
272 				found_free_cluster = 1;
273 				goto checks;
274 			}
275 			if (unlikely(--latency_ration < 0)) {
276 				cond_resched();
277 				latency_ration = LATENCY_LIMIT;
278 			}
279 		}
280 
281 		offset = scan_base;
282 		spin_lock(&si->lock);
283 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
284 		si->lowest_alloc = 0;
285 	}
286 
287 checks:
288 	if (!(si->flags & SWP_WRITEOK))
289 		goto no_page;
290 	if (!si->highest_bit)
291 		goto no_page;
292 	if (offset > si->highest_bit)
293 		scan_base = offset = si->lowest_bit;
294 
295 	/* reuse swap entry of cache-only swap if not busy. */
296 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
297 		int swap_was_freed;
298 		spin_unlock(&si->lock);
299 		swap_was_freed = __try_to_reclaim_swap(si, offset);
300 		spin_lock(&si->lock);
301 		/* entry was freed successfully, try to use this again */
302 		if (swap_was_freed)
303 			goto checks;
304 		goto scan; /* check next one */
305 	}
306 
307 	if (si->swap_map[offset])
308 		goto scan;
309 
310 	if (offset == si->lowest_bit)
311 		si->lowest_bit++;
312 	if (offset == si->highest_bit)
313 		si->highest_bit--;
314 	si->inuse_pages++;
315 	if (si->inuse_pages == si->pages) {
316 		si->lowest_bit = si->max;
317 		si->highest_bit = 0;
318 	}
319 	si->swap_map[offset] = usage;
320 	si->cluster_next = offset + 1;
321 	si->flags -= SWP_SCANNING;
322 
323 	if (si->lowest_alloc) {
324 		/*
325 		 * Only set when SWP_PAGE_DISCARD, and there's a scan
326 		 * for a free cluster in progress or just completed.
327 		 */
328 		if (found_free_cluster) {
329 			/*
330 			 * To optimize wear-levelling, discard the
331 			 * old data of the cluster, taking care not to
332 			 * discard any of its pages that have already
333 			 * been allocated by racing tasks (offset has
334 			 * already stepped over any at the beginning).
335 			 */
336 			if (offset < si->highest_alloc &&
337 			    si->lowest_alloc <= last_in_cluster)
338 				last_in_cluster = si->lowest_alloc - 1;
339 			si->flags |= SWP_DISCARDING;
340 			spin_unlock(&si->lock);
341 
342 			if (offset < last_in_cluster)
343 				discard_swap_cluster(si, offset,
344 					last_in_cluster - offset + 1);
345 
346 			spin_lock(&si->lock);
347 			si->lowest_alloc = 0;
348 			si->flags &= ~SWP_DISCARDING;
349 
350 			smp_mb();	/* wake_up_bit advises this */
351 			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
352 
353 		} else if (si->flags & SWP_DISCARDING) {
354 			/*
355 			 * Delay using pages allocated by racing tasks
356 			 * until the whole discard has been issued. We
357 			 * could defer that delay until swap_writepage,
358 			 * but it's easier to keep this self-contained.
359 			 */
360 			spin_unlock(&si->lock);
361 			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
362 				wait_for_discard, TASK_UNINTERRUPTIBLE);
363 			spin_lock(&si->lock);
364 		} else {
365 			/*
366 			 * Note pages allocated by racing tasks while
367 			 * scan for a free cluster is in progress, so
368 			 * that its final discard can exclude them.
369 			 */
370 			if (offset < si->lowest_alloc)
371 				si->lowest_alloc = offset;
372 			if (offset > si->highest_alloc)
373 				si->highest_alloc = offset;
374 		}
375 	}
376 	return offset;
377 
378 scan:
379 	spin_unlock(&si->lock);
380 	while (++offset <= si->highest_bit) {
381 		if (!si->swap_map[offset]) {
382 			spin_lock(&si->lock);
383 			goto checks;
384 		}
385 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
386 			spin_lock(&si->lock);
387 			goto checks;
388 		}
389 		if (unlikely(--latency_ration < 0)) {
390 			cond_resched();
391 			latency_ration = LATENCY_LIMIT;
392 		}
393 	}
394 	offset = si->lowest_bit;
395 	while (++offset < scan_base) {
396 		if (!si->swap_map[offset]) {
397 			spin_lock(&si->lock);
398 			goto checks;
399 		}
400 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
401 			spin_lock(&si->lock);
402 			goto checks;
403 		}
404 		if (unlikely(--latency_ration < 0)) {
405 			cond_resched();
406 			latency_ration = LATENCY_LIMIT;
407 		}
408 	}
409 	spin_lock(&si->lock);
410 
411 no_page:
412 	si->flags -= SWP_SCANNING;
413 	return 0;
414 }
415 
416 swp_entry_t get_swap_page(void)
417 {
418 	struct swap_info_struct *si;
419 	pgoff_t offset;
420 	int type, next;
421 	int wrapped = 0;
422 	int hp_index;
423 
424 	spin_lock(&swap_lock);
425 	if (atomic_long_read(&nr_swap_pages) <= 0)
426 		goto noswap;
427 	atomic_long_dec(&nr_swap_pages);
428 
429 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
430 		hp_index = atomic_xchg(&highest_priority_index, -1);
431 		/*
432 		 * highest_priority_index records current highest priority swap
433 		 * type which just frees swap entries. If its priority is
434 		 * higher than that of swap_list.next swap type, we use it.  It
435 		 * isn't protected by swap_lock, so it can be an invalid value
436 		 * if the corresponding swap type is swapoff. We double check
437 		 * the flags here. It's even possible the swap type is swapoff
438 		 * and swapon again and its priority is changed. In such rare
439 		 * case, low prority swap type might be used, but eventually
440 		 * high priority swap will be used after several rounds of
441 		 * swap.
442 		 */
443 		if (hp_index != -1 && hp_index != type &&
444 		    swap_info[type]->prio < swap_info[hp_index]->prio &&
445 		    (swap_info[hp_index]->flags & SWP_WRITEOK)) {
446 			type = hp_index;
447 			swap_list.next = type;
448 		}
449 
450 		si = swap_info[type];
451 		next = si->next;
452 		if (next < 0 ||
453 		    (!wrapped && si->prio != swap_info[next]->prio)) {
454 			next = swap_list.head;
455 			wrapped++;
456 		}
457 
458 		spin_lock(&si->lock);
459 		if (!si->highest_bit) {
460 			spin_unlock(&si->lock);
461 			continue;
462 		}
463 		if (!(si->flags & SWP_WRITEOK)) {
464 			spin_unlock(&si->lock);
465 			continue;
466 		}
467 
468 		swap_list.next = next;
469 
470 		spin_unlock(&swap_lock);
471 		/* This is called for allocating swap entry for cache */
472 		offset = scan_swap_map(si, SWAP_HAS_CACHE);
473 		spin_unlock(&si->lock);
474 		if (offset)
475 			return swp_entry(type, offset);
476 		spin_lock(&swap_lock);
477 		next = swap_list.next;
478 	}
479 
480 	atomic_long_inc(&nr_swap_pages);
481 noswap:
482 	spin_unlock(&swap_lock);
483 	return (swp_entry_t) {0};
484 }
485 
486 /* The only caller of this function is now susupend routine */
487 swp_entry_t get_swap_page_of_type(int type)
488 {
489 	struct swap_info_struct *si;
490 	pgoff_t offset;
491 
492 	si = swap_info[type];
493 	spin_lock(&si->lock);
494 	if (si && (si->flags & SWP_WRITEOK)) {
495 		atomic_long_dec(&nr_swap_pages);
496 		/* This is called for allocating swap entry, not cache */
497 		offset = scan_swap_map(si, 1);
498 		if (offset) {
499 			spin_unlock(&si->lock);
500 			return swp_entry(type, offset);
501 		}
502 		atomic_long_inc(&nr_swap_pages);
503 	}
504 	spin_unlock(&si->lock);
505 	return (swp_entry_t) {0};
506 }
507 
508 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
509 {
510 	struct swap_info_struct *p;
511 	unsigned long offset, type;
512 
513 	if (!entry.val)
514 		goto out;
515 	type = swp_type(entry);
516 	if (type >= nr_swapfiles)
517 		goto bad_nofile;
518 	p = swap_info[type];
519 	if (!(p->flags & SWP_USED))
520 		goto bad_device;
521 	offset = swp_offset(entry);
522 	if (offset >= p->max)
523 		goto bad_offset;
524 	if (!p->swap_map[offset])
525 		goto bad_free;
526 	spin_lock(&p->lock);
527 	return p;
528 
529 bad_free:
530 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
531 	goto out;
532 bad_offset:
533 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
534 	goto out;
535 bad_device:
536 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
537 	goto out;
538 bad_nofile:
539 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
540 out:
541 	return NULL;
542 }
543 
544 /*
545  * This swap type frees swap entry, check if it is the highest priority swap
546  * type which just frees swap entry. get_swap_page() uses
547  * highest_priority_index to search highest priority swap type. The
548  * swap_info_struct.lock can't protect us if there are multiple swap types
549  * active, so we use atomic_cmpxchg.
550  */
551 static void set_highest_priority_index(int type)
552 {
553 	int old_hp_index, new_hp_index;
554 
555 	do {
556 		old_hp_index = atomic_read(&highest_priority_index);
557 		if (old_hp_index != -1 &&
558 			swap_info[old_hp_index]->prio >= swap_info[type]->prio)
559 			break;
560 		new_hp_index = type;
561 	} while (atomic_cmpxchg(&highest_priority_index,
562 		old_hp_index, new_hp_index) != old_hp_index);
563 }
564 
565 static unsigned char swap_entry_free(struct swap_info_struct *p,
566 				     swp_entry_t entry, unsigned char usage)
567 {
568 	unsigned long offset = swp_offset(entry);
569 	unsigned char count;
570 	unsigned char has_cache;
571 
572 	count = p->swap_map[offset];
573 	has_cache = count & SWAP_HAS_CACHE;
574 	count &= ~SWAP_HAS_CACHE;
575 
576 	if (usage == SWAP_HAS_CACHE) {
577 		VM_BUG_ON(!has_cache);
578 		has_cache = 0;
579 	} else if (count == SWAP_MAP_SHMEM) {
580 		/*
581 		 * Or we could insist on shmem.c using a special
582 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
583 		 */
584 		count = 0;
585 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
586 		if (count == COUNT_CONTINUED) {
587 			if (swap_count_continued(p, offset, count))
588 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
589 			else
590 				count = SWAP_MAP_MAX;
591 		} else
592 			count--;
593 	}
594 
595 	if (!count)
596 		mem_cgroup_uncharge_swap(entry);
597 
598 	usage = count | has_cache;
599 	p->swap_map[offset] = usage;
600 
601 	/* free if no reference */
602 	if (!usage) {
603 		if (offset < p->lowest_bit)
604 			p->lowest_bit = offset;
605 		if (offset > p->highest_bit)
606 			p->highest_bit = offset;
607 		set_highest_priority_index(p->type);
608 		atomic_long_inc(&nr_swap_pages);
609 		p->inuse_pages--;
610 		frontswap_invalidate_page(p->type, offset);
611 		if (p->flags & SWP_BLKDEV) {
612 			struct gendisk *disk = p->bdev->bd_disk;
613 			if (disk->fops->swap_slot_free_notify)
614 				disk->fops->swap_slot_free_notify(p->bdev,
615 								  offset);
616 		}
617 	}
618 
619 	return usage;
620 }
621 
622 /*
623  * Caller has made sure that the swapdevice corresponding to entry
624  * is still around or has not been recycled.
625  */
626 void swap_free(swp_entry_t entry)
627 {
628 	struct swap_info_struct *p;
629 
630 	p = swap_info_get(entry);
631 	if (p) {
632 		swap_entry_free(p, entry, 1);
633 		spin_unlock(&p->lock);
634 	}
635 }
636 
637 /*
638  * Called after dropping swapcache to decrease refcnt to swap entries.
639  */
640 void swapcache_free(swp_entry_t entry, struct page *page)
641 {
642 	struct swap_info_struct *p;
643 	unsigned char count;
644 
645 	p = swap_info_get(entry);
646 	if (p) {
647 		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
648 		if (page)
649 			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
650 		spin_unlock(&p->lock);
651 	}
652 }
653 
654 /*
655  * How many references to page are currently swapped out?
656  * This does not give an exact answer when swap count is continued,
657  * but does include the high COUNT_CONTINUED flag to allow for that.
658  */
659 int page_swapcount(struct page *page)
660 {
661 	int count = 0;
662 	struct swap_info_struct *p;
663 	swp_entry_t entry;
664 
665 	entry.val = page_private(page);
666 	p = swap_info_get(entry);
667 	if (p) {
668 		count = swap_count(p->swap_map[swp_offset(entry)]);
669 		spin_unlock(&p->lock);
670 	}
671 	return count;
672 }
673 
674 /*
675  * We can write to an anon page without COW if there are no other references
676  * to it.  And as a side-effect, free up its swap: because the old content
677  * on disk will never be read, and seeking back there to write new content
678  * later would only waste time away from clustering.
679  */
680 int reuse_swap_page(struct page *page)
681 {
682 	int count;
683 
684 	VM_BUG_ON(!PageLocked(page));
685 	if (unlikely(PageKsm(page)))
686 		return 0;
687 	count = page_mapcount(page);
688 	if (count <= 1 && PageSwapCache(page)) {
689 		count += page_swapcount(page);
690 		if (count == 1 && !PageWriteback(page)) {
691 			delete_from_swap_cache(page);
692 			SetPageDirty(page);
693 		}
694 	}
695 	return count <= 1;
696 }
697 
698 /*
699  * If swap is getting full, or if there are no more mappings of this page,
700  * then try_to_free_swap is called to free its swap space.
701  */
702 int try_to_free_swap(struct page *page)
703 {
704 	VM_BUG_ON(!PageLocked(page));
705 
706 	if (!PageSwapCache(page))
707 		return 0;
708 	if (PageWriteback(page))
709 		return 0;
710 	if (page_swapcount(page))
711 		return 0;
712 
713 	/*
714 	 * Once hibernation has begun to create its image of memory,
715 	 * there's a danger that one of the calls to try_to_free_swap()
716 	 * - most probably a call from __try_to_reclaim_swap() while
717 	 * hibernation is allocating its own swap pages for the image,
718 	 * but conceivably even a call from memory reclaim - will free
719 	 * the swap from a page which has already been recorded in the
720 	 * image as a clean swapcache page, and then reuse its swap for
721 	 * another page of the image.  On waking from hibernation, the
722 	 * original page might be freed under memory pressure, then
723 	 * later read back in from swap, now with the wrong data.
724 	 *
725 	 * Hibration suspends storage while it is writing the image
726 	 * to disk so check that here.
727 	 */
728 	if (pm_suspended_storage())
729 		return 0;
730 
731 	delete_from_swap_cache(page);
732 	SetPageDirty(page);
733 	return 1;
734 }
735 
736 /*
737  * Free the swap entry like above, but also try to
738  * free the page cache entry if it is the last user.
739  */
740 int free_swap_and_cache(swp_entry_t entry)
741 {
742 	struct swap_info_struct *p;
743 	struct page *page = NULL;
744 
745 	if (non_swap_entry(entry))
746 		return 1;
747 
748 	p = swap_info_get(entry);
749 	if (p) {
750 		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
751 			page = find_get_page(swap_address_space(entry),
752 						entry.val);
753 			if (page && !trylock_page(page)) {
754 				page_cache_release(page);
755 				page = NULL;
756 			}
757 		}
758 		spin_unlock(&p->lock);
759 	}
760 	if (page) {
761 		/*
762 		 * Not mapped elsewhere, or swap space full? Free it!
763 		 * Also recheck PageSwapCache now page is locked (above).
764 		 */
765 		if (PageSwapCache(page) && !PageWriteback(page) &&
766 				(!page_mapped(page) || vm_swap_full())) {
767 			delete_from_swap_cache(page);
768 			SetPageDirty(page);
769 		}
770 		unlock_page(page);
771 		page_cache_release(page);
772 	}
773 	return p != NULL;
774 }
775 
776 #ifdef CONFIG_HIBERNATION
777 /*
778  * Find the swap type that corresponds to given device (if any).
779  *
780  * @offset - number of the PAGE_SIZE-sized block of the device, starting
781  * from 0, in which the swap header is expected to be located.
782  *
783  * This is needed for the suspend to disk (aka swsusp).
784  */
785 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
786 {
787 	struct block_device *bdev = NULL;
788 	int type;
789 
790 	if (device)
791 		bdev = bdget(device);
792 
793 	spin_lock(&swap_lock);
794 	for (type = 0; type < nr_swapfiles; type++) {
795 		struct swap_info_struct *sis = swap_info[type];
796 
797 		if (!(sis->flags & SWP_WRITEOK))
798 			continue;
799 
800 		if (!bdev) {
801 			if (bdev_p)
802 				*bdev_p = bdgrab(sis->bdev);
803 
804 			spin_unlock(&swap_lock);
805 			return type;
806 		}
807 		if (bdev == sis->bdev) {
808 			struct swap_extent *se = &sis->first_swap_extent;
809 
810 			if (se->start_block == offset) {
811 				if (bdev_p)
812 					*bdev_p = bdgrab(sis->bdev);
813 
814 				spin_unlock(&swap_lock);
815 				bdput(bdev);
816 				return type;
817 			}
818 		}
819 	}
820 	spin_unlock(&swap_lock);
821 	if (bdev)
822 		bdput(bdev);
823 
824 	return -ENODEV;
825 }
826 
827 /*
828  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
829  * corresponding to given index in swap_info (swap type).
830  */
831 sector_t swapdev_block(int type, pgoff_t offset)
832 {
833 	struct block_device *bdev;
834 
835 	if ((unsigned int)type >= nr_swapfiles)
836 		return 0;
837 	if (!(swap_info[type]->flags & SWP_WRITEOK))
838 		return 0;
839 	return map_swap_entry(swp_entry(type, offset), &bdev);
840 }
841 
842 /*
843  * Return either the total number of swap pages of given type, or the number
844  * of free pages of that type (depending on @free)
845  *
846  * This is needed for software suspend
847  */
848 unsigned int count_swap_pages(int type, int free)
849 {
850 	unsigned int n = 0;
851 
852 	spin_lock(&swap_lock);
853 	if ((unsigned int)type < nr_swapfiles) {
854 		struct swap_info_struct *sis = swap_info[type];
855 
856 		spin_lock(&sis->lock);
857 		if (sis->flags & SWP_WRITEOK) {
858 			n = sis->pages;
859 			if (free)
860 				n -= sis->inuse_pages;
861 		}
862 		spin_unlock(&sis->lock);
863 	}
864 	spin_unlock(&swap_lock);
865 	return n;
866 }
867 #endif /* CONFIG_HIBERNATION */
868 
869 static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
870 {
871 #ifdef CONFIG_MEM_SOFT_DIRTY
872 	/*
873 	 * When pte keeps soft dirty bit the pte generated
874 	 * from swap entry does not has it, still it's same
875 	 * pte from logical point of view.
876 	 */
877 	pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
878 	return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
879 #else
880 	return pte_same(pte, swp_pte);
881 #endif
882 }
883 
884 /*
885  * No need to decide whether this PTE shares the swap entry with others,
886  * just let do_wp_page work it out if a write is requested later - to
887  * force COW, vm_page_prot omits write permission from any private vma.
888  */
889 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
890 		unsigned long addr, swp_entry_t entry, struct page *page)
891 {
892 	struct page *swapcache;
893 	struct mem_cgroup *memcg;
894 	spinlock_t *ptl;
895 	pte_t *pte;
896 	int ret = 1;
897 
898 	swapcache = page;
899 	page = ksm_might_need_to_copy(page, vma, addr);
900 	if (unlikely(!page))
901 		return -ENOMEM;
902 
903 	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
904 					 GFP_KERNEL, &memcg)) {
905 		ret = -ENOMEM;
906 		goto out_nolock;
907 	}
908 
909 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
910 	if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
911 		mem_cgroup_cancel_charge_swapin(memcg);
912 		ret = 0;
913 		goto out;
914 	}
915 
916 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
917 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
918 	get_page(page);
919 	set_pte_at(vma->vm_mm, addr, pte,
920 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
921 	if (page == swapcache)
922 		page_add_anon_rmap(page, vma, addr);
923 	else /* ksm created a completely new copy */
924 		page_add_new_anon_rmap(page, vma, addr);
925 	mem_cgroup_commit_charge_swapin(page, memcg);
926 	swap_free(entry);
927 	/*
928 	 * Move the page to the active list so it is not
929 	 * immediately swapped out again after swapon.
930 	 */
931 	activate_page(page);
932 out:
933 	pte_unmap_unlock(pte, ptl);
934 out_nolock:
935 	if (page != swapcache) {
936 		unlock_page(page);
937 		put_page(page);
938 	}
939 	return ret;
940 }
941 
942 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
943 				unsigned long addr, unsigned long end,
944 				swp_entry_t entry, struct page *page)
945 {
946 	pte_t swp_pte = swp_entry_to_pte(entry);
947 	pte_t *pte;
948 	int ret = 0;
949 
950 	/*
951 	 * We don't actually need pte lock while scanning for swp_pte: since
952 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
953 	 * page table while we're scanning; though it could get zapped, and on
954 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
955 	 * of unmatched parts which look like swp_pte, so unuse_pte must
956 	 * recheck under pte lock.  Scanning without pte lock lets it be
957 	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
958 	 */
959 	pte = pte_offset_map(pmd, addr);
960 	do {
961 		/*
962 		 * swapoff spends a _lot_ of time in this loop!
963 		 * Test inline before going to call unuse_pte.
964 		 */
965 		if (unlikely(maybe_same_pte(*pte, swp_pte))) {
966 			pte_unmap(pte);
967 			ret = unuse_pte(vma, pmd, addr, entry, page);
968 			if (ret)
969 				goto out;
970 			pte = pte_offset_map(pmd, addr);
971 		}
972 	} while (pte++, addr += PAGE_SIZE, addr != end);
973 	pte_unmap(pte - 1);
974 out:
975 	return ret;
976 }
977 
978 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
979 				unsigned long addr, unsigned long end,
980 				swp_entry_t entry, struct page *page)
981 {
982 	pmd_t *pmd;
983 	unsigned long next;
984 	int ret;
985 
986 	pmd = pmd_offset(pud, addr);
987 	do {
988 		next = pmd_addr_end(addr, end);
989 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
990 			continue;
991 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
992 		if (ret)
993 			return ret;
994 	} while (pmd++, addr = next, addr != end);
995 	return 0;
996 }
997 
998 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
999 				unsigned long addr, unsigned long end,
1000 				swp_entry_t entry, struct page *page)
1001 {
1002 	pud_t *pud;
1003 	unsigned long next;
1004 	int ret;
1005 
1006 	pud = pud_offset(pgd, addr);
1007 	do {
1008 		next = pud_addr_end(addr, end);
1009 		if (pud_none_or_clear_bad(pud))
1010 			continue;
1011 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1012 		if (ret)
1013 			return ret;
1014 	} while (pud++, addr = next, addr != end);
1015 	return 0;
1016 }
1017 
1018 static int unuse_vma(struct vm_area_struct *vma,
1019 				swp_entry_t entry, struct page *page)
1020 {
1021 	pgd_t *pgd;
1022 	unsigned long addr, end, next;
1023 	int ret;
1024 
1025 	if (page_anon_vma(page)) {
1026 		addr = page_address_in_vma(page, vma);
1027 		if (addr == -EFAULT)
1028 			return 0;
1029 		else
1030 			end = addr + PAGE_SIZE;
1031 	} else {
1032 		addr = vma->vm_start;
1033 		end = vma->vm_end;
1034 	}
1035 
1036 	pgd = pgd_offset(vma->vm_mm, addr);
1037 	do {
1038 		next = pgd_addr_end(addr, end);
1039 		if (pgd_none_or_clear_bad(pgd))
1040 			continue;
1041 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1042 		if (ret)
1043 			return ret;
1044 	} while (pgd++, addr = next, addr != end);
1045 	return 0;
1046 }
1047 
1048 static int unuse_mm(struct mm_struct *mm,
1049 				swp_entry_t entry, struct page *page)
1050 {
1051 	struct vm_area_struct *vma;
1052 	int ret = 0;
1053 
1054 	if (!down_read_trylock(&mm->mmap_sem)) {
1055 		/*
1056 		 * Activate page so shrink_inactive_list is unlikely to unmap
1057 		 * its ptes while lock is dropped, so swapoff can make progress.
1058 		 */
1059 		activate_page(page);
1060 		unlock_page(page);
1061 		down_read(&mm->mmap_sem);
1062 		lock_page(page);
1063 	}
1064 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1065 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1066 			break;
1067 	}
1068 	up_read(&mm->mmap_sem);
1069 	return (ret < 0)? ret: 0;
1070 }
1071 
1072 /*
1073  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1074  * from current position to next entry still in use.
1075  * Recycle to start on reaching the end, returning 0 when empty.
1076  */
1077 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1078 					unsigned int prev, bool frontswap)
1079 {
1080 	unsigned int max = si->max;
1081 	unsigned int i = prev;
1082 	unsigned char count;
1083 
1084 	/*
1085 	 * No need for swap_lock here: we're just looking
1086 	 * for whether an entry is in use, not modifying it; false
1087 	 * hits are okay, and sys_swapoff() has already prevented new
1088 	 * allocations from this area (while holding swap_lock).
1089 	 */
1090 	for (;;) {
1091 		if (++i >= max) {
1092 			if (!prev) {
1093 				i = 0;
1094 				break;
1095 			}
1096 			/*
1097 			 * No entries in use at top of swap_map,
1098 			 * loop back to start and recheck there.
1099 			 */
1100 			max = prev + 1;
1101 			prev = 0;
1102 			i = 1;
1103 		}
1104 		if (frontswap) {
1105 			if (frontswap_test(si, i))
1106 				break;
1107 			else
1108 				continue;
1109 		}
1110 		count = si->swap_map[i];
1111 		if (count && swap_count(count) != SWAP_MAP_BAD)
1112 			break;
1113 	}
1114 	return i;
1115 }
1116 
1117 /*
1118  * We completely avoid races by reading each swap page in advance,
1119  * and then search for the process using it.  All the necessary
1120  * page table adjustments can then be made atomically.
1121  *
1122  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1123  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1124  */
1125 int try_to_unuse(unsigned int type, bool frontswap,
1126 		 unsigned long pages_to_unuse)
1127 {
1128 	struct swap_info_struct *si = swap_info[type];
1129 	struct mm_struct *start_mm;
1130 	unsigned char *swap_map;
1131 	unsigned char swcount;
1132 	struct page *page;
1133 	swp_entry_t entry;
1134 	unsigned int i = 0;
1135 	int retval = 0;
1136 
1137 	/*
1138 	 * When searching mms for an entry, a good strategy is to
1139 	 * start at the first mm we freed the previous entry from
1140 	 * (though actually we don't notice whether we or coincidence
1141 	 * freed the entry).  Initialize this start_mm with a hold.
1142 	 *
1143 	 * A simpler strategy would be to start at the last mm we
1144 	 * freed the previous entry from; but that would take less
1145 	 * advantage of mmlist ordering, which clusters forked mms
1146 	 * together, child after parent.  If we race with dup_mmap(), we
1147 	 * prefer to resolve parent before child, lest we miss entries
1148 	 * duplicated after we scanned child: using last mm would invert
1149 	 * that.
1150 	 */
1151 	start_mm = &init_mm;
1152 	atomic_inc(&init_mm.mm_users);
1153 
1154 	/*
1155 	 * Keep on scanning until all entries have gone.  Usually,
1156 	 * one pass through swap_map is enough, but not necessarily:
1157 	 * there are races when an instance of an entry might be missed.
1158 	 */
1159 	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1160 		if (signal_pending(current)) {
1161 			retval = -EINTR;
1162 			break;
1163 		}
1164 
1165 		/*
1166 		 * Get a page for the entry, using the existing swap
1167 		 * cache page if there is one.  Otherwise, get a clean
1168 		 * page and read the swap into it.
1169 		 */
1170 		swap_map = &si->swap_map[i];
1171 		entry = swp_entry(type, i);
1172 		page = read_swap_cache_async(entry,
1173 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1174 		if (!page) {
1175 			/*
1176 			 * Either swap_duplicate() failed because entry
1177 			 * has been freed independently, and will not be
1178 			 * reused since sys_swapoff() already disabled
1179 			 * allocation from here, or alloc_page() failed.
1180 			 */
1181 			if (!*swap_map)
1182 				continue;
1183 			retval = -ENOMEM;
1184 			break;
1185 		}
1186 
1187 		/*
1188 		 * Don't hold on to start_mm if it looks like exiting.
1189 		 */
1190 		if (atomic_read(&start_mm->mm_users) == 1) {
1191 			mmput(start_mm);
1192 			start_mm = &init_mm;
1193 			atomic_inc(&init_mm.mm_users);
1194 		}
1195 
1196 		/*
1197 		 * Wait for and lock page.  When do_swap_page races with
1198 		 * try_to_unuse, do_swap_page can handle the fault much
1199 		 * faster than try_to_unuse can locate the entry.  This
1200 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1201 		 * defer to do_swap_page in such a case - in some tests,
1202 		 * do_swap_page and try_to_unuse repeatedly compete.
1203 		 */
1204 		wait_on_page_locked(page);
1205 		wait_on_page_writeback(page);
1206 		lock_page(page);
1207 		wait_on_page_writeback(page);
1208 
1209 		/*
1210 		 * Remove all references to entry.
1211 		 */
1212 		swcount = *swap_map;
1213 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1214 			retval = shmem_unuse(entry, page);
1215 			/* page has already been unlocked and released */
1216 			if (retval < 0)
1217 				break;
1218 			continue;
1219 		}
1220 		if (swap_count(swcount) && start_mm != &init_mm)
1221 			retval = unuse_mm(start_mm, entry, page);
1222 
1223 		if (swap_count(*swap_map)) {
1224 			int set_start_mm = (*swap_map >= swcount);
1225 			struct list_head *p = &start_mm->mmlist;
1226 			struct mm_struct *new_start_mm = start_mm;
1227 			struct mm_struct *prev_mm = start_mm;
1228 			struct mm_struct *mm;
1229 
1230 			atomic_inc(&new_start_mm->mm_users);
1231 			atomic_inc(&prev_mm->mm_users);
1232 			spin_lock(&mmlist_lock);
1233 			while (swap_count(*swap_map) && !retval &&
1234 					(p = p->next) != &start_mm->mmlist) {
1235 				mm = list_entry(p, struct mm_struct, mmlist);
1236 				if (!atomic_inc_not_zero(&mm->mm_users))
1237 					continue;
1238 				spin_unlock(&mmlist_lock);
1239 				mmput(prev_mm);
1240 				prev_mm = mm;
1241 
1242 				cond_resched();
1243 
1244 				swcount = *swap_map;
1245 				if (!swap_count(swcount)) /* any usage ? */
1246 					;
1247 				else if (mm == &init_mm)
1248 					set_start_mm = 1;
1249 				else
1250 					retval = unuse_mm(mm, entry, page);
1251 
1252 				if (set_start_mm && *swap_map < swcount) {
1253 					mmput(new_start_mm);
1254 					atomic_inc(&mm->mm_users);
1255 					new_start_mm = mm;
1256 					set_start_mm = 0;
1257 				}
1258 				spin_lock(&mmlist_lock);
1259 			}
1260 			spin_unlock(&mmlist_lock);
1261 			mmput(prev_mm);
1262 			mmput(start_mm);
1263 			start_mm = new_start_mm;
1264 		}
1265 		if (retval) {
1266 			unlock_page(page);
1267 			page_cache_release(page);
1268 			break;
1269 		}
1270 
1271 		/*
1272 		 * If a reference remains (rare), we would like to leave
1273 		 * the page in the swap cache; but try_to_unmap could
1274 		 * then re-duplicate the entry once we drop page lock,
1275 		 * so we might loop indefinitely; also, that page could
1276 		 * not be swapped out to other storage meanwhile.  So:
1277 		 * delete from cache even if there's another reference,
1278 		 * after ensuring that the data has been saved to disk -
1279 		 * since if the reference remains (rarer), it will be
1280 		 * read from disk into another page.  Splitting into two
1281 		 * pages would be incorrect if swap supported "shared
1282 		 * private" pages, but they are handled by tmpfs files.
1283 		 *
1284 		 * Given how unuse_vma() targets one particular offset
1285 		 * in an anon_vma, once the anon_vma has been determined,
1286 		 * this splitting happens to be just what is needed to
1287 		 * handle where KSM pages have been swapped out: re-reading
1288 		 * is unnecessarily slow, but we can fix that later on.
1289 		 */
1290 		if (swap_count(*swap_map) &&
1291 		     PageDirty(page) && PageSwapCache(page)) {
1292 			struct writeback_control wbc = {
1293 				.sync_mode = WB_SYNC_NONE,
1294 			};
1295 
1296 			swap_writepage(page, &wbc);
1297 			lock_page(page);
1298 			wait_on_page_writeback(page);
1299 		}
1300 
1301 		/*
1302 		 * It is conceivable that a racing task removed this page from
1303 		 * swap cache just before we acquired the page lock at the top,
1304 		 * or while we dropped it in unuse_mm().  The page might even
1305 		 * be back in swap cache on another swap area: that we must not
1306 		 * delete, since it may not have been written out to swap yet.
1307 		 */
1308 		if (PageSwapCache(page) &&
1309 		    likely(page_private(page) == entry.val))
1310 			delete_from_swap_cache(page);
1311 
1312 		/*
1313 		 * So we could skip searching mms once swap count went
1314 		 * to 1, we did not mark any present ptes as dirty: must
1315 		 * mark page dirty so shrink_page_list will preserve it.
1316 		 */
1317 		SetPageDirty(page);
1318 		unlock_page(page);
1319 		page_cache_release(page);
1320 
1321 		/*
1322 		 * Make sure that we aren't completely killing
1323 		 * interactive performance.
1324 		 */
1325 		cond_resched();
1326 		if (frontswap && pages_to_unuse > 0) {
1327 			if (!--pages_to_unuse)
1328 				break;
1329 		}
1330 	}
1331 
1332 	mmput(start_mm);
1333 	return retval;
1334 }
1335 
1336 /*
1337  * After a successful try_to_unuse, if no swap is now in use, we know
1338  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1339  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1340  * added to the mmlist just after page_duplicate - before would be racy.
1341  */
1342 static void drain_mmlist(void)
1343 {
1344 	struct list_head *p, *next;
1345 	unsigned int type;
1346 
1347 	for (type = 0; type < nr_swapfiles; type++)
1348 		if (swap_info[type]->inuse_pages)
1349 			return;
1350 	spin_lock(&mmlist_lock);
1351 	list_for_each_safe(p, next, &init_mm.mmlist)
1352 		list_del_init(p);
1353 	spin_unlock(&mmlist_lock);
1354 }
1355 
1356 /*
1357  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1358  * corresponds to page offset for the specified swap entry.
1359  * Note that the type of this function is sector_t, but it returns page offset
1360  * into the bdev, not sector offset.
1361  */
1362 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1363 {
1364 	struct swap_info_struct *sis;
1365 	struct swap_extent *start_se;
1366 	struct swap_extent *se;
1367 	pgoff_t offset;
1368 
1369 	sis = swap_info[swp_type(entry)];
1370 	*bdev = sis->bdev;
1371 
1372 	offset = swp_offset(entry);
1373 	start_se = sis->curr_swap_extent;
1374 	se = start_se;
1375 
1376 	for ( ; ; ) {
1377 		struct list_head *lh;
1378 
1379 		if (se->start_page <= offset &&
1380 				offset < (se->start_page + se->nr_pages)) {
1381 			return se->start_block + (offset - se->start_page);
1382 		}
1383 		lh = se->list.next;
1384 		se = list_entry(lh, struct swap_extent, list);
1385 		sis->curr_swap_extent = se;
1386 		BUG_ON(se == start_se);		/* It *must* be present */
1387 	}
1388 }
1389 
1390 /*
1391  * Returns the page offset into bdev for the specified page's swap entry.
1392  */
1393 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1394 {
1395 	swp_entry_t entry;
1396 	entry.val = page_private(page);
1397 	return map_swap_entry(entry, bdev);
1398 }
1399 
1400 /*
1401  * Free all of a swapdev's extent information
1402  */
1403 static void destroy_swap_extents(struct swap_info_struct *sis)
1404 {
1405 	while (!list_empty(&sis->first_swap_extent.list)) {
1406 		struct swap_extent *se;
1407 
1408 		se = list_entry(sis->first_swap_extent.list.next,
1409 				struct swap_extent, list);
1410 		list_del(&se->list);
1411 		kfree(se);
1412 	}
1413 
1414 	if (sis->flags & SWP_FILE) {
1415 		struct file *swap_file = sis->swap_file;
1416 		struct address_space *mapping = swap_file->f_mapping;
1417 
1418 		sis->flags &= ~SWP_FILE;
1419 		mapping->a_ops->swap_deactivate(swap_file);
1420 	}
1421 }
1422 
1423 /*
1424  * Add a block range (and the corresponding page range) into this swapdev's
1425  * extent list.  The extent list is kept sorted in page order.
1426  *
1427  * This function rather assumes that it is called in ascending page order.
1428  */
1429 int
1430 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1431 		unsigned long nr_pages, sector_t start_block)
1432 {
1433 	struct swap_extent *se;
1434 	struct swap_extent *new_se;
1435 	struct list_head *lh;
1436 
1437 	if (start_page == 0) {
1438 		se = &sis->first_swap_extent;
1439 		sis->curr_swap_extent = se;
1440 		se->start_page = 0;
1441 		se->nr_pages = nr_pages;
1442 		se->start_block = start_block;
1443 		return 1;
1444 	} else {
1445 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1446 		se = list_entry(lh, struct swap_extent, list);
1447 		BUG_ON(se->start_page + se->nr_pages != start_page);
1448 		if (se->start_block + se->nr_pages == start_block) {
1449 			/* Merge it */
1450 			se->nr_pages += nr_pages;
1451 			return 0;
1452 		}
1453 	}
1454 
1455 	/*
1456 	 * No merge.  Insert a new extent, preserving ordering.
1457 	 */
1458 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1459 	if (new_se == NULL)
1460 		return -ENOMEM;
1461 	new_se->start_page = start_page;
1462 	new_se->nr_pages = nr_pages;
1463 	new_se->start_block = start_block;
1464 
1465 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1466 	return 1;
1467 }
1468 
1469 /*
1470  * A `swap extent' is a simple thing which maps a contiguous range of pages
1471  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1472  * is built at swapon time and is then used at swap_writepage/swap_readpage
1473  * time for locating where on disk a page belongs.
1474  *
1475  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1476  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1477  * swap files identically.
1478  *
1479  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1480  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1481  * swapfiles are handled *identically* after swapon time.
1482  *
1483  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1484  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1485  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1486  * requirements, they are simply tossed out - we will never use those blocks
1487  * for swapping.
1488  *
1489  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1490  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1491  * which will scribble on the fs.
1492  *
1493  * The amount of disk space which a single swap extent represents varies.
1494  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1495  * extents in the list.  To avoid much list walking, we cache the previous
1496  * search location in `curr_swap_extent', and start new searches from there.
1497  * This is extremely effective.  The average number of iterations in
1498  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1499  */
1500 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1501 {
1502 	struct file *swap_file = sis->swap_file;
1503 	struct address_space *mapping = swap_file->f_mapping;
1504 	struct inode *inode = mapping->host;
1505 	int ret;
1506 
1507 	if (S_ISBLK(inode->i_mode)) {
1508 		ret = add_swap_extent(sis, 0, sis->max, 0);
1509 		*span = sis->pages;
1510 		return ret;
1511 	}
1512 
1513 	if (mapping->a_ops->swap_activate) {
1514 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1515 		if (!ret) {
1516 			sis->flags |= SWP_FILE;
1517 			ret = add_swap_extent(sis, 0, sis->max, 0);
1518 			*span = sis->pages;
1519 		}
1520 		return ret;
1521 	}
1522 
1523 	return generic_swapfile_activate(sis, swap_file, span);
1524 }
1525 
1526 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1527 				unsigned char *swap_map)
1528 {
1529 	int i, prev;
1530 
1531 	if (prio >= 0)
1532 		p->prio = prio;
1533 	else
1534 		p->prio = --least_priority;
1535 	p->swap_map = swap_map;
1536 	p->flags |= SWP_WRITEOK;
1537 	atomic_long_add(p->pages, &nr_swap_pages);
1538 	total_swap_pages += p->pages;
1539 
1540 	/* insert swap space into swap_list: */
1541 	prev = -1;
1542 	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1543 		if (p->prio >= swap_info[i]->prio)
1544 			break;
1545 		prev = i;
1546 	}
1547 	p->next = i;
1548 	if (prev < 0)
1549 		swap_list.head = swap_list.next = p->type;
1550 	else
1551 		swap_info[prev]->next = p->type;
1552 }
1553 
1554 static void enable_swap_info(struct swap_info_struct *p, int prio,
1555 				unsigned char *swap_map,
1556 				unsigned long *frontswap_map)
1557 {
1558 	frontswap_init(p->type, frontswap_map);
1559 	spin_lock(&swap_lock);
1560 	spin_lock(&p->lock);
1561 	 _enable_swap_info(p, prio, swap_map);
1562 	spin_unlock(&p->lock);
1563 	spin_unlock(&swap_lock);
1564 }
1565 
1566 static void reinsert_swap_info(struct swap_info_struct *p)
1567 {
1568 	spin_lock(&swap_lock);
1569 	spin_lock(&p->lock);
1570 	_enable_swap_info(p, p->prio, p->swap_map);
1571 	spin_unlock(&p->lock);
1572 	spin_unlock(&swap_lock);
1573 }
1574 
1575 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1576 {
1577 	struct swap_info_struct *p = NULL;
1578 	unsigned char *swap_map;
1579 	unsigned long *frontswap_map;
1580 	struct file *swap_file, *victim;
1581 	struct address_space *mapping;
1582 	struct inode *inode;
1583 	struct filename *pathname;
1584 	int i, type, prev;
1585 	int err;
1586 
1587 	if (!capable(CAP_SYS_ADMIN))
1588 		return -EPERM;
1589 
1590 	BUG_ON(!current->mm);
1591 
1592 	pathname = getname(specialfile);
1593 	if (IS_ERR(pathname))
1594 		return PTR_ERR(pathname);
1595 
1596 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1597 	err = PTR_ERR(victim);
1598 	if (IS_ERR(victim))
1599 		goto out;
1600 
1601 	mapping = victim->f_mapping;
1602 	prev = -1;
1603 	spin_lock(&swap_lock);
1604 	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1605 		p = swap_info[type];
1606 		if (p->flags & SWP_WRITEOK) {
1607 			if (p->swap_file->f_mapping == mapping)
1608 				break;
1609 		}
1610 		prev = type;
1611 	}
1612 	if (type < 0) {
1613 		err = -EINVAL;
1614 		spin_unlock(&swap_lock);
1615 		goto out_dput;
1616 	}
1617 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
1618 		vm_unacct_memory(p->pages);
1619 	else {
1620 		err = -ENOMEM;
1621 		spin_unlock(&swap_lock);
1622 		goto out_dput;
1623 	}
1624 	if (prev < 0)
1625 		swap_list.head = p->next;
1626 	else
1627 		swap_info[prev]->next = p->next;
1628 	if (type == swap_list.next) {
1629 		/* just pick something that's safe... */
1630 		swap_list.next = swap_list.head;
1631 	}
1632 	spin_lock(&p->lock);
1633 	if (p->prio < 0) {
1634 		for (i = p->next; i >= 0; i = swap_info[i]->next)
1635 			swap_info[i]->prio = p->prio--;
1636 		least_priority++;
1637 	}
1638 	atomic_long_sub(p->pages, &nr_swap_pages);
1639 	total_swap_pages -= p->pages;
1640 	p->flags &= ~SWP_WRITEOK;
1641 	spin_unlock(&p->lock);
1642 	spin_unlock(&swap_lock);
1643 
1644 	set_current_oom_origin();
1645 	err = try_to_unuse(type, false, 0); /* force all pages to be unused */
1646 	clear_current_oom_origin();
1647 
1648 	if (err) {
1649 		/* re-insert swap space back into swap_list */
1650 		reinsert_swap_info(p);
1651 		goto out_dput;
1652 	}
1653 
1654 	destroy_swap_extents(p);
1655 	if (p->flags & SWP_CONTINUED)
1656 		free_swap_count_continuations(p);
1657 
1658 	mutex_lock(&swapon_mutex);
1659 	spin_lock(&swap_lock);
1660 	spin_lock(&p->lock);
1661 	drain_mmlist();
1662 
1663 	/* wait for anyone still in scan_swap_map */
1664 	p->highest_bit = 0;		/* cuts scans short */
1665 	while (p->flags >= SWP_SCANNING) {
1666 		spin_unlock(&p->lock);
1667 		spin_unlock(&swap_lock);
1668 		schedule_timeout_uninterruptible(1);
1669 		spin_lock(&swap_lock);
1670 		spin_lock(&p->lock);
1671 	}
1672 
1673 	swap_file = p->swap_file;
1674 	p->swap_file = NULL;
1675 	p->max = 0;
1676 	swap_map = p->swap_map;
1677 	p->swap_map = NULL;
1678 	p->flags = 0;
1679 	frontswap_map = frontswap_map_get(p);
1680 	frontswap_map_set(p, NULL);
1681 	spin_unlock(&p->lock);
1682 	spin_unlock(&swap_lock);
1683 	frontswap_invalidate_area(type);
1684 	mutex_unlock(&swapon_mutex);
1685 	vfree(swap_map);
1686 	vfree(frontswap_map);
1687 	/* Destroy swap account informatin */
1688 	swap_cgroup_swapoff(type);
1689 
1690 	inode = mapping->host;
1691 	if (S_ISBLK(inode->i_mode)) {
1692 		struct block_device *bdev = I_BDEV(inode);
1693 		set_blocksize(bdev, p->old_block_size);
1694 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1695 	} else {
1696 		mutex_lock(&inode->i_mutex);
1697 		inode->i_flags &= ~S_SWAPFILE;
1698 		mutex_unlock(&inode->i_mutex);
1699 	}
1700 	filp_close(swap_file, NULL);
1701 	err = 0;
1702 	atomic_inc(&proc_poll_event);
1703 	wake_up_interruptible(&proc_poll_wait);
1704 
1705 out_dput:
1706 	filp_close(victim, NULL);
1707 out:
1708 	putname(pathname);
1709 	return err;
1710 }
1711 
1712 #ifdef CONFIG_PROC_FS
1713 static unsigned swaps_poll(struct file *file, poll_table *wait)
1714 {
1715 	struct seq_file *seq = file->private_data;
1716 
1717 	poll_wait(file, &proc_poll_wait, wait);
1718 
1719 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
1720 		seq->poll_event = atomic_read(&proc_poll_event);
1721 		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1722 	}
1723 
1724 	return POLLIN | POLLRDNORM;
1725 }
1726 
1727 /* iterator */
1728 static void *swap_start(struct seq_file *swap, loff_t *pos)
1729 {
1730 	struct swap_info_struct *si;
1731 	int type;
1732 	loff_t l = *pos;
1733 
1734 	mutex_lock(&swapon_mutex);
1735 
1736 	if (!l)
1737 		return SEQ_START_TOKEN;
1738 
1739 	for (type = 0; type < nr_swapfiles; type++) {
1740 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1741 		si = swap_info[type];
1742 		if (!(si->flags & SWP_USED) || !si->swap_map)
1743 			continue;
1744 		if (!--l)
1745 			return si;
1746 	}
1747 
1748 	return NULL;
1749 }
1750 
1751 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1752 {
1753 	struct swap_info_struct *si = v;
1754 	int type;
1755 
1756 	if (v == SEQ_START_TOKEN)
1757 		type = 0;
1758 	else
1759 		type = si->type + 1;
1760 
1761 	for (; type < nr_swapfiles; type++) {
1762 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1763 		si = swap_info[type];
1764 		if (!(si->flags & SWP_USED) || !si->swap_map)
1765 			continue;
1766 		++*pos;
1767 		return si;
1768 	}
1769 
1770 	return NULL;
1771 }
1772 
1773 static void swap_stop(struct seq_file *swap, void *v)
1774 {
1775 	mutex_unlock(&swapon_mutex);
1776 }
1777 
1778 static int swap_show(struct seq_file *swap, void *v)
1779 {
1780 	struct swap_info_struct *si = v;
1781 	struct file *file;
1782 	int len;
1783 
1784 	if (si == SEQ_START_TOKEN) {
1785 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1786 		return 0;
1787 	}
1788 
1789 	file = si->swap_file;
1790 	len = seq_path(swap, &file->f_path, " \t\n\\");
1791 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1792 			len < 40 ? 40 - len : 1, " ",
1793 			S_ISBLK(file_inode(file)->i_mode) ?
1794 				"partition" : "file\t",
1795 			si->pages << (PAGE_SHIFT - 10),
1796 			si->inuse_pages << (PAGE_SHIFT - 10),
1797 			si->prio);
1798 	return 0;
1799 }
1800 
1801 static const struct seq_operations swaps_op = {
1802 	.start =	swap_start,
1803 	.next =		swap_next,
1804 	.stop =		swap_stop,
1805 	.show =		swap_show
1806 };
1807 
1808 static int swaps_open(struct inode *inode, struct file *file)
1809 {
1810 	struct seq_file *seq;
1811 	int ret;
1812 
1813 	ret = seq_open(file, &swaps_op);
1814 	if (ret)
1815 		return ret;
1816 
1817 	seq = file->private_data;
1818 	seq->poll_event = atomic_read(&proc_poll_event);
1819 	return 0;
1820 }
1821 
1822 static const struct file_operations proc_swaps_operations = {
1823 	.open		= swaps_open,
1824 	.read		= seq_read,
1825 	.llseek		= seq_lseek,
1826 	.release	= seq_release,
1827 	.poll		= swaps_poll,
1828 };
1829 
1830 static int __init procswaps_init(void)
1831 {
1832 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1833 	return 0;
1834 }
1835 __initcall(procswaps_init);
1836 #endif /* CONFIG_PROC_FS */
1837 
1838 #ifdef MAX_SWAPFILES_CHECK
1839 static int __init max_swapfiles_check(void)
1840 {
1841 	MAX_SWAPFILES_CHECK();
1842 	return 0;
1843 }
1844 late_initcall(max_swapfiles_check);
1845 #endif
1846 
1847 static struct swap_info_struct *alloc_swap_info(void)
1848 {
1849 	struct swap_info_struct *p;
1850 	unsigned int type;
1851 
1852 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1853 	if (!p)
1854 		return ERR_PTR(-ENOMEM);
1855 
1856 	spin_lock(&swap_lock);
1857 	for (type = 0; type < nr_swapfiles; type++) {
1858 		if (!(swap_info[type]->flags & SWP_USED))
1859 			break;
1860 	}
1861 	if (type >= MAX_SWAPFILES) {
1862 		spin_unlock(&swap_lock);
1863 		kfree(p);
1864 		return ERR_PTR(-EPERM);
1865 	}
1866 	if (type >= nr_swapfiles) {
1867 		p->type = type;
1868 		swap_info[type] = p;
1869 		/*
1870 		 * Write swap_info[type] before nr_swapfiles, in case a
1871 		 * racing procfs swap_start() or swap_next() is reading them.
1872 		 * (We never shrink nr_swapfiles, we never free this entry.)
1873 		 */
1874 		smp_wmb();
1875 		nr_swapfiles++;
1876 	} else {
1877 		kfree(p);
1878 		p = swap_info[type];
1879 		/*
1880 		 * Do not memset this entry: a racing procfs swap_next()
1881 		 * would be relying on p->type to remain valid.
1882 		 */
1883 	}
1884 	INIT_LIST_HEAD(&p->first_swap_extent.list);
1885 	p->flags = SWP_USED;
1886 	p->next = -1;
1887 	spin_unlock(&swap_lock);
1888 	spin_lock_init(&p->lock);
1889 
1890 	return p;
1891 }
1892 
1893 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1894 {
1895 	int error;
1896 
1897 	if (S_ISBLK(inode->i_mode)) {
1898 		p->bdev = bdgrab(I_BDEV(inode));
1899 		error = blkdev_get(p->bdev,
1900 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1901 				   sys_swapon);
1902 		if (error < 0) {
1903 			p->bdev = NULL;
1904 			return -EINVAL;
1905 		}
1906 		p->old_block_size = block_size(p->bdev);
1907 		error = set_blocksize(p->bdev, PAGE_SIZE);
1908 		if (error < 0)
1909 			return error;
1910 		p->flags |= SWP_BLKDEV;
1911 	} else if (S_ISREG(inode->i_mode)) {
1912 		p->bdev = inode->i_sb->s_bdev;
1913 		mutex_lock(&inode->i_mutex);
1914 		if (IS_SWAPFILE(inode))
1915 			return -EBUSY;
1916 	} else
1917 		return -EINVAL;
1918 
1919 	return 0;
1920 }
1921 
1922 static unsigned long read_swap_header(struct swap_info_struct *p,
1923 					union swap_header *swap_header,
1924 					struct inode *inode)
1925 {
1926 	int i;
1927 	unsigned long maxpages;
1928 	unsigned long swapfilepages;
1929 
1930 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1931 		printk(KERN_ERR "Unable to find swap-space signature\n");
1932 		return 0;
1933 	}
1934 
1935 	/* swap partition endianess hack... */
1936 	if (swab32(swap_header->info.version) == 1) {
1937 		swab32s(&swap_header->info.version);
1938 		swab32s(&swap_header->info.last_page);
1939 		swab32s(&swap_header->info.nr_badpages);
1940 		for (i = 0; i < swap_header->info.nr_badpages; i++)
1941 			swab32s(&swap_header->info.badpages[i]);
1942 	}
1943 	/* Check the swap header's sub-version */
1944 	if (swap_header->info.version != 1) {
1945 		printk(KERN_WARNING
1946 		       "Unable to handle swap header version %d\n",
1947 		       swap_header->info.version);
1948 		return 0;
1949 	}
1950 
1951 	p->lowest_bit  = 1;
1952 	p->cluster_next = 1;
1953 	p->cluster_nr = 0;
1954 
1955 	/*
1956 	 * Find out how many pages are allowed for a single swap
1957 	 * device. There are two limiting factors: 1) the number
1958 	 * of bits for the swap offset in the swp_entry_t type, and
1959 	 * 2) the number of bits in the swap pte as defined by the
1960 	 * different architectures. In order to find the
1961 	 * largest possible bit mask, a swap entry with swap type 0
1962 	 * and swap offset ~0UL is created, encoded to a swap pte,
1963 	 * decoded to a swp_entry_t again, and finally the swap
1964 	 * offset is extracted. This will mask all the bits from
1965 	 * the initial ~0UL mask that can't be encoded in either
1966 	 * the swp_entry_t or the architecture definition of a
1967 	 * swap pte.
1968 	 */
1969 	maxpages = swp_offset(pte_to_swp_entry(
1970 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1971 	if (maxpages > swap_header->info.last_page) {
1972 		maxpages = swap_header->info.last_page + 1;
1973 		/* p->max is an unsigned int: don't overflow it */
1974 		if ((unsigned int)maxpages == 0)
1975 			maxpages = UINT_MAX;
1976 	}
1977 	p->highest_bit = maxpages - 1;
1978 
1979 	if (!maxpages)
1980 		return 0;
1981 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1982 	if (swapfilepages && maxpages > swapfilepages) {
1983 		printk(KERN_WARNING
1984 		       "Swap area shorter than signature indicates\n");
1985 		return 0;
1986 	}
1987 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1988 		return 0;
1989 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1990 		return 0;
1991 
1992 	return maxpages;
1993 }
1994 
1995 static int setup_swap_map_and_extents(struct swap_info_struct *p,
1996 					union swap_header *swap_header,
1997 					unsigned char *swap_map,
1998 					unsigned long maxpages,
1999 					sector_t *span)
2000 {
2001 	int i;
2002 	unsigned int nr_good_pages;
2003 	int nr_extents;
2004 
2005 	nr_good_pages = maxpages - 1;	/* omit header page */
2006 
2007 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2008 		unsigned int page_nr = swap_header->info.badpages[i];
2009 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2010 			return -EINVAL;
2011 		if (page_nr < maxpages) {
2012 			swap_map[page_nr] = SWAP_MAP_BAD;
2013 			nr_good_pages--;
2014 		}
2015 	}
2016 
2017 	if (nr_good_pages) {
2018 		swap_map[0] = SWAP_MAP_BAD;
2019 		p->max = maxpages;
2020 		p->pages = nr_good_pages;
2021 		nr_extents = setup_swap_extents(p, span);
2022 		if (nr_extents < 0)
2023 			return nr_extents;
2024 		nr_good_pages = p->pages;
2025 	}
2026 	if (!nr_good_pages) {
2027 		printk(KERN_WARNING "Empty swap-file\n");
2028 		return -EINVAL;
2029 	}
2030 
2031 	return nr_extents;
2032 }
2033 
2034 /*
2035  * Helper to sys_swapon determining if a given swap
2036  * backing device queue supports DISCARD operations.
2037  */
2038 static bool swap_discardable(struct swap_info_struct *si)
2039 {
2040 	struct request_queue *q = bdev_get_queue(si->bdev);
2041 
2042 	if (!q || !blk_queue_discard(q))
2043 		return false;
2044 
2045 	return true;
2046 }
2047 
2048 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2049 {
2050 	struct swap_info_struct *p;
2051 	struct filename *name;
2052 	struct file *swap_file = NULL;
2053 	struct address_space *mapping;
2054 	int i;
2055 	int prio;
2056 	int error;
2057 	union swap_header *swap_header;
2058 	int nr_extents;
2059 	sector_t span;
2060 	unsigned long maxpages;
2061 	unsigned char *swap_map = NULL;
2062 	unsigned long *frontswap_map = NULL;
2063 	struct page *page = NULL;
2064 	struct inode *inode = NULL;
2065 
2066 	if (swap_flags & ~SWAP_FLAGS_VALID)
2067 		return -EINVAL;
2068 
2069 	if (!capable(CAP_SYS_ADMIN))
2070 		return -EPERM;
2071 
2072 	p = alloc_swap_info();
2073 	if (IS_ERR(p))
2074 		return PTR_ERR(p);
2075 
2076 	name = getname(specialfile);
2077 	if (IS_ERR(name)) {
2078 		error = PTR_ERR(name);
2079 		name = NULL;
2080 		goto bad_swap;
2081 	}
2082 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2083 	if (IS_ERR(swap_file)) {
2084 		error = PTR_ERR(swap_file);
2085 		swap_file = NULL;
2086 		goto bad_swap;
2087 	}
2088 
2089 	p->swap_file = swap_file;
2090 	mapping = swap_file->f_mapping;
2091 
2092 	for (i = 0; i < nr_swapfiles; i++) {
2093 		struct swap_info_struct *q = swap_info[i];
2094 
2095 		if (q == p || !q->swap_file)
2096 			continue;
2097 		if (mapping == q->swap_file->f_mapping) {
2098 			error = -EBUSY;
2099 			goto bad_swap;
2100 		}
2101 	}
2102 
2103 	inode = mapping->host;
2104 	/* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2105 	error = claim_swapfile(p, inode);
2106 	if (unlikely(error))
2107 		goto bad_swap;
2108 
2109 	/*
2110 	 * Read the swap header.
2111 	 */
2112 	if (!mapping->a_ops->readpage) {
2113 		error = -EINVAL;
2114 		goto bad_swap;
2115 	}
2116 	page = read_mapping_page(mapping, 0, swap_file);
2117 	if (IS_ERR(page)) {
2118 		error = PTR_ERR(page);
2119 		goto bad_swap;
2120 	}
2121 	swap_header = kmap(page);
2122 
2123 	maxpages = read_swap_header(p, swap_header, inode);
2124 	if (unlikely(!maxpages)) {
2125 		error = -EINVAL;
2126 		goto bad_swap;
2127 	}
2128 
2129 	/* OK, set up the swap map and apply the bad block list */
2130 	swap_map = vzalloc(maxpages);
2131 	if (!swap_map) {
2132 		error = -ENOMEM;
2133 		goto bad_swap;
2134 	}
2135 
2136 	error = swap_cgroup_swapon(p->type, maxpages);
2137 	if (error)
2138 		goto bad_swap;
2139 
2140 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2141 		maxpages, &span);
2142 	if (unlikely(nr_extents < 0)) {
2143 		error = nr_extents;
2144 		goto bad_swap;
2145 	}
2146 	/* frontswap enabled? set up bit-per-page map for frontswap */
2147 	if (frontswap_enabled)
2148 		frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2149 
2150 	if (p->bdev) {
2151 		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2152 			p->flags |= SWP_SOLIDSTATE;
2153 			p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2154 		}
2155 
2156 		if ((swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2157 			/*
2158 			 * When discard is enabled for swap with no particular
2159 			 * policy flagged, we set all swap discard flags here in
2160 			 * order to sustain backward compatibility with older
2161 			 * swapon(8) releases.
2162 			 */
2163 			p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2164 				     SWP_PAGE_DISCARD);
2165 
2166 			/*
2167 			 * By flagging sys_swapon, a sysadmin can tell us to
2168 			 * either do single-time area discards only, or to just
2169 			 * perform discards for released swap page-clusters.
2170 			 * Now it's time to adjust the p->flags accordingly.
2171 			 */
2172 			if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2173 				p->flags &= ~SWP_PAGE_DISCARD;
2174 			else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2175 				p->flags &= ~SWP_AREA_DISCARD;
2176 
2177 			/* issue a swapon-time discard if it's still required */
2178 			if (p->flags & SWP_AREA_DISCARD) {
2179 				int err = discard_swap(p);
2180 				if (unlikely(err))
2181 					printk(KERN_ERR
2182 					       "swapon: discard_swap(%p): %d\n",
2183 						p, err);
2184 			}
2185 		}
2186 	}
2187 
2188 	mutex_lock(&swapon_mutex);
2189 	prio = -1;
2190 	if (swap_flags & SWAP_FLAG_PREFER)
2191 		prio =
2192 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2193 	enable_swap_info(p, prio, swap_map, frontswap_map);
2194 
2195 	printk(KERN_INFO "Adding %uk swap on %s.  "
2196 			"Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2197 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2198 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2199 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2200 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
2201 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
2202 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2203 		(frontswap_map) ? "FS" : "");
2204 
2205 	mutex_unlock(&swapon_mutex);
2206 	atomic_inc(&proc_poll_event);
2207 	wake_up_interruptible(&proc_poll_wait);
2208 
2209 	if (S_ISREG(inode->i_mode))
2210 		inode->i_flags |= S_SWAPFILE;
2211 	error = 0;
2212 	goto out;
2213 bad_swap:
2214 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2215 		set_blocksize(p->bdev, p->old_block_size);
2216 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2217 	}
2218 	destroy_swap_extents(p);
2219 	swap_cgroup_swapoff(p->type);
2220 	spin_lock(&swap_lock);
2221 	p->swap_file = NULL;
2222 	p->flags = 0;
2223 	spin_unlock(&swap_lock);
2224 	vfree(swap_map);
2225 	if (swap_file) {
2226 		if (inode && S_ISREG(inode->i_mode)) {
2227 			mutex_unlock(&inode->i_mutex);
2228 			inode = NULL;
2229 		}
2230 		filp_close(swap_file, NULL);
2231 	}
2232 out:
2233 	if (page && !IS_ERR(page)) {
2234 		kunmap(page);
2235 		page_cache_release(page);
2236 	}
2237 	if (name)
2238 		putname(name);
2239 	if (inode && S_ISREG(inode->i_mode))
2240 		mutex_unlock(&inode->i_mutex);
2241 	return error;
2242 }
2243 
2244 void si_swapinfo(struct sysinfo *val)
2245 {
2246 	unsigned int type;
2247 	unsigned long nr_to_be_unused = 0;
2248 
2249 	spin_lock(&swap_lock);
2250 	for (type = 0; type < nr_swapfiles; type++) {
2251 		struct swap_info_struct *si = swap_info[type];
2252 
2253 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2254 			nr_to_be_unused += si->inuse_pages;
2255 	}
2256 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2257 	val->totalswap = total_swap_pages + nr_to_be_unused;
2258 	spin_unlock(&swap_lock);
2259 }
2260 
2261 /*
2262  * Verify that a swap entry is valid and increment its swap map count.
2263  *
2264  * Returns error code in following case.
2265  * - success -> 0
2266  * - swp_entry is invalid -> EINVAL
2267  * - swp_entry is migration entry -> EINVAL
2268  * - swap-cache reference is requested but there is already one. -> EEXIST
2269  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2270  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2271  */
2272 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2273 {
2274 	struct swap_info_struct *p;
2275 	unsigned long offset, type;
2276 	unsigned char count;
2277 	unsigned char has_cache;
2278 	int err = -EINVAL;
2279 
2280 	if (non_swap_entry(entry))
2281 		goto out;
2282 
2283 	type = swp_type(entry);
2284 	if (type >= nr_swapfiles)
2285 		goto bad_file;
2286 	p = swap_info[type];
2287 	offset = swp_offset(entry);
2288 
2289 	spin_lock(&p->lock);
2290 	if (unlikely(offset >= p->max))
2291 		goto unlock_out;
2292 
2293 	count = p->swap_map[offset];
2294 	has_cache = count & SWAP_HAS_CACHE;
2295 	count &= ~SWAP_HAS_CACHE;
2296 	err = 0;
2297 
2298 	if (usage == SWAP_HAS_CACHE) {
2299 
2300 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2301 		if (!has_cache && count)
2302 			has_cache = SWAP_HAS_CACHE;
2303 		else if (has_cache)		/* someone else added cache */
2304 			err = -EEXIST;
2305 		else				/* no users remaining */
2306 			err = -ENOENT;
2307 
2308 	} else if (count || has_cache) {
2309 
2310 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2311 			count += usage;
2312 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2313 			err = -EINVAL;
2314 		else if (swap_count_continued(p, offset, count))
2315 			count = COUNT_CONTINUED;
2316 		else
2317 			err = -ENOMEM;
2318 	} else
2319 		err = -ENOENT;			/* unused swap entry */
2320 
2321 	p->swap_map[offset] = count | has_cache;
2322 
2323 unlock_out:
2324 	spin_unlock(&p->lock);
2325 out:
2326 	return err;
2327 
2328 bad_file:
2329 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2330 	goto out;
2331 }
2332 
2333 /*
2334  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2335  * (in which case its reference count is never incremented).
2336  */
2337 void swap_shmem_alloc(swp_entry_t entry)
2338 {
2339 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2340 }
2341 
2342 /*
2343  * Increase reference count of swap entry by 1.
2344  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2345  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2346  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2347  * might occur if a page table entry has got corrupted.
2348  */
2349 int swap_duplicate(swp_entry_t entry)
2350 {
2351 	int err = 0;
2352 
2353 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2354 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2355 	return err;
2356 }
2357 
2358 /*
2359  * @entry: swap entry for which we allocate swap cache.
2360  *
2361  * Called when allocating swap cache for existing swap entry,
2362  * This can return error codes. Returns 0 at success.
2363  * -EBUSY means there is a swap cache.
2364  * Note: return code is different from swap_duplicate().
2365  */
2366 int swapcache_prepare(swp_entry_t entry)
2367 {
2368 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2369 }
2370 
2371 struct swap_info_struct *page_swap_info(struct page *page)
2372 {
2373 	swp_entry_t swap = { .val = page_private(page) };
2374 	BUG_ON(!PageSwapCache(page));
2375 	return swap_info[swp_type(swap)];
2376 }
2377 
2378 /*
2379  * out-of-line __page_file_ methods to avoid include hell.
2380  */
2381 struct address_space *__page_file_mapping(struct page *page)
2382 {
2383 	VM_BUG_ON(!PageSwapCache(page));
2384 	return page_swap_info(page)->swap_file->f_mapping;
2385 }
2386 EXPORT_SYMBOL_GPL(__page_file_mapping);
2387 
2388 pgoff_t __page_file_index(struct page *page)
2389 {
2390 	swp_entry_t swap = { .val = page_private(page) };
2391 	VM_BUG_ON(!PageSwapCache(page));
2392 	return swp_offset(swap);
2393 }
2394 EXPORT_SYMBOL_GPL(__page_file_index);
2395 
2396 /*
2397  * add_swap_count_continuation - called when a swap count is duplicated
2398  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2399  * page of the original vmalloc'ed swap_map, to hold the continuation count
2400  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2401  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2402  *
2403  * These continuation pages are seldom referenced: the common paths all work
2404  * on the original swap_map, only referring to a continuation page when the
2405  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2406  *
2407  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2408  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2409  * can be called after dropping locks.
2410  */
2411 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2412 {
2413 	struct swap_info_struct *si;
2414 	struct page *head;
2415 	struct page *page;
2416 	struct page *list_page;
2417 	pgoff_t offset;
2418 	unsigned char count;
2419 
2420 	/*
2421 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2422 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2423 	 */
2424 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2425 
2426 	si = swap_info_get(entry);
2427 	if (!si) {
2428 		/*
2429 		 * An acceptable race has occurred since the failing
2430 		 * __swap_duplicate(): the swap entry has been freed,
2431 		 * perhaps even the whole swap_map cleared for swapoff.
2432 		 */
2433 		goto outer;
2434 	}
2435 
2436 	offset = swp_offset(entry);
2437 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2438 
2439 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2440 		/*
2441 		 * The higher the swap count, the more likely it is that tasks
2442 		 * will race to add swap count continuation: we need to avoid
2443 		 * over-provisioning.
2444 		 */
2445 		goto out;
2446 	}
2447 
2448 	if (!page) {
2449 		spin_unlock(&si->lock);
2450 		return -ENOMEM;
2451 	}
2452 
2453 	/*
2454 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2455 	 * no architecture is using highmem pages for kernel pagetables: so it
2456 	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2457 	 */
2458 	head = vmalloc_to_page(si->swap_map + offset);
2459 	offset &= ~PAGE_MASK;
2460 
2461 	/*
2462 	 * Page allocation does not initialize the page's lru field,
2463 	 * but it does always reset its private field.
2464 	 */
2465 	if (!page_private(head)) {
2466 		BUG_ON(count & COUNT_CONTINUED);
2467 		INIT_LIST_HEAD(&head->lru);
2468 		set_page_private(head, SWP_CONTINUED);
2469 		si->flags |= SWP_CONTINUED;
2470 	}
2471 
2472 	list_for_each_entry(list_page, &head->lru, lru) {
2473 		unsigned char *map;
2474 
2475 		/*
2476 		 * If the previous map said no continuation, but we've found
2477 		 * a continuation page, free our allocation and use this one.
2478 		 */
2479 		if (!(count & COUNT_CONTINUED))
2480 			goto out;
2481 
2482 		map = kmap_atomic(list_page) + offset;
2483 		count = *map;
2484 		kunmap_atomic(map);
2485 
2486 		/*
2487 		 * If this continuation count now has some space in it,
2488 		 * free our allocation and use this one.
2489 		 */
2490 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2491 			goto out;
2492 	}
2493 
2494 	list_add_tail(&page->lru, &head->lru);
2495 	page = NULL;			/* now it's attached, don't free it */
2496 out:
2497 	spin_unlock(&si->lock);
2498 outer:
2499 	if (page)
2500 		__free_page(page);
2501 	return 0;
2502 }
2503 
2504 /*
2505  * swap_count_continued - when the original swap_map count is incremented
2506  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2507  * into, carry if so, or else fail until a new continuation page is allocated;
2508  * when the original swap_map count is decremented from 0 with continuation,
2509  * borrow from the continuation and report whether it still holds more.
2510  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2511  */
2512 static bool swap_count_continued(struct swap_info_struct *si,
2513 				 pgoff_t offset, unsigned char count)
2514 {
2515 	struct page *head;
2516 	struct page *page;
2517 	unsigned char *map;
2518 
2519 	head = vmalloc_to_page(si->swap_map + offset);
2520 	if (page_private(head) != SWP_CONTINUED) {
2521 		BUG_ON(count & COUNT_CONTINUED);
2522 		return false;		/* need to add count continuation */
2523 	}
2524 
2525 	offset &= ~PAGE_MASK;
2526 	page = list_entry(head->lru.next, struct page, lru);
2527 	map = kmap_atomic(page) + offset;
2528 
2529 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2530 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2531 
2532 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2533 		/*
2534 		 * Think of how you add 1 to 999
2535 		 */
2536 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2537 			kunmap_atomic(map);
2538 			page = list_entry(page->lru.next, struct page, lru);
2539 			BUG_ON(page == head);
2540 			map = kmap_atomic(page) + offset;
2541 		}
2542 		if (*map == SWAP_CONT_MAX) {
2543 			kunmap_atomic(map);
2544 			page = list_entry(page->lru.next, struct page, lru);
2545 			if (page == head)
2546 				return false;	/* add count continuation */
2547 			map = kmap_atomic(page) + offset;
2548 init_map:		*map = 0;		/* we didn't zero the page */
2549 		}
2550 		*map += 1;
2551 		kunmap_atomic(map);
2552 		page = list_entry(page->lru.prev, struct page, lru);
2553 		while (page != head) {
2554 			map = kmap_atomic(page) + offset;
2555 			*map = COUNT_CONTINUED;
2556 			kunmap_atomic(map);
2557 			page = list_entry(page->lru.prev, struct page, lru);
2558 		}
2559 		return true;			/* incremented */
2560 
2561 	} else {				/* decrementing */
2562 		/*
2563 		 * Think of how you subtract 1 from 1000
2564 		 */
2565 		BUG_ON(count != COUNT_CONTINUED);
2566 		while (*map == COUNT_CONTINUED) {
2567 			kunmap_atomic(map);
2568 			page = list_entry(page->lru.next, struct page, lru);
2569 			BUG_ON(page == head);
2570 			map = kmap_atomic(page) + offset;
2571 		}
2572 		BUG_ON(*map == 0);
2573 		*map -= 1;
2574 		if (*map == 0)
2575 			count = 0;
2576 		kunmap_atomic(map);
2577 		page = list_entry(page->lru.prev, struct page, lru);
2578 		while (page != head) {
2579 			map = kmap_atomic(page) + offset;
2580 			*map = SWAP_CONT_MAX | count;
2581 			count = COUNT_CONTINUED;
2582 			kunmap_atomic(map);
2583 			page = list_entry(page->lru.prev, struct page, lru);
2584 		}
2585 		return count == COUNT_CONTINUED;
2586 	}
2587 }
2588 
2589 /*
2590  * free_swap_count_continuations - swapoff free all the continuation pages
2591  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2592  */
2593 static void free_swap_count_continuations(struct swap_info_struct *si)
2594 {
2595 	pgoff_t offset;
2596 
2597 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2598 		struct page *head;
2599 		head = vmalloc_to_page(si->swap_map + offset);
2600 		if (page_private(head)) {
2601 			struct list_head *this, *next;
2602 			list_for_each_safe(this, next, &head->lru) {
2603 				struct page *page;
2604 				page = list_entry(this, struct page, lru);
2605 				list_del(this);
2606 				__free_page(page);
2607 			}
2608 		}
2609 	}
2610 }
2611