1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shmem_fs.h> 18 #include <linux/blkdev.h> 19 #include <linux/random.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/security.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mutex.h> 29 #include <linux/capability.h> 30 #include <linux/syscalls.h> 31 #include <linux/memcontrol.h> 32 #include <linux/poll.h> 33 #include <linux/oom.h> 34 #include <linux/frontswap.h> 35 #include <linux/swapfile.h> 36 #include <linux/export.h> 37 38 #include <asm/pgtable.h> 39 #include <asm/tlbflush.h> 40 #include <linux/swapops.h> 41 #include <linux/swap_cgroup.h> 42 43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 44 unsigned char); 45 static void free_swap_count_continuations(struct swap_info_struct *); 46 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 47 48 DEFINE_SPINLOCK(swap_lock); 49 static unsigned int nr_swapfiles; 50 atomic_long_t nr_swap_pages; 51 /* 52 * Some modules use swappable objects and may try to swap them out under 53 * memory pressure (via the shrinker). Before doing so, they may wish to 54 * check to see if any swap space is available. 55 */ 56 EXPORT_SYMBOL_GPL(nr_swap_pages); 57 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 58 long total_swap_pages; 59 static int least_priority; 60 61 static const char Bad_file[] = "Bad swap file entry "; 62 static const char Unused_file[] = "Unused swap file entry "; 63 static const char Bad_offset[] = "Bad swap offset entry "; 64 static const char Unused_offset[] = "Unused swap offset entry "; 65 66 /* 67 * all active swap_info_structs 68 * protected with swap_lock, and ordered by priority. 69 */ 70 PLIST_HEAD(swap_active_head); 71 72 /* 73 * all available (active, not full) swap_info_structs 74 * protected with swap_avail_lock, ordered by priority. 75 * This is used by get_swap_page() instead of swap_active_head 76 * because swap_active_head includes all swap_info_structs, 77 * but get_swap_page() doesn't need to look at full ones. 78 * This uses its own lock instead of swap_lock because when a 79 * swap_info_struct changes between not-full/full, it needs to 80 * add/remove itself to/from this list, but the swap_info_struct->lock 81 * is held and the locking order requires swap_lock to be taken 82 * before any swap_info_struct->lock. 83 */ 84 static PLIST_HEAD(swap_avail_head); 85 static DEFINE_SPINLOCK(swap_avail_lock); 86 87 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 88 89 static DEFINE_MUTEX(swapon_mutex); 90 91 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 92 /* Activity counter to indicate that a swapon or swapoff has occurred */ 93 static atomic_t proc_poll_event = ATOMIC_INIT(0); 94 95 static inline unsigned char swap_count(unsigned char ent) 96 { 97 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ 98 } 99 100 /* returns 1 if swap entry is freed */ 101 static int 102 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) 103 { 104 swp_entry_t entry = swp_entry(si->type, offset); 105 struct page *page; 106 int ret = 0; 107 108 page = find_get_page(swap_address_space(entry), entry.val); 109 if (!page) 110 return 0; 111 /* 112 * This function is called from scan_swap_map() and it's called 113 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. 114 * We have to use trylock for avoiding deadlock. This is a special 115 * case and you should use try_to_free_swap() with explicit lock_page() 116 * in usual operations. 117 */ 118 if (trylock_page(page)) { 119 ret = try_to_free_swap(page); 120 unlock_page(page); 121 } 122 put_page(page); 123 return ret; 124 } 125 126 /* 127 * swapon tell device that all the old swap contents can be discarded, 128 * to allow the swap device to optimize its wear-levelling. 129 */ 130 static int discard_swap(struct swap_info_struct *si) 131 { 132 struct swap_extent *se; 133 sector_t start_block; 134 sector_t nr_blocks; 135 int err = 0; 136 137 /* Do not discard the swap header page! */ 138 se = &si->first_swap_extent; 139 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 140 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 141 if (nr_blocks) { 142 err = blkdev_issue_discard(si->bdev, start_block, 143 nr_blocks, GFP_KERNEL, 0); 144 if (err) 145 return err; 146 cond_resched(); 147 } 148 149 list_for_each_entry(se, &si->first_swap_extent.list, list) { 150 start_block = se->start_block << (PAGE_SHIFT - 9); 151 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 152 153 err = blkdev_issue_discard(si->bdev, start_block, 154 nr_blocks, GFP_KERNEL, 0); 155 if (err) 156 break; 157 158 cond_resched(); 159 } 160 return err; /* That will often be -EOPNOTSUPP */ 161 } 162 163 /* 164 * swap allocation tell device that a cluster of swap can now be discarded, 165 * to allow the swap device to optimize its wear-levelling. 166 */ 167 static void discard_swap_cluster(struct swap_info_struct *si, 168 pgoff_t start_page, pgoff_t nr_pages) 169 { 170 struct swap_extent *se = si->curr_swap_extent; 171 int found_extent = 0; 172 173 while (nr_pages) { 174 if (se->start_page <= start_page && 175 start_page < se->start_page + se->nr_pages) { 176 pgoff_t offset = start_page - se->start_page; 177 sector_t start_block = se->start_block + offset; 178 sector_t nr_blocks = se->nr_pages - offset; 179 180 if (nr_blocks > nr_pages) 181 nr_blocks = nr_pages; 182 start_page += nr_blocks; 183 nr_pages -= nr_blocks; 184 185 if (!found_extent++) 186 si->curr_swap_extent = se; 187 188 start_block <<= PAGE_SHIFT - 9; 189 nr_blocks <<= PAGE_SHIFT - 9; 190 if (blkdev_issue_discard(si->bdev, start_block, 191 nr_blocks, GFP_NOIO, 0)) 192 break; 193 } 194 195 se = list_next_entry(se, list); 196 } 197 } 198 199 #define SWAPFILE_CLUSTER 256 200 #define LATENCY_LIMIT 256 201 202 static inline void cluster_set_flag(struct swap_cluster_info *info, 203 unsigned int flag) 204 { 205 info->flags = flag; 206 } 207 208 static inline unsigned int cluster_count(struct swap_cluster_info *info) 209 { 210 return info->data; 211 } 212 213 static inline void cluster_set_count(struct swap_cluster_info *info, 214 unsigned int c) 215 { 216 info->data = c; 217 } 218 219 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 220 unsigned int c, unsigned int f) 221 { 222 info->flags = f; 223 info->data = c; 224 } 225 226 static inline unsigned int cluster_next(struct swap_cluster_info *info) 227 { 228 return info->data; 229 } 230 231 static inline void cluster_set_next(struct swap_cluster_info *info, 232 unsigned int n) 233 { 234 info->data = n; 235 } 236 237 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 238 unsigned int n, unsigned int f) 239 { 240 info->flags = f; 241 info->data = n; 242 } 243 244 static inline bool cluster_is_free(struct swap_cluster_info *info) 245 { 246 return info->flags & CLUSTER_FLAG_FREE; 247 } 248 249 static inline bool cluster_is_null(struct swap_cluster_info *info) 250 { 251 return info->flags & CLUSTER_FLAG_NEXT_NULL; 252 } 253 254 static inline void cluster_set_null(struct swap_cluster_info *info) 255 { 256 info->flags = CLUSTER_FLAG_NEXT_NULL; 257 info->data = 0; 258 } 259 260 /* Add a cluster to discard list and schedule it to do discard */ 261 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 262 unsigned int idx) 263 { 264 /* 265 * If scan_swap_map() can't find a free cluster, it will check 266 * si->swap_map directly. To make sure the discarding cluster isn't 267 * taken by scan_swap_map(), mark the swap entries bad (occupied). It 268 * will be cleared after discard 269 */ 270 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 271 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 272 273 if (cluster_is_null(&si->discard_cluster_head)) { 274 cluster_set_next_flag(&si->discard_cluster_head, 275 idx, 0); 276 cluster_set_next_flag(&si->discard_cluster_tail, 277 idx, 0); 278 } else { 279 unsigned int tail = cluster_next(&si->discard_cluster_tail); 280 cluster_set_next(&si->cluster_info[tail], idx); 281 cluster_set_next_flag(&si->discard_cluster_tail, 282 idx, 0); 283 } 284 285 schedule_work(&si->discard_work); 286 } 287 288 /* 289 * Doing discard actually. After a cluster discard is finished, the cluster 290 * will be added to free cluster list. caller should hold si->lock. 291 */ 292 static void swap_do_scheduled_discard(struct swap_info_struct *si) 293 { 294 struct swap_cluster_info *info; 295 unsigned int idx; 296 297 info = si->cluster_info; 298 299 while (!cluster_is_null(&si->discard_cluster_head)) { 300 idx = cluster_next(&si->discard_cluster_head); 301 302 cluster_set_next_flag(&si->discard_cluster_head, 303 cluster_next(&info[idx]), 0); 304 if (cluster_next(&si->discard_cluster_tail) == idx) { 305 cluster_set_null(&si->discard_cluster_head); 306 cluster_set_null(&si->discard_cluster_tail); 307 } 308 spin_unlock(&si->lock); 309 310 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 311 SWAPFILE_CLUSTER); 312 313 spin_lock(&si->lock); 314 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE); 315 if (cluster_is_null(&si->free_cluster_head)) { 316 cluster_set_next_flag(&si->free_cluster_head, 317 idx, 0); 318 cluster_set_next_flag(&si->free_cluster_tail, 319 idx, 0); 320 } else { 321 unsigned int tail; 322 323 tail = cluster_next(&si->free_cluster_tail); 324 cluster_set_next(&info[tail], idx); 325 cluster_set_next_flag(&si->free_cluster_tail, 326 idx, 0); 327 } 328 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 329 0, SWAPFILE_CLUSTER); 330 } 331 } 332 333 static void swap_discard_work(struct work_struct *work) 334 { 335 struct swap_info_struct *si; 336 337 si = container_of(work, struct swap_info_struct, discard_work); 338 339 spin_lock(&si->lock); 340 swap_do_scheduled_discard(si); 341 spin_unlock(&si->lock); 342 } 343 344 /* 345 * The cluster corresponding to page_nr will be used. The cluster will be 346 * removed from free cluster list and its usage counter will be increased. 347 */ 348 static void inc_cluster_info_page(struct swap_info_struct *p, 349 struct swap_cluster_info *cluster_info, unsigned long page_nr) 350 { 351 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 352 353 if (!cluster_info) 354 return; 355 if (cluster_is_free(&cluster_info[idx])) { 356 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx); 357 cluster_set_next_flag(&p->free_cluster_head, 358 cluster_next(&cluster_info[idx]), 0); 359 if (cluster_next(&p->free_cluster_tail) == idx) { 360 cluster_set_null(&p->free_cluster_tail); 361 cluster_set_null(&p->free_cluster_head); 362 } 363 cluster_set_count_flag(&cluster_info[idx], 0, 0); 364 } 365 366 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 367 cluster_set_count(&cluster_info[idx], 368 cluster_count(&cluster_info[idx]) + 1); 369 } 370 371 /* 372 * The cluster corresponding to page_nr decreases one usage. If the usage 373 * counter becomes 0, which means no page in the cluster is in using, we can 374 * optionally discard the cluster and add it to free cluster list. 375 */ 376 static void dec_cluster_info_page(struct swap_info_struct *p, 377 struct swap_cluster_info *cluster_info, unsigned long page_nr) 378 { 379 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 380 381 if (!cluster_info) 382 return; 383 384 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 385 cluster_set_count(&cluster_info[idx], 386 cluster_count(&cluster_info[idx]) - 1); 387 388 if (cluster_count(&cluster_info[idx]) == 0) { 389 /* 390 * If the swap is discardable, prepare discard the cluster 391 * instead of free it immediately. The cluster will be freed 392 * after discard. 393 */ 394 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 395 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 396 swap_cluster_schedule_discard(p, idx); 397 return; 398 } 399 400 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 401 if (cluster_is_null(&p->free_cluster_head)) { 402 cluster_set_next_flag(&p->free_cluster_head, idx, 0); 403 cluster_set_next_flag(&p->free_cluster_tail, idx, 0); 404 } else { 405 unsigned int tail = cluster_next(&p->free_cluster_tail); 406 cluster_set_next(&cluster_info[tail], idx); 407 cluster_set_next_flag(&p->free_cluster_tail, idx, 0); 408 } 409 } 410 } 411 412 /* 413 * It's possible scan_swap_map() uses a free cluster in the middle of free 414 * cluster list. Avoiding such abuse to avoid list corruption. 415 */ 416 static bool 417 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 418 unsigned long offset) 419 { 420 struct percpu_cluster *percpu_cluster; 421 bool conflict; 422 423 offset /= SWAPFILE_CLUSTER; 424 conflict = !cluster_is_null(&si->free_cluster_head) && 425 offset != cluster_next(&si->free_cluster_head) && 426 cluster_is_free(&si->cluster_info[offset]); 427 428 if (!conflict) 429 return false; 430 431 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 432 cluster_set_null(&percpu_cluster->index); 433 return true; 434 } 435 436 /* 437 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 438 * might involve allocating a new cluster for current CPU too. 439 */ 440 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 441 unsigned long *offset, unsigned long *scan_base) 442 { 443 struct percpu_cluster *cluster; 444 bool found_free; 445 unsigned long tmp; 446 447 new_cluster: 448 cluster = this_cpu_ptr(si->percpu_cluster); 449 if (cluster_is_null(&cluster->index)) { 450 if (!cluster_is_null(&si->free_cluster_head)) { 451 cluster->index = si->free_cluster_head; 452 cluster->next = cluster_next(&cluster->index) * 453 SWAPFILE_CLUSTER; 454 } else if (!cluster_is_null(&si->discard_cluster_head)) { 455 /* 456 * we don't have free cluster but have some clusters in 457 * discarding, do discard now and reclaim them 458 */ 459 swap_do_scheduled_discard(si); 460 *scan_base = *offset = si->cluster_next; 461 goto new_cluster; 462 } else 463 return; 464 } 465 466 found_free = false; 467 468 /* 469 * Other CPUs can use our cluster if they can't find a free cluster, 470 * check if there is still free entry in the cluster 471 */ 472 tmp = cluster->next; 473 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) * 474 SWAPFILE_CLUSTER) { 475 if (!si->swap_map[tmp]) { 476 found_free = true; 477 break; 478 } 479 tmp++; 480 } 481 if (!found_free) { 482 cluster_set_null(&cluster->index); 483 goto new_cluster; 484 } 485 cluster->next = tmp + 1; 486 *offset = tmp; 487 *scan_base = tmp; 488 } 489 490 static unsigned long scan_swap_map(struct swap_info_struct *si, 491 unsigned char usage) 492 { 493 unsigned long offset; 494 unsigned long scan_base; 495 unsigned long last_in_cluster = 0; 496 int latency_ration = LATENCY_LIMIT; 497 498 /* 499 * We try to cluster swap pages by allocating them sequentially 500 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 501 * way, however, we resort to first-free allocation, starting 502 * a new cluster. This prevents us from scattering swap pages 503 * all over the entire swap partition, so that we reduce 504 * overall disk seek times between swap pages. -- sct 505 * But we do now try to find an empty cluster. -Andrea 506 * And we let swap pages go all over an SSD partition. Hugh 507 */ 508 509 si->flags += SWP_SCANNING; 510 scan_base = offset = si->cluster_next; 511 512 /* SSD algorithm */ 513 if (si->cluster_info) { 514 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base); 515 goto checks; 516 } 517 518 if (unlikely(!si->cluster_nr--)) { 519 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 520 si->cluster_nr = SWAPFILE_CLUSTER - 1; 521 goto checks; 522 } 523 524 spin_unlock(&si->lock); 525 526 /* 527 * If seek is expensive, start searching for new cluster from 528 * start of partition, to minimize the span of allocated swap. 529 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 530 * case, just handled by scan_swap_map_try_ssd_cluster() above. 531 */ 532 scan_base = offset = si->lowest_bit; 533 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 534 535 /* Locate the first empty (unaligned) cluster */ 536 for (; last_in_cluster <= si->highest_bit; offset++) { 537 if (si->swap_map[offset]) 538 last_in_cluster = offset + SWAPFILE_CLUSTER; 539 else if (offset == last_in_cluster) { 540 spin_lock(&si->lock); 541 offset -= SWAPFILE_CLUSTER - 1; 542 si->cluster_next = offset; 543 si->cluster_nr = SWAPFILE_CLUSTER - 1; 544 goto checks; 545 } 546 if (unlikely(--latency_ration < 0)) { 547 cond_resched(); 548 latency_ration = LATENCY_LIMIT; 549 } 550 } 551 552 offset = scan_base; 553 spin_lock(&si->lock); 554 si->cluster_nr = SWAPFILE_CLUSTER - 1; 555 } 556 557 checks: 558 if (si->cluster_info) { 559 while (scan_swap_map_ssd_cluster_conflict(si, offset)) 560 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base); 561 } 562 if (!(si->flags & SWP_WRITEOK)) 563 goto no_page; 564 if (!si->highest_bit) 565 goto no_page; 566 if (offset > si->highest_bit) 567 scan_base = offset = si->lowest_bit; 568 569 /* reuse swap entry of cache-only swap if not busy. */ 570 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 571 int swap_was_freed; 572 spin_unlock(&si->lock); 573 swap_was_freed = __try_to_reclaim_swap(si, offset); 574 spin_lock(&si->lock); 575 /* entry was freed successfully, try to use this again */ 576 if (swap_was_freed) 577 goto checks; 578 goto scan; /* check next one */ 579 } 580 581 if (si->swap_map[offset]) 582 goto scan; 583 584 if (offset == si->lowest_bit) 585 si->lowest_bit++; 586 if (offset == si->highest_bit) 587 si->highest_bit--; 588 si->inuse_pages++; 589 if (si->inuse_pages == si->pages) { 590 si->lowest_bit = si->max; 591 si->highest_bit = 0; 592 spin_lock(&swap_avail_lock); 593 plist_del(&si->avail_list, &swap_avail_head); 594 spin_unlock(&swap_avail_lock); 595 } 596 si->swap_map[offset] = usage; 597 inc_cluster_info_page(si, si->cluster_info, offset); 598 si->cluster_next = offset + 1; 599 si->flags -= SWP_SCANNING; 600 601 return offset; 602 603 scan: 604 spin_unlock(&si->lock); 605 while (++offset <= si->highest_bit) { 606 if (!si->swap_map[offset]) { 607 spin_lock(&si->lock); 608 goto checks; 609 } 610 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 611 spin_lock(&si->lock); 612 goto checks; 613 } 614 if (unlikely(--latency_ration < 0)) { 615 cond_resched(); 616 latency_ration = LATENCY_LIMIT; 617 } 618 } 619 offset = si->lowest_bit; 620 while (offset < scan_base) { 621 if (!si->swap_map[offset]) { 622 spin_lock(&si->lock); 623 goto checks; 624 } 625 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 626 spin_lock(&si->lock); 627 goto checks; 628 } 629 if (unlikely(--latency_ration < 0)) { 630 cond_resched(); 631 latency_ration = LATENCY_LIMIT; 632 } 633 offset++; 634 } 635 spin_lock(&si->lock); 636 637 no_page: 638 si->flags -= SWP_SCANNING; 639 return 0; 640 } 641 642 swp_entry_t get_swap_page(void) 643 { 644 struct swap_info_struct *si, *next; 645 pgoff_t offset; 646 647 if (atomic_long_read(&nr_swap_pages) <= 0) 648 goto noswap; 649 atomic_long_dec(&nr_swap_pages); 650 651 spin_lock(&swap_avail_lock); 652 653 start_over: 654 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) { 655 /* requeue si to after same-priority siblings */ 656 plist_requeue(&si->avail_list, &swap_avail_head); 657 spin_unlock(&swap_avail_lock); 658 spin_lock(&si->lock); 659 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 660 spin_lock(&swap_avail_lock); 661 if (plist_node_empty(&si->avail_list)) { 662 spin_unlock(&si->lock); 663 goto nextsi; 664 } 665 WARN(!si->highest_bit, 666 "swap_info %d in list but !highest_bit\n", 667 si->type); 668 WARN(!(si->flags & SWP_WRITEOK), 669 "swap_info %d in list but !SWP_WRITEOK\n", 670 si->type); 671 plist_del(&si->avail_list, &swap_avail_head); 672 spin_unlock(&si->lock); 673 goto nextsi; 674 } 675 676 /* This is called for allocating swap entry for cache */ 677 offset = scan_swap_map(si, SWAP_HAS_CACHE); 678 spin_unlock(&si->lock); 679 if (offset) 680 return swp_entry(si->type, offset); 681 pr_debug("scan_swap_map of si %d failed to find offset\n", 682 si->type); 683 spin_lock(&swap_avail_lock); 684 nextsi: 685 /* 686 * if we got here, it's likely that si was almost full before, 687 * and since scan_swap_map() can drop the si->lock, multiple 688 * callers probably all tried to get a page from the same si 689 * and it filled up before we could get one; or, the si filled 690 * up between us dropping swap_avail_lock and taking si->lock. 691 * Since we dropped the swap_avail_lock, the swap_avail_head 692 * list may have been modified; so if next is still in the 693 * swap_avail_head list then try it, otherwise start over. 694 */ 695 if (plist_node_empty(&next->avail_list)) 696 goto start_over; 697 } 698 699 spin_unlock(&swap_avail_lock); 700 701 atomic_long_inc(&nr_swap_pages); 702 noswap: 703 return (swp_entry_t) {0}; 704 } 705 706 /* The only caller of this function is now suspend routine */ 707 swp_entry_t get_swap_page_of_type(int type) 708 { 709 struct swap_info_struct *si; 710 pgoff_t offset; 711 712 si = swap_info[type]; 713 spin_lock(&si->lock); 714 if (si && (si->flags & SWP_WRITEOK)) { 715 atomic_long_dec(&nr_swap_pages); 716 /* This is called for allocating swap entry, not cache */ 717 offset = scan_swap_map(si, 1); 718 if (offset) { 719 spin_unlock(&si->lock); 720 return swp_entry(type, offset); 721 } 722 atomic_long_inc(&nr_swap_pages); 723 } 724 spin_unlock(&si->lock); 725 return (swp_entry_t) {0}; 726 } 727 728 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 729 { 730 struct swap_info_struct *p; 731 unsigned long offset, type; 732 733 if (!entry.val) 734 goto out; 735 type = swp_type(entry); 736 if (type >= nr_swapfiles) 737 goto bad_nofile; 738 p = swap_info[type]; 739 if (!(p->flags & SWP_USED)) 740 goto bad_device; 741 offset = swp_offset(entry); 742 if (offset >= p->max) 743 goto bad_offset; 744 if (!p->swap_map[offset]) 745 goto bad_free; 746 spin_lock(&p->lock); 747 return p; 748 749 bad_free: 750 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val); 751 goto out; 752 bad_offset: 753 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val); 754 goto out; 755 bad_device: 756 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val); 757 goto out; 758 bad_nofile: 759 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val); 760 out: 761 return NULL; 762 } 763 764 static unsigned char swap_entry_free(struct swap_info_struct *p, 765 swp_entry_t entry, unsigned char usage) 766 { 767 unsigned long offset = swp_offset(entry); 768 unsigned char count; 769 unsigned char has_cache; 770 771 count = p->swap_map[offset]; 772 has_cache = count & SWAP_HAS_CACHE; 773 count &= ~SWAP_HAS_CACHE; 774 775 if (usage == SWAP_HAS_CACHE) { 776 VM_BUG_ON(!has_cache); 777 has_cache = 0; 778 } else if (count == SWAP_MAP_SHMEM) { 779 /* 780 * Or we could insist on shmem.c using a special 781 * swap_shmem_free() and free_shmem_swap_and_cache()... 782 */ 783 count = 0; 784 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 785 if (count == COUNT_CONTINUED) { 786 if (swap_count_continued(p, offset, count)) 787 count = SWAP_MAP_MAX | COUNT_CONTINUED; 788 else 789 count = SWAP_MAP_MAX; 790 } else 791 count--; 792 } 793 794 usage = count | has_cache; 795 p->swap_map[offset] = usage; 796 797 /* free if no reference */ 798 if (!usage) { 799 mem_cgroup_uncharge_swap(entry); 800 dec_cluster_info_page(p, p->cluster_info, offset); 801 if (offset < p->lowest_bit) 802 p->lowest_bit = offset; 803 if (offset > p->highest_bit) { 804 bool was_full = !p->highest_bit; 805 p->highest_bit = offset; 806 if (was_full && (p->flags & SWP_WRITEOK)) { 807 spin_lock(&swap_avail_lock); 808 WARN_ON(!plist_node_empty(&p->avail_list)); 809 if (plist_node_empty(&p->avail_list)) 810 plist_add(&p->avail_list, 811 &swap_avail_head); 812 spin_unlock(&swap_avail_lock); 813 } 814 } 815 atomic_long_inc(&nr_swap_pages); 816 p->inuse_pages--; 817 frontswap_invalidate_page(p->type, offset); 818 if (p->flags & SWP_BLKDEV) { 819 struct gendisk *disk = p->bdev->bd_disk; 820 if (disk->fops->swap_slot_free_notify) 821 disk->fops->swap_slot_free_notify(p->bdev, 822 offset); 823 } 824 } 825 826 return usage; 827 } 828 829 /* 830 * Caller has made sure that the swap device corresponding to entry 831 * is still around or has not been recycled. 832 */ 833 void swap_free(swp_entry_t entry) 834 { 835 struct swap_info_struct *p; 836 837 p = swap_info_get(entry); 838 if (p) { 839 swap_entry_free(p, entry, 1); 840 spin_unlock(&p->lock); 841 } 842 } 843 844 /* 845 * Called after dropping swapcache to decrease refcnt to swap entries. 846 */ 847 void swapcache_free(swp_entry_t entry) 848 { 849 struct swap_info_struct *p; 850 851 p = swap_info_get(entry); 852 if (p) { 853 swap_entry_free(p, entry, SWAP_HAS_CACHE); 854 spin_unlock(&p->lock); 855 } 856 } 857 858 /* 859 * How many references to page are currently swapped out? 860 * This does not give an exact answer when swap count is continued, 861 * but does include the high COUNT_CONTINUED flag to allow for that. 862 */ 863 int page_swapcount(struct page *page) 864 { 865 int count = 0; 866 struct swap_info_struct *p; 867 swp_entry_t entry; 868 869 entry.val = page_private(page); 870 p = swap_info_get(entry); 871 if (p) { 872 count = swap_count(p->swap_map[swp_offset(entry)]); 873 spin_unlock(&p->lock); 874 } 875 return count; 876 } 877 878 /* 879 * How many references to @entry are currently swapped out? 880 * This considers COUNT_CONTINUED so it returns exact answer. 881 */ 882 int swp_swapcount(swp_entry_t entry) 883 { 884 int count, tmp_count, n; 885 struct swap_info_struct *p; 886 struct page *page; 887 pgoff_t offset; 888 unsigned char *map; 889 890 p = swap_info_get(entry); 891 if (!p) 892 return 0; 893 894 count = swap_count(p->swap_map[swp_offset(entry)]); 895 if (!(count & COUNT_CONTINUED)) 896 goto out; 897 898 count &= ~COUNT_CONTINUED; 899 n = SWAP_MAP_MAX + 1; 900 901 offset = swp_offset(entry); 902 page = vmalloc_to_page(p->swap_map + offset); 903 offset &= ~PAGE_MASK; 904 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 905 906 do { 907 page = list_next_entry(page, lru); 908 map = kmap_atomic(page); 909 tmp_count = map[offset]; 910 kunmap_atomic(map); 911 912 count += (tmp_count & ~COUNT_CONTINUED) * n; 913 n *= (SWAP_CONT_MAX + 1); 914 } while (tmp_count & COUNT_CONTINUED); 915 out: 916 spin_unlock(&p->lock); 917 return count; 918 } 919 920 /* 921 * We can write to an anon page without COW if there are no other references 922 * to it. And as a side-effect, free up its swap: because the old content 923 * on disk will never be read, and seeking back there to write new content 924 * later would only waste time away from clustering. 925 * 926 * NOTE: total_mapcount should not be relied upon by the caller if 927 * reuse_swap_page() returns false, but it may be always overwritten 928 * (see the other implementation for CONFIG_SWAP=n). 929 */ 930 bool reuse_swap_page(struct page *page, int *total_mapcount) 931 { 932 int count; 933 934 VM_BUG_ON_PAGE(!PageLocked(page), page); 935 if (unlikely(PageKsm(page))) 936 return false; 937 count = page_trans_huge_mapcount(page, total_mapcount); 938 if (count <= 1 && PageSwapCache(page)) { 939 count += page_swapcount(page); 940 if (count == 1 && !PageWriteback(page)) { 941 delete_from_swap_cache(page); 942 SetPageDirty(page); 943 } 944 } 945 return count <= 1; 946 } 947 948 /* 949 * If swap is getting full, or if there are no more mappings of this page, 950 * then try_to_free_swap is called to free its swap space. 951 */ 952 int try_to_free_swap(struct page *page) 953 { 954 VM_BUG_ON_PAGE(!PageLocked(page), page); 955 956 if (!PageSwapCache(page)) 957 return 0; 958 if (PageWriteback(page)) 959 return 0; 960 if (page_swapcount(page)) 961 return 0; 962 963 /* 964 * Once hibernation has begun to create its image of memory, 965 * there's a danger that one of the calls to try_to_free_swap() 966 * - most probably a call from __try_to_reclaim_swap() while 967 * hibernation is allocating its own swap pages for the image, 968 * but conceivably even a call from memory reclaim - will free 969 * the swap from a page which has already been recorded in the 970 * image as a clean swapcache page, and then reuse its swap for 971 * another page of the image. On waking from hibernation, the 972 * original page might be freed under memory pressure, then 973 * later read back in from swap, now with the wrong data. 974 * 975 * Hibernation suspends storage while it is writing the image 976 * to disk so check that here. 977 */ 978 if (pm_suspended_storage()) 979 return 0; 980 981 delete_from_swap_cache(page); 982 SetPageDirty(page); 983 return 1; 984 } 985 986 /* 987 * Free the swap entry like above, but also try to 988 * free the page cache entry if it is the last user. 989 */ 990 int free_swap_and_cache(swp_entry_t entry) 991 { 992 struct swap_info_struct *p; 993 struct page *page = NULL; 994 995 if (non_swap_entry(entry)) 996 return 1; 997 998 p = swap_info_get(entry); 999 if (p) { 1000 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) { 1001 page = find_get_page(swap_address_space(entry), 1002 entry.val); 1003 if (page && !trylock_page(page)) { 1004 put_page(page); 1005 page = NULL; 1006 } 1007 } 1008 spin_unlock(&p->lock); 1009 } 1010 if (page) { 1011 /* 1012 * Not mapped elsewhere, or swap space full? Free it! 1013 * Also recheck PageSwapCache now page is locked (above). 1014 */ 1015 if (PageSwapCache(page) && !PageWriteback(page) && 1016 (!page_mapped(page) || mem_cgroup_swap_full(page))) { 1017 delete_from_swap_cache(page); 1018 SetPageDirty(page); 1019 } 1020 unlock_page(page); 1021 put_page(page); 1022 } 1023 return p != NULL; 1024 } 1025 1026 #ifdef CONFIG_HIBERNATION 1027 /* 1028 * Find the swap type that corresponds to given device (if any). 1029 * 1030 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1031 * from 0, in which the swap header is expected to be located. 1032 * 1033 * This is needed for the suspend to disk (aka swsusp). 1034 */ 1035 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 1036 { 1037 struct block_device *bdev = NULL; 1038 int type; 1039 1040 if (device) 1041 bdev = bdget(device); 1042 1043 spin_lock(&swap_lock); 1044 for (type = 0; type < nr_swapfiles; type++) { 1045 struct swap_info_struct *sis = swap_info[type]; 1046 1047 if (!(sis->flags & SWP_WRITEOK)) 1048 continue; 1049 1050 if (!bdev) { 1051 if (bdev_p) 1052 *bdev_p = bdgrab(sis->bdev); 1053 1054 spin_unlock(&swap_lock); 1055 return type; 1056 } 1057 if (bdev == sis->bdev) { 1058 struct swap_extent *se = &sis->first_swap_extent; 1059 1060 if (se->start_block == offset) { 1061 if (bdev_p) 1062 *bdev_p = bdgrab(sis->bdev); 1063 1064 spin_unlock(&swap_lock); 1065 bdput(bdev); 1066 return type; 1067 } 1068 } 1069 } 1070 spin_unlock(&swap_lock); 1071 if (bdev) 1072 bdput(bdev); 1073 1074 return -ENODEV; 1075 } 1076 1077 /* 1078 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1079 * corresponding to given index in swap_info (swap type). 1080 */ 1081 sector_t swapdev_block(int type, pgoff_t offset) 1082 { 1083 struct block_device *bdev; 1084 1085 if ((unsigned int)type >= nr_swapfiles) 1086 return 0; 1087 if (!(swap_info[type]->flags & SWP_WRITEOK)) 1088 return 0; 1089 return map_swap_entry(swp_entry(type, offset), &bdev); 1090 } 1091 1092 /* 1093 * Return either the total number of swap pages of given type, or the number 1094 * of free pages of that type (depending on @free) 1095 * 1096 * This is needed for software suspend 1097 */ 1098 unsigned int count_swap_pages(int type, int free) 1099 { 1100 unsigned int n = 0; 1101 1102 spin_lock(&swap_lock); 1103 if ((unsigned int)type < nr_swapfiles) { 1104 struct swap_info_struct *sis = swap_info[type]; 1105 1106 spin_lock(&sis->lock); 1107 if (sis->flags & SWP_WRITEOK) { 1108 n = sis->pages; 1109 if (free) 1110 n -= sis->inuse_pages; 1111 } 1112 spin_unlock(&sis->lock); 1113 } 1114 spin_unlock(&swap_lock); 1115 return n; 1116 } 1117 #endif /* CONFIG_HIBERNATION */ 1118 1119 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1120 { 1121 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte); 1122 } 1123 1124 /* 1125 * No need to decide whether this PTE shares the swap entry with others, 1126 * just let do_wp_page work it out if a write is requested later - to 1127 * force COW, vm_page_prot omits write permission from any private vma. 1128 */ 1129 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1130 unsigned long addr, swp_entry_t entry, struct page *page) 1131 { 1132 struct page *swapcache; 1133 struct mem_cgroup *memcg; 1134 spinlock_t *ptl; 1135 pte_t *pte; 1136 int ret = 1; 1137 1138 swapcache = page; 1139 page = ksm_might_need_to_copy(page, vma, addr); 1140 if (unlikely(!page)) 1141 return -ENOMEM; 1142 1143 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, 1144 &memcg, false)) { 1145 ret = -ENOMEM; 1146 goto out_nolock; 1147 } 1148 1149 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1150 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1151 mem_cgroup_cancel_charge(page, memcg, false); 1152 ret = 0; 1153 goto out; 1154 } 1155 1156 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1157 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1158 get_page(page); 1159 set_pte_at(vma->vm_mm, addr, pte, 1160 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1161 if (page == swapcache) { 1162 page_add_anon_rmap(page, vma, addr, false); 1163 mem_cgroup_commit_charge(page, memcg, true, false); 1164 } else { /* ksm created a completely new copy */ 1165 page_add_new_anon_rmap(page, vma, addr, false); 1166 mem_cgroup_commit_charge(page, memcg, false, false); 1167 lru_cache_add_active_or_unevictable(page, vma); 1168 } 1169 swap_free(entry); 1170 /* 1171 * Move the page to the active list so it is not 1172 * immediately swapped out again after swapon. 1173 */ 1174 activate_page(page); 1175 out: 1176 pte_unmap_unlock(pte, ptl); 1177 out_nolock: 1178 if (page != swapcache) { 1179 unlock_page(page); 1180 put_page(page); 1181 } 1182 return ret; 1183 } 1184 1185 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1186 unsigned long addr, unsigned long end, 1187 swp_entry_t entry, struct page *page) 1188 { 1189 pte_t swp_pte = swp_entry_to_pte(entry); 1190 pte_t *pte; 1191 int ret = 0; 1192 1193 /* 1194 * We don't actually need pte lock while scanning for swp_pte: since 1195 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 1196 * page table while we're scanning; though it could get zapped, and on 1197 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 1198 * of unmatched parts which look like swp_pte, so unuse_pte must 1199 * recheck under pte lock. Scanning without pte lock lets it be 1200 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 1201 */ 1202 pte = pte_offset_map(pmd, addr); 1203 do { 1204 /* 1205 * swapoff spends a _lot_ of time in this loop! 1206 * Test inline before going to call unuse_pte. 1207 */ 1208 if (unlikely(pte_same_as_swp(*pte, swp_pte))) { 1209 pte_unmap(pte); 1210 ret = unuse_pte(vma, pmd, addr, entry, page); 1211 if (ret) 1212 goto out; 1213 pte = pte_offset_map(pmd, addr); 1214 } 1215 } while (pte++, addr += PAGE_SIZE, addr != end); 1216 pte_unmap(pte - 1); 1217 out: 1218 return ret; 1219 } 1220 1221 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1222 unsigned long addr, unsigned long end, 1223 swp_entry_t entry, struct page *page) 1224 { 1225 pmd_t *pmd; 1226 unsigned long next; 1227 int ret; 1228 1229 pmd = pmd_offset(pud, addr); 1230 do { 1231 next = pmd_addr_end(addr, end); 1232 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1233 continue; 1234 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 1235 if (ret) 1236 return ret; 1237 } while (pmd++, addr = next, addr != end); 1238 return 0; 1239 } 1240 1241 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 1242 unsigned long addr, unsigned long end, 1243 swp_entry_t entry, struct page *page) 1244 { 1245 pud_t *pud; 1246 unsigned long next; 1247 int ret; 1248 1249 pud = pud_offset(pgd, addr); 1250 do { 1251 next = pud_addr_end(addr, end); 1252 if (pud_none_or_clear_bad(pud)) 1253 continue; 1254 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 1255 if (ret) 1256 return ret; 1257 } while (pud++, addr = next, addr != end); 1258 return 0; 1259 } 1260 1261 static int unuse_vma(struct vm_area_struct *vma, 1262 swp_entry_t entry, struct page *page) 1263 { 1264 pgd_t *pgd; 1265 unsigned long addr, end, next; 1266 int ret; 1267 1268 if (page_anon_vma(page)) { 1269 addr = page_address_in_vma(page, vma); 1270 if (addr == -EFAULT) 1271 return 0; 1272 else 1273 end = addr + PAGE_SIZE; 1274 } else { 1275 addr = vma->vm_start; 1276 end = vma->vm_end; 1277 } 1278 1279 pgd = pgd_offset(vma->vm_mm, addr); 1280 do { 1281 next = pgd_addr_end(addr, end); 1282 if (pgd_none_or_clear_bad(pgd)) 1283 continue; 1284 ret = unuse_pud_range(vma, pgd, addr, next, entry, page); 1285 if (ret) 1286 return ret; 1287 } while (pgd++, addr = next, addr != end); 1288 return 0; 1289 } 1290 1291 static int unuse_mm(struct mm_struct *mm, 1292 swp_entry_t entry, struct page *page) 1293 { 1294 struct vm_area_struct *vma; 1295 int ret = 0; 1296 1297 if (!down_read_trylock(&mm->mmap_sem)) { 1298 /* 1299 * Activate page so shrink_inactive_list is unlikely to unmap 1300 * its ptes while lock is dropped, so swapoff can make progress. 1301 */ 1302 activate_page(page); 1303 unlock_page(page); 1304 down_read(&mm->mmap_sem); 1305 lock_page(page); 1306 } 1307 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1308 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 1309 break; 1310 } 1311 up_read(&mm->mmap_sem); 1312 return (ret < 0)? ret: 0; 1313 } 1314 1315 /* 1316 * Scan swap_map (or frontswap_map if frontswap parameter is true) 1317 * from current position to next entry still in use. 1318 * Recycle to start on reaching the end, returning 0 when empty. 1319 */ 1320 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1321 unsigned int prev, bool frontswap) 1322 { 1323 unsigned int max = si->max; 1324 unsigned int i = prev; 1325 unsigned char count; 1326 1327 /* 1328 * No need for swap_lock here: we're just looking 1329 * for whether an entry is in use, not modifying it; false 1330 * hits are okay, and sys_swapoff() has already prevented new 1331 * allocations from this area (while holding swap_lock). 1332 */ 1333 for (;;) { 1334 if (++i >= max) { 1335 if (!prev) { 1336 i = 0; 1337 break; 1338 } 1339 /* 1340 * No entries in use at top of swap_map, 1341 * loop back to start and recheck there. 1342 */ 1343 max = prev + 1; 1344 prev = 0; 1345 i = 1; 1346 } 1347 if (frontswap) { 1348 if (frontswap_test(si, i)) 1349 break; 1350 else 1351 continue; 1352 } 1353 count = READ_ONCE(si->swap_map[i]); 1354 if (count && swap_count(count) != SWAP_MAP_BAD) 1355 break; 1356 } 1357 return i; 1358 } 1359 1360 /* 1361 * We completely avoid races by reading each swap page in advance, 1362 * and then search for the process using it. All the necessary 1363 * page table adjustments can then be made atomically. 1364 * 1365 * if the boolean frontswap is true, only unuse pages_to_unuse pages; 1366 * pages_to_unuse==0 means all pages; ignored if frontswap is false 1367 */ 1368 int try_to_unuse(unsigned int type, bool frontswap, 1369 unsigned long pages_to_unuse) 1370 { 1371 struct swap_info_struct *si = swap_info[type]; 1372 struct mm_struct *start_mm; 1373 volatile unsigned char *swap_map; /* swap_map is accessed without 1374 * locking. Mark it as volatile 1375 * to prevent compiler doing 1376 * something odd. 1377 */ 1378 unsigned char swcount; 1379 struct page *page; 1380 swp_entry_t entry; 1381 unsigned int i = 0; 1382 int retval = 0; 1383 1384 /* 1385 * When searching mms for an entry, a good strategy is to 1386 * start at the first mm we freed the previous entry from 1387 * (though actually we don't notice whether we or coincidence 1388 * freed the entry). Initialize this start_mm with a hold. 1389 * 1390 * A simpler strategy would be to start at the last mm we 1391 * freed the previous entry from; but that would take less 1392 * advantage of mmlist ordering, which clusters forked mms 1393 * together, child after parent. If we race with dup_mmap(), we 1394 * prefer to resolve parent before child, lest we miss entries 1395 * duplicated after we scanned child: using last mm would invert 1396 * that. 1397 */ 1398 start_mm = &init_mm; 1399 atomic_inc(&init_mm.mm_users); 1400 1401 /* 1402 * Keep on scanning until all entries have gone. Usually, 1403 * one pass through swap_map is enough, but not necessarily: 1404 * there are races when an instance of an entry might be missed. 1405 */ 1406 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) { 1407 if (signal_pending(current)) { 1408 retval = -EINTR; 1409 break; 1410 } 1411 1412 /* 1413 * Get a page for the entry, using the existing swap 1414 * cache page if there is one. Otherwise, get a clean 1415 * page and read the swap into it. 1416 */ 1417 swap_map = &si->swap_map[i]; 1418 entry = swp_entry(type, i); 1419 page = read_swap_cache_async(entry, 1420 GFP_HIGHUSER_MOVABLE, NULL, 0); 1421 if (!page) { 1422 /* 1423 * Either swap_duplicate() failed because entry 1424 * has been freed independently, and will not be 1425 * reused since sys_swapoff() already disabled 1426 * allocation from here, or alloc_page() failed. 1427 */ 1428 swcount = *swap_map; 1429 /* 1430 * We don't hold lock here, so the swap entry could be 1431 * SWAP_MAP_BAD (when the cluster is discarding). 1432 * Instead of fail out, We can just skip the swap 1433 * entry because swapoff will wait for discarding 1434 * finish anyway. 1435 */ 1436 if (!swcount || swcount == SWAP_MAP_BAD) 1437 continue; 1438 retval = -ENOMEM; 1439 break; 1440 } 1441 1442 /* 1443 * Don't hold on to start_mm if it looks like exiting. 1444 */ 1445 if (atomic_read(&start_mm->mm_users) == 1) { 1446 mmput(start_mm); 1447 start_mm = &init_mm; 1448 atomic_inc(&init_mm.mm_users); 1449 } 1450 1451 /* 1452 * Wait for and lock page. When do_swap_page races with 1453 * try_to_unuse, do_swap_page can handle the fault much 1454 * faster than try_to_unuse can locate the entry. This 1455 * apparently redundant "wait_on_page_locked" lets try_to_unuse 1456 * defer to do_swap_page in such a case - in some tests, 1457 * do_swap_page and try_to_unuse repeatedly compete. 1458 */ 1459 wait_on_page_locked(page); 1460 wait_on_page_writeback(page); 1461 lock_page(page); 1462 wait_on_page_writeback(page); 1463 1464 /* 1465 * Remove all references to entry. 1466 */ 1467 swcount = *swap_map; 1468 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 1469 retval = shmem_unuse(entry, page); 1470 /* page has already been unlocked and released */ 1471 if (retval < 0) 1472 break; 1473 continue; 1474 } 1475 if (swap_count(swcount) && start_mm != &init_mm) 1476 retval = unuse_mm(start_mm, entry, page); 1477 1478 if (swap_count(*swap_map)) { 1479 int set_start_mm = (*swap_map >= swcount); 1480 struct list_head *p = &start_mm->mmlist; 1481 struct mm_struct *new_start_mm = start_mm; 1482 struct mm_struct *prev_mm = start_mm; 1483 struct mm_struct *mm; 1484 1485 atomic_inc(&new_start_mm->mm_users); 1486 atomic_inc(&prev_mm->mm_users); 1487 spin_lock(&mmlist_lock); 1488 while (swap_count(*swap_map) && !retval && 1489 (p = p->next) != &start_mm->mmlist) { 1490 mm = list_entry(p, struct mm_struct, mmlist); 1491 if (!atomic_inc_not_zero(&mm->mm_users)) 1492 continue; 1493 spin_unlock(&mmlist_lock); 1494 mmput(prev_mm); 1495 prev_mm = mm; 1496 1497 cond_resched(); 1498 1499 swcount = *swap_map; 1500 if (!swap_count(swcount)) /* any usage ? */ 1501 ; 1502 else if (mm == &init_mm) 1503 set_start_mm = 1; 1504 else 1505 retval = unuse_mm(mm, entry, page); 1506 1507 if (set_start_mm && *swap_map < swcount) { 1508 mmput(new_start_mm); 1509 atomic_inc(&mm->mm_users); 1510 new_start_mm = mm; 1511 set_start_mm = 0; 1512 } 1513 spin_lock(&mmlist_lock); 1514 } 1515 spin_unlock(&mmlist_lock); 1516 mmput(prev_mm); 1517 mmput(start_mm); 1518 start_mm = new_start_mm; 1519 } 1520 if (retval) { 1521 unlock_page(page); 1522 put_page(page); 1523 break; 1524 } 1525 1526 /* 1527 * If a reference remains (rare), we would like to leave 1528 * the page in the swap cache; but try_to_unmap could 1529 * then re-duplicate the entry once we drop page lock, 1530 * so we might loop indefinitely; also, that page could 1531 * not be swapped out to other storage meanwhile. So: 1532 * delete from cache even if there's another reference, 1533 * after ensuring that the data has been saved to disk - 1534 * since if the reference remains (rarer), it will be 1535 * read from disk into another page. Splitting into two 1536 * pages would be incorrect if swap supported "shared 1537 * private" pages, but they are handled by tmpfs files. 1538 * 1539 * Given how unuse_vma() targets one particular offset 1540 * in an anon_vma, once the anon_vma has been determined, 1541 * this splitting happens to be just what is needed to 1542 * handle where KSM pages have been swapped out: re-reading 1543 * is unnecessarily slow, but we can fix that later on. 1544 */ 1545 if (swap_count(*swap_map) && 1546 PageDirty(page) && PageSwapCache(page)) { 1547 struct writeback_control wbc = { 1548 .sync_mode = WB_SYNC_NONE, 1549 }; 1550 1551 swap_writepage(page, &wbc); 1552 lock_page(page); 1553 wait_on_page_writeback(page); 1554 } 1555 1556 /* 1557 * It is conceivable that a racing task removed this page from 1558 * swap cache just before we acquired the page lock at the top, 1559 * or while we dropped it in unuse_mm(). The page might even 1560 * be back in swap cache on another swap area: that we must not 1561 * delete, since it may not have been written out to swap yet. 1562 */ 1563 if (PageSwapCache(page) && 1564 likely(page_private(page) == entry.val)) 1565 delete_from_swap_cache(page); 1566 1567 /* 1568 * So we could skip searching mms once swap count went 1569 * to 1, we did not mark any present ptes as dirty: must 1570 * mark page dirty so shrink_page_list will preserve it. 1571 */ 1572 SetPageDirty(page); 1573 unlock_page(page); 1574 put_page(page); 1575 1576 /* 1577 * Make sure that we aren't completely killing 1578 * interactive performance. 1579 */ 1580 cond_resched(); 1581 if (frontswap && pages_to_unuse > 0) { 1582 if (!--pages_to_unuse) 1583 break; 1584 } 1585 } 1586 1587 mmput(start_mm); 1588 return retval; 1589 } 1590 1591 /* 1592 * After a successful try_to_unuse, if no swap is now in use, we know 1593 * we can empty the mmlist. swap_lock must be held on entry and exit. 1594 * Note that mmlist_lock nests inside swap_lock, and an mm must be 1595 * added to the mmlist just after page_duplicate - before would be racy. 1596 */ 1597 static void drain_mmlist(void) 1598 { 1599 struct list_head *p, *next; 1600 unsigned int type; 1601 1602 for (type = 0; type < nr_swapfiles; type++) 1603 if (swap_info[type]->inuse_pages) 1604 return; 1605 spin_lock(&mmlist_lock); 1606 list_for_each_safe(p, next, &init_mm.mmlist) 1607 list_del_init(p); 1608 spin_unlock(&mmlist_lock); 1609 } 1610 1611 /* 1612 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 1613 * corresponds to page offset for the specified swap entry. 1614 * Note that the type of this function is sector_t, but it returns page offset 1615 * into the bdev, not sector offset. 1616 */ 1617 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 1618 { 1619 struct swap_info_struct *sis; 1620 struct swap_extent *start_se; 1621 struct swap_extent *se; 1622 pgoff_t offset; 1623 1624 sis = swap_info[swp_type(entry)]; 1625 *bdev = sis->bdev; 1626 1627 offset = swp_offset(entry); 1628 start_se = sis->curr_swap_extent; 1629 se = start_se; 1630 1631 for ( ; ; ) { 1632 if (se->start_page <= offset && 1633 offset < (se->start_page + se->nr_pages)) { 1634 return se->start_block + (offset - se->start_page); 1635 } 1636 se = list_next_entry(se, list); 1637 sis->curr_swap_extent = se; 1638 BUG_ON(se == start_se); /* It *must* be present */ 1639 } 1640 } 1641 1642 /* 1643 * Returns the page offset into bdev for the specified page's swap entry. 1644 */ 1645 sector_t map_swap_page(struct page *page, struct block_device **bdev) 1646 { 1647 swp_entry_t entry; 1648 entry.val = page_private(page); 1649 return map_swap_entry(entry, bdev); 1650 } 1651 1652 /* 1653 * Free all of a swapdev's extent information 1654 */ 1655 static void destroy_swap_extents(struct swap_info_struct *sis) 1656 { 1657 while (!list_empty(&sis->first_swap_extent.list)) { 1658 struct swap_extent *se; 1659 1660 se = list_first_entry(&sis->first_swap_extent.list, 1661 struct swap_extent, list); 1662 list_del(&se->list); 1663 kfree(se); 1664 } 1665 1666 if (sis->flags & SWP_FILE) { 1667 struct file *swap_file = sis->swap_file; 1668 struct address_space *mapping = swap_file->f_mapping; 1669 1670 sis->flags &= ~SWP_FILE; 1671 mapping->a_ops->swap_deactivate(swap_file); 1672 } 1673 } 1674 1675 /* 1676 * Add a block range (and the corresponding page range) into this swapdev's 1677 * extent list. The extent list is kept sorted in page order. 1678 * 1679 * This function rather assumes that it is called in ascending page order. 1680 */ 1681 int 1682 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1683 unsigned long nr_pages, sector_t start_block) 1684 { 1685 struct swap_extent *se; 1686 struct swap_extent *new_se; 1687 struct list_head *lh; 1688 1689 if (start_page == 0) { 1690 se = &sis->first_swap_extent; 1691 sis->curr_swap_extent = se; 1692 se->start_page = 0; 1693 se->nr_pages = nr_pages; 1694 se->start_block = start_block; 1695 return 1; 1696 } else { 1697 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 1698 se = list_entry(lh, struct swap_extent, list); 1699 BUG_ON(se->start_page + se->nr_pages != start_page); 1700 if (se->start_block + se->nr_pages == start_block) { 1701 /* Merge it */ 1702 se->nr_pages += nr_pages; 1703 return 0; 1704 } 1705 } 1706 1707 /* 1708 * No merge. Insert a new extent, preserving ordering. 1709 */ 1710 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 1711 if (new_se == NULL) 1712 return -ENOMEM; 1713 new_se->start_page = start_page; 1714 new_se->nr_pages = nr_pages; 1715 new_se->start_block = start_block; 1716 1717 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 1718 return 1; 1719 } 1720 1721 /* 1722 * A `swap extent' is a simple thing which maps a contiguous range of pages 1723 * onto a contiguous range of disk blocks. An ordered list of swap extents 1724 * is built at swapon time and is then used at swap_writepage/swap_readpage 1725 * time for locating where on disk a page belongs. 1726 * 1727 * If the swapfile is an S_ISBLK block device, a single extent is installed. 1728 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 1729 * swap files identically. 1730 * 1731 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 1732 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1733 * swapfiles are handled *identically* after swapon time. 1734 * 1735 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1736 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1737 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1738 * requirements, they are simply tossed out - we will never use those blocks 1739 * for swapping. 1740 * 1741 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1742 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1743 * which will scribble on the fs. 1744 * 1745 * The amount of disk space which a single swap extent represents varies. 1746 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1747 * extents in the list. To avoid much list walking, we cache the previous 1748 * search location in `curr_swap_extent', and start new searches from there. 1749 * This is extremely effective. The average number of iterations in 1750 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1751 */ 1752 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1753 { 1754 struct file *swap_file = sis->swap_file; 1755 struct address_space *mapping = swap_file->f_mapping; 1756 struct inode *inode = mapping->host; 1757 int ret; 1758 1759 if (S_ISBLK(inode->i_mode)) { 1760 ret = add_swap_extent(sis, 0, sis->max, 0); 1761 *span = sis->pages; 1762 return ret; 1763 } 1764 1765 if (mapping->a_ops->swap_activate) { 1766 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 1767 if (!ret) { 1768 sis->flags |= SWP_FILE; 1769 ret = add_swap_extent(sis, 0, sis->max, 0); 1770 *span = sis->pages; 1771 } 1772 return ret; 1773 } 1774 1775 return generic_swapfile_activate(sis, swap_file, span); 1776 } 1777 1778 static void _enable_swap_info(struct swap_info_struct *p, int prio, 1779 unsigned char *swap_map, 1780 struct swap_cluster_info *cluster_info) 1781 { 1782 if (prio >= 0) 1783 p->prio = prio; 1784 else 1785 p->prio = --least_priority; 1786 /* 1787 * the plist prio is negated because plist ordering is 1788 * low-to-high, while swap ordering is high-to-low 1789 */ 1790 p->list.prio = -p->prio; 1791 p->avail_list.prio = -p->prio; 1792 p->swap_map = swap_map; 1793 p->cluster_info = cluster_info; 1794 p->flags |= SWP_WRITEOK; 1795 atomic_long_add(p->pages, &nr_swap_pages); 1796 total_swap_pages += p->pages; 1797 1798 assert_spin_locked(&swap_lock); 1799 /* 1800 * both lists are plists, and thus priority ordered. 1801 * swap_active_head needs to be priority ordered for swapoff(), 1802 * which on removal of any swap_info_struct with an auto-assigned 1803 * (i.e. negative) priority increments the auto-assigned priority 1804 * of any lower-priority swap_info_structs. 1805 * swap_avail_head needs to be priority ordered for get_swap_page(), 1806 * which allocates swap pages from the highest available priority 1807 * swap_info_struct. 1808 */ 1809 plist_add(&p->list, &swap_active_head); 1810 spin_lock(&swap_avail_lock); 1811 plist_add(&p->avail_list, &swap_avail_head); 1812 spin_unlock(&swap_avail_lock); 1813 } 1814 1815 static void enable_swap_info(struct swap_info_struct *p, int prio, 1816 unsigned char *swap_map, 1817 struct swap_cluster_info *cluster_info, 1818 unsigned long *frontswap_map) 1819 { 1820 frontswap_init(p->type, frontswap_map); 1821 spin_lock(&swap_lock); 1822 spin_lock(&p->lock); 1823 _enable_swap_info(p, prio, swap_map, cluster_info); 1824 spin_unlock(&p->lock); 1825 spin_unlock(&swap_lock); 1826 } 1827 1828 static void reinsert_swap_info(struct swap_info_struct *p) 1829 { 1830 spin_lock(&swap_lock); 1831 spin_lock(&p->lock); 1832 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info); 1833 spin_unlock(&p->lock); 1834 spin_unlock(&swap_lock); 1835 } 1836 1837 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 1838 { 1839 struct swap_info_struct *p = NULL; 1840 unsigned char *swap_map; 1841 struct swap_cluster_info *cluster_info; 1842 unsigned long *frontswap_map; 1843 struct file *swap_file, *victim; 1844 struct address_space *mapping; 1845 struct inode *inode; 1846 struct filename *pathname; 1847 int err, found = 0; 1848 unsigned int old_block_size; 1849 1850 if (!capable(CAP_SYS_ADMIN)) 1851 return -EPERM; 1852 1853 BUG_ON(!current->mm); 1854 1855 pathname = getname(specialfile); 1856 if (IS_ERR(pathname)) 1857 return PTR_ERR(pathname); 1858 1859 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 1860 err = PTR_ERR(victim); 1861 if (IS_ERR(victim)) 1862 goto out; 1863 1864 mapping = victim->f_mapping; 1865 spin_lock(&swap_lock); 1866 plist_for_each_entry(p, &swap_active_head, list) { 1867 if (p->flags & SWP_WRITEOK) { 1868 if (p->swap_file->f_mapping == mapping) { 1869 found = 1; 1870 break; 1871 } 1872 } 1873 } 1874 if (!found) { 1875 err = -EINVAL; 1876 spin_unlock(&swap_lock); 1877 goto out_dput; 1878 } 1879 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 1880 vm_unacct_memory(p->pages); 1881 else { 1882 err = -ENOMEM; 1883 spin_unlock(&swap_lock); 1884 goto out_dput; 1885 } 1886 spin_lock(&swap_avail_lock); 1887 plist_del(&p->avail_list, &swap_avail_head); 1888 spin_unlock(&swap_avail_lock); 1889 spin_lock(&p->lock); 1890 if (p->prio < 0) { 1891 struct swap_info_struct *si = p; 1892 1893 plist_for_each_entry_continue(si, &swap_active_head, list) { 1894 si->prio++; 1895 si->list.prio--; 1896 si->avail_list.prio--; 1897 } 1898 least_priority++; 1899 } 1900 plist_del(&p->list, &swap_active_head); 1901 atomic_long_sub(p->pages, &nr_swap_pages); 1902 total_swap_pages -= p->pages; 1903 p->flags &= ~SWP_WRITEOK; 1904 spin_unlock(&p->lock); 1905 spin_unlock(&swap_lock); 1906 1907 set_current_oom_origin(); 1908 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ 1909 clear_current_oom_origin(); 1910 1911 if (err) { 1912 /* re-insert swap space back into swap_list */ 1913 reinsert_swap_info(p); 1914 goto out_dput; 1915 } 1916 1917 flush_work(&p->discard_work); 1918 1919 destroy_swap_extents(p); 1920 if (p->flags & SWP_CONTINUED) 1921 free_swap_count_continuations(p); 1922 1923 mutex_lock(&swapon_mutex); 1924 spin_lock(&swap_lock); 1925 spin_lock(&p->lock); 1926 drain_mmlist(); 1927 1928 /* wait for anyone still in scan_swap_map */ 1929 p->highest_bit = 0; /* cuts scans short */ 1930 while (p->flags >= SWP_SCANNING) { 1931 spin_unlock(&p->lock); 1932 spin_unlock(&swap_lock); 1933 schedule_timeout_uninterruptible(1); 1934 spin_lock(&swap_lock); 1935 spin_lock(&p->lock); 1936 } 1937 1938 swap_file = p->swap_file; 1939 old_block_size = p->old_block_size; 1940 p->swap_file = NULL; 1941 p->max = 0; 1942 swap_map = p->swap_map; 1943 p->swap_map = NULL; 1944 cluster_info = p->cluster_info; 1945 p->cluster_info = NULL; 1946 frontswap_map = frontswap_map_get(p); 1947 spin_unlock(&p->lock); 1948 spin_unlock(&swap_lock); 1949 frontswap_invalidate_area(p->type); 1950 frontswap_map_set(p, NULL); 1951 mutex_unlock(&swapon_mutex); 1952 free_percpu(p->percpu_cluster); 1953 p->percpu_cluster = NULL; 1954 vfree(swap_map); 1955 vfree(cluster_info); 1956 vfree(frontswap_map); 1957 /* Destroy swap account information */ 1958 swap_cgroup_swapoff(p->type); 1959 1960 inode = mapping->host; 1961 if (S_ISBLK(inode->i_mode)) { 1962 struct block_device *bdev = I_BDEV(inode); 1963 set_blocksize(bdev, old_block_size); 1964 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 1965 } else { 1966 inode_lock(inode); 1967 inode->i_flags &= ~S_SWAPFILE; 1968 inode_unlock(inode); 1969 } 1970 filp_close(swap_file, NULL); 1971 1972 /* 1973 * Clear the SWP_USED flag after all resources are freed so that swapon 1974 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 1975 * not hold p->lock after we cleared its SWP_WRITEOK. 1976 */ 1977 spin_lock(&swap_lock); 1978 p->flags = 0; 1979 spin_unlock(&swap_lock); 1980 1981 err = 0; 1982 atomic_inc(&proc_poll_event); 1983 wake_up_interruptible(&proc_poll_wait); 1984 1985 out_dput: 1986 filp_close(victim, NULL); 1987 out: 1988 putname(pathname); 1989 return err; 1990 } 1991 1992 #ifdef CONFIG_PROC_FS 1993 static unsigned swaps_poll(struct file *file, poll_table *wait) 1994 { 1995 struct seq_file *seq = file->private_data; 1996 1997 poll_wait(file, &proc_poll_wait, wait); 1998 1999 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2000 seq->poll_event = atomic_read(&proc_poll_event); 2001 return POLLIN | POLLRDNORM | POLLERR | POLLPRI; 2002 } 2003 2004 return POLLIN | POLLRDNORM; 2005 } 2006 2007 /* iterator */ 2008 static void *swap_start(struct seq_file *swap, loff_t *pos) 2009 { 2010 struct swap_info_struct *si; 2011 int type; 2012 loff_t l = *pos; 2013 2014 mutex_lock(&swapon_mutex); 2015 2016 if (!l) 2017 return SEQ_START_TOKEN; 2018 2019 for (type = 0; type < nr_swapfiles; type++) { 2020 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2021 si = swap_info[type]; 2022 if (!(si->flags & SWP_USED) || !si->swap_map) 2023 continue; 2024 if (!--l) 2025 return si; 2026 } 2027 2028 return NULL; 2029 } 2030 2031 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2032 { 2033 struct swap_info_struct *si = v; 2034 int type; 2035 2036 if (v == SEQ_START_TOKEN) 2037 type = 0; 2038 else 2039 type = si->type + 1; 2040 2041 for (; type < nr_swapfiles; type++) { 2042 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2043 si = swap_info[type]; 2044 if (!(si->flags & SWP_USED) || !si->swap_map) 2045 continue; 2046 ++*pos; 2047 return si; 2048 } 2049 2050 return NULL; 2051 } 2052 2053 static void swap_stop(struct seq_file *swap, void *v) 2054 { 2055 mutex_unlock(&swapon_mutex); 2056 } 2057 2058 static int swap_show(struct seq_file *swap, void *v) 2059 { 2060 struct swap_info_struct *si = v; 2061 struct file *file; 2062 int len; 2063 2064 if (si == SEQ_START_TOKEN) { 2065 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 2066 return 0; 2067 } 2068 2069 file = si->swap_file; 2070 len = seq_file_path(swap, file, " \t\n\\"); 2071 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 2072 len < 40 ? 40 - len : 1, " ", 2073 S_ISBLK(file_inode(file)->i_mode) ? 2074 "partition" : "file\t", 2075 si->pages << (PAGE_SHIFT - 10), 2076 si->inuse_pages << (PAGE_SHIFT - 10), 2077 si->prio); 2078 return 0; 2079 } 2080 2081 static const struct seq_operations swaps_op = { 2082 .start = swap_start, 2083 .next = swap_next, 2084 .stop = swap_stop, 2085 .show = swap_show 2086 }; 2087 2088 static int swaps_open(struct inode *inode, struct file *file) 2089 { 2090 struct seq_file *seq; 2091 int ret; 2092 2093 ret = seq_open(file, &swaps_op); 2094 if (ret) 2095 return ret; 2096 2097 seq = file->private_data; 2098 seq->poll_event = atomic_read(&proc_poll_event); 2099 return 0; 2100 } 2101 2102 static const struct file_operations proc_swaps_operations = { 2103 .open = swaps_open, 2104 .read = seq_read, 2105 .llseek = seq_lseek, 2106 .release = seq_release, 2107 .poll = swaps_poll, 2108 }; 2109 2110 static int __init procswaps_init(void) 2111 { 2112 proc_create("swaps", 0, NULL, &proc_swaps_operations); 2113 return 0; 2114 } 2115 __initcall(procswaps_init); 2116 #endif /* CONFIG_PROC_FS */ 2117 2118 #ifdef MAX_SWAPFILES_CHECK 2119 static int __init max_swapfiles_check(void) 2120 { 2121 MAX_SWAPFILES_CHECK(); 2122 return 0; 2123 } 2124 late_initcall(max_swapfiles_check); 2125 #endif 2126 2127 static struct swap_info_struct *alloc_swap_info(void) 2128 { 2129 struct swap_info_struct *p; 2130 unsigned int type; 2131 2132 p = kzalloc(sizeof(*p), GFP_KERNEL); 2133 if (!p) 2134 return ERR_PTR(-ENOMEM); 2135 2136 spin_lock(&swap_lock); 2137 for (type = 0; type < nr_swapfiles; type++) { 2138 if (!(swap_info[type]->flags & SWP_USED)) 2139 break; 2140 } 2141 if (type >= MAX_SWAPFILES) { 2142 spin_unlock(&swap_lock); 2143 kfree(p); 2144 return ERR_PTR(-EPERM); 2145 } 2146 if (type >= nr_swapfiles) { 2147 p->type = type; 2148 swap_info[type] = p; 2149 /* 2150 * Write swap_info[type] before nr_swapfiles, in case a 2151 * racing procfs swap_start() or swap_next() is reading them. 2152 * (We never shrink nr_swapfiles, we never free this entry.) 2153 */ 2154 smp_wmb(); 2155 nr_swapfiles++; 2156 } else { 2157 kfree(p); 2158 p = swap_info[type]; 2159 /* 2160 * Do not memset this entry: a racing procfs swap_next() 2161 * would be relying on p->type to remain valid. 2162 */ 2163 } 2164 INIT_LIST_HEAD(&p->first_swap_extent.list); 2165 plist_node_init(&p->list, 0); 2166 plist_node_init(&p->avail_list, 0); 2167 p->flags = SWP_USED; 2168 spin_unlock(&swap_lock); 2169 spin_lock_init(&p->lock); 2170 2171 return p; 2172 } 2173 2174 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2175 { 2176 int error; 2177 2178 if (S_ISBLK(inode->i_mode)) { 2179 p->bdev = bdgrab(I_BDEV(inode)); 2180 error = blkdev_get(p->bdev, 2181 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2182 if (error < 0) { 2183 p->bdev = NULL; 2184 return error; 2185 } 2186 p->old_block_size = block_size(p->bdev); 2187 error = set_blocksize(p->bdev, PAGE_SIZE); 2188 if (error < 0) 2189 return error; 2190 p->flags |= SWP_BLKDEV; 2191 } else if (S_ISREG(inode->i_mode)) { 2192 p->bdev = inode->i_sb->s_bdev; 2193 inode_lock(inode); 2194 if (IS_SWAPFILE(inode)) 2195 return -EBUSY; 2196 } else 2197 return -EINVAL; 2198 2199 return 0; 2200 } 2201 2202 static unsigned long read_swap_header(struct swap_info_struct *p, 2203 union swap_header *swap_header, 2204 struct inode *inode) 2205 { 2206 int i; 2207 unsigned long maxpages; 2208 unsigned long swapfilepages; 2209 unsigned long last_page; 2210 2211 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2212 pr_err("Unable to find swap-space signature\n"); 2213 return 0; 2214 } 2215 2216 /* swap partition endianess hack... */ 2217 if (swab32(swap_header->info.version) == 1) { 2218 swab32s(&swap_header->info.version); 2219 swab32s(&swap_header->info.last_page); 2220 swab32s(&swap_header->info.nr_badpages); 2221 for (i = 0; i < swap_header->info.nr_badpages; i++) 2222 swab32s(&swap_header->info.badpages[i]); 2223 } 2224 /* Check the swap header's sub-version */ 2225 if (swap_header->info.version != 1) { 2226 pr_warn("Unable to handle swap header version %d\n", 2227 swap_header->info.version); 2228 return 0; 2229 } 2230 2231 p->lowest_bit = 1; 2232 p->cluster_next = 1; 2233 p->cluster_nr = 0; 2234 2235 /* 2236 * Find out how many pages are allowed for a single swap 2237 * device. There are two limiting factors: 1) the number 2238 * of bits for the swap offset in the swp_entry_t type, and 2239 * 2) the number of bits in the swap pte as defined by the 2240 * different architectures. In order to find the 2241 * largest possible bit mask, a swap entry with swap type 0 2242 * and swap offset ~0UL is created, encoded to a swap pte, 2243 * decoded to a swp_entry_t again, and finally the swap 2244 * offset is extracted. This will mask all the bits from 2245 * the initial ~0UL mask that can't be encoded in either 2246 * the swp_entry_t or the architecture definition of a 2247 * swap pte. 2248 */ 2249 maxpages = swp_offset(pte_to_swp_entry( 2250 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2251 last_page = swap_header->info.last_page; 2252 if (last_page > maxpages) { 2253 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2254 maxpages << (PAGE_SHIFT - 10), 2255 last_page << (PAGE_SHIFT - 10)); 2256 } 2257 if (maxpages > last_page) { 2258 maxpages = last_page + 1; 2259 /* p->max is an unsigned int: don't overflow it */ 2260 if ((unsigned int)maxpages == 0) 2261 maxpages = UINT_MAX; 2262 } 2263 p->highest_bit = maxpages - 1; 2264 2265 if (!maxpages) 2266 return 0; 2267 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2268 if (swapfilepages && maxpages > swapfilepages) { 2269 pr_warn("Swap area shorter than signature indicates\n"); 2270 return 0; 2271 } 2272 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2273 return 0; 2274 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2275 return 0; 2276 2277 return maxpages; 2278 } 2279 2280 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2281 union swap_header *swap_header, 2282 unsigned char *swap_map, 2283 struct swap_cluster_info *cluster_info, 2284 unsigned long maxpages, 2285 sector_t *span) 2286 { 2287 int i; 2288 unsigned int nr_good_pages; 2289 int nr_extents; 2290 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2291 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER; 2292 2293 nr_good_pages = maxpages - 1; /* omit header page */ 2294 2295 cluster_set_null(&p->free_cluster_head); 2296 cluster_set_null(&p->free_cluster_tail); 2297 cluster_set_null(&p->discard_cluster_head); 2298 cluster_set_null(&p->discard_cluster_tail); 2299 2300 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2301 unsigned int page_nr = swap_header->info.badpages[i]; 2302 if (page_nr == 0 || page_nr > swap_header->info.last_page) 2303 return -EINVAL; 2304 if (page_nr < maxpages) { 2305 swap_map[page_nr] = SWAP_MAP_BAD; 2306 nr_good_pages--; 2307 /* 2308 * Haven't marked the cluster free yet, no list 2309 * operation involved 2310 */ 2311 inc_cluster_info_page(p, cluster_info, page_nr); 2312 } 2313 } 2314 2315 /* Haven't marked the cluster free yet, no list operation involved */ 2316 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 2317 inc_cluster_info_page(p, cluster_info, i); 2318 2319 if (nr_good_pages) { 2320 swap_map[0] = SWAP_MAP_BAD; 2321 /* 2322 * Not mark the cluster free yet, no list 2323 * operation involved 2324 */ 2325 inc_cluster_info_page(p, cluster_info, 0); 2326 p->max = maxpages; 2327 p->pages = nr_good_pages; 2328 nr_extents = setup_swap_extents(p, span); 2329 if (nr_extents < 0) 2330 return nr_extents; 2331 nr_good_pages = p->pages; 2332 } 2333 if (!nr_good_pages) { 2334 pr_warn("Empty swap-file\n"); 2335 return -EINVAL; 2336 } 2337 2338 if (!cluster_info) 2339 return nr_extents; 2340 2341 for (i = 0; i < nr_clusters; i++) { 2342 if (!cluster_count(&cluster_info[idx])) { 2343 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 2344 if (cluster_is_null(&p->free_cluster_head)) { 2345 cluster_set_next_flag(&p->free_cluster_head, 2346 idx, 0); 2347 cluster_set_next_flag(&p->free_cluster_tail, 2348 idx, 0); 2349 } else { 2350 unsigned int tail; 2351 2352 tail = cluster_next(&p->free_cluster_tail); 2353 cluster_set_next(&cluster_info[tail], idx); 2354 cluster_set_next_flag(&p->free_cluster_tail, 2355 idx, 0); 2356 } 2357 } 2358 idx++; 2359 if (idx == nr_clusters) 2360 idx = 0; 2361 } 2362 return nr_extents; 2363 } 2364 2365 /* 2366 * Helper to sys_swapon determining if a given swap 2367 * backing device queue supports DISCARD operations. 2368 */ 2369 static bool swap_discardable(struct swap_info_struct *si) 2370 { 2371 struct request_queue *q = bdev_get_queue(si->bdev); 2372 2373 if (!q || !blk_queue_discard(q)) 2374 return false; 2375 2376 return true; 2377 } 2378 2379 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2380 { 2381 struct swap_info_struct *p; 2382 struct filename *name; 2383 struct file *swap_file = NULL; 2384 struct address_space *mapping; 2385 int prio; 2386 int error; 2387 union swap_header *swap_header; 2388 int nr_extents; 2389 sector_t span; 2390 unsigned long maxpages; 2391 unsigned char *swap_map = NULL; 2392 struct swap_cluster_info *cluster_info = NULL; 2393 unsigned long *frontswap_map = NULL; 2394 struct page *page = NULL; 2395 struct inode *inode = NULL; 2396 2397 if (swap_flags & ~SWAP_FLAGS_VALID) 2398 return -EINVAL; 2399 2400 if (!capable(CAP_SYS_ADMIN)) 2401 return -EPERM; 2402 2403 p = alloc_swap_info(); 2404 if (IS_ERR(p)) 2405 return PTR_ERR(p); 2406 2407 INIT_WORK(&p->discard_work, swap_discard_work); 2408 2409 name = getname(specialfile); 2410 if (IS_ERR(name)) { 2411 error = PTR_ERR(name); 2412 name = NULL; 2413 goto bad_swap; 2414 } 2415 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 2416 if (IS_ERR(swap_file)) { 2417 error = PTR_ERR(swap_file); 2418 swap_file = NULL; 2419 goto bad_swap; 2420 } 2421 2422 p->swap_file = swap_file; 2423 mapping = swap_file->f_mapping; 2424 inode = mapping->host; 2425 2426 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */ 2427 error = claim_swapfile(p, inode); 2428 if (unlikely(error)) 2429 goto bad_swap; 2430 2431 /* 2432 * Read the swap header. 2433 */ 2434 if (!mapping->a_ops->readpage) { 2435 error = -EINVAL; 2436 goto bad_swap; 2437 } 2438 page = read_mapping_page(mapping, 0, swap_file); 2439 if (IS_ERR(page)) { 2440 error = PTR_ERR(page); 2441 goto bad_swap; 2442 } 2443 swap_header = kmap(page); 2444 2445 maxpages = read_swap_header(p, swap_header, inode); 2446 if (unlikely(!maxpages)) { 2447 error = -EINVAL; 2448 goto bad_swap; 2449 } 2450 2451 /* OK, set up the swap map and apply the bad block list */ 2452 swap_map = vzalloc(maxpages); 2453 if (!swap_map) { 2454 error = -ENOMEM; 2455 goto bad_swap; 2456 } 2457 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 2458 int cpu; 2459 2460 p->flags |= SWP_SOLIDSTATE; 2461 /* 2462 * select a random position to start with to help wear leveling 2463 * SSD 2464 */ 2465 p->cluster_next = 1 + (prandom_u32() % p->highest_bit); 2466 2467 cluster_info = vzalloc(DIV_ROUND_UP(maxpages, 2468 SWAPFILE_CLUSTER) * sizeof(*cluster_info)); 2469 if (!cluster_info) { 2470 error = -ENOMEM; 2471 goto bad_swap; 2472 } 2473 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 2474 if (!p->percpu_cluster) { 2475 error = -ENOMEM; 2476 goto bad_swap; 2477 } 2478 for_each_possible_cpu(cpu) { 2479 struct percpu_cluster *cluster; 2480 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 2481 cluster_set_null(&cluster->index); 2482 } 2483 } 2484 2485 error = swap_cgroup_swapon(p->type, maxpages); 2486 if (error) 2487 goto bad_swap; 2488 2489 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 2490 cluster_info, maxpages, &span); 2491 if (unlikely(nr_extents < 0)) { 2492 error = nr_extents; 2493 goto bad_swap; 2494 } 2495 /* frontswap enabled? set up bit-per-page map for frontswap */ 2496 if (IS_ENABLED(CONFIG_FRONTSWAP)) 2497 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long)); 2498 2499 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 2500 /* 2501 * When discard is enabled for swap with no particular 2502 * policy flagged, we set all swap discard flags here in 2503 * order to sustain backward compatibility with older 2504 * swapon(8) releases. 2505 */ 2506 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 2507 SWP_PAGE_DISCARD); 2508 2509 /* 2510 * By flagging sys_swapon, a sysadmin can tell us to 2511 * either do single-time area discards only, or to just 2512 * perform discards for released swap page-clusters. 2513 * Now it's time to adjust the p->flags accordingly. 2514 */ 2515 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 2516 p->flags &= ~SWP_PAGE_DISCARD; 2517 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 2518 p->flags &= ~SWP_AREA_DISCARD; 2519 2520 /* issue a swapon-time discard if it's still required */ 2521 if (p->flags & SWP_AREA_DISCARD) { 2522 int err = discard_swap(p); 2523 if (unlikely(err)) 2524 pr_err("swapon: discard_swap(%p): %d\n", 2525 p, err); 2526 } 2527 } 2528 2529 mutex_lock(&swapon_mutex); 2530 prio = -1; 2531 if (swap_flags & SWAP_FLAG_PREFER) 2532 prio = 2533 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 2534 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 2535 2536 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 2537 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 2538 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 2539 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 2540 (p->flags & SWP_DISCARDABLE) ? "D" : "", 2541 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 2542 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 2543 (frontswap_map) ? "FS" : ""); 2544 2545 mutex_unlock(&swapon_mutex); 2546 atomic_inc(&proc_poll_event); 2547 wake_up_interruptible(&proc_poll_wait); 2548 2549 if (S_ISREG(inode->i_mode)) 2550 inode->i_flags |= S_SWAPFILE; 2551 error = 0; 2552 goto out; 2553 bad_swap: 2554 free_percpu(p->percpu_cluster); 2555 p->percpu_cluster = NULL; 2556 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 2557 set_blocksize(p->bdev, p->old_block_size); 2558 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2559 } 2560 destroy_swap_extents(p); 2561 swap_cgroup_swapoff(p->type); 2562 spin_lock(&swap_lock); 2563 p->swap_file = NULL; 2564 p->flags = 0; 2565 spin_unlock(&swap_lock); 2566 vfree(swap_map); 2567 vfree(cluster_info); 2568 if (swap_file) { 2569 if (inode && S_ISREG(inode->i_mode)) { 2570 inode_unlock(inode); 2571 inode = NULL; 2572 } 2573 filp_close(swap_file, NULL); 2574 } 2575 out: 2576 if (page && !IS_ERR(page)) { 2577 kunmap(page); 2578 put_page(page); 2579 } 2580 if (name) 2581 putname(name); 2582 if (inode && S_ISREG(inode->i_mode)) 2583 inode_unlock(inode); 2584 return error; 2585 } 2586 2587 void si_swapinfo(struct sysinfo *val) 2588 { 2589 unsigned int type; 2590 unsigned long nr_to_be_unused = 0; 2591 2592 spin_lock(&swap_lock); 2593 for (type = 0; type < nr_swapfiles; type++) { 2594 struct swap_info_struct *si = swap_info[type]; 2595 2596 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 2597 nr_to_be_unused += si->inuse_pages; 2598 } 2599 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 2600 val->totalswap = total_swap_pages + nr_to_be_unused; 2601 spin_unlock(&swap_lock); 2602 } 2603 2604 /* 2605 * Verify that a swap entry is valid and increment its swap map count. 2606 * 2607 * Returns error code in following case. 2608 * - success -> 0 2609 * - swp_entry is invalid -> EINVAL 2610 * - swp_entry is migration entry -> EINVAL 2611 * - swap-cache reference is requested but there is already one. -> EEXIST 2612 * - swap-cache reference is requested but the entry is not used. -> ENOENT 2613 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 2614 */ 2615 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 2616 { 2617 struct swap_info_struct *p; 2618 unsigned long offset, type; 2619 unsigned char count; 2620 unsigned char has_cache; 2621 int err = -EINVAL; 2622 2623 if (non_swap_entry(entry)) 2624 goto out; 2625 2626 type = swp_type(entry); 2627 if (type >= nr_swapfiles) 2628 goto bad_file; 2629 p = swap_info[type]; 2630 offset = swp_offset(entry); 2631 2632 spin_lock(&p->lock); 2633 if (unlikely(offset >= p->max)) 2634 goto unlock_out; 2635 2636 count = p->swap_map[offset]; 2637 2638 /* 2639 * swapin_readahead() doesn't check if a swap entry is valid, so the 2640 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 2641 */ 2642 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 2643 err = -ENOENT; 2644 goto unlock_out; 2645 } 2646 2647 has_cache = count & SWAP_HAS_CACHE; 2648 count &= ~SWAP_HAS_CACHE; 2649 err = 0; 2650 2651 if (usage == SWAP_HAS_CACHE) { 2652 2653 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 2654 if (!has_cache && count) 2655 has_cache = SWAP_HAS_CACHE; 2656 else if (has_cache) /* someone else added cache */ 2657 err = -EEXIST; 2658 else /* no users remaining */ 2659 err = -ENOENT; 2660 2661 } else if (count || has_cache) { 2662 2663 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 2664 count += usage; 2665 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 2666 err = -EINVAL; 2667 else if (swap_count_continued(p, offset, count)) 2668 count = COUNT_CONTINUED; 2669 else 2670 err = -ENOMEM; 2671 } else 2672 err = -ENOENT; /* unused swap entry */ 2673 2674 p->swap_map[offset] = count | has_cache; 2675 2676 unlock_out: 2677 spin_unlock(&p->lock); 2678 out: 2679 return err; 2680 2681 bad_file: 2682 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val); 2683 goto out; 2684 } 2685 2686 /* 2687 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 2688 * (in which case its reference count is never incremented). 2689 */ 2690 void swap_shmem_alloc(swp_entry_t entry) 2691 { 2692 __swap_duplicate(entry, SWAP_MAP_SHMEM); 2693 } 2694 2695 /* 2696 * Increase reference count of swap entry by 1. 2697 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 2698 * but could not be atomically allocated. Returns 0, just as if it succeeded, 2699 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 2700 * might occur if a page table entry has got corrupted. 2701 */ 2702 int swap_duplicate(swp_entry_t entry) 2703 { 2704 int err = 0; 2705 2706 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 2707 err = add_swap_count_continuation(entry, GFP_ATOMIC); 2708 return err; 2709 } 2710 2711 /* 2712 * @entry: swap entry for which we allocate swap cache. 2713 * 2714 * Called when allocating swap cache for existing swap entry, 2715 * This can return error codes. Returns 0 at success. 2716 * -EBUSY means there is a swap cache. 2717 * Note: return code is different from swap_duplicate(). 2718 */ 2719 int swapcache_prepare(swp_entry_t entry) 2720 { 2721 return __swap_duplicate(entry, SWAP_HAS_CACHE); 2722 } 2723 2724 struct swap_info_struct *page_swap_info(struct page *page) 2725 { 2726 swp_entry_t swap = { .val = page_private(page) }; 2727 BUG_ON(!PageSwapCache(page)); 2728 return swap_info[swp_type(swap)]; 2729 } 2730 2731 /* 2732 * out-of-line __page_file_ methods to avoid include hell. 2733 */ 2734 struct address_space *__page_file_mapping(struct page *page) 2735 { 2736 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 2737 return page_swap_info(page)->swap_file->f_mapping; 2738 } 2739 EXPORT_SYMBOL_GPL(__page_file_mapping); 2740 2741 pgoff_t __page_file_index(struct page *page) 2742 { 2743 swp_entry_t swap = { .val = page_private(page) }; 2744 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 2745 return swp_offset(swap); 2746 } 2747 EXPORT_SYMBOL_GPL(__page_file_index); 2748 2749 /* 2750 * add_swap_count_continuation - called when a swap count is duplicated 2751 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 2752 * page of the original vmalloc'ed swap_map, to hold the continuation count 2753 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 2754 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 2755 * 2756 * These continuation pages are seldom referenced: the common paths all work 2757 * on the original swap_map, only referring to a continuation page when the 2758 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 2759 * 2760 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 2761 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 2762 * can be called after dropping locks. 2763 */ 2764 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 2765 { 2766 struct swap_info_struct *si; 2767 struct page *head; 2768 struct page *page; 2769 struct page *list_page; 2770 pgoff_t offset; 2771 unsigned char count; 2772 2773 /* 2774 * When debugging, it's easier to use __GFP_ZERO here; but it's better 2775 * for latency not to zero a page while GFP_ATOMIC and holding locks. 2776 */ 2777 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 2778 2779 si = swap_info_get(entry); 2780 if (!si) { 2781 /* 2782 * An acceptable race has occurred since the failing 2783 * __swap_duplicate(): the swap entry has been freed, 2784 * perhaps even the whole swap_map cleared for swapoff. 2785 */ 2786 goto outer; 2787 } 2788 2789 offset = swp_offset(entry); 2790 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 2791 2792 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 2793 /* 2794 * The higher the swap count, the more likely it is that tasks 2795 * will race to add swap count continuation: we need to avoid 2796 * over-provisioning. 2797 */ 2798 goto out; 2799 } 2800 2801 if (!page) { 2802 spin_unlock(&si->lock); 2803 return -ENOMEM; 2804 } 2805 2806 /* 2807 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 2808 * no architecture is using highmem pages for kernel page tables: so it 2809 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 2810 */ 2811 head = vmalloc_to_page(si->swap_map + offset); 2812 offset &= ~PAGE_MASK; 2813 2814 /* 2815 * Page allocation does not initialize the page's lru field, 2816 * but it does always reset its private field. 2817 */ 2818 if (!page_private(head)) { 2819 BUG_ON(count & COUNT_CONTINUED); 2820 INIT_LIST_HEAD(&head->lru); 2821 set_page_private(head, SWP_CONTINUED); 2822 si->flags |= SWP_CONTINUED; 2823 } 2824 2825 list_for_each_entry(list_page, &head->lru, lru) { 2826 unsigned char *map; 2827 2828 /* 2829 * If the previous map said no continuation, but we've found 2830 * a continuation page, free our allocation and use this one. 2831 */ 2832 if (!(count & COUNT_CONTINUED)) 2833 goto out; 2834 2835 map = kmap_atomic(list_page) + offset; 2836 count = *map; 2837 kunmap_atomic(map); 2838 2839 /* 2840 * If this continuation count now has some space in it, 2841 * free our allocation and use this one. 2842 */ 2843 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 2844 goto out; 2845 } 2846 2847 list_add_tail(&page->lru, &head->lru); 2848 page = NULL; /* now it's attached, don't free it */ 2849 out: 2850 spin_unlock(&si->lock); 2851 outer: 2852 if (page) 2853 __free_page(page); 2854 return 0; 2855 } 2856 2857 /* 2858 * swap_count_continued - when the original swap_map count is incremented 2859 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 2860 * into, carry if so, or else fail until a new continuation page is allocated; 2861 * when the original swap_map count is decremented from 0 with continuation, 2862 * borrow from the continuation and report whether it still holds more. 2863 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock. 2864 */ 2865 static bool swap_count_continued(struct swap_info_struct *si, 2866 pgoff_t offset, unsigned char count) 2867 { 2868 struct page *head; 2869 struct page *page; 2870 unsigned char *map; 2871 2872 head = vmalloc_to_page(si->swap_map + offset); 2873 if (page_private(head) != SWP_CONTINUED) { 2874 BUG_ON(count & COUNT_CONTINUED); 2875 return false; /* need to add count continuation */ 2876 } 2877 2878 offset &= ~PAGE_MASK; 2879 page = list_entry(head->lru.next, struct page, lru); 2880 map = kmap_atomic(page) + offset; 2881 2882 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 2883 goto init_map; /* jump over SWAP_CONT_MAX checks */ 2884 2885 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 2886 /* 2887 * Think of how you add 1 to 999 2888 */ 2889 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 2890 kunmap_atomic(map); 2891 page = list_entry(page->lru.next, struct page, lru); 2892 BUG_ON(page == head); 2893 map = kmap_atomic(page) + offset; 2894 } 2895 if (*map == SWAP_CONT_MAX) { 2896 kunmap_atomic(map); 2897 page = list_entry(page->lru.next, struct page, lru); 2898 if (page == head) 2899 return false; /* add count continuation */ 2900 map = kmap_atomic(page) + offset; 2901 init_map: *map = 0; /* we didn't zero the page */ 2902 } 2903 *map += 1; 2904 kunmap_atomic(map); 2905 page = list_entry(page->lru.prev, struct page, lru); 2906 while (page != head) { 2907 map = kmap_atomic(page) + offset; 2908 *map = COUNT_CONTINUED; 2909 kunmap_atomic(map); 2910 page = list_entry(page->lru.prev, struct page, lru); 2911 } 2912 return true; /* incremented */ 2913 2914 } else { /* decrementing */ 2915 /* 2916 * Think of how you subtract 1 from 1000 2917 */ 2918 BUG_ON(count != COUNT_CONTINUED); 2919 while (*map == COUNT_CONTINUED) { 2920 kunmap_atomic(map); 2921 page = list_entry(page->lru.next, struct page, lru); 2922 BUG_ON(page == head); 2923 map = kmap_atomic(page) + offset; 2924 } 2925 BUG_ON(*map == 0); 2926 *map -= 1; 2927 if (*map == 0) 2928 count = 0; 2929 kunmap_atomic(map); 2930 page = list_entry(page->lru.prev, struct page, lru); 2931 while (page != head) { 2932 map = kmap_atomic(page) + offset; 2933 *map = SWAP_CONT_MAX | count; 2934 count = COUNT_CONTINUED; 2935 kunmap_atomic(map); 2936 page = list_entry(page->lru.prev, struct page, lru); 2937 } 2938 return count == COUNT_CONTINUED; 2939 } 2940 } 2941 2942 /* 2943 * free_swap_count_continuations - swapoff free all the continuation pages 2944 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 2945 */ 2946 static void free_swap_count_continuations(struct swap_info_struct *si) 2947 { 2948 pgoff_t offset; 2949 2950 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 2951 struct page *head; 2952 head = vmalloc_to_page(si->swap_map + offset); 2953 if (page_private(head)) { 2954 struct page *page, *next; 2955 2956 list_for_each_entry_safe(page, next, &head->lru, lru) { 2957 list_del(&page->lru); 2958 __free_page(page); 2959 } 2960 } 2961 } 2962 } 2963