xref: /openbmc/linux/mm/swapfile.c (revision 808643ea)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47 
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 				 unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64 
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69 
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75 
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90 
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92 
93 static DEFINE_MUTEX(swapon_mutex);
94 
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98 
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100 
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103 	if (type >= MAX_SWAPFILES)
104 		return NULL;
105 
106 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
107 }
108 
109 static inline unsigned char swap_count(unsigned char ent)
110 {
111 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
112 }
113 
114 /* Reclaim the swap entry anyway if possible */
115 #define TTRS_ANYWAY		0x1
116 /*
117  * Reclaim the swap entry if there are no more mappings of the
118  * corresponding page
119  */
120 #define TTRS_UNMAPPED		0x2
121 /* Reclaim the swap entry if swap is getting full*/
122 #define TTRS_FULL		0x4
123 
124 /* returns 1 if swap entry is freed */
125 static int __try_to_reclaim_swap(struct swap_info_struct *si,
126 				 unsigned long offset, unsigned long flags)
127 {
128 	swp_entry_t entry = swp_entry(si->type, offset);
129 	struct page *page;
130 	int ret = 0;
131 
132 	page = find_get_page(swap_address_space(entry), offset);
133 	if (!page)
134 		return 0;
135 	/*
136 	 * When this function is called from scan_swap_map_slots() and it's
137 	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
138 	 * here. We have to use trylock for avoiding deadlock. This is a special
139 	 * case and you should use try_to_free_swap() with explicit lock_page()
140 	 * in usual operations.
141 	 */
142 	if (trylock_page(page)) {
143 		if ((flags & TTRS_ANYWAY) ||
144 		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
145 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
146 			ret = try_to_free_swap(page);
147 		unlock_page(page);
148 	}
149 	put_page(page);
150 	return ret;
151 }
152 
153 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
154 {
155 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
156 	return rb_entry(rb, struct swap_extent, rb_node);
157 }
158 
159 static inline struct swap_extent *next_se(struct swap_extent *se)
160 {
161 	struct rb_node *rb = rb_next(&se->rb_node);
162 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
163 }
164 
165 /*
166  * swapon tell device that all the old swap contents can be discarded,
167  * to allow the swap device to optimize its wear-levelling.
168  */
169 static int discard_swap(struct swap_info_struct *si)
170 {
171 	struct swap_extent *se;
172 	sector_t start_block;
173 	sector_t nr_blocks;
174 	int err = 0;
175 
176 	/* Do not discard the swap header page! */
177 	se = first_se(si);
178 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
179 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
180 	if (nr_blocks) {
181 		err = blkdev_issue_discard(si->bdev, start_block,
182 				nr_blocks, GFP_KERNEL, 0);
183 		if (err)
184 			return err;
185 		cond_resched();
186 	}
187 
188 	for (se = next_se(se); se; se = next_se(se)) {
189 		start_block = se->start_block << (PAGE_SHIFT - 9);
190 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
191 
192 		err = blkdev_issue_discard(si->bdev, start_block,
193 				nr_blocks, GFP_KERNEL, 0);
194 		if (err)
195 			break;
196 
197 		cond_resched();
198 	}
199 	return err;		/* That will often be -EOPNOTSUPP */
200 }
201 
202 static struct swap_extent *
203 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
204 {
205 	struct swap_extent *se;
206 	struct rb_node *rb;
207 
208 	rb = sis->swap_extent_root.rb_node;
209 	while (rb) {
210 		se = rb_entry(rb, struct swap_extent, rb_node);
211 		if (offset < se->start_page)
212 			rb = rb->rb_left;
213 		else if (offset >= se->start_page + se->nr_pages)
214 			rb = rb->rb_right;
215 		else
216 			return se;
217 	}
218 	/* It *must* be present */
219 	BUG();
220 }
221 
222 sector_t swap_page_sector(struct page *page)
223 {
224 	struct swap_info_struct *sis = page_swap_info(page);
225 	struct swap_extent *se;
226 	sector_t sector;
227 	pgoff_t offset;
228 
229 	offset = __page_file_index(page);
230 	se = offset_to_swap_extent(sis, offset);
231 	sector = se->start_block + (offset - se->start_page);
232 	return sector << (PAGE_SHIFT - 9);
233 }
234 
235 /*
236  * swap allocation tell device that a cluster of swap can now be discarded,
237  * to allow the swap device to optimize its wear-levelling.
238  */
239 static void discard_swap_cluster(struct swap_info_struct *si,
240 				 pgoff_t start_page, pgoff_t nr_pages)
241 {
242 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
243 
244 	while (nr_pages) {
245 		pgoff_t offset = start_page - se->start_page;
246 		sector_t start_block = se->start_block + offset;
247 		sector_t nr_blocks = se->nr_pages - offset;
248 
249 		if (nr_blocks > nr_pages)
250 			nr_blocks = nr_pages;
251 		start_page += nr_blocks;
252 		nr_pages -= nr_blocks;
253 
254 		start_block <<= PAGE_SHIFT - 9;
255 		nr_blocks <<= PAGE_SHIFT - 9;
256 		if (blkdev_issue_discard(si->bdev, start_block,
257 					nr_blocks, GFP_NOIO, 0))
258 			break;
259 
260 		se = next_se(se);
261 	}
262 }
263 
264 #ifdef CONFIG_THP_SWAP
265 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
266 
267 #define swap_entry_size(size)	(size)
268 #else
269 #define SWAPFILE_CLUSTER	256
270 
271 /*
272  * Define swap_entry_size() as constant to let compiler to optimize
273  * out some code if !CONFIG_THP_SWAP
274  */
275 #define swap_entry_size(size)	1
276 #endif
277 #define LATENCY_LIMIT		256
278 
279 static inline void cluster_set_flag(struct swap_cluster_info *info,
280 	unsigned int flag)
281 {
282 	info->flags = flag;
283 }
284 
285 static inline unsigned int cluster_count(struct swap_cluster_info *info)
286 {
287 	return info->data;
288 }
289 
290 static inline void cluster_set_count(struct swap_cluster_info *info,
291 				     unsigned int c)
292 {
293 	info->data = c;
294 }
295 
296 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
297 					 unsigned int c, unsigned int f)
298 {
299 	info->flags = f;
300 	info->data = c;
301 }
302 
303 static inline unsigned int cluster_next(struct swap_cluster_info *info)
304 {
305 	return info->data;
306 }
307 
308 static inline void cluster_set_next(struct swap_cluster_info *info,
309 				    unsigned int n)
310 {
311 	info->data = n;
312 }
313 
314 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
315 					 unsigned int n, unsigned int f)
316 {
317 	info->flags = f;
318 	info->data = n;
319 }
320 
321 static inline bool cluster_is_free(struct swap_cluster_info *info)
322 {
323 	return info->flags & CLUSTER_FLAG_FREE;
324 }
325 
326 static inline bool cluster_is_null(struct swap_cluster_info *info)
327 {
328 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
329 }
330 
331 static inline void cluster_set_null(struct swap_cluster_info *info)
332 {
333 	info->flags = CLUSTER_FLAG_NEXT_NULL;
334 	info->data = 0;
335 }
336 
337 static inline bool cluster_is_huge(struct swap_cluster_info *info)
338 {
339 	if (IS_ENABLED(CONFIG_THP_SWAP))
340 		return info->flags & CLUSTER_FLAG_HUGE;
341 	return false;
342 }
343 
344 static inline void cluster_clear_huge(struct swap_cluster_info *info)
345 {
346 	info->flags &= ~CLUSTER_FLAG_HUGE;
347 }
348 
349 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
350 						     unsigned long offset)
351 {
352 	struct swap_cluster_info *ci;
353 
354 	ci = si->cluster_info;
355 	if (ci) {
356 		ci += offset / SWAPFILE_CLUSTER;
357 		spin_lock(&ci->lock);
358 	}
359 	return ci;
360 }
361 
362 static inline void unlock_cluster(struct swap_cluster_info *ci)
363 {
364 	if (ci)
365 		spin_unlock(&ci->lock);
366 }
367 
368 /*
369  * Determine the locking method in use for this device.  Return
370  * swap_cluster_info if SSD-style cluster-based locking is in place.
371  */
372 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
373 		struct swap_info_struct *si, unsigned long offset)
374 {
375 	struct swap_cluster_info *ci;
376 
377 	/* Try to use fine-grained SSD-style locking if available: */
378 	ci = lock_cluster(si, offset);
379 	/* Otherwise, fall back to traditional, coarse locking: */
380 	if (!ci)
381 		spin_lock(&si->lock);
382 
383 	return ci;
384 }
385 
386 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
387 					       struct swap_cluster_info *ci)
388 {
389 	if (ci)
390 		unlock_cluster(ci);
391 	else
392 		spin_unlock(&si->lock);
393 }
394 
395 static inline bool cluster_list_empty(struct swap_cluster_list *list)
396 {
397 	return cluster_is_null(&list->head);
398 }
399 
400 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
401 {
402 	return cluster_next(&list->head);
403 }
404 
405 static void cluster_list_init(struct swap_cluster_list *list)
406 {
407 	cluster_set_null(&list->head);
408 	cluster_set_null(&list->tail);
409 }
410 
411 static void cluster_list_add_tail(struct swap_cluster_list *list,
412 				  struct swap_cluster_info *ci,
413 				  unsigned int idx)
414 {
415 	if (cluster_list_empty(list)) {
416 		cluster_set_next_flag(&list->head, idx, 0);
417 		cluster_set_next_flag(&list->tail, idx, 0);
418 	} else {
419 		struct swap_cluster_info *ci_tail;
420 		unsigned int tail = cluster_next(&list->tail);
421 
422 		/*
423 		 * Nested cluster lock, but both cluster locks are
424 		 * only acquired when we held swap_info_struct->lock
425 		 */
426 		ci_tail = ci + tail;
427 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
428 		cluster_set_next(ci_tail, idx);
429 		spin_unlock(&ci_tail->lock);
430 		cluster_set_next_flag(&list->tail, idx, 0);
431 	}
432 }
433 
434 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
435 					   struct swap_cluster_info *ci)
436 {
437 	unsigned int idx;
438 
439 	idx = cluster_next(&list->head);
440 	if (cluster_next(&list->tail) == idx) {
441 		cluster_set_null(&list->head);
442 		cluster_set_null(&list->tail);
443 	} else
444 		cluster_set_next_flag(&list->head,
445 				      cluster_next(&ci[idx]), 0);
446 
447 	return idx;
448 }
449 
450 /* Add a cluster to discard list and schedule it to do discard */
451 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
452 		unsigned int idx)
453 {
454 	/*
455 	 * If scan_swap_map_slots() can't find a free cluster, it will check
456 	 * si->swap_map directly. To make sure the discarding cluster isn't
457 	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
458 	 * It will be cleared after discard
459 	 */
460 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
461 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
462 
463 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
464 
465 	schedule_work(&si->discard_work);
466 }
467 
468 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
469 {
470 	struct swap_cluster_info *ci = si->cluster_info;
471 
472 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
473 	cluster_list_add_tail(&si->free_clusters, ci, idx);
474 }
475 
476 /*
477  * Doing discard actually. After a cluster discard is finished, the cluster
478  * will be added to free cluster list. caller should hold si->lock.
479 */
480 static void swap_do_scheduled_discard(struct swap_info_struct *si)
481 {
482 	struct swap_cluster_info *info, *ci;
483 	unsigned int idx;
484 
485 	info = si->cluster_info;
486 
487 	while (!cluster_list_empty(&si->discard_clusters)) {
488 		idx = cluster_list_del_first(&si->discard_clusters, info);
489 		spin_unlock(&si->lock);
490 
491 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
492 				SWAPFILE_CLUSTER);
493 
494 		spin_lock(&si->lock);
495 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
496 		__free_cluster(si, idx);
497 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
498 				0, SWAPFILE_CLUSTER);
499 		unlock_cluster(ci);
500 	}
501 }
502 
503 static void swap_discard_work(struct work_struct *work)
504 {
505 	struct swap_info_struct *si;
506 
507 	si = container_of(work, struct swap_info_struct, discard_work);
508 
509 	spin_lock(&si->lock);
510 	swap_do_scheduled_discard(si);
511 	spin_unlock(&si->lock);
512 }
513 
514 static void swap_users_ref_free(struct percpu_ref *ref)
515 {
516 	struct swap_info_struct *si;
517 
518 	si = container_of(ref, struct swap_info_struct, users);
519 	complete(&si->comp);
520 }
521 
522 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
523 {
524 	struct swap_cluster_info *ci = si->cluster_info;
525 
526 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
527 	cluster_list_del_first(&si->free_clusters, ci);
528 	cluster_set_count_flag(ci + idx, 0, 0);
529 }
530 
531 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
532 {
533 	struct swap_cluster_info *ci = si->cluster_info + idx;
534 
535 	VM_BUG_ON(cluster_count(ci) != 0);
536 	/*
537 	 * If the swap is discardable, prepare discard the cluster
538 	 * instead of free it immediately. The cluster will be freed
539 	 * after discard.
540 	 */
541 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
542 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
543 		swap_cluster_schedule_discard(si, idx);
544 		return;
545 	}
546 
547 	__free_cluster(si, idx);
548 }
549 
550 /*
551  * The cluster corresponding to page_nr will be used. The cluster will be
552  * removed from free cluster list and its usage counter will be increased.
553  */
554 static void inc_cluster_info_page(struct swap_info_struct *p,
555 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
556 {
557 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558 
559 	if (!cluster_info)
560 		return;
561 	if (cluster_is_free(&cluster_info[idx]))
562 		alloc_cluster(p, idx);
563 
564 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
565 	cluster_set_count(&cluster_info[idx],
566 		cluster_count(&cluster_info[idx]) + 1);
567 }
568 
569 /*
570  * The cluster corresponding to page_nr decreases one usage. If the usage
571  * counter becomes 0, which means no page in the cluster is in using, we can
572  * optionally discard the cluster and add it to free cluster list.
573  */
574 static void dec_cluster_info_page(struct swap_info_struct *p,
575 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
576 {
577 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
578 
579 	if (!cluster_info)
580 		return;
581 
582 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
583 	cluster_set_count(&cluster_info[idx],
584 		cluster_count(&cluster_info[idx]) - 1);
585 
586 	if (cluster_count(&cluster_info[idx]) == 0)
587 		free_cluster(p, idx);
588 }
589 
590 /*
591  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
592  * cluster list. Avoiding such abuse to avoid list corruption.
593  */
594 static bool
595 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
596 	unsigned long offset)
597 {
598 	struct percpu_cluster *percpu_cluster;
599 	bool conflict;
600 
601 	offset /= SWAPFILE_CLUSTER;
602 	conflict = !cluster_list_empty(&si->free_clusters) &&
603 		offset != cluster_list_first(&si->free_clusters) &&
604 		cluster_is_free(&si->cluster_info[offset]);
605 
606 	if (!conflict)
607 		return false;
608 
609 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
610 	cluster_set_null(&percpu_cluster->index);
611 	return true;
612 }
613 
614 /*
615  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
616  * might involve allocating a new cluster for current CPU too.
617  */
618 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
619 	unsigned long *offset, unsigned long *scan_base)
620 {
621 	struct percpu_cluster *cluster;
622 	struct swap_cluster_info *ci;
623 	unsigned long tmp, max;
624 
625 new_cluster:
626 	cluster = this_cpu_ptr(si->percpu_cluster);
627 	if (cluster_is_null(&cluster->index)) {
628 		if (!cluster_list_empty(&si->free_clusters)) {
629 			cluster->index = si->free_clusters.head;
630 			cluster->next = cluster_next(&cluster->index) *
631 					SWAPFILE_CLUSTER;
632 		} else if (!cluster_list_empty(&si->discard_clusters)) {
633 			/*
634 			 * we don't have free cluster but have some clusters in
635 			 * discarding, do discard now and reclaim them, then
636 			 * reread cluster_next_cpu since we dropped si->lock
637 			 */
638 			swap_do_scheduled_discard(si);
639 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
640 			*offset = *scan_base;
641 			goto new_cluster;
642 		} else
643 			return false;
644 	}
645 
646 	/*
647 	 * Other CPUs can use our cluster if they can't find a free cluster,
648 	 * check if there is still free entry in the cluster
649 	 */
650 	tmp = cluster->next;
651 	max = min_t(unsigned long, si->max,
652 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
653 	if (tmp < max) {
654 		ci = lock_cluster(si, tmp);
655 		while (tmp < max) {
656 			if (!si->swap_map[tmp])
657 				break;
658 			tmp++;
659 		}
660 		unlock_cluster(ci);
661 	}
662 	if (tmp >= max) {
663 		cluster_set_null(&cluster->index);
664 		goto new_cluster;
665 	}
666 	cluster->next = tmp + 1;
667 	*offset = tmp;
668 	*scan_base = tmp;
669 	return true;
670 }
671 
672 static void __del_from_avail_list(struct swap_info_struct *p)
673 {
674 	int nid;
675 
676 	for_each_node(nid)
677 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
678 }
679 
680 static void del_from_avail_list(struct swap_info_struct *p)
681 {
682 	spin_lock(&swap_avail_lock);
683 	__del_from_avail_list(p);
684 	spin_unlock(&swap_avail_lock);
685 }
686 
687 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
688 			     unsigned int nr_entries)
689 {
690 	unsigned int end = offset + nr_entries - 1;
691 
692 	if (offset == si->lowest_bit)
693 		si->lowest_bit += nr_entries;
694 	if (end == si->highest_bit)
695 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
696 	si->inuse_pages += nr_entries;
697 	if (si->inuse_pages == si->pages) {
698 		si->lowest_bit = si->max;
699 		si->highest_bit = 0;
700 		del_from_avail_list(si);
701 	}
702 }
703 
704 static void add_to_avail_list(struct swap_info_struct *p)
705 {
706 	int nid;
707 
708 	spin_lock(&swap_avail_lock);
709 	for_each_node(nid) {
710 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
711 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
712 	}
713 	spin_unlock(&swap_avail_lock);
714 }
715 
716 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
717 			    unsigned int nr_entries)
718 {
719 	unsigned long begin = offset;
720 	unsigned long end = offset + nr_entries - 1;
721 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
722 
723 	if (offset < si->lowest_bit)
724 		si->lowest_bit = offset;
725 	if (end > si->highest_bit) {
726 		bool was_full = !si->highest_bit;
727 
728 		WRITE_ONCE(si->highest_bit, end);
729 		if (was_full && (si->flags & SWP_WRITEOK))
730 			add_to_avail_list(si);
731 	}
732 	atomic_long_add(nr_entries, &nr_swap_pages);
733 	si->inuse_pages -= nr_entries;
734 	if (si->flags & SWP_BLKDEV)
735 		swap_slot_free_notify =
736 			si->bdev->bd_disk->fops->swap_slot_free_notify;
737 	else
738 		swap_slot_free_notify = NULL;
739 	while (offset <= end) {
740 		arch_swap_invalidate_page(si->type, offset);
741 		frontswap_invalidate_page(si->type, offset);
742 		if (swap_slot_free_notify)
743 			swap_slot_free_notify(si->bdev, offset);
744 		offset++;
745 	}
746 	clear_shadow_from_swap_cache(si->type, begin, end);
747 }
748 
749 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
750 {
751 	unsigned long prev;
752 
753 	if (!(si->flags & SWP_SOLIDSTATE)) {
754 		si->cluster_next = next;
755 		return;
756 	}
757 
758 	prev = this_cpu_read(*si->cluster_next_cpu);
759 	/*
760 	 * Cross the swap address space size aligned trunk, choose
761 	 * another trunk randomly to avoid lock contention on swap
762 	 * address space if possible.
763 	 */
764 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
765 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
766 		/* No free swap slots available */
767 		if (si->highest_bit <= si->lowest_bit)
768 			return;
769 		next = si->lowest_bit +
770 			prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
771 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
772 		next = max_t(unsigned int, next, si->lowest_bit);
773 	}
774 	this_cpu_write(*si->cluster_next_cpu, next);
775 }
776 
777 static int scan_swap_map_slots(struct swap_info_struct *si,
778 			       unsigned char usage, int nr,
779 			       swp_entry_t slots[])
780 {
781 	struct swap_cluster_info *ci;
782 	unsigned long offset;
783 	unsigned long scan_base;
784 	unsigned long last_in_cluster = 0;
785 	int latency_ration = LATENCY_LIMIT;
786 	int n_ret = 0;
787 	bool scanned_many = false;
788 
789 	/*
790 	 * We try to cluster swap pages by allocating them sequentially
791 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
792 	 * way, however, we resort to first-free allocation, starting
793 	 * a new cluster.  This prevents us from scattering swap pages
794 	 * all over the entire swap partition, so that we reduce
795 	 * overall disk seek times between swap pages.  -- sct
796 	 * But we do now try to find an empty cluster.  -Andrea
797 	 * And we let swap pages go all over an SSD partition.  Hugh
798 	 */
799 
800 	si->flags += SWP_SCANNING;
801 	/*
802 	 * Use percpu scan base for SSD to reduce lock contention on
803 	 * cluster and swap cache.  For HDD, sequential access is more
804 	 * important.
805 	 */
806 	if (si->flags & SWP_SOLIDSTATE)
807 		scan_base = this_cpu_read(*si->cluster_next_cpu);
808 	else
809 		scan_base = si->cluster_next;
810 	offset = scan_base;
811 
812 	/* SSD algorithm */
813 	if (si->cluster_info) {
814 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
815 			goto scan;
816 	} else if (unlikely(!si->cluster_nr--)) {
817 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
818 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
819 			goto checks;
820 		}
821 
822 		spin_unlock(&si->lock);
823 
824 		/*
825 		 * If seek is expensive, start searching for new cluster from
826 		 * start of partition, to minimize the span of allocated swap.
827 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
828 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
829 		 */
830 		scan_base = offset = si->lowest_bit;
831 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
832 
833 		/* Locate the first empty (unaligned) cluster */
834 		for (; last_in_cluster <= si->highest_bit; offset++) {
835 			if (si->swap_map[offset])
836 				last_in_cluster = offset + SWAPFILE_CLUSTER;
837 			else if (offset == last_in_cluster) {
838 				spin_lock(&si->lock);
839 				offset -= SWAPFILE_CLUSTER - 1;
840 				si->cluster_next = offset;
841 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
842 				goto checks;
843 			}
844 			if (unlikely(--latency_ration < 0)) {
845 				cond_resched();
846 				latency_ration = LATENCY_LIMIT;
847 			}
848 		}
849 
850 		offset = scan_base;
851 		spin_lock(&si->lock);
852 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
853 	}
854 
855 checks:
856 	if (si->cluster_info) {
857 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
858 		/* take a break if we already got some slots */
859 			if (n_ret)
860 				goto done;
861 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
862 							&scan_base))
863 				goto scan;
864 		}
865 	}
866 	if (!(si->flags & SWP_WRITEOK))
867 		goto no_page;
868 	if (!si->highest_bit)
869 		goto no_page;
870 	if (offset > si->highest_bit)
871 		scan_base = offset = si->lowest_bit;
872 
873 	ci = lock_cluster(si, offset);
874 	/* reuse swap entry of cache-only swap if not busy. */
875 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
876 		int swap_was_freed;
877 		unlock_cluster(ci);
878 		spin_unlock(&si->lock);
879 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
880 		spin_lock(&si->lock);
881 		/* entry was freed successfully, try to use this again */
882 		if (swap_was_freed)
883 			goto checks;
884 		goto scan; /* check next one */
885 	}
886 
887 	if (si->swap_map[offset]) {
888 		unlock_cluster(ci);
889 		if (!n_ret)
890 			goto scan;
891 		else
892 			goto done;
893 	}
894 	WRITE_ONCE(si->swap_map[offset], usage);
895 	inc_cluster_info_page(si, si->cluster_info, offset);
896 	unlock_cluster(ci);
897 
898 	swap_range_alloc(si, offset, 1);
899 	slots[n_ret++] = swp_entry(si->type, offset);
900 
901 	/* got enough slots or reach max slots? */
902 	if ((n_ret == nr) || (offset >= si->highest_bit))
903 		goto done;
904 
905 	/* search for next available slot */
906 
907 	/* time to take a break? */
908 	if (unlikely(--latency_ration < 0)) {
909 		if (n_ret)
910 			goto done;
911 		spin_unlock(&si->lock);
912 		cond_resched();
913 		spin_lock(&si->lock);
914 		latency_ration = LATENCY_LIMIT;
915 	}
916 
917 	/* try to get more slots in cluster */
918 	if (si->cluster_info) {
919 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
920 			goto checks;
921 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
922 		/* non-ssd case, still more slots in cluster? */
923 		--si->cluster_nr;
924 		goto checks;
925 	}
926 
927 	/*
928 	 * Even if there's no free clusters available (fragmented),
929 	 * try to scan a little more quickly with lock held unless we
930 	 * have scanned too many slots already.
931 	 */
932 	if (!scanned_many) {
933 		unsigned long scan_limit;
934 
935 		if (offset < scan_base)
936 			scan_limit = scan_base;
937 		else
938 			scan_limit = si->highest_bit;
939 		for (; offset <= scan_limit && --latency_ration > 0;
940 		     offset++) {
941 			if (!si->swap_map[offset])
942 				goto checks;
943 		}
944 	}
945 
946 done:
947 	set_cluster_next(si, offset + 1);
948 	si->flags -= SWP_SCANNING;
949 	return n_ret;
950 
951 scan:
952 	spin_unlock(&si->lock);
953 	while (++offset <= READ_ONCE(si->highest_bit)) {
954 		if (data_race(!si->swap_map[offset])) {
955 			spin_lock(&si->lock);
956 			goto checks;
957 		}
958 		if (vm_swap_full() &&
959 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
960 			spin_lock(&si->lock);
961 			goto checks;
962 		}
963 		if (unlikely(--latency_ration < 0)) {
964 			cond_resched();
965 			latency_ration = LATENCY_LIMIT;
966 			scanned_many = true;
967 		}
968 	}
969 	offset = si->lowest_bit;
970 	while (offset < scan_base) {
971 		if (data_race(!si->swap_map[offset])) {
972 			spin_lock(&si->lock);
973 			goto checks;
974 		}
975 		if (vm_swap_full() &&
976 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
977 			spin_lock(&si->lock);
978 			goto checks;
979 		}
980 		if (unlikely(--latency_ration < 0)) {
981 			cond_resched();
982 			latency_ration = LATENCY_LIMIT;
983 			scanned_many = true;
984 		}
985 		offset++;
986 	}
987 	spin_lock(&si->lock);
988 
989 no_page:
990 	si->flags -= SWP_SCANNING;
991 	return n_ret;
992 }
993 
994 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
995 {
996 	unsigned long idx;
997 	struct swap_cluster_info *ci;
998 	unsigned long offset;
999 
1000 	/*
1001 	 * Should not even be attempting cluster allocations when huge
1002 	 * page swap is disabled.  Warn and fail the allocation.
1003 	 */
1004 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1005 		VM_WARN_ON_ONCE(1);
1006 		return 0;
1007 	}
1008 
1009 	if (cluster_list_empty(&si->free_clusters))
1010 		return 0;
1011 
1012 	idx = cluster_list_first(&si->free_clusters);
1013 	offset = idx * SWAPFILE_CLUSTER;
1014 	ci = lock_cluster(si, offset);
1015 	alloc_cluster(si, idx);
1016 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1017 
1018 	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1019 	unlock_cluster(ci);
1020 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1021 	*slot = swp_entry(si->type, offset);
1022 
1023 	return 1;
1024 }
1025 
1026 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1027 {
1028 	unsigned long offset = idx * SWAPFILE_CLUSTER;
1029 	struct swap_cluster_info *ci;
1030 
1031 	ci = lock_cluster(si, offset);
1032 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1033 	cluster_set_count_flag(ci, 0, 0);
1034 	free_cluster(si, idx);
1035 	unlock_cluster(ci);
1036 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1037 }
1038 
1039 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1040 {
1041 	unsigned long size = swap_entry_size(entry_size);
1042 	struct swap_info_struct *si, *next;
1043 	long avail_pgs;
1044 	int n_ret = 0;
1045 	int node;
1046 
1047 	/* Only single cluster request supported */
1048 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1049 
1050 	spin_lock(&swap_avail_lock);
1051 
1052 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1053 	if (avail_pgs <= 0) {
1054 		spin_unlock(&swap_avail_lock);
1055 		goto noswap;
1056 	}
1057 
1058 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1059 
1060 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1061 
1062 start_over:
1063 	node = numa_node_id();
1064 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1065 		/* requeue si to after same-priority siblings */
1066 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1067 		spin_unlock(&swap_avail_lock);
1068 		spin_lock(&si->lock);
1069 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1070 			spin_lock(&swap_avail_lock);
1071 			if (plist_node_empty(&si->avail_lists[node])) {
1072 				spin_unlock(&si->lock);
1073 				goto nextsi;
1074 			}
1075 			WARN(!si->highest_bit,
1076 			     "swap_info %d in list but !highest_bit\n",
1077 			     si->type);
1078 			WARN(!(si->flags & SWP_WRITEOK),
1079 			     "swap_info %d in list but !SWP_WRITEOK\n",
1080 			     si->type);
1081 			__del_from_avail_list(si);
1082 			spin_unlock(&si->lock);
1083 			goto nextsi;
1084 		}
1085 		if (size == SWAPFILE_CLUSTER) {
1086 			if (si->flags & SWP_BLKDEV)
1087 				n_ret = swap_alloc_cluster(si, swp_entries);
1088 		} else
1089 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1090 						    n_goal, swp_entries);
1091 		spin_unlock(&si->lock);
1092 		if (n_ret || size == SWAPFILE_CLUSTER)
1093 			goto check_out;
1094 		pr_debug("scan_swap_map of si %d failed to find offset\n",
1095 			si->type);
1096 
1097 		spin_lock(&swap_avail_lock);
1098 nextsi:
1099 		/*
1100 		 * if we got here, it's likely that si was almost full before,
1101 		 * and since scan_swap_map_slots() can drop the si->lock,
1102 		 * multiple callers probably all tried to get a page from the
1103 		 * same si and it filled up before we could get one; or, the si
1104 		 * filled up between us dropping swap_avail_lock and taking
1105 		 * si->lock. Since we dropped the swap_avail_lock, the
1106 		 * swap_avail_head list may have been modified; so if next is
1107 		 * still in the swap_avail_head list then try it, otherwise
1108 		 * start over if we have not gotten any slots.
1109 		 */
1110 		if (plist_node_empty(&next->avail_lists[node]))
1111 			goto start_over;
1112 	}
1113 
1114 	spin_unlock(&swap_avail_lock);
1115 
1116 check_out:
1117 	if (n_ret < n_goal)
1118 		atomic_long_add((long)(n_goal - n_ret) * size,
1119 				&nr_swap_pages);
1120 noswap:
1121 	return n_ret;
1122 }
1123 
1124 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1125 {
1126 	struct swap_info_struct *p;
1127 	unsigned long offset;
1128 
1129 	if (!entry.val)
1130 		goto out;
1131 	p = swp_swap_info(entry);
1132 	if (!p)
1133 		goto bad_nofile;
1134 	if (data_race(!(p->flags & SWP_USED)))
1135 		goto bad_device;
1136 	offset = swp_offset(entry);
1137 	if (offset >= p->max)
1138 		goto bad_offset;
1139 	return p;
1140 
1141 bad_offset:
1142 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1143 	goto out;
1144 bad_device:
1145 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1146 	goto out;
1147 bad_nofile:
1148 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1149 out:
1150 	return NULL;
1151 }
1152 
1153 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1154 {
1155 	struct swap_info_struct *p;
1156 
1157 	p = __swap_info_get(entry);
1158 	if (!p)
1159 		goto out;
1160 	if (data_race(!p->swap_map[swp_offset(entry)]))
1161 		goto bad_free;
1162 	return p;
1163 
1164 bad_free:
1165 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1166 out:
1167 	return NULL;
1168 }
1169 
1170 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1171 {
1172 	struct swap_info_struct *p;
1173 
1174 	p = _swap_info_get(entry);
1175 	if (p)
1176 		spin_lock(&p->lock);
1177 	return p;
1178 }
1179 
1180 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1181 					struct swap_info_struct *q)
1182 {
1183 	struct swap_info_struct *p;
1184 
1185 	p = _swap_info_get(entry);
1186 
1187 	if (p != q) {
1188 		if (q != NULL)
1189 			spin_unlock(&q->lock);
1190 		if (p != NULL)
1191 			spin_lock(&p->lock);
1192 	}
1193 	return p;
1194 }
1195 
1196 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1197 					      unsigned long offset,
1198 					      unsigned char usage)
1199 {
1200 	unsigned char count;
1201 	unsigned char has_cache;
1202 
1203 	count = p->swap_map[offset];
1204 
1205 	has_cache = count & SWAP_HAS_CACHE;
1206 	count &= ~SWAP_HAS_CACHE;
1207 
1208 	if (usage == SWAP_HAS_CACHE) {
1209 		VM_BUG_ON(!has_cache);
1210 		has_cache = 0;
1211 	} else if (count == SWAP_MAP_SHMEM) {
1212 		/*
1213 		 * Or we could insist on shmem.c using a special
1214 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1215 		 */
1216 		count = 0;
1217 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1218 		if (count == COUNT_CONTINUED) {
1219 			if (swap_count_continued(p, offset, count))
1220 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1221 			else
1222 				count = SWAP_MAP_MAX;
1223 		} else
1224 			count--;
1225 	}
1226 
1227 	usage = count | has_cache;
1228 	if (usage)
1229 		WRITE_ONCE(p->swap_map[offset], usage);
1230 	else
1231 		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1232 
1233 	return usage;
1234 }
1235 
1236 /*
1237  * Check whether swap entry is valid in the swap device.  If so,
1238  * return pointer to swap_info_struct, and keep the swap entry valid
1239  * via preventing the swap device from being swapoff, until
1240  * put_swap_device() is called.  Otherwise return NULL.
1241  *
1242  * Notice that swapoff or swapoff+swapon can still happen before the
1243  * percpu_ref_tryget_live() in get_swap_device() or after the
1244  * percpu_ref_put() in put_swap_device() if there isn't any other way
1245  * to prevent swapoff, such as page lock, page table lock, etc.  The
1246  * caller must be prepared for that.  For example, the following
1247  * situation is possible.
1248  *
1249  *   CPU1				CPU2
1250  *   do_swap_page()
1251  *     ...				swapoff+swapon
1252  *     __read_swap_cache_async()
1253  *       swapcache_prepare()
1254  *         __swap_duplicate()
1255  *           // check swap_map
1256  *     // verify PTE not changed
1257  *
1258  * In __swap_duplicate(), the swap_map need to be checked before
1259  * changing partly because the specified swap entry may be for another
1260  * swap device which has been swapoff.  And in do_swap_page(), after
1261  * the page is read from the swap device, the PTE is verified not
1262  * changed with the page table locked to check whether the swap device
1263  * has been swapoff or swapoff+swapon.
1264  */
1265 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1266 {
1267 	struct swap_info_struct *si;
1268 	unsigned long offset;
1269 
1270 	if (!entry.val)
1271 		goto out;
1272 	si = swp_swap_info(entry);
1273 	if (!si)
1274 		goto bad_nofile;
1275 	if (!percpu_ref_tryget_live(&si->users))
1276 		goto out;
1277 	/*
1278 	 * Guarantee the si->users are checked before accessing other
1279 	 * fields of swap_info_struct.
1280 	 *
1281 	 * Paired with the spin_unlock() after setup_swap_info() in
1282 	 * enable_swap_info().
1283 	 */
1284 	smp_rmb();
1285 	offset = swp_offset(entry);
1286 	if (offset >= si->max)
1287 		goto put_out;
1288 
1289 	return si;
1290 bad_nofile:
1291 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1292 out:
1293 	return NULL;
1294 put_out:
1295 	percpu_ref_put(&si->users);
1296 	return NULL;
1297 }
1298 
1299 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1300 				       swp_entry_t entry)
1301 {
1302 	struct swap_cluster_info *ci;
1303 	unsigned long offset = swp_offset(entry);
1304 	unsigned char usage;
1305 
1306 	ci = lock_cluster_or_swap_info(p, offset);
1307 	usage = __swap_entry_free_locked(p, offset, 1);
1308 	unlock_cluster_or_swap_info(p, ci);
1309 	if (!usage)
1310 		free_swap_slot(entry);
1311 
1312 	return usage;
1313 }
1314 
1315 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1316 {
1317 	struct swap_cluster_info *ci;
1318 	unsigned long offset = swp_offset(entry);
1319 	unsigned char count;
1320 
1321 	ci = lock_cluster(p, offset);
1322 	count = p->swap_map[offset];
1323 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1324 	p->swap_map[offset] = 0;
1325 	dec_cluster_info_page(p, p->cluster_info, offset);
1326 	unlock_cluster(ci);
1327 
1328 	mem_cgroup_uncharge_swap(entry, 1);
1329 	swap_range_free(p, offset, 1);
1330 }
1331 
1332 /*
1333  * Caller has made sure that the swap device corresponding to entry
1334  * is still around or has not been recycled.
1335  */
1336 void swap_free(swp_entry_t entry)
1337 {
1338 	struct swap_info_struct *p;
1339 
1340 	p = _swap_info_get(entry);
1341 	if (p)
1342 		__swap_entry_free(p, entry);
1343 }
1344 
1345 /*
1346  * Called after dropping swapcache to decrease refcnt to swap entries.
1347  */
1348 void put_swap_page(struct page *page, swp_entry_t entry)
1349 {
1350 	unsigned long offset = swp_offset(entry);
1351 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1352 	struct swap_cluster_info *ci;
1353 	struct swap_info_struct *si;
1354 	unsigned char *map;
1355 	unsigned int i, free_entries = 0;
1356 	unsigned char val;
1357 	int size = swap_entry_size(thp_nr_pages(page));
1358 
1359 	si = _swap_info_get(entry);
1360 	if (!si)
1361 		return;
1362 
1363 	ci = lock_cluster_or_swap_info(si, offset);
1364 	if (size == SWAPFILE_CLUSTER) {
1365 		VM_BUG_ON(!cluster_is_huge(ci));
1366 		map = si->swap_map + offset;
1367 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1368 			val = map[i];
1369 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1370 			if (val == SWAP_HAS_CACHE)
1371 				free_entries++;
1372 		}
1373 		cluster_clear_huge(ci);
1374 		if (free_entries == SWAPFILE_CLUSTER) {
1375 			unlock_cluster_or_swap_info(si, ci);
1376 			spin_lock(&si->lock);
1377 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1378 			swap_free_cluster(si, idx);
1379 			spin_unlock(&si->lock);
1380 			return;
1381 		}
1382 	}
1383 	for (i = 0; i < size; i++, entry.val++) {
1384 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1385 			unlock_cluster_or_swap_info(si, ci);
1386 			free_swap_slot(entry);
1387 			if (i == size - 1)
1388 				return;
1389 			lock_cluster_or_swap_info(si, offset);
1390 		}
1391 	}
1392 	unlock_cluster_or_swap_info(si, ci);
1393 }
1394 
1395 #ifdef CONFIG_THP_SWAP
1396 int split_swap_cluster(swp_entry_t entry)
1397 {
1398 	struct swap_info_struct *si;
1399 	struct swap_cluster_info *ci;
1400 	unsigned long offset = swp_offset(entry);
1401 
1402 	si = _swap_info_get(entry);
1403 	if (!si)
1404 		return -EBUSY;
1405 	ci = lock_cluster(si, offset);
1406 	cluster_clear_huge(ci);
1407 	unlock_cluster(ci);
1408 	return 0;
1409 }
1410 #endif
1411 
1412 static int swp_entry_cmp(const void *ent1, const void *ent2)
1413 {
1414 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1415 
1416 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1417 }
1418 
1419 void swapcache_free_entries(swp_entry_t *entries, int n)
1420 {
1421 	struct swap_info_struct *p, *prev;
1422 	int i;
1423 
1424 	if (n <= 0)
1425 		return;
1426 
1427 	prev = NULL;
1428 	p = NULL;
1429 
1430 	/*
1431 	 * Sort swap entries by swap device, so each lock is only taken once.
1432 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1433 	 * so low that it isn't necessary to optimize further.
1434 	 */
1435 	if (nr_swapfiles > 1)
1436 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1437 	for (i = 0; i < n; ++i) {
1438 		p = swap_info_get_cont(entries[i], prev);
1439 		if (p)
1440 			swap_entry_free(p, entries[i]);
1441 		prev = p;
1442 	}
1443 	if (p)
1444 		spin_unlock(&p->lock);
1445 }
1446 
1447 /*
1448  * How many references to page are currently swapped out?
1449  * This does not give an exact answer when swap count is continued,
1450  * but does include the high COUNT_CONTINUED flag to allow for that.
1451  */
1452 int page_swapcount(struct page *page)
1453 {
1454 	int count = 0;
1455 	struct swap_info_struct *p;
1456 	struct swap_cluster_info *ci;
1457 	swp_entry_t entry;
1458 	unsigned long offset;
1459 
1460 	entry.val = page_private(page);
1461 	p = _swap_info_get(entry);
1462 	if (p) {
1463 		offset = swp_offset(entry);
1464 		ci = lock_cluster_or_swap_info(p, offset);
1465 		count = swap_count(p->swap_map[offset]);
1466 		unlock_cluster_or_swap_info(p, ci);
1467 	}
1468 	return count;
1469 }
1470 
1471 int __swap_count(swp_entry_t entry)
1472 {
1473 	struct swap_info_struct *si;
1474 	pgoff_t offset = swp_offset(entry);
1475 	int count = 0;
1476 
1477 	si = get_swap_device(entry);
1478 	if (si) {
1479 		count = swap_count(si->swap_map[offset]);
1480 		put_swap_device(si);
1481 	}
1482 	return count;
1483 }
1484 
1485 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1486 {
1487 	int count = 0;
1488 	pgoff_t offset = swp_offset(entry);
1489 	struct swap_cluster_info *ci;
1490 
1491 	ci = lock_cluster_or_swap_info(si, offset);
1492 	count = swap_count(si->swap_map[offset]);
1493 	unlock_cluster_or_swap_info(si, ci);
1494 	return count;
1495 }
1496 
1497 /*
1498  * How many references to @entry are currently swapped out?
1499  * This does not give an exact answer when swap count is continued,
1500  * but does include the high COUNT_CONTINUED flag to allow for that.
1501  */
1502 int __swp_swapcount(swp_entry_t entry)
1503 {
1504 	int count = 0;
1505 	struct swap_info_struct *si;
1506 
1507 	si = get_swap_device(entry);
1508 	if (si) {
1509 		count = swap_swapcount(si, entry);
1510 		put_swap_device(si);
1511 	}
1512 	return count;
1513 }
1514 
1515 /*
1516  * How many references to @entry are currently swapped out?
1517  * This considers COUNT_CONTINUED so it returns exact answer.
1518  */
1519 int swp_swapcount(swp_entry_t entry)
1520 {
1521 	int count, tmp_count, n;
1522 	struct swap_info_struct *p;
1523 	struct swap_cluster_info *ci;
1524 	struct page *page;
1525 	pgoff_t offset;
1526 	unsigned char *map;
1527 
1528 	p = _swap_info_get(entry);
1529 	if (!p)
1530 		return 0;
1531 
1532 	offset = swp_offset(entry);
1533 
1534 	ci = lock_cluster_or_swap_info(p, offset);
1535 
1536 	count = swap_count(p->swap_map[offset]);
1537 	if (!(count & COUNT_CONTINUED))
1538 		goto out;
1539 
1540 	count &= ~COUNT_CONTINUED;
1541 	n = SWAP_MAP_MAX + 1;
1542 
1543 	page = vmalloc_to_page(p->swap_map + offset);
1544 	offset &= ~PAGE_MASK;
1545 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1546 
1547 	do {
1548 		page = list_next_entry(page, lru);
1549 		map = kmap_atomic(page);
1550 		tmp_count = map[offset];
1551 		kunmap_atomic(map);
1552 
1553 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1554 		n *= (SWAP_CONT_MAX + 1);
1555 	} while (tmp_count & COUNT_CONTINUED);
1556 out:
1557 	unlock_cluster_or_swap_info(p, ci);
1558 	return count;
1559 }
1560 
1561 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1562 					 swp_entry_t entry)
1563 {
1564 	struct swap_cluster_info *ci;
1565 	unsigned char *map = si->swap_map;
1566 	unsigned long roffset = swp_offset(entry);
1567 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1568 	int i;
1569 	bool ret = false;
1570 
1571 	ci = lock_cluster_or_swap_info(si, offset);
1572 	if (!ci || !cluster_is_huge(ci)) {
1573 		if (swap_count(map[roffset]))
1574 			ret = true;
1575 		goto unlock_out;
1576 	}
1577 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1578 		if (swap_count(map[offset + i])) {
1579 			ret = true;
1580 			break;
1581 		}
1582 	}
1583 unlock_out:
1584 	unlock_cluster_or_swap_info(si, ci);
1585 	return ret;
1586 }
1587 
1588 static bool page_swapped(struct page *page)
1589 {
1590 	swp_entry_t entry;
1591 	struct swap_info_struct *si;
1592 
1593 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1594 		return page_swapcount(page) != 0;
1595 
1596 	page = compound_head(page);
1597 	entry.val = page_private(page);
1598 	si = _swap_info_get(entry);
1599 	if (si)
1600 		return swap_page_trans_huge_swapped(si, entry);
1601 	return false;
1602 }
1603 
1604 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1605 					 int *total_swapcount)
1606 {
1607 	int i, map_swapcount, _total_mapcount, _total_swapcount;
1608 	unsigned long offset = 0;
1609 	struct swap_info_struct *si;
1610 	struct swap_cluster_info *ci = NULL;
1611 	unsigned char *map = NULL;
1612 	int mapcount, swapcount = 0;
1613 
1614 	/* hugetlbfs shouldn't call it */
1615 	VM_BUG_ON_PAGE(PageHuge(page), page);
1616 
1617 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1618 		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1619 		if (PageSwapCache(page))
1620 			swapcount = page_swapcount(page);
1621 		if (total_swapcount)
1622 			*total_swapcount = swapcount;
1623 		return mapcount + swapcount;
1624 	}
1625 
1626 	page = compound_head(page);
1627 
1628 	_total_mapcount = _total_swapcount = map_swapcount = 0;
1629 	if (PageSwapCache(page)) {
1630 		swp_entry_t entry;
1631 
1632 		entry.val = page_private(page);
1633 		si = _swap_info_get(entry);
1634 		if (si) {
1635 			map = si->swap_map;
1636 			offset = swp_offset(entry);
1637 		}
1638 	}
1639 	if (map)
1640 		ci = lock_cluster(si, offset);
1641 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1642 		mapcount = atomic_read(&page[i]._mapcount) + 1;
1643 		_total_mapcount += mapcount;
1644 		if (map) {
1645 			swapcount = swap_count(map[offset + i]);
1646 			_total_swapcount += swapcount;
1647 		}
1648 		map_swapcount = max(map_swapcount, mapcount + swapcount);
1649 	}
1650 	unlock_cluster(ci);
1651 	if (PageDoubleMap(page)) {
1652 		map_swapcount -= 1;
1653 		_total_mapcount -= HPAGE_PMD_NR;
1654 	}
1655 	mapcount = compound_mapcount(page);
1656 	map_swapcount += mapcount;
1657 	_total_mapcount += mapcount;
1658 	if (total_mapcount)
1659 		*total_mapcount = _total_mapcount;
1660 	if (total_swapcount)
1661 		*total_swapcount = _total_swapcount;
1662 
1663 	return map_swapcount;
1664 }
1665 
1666 /*
1667  * We can write to an anon page without COW if there are no other references
1668  * to it.  And as a side-effect, free up its swap: because the old content
1669  * on disk will never be read, and seeking back there to write new content
1670  * later would only waste time away from clustering.
1671  *
1672  * NOTE: total_map_swapcount should not be relied upon by the caller if
1673  * reuse_swap_page() returns false, but it may be always overwritten
1674  * (see the other implementation for CONFIG_SWAP=n).
1675  */
1676 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1677 {
1678 	int count, total_mapcount, total_swapcount;
1679 
1680 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1681 	if (unlikely(PageKsm(page)))
1682 		return false;
1683 	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1684 					      &total_swapcount);
1685 	if (total_map_swapcount)
1686 		*total_map_swapcount = total_mapcount + total_swapcount;
1687 	if (count == 1 && PageSwapCache(page) &&
1688 	    (likely(!PageTransCompound(page)) ||
1689 	     /* The remaining swap count will be freed soon */
1690 	     total_swapcount == page_swapcount(page))) {
1691 		if (!PageWriteback(page)) {
1692 			page = compound_head(page);
1693 			delete_from_swap_cache(page);
1694 			SetPageDirty(page);
1695 		} else {
1696 			swp_entry_t entry;
1697 			struct swap_info_struct *p;
1698 
1699 			entry.val = page_private(page);
1700 			p = swap_info_get(entry);
1701 			if (p->flags & SWP_STABLE_WRITES) {
1702 				spin_unlock(&p->lock);
1703 				return false;
1704 			}
1705 			spin_unlock(&p->lock);
1706 		}
1707 	}
1708 
1709 	return count <= 1;
1710 }
1711 
1712 /*
1713  * If swap is getting full, or if there are no more mappings of this page,
1714  * then try_to_free_swap is called to free its swap space.
1715  */
1716 int try_to_free_swap(struct page *page)
1717 {
1718 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1719 
1720 	if (!PageSwapCache(page))
1721 		return 0;
1722 	if (PageWriteback(page))
1723 		return 0;
1724 	if (page_swapped(page))
1725 		return 0;
1726 
1727 	/*
1728 	 * Once hibernation has begun to create its image of memory,
1729 	 * there's a danger that one of the calls to try_to_free_swap()
1730 	 * - most probably a call from __try_to_reclaim_swap() while
1731 	 * hibernation is allocating its own swap pages for the image,
1732 	 * but conceivably even a call from memory reclaim - will free
1733 	 * the swap from a page which has already been recorded in the
1734 	 * image as a clean swapcache page, and then reuse its swap for
1735 	 * another page of the image.  On waking from hibernation, the
1736 	 * original page might be freed under memory pressure, then
1737 	 * later read back in from swap, now with the wrong data.
1738 	 *
1739 	 * Hibernation suspends storage while it is writing the image
1740 	 * to disk so check that here.
1741 	 */
1742 	if (pm_suspended_storage())
1743 		return 0;
1744 
1745 	page = compound_head(page);
1746 	delete_from_swap_cache(page);
1747 	SetPageDirty(page);
1748 	return 1;
1749 }
1750 
1751 /*
1752  * Free the swap entry like above, but also try to
1753  * free the page cache entry if it is the last user.
1754  */
1755 int free_swap_and_cache(swp_entry_t entry)
1756 {
1757 	struct swap_info_struct *p;
1758 	unsigned char count;
1759 
1760 	if (non_swap_entry(entry))
1761 		return 1;
1762 
1763 	p = _swap_info_get(entry);
1764 	if (p) {
1765 		count = __swap_entry_free(p, entry);
1766 		if (count == SWAP_HAS_CACHE &&
1767 		    !swap_page_trans_huge_swapped(p, entry))
1768 			__try_to_reclaim_swap(p, swp_offset(entry),
1769 					      TTRS_UNMAPPED | TTRS_FULL);
1770 	}
1771 	return p != NULL;
1772 }
1773 
1774 #ifdef CONFIG_HIBERNATION
1775 
1776 swp_entry_t get_swap_page_of_type(int type)
1777 {
1778 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1779 	swp_entry_t entry = {0};
1780 
1781 	if (!si)
1782 		goto fail;
1783 
1784 	/* This is called for allocating swap entry, not cache */
1785 	spin_lock(&si->lock);
1786 	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1787 		atomic_long_dec(&nr_swap_pages);
1788 	spin_unlock(&si->lock);
1789 fail:
1790 	return entry;
1791 }
1792 
1793 /*
1794  * Find the swap type that corresponds to given device (if any).
1795  *
1796  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1797  * from 0, in which the swap header is expected to be located.
1798  *
1799  * This is needed for the suspend to disk (aka swsusp).
1800  */
1801 int swap_type_of(dev_t device, sector_t offset)
1802 {
1803 	int type;
1804 
1805 	if (!device)
1806 		return -1;
1807 
1808 	spin_lock(&swap_lock);
1809 	for (type = 0; type < nr_swapfiles; type++) {
1810 		struct swap_info_struct *sis = swap_info[type];
1811 
1812 		if (!(sis->flags & SWP_WRITEOK))
1813 			continue;
1814 
1815 		if (device == sis->bdev->bd_dev) {
1816 			struct swap_extent *se = first_se(sis);
1817 
1818 			if (se->start_block == offset) {
1819 				spin_unlock(&swap_lock);
1820 				return type;
1821 			}
1822 		}
1823 	}
1824 	spin_unlock(&swap_lock);
1825 	return -ENODEV;
1826 }
1827 
1828 int find_first_swap(dev_t *device)
1829 {
1830 	int type;
1831 
1832 	spin_lock(&swap_lock);
1833 	for (type = 0; type < nr_swapfiles; type++) {
1834 		struct swap_info_struct *sis = swap_info[type];
1835 
1836 		if (!(sis->flags & SWP_WRITEOK))
1837 			continue;
1838 		*device = sis->bdev->bd_dev;
1839 		spin_unlock(&swap_lock);
1840 		return type;
1841 	}
1842 	spin_unlock(&swap_lock);
1843 	return -ENODEV;
1844 }
1845 
1846 /*
1847  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1848  * corresponding to given index in swap_info (swap type).
1849  */
1850 sector_t swapdev_block(int type, pgoff_t offset)
1851 {
1852 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1853 	struct swap_extent *se;
1854 
1855 	if (!si || !(si->flags & SWP_WRITEOK))
1856 		return 0;
1857 	se = offset_to_swap_extent(si, offset);
1858 	return se->start_block + (offset - se->start_page);
1859 }
1860 
1861 /*
1862  * Return either the total number of swap pages of given type, or the number
1863  * of free pages of that type (depending on @free)
1864  *
1865  * This is needed for software suspend
1866  */
1867 unsigned int count_swap_pages(int type, int free)
1868 {
1869 	unsigned int n = 0;
1870 
1871 	spin_lock(&swap_lock);
1872 	if ((unsigned int)type < nr_swapfiles) {
1873 		struct swap_info_struct *sis = swap_info[type];
1874 
1875 		spin_lock(&sis->lock);
1876 		if (sis->flags & SWP_WRITEOK) {
1877 			n = sis->pages;
1878 			if (free)
1879 				n -= sis->inuse_pages;
1880 		}
1881 		spin_unlock(&sis->lock);
1882 	}
1883 	spin_unlock(&swap_lock);
1884 	return n;
1885 }
1886 #endif /* CONFIG_HIBERNATION */
1887 
1888 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1889 {
1890 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1891 }
1892 
1893 /*
1894  * No need to decide whether this PTE shares the swap entry with others,
1895  * just let do_wp_page work it out if a write is requested later - to
1896  * force COW, vm_page_prot omits write permission from any private vma.
1897  */
1898 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1899 		unsigned long addr, swp_entry_t entry, struct page *page)
1900 {
1901 	struct page *swapcache;
1902 	spinlock_t *ptl;
1903 	pte_t *pte;
1904 	int ret = 1;
1905 
1906 	swapcache = page;
1907 	page = ksm_might_need_to_copy(page, vma, addr);
1908 	if (unlikely(!page))
1909 		return -ENOMEM;
1910 
1911 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1912 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1913 		ret = 0;
1914 		goto out;
1915 	}
1916 
1917 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1918 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1919 	get_page(page);
1920 	set_pte_at(vma->vm_mm, addr, pte,
1921 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1922 	if (page == swapcache) {
1923 		page_add_anon_rmap(page, vma, addr, false);
1924 	} else { /* ksm created a completely new copy */
1925 		page_add_new_anon_rmap(page, vma, addr, false);
1926 		lru_cache_add_inactive_or_unevictable(page, vma);
1927 	}
1928 	swap_free(entry);
1929 out:
1930 	pte_unmap_unlock(pte, ptl);
1931 	if (page != swapcache) {
1932 		unlock_page(page);
1933 		put_page(page);
1934 	}
1935 	return ret;
1936 }
1937 
1938 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1939 			unsigned long addr, unsigned long end,
1940 			unsigned int type, bool frontswap,
1941 			unsigned long *fs_pages_to_unuse)
1942 {
1943 	struct page *page;
1944 	swp_entry_t entry;
1945 	pte_t *pte;
1946 	struct swap_info_struct *si;
1947 	unsigned long offset;
1948 	int ret = 0;
1949 	volatile unsigned char *swap_map;
1950 
1951 	si = swap_info[type];
1952 	pte = pte_offset_map(pmd, addr);
1953 	do {
1954 		if (!is_swap_pte(*pte))
1955 			continue;
1956 
1957 		entry = pte_to_swp_entry(*pte);
1958 		if (swp_type(entry) != type)
1959 			continue;
1960 
1961 		offset = swp_offset(entry);
1962 		if (frontswap && !frontswap_test(si, offset))
1963 			continue;
1964 
1965 		pte_unmap(pte);
1966 		swap_map = &si->swap_map[offset];
1967 		page = lookup_swap_cache(entry, vma, addr);
1968 		if (!page) {
1969 			struct vm_fault vmf = {
1970 				.vma = vma,
1971 				.address = addr,
1972 				.pmd = pmd,
1973 			};
1974 
1975 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1976 						&vmf);
1977 		}
1978 		if (!page) {
1979 			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1980 				goto try_next;
1981 			return -ENOMEM;
1982 		}
1983 
1984 		lock_page(page);
1985 		wait_on_page_writeback(page);
1986 		ret = unuse_pte(vma, pmd, addr, entry, page);
1987 		if (ret < 0) {
1988 			unlock_page(page);
1989 			put_page(page);
1990 			goto out;
1991 		}
1992 
1993 		try_to_free_swap(page);
1994 		unlock_page(page);
1995 		put_page(page);
1996 
1997 		if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1998 			ret = FRONTSWAP_PAGES_UNUSED;
1999 			goto out;
2000 		}
2001 try_next:
2002 		pte = pte_offset_map(pmd, addr);
2003 	} while (pte++, addr += PAGE_SIZE, addr != end);
2004 	pte_unmap(pte - 1);
2005 
2006 	ret = 0;
2007 out:
2008 	return ret;
2009 }
2010 
2011 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2012 				unsigned long addr, unsigned long end,
2013 				unsigned int type, bool frontswap,
2014 				unsigned long *fs_pages_to_unuse)
2015 {
2016 	pmd_t *pmd;
2017 	unsigned long next;
2018 	int ret;
2019 
2020 	pmd = pmd_offset(pud, addr);
2021 	do {
2022 		cond_resched();
2023 		next = pmd_addr_end(addr, end);
2024 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2025 			continue;
2026 		ret = unuse_pte_range(vma, pmd, addr, next, type,
2027 				      frontswap, fs_pages_to_unuse);
2028 		if (ret)
2029 			return ret;
2030 	} while (pmd++, addr = next, addr != end);
2031 	return 0;
2032 }
2033 
2034 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2035 				unsigned long addr, unsigned long end,
2036 				unsigned int type, bool frontswap,
2037 				unsigned long *fs_pages_to_unuse)
2038 {
2039 	pud_t *pud;
2040 	unsigned long next;
2041 	int ret;
2042 
2043 	pud = pud_offset(p4d, addr);
2044 	do {
2045 		next = pud_addr_end(addr, end);
2046 		if (pud_none_or_clear_bad(pud))
2047 			continue;
2048 		ret = unuse_pmd_range(vma, pud, addr, next, type,
2049 				      frontswap, fs_pages_to_unuse);
2050 		if (ret)
2051 			return ret;
2052 	} while (pud++, addr = next, addr != end);
2053 	return 0;
2054 }
2055 
2056 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2057 				unsigned long addr, unsigned long end,
2058 				unsigned int type, bool frontswap,
2059 				unsigned long *fs_pages_to_unuse)
2060 {
2061 	p4d_t *p4d;
2062 	unsigned long next;
2063 	int ret;
2064 
2065 	p4d = p4d_offset(pgd, addr);
2066 	do {
2067 		next = p4d_addr_end(addr, end);
2068 		if (p4d_none_or_clear_bad(p4d))
2069 			continue;
2070 		ret = unuse_pud_range(vma, p4d, addr, next, type,
2071 				      frontswap, fs_pages_to_unuse);
2072 		if (ret)
2073 			return ret;
2074 	} while (p4d++, addr = next, addr != end);
2075 	return 0;
2076 }
2077 
2078 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2079 		     bool frontswap, unsigned long *fs_pages_to_unuse)
2080 {
2081 	pgd_t *pgd;
2082 	unsigned long addr, end, next;
2083 	int ret;
2084 
2085 	addr = vma->vm_start;
2086 	end = vma->vm_end;
2087 
2088 	pgd = pgd_offset(vma->vm_mm, addr);
2089 	do {
2090 		next = pgd_addr_end(addr, end);
2091 		if (pgd_none_or_clear_bad(pgd))
2092 			continue;
2093 		ret = unuse_p4d_range(vma, pgd, addr, next, type,
2094 				      frontswap, fs_pages_to_unuse);
2095 		if (ret)
2096 			return ret;
2097 	} while (pgd++, addr = next, addr != end);
2098 	return 0;
2099 }
2100 
2101 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2102 		    bool frontswap, unsigned long *fs_pages_to_unuse)
2103 {
2104 	struct vm_area_struct *vma;
2105 	int ret = 0;
2106 
2107 	mmap_read_lock(mm);
2108 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2109 		if (vma->anon_vma) {
2110 			ret = unuse_vma(vma, type, frontswap,
2111 					fs_pages_to_unuse);
2112 			if (ret)
2113 				break;
2114 		}
2115 		cond_resched();
2116 	}
2117 	mmap_read_unlock(mm);
2118 	return ret;
2119 }
2120 
2121 /*
2122  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2123  * from current position to next entry still in use. Return 0
2124  * if there are no inuse entries after prev till end of the map.
2125  */
2126 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2127 					unsigned int prev, bool frontswap)
2128 {
2129 	unsigned int i;
2130 	unsigned char count;
2131 
2132 	/*
2133 	 * No need for swap_lock here: we're just looking
2134 	 * for whether an entry is in use, not modifying it; false
2135 	 * hits are okay, and sys_swapoff() has already prevented new
2136 	 * allocations from this area (while holding swap_lock).
2137 	 */
2138 	for (i = prev + 1; i < si->max; i++) {
2139 		count = READ_ONCE(si->swap_map[i]);
2140 		if (count && swap_count(count) != SWAP_MAP_BAD)
2141 			if (!frontswap || frontswap_test(si, i))
2142 				break;
2143 		if ((i % LATENCY_LIMIT) == 0)
2144 			cond_resched();
2145 	}
2146 
2147 	if (i == si->max)
2148 		i = 0;
2149 
2150 	return i;
2151 }
2152 
2153 /*
2154  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2155  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2156  */
2157 int try_to_unuse(unsigned int type, bool frontswap,
2158 		 unsigned long pages_to_unuse)
2159 {
2160 	struct mm_struct *prev_mm;
2161 	struct mm_struct *mm;
2162 	struct list_head *p;
2163 	int retval = 0;
2164 	struct swap_info_struct *si = swap_info[type];
2165 	struct page *page;
2166 	swp_entry_t entry;
2167 	unsigned int i;
2168 
2169 	if (!READ_ONCE(si->inuse_pages))
2170 		return 0;
2171 
2172 	if (!frontswap)
2173 		pages_to_unuse = 0;
2174 
2175 retry:
2176 	retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2177 	if (retval)
2178 		goto out;
2179 
2180 	prev_mm = &init_mm;
2181 	mmget(prev_mm);
2182 
2183 	spin_lock(&mmlist_lock);
2184 	p = &init_mm.mmlist;
2185 	while (READ_ONCE(si->inuse_pages) &&
2186 	       !signal_pending(current) &&
2187 	       (p = p->next) != &init_mm.mmlist) {
2188 
2189 		mm = list_entry(p, struct mm_struct, mmlist);
2190 		if (!mmget_not_zero(mm))
2191 			continue;
2192 		spin_unlock(&mmlist_lock);
2193 		mmput(prev_mm);
2194 		prev_mm = mm;
2195 		retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2196 
2197 		if (retval) {
2198 			mmput(prev_mm);
2199 			goto out;
2200 		}
2201 
2202 		/*
2203 		 * Make sure that we aren't completely killing
2204 		 * interactive performance.
2205 		 */
2206 		cond_resched();
2207 		spin_lock(&mmlist_lock);
2208 	}
2209 	spin_unlock(&mmlist_lock);
2210 
2211 	mmput(prev_mm);
2212 
2213 	i = 0;
2214 	while (READ_ONCE(si->inuse_pages) &&
2215 	       !signal_pending(current) &&
2216 	       (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2217 
2218 		entry = swp_entry(type, i);
2219 		page = find_get_page(swap_address_space(entry), i);
2220 		if (!page)
2221 			continue;
2222 
2223 		/*
2224 		 * It is conceivable that a racing task removed this page from
2225 		 * swap cache just before we acquired the page lock. The page
2226 		 * might even be back in swap cache on another swap area. But
2227 		 * that is okay, try_to_free_swap() only removes stale pages.
2228 		 */
2229 		lock_page(page);
2230 		wait_on_page_writeback(page);
2231 		try_to_free_swap(page);
2232 		unlock_page(page);
2233 		put_page(page);
2234 
2235 		/*
2236 		 * For frontswap, we just need to unuse pages_to_unuse, if
2237 		 * it was specified. Need not check frontswap again here as
2238 		 * we already zeroed out pages_to_unuse if not frontswap.
2239 		 */
2240 		if (pages_to_unuse && --pages_to_unuse == 0)
2241 			goto out;
2242 	}
2243 
2244 	/*
2245 	 * Lets check again to see if there are still swap entries in the map.
2246 	 * If yes, we would need to do retry the unuse logic again.
2247 	 * Under global memory pressure, swap entries can be reinserted back
2248 	 * into process space after the mmlist loop above passes over them.
2249 	 *
2250 	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2251 	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2252 	 * at its own independent pace; and even shmem_writepage() could have
2253 	 * been preempted after get_swap_page(), temporarily hiding that swap.
2254 	 * It's easy and robust (though cpu-intensive) just to keep retrying.
2255 	 */
2256 	if (READ_ONCE(si->inuse_pages)) {
2257 		if (!signal_pending(current))
2258 			goto retry;
2259 		retval = -EINTR;
2260 	}
2261 out:
2262 	return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2263 }
2264 
2265 /*
2266  * After a successful try_to_unuse, if no swap is now in use, we know
2267  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2268  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2269  * added to the mmlist just after page_duplicate - before would be racy.
2270  */
2271 static void drain_mmlist(void)
2272 {
2273 	struct list_head *p, *next;
2274 	unsigned int type;
2275 
2276 	for (type = 0; type < nr_swapfiles; type++)
2277 		if (swap_info[type]->inuse_pages)
2278 			return;
2279 	spin_lock(&mmlist_lock);
2280 	list_for_each_safe(p, next, &init_mm.mmlist)
2281 		list_del_init(p);
2282 	spin_unlock(&mmlist_lock);
2283 }
2284 
2285 /*
2286  * Free all of a swapdev's extent information
2287  */
2288 static void destroy_swap_extents(struct swap_info_struct *sis)
2289 {
2290 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2291 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2292 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2293 
2294 		rb_erase(rb, &sis->swap_extent_root);
2295 		kfree(se);
2296 	}
2297 
2298 	if (sis->flags & SWP_ACTIVATED) {
2299 		struct file *swap_file = sis->swap_file;
2300 		struct address_space *mapping = swap_file->f_mapping;
2301 
2302 		sis->flags &= ~SWP_ACTIVATED;
2303 		if (mapping->a_ops->swap_deactivate)
2304 			mapping->a_ops->swap_deactivate(swap_file);
2305 	}
2306 }
2307 
2308 /*
2309  * Add a block range (and the corresponding page range) into this swapdev's
2310  * extent tree.
2311  *
2312  * This function rather assumes that it is called in ascending page order.
2313  */
2314 int
2315 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2316 		unsigned long nr_pages, sector_t start_block)
2317 {
2318 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2319 	struct swap_extent *se;
2320 	struct swap_extent *new_se;
2321 
2322 	/*
2323 	 * place the new node at the right most since the
2324 	 * function is called in ascending page order.
2325 	 */
2326 	while (*link) {
2327 		parent = *link;
2328 		link = &parent->rb_right;
2329 	}
2330 
2331 	if (parent) {
2332 		se = rb_entry(parent, struct swap_extent, rb_node);
2333 		BUG_ON(se->start_page + se->nr_pages != start_page);
2334 		if (se->start_block + se->nr_pages == start_block) {
2335 			/* Merge it */
2336 			se->nr_pages += nr_pages;
2337 			return 0;
2338 		}
2339 	}
2340 
2341 	/* No merge, insert a new extent. */
2342 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2343 	if (new_se == NULL)
2344 		return -ENOMEM;
2345 	new_se->start_page = start_page;
2346 	new_se->nr_pages = nr_pages;
2347 	new_se->start_block = start_block;
2348 
2349 	rb_link_node(&new_se->rb_node, parent, link);
2350 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2351 	return 1;
2352 }
2353 EXPORT_SYMBOL_GPL(add_swap_extent);
2354 
2355 /*
2356  * A `swap extent' is a simple thing which maps a contiguous range of pages
2357  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2358  * is built at swapon time and is then used at swap_writepage/swap_readpage
2359  * time for locating where on disk a page belongs.
2360  *
2361  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2362  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2363  * swap files identically.
2364  *
2365  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2366  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2367  * swapfiles are handled *identically* after swapon time.
2368  *
2369  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2370  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2371  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2372  * requirements, they are simply tossed out - we will never use those blocks
2373  * for swapping.
2374  *
2375  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2376  * prevents users from writing to the swap device, which will corrupt memory.
2377  *
2378  * The amount of disk space which a single swap extent represents varies.
2379  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2380  * extents in the list.  To avoid much list walking, we cache the previous
2381  * search location in `curr_swap_extent', and start new searches from there.
2382  * This is extremely effective.  The average number of iterations in
2383  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2384  */
2385 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2386 {
2387 	struct file *swap_file = sis->swap_file;
2388 	struct address_space *mapping = swap_file->f_mapping;
2389 	struct inode *inode = mapping->host;
2390 	int ret;
2391 
2392 	if (S_ISBLK(inode->i_mode)) {
2393 		ret = add_swap_extent(sis, 0, sis->max, 0);
2394 		*span = sis->pages;
2395 		return ret;
2396 	}
2397 
2398 	if (mapping->a_ops->swap_activate) {
2399 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2400 		if (ret >= 0)
2401 			sis->flags |= SWP_ACTIVATED;
2402 		if (!ret) {
2403 			sis->flags |= SWP_FS_OPS;
2404 			ret = add_swap_extent(sis, 0, sis->max, 0);
2405 			*span = sis->pages;
2406 		}
2407 		return ret;
2408 	}
2409 
2410 	return generic_swapfile_activate(sis, swap_file, span);
2411 }
2412 
2413 static int swap_node(struct swap_info_struct *p)
2414 {
2415 	struct block_device *bdev;
2416 
2417 	if (p->bdev)
2418 		bdev = p->bdev;
2419 	else
2420 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2421 
2422 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2423 }
2424 
2425 static void setup_swap_info(struct swap_info_struct *p, int prio,
2426 			    unsigned char *swap_map,
2427 			    struct swap_cluster_info *cluster_info)
2428 {
2429 	int i;
2430 
2431 	if (prio >= 0)
2432 		p->prio = prio;
2433 	else
2434 		p->prio = --least_priority;
2435 	/*
2436 	 * the plist prio is negated because plist ordering is
2437 	 * low-to-high, while swap ordering is high-to-low
2438 	 */
2439 	p->list.prio = -p->prio;
2440 	for_each_node(i) {
2441 		if (p->prio >= 0)
2442 			p->avail_lists[i].prio = -p->prio;
2443 		else {
2444 			if (swap_node(p) == i)
2445 				p->avail_lists[i].prio = 1;
2446 			else
2447 				p->avail_lists[i].prio = -p->prio;
2448 		}
2449 	}
2450 	p->swap_map = swap_map;
2451 	p->cluster_info = cluster_info;
2452 }
2453 
2454 static void _enable_swap_info(struct swap_info_struct *p)
2455 {
2456 	p->flags |= SWP_WRITEOK;
2457 	atomic_long_add(p->pages, &nr_swap_pages);
2458 	total_swap_pages += p->pages;
2459 
2460 	assert_spin_locked(&swap_lock);
2461 	/*
2462 	 * both lists are plists, and thus priority ordered.
2463 	 * swap_active_head needs to be priority ordered for swapoff(),
2464 	 * which on removal of any swap_info_struct with an auto-assigned
2465 	 * (i.e. negative) priority increments the auto-assigned priority
2466 	 * of any lower-priority swap_info_structs.
2467 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2468 	 * which allocates swap pages from the highest available priority
2469 	 * swap_info_struct.
2470 	 */
2471 	plist_add(&p->list, &swap_active_head);
2472 	add_to_avail_list(p);
2473 }
2474 
2475 static void enable_swap_info(struct swap_info_struct *p, int prio,
2476 				unsigned char *swap_map,
2477 				struct swap_cluster_info *cluster_info,
2478 				unsigned long *frontswap_map)
2479 {
2480 	frontswap_init(p->type, frontswap_map);
2481 	spin_lock(&swap_lock);
2482 	spin_lock(&p->lock);
2483 	setup_swap_info(p, prio, swap_map, cluster_info);
2484 	spin_unlock(&p->lock);
2485 	spin_unlock(&swap_lock);
2486 	/*
2487 	 * Finished initializing swap device, now it's safe to reference it.
2488 	 */
2489 	percpu_ref_resurrect(&p->users);
2490 	spin_lock(&swap_lock);
2491 	spin_lock(&p->lock);
2492 	_enable_swap_info(p);
2493 	spin_unlock(&p->lock);
2494 	spin_unlock(&swap_lock);
2495 }
2496 
2497 static void reinsert_swap_info(struct swap_info_struct *p)
2498 {
2499 	spin_lock(&swap_lock);
2500 	spin_lock(&p->lock);
2501 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2502 	_enable_swap_info(p);
2503 	spin_unlock(&p->lock);
2504 	spin_unlock(&swap_lock);
2505 }
2506 
2507 bool has_usable_swap(void)
2508 {
2509 	bool ret = true;
2510 
2511 	spin_lock(&swap_lock);
2512 	if (plist_head_empty(&swap_active_head))
2513 		ret = false;
2514 	spin_unlock(&swap_lock);
2515 	return ret;
2516 }
2517 
2518 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2519 {
2520 	struct swap_info_struct *p = NULL;
2521 	unsigned char *swap_map;
2522 	struct swap_cluster_info *cluster_info;
2523 	unsigned long *frontswap_map;
2524 	struct file *swap_file, *victim;
2525 	struct address_space *mapping;
2526 	struct inode *inode;
2527 	struct filename *pathname;
2528 	int err, found = 0;
2529 	unsigned int old_block_size;
2530 
2531 	if (!capable(CAP_SYS_ADMIN))
2532 		return -EPERM;
2533 
2534 	BUG_ON(!current->mm);
2535 
2536 	pathname = getname(specialfile);
2537 	if (IS_ERR(pathname))
2538 		return PTR_ERR(pathname);
2539 
2540 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2541 	err = PTR_ERR(victim);
2542 	if (IS_ERR(victim))
2543 		goto out;
2544 
2545 	mapping = victim->f_mapping;
2546 	spin_lock(&swap_lock);
2547 	plist_for_each_entry(p, &swap_active_head, list) {
2548 		if (p->flags & SWP_WRITEOK) {
2549 			if (p->swap_file->f_mapping == mapping) {
2550 				found = 1;
2551 				break;
2552 			}
2553 		}
2554 	}
2555 	if (!found) {
2556 		err = -EINVAL;
2557 		spin_unlock(&swap_lock);
2558 		goto out_dput;
2559 	}
2560 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2561 		vm_unacct_memory(p->pages);
2562 	else {
2563 		err = -ENOMEM;
2564 		spin_unlock(&swap_lock);
2565 		goto out_dput;
2566 	}
2567 	del_from_avail_list(p);
2568 	spin_lock(&p->lock);
2569 	if (p->prio < 0) {
2570 		struct swap_info_struct *si = p;
2571 		int nid;
2572 
2573 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2574 			si->prio++;
2575 			si->list.prio--;
2576 			for_each_node(nid) {
2577 				if (si->avail_lists[nid].prio != 1)
2578 					si->avail_lists[nid].prio--;
2579 			}
2580 		}
2581 		least_priority++;
2582 	}
2583 	plist_del(&p->list, &swap_active_head);
2584 	atomic_long_sub(p->pages, &nr_swap_pages);
2585 	total_swap_pages -= p->pages;
2586 	p->flags &= ~SWP_WRITEOK;
2587 	spin_unlock(&p->lock);
2588 	spin_unlock(&swap_lock);
2589 
2590 	disable_swap_slots_cache_lock();
2591 
2592 	set_current_oom_origin();
2593 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2594 	clear_current_oom_origin();
2595 
2596 	if (err) {
2597 		/* re-insert swap space back into swap_list */
2598 		reinsert_swap_info(p);
2599 		reenable_swap_slots_cache_unlock();
2600 		goto out_dput;
2601 	}
2602 
2603 	reenable_swap_slots_cache_unlock();
2604 
2605 	/*
2606 	 * Wait for swap operations protected by get/put_swap_device()
2607 	 * to complete.
2608 	 *
2609 	 * We need synchronize_rcu() here to protect the accessing to
2610 	 * the swap cache data structure.
2611 	 */
2612 	percpu_ref_kill(&p->users);
2613 	synchronize_rcu();
2614 	wait_for_completion(&p->comp);
2615 
2616 	flush_work(&p->discard_work);
2617 
2618 	destroy_swap_extents(p);
2619 	if (p->flags & SWP_CONTINUED)
2620 		free_swap_count_continuations(p);
2621 
2622 	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2623 		atomic_dec(&nr_rotate_swap);
2624 
2625 	mutex_lock(&swapon_mutex);
2626 	spin_lock(&swap_lock);
2627 	spin_lock(&p->lock);
2628 	drain_mmlist();
2629 
2630 	/* wait for anyone still in scan_swap_map_slots */
2631 	p->highest_bit = 0;		/* cuts scans short */
2632 	while (p->flags >= SWP_SCANNING) {
2633 		spin_unlock(&p->lock);
2634 		spin_unlock(&swap_lock);
2635 		schedule_timeout_uninterruptible(1);
2636 		spin_lock(&swap_lock);
2637 		spin_lock(&p->lock);
2638 	}
2639 
2640 	swap_file = p->swap_file;
2641 	old_block_size = p->old_block_size;
2642 	p->swap_file = NULL;
2643 	p->max = 0;
2644 	swap_map = p->swap_map;
2645 	p->swap_map = NULL;
2646 	cluster_info = p->cluster_info;
2647 	p->cluster_info = NULL;
2648 	frontswap_map = frontswap_map_get(p);
2649 	spin_unlock(&p->lock);
2650 	spin_unlock(&swap_lock);
2651 	arch_swap_invalidate_area(p->type);
2652 	frontswap_invalidate_area(p->type);
2653 	frontswap_map_set(p, NULL);
2654 	mutex_unlock(&swapon_mutex);
2655 	free_percpu(p->percpu_cluster);
2656 	p->percpu_cluster = NULL;
2657 	free_percpu(p->cluster_next_cpu);
2658 	p->cluster_next_cpu = NULL;
2659 	vfree(swap_map);
2660 	kvfree(cluster_info);
2661 	kvfree(frontswap_map);
2662 	/* Destroy swap account information */
2663 	swap_cgroup_swapoff(p->type);
2664 	exit_swap_address_space(p->type);
2665 
2666 	inode = mapping->host;
2667 	if (S_ISBLK(inode->i_mode)) {
2668 		struct block_device *bdev = I_BDEV(inode);
2669 
2670 		set_blocksize(bdev, old_block_size);
2671 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2672 	}
2673 
2674 	inode_lock(inode);
2675 	inode->i_flags &= ~S_SWAPFILE;
2676 	inode_unlock(inode);
2677 	filp_close(swap_file, NULL);
2678 
2679 	/*
2680 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2681 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2682 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2683 	 */
2684 	spin_lock(&swap_lock);
2685 	p->flags = 0;
2686 	spin_unlock(&swap_lock);
2687 
2688 	err = 0;
2689 	atomic_inc(&proc_poll_event);
2690 	wake_up_interruptible(&proc_poll_wait);
2691 
2692 out_dput:
2693 	filp_close(victim, NULL);
2694 out:
2695 	putname(pathname);
2696 	return err;
2697 }
2698 
2699 #ifdef CONFIG_PROC_FS
2700 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2701 {
2702 	struct seq_file *seq = file->private_data;
2703 
2704 	poll_wait(file, &proc_poll_wait, wait);
2705 
2706 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2707 		seq->poll_event = atomic_read(&proc_poll_event);
2708 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2709 	}
2710 
2711 	return EPOLLIN | EPOLLRDNORM;
2712 }
2713 
2714 /* iterator */
2715 static void *swap_start(struct seq_file *swap, loff_t *pos)
2716 {
2717 	struct swap_info_struct *si;
2718 	int type;
2719 	loff_t l = *pos;
2720 
2721 	mutex_lock(&swapon_mutex);
2722 
2723 	if (!l)
2724 		return SEQ_START_TOKEN;
2725 
2726 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2727 		if (!(si->flags & SWP_USED) || !si->swap_map)
2728 			continue;
2729 		if (!--l)
2730 			return si;
2731 	}
2732 
2733 	return NULL;
2734 }
2735 
2736 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2737 {
2738 	struct swap_info_struct *si = v;
2739 	int type;
2740 
2741 	if (v == SEQ_START_TOKEN)
2742 		type = 0;
2743 	else
2744 		type = si->type + 1;
2745 
2746 	++(*pos);
2747 	for (; (si = swap_type_to_swap_info(type)); type++) {
2748 		if (!(si->flags & SWP_USED) || !si->swap_map)
2749 			continue;
2750 		return si;
2751 	}
2752 
2753 	return NULL;
2754 }
2755 
2756 static void swap_stop(struct seq_file *swap, void *v)
2757 {
2758 	mutex_unlock(&swapon_mutex);
2759 }
2760 
2761 static int swap_show(struct seq_file *swap, void *v)
2762 {
2763 	struct swap_info_struct *si = v;
2764 	struct file *file;
2765 	int len;
2766 	unsigned int bytes, inuse;
2767 
2768 	if (si == SEQ_START_TOKEN) {
2769 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2770 		return 0;
2771 	}
2772 
2773 	bytes = si->pages << (PAGE_SHIFT - 10);
2774 	inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2775 
2776 	file = si->swap_file;
2777 	len = seq_file_path(swap, file, " \t\n\\");
2778 	seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2779 			len < 40 ? 40 - len : 1, " ",
2780 			S_ISBLK(file_inode(file)->i_mode) ?
2781 				"partition" : "file\t",
2782 			bytes, bytes < 10000000 ? "\t" : "",
2783 			inuse, inuse < 10000000 ? "\t" : "",
2784 			si->prio);
2785 	return 0;
2786 }
2787 
2788 static const struct seq_operations swaps_op = {
2789 	.start =	swap_start,
2790 	.next =		swap_next,
2791 	.stop =		swap_stop,
2792 	.show =		swap_show
2793 };
2794 
2795 static int swaps_open(struct inode *inode, struct file *file)
2796 {
2797 	struct seq_file *seq;
2798 	int ret;
2799 
2800 	ret = seq_open(file, &swaps_op);
2801 	if (ret)
2802 		return ret;
2803 
2804 	seq = file->private_data;
2805 	seq->poll_event = atomic_read(&proc_poll_event);
2806 	return 0;
2807 }
2808 
2809 static const struct proc_ops swaps_proc_ops = {
2810 	.proc_flags	= PROC_ENTRY_PERMANENT,
2811 	.proc_open	= swaps_open,
2812 	.proc_read	= seq_read,
2813 	.proc_lseek	= seq_lseek,
2814 	.proc_release	= seq_release,
2815 	.proc_poll	= swaps_poll,
2816 };
2817 
2818 static int __init procswaps_init(void)
2819 {
2820 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2821 	return 0;
2822 }
2823 __initcall(procswaps_init);
2824 #endif /* CONFIG_PROC_FS */
2825 
2826 #ifdef MAX_SWAPFILES_CHECK
2827 static int __init max_swapfiles_check(void)
2828 {
2829 	MAX_SWAPFILES_CHECK();
2830 	return 0;
2831 }
2832 late_initcall(max_swapfiles_check);
2833 #endif
2834 
2835 static struct swap_info_struct *alloc_swap_info(void)
2836 {
2837 	struct swap_info_struct *p;
2838 	struct swap_info_struct *defer = NULL;
2839 	unsigned int type;
2840 	int i;
2841 
2842 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2843 	if (!p)
2844 		return ERR_PTR(-ENOMEM);
2845 
2846 	if (percpu_ref_init(&p->users, swap_users_ref_free,
2847 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2848 		kvfree(p);
2849 		return ERR_PTR(-ENOMEM);
2850 	}
2851 
2852 	spin_lock(&swap_lock);
2853 	for (type = 0; type < nr_swapfiles; type++) {
2854 		if (!(swap_info[type]->flags & SWP_USED))
2855 			break;
2856 	}
2857 	if (type >= MAX_SWAPFILES) {
2858 		spin_unlock(&swap_lock);
2859 		percpu_ref_exit(&p->users);
2860 		kvfree(p);
2861 		return ERR_PTR(-EPERM);
2862 	}
2863 	if (type >= nr_swapfiles) {
2864 		p->type = type;
2865 		/*
2866 		 * Publish the swap_info_struct after initializing it.
2867 		 * Note that kvzalloc() above zeroes all its fields.
2868 		 */
2869 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2870 		nr_swapfiles++;
2871 	} else {
2872 		defer = p;
2873 		p = swap_info[type];
2874 		/*
2875 		 * Do not memset this entry: a racing procfs swap_next()
2876 		 * would be relying on p->type to remain valid.
2877 		 */
2878 	}
2879 	p->swap_extent_root = RB_ROOT;
2880 	plist_node_init(&p->list, 0);
2881 	for_each_node(i)
2882 		plist_node_init(&p->avail_lists[i], 0);
2883 	p->flags = SWP_USED;
2884 	spin_unlock(&swap_lock);
2885 	if (defer) {
2886 		percpu_ref_exit(&defer->users);
2887 		kvfree(defer);
2888 	}
2889 	spin_lock_init(&p->lock);
2890 	spin_lock_init(&p->cont_lock);
2891 	init_completion(&p->comp);
2892 
2893 	return p;
2894 }
2895 
2896 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2897 {
2898 	int error;
2899 
2900 	if (S_ISBLK(inode->i_mode)) {
2901 		p->bdev = blkdev_get_by_dev(inode->i_rdev,
2902 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2903 		if (IS_ERR(p->bdev)) {
2904 			error = PTR_ERR(p->bdev);
2905 			p->bdev = NULL;
2906 			return error;
2907 		}
2908 		p->old_block_size = block_size(p->bdev);
2909 		error = set_blocksize(p->bdev, PAGE_SIZE);
2910 		if (error < 0)
2911 			return error;
2912 		/*
2913 		 * Zoned block devices contain zones that have a sequential
2914 		 * write only restriction.  Hence zoned block devices are not
2915 		 * suitable for swapping.  Disallow them here.
2916 		 */
2917 		if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2918 			return -EINVAL;
2919 		p->flags |= SWP_BLKDEV;
2920 	} else if (S_ISREG(inode->i_mode)) {
2921 		p->bdev = inode->i_sb->s_bdev;
2922 	}
2923 
2924 	return 0;
2925 }
2926 
2927 
2928 /*
2929  * Find out how many pages are allowed for a single swap device. There
2930  * are two limiting factors:
2931  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2932  * 2) the number of bits in the swap pte, as defined by the different
2933  * architectures.
2934  *
2935  * In order to find the largest possible bit mask, a swap entry with
2936  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2937  * decoded to a swp_entry_t again, and finally the swap offset is
2938  * extracted.
2939  *
2940  * This will mask all the bits from the initial ~0UL mask that can't
2941  * be encoded in either the swp_entry_t or the architecture definition
2942  * of a swap pte.
2943  */
2944 unsigned long generic_max_swapfile_size(void)
2945 {
2946 	return swp_offset(pte_to_swp_entry(
2947 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2948 }
2949 
2950 /* Can be overridden by an architecture for additional checks. */
2951 __weak unsigned long max_swapfile_size(void)
2952 {
2953 	return generic_max_swapfile_size();
2954 }
2955 
2956 static unsigned long read_swap_header(struct swap_info_struct *p,
2957 					union swap_header *swap_header,
2958 					struct inode *inode)
2959 {
2960 	int i;
2961 	unsigned long maxpages;
2962 	unsigned long swapfilepages;
2963 	unsigned long last_page;
2964 
2965 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2966 		pr_err("Unable to find swap-space signature\n");
2967 		return 0;
2968 	}
2969 
2970 	/* swap partition endianness hack... */
2971 	if (swab32(swap_header->info.version) == 1) {
2972 		swab32s(&swap_header->info.version);
2973 		swab32s(&swap_header->info.last_page);
2974 		swab32s(&swap_header->info.nr_badpages);
2975 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2976 			return 0;
2977 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2978 			swab32s(&swap_header->info.badpages[i]);
2979 	}
2980 	/* Check the swap header's sub-version */
2981 	if (swap_header->info.version != 1) {
2982 		pr_warn("Unable to handle swap header version %d\n",
2983 			swap_header->info.version);
2984 		return 0;
2985 	}
2986 
2987 	p->lowest_bit  = 1;
2988 	p->cluster_next = 1;
2989 	p->cluster_nr = 0;
2990 
2991 	maxpages = max_swapfile_size();
2992 	last_page = swap_header->info.last_page;
2993 	if (!last_page) {
2994 		pr_warn("Empty swap-file\n");
2995 		return 0;
2996 	}
2997 	if (last_page > maxpages) {
2998 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2999 			maxpages << (PAGE_SHIFT - 10),
3000 			last_page << (PAGE_SHIFT - 10));
3001 	}
3002 	if (maxpages > last_page) {
3003 		maxpages = last_page + 1;
3004 		/* p->max is an unsigned int: don't overflow it */
3005 		if ((unsigned int)maxpages == 0)
3006 			maxpages = UINT_MAX;
3007 	}
3008 	p->highest_bit = maxpages - 1;
3009 
3010 	if (!maxpages)
3011 		return 0;
3012 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3013 	if (swapfilepages && maxpages > swapfilepages) {
3014 		pr_warn("Swap area shorter than signature indicates\n");
3015 		return 0;
3016 	}
3017 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3018 		return 0;
3019 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3020 		return 0;
3021 
3022 	return maxpages;
3023 }
3024 
3025 #define SWAP_CLUSTER_INFO_COLS						\
3026 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3027 #define SWAP_CLUSTER_SPACE_COLS						\
3028 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3029 #define SWAP_CLUSTER_COLS						\
3030 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3031 
3032 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3033 					union swap_header *swap_header,
3034 					unsigned char *swap_map,
3035 					struct swap_cluster_info *cluster_info,
3036 					unsigned long maxpages,
3037 					sector_t *span)
3038 {
3039 	unsigned int j, k;
3040 	unsigned int nr_good_pages;
3041 	int nr_extents;
3042 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3043 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3044 	unsigned long i, idx;
3045 
3046 	nr_good_pages = maxpages - 1;	/* omit header page */
3047 
3048 	cluster_list_init(&p->free_clusters);
3049 	cluster_list_init(&p->discard_clusters);
3050 
3051 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3052 		unsigned int page_nr = swap_header->info.badpages[i];
3053 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3054 			return -EINVAL;
3055 		if (page_nr < maxpages) {
3056 			swap_map[page_nr] = SWAP_MAP_BAD;
3057 			nr_good_pages--;
3058 			/*
3059 			 * Haven't marked the cluster free yet, no list
3060 			 * operation involved
3061 			 */
3062 			inc_cluster_info_page(p, cluster_info, page_nr);
3063 		}
3064 	}
3065 
3066 	/* Haven't marked the cluster free yet, no list operation involved */
3067 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3068 		inc_cluster_info_page(p, cluster_info, i);
3069 
3070 	if (nr_good_pages) {
3071 		swap_map[0] = SWAP_MAP_BAD;
3072 		/*
3073 		 * Not mark the cluster free yet, no list
3074 		 * operation involved
3075 		 */
3076 		inc_cluster_info_page(p, cluster_info, 0);
3077 		p->max = maxpages;
3078 		p->pages = nr_good_pages;
3079 		nr_extents = setup_swap_extents(p, span);
3080 		if (nr_extents < 0)
3081 			return nr_extents;
3082 		nr_good_pages = p->pages;
3083 	}
3084 	if (!nr_good_pages) {
3085 		pr_warn("Empty swap-file\n");
3086 		return -EINVAL;
3087 	}
3088 
3089 	if (!cluster_info)
3090 		return nr_extents;
3091 
3092 
3093 	/*
3094 	 * Reduce false cache line sharing between cluster_info and
3095 	 * sharing same address space.
3096 	 */
3097 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3098 		j = (k + col) % SWAP_CLUSTER_COLS;
3099 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3100 			idx = i * SWAP_CLUSTER_COLS + j;
3101 			if (idx >= nr_clusters)
3102 				continue;
3103 			if (cluster_count(&cluster_info[idx]))
3104 				continue;
3105 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3106 			cluster_list_add_tail(&p->free_clusters, cluster_info,
3107 					      idx);
3108 		}
3109 	}
3110 	return nr_extents;
3111 }
3112 
3113 /*
3114  * Helper to sys_swapon determining if a given swap
3115  * backing device queue supports DISCARD operations.
3116  */
3117 static bool swap_discardable(struct swap_info_struct *si)
3118 {
3119 	struct request_queue *q = bdev_get_queue(si->bdev);
3120 
3121 	if (!q || !blk_queue_discard(q))
3122 		return false;
3123 
3124 	return true;
3125 }
3126 
3127 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3128 {
3129 	struct swap_info_struct *p;
3130 	struct filename *name;
3131 	struct file *swap_file = NULL;
3132 	struct address_space *mapping;
3133 	int prio;
3134 	int error;
3135 	union swap_header *swap_header;
3136 	int nr_extents;
3137 	sector_t span;
3138 	unsigned long maxpages;
3139 	unsigned char *swap_map = NULL;
3140 	struct swap_cluster_info *cluster_info = NULL;
3141 	unsigned long *frontswap_map = NULL;
3142 	struct page *page = NULL;
3143 	struct inode *inode = NULL;
3144 	bool inced_nr_rotate_swap = false;
3145 
3146 	if (swap_flags & ~SWAP_FLAGS_VALID)
3147 		return -EINVAL;
3148 
3149 	if (!capable(CAP_SYS_ADMIN))
3150 		return -EPERM;
3151 
3152 	if (!swap_avail_heads)
3153 		return -ENOMEM;
3154 
3155 	p = alloc_swap_info();
3156 	if (IS_ERR(p))
3157 		return PTR_ERR(p);
3158 
3159 	INIT_WORK(&p->discard_work, swap_discard_work);
3160 
3161 	name = getname(specialfile);
3162 	if (IS_ERR(name)) {
3163 		error = PTR_ERR(name);
3164 		name = NULL;
3165 		goto bad_swap;
3166 	}
3167 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3168 	if (IS_ERR(swap_file)) {
3169 		error = PTR_ERR(swap_file);
3170 		swap_file = NULL;
3171 		goto bad_swap;
3172 	}
3173 
3174 	p->swap_file = swap_file;
3175 	mapping = swap_file->f_mapping;
3176 	inode = mapping->host;
3177 
3178 	error = claim_swapfile(p, inode);
3179 	if (unlikely(error))
3180 		goto bad_swap;
3181 
3182 	inode_lock(inode);
3183 	if (IS_SWAPFILE(inode)) {
3184 		error = -EBUSY;
3185 		goto bad_swap_unlock_inode;
3186 	}
3187 
3188 	/*
3189 	 * Read the swap header.
3190 	 */
3191 	if (!mapping->a_ops->readpage) {
3192 		error = -EINVAL;
3193 		goto bad_swap_unlock_inode;
3194 	}
3195 	page = read_mapping_page(mapping, 0, swap_file);
3196 	if (IS_ERR(page)) {
3197 		error = PTR_ERR(page);
3198 		goto bad_swap_unlock_inode;
3199 	}
3200 	swap_header = kmap(page);
3201 
3202 	maxpages = read_swap_header(p, swap_header, inode);
3203 	if (unlikely(!maxpages)) {
3204 		error = -EINVAL;
3205 		goto bad_swap_unlock_inode;
3206 	}
3207 
3208 	/* OK, set up the swap map and apply the bad block list */
3209 	swap_map = vzalloc(maxpages);
3210 	if (!swap_map) {
3211 		error = -ENOMEM;
3212 		goto bad_swap_unlock_inode;
3213 	}
3214 
3215 	if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3216 		p->flags |= SWP_STABLE_WRITES;
3217 
3218 	if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3219 		p->flags |= SWP_SYNCHRONOUS_IO;
3220 
3221 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3222 		int cpu;
3223 		unsigned long ci, nr_cluster;
3224 
3225 		p->flags |= SWP_SOLIDSTATE;
3226 		p->cluster_next_cpu = alloc_percpu(unsigned int);
3227 		if (!p->cluster_next_cpu) {
3228 			error = -ENOMEM;
3229 			goto bad_swap_unlock_inode;
3230 		}
3231 		/*
3232 		 * select a random position to start with to help wear leveling
3233 		 * SSD
3234 		 */
3235 		for_each_possible_cpu(cpu) {
3236 			per_cpu(*p->cluster_next_cpu, cpu) =
3237 				1 + prandom_u32_max(p->highest_bit);
3238 		}
3239 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3240 
3241 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3242 					GFP_KERNEL);
3243 		if (!cluster_info) {
3244 			error = -ENOMEM;
3245 			goto bad_swap_unlock_inode;
3246 		}
3247 
3248 		for (ci = 0; ci < nr_cluster; ci++)
3249 			spin_lock_init(&((cluster_info + ci)->lock));
3250 
3251 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3252 		if (!p->percpu_cluster) {
3253 			error = -ENOMEM;
3254 			goto bad_swap_unlock_inode;
3255 		}
3256 		for_each_possible_cpu(cpu) {
3257 			struct percpu_cluster *cluster;
3258 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3259 			cluster_set_null(&cluster->index);
3260 		}
3261 	} else {
3262 		atomic_inc(&nr_rotate_swap);
3263 		inced_nr_rotate_swap = true;
3264 	}
3265 
3266 	error = swap_cgroup_swapon(p->type, maxpages);
3267 	if (error)
3268 		goto bad_swap_unlock_inode;
3269 
3270 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3271 		cluster_info, maxpages, &span);
3272 	if (unlikely(nr_extents < 0)) {
3273 		error = nr_extents;
3274 		goto bad_swap_unlock_inode;
3275 	}
3276 	/* frontswap enabled? set up bit-per-page map for frontswap */
3277 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3278 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3279 					 sizeof(long),
3280 					 GFP_KERNEL);
3281 
3282 	if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3283 		/*
3284 		 * When discard is enabled for swap with no particular
3285 		 * policy flagged, we set all swap discard flags here in
3286 		 * order to sustain backward compatibility with older
3287 		 * swapon(8) releases.
3288 		 */
3289 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3290 			     SWP_PAGE_DISCARD);
3291 
3292 		/*
3293 		 * By flagging sys_swapon, a sysadmin can tell us to
3294 		 * either do single-time area discards only, or to just
3295 		 * perform discards for released swap page-clusters.
3296 		 * Now it's time to adjust the p->flags accordingly.
3297 		 */
3298 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3299 			p->flags &= ~SWP_PAGE_DISCARD;
3300 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3301 			p->flags &= ~SWP_AREA_DISCARD;
3302 
3303 		/* issue a swapon-time discard if it's still required */
3304 		if (p->flags & SWP_AREA_DISCARD) {
3305 			int err = discard_swap(p);
3306 			if (unlikely(err))
3307 				pr_err("swapon: discard_swap(%p): %d\n",
3308 					p, err);
3309 		}
3310 	}
3311 
3312 	error = init_swap_address_space(p->type, maxpages);
3313 	if (error)
3314 		goto bad_swap_unlock_inode;
3315 
3316 	/*
3317 	 * Flush any pending IO and dirty mappings before we start using this
3318 	 * swap device.
3319 	 */
3320 	inode->i_flags |= S_SWAPFILE;
3321 	error = inode_drain_writes(inode);
3322 	if (error) {
3323 		inode->i_flags &= ~S_SWAPFILE;
3324 		goto free_swap_address_space;
3325 	}
3326 
3327 	mutex_lock(&swapon_mutex);
3328 	prio = -1;
3329 	if (swap_flags & SWAP_FLAG_PREFER)
3330 		prio =
3331 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3332 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3333 
3334 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3335 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3336 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3337 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3338 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3339 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3340 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3341 		(frontswap_map) ? "FS" : "");
3342 
3343 	mutex_unlock(&swapon_mutex);
3344 	atomic_inc(&proc_poll_event);
3345 	wake_up_interruptible(&proc_poll_wait);
3346 
3347 	error = 0;
3348 	goto out;
3349 free_swap_address_space:
3350 	exit_swap_address_space(p->type);
3351 bad_swap_unlock_inode:
3352 	inode_unlock(inode);
3353 bad_swap:
3354 	free_percpu(p->percpu_cluster);
3355 	p->percpu_cluster = NULL;
3356 	free_percpu(p->cluster_next_cpu);
3357 	p->cluster_next_cpu = NULL;
3358 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3359 		set_blocksize(p->bdev, p->old_block_size);
3360 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3361 	}
3362 	inode = NULL;
3363 	destroy_swap_extents(p);
3364 	swap_cgroup_swapoff(p->type);
3365 	spin_lock(&swap_lock);
3366 	p->swap_file = NULL;
3367 	p->flags = 0;
3368 	spin_unlock(&swap_lock);
3369 	vfree(swap_map);
3370 	kvfree(cluster_info);
3371 	kvfree(frontswap_map);
3372 	if (inced_nr_rotate_swap)
3373 		atomic_dec(&nr_rotate_swap);
3374 	if (swap_file)
3375 		filp_close(swap_file, NULL);
3376 out:
3377 	if (page && !IS_ERR(page)) {
3378 		kunmap(page);
3379 		put_page(page);
3380 	}
3381 	if (name)
3382 		putname(name);
3383 	if (inode)
3384 		inode_unlock(inode);
3385 	if (!error)
3386 		enable_swap_slots_cache();
3387 	return error;
3388 }
3389 
3390 void si_swapinfo(struct sysinfo *val)
3391 {
3392 	unsigned int type;
3393 	unsigned long nr_to_be_unused = 0;
3394 
3395 	spin_lock(&swap_lock);
3396 	for (type = 0; type < nr_swapfiles; type++) {
3397 		struct swap_info_struct *si = swap_info[type];
3398 
3399 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3400 			nr_to_be_unused += si->inuse_pages;
3401 	}
3402 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3403 	val->totalswap = total_swap_pages + nr_to_be_unused;
3404 	spin_unlock(&swap_lock);
3405 }
3406 
3407 /*
3408  * Verify that a swap entry is valid and increment its swap map count.
3409  *
3410  * Returns error code in following case.
3411  * - success -> 0
3412  * - swp_entry is invalid -> EINVAL
3413  * - swp_entry is migration entry -> EINVAL
3414  * - swap-cache reference is requested but there is already one. -> EEXIST
3415  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3416  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3417  */
3418 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3419 {
3420 	struct swap_info_struct *p;
3421 	struct swap_cluster_info *ci;
3422 	unsigned long offset;
3423 	unsigned char count;
3424 	unsigned char has_cache;
3425 	int err;
3426 
3427 	p = get_swap_device(entry);
3428 	if (!p)
3429 		return -EINVAL;
3430 
3431 	offset = swp_offset(entry);
3432 	ci = lock_cluster_or_swap_info(p, offset);
3433 
3434 	count = p->swap_map[offset];
3435 
3436 	/*
3437 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3438 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3439 	 */
3440 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3441 		err = -ENOENT;
3442 		goto unlock_out;
3443 	}
3444 
3445 	has_cache = count & SWAP_HAS_CACHE;
3446 	count &= ~SWAP_HAS_CACHE;
3447 	err = 0;
3448 
3449 	if (usage == SWAP_HAS_CACHE) {
3450 
3451 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3452 		if (!has_cache && count)
3453 			has_cache = SWAP_HAS_CACHE;
3454 		else if (has_cache)		/* someone else added cache */
3455 			err = -EEXIST;
3456 		else				/* no users remaining */
3457 			err = -ENOENT;
3458 
3459 	} else if (count || has_cache) {
3460 
3461 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3462 			count += usage;
3463 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3464 			err = -EINVAL;
3465 		else if (swap_count_continued(p, offset, count))
3466 			count = COUNT_CONTINUED;
3467 		else
3468 			err = -ENOMEM;
3469 	} else
3470 		err = -ENOENT;			/* unused swap entry */
3471 
3472 	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3473 
3474 unlock_out:
3475 	unlock_cluster_or_swap_info(p, ci);
3476 	if (p)
3477 		put_swap_device(p);
3478 	return err;
3479 }
3480 
3481 /*
3482  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3483  * (in which case its reference count is never incremented).
3484  */
3485 void swap_shmem_alloc(swp_entry_t entry)
3486 {
3487 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3488 }
3489 
3490 /*
3491  * Increase reference count of swap entry by 1.
3492  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3493  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3494  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3495  * might occur if a page table entry has got corrupted.
3496  */
3497 int swap_duplicate(swp_entry_t entry)
3498 {
3499 	int err = 0;
3500 
3501 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3502 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3503 	return err;
3504 }
3505 
3506 /*
3507  * @entry: swap entry for which we allocate swap cache.
3508  *
3509  * Called when allocating swap cache for existing swap entry,
3510  * This can return error codes. Returns 0 at success.
3511  * -EEXIST means there is a swap cache.
3512  * Note: return code is different from swap_duplicate().
3513  */
3514 int swapcache_prepare(swp_entry_t entry)
3515 {
3516 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3517 }
3518 
3519 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3520 {
3521 	return swap_type_to_swap_info(swp_type(entry));
3522 }
3523 
3524 struct swap_info_struct *page_swap_info(struct page *page)
3525 {
3526 	swp_entry_t entry = { .val = page_private(page) };
3527 	return swp_swap_info(entry);
3528 }
3529 
3530 /*
3531  * out-of-line __page_file_ methods to avoid include hell.
3532  */
3533 struct address_space *__page_file_mapping(struct page *page)
3534 {
3535 	return page_swap_info(page)->swap_file->f_mapping;
3536 }
3537 EXPORT_SYMBOL_GPL(__page_file_mapping);
3538 
3539 pgoff_t __page_file_index(struct page *page)
3540 {
3541 	swp_entry_t swap = { .val = page_private(page) };
3542 	return swp_offset(swap);
3543 }
3544 EXPORT_SYMBOL_GPL(__page_file_index);
3545 
3546 /*
3547  * add_swap_count_continuation - called when a swap count is duplicated
3548  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3549  * page of the original vmalloc'ed swap_map, to hold the continuation count
3550  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3551  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3552  *
3553  * These continuation pages are seldom referenced: the common paths all work
3554  * on the original swap_map, only referring to a continuation page when the
3555  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3556  *
3557  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3558  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3559  * can be called after dropping locks.
3560  */
3561 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3562 {
3563 	struct swap_info_struct *si;
3564 	struct swap_cluster_info *ci;
3565 	struct page *head;
3566 	struct page *page;
3567 	struct page *list_page;
3568 	pgoff_t offset;
3569 	unsigned char count;
3570 	int ret = 0;
3571 
3572 	/*
3573 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3574 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3575 	 */
3576 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3577 
3578 	si = get_swap_device(entry);
3579 	if (!si) {
3580 		/*
3581 		 * An acceptable race has occurred since the failing
3582 		 * __swap_duplicate(): the swap device may be swapoff
3583 		 */
3584 		goto outer;
3585 	}
3586 	spin_lock(&si->lock);
3587 
3588 	offset = swp_offset(entry);
3589 
3590 	ci = lock_cluster(si, offset);
3591 
3592 	count = swap_count(si->swap_map[offset]);
3593 
3594 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3595 		/*
3596 		 * The higher the swap count, the more likely it is that tasks
3597 		 * will race to add swap count continuation: we need to avoid
3598 		 * over-provisioning.
3599 		 */
3600 		goto out;
3601 	}
3602 
3603 	if (!page) {
3604 		ret = -ENOMEM;
3605 		goto out;
3606 	}
3607 
3608 	/*
3609 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3610 	 * no architecture is using highmem pages for kernel page tables: so it
3611 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3612 	 */
3613 	head = vmalloc_to_page(si->swap_map + offset);
3614 	offset &= ~PAGE_MASK;
3615 
3616 	spin_lock(&si->cont_lock);
3617 	/*
3618 	 * Page allocation does not initialize the page's lru field,
3619 	 * but it does always reset its private field.
3620 	 */
3621 	if (!page_private(head)) {
3622 		BUG_ON(count & COUNT_CONTINUED);
3623 		INIT_LIST_HEAD(&head->lru);
3624 		set_page_private(head, SWP_CONTINUED);
3625 		si->flags |= SWP_CONTINUED;
3626 	}
3627 
3628 	list_for_each_entry(list_page, &head->lru, lru) {
3629 		unsigned char *map;
3630 
3631 		/*
3632 		 * If the previous map said no continuation, but we've found
3633 		 * a continuation page, free our allocation and use this one.
3634 		 */
3635 		if (!(count & COUNT_CONTINUED))
3636 			goto out_unlock_cont;
3637 
3638 		map = kmap_atomic(list_page) + offset;
3639 		count = *map;
3640 		kunmap_atomic(map);
3641 
3642 		/*
3643 		 * If this continuation count now has some space in it,
3644 		 * free our allocation and use this one.
3645 		 */
3646 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3647 			goto out_unlock_cont;
3648 	}
3649 
3650 	list_add_tail(&page->lru, &head->lru);
3651 	page = NULL;			/* now it's attached, don't free it */
3652 out_unlock_cont:
3653 	spin_unlock(&si->cont_lock);
3654 out:
3655 	unlock_cluster(ci);
3656 	spin_unlock(&si->lock);
3657 	put_swap_device(si);
3658 outer:
3659 	if (page)
3660 		__free_page(page);
3661 	return ret;
3662 }
3663 
3664 /*
3665  * swap_count_continued - when the original swap_map count is incremented
3666  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3667  * into, carry if so, or else fail until a new continuation page is allocated;
3668  * when the original swap_map count is decremented from 0 with continuation,
3669  * borrow from the continuation and report whether it still holds more.
3670  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3671  * lock.
3672  */
3673 static bool swap_count_continued(struct swap_info_struct *si,
3674 				 pgoff_t offset, unsigned char count)
3675 {
3676 	struct page *head;
3677 	struct page *page;
3678 	unsigned char *map;
3679 	bool ret;
3680 
3681 	head = vmalloc_to_page(si->swap_map + offset);
3682 	if (page_private(head) != SWP_CONTINUED) {
3683 		BUG_ON(count & COUNT_CONTINUED);
3684 		return false;		/* need to add count continuation */
3685 	}
3686 
3687 	spin_lock(&si->cont_lock);
3688 	offset &= ~PAGE_MASK;
3689 	page = list_next_entry(head, lru);
3690 	map = kmap_atomic(page) + offset;
3691 
3692 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3693 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3694 
3695 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3696 		/*
3697 		 * Think of how you add 1 to 999
3698 		 */
3699 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3700 			kunmap_atomic(map);
3701 			page = list_next_entry(page, lru);
3702 			BUG_ON(page == head);
3703 			map = kmap_atomic(page) + offset;
3704 		}
3705 		if (*map == SWAP_CONT_MAX) {
3706 			kunmap_atomic(map);
3707 			page = list_next_entry(page, lru);
3708 			if (page == head) {
3709 				ret = false;	/* add count continuation */
3710 				goto out;
3711 			}
3712 			map = kmap_atomic(page) + offset;
3713 init_map:		*map = 0;		/* we didn't zero the page */
3714 		}
3715 		*map += 1;
3716 		kunmap_atomic(map);
3717 		while ((page = list_prev_entry(page, lru)) != head) {
3718 			map = kmap_atomic(page) + offset;
3719 			*map = COUNT_CONTINUED;
3720 			kunmap_atomic(map);
3721 		}
3722 		ret = true;			/* incremented */
3723 
3724 	} else {				/* decrementing */
3725 		/*
3726 		 * Think of how you subtract 1 from 1000
3727 		 */
3728 		BUG_ON(count != COUNT_CONTINUED);
3729 		while (*map == COUNT_CONTINUED) {
3730 			kunmap_atomic(map);
3731 			page = list_next_entry(page, lru);
3732 			BUG_ON(page == head);
3733 			map = kmap_atomic(page) + offset;
3734 		}
3735 		BUG_ON(*map == 0);
3736 		*map -= 1;
3737 		if (*map == 0)
3738 			count = 0;
3739 		kunmap_atomic(map);
3740 		while ((page = list_prev_entry(page, lru)) != head) {
3741 			map = kmap_atomic(page) + offset;
3742 			*map = SWAP_CONT_MAX | count;
3743 			count = COUNT_CONTINUED;
3744 			kunmap_atomic(map);
3745 		}
3746 		ret = count == COUNT_CONTINUED;
3747 	}
3748 out:
3749 	spin_unlock(&si->cont_lock);
3750 	return ret;
3751 }
3752 
3753 /*
3754  * free_swap_count_continuations - swapoff free all the continuation pages
3755  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3756  */
3757 static void free_swap_count_continuations(struct swap_info_struct *si)
3758 {
3759 	pgoff_t offset;
3760 
3761 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3762 		struct page *head;
3763 		head = vmalloc_to_page(si->swap_map + offset);
3764 		if (page_private(head)) {
3765 			struct page *page, *next;
3766 
3767 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3768 				list_del(&page->lru);
3769 				__free_page(page);
3770 			}
3771 		}
3772 	}
3773 }
3774 
3775 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3776 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3777 {
3778 	struct swap_info_struct *si, *next;
3779 	int nid = page_to_nid(page);
3780 
3781 	if (!(gfp_mask & __GFP_IO))
3782 		return;
3783 
3784 	if (!blk_cgroup_congested())
3785 		return;
3786 
3787 	/*
3788 	 * We've already scheduled a throttle, avoid taking the global swap
3789 	 * lock.
3790 	 */
3791 	if (current->throttle_queue)
3792 		return;
3793 
3794 	spin_lock(&swap_avail_lock);
3795 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3796 				  avail_lists[nid]) {
3797 		if (si->bdev) {
3798 			blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3799 			break;
3800 		}
3801 	}
3802 	spin_unlock(&swap_avail_lock);
3803 }
3804 #endif
3805 
3806 static int __init swapfile_init(void)
3807 {
3808 	int nid;
3809 
3810 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3811 					 GFP_KERNEL);
3812 	if (!swap_avail_heads) {
3813 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3814 		return -ENOMEM;
3815 	}
3816 
3817 	for_each_node(nid)
3818 		plist_head_init(&swap_avail_heads[nid]);
3819 
3820 	return 0;
3821 }
3822 subsys_initcall(swapfile_init);
3823