xref: /openbmc/linux/mm/swapfile.c (revision 80483c3a)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37 
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
42 
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 				 unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47 
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /*
52  * Some modules use swappable objects and may try to swap them out under
53  * memory pressure (via the shrinker). Before doing so, they may wish to
54  * check to see if any swap space is available.
55  */
56 EXPORT_SYMBOL_GPL(nr_swap_pages);
57 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
58 long total_swap_pages;
59 static int least_priority;
60 
61 static const char Bad_file[] = "Bad swap file entry ";
62 static const char Unused_file[] = "Unused swap file entry ";
63 static const char Bad_offset[] = "Bad swap offset entry ";
64 static const char Unused_offset[] = "Unused swap offset entry ";
65 
66 /*
67  * all active swap_info_structs
68  * protected with swap_lock, and ordered by priority.
69  */
70 PLIST_HEAD(swap_active_head);
71 
72 /*
73  * all available (active, not full) swap_info_structs
74  * protected with swap_avail_lock, ordered by priority.
75  * This is used by get_swap_page() instead of swap_active_head
76  * because swap_active_head includes all swap_info_structs,
77  * but get_swap_page() doesn't need to look at full ones.
78  * This uses its own lock instead of swap_lock because when a
79  * swap_info_struct changes between not-full/full, it needs to
80  * add/remove itself to/from this list, but the swap_info_struct->lock
81  * is held and the locking order requires swap_lock to be taken
82  * before any swap_info_struct->lock.
83  */
84 static PLIST_HEAD(swap_avail_head);
85 static DEFINE_SPINLOCK(swap_avail_lock);
86 
87 struct swap_info_struct *swap_info[MAX_SWAPFILES];
88 
89 static DEFINE_MUTEX(swapon_mutex);
90 
91 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
92 /* Activity counter to indicate that a swapon or swapoff has occurred */
93 static atomic_t proc_poll_event = ATOMIC_INIT(0);
94 
95 static inline unsigned char swap_count(unsigned char ent)
96 {
97 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
98 }
99 
100 /* returns 1 if swap entry is freed */
101 static int
102 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
103 {
104 	swp_entry_t entry = swp_entry(si->type, offset);
105 	struct page *page;
106 	int ret = 0;
107 
108 	page = find_get_page(swap_address_space(entry), entry.val);
109 	if (!page)
110 		return 0;
111 	/*
112 	 * This function is called from scan_swap_map() and it's called
113 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
114 	 * We have to use trylock for avoiding deadlock. This is a special
115 	 * case and you should use try_to_free_swap() with explicit lock_page()
116 	 * in usual operations.
117 	 */
118 	if (trylock_page(page)) {
119 		ret = try_to_free_swap(page);
120 		unlock_page(page);
121 	}
122 	put_page(page);
123 	return ret;
124 }
125 
126 /*
127  * swapon tell device that all the old swap contents can be discarded,
128  * to allow the swap device to optimize its wear-levelling.
129  */
130 static int discard_swap(struct swap_info_struct *si)
131 {
132 	struct swap_extent *se;
133 	sector_t start_block;
134 	sector_t nr_blocks;
135 	int err = 0;
136 
137 	/* Do not discard the swap header page! */
138 	se = &si->first_swap_extent;
139 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
140 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
141 	if (nr_blocks) {
142 		err = blkdev_issue_discard(si->bdev, start_block,
143 				nr_blocks, GFP_KERNEL, 0);
144 		if (err)
145 			return err;
146 		cond_resched();
147 	}
148 
149 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
150 		start_block = se->start_block << (PAGE_SHIFT - 9);
151 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
152 
153 		err = blkdev_issue_discard(si->bdev, start_block,
154 				nr_blocks, GFP_KERNEL, 0);
155 		if (err)
156 			break;
157 
158 		cond_resched();
159 	}
160 	return err;		/* That will often be -EOPNOTSUPP */
161 }
162 
163 /*
164  * swap allocation tell device that a cluster of swap can now be discarded,
165  * to allow the swap device to optimize its wear-levelling.
166  */
167 static void discard_swap_cluster(struct swap_info_struct *si,
168 				 pgoff_t start_page, pgoff_t nr_pages)
169 {
170 	struct swap_extent *se = si->curr_swap_extent;
171 	int found_extent = 0;
172 
173 	while (nr_pages) {
174 		if (se->start_page <= start_page &&
175 		    start_page < se->start_page + se->nr_pages) {
176 			pgoff_t offset = start_page - se->start_page;
177 			sector_t start_block = se->start_block + offset;
178 			sector_t nr_blocks = se->nr_pages - offset;
179 
180 			if (nr_blocks > nr_pages)
181 				nr_blocks = nr_pages;
182 			start_page += nr_blocks;
183 			nr_pages -= nr_blocks;
184 
185 			if (!found_extent++)
186 				si->curr_swap_extent = se;
187 
188 			start_block <<= PAGE_SHIFT - 9;
189 			nr_blocks <<= PAGE_SHIFT - 9;
190 			if (blkdev_issue_discard(si->bdev, start_block,
191 				    nr_blocks, GFP_NOIO, 0))
192 				break;
193 		}
194 
195 		se = list_next_entry(se, list);
196 	}
197 }
198 
199 #define SWAPFILE_CLUSTER	256
200 #define LATENCY_LIMIT		256
201 
202 static inline void cluster_set_flag(struct swap_cluster_info *info,
203 	unsigned int flag)
204 {
205 	info->flags = flag;
206 }
207 
208 static inline unsigned int cluster_count(struct swap_cluster_info *info)
209 {
210 	return info->data;
211 }
212 
213 static inline void cluster_set_count(struct swap_cluster_info *info,
214 				     unsigned int c)
215 {
216 	info->data = c;
217 }
218 
219 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
220 					 unsigned int c, unsigned int f)
221 {
222 	info->flags = f;
223 	info->data = c;
224 }
225 
226 static inline unsigned int cluster_next(struct swap_cluster_info *info)
227 {
228 	return info->data;
229 }
230 
231 static inline void cluster_set_next(struct swap_cluster_info *info,
232 				    unsigned int n)
233 {
234 	info->data = n;
235 }
236 
237 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
238 					 unsigned int n, unsigned int f)
239 {
240 	info->flags = f;
241 	info->data = n;
242 }
243 
244 static inline bool cluster_is_free(struct swap_cluster_info *info)
245 {
246 	return info->flags & CLUSTER_FLAG_FREE;
247 }
248 
249 static inline bool cluster_is_null(struct swap_cluster_info *info)
250 {
251 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
252 }
253 
254 static inline void cluster_set_null(struct swap_cluster_info *info)
255 {
256 	info->flags = CLUSTER_FLAG_NEXT_NULL;
257 	info->data = 0;
258 }
259 
260 /* Add a cluster to discard list and schedule it to do discard */
261 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
262 		unsigned int idx)
263 {
264 	/*
265 	 * If scan_swap_map() can't find a free cluster, it will check
266 	 * si->swap_map directly. To make sure the discarding cluster isn't
267 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
268 	 * will be cleared after discard
269 	 */
270 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
271 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
272 
273 	if (cluster_is_null(&si->discard_cluster_head)) {
274 		cluster_set_next_flag(&si->discard_cluster_head,
275 						idx, 0);
276 		cluster_set_next_flag(&si->discard_cluster_tail,
277 						idx, 0);
278 	} else {
279 		unsigned int tail = cluster_next(&si->discard_cluster_tail);
280 		cluster_set_next(&si->cluster_info[tail], idx);
281 		cluster_set_next_flag(&si->discard_cluster_tail,
282 						idx, 0);
283 	}
284 
285 	schedule_work(&si->discard_work);
286 }
287 
288 /*
289  * Doing discard actually. After a cluster discard is finished, the cluster
290  * will be added to free cluster list. caller should hold si->lock.
291 */
292 static void swap_do_scheduled_discard(struct swap_info_struct *si)
293 {
294 	struct swap_cluster_info *info;
295 	unsigned int idx;
296 
297 	info = si->cluster_info;
298 
299 	while (!cluster_is_null(&si->discard_cluster_head)) {
300 		idx = cluster_next(&si->discard_cluster_head);
301 
302 		cluster_set_next_flag(&si->discard_cluster_head,
303 						cluster_next(&info[idx]), 0);
304 		if (cluster_next(&si->discard_cluster_tail) == idx) {
305 			cluster_set_null(&si->discard_cluster_head);
306 			cluster_set_null(&si->discard_cluster_tail);
307 		}
308 		spin_unlock(&si->lock);
309 
310 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
311 				SWAPFILE_CLUSTER);
312 
313 		spin_lock(&si->lock);
314 		cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
315 		if (cluster_is_null(&si->free_cluster_head)) {
316 			cluster_set_next_flag(&si->free_cluster_head,
317 						idx, 0);
318 			cluster_set_next_flag(&si->free_cluster_tail,
319 						idx, 0);
320 		} else {
321 			unsigned int tail;
322 
323 			tail = cluster_next(&si->free_cluster_tail);
324 			cluster_set_next(&info[tail], idx);
325 			cluster_set_next_flag(&si->free_cluster_tail,
326 						idx, 0);
327 		}
328 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
329 				0, SWAPFILE_CLUSTER);
330 	}
331 }
332 
333 static void swap_discard_work(struct work_struct *work)
334 {
335 	struct swap_info_struct *si;
336 
337 	si = container_of(work, struct swap_info_struct, discard_work);
338 
339 	spin_lock(&si->lock);
340 	swap_do_scheduled_discard(si);
341 	spin_unlock(&si->lock);
342 }
343 
344 /*
345  * The cluster corresponding to page_nr will be used. The cluster will be
346  * removed from free cluster list and its usage counter will be increased.
347  */
348 static void inc_cluster_info_page(struct swap_info_struct *p,
349 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
350 {
351 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
352 
353 	if (!cluster_info)
354 		return;
355 	if (cluster_is_free(&cluster_info[idx])) {
356 		VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
357 		cluster_set_next_flag(&p->free_cluster_head,
358 			cluster_next(&cluster_info[idx]), 0);
359 		if (cluster_next(&p->free_cluster_tail) == idx) {
360 			cluster_set_null(&p->free_cluster_tail);
361 			cluster_set_null(&p->free_cluster_head);
362 		}
363 		cluster_set_count_flag(&cluster_info[idx], 0, 0);
364 	}
365 
366 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
367 	cluster_set_count(&cluster_info[idx],
368 		cluster_count(&cluster_info[idx]) + 1);
369 }
370 
371 /*
372  * The cluster corresponding to page_nr decreases one usage. If the usage
373  * counter becomes 0, which means no page in the cluster is in using, we can
374  * optionally discard the cluster and add it to free cluster list.
375  */
376 static void dec_cluster_info_page(struct swap_info_struct *p,
377 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
378 {
379 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
380 
381 	if (!cluster_info)
382 		return;
383 
384 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
385 	cluster_set_count(&cluster_info[idx],
386 		cluster_count(&cluster_info[idx]) - 1);
387 
388 	if (cluster_count(&cluster_info[idx]) == 0) {
389 		/*
390 		 * If the swap is discardable, prepare discard the cluster
391 		 * instead of free it immediately. The cluster will be freed
392 		 * after discard.
393 		 */
394 		if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
395 				 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
396 			swap_cluster_schedule_discard(p, idx);
397 			return;
398 		}
399 
400 		cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
401 		if (cluster_is_null(&p->free_cluster_head)) {
402 			cluster_set_next_flag(&p->free_cluster_head, idx, 0);
403 			cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
404 		} else {
405 			unsigned int tail = cluster_next(&p->free_cluster_tail);
406 			cluster_set_next(&cluster_info[tail], idx);
407 			cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
408 		}
409 	}
410 }
411 
412 /*
413  * It's possible scan_swap_map() uses a free cluster in the middle of free
414  * cluster list. Avoiding such abuse to avoid list corruption.
415  */
416 static bool
417 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
418 	unsigned long offset)
419 {
420 	struct percpu_cluster *percpu_cluster;
421 	bool conflict;
422 
423 	offset /= SWAPFILE_CLUSTER;
424 	conflict = !cluster_is_null(&si->free_cluster_head) &&
425 		offset != cluster_next(&si->free_cluster_head) &&
426 		cluster_is_free(&si->cluster_info[offset]);
427 
428 	if (!conflict)
429 		return false;
430 
431 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
432 	cluster_set_null(&percpu_cluster->index);
433 	return true;
434 }
435 
436 /*
437  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
438  * might involve allocating a new cluster for current CPU too.
439  */
440 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
441 	unsigned long *offset, unsigned long *scan_base)
442 {
443 	struct percpu_cluster *cluster;
444 	bool found_free;
445 	unsigned long tmp;
446 
447 new_cluster:
448 	cluster = this_cpu_ptr(si->percpu_cluster);
449 	if (cluster_is_null(&cluster->index)) {
450 		if (!cluster_is_null(&si->free_cluster_head)) {
451 			cluster->index = si->free_cluster_head;
452 			cluster->next = cluster_next(&cluster->index) *
453 					SWAPFILE_CLUSTER;
454 		} else if (!cluster_is_null(&si->discard_cluster_head)) {
455 			/*
456 			 * we don't have free cluster but have some clusters in
457 			 * discarding, do discard now and reclaim them
458 			 */
459 			swap_do_scheduled_discard(si);
460 			*scan_base = *offset = si->cluster_next;
461 			goto new_cluster;
462 		} else
463 			return;
464 	}
465 
466 	found_free = false;
467 
468 	/*
469 	 * Other CPUs can use our cluster if they can't find a free cluster,
470 	 * check if there is still free entry in the cluster
471 	 */
472 	tmp = cluster->next;
473 	while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
474 	       SWAPFILE_CLUSTER) {
475 		if (!si->swap_map[tmp]) {
476 			found_free = true;
477 			break;
478 		}
479 		tmp++;
480 	}
481 	if (!found_free) {
482 		cluster_set_null(&cluster->index);
483 		goto new_cluster;
484 	}
485 	cluster->next = tmp + 1;
486 	*offset = tmp;
487 	*scan_base = tmp;
488 }
489 
490 static unsigned long scan_swap_map(struct swap_info_struct *si,
491 				   unsigned char usage)
492 {
493 	unsigned long offset;
494 	unsigned long scan_base;
495 	unsigned long last_in_cluster = 0;
496 	int latency_ration = LATENCY_LIMIT;
497 
498 	/*
499 	 * We try to cluster swap pages by allocating them sequentially
500 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
501 	 * way, however, we resort to first-free allocation, starting
502 	 * a new cluster.  This prevents us from scattering swap pages
503 	 * all over the entire swap partition, so that we reduce
504 	 * overall disk seek times between swap pages.  -- sct
505 	 * But we do now try to find an empty cluster.  -Andrea
506 	 * And we let swap pages go all over an SSD partition.  Hugh
507 	 */
508 
509 	si->flags += SWP_SCANNING;
510 	scan_base = offset = si->cluster_next;
511 
512 	/* SSD algorithm */
513 	if (si->cluster_info) {
514 		scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
515 		goto checks;
516 	}
517 
518 	if (unlikely(!si->cluster_nr--)) {
519 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
520 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
521 			goto checks;
522 		}
523 
524 		spin_unlock(&si->lock);
525 
526 		/*
527 		 * If seek is expensive, start searching for new cluster from
528 		 * start of partition, to minimize the span of allocated swap.
529 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
530 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
531 		 */
532 		scan_base = offset = si->lowest_bit;
533 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
534 
535 		/* Locate the first empty (unaligned) cluster */
536 		for (; last_in_cluster <= si->highest_bit; offset++) {
537 			if (si->swap_map[offset])
538 				last_in_cluster = offset + SWAPFILE_CLUSTER;
539 			else if (offset == last_in_cluster) {
540 				spin_lock(&si->lock);
541 				offset -= SWAPFILE_CLUSTER - 1;
542 				si->cluster_next = offset;
543 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
544 				goto checks;
545 			}
546 			if (unlikely(--latency_ration < 0)) {
547 				cond_resched();
548 				latency_ration = LATENCY_LIMIT;
549 			}
550 		}
551 
552 		offset = scan_base;
553 		spin_lock(&si->lock);
554 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
555 	}
556 
557 checks:
558 	if (si->cluster_info) {
559 		while (scan_swap_map_ssd_cluster_conflict(si, offset))
560 			scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
561 	}
562 	if (!(si->flags & SWP_WRITEOK))
563 		goto no_page;
564 	if (!si->highest_bit)
565 		goto no_page;
566 	if (offset > si->highest_bit)
567 		scan_base = offset = si->lowest_bit;
568 
569 	/* reuse swap entry of cache-only swap if not busy. */
570 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
571 		int swap_was_freed;
572 		spin_unlock(&si->lock);
573 		swap_was_freed = __try_to_reclaim_swap(si, offset);
574 		spin_lock(&si->lock);
575 		/* entry was freed successfully, try to use this again */
576 		if (swap_was_freed)
577 			goto checks;
578 		goto scan; /* check next one */
579 	}
580 
581 	if (si->swap_map[offset])
582 		goto scan;
583 
584 	if (offset == si->lowest_bit)
585 		si->lowest_bit++;
586 	if (offset == si->highest_bit)
587 		si->highest_bit--;
588 	si->inuse_pages++;
589 	if (si->inuse_pages == si->pages) {
590 		si->lowest_bit = si->max;
591 		si->highest_bit = 0;
592 		spin_lock(&swap_avail_lock);
593 		plist_del(&si->avail_list, &swap_avail_head);
594 		spin_unlock(&swap_avail_lock);
595 	}
596 	si->swap_map[offset] = usage;
597 	inc_cluster_info_page(si, si->cluster_info, offset);
598 	si->cluster_next = offset + 1;
599 	si->flags -= SWP_SCANNING;
600 
601 	return offset;
602 
603 scan:
604 	spin_unlock(&si->lock);
605 	while (++offset <= si->highest_bit) {
606 		if (!si->swap_map[offset]) {
607 			spin_lock(&si->lock);
608 			goto checks;
609 		}
610 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
611 			spin_lock(&si->lock);
612 			goto checks;
613 		}
614 		if (unlikely(--latency_ration < 0)) {
615 			cond_resched();
616 			latency_ration = LATENCY_LIMIT;
617 		}
618 	}
619 	offset = si->lowest_bit;
620 	while (offset < scan_base) {
621 		if (!si->swap_map[offset]) {
622 			spin_lock(&si->lock);
623 			goto checks;
624 		}
625 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
626 			spin_lock(&si->lock);
627 			goto checks;
628 		}
629 		if (unlikely(--latency_ration < 0)) {
630 			cond_resched();
631 			latency_ration = LATENCY_LIMIT;
632 		}
633 		offset++;
634 	}
635 	spin_lock(&si->lock);
636 
637 no_page:
638 	si->flags -= SWP_SCANNING;
639 	return 0;
640 }
641 
642 swp_entry_t get_swap_page(void)
643 {
644 	struct swap_info_struct *si, *next;
645 	pgoff_t offset;
646 
647 	if (atomic_long_read(&nr_swap_pages) <= 0)
648 		goto noswap;
649 	atomic_long_dec(&nr_swap_pages);
650 
651 	spin_lock(&swap_avail_lock);
652 
653 start_over:
654 	plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
655 		/* requeue si to after same-priority siblings */
656 		plist_requeue(&si->avail_list, &swap_avail_head);
657 		spin_unlock(&swap_avail_lock);
658 		spin_lock(&si->lock);
659 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
660 			spin_lock(&swap_avail_lock);
661 			if (plist_node_empty(&si->avail_list)) {
662 				spin_unlock(&si->lock);
663 				goto nextsi;
664 			}
665 			WARN(!si->highest_bit,
666 			     "swap_info %d in list but !highest_bit\n",
667 			     si->type);
668 			WARN(!(si->flags & SWP_WRITEOK),
669 			     "swap_info %d in list but !SWP_WRITEOK\n",
670 			     si->type);
671 			plist_del(&si->avail_list, &swap_avail_head);
672 			spin_unlock(&si->lock);
673 			goto nextsi;
674 		}
675 
676 		/* This is called for allocating swap entry for cache */
677 		offset = scan_swap_map(si, SWAP_HAS_CACHE);
678 		spin_unlock(&si->lock);
679 		if (offset)
680 			return swp_entry(si->type, offset);
681 		pr_debug("scan_swap_map of si %d failed to find offset\n",
682 		       si->type);
683 		spin_lock(&swap_avail_lock);
684 nextsi:
685 		/*
686 		 * if we got here, it's likely that si was almost full before,
687 		 * and since scan_swap_map() can drop the si->lock, multiple
688 		 * callers probably all tried to get a page from the same si
689 		 * and it filled up before we could get one; or, the si filled
690 		 * up between us dropping swap_avail_lock and taking si->lock.
691 		 * Since we dropped the swap_avail_lock, the swap_avail_head
692 		 * list may have been modified; so if next is still in the
693 		 * swap_avail_head list then try it, otherwise start over.
694 		 */
695 		if (plist_node_empty(&next->avail_list))
696 			goto start_over;
697 	}
698 
699 	spin_unlock(&swap_avail_lock);
700 
701 	atomic_long_inc(&nr_swap_pages);
702 noswap:
703 	return (swp_entry_t) {0};
704 }
705 
706 /* The only caller of this function is now suspend routine */
707 swp_entry_t get_swap_page_of_type(int type)
708 {
709 	struct swap_info_struct *si;
710 	pgoff_t offset;
711 
712 	si = swap_info[type];
713 	spin_lock(&si->lock);
714 	if (si && (si->flags & SWP_WRITEOK)) {
715 		atomic_long_dec(&nr_swap_pages);
716 		/* This is called for allocating swap entry, not cache */
717 		offset = scan_swap_map(si, 1);
718 		if (offset) {
719 			spin_unlock(&si->lock);
720 			return swp_entry(type, offset);
721 		}
722 		atomic_long_inc(&nr_swap_pages);
723 	}
724 	spin_unlock(&si->lock);
725 	return (swp_entry_t) {0};
726 }
727 
728 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
729 {
730 	struct swap_info_struct *p;
731 	unsigned long offset, type;
732 
733 	if (!entry.val)
734 		goto out;
735 	type = swp_type(entry);
736 	if (type >= nr_swapfiles)
737 		goto bad_nofile;
738 	p = swap_info[type];
739 	if (!(p->flags & SWP_USED))
740 		goto bad_device;
741 	offset = swp_offset(entry);
742 	if (offset >= p->max)
743 		goto bad_offset;
744 	if (!p->swap_map[offset])
745 		goto bad_free;
746 	spin_lock(&p->lock);
747 	return p;
748 
749 bad_free:
750 	pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
751 	goto out;
752 bad_offset:
753 	pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
754 	goto out;
755 bad_device:
756 	pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
757 	goto out;
758 bad_nofile:
759 	pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
760 out:
761 	return NULL;
762 }
763 
764 static unsigned char swap_entry_free(struct swap_info_struct *p,
765 				     swp_entry_t entry, unsigned char usage)
766 {
767 	unsigned long offset = swp_offset(entry);
768 	unsigned char count;
769 	unsigned char has_cache;
770 
771 	count = p->swap_map[offset];
772 	has_cache = count & SWAP_HAS_CACHE;
773 	count &= ~SWAP_HAS_CACHE;
774 
775 	if (usage == SWAP_HAS_CACHE) {
776 		VM_BUG_ON(!has_cache);
777 		has_cache = 0;
778 	} else if (count == SWAP_MAP_SHMEM) {
779 		/*
780 		 * Or we could insist on shmem.c using a special
781 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
782 		 */
783 		count = 0;
784 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
785 		if (count == COUNT_CONTINUED) {
786 			if (swap_count_continued(p, offset, count))
787 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
788 			else
789 				count = SWAP_MAP_MAX;
790 		} else
791 			count--;
792 	}
793 
794 	usage = count | has_cache;
795 	p->swap_map[offset] = usage;
796 
797 	/* free if no reference */
798 	if (!usage) {
799 		mem_cgroup_uncharge_swap(entry);
800 		dec_cluster_info_page(p, p->cluster_info, offset);
801 		if (offset < p->lowest_bit)
802 			p->lowest_bit = offset;
803 		if (offset > p->highest_bit) {
804 			bool was_full = !p->highest_bit;
805 			p->highest_bit = offset;
806 			if (was_full && (p->flags & SWP_WRITEOK)) {
807 				spin_lock(&swap_avail_lock);
808 				WARN_ON(!plist_node_empty(&p->avail_list));
809 				if (plist_node_empty(&p->avail_list))
810 					plist_add(&p->avail_list,
811 						  &swap_avail_head);
812 				spin_unlock(&swap_avail_lock);
813 			}
814 		}
815 		atomic_long_inc(&nr_swap_pages);
816 		p->inuse_pages--;
817 		frontswap_invalidate_page(p->type, offset);
818 		if (p->flags & SWP_BLKDEV) {
819 			struct gendisk *disk = p->bdev->bd_disk;
820 			if (disk->fops->swap_slot_free_notify)
821 				disk->fops->swap_slot_free_notify(p->bdev,
822 								  offset);
823 		}
824 	}
825 
826 	return usage;
827 }
828 
829 /*
830  * Caller has made sure that the swap device corresponding to entry
831  * is still around or has not been recycled.
832  */
833 void swap_free(swp_entry_t entry)
834 {
835 	struct swap_info_struct *p;
836 
837 	p = swap_info_get(entry);
838 	if (p) {
839 		swap_entry_free(p, entry, 1);
840 		spin_unlock(&p->lock);
841 	}
842 }
843 
844 /*
845  * Called after dropping swapcache to decrease refcnt to swap entries.
846  */
847 void swapcache_free(swp_entry_t entry)
848 {
849 	struct swap_info_struct *p;
850 
851 	p = swap_info_get(entry);
852 	if (p) {
853 		swap_entry_free(p, entry, SWAP_HAS_CACHE);
854 		spin_unlock(&p->lock);
855 	}
856 }
857 
858 /*
859  * How many references to page are currently swapped out?
860  * This does not give an exact answer when swap count is continued,
861  * but does include the high COUNT_CONTINUED flag to allow for that.
862  */
863 int page_swapcount(struct page *page)
864 {
865 	int count = 0;
866 	struct swap_info_struct *p;
867 	swp_entry_t entry;
868 
869 	entry.val = page_private(page);
870 	p = swap_info_get(entry);
871 	if (p) {
872 		count = swap_count(p->swap_map[swp_offset(entry)]);
873 		spin_unlock(&p->lock);
874 	}
875 	return count;
876 }
877 
878 /*
879  * How many references to @entry are currently swapped out?
880  * This considers COUNT_CONTINUED so it returns exact answer.
881  */
882 int swp_swapcount(swp_entry_t entry)
883 {
884 	int count, tmp_count, n;
885 	struct swap_info_struct *p;
886 	struct page *page;
887 	pgoff_t offset;
888 	unsigned char *map;
889 
890 	p = swap_info_get(entry);
891 	if (!p)
892 		return 0;
893 
894 	count = swap_count(p->swap_map[swp_offset(entry)]);
895 	if (!(count & COUNT_CONTINUED))
896 		goto out;
897 
898 	count &= ~COUNT_CONTINUED;
899 	n = SWAP_MAP_MAX + 1;
900 
901 	offset = swp_offset(entry);
902 	page = vmalloc_to_page(p->swap_map + offset);
903 	offset &= ~PAGE_MASK;
904 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
905 
906 	do {
907 		page = list_next_entry(page, lru);
908 		map = kmap_atomic(page);
909 		tmp_count = map[offset];
910 		kunmap_atomic(map);
911 
912 		count += (tmp_count & ~COUNT_CONTINUED) * n;
913 		n *= (SWAP_CONT_MAX + 1);
914 	} while (tmp_count & COUNT_CONTINUED);
915 out:
916 	spin_unlock(&p->lock);
917 	return count;
918 }
919 
920 /*
921  * We can write to an anon page without COW if there are no other references
922  * to it.  And as a side-effect, free up its swap: because the old content
923  * on disk will never be read, and seeking back there to write new content
924  * later would only waste time away from clustering.
925  *
926  * NOTE: total_mapcount should not be relied upon by the caller if
927  * reuse_swap_page() returns false, but it may be always overwritten
928  * (see the other implementation for CONFIG_SWAP=n).
929  */
930 bool reuse_swap_page(struct page *page, int *total_mapcount)
931 {
932 	int count;
933 
934 	VM_BUG_ON_PAGE(!PageLocked(page), page);
935 	if (unlikely(PageKsm(page)))
936 		return false;
937 	count = page_trans_huge_mapcount(page, total_mapcount);
938 	if (count <= 1 && PageSwapCache(page)) {
939 		count += page_swapcount(page);
940 		if (count == 1 && !PageWriteback(page)) {
941 			delete_from_swap_cache(page);
942 			SetPageDirty(page);
943 		}
944 	}
945 	return count <= 1;
946 }
947 
948 /*
949  * If swap is getting full, or if there are no more mappings of this page,
950  * then try_to_free_swap is called to free its swap space.
951  */
952 int try_to_free_swap(struct page *page)
953 {
954 	VM_BUG_ON_PAGE(!PageLocked(page), page);
955 
956 	if (!PageSwapCache(page))
957 		return 0;
958 	if (PageWriteback(page))
959 		return 0;
960 	if (page_swapcount(page))
961 		return 0;
962 
963 	/*
964 	 * Once hibernation has begun to create its image of memory,
965 	 * there's a danger that one of the calls to try_to_free_swap()
966 	 * - most probably a call from __try_to_reclaim_swap() while
967 	 * hibernation is allocating its own swap pages for the image,
968 	 * but conceivably even a call from memory reclaim - will free
969 	 * the swap from a page which has already been recorded in the
970 	 * image as a clean swapcache page, and then reuse its swap for
971 	 * another page of the image.  On waking from hibernation, the
972 	 * original page might be freed under memory pressure, then
973 	 * later read back in from swap, now with the wrong data.
974 	 *
975 	 * Hibernation suspends storage while it is writing the image
976 	 * to disk so check that here.
977 	 */
978 	if (pm_suspended_storage())
979 		return 0;
980 
981 	delete_from_swap_cache(page);
982 	SetPageDirty(page);
983 	return 1;
984 }
985 
986 /*
987  * Free the swap entry like above, but also try to
988  * free the page cache entry if it is the last user.
989  */
990 int free_swap_and_cache(swp_entry_t entry)
991 {
992 	struct swap_info_struct *p;
993 	struct page *page = NULL;
994 
995 	if (non_swap_entry(entry))
996 		return 1;
997 
998 	p = swap_info_get(entry);
999 	if (p) {
1000 		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
1001 			page = find_get_page(swap_address_space(entry),
1002 						entry.val);
1003 			if (page && !trylock_page(page)) {
1004 				put_page(page);
1005 				page = NULL;
1006 			}
1007 		}
1008 		spin_unlock(&p->lock);
1009 	}
1010 	if (page) {
1011 		/*
1012 		 * Not mapped elsewhere, or swap space full? Free it!
1013 		 * Also recheck PageSwapCache now page is locked (above).
1014 		 */
1015 		if (PageSwapCache(page) && !PageWriteback(page) &&
1016 		    (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1017 			delete_from_swap_cache(page);
1018 			SetPageDirty(page);
1019 		}
1020 		unlock_page(page);
1021 		put_page(page);
1022 	}
1023 	return p != NULL;
1024 }
1025 
1026 #ifdef CONFIG_HIBERNATION
1027 /*
1028  * Find the swap type that corresponds to given device (if any).
1029  *
1030  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1031  * from 0, in which the swap header is expected to be located.
1032  *
1033  * This is needed for the suspend to disk (aka swsusp).
1034  */
1035 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1036 {
1037 	struct block_device *bdev = NULL;
1038 	int type;
1039 
1040 	if (device)
1041 		bdev = bdget(device);
1042 
1043 	spin_lock(&swap_lock);
1044 	for (type = 0; type < nr_swapfiles; type++) {
1045 		struct swap_info_struct *sis = swap_info[type];
1046 
1047 		if (!(sis->flags & SWP_WRITEOK))
1048 			continue;
1049 
1050 		if (!bdev) {
1051 			if (bdev_p)
1052 				*bdev_p = bdgrab(sis->bdev);
1053 
1054 			spin_unlock(&swap_lock);
1055 			return type;
1056 		}
1057 		if (bdev == sis->bdev) {
1058 			struct swap_extent *se = &sis->first_swap_extent;
1059 
1060 			if (se->start_block == offset) {
1061 				if (bdev_p)
1062 					*bdev_p = bdgrab(sis->bdev);
1063 
1064 				spin_unlock(&swap_lock);
1065 				bdput(bdev);
1066 				return type;
1067 			}
1068 		}
1069 	}
1070 	spin_unlock(&swap_lock);
1071 	if (bdev)
1072 		bdput(bdev);
1073 
1074 	return -ENODEV;
1075 }
1076 
1077 /*
1078  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1079  * corresponding to given index in swap_info (swap type).
1080  */
1081 sector_t swapdev_block(int type, pgoff_t offset)
1082 {
1083 	struct block_device *bdev;
1084 
1085 	if ((unsigned int)type >= nr_swapfiles)
1086 		return 0;
1087 	if (!(swap_info[type]->flags & SWP_WRITEOK))
1088 		return 0;
1089 	return map_swap_entry(swp_entry(type, offset), &bdev);
1090 }
1091 
1092 /*
1093  * Return either the total number of swap pages of given type, or the number
1094  * of free pages of that type (depending on @free)
1095  *
1096  * This is needed for software suspend
1097  */
1098 unsigned int count_swap_pages(int type, int free)
1099 {
1100 	unsigned int n = 0;
1101 
1102 	spin_lock(&swap_lock);
1103 	if ((unsigned int)type < nr_swapfiles) {
1104 		struct swap_info_struct *sis = swap_info[type];
1105 
1106 		spin_lock(&sis->lock);
1107 		if (sis->flags & SWP_WRITEOK) {
1108 			n = sis->pages;
1109 			if (free)
1110 				n -= sis->inuse_pages;
1111 		}
1112 		spin_unlock(&sis->lock);
1113 	}
1114 	spin_unlock(&swap_lock);
1115 	return n;
1116 }
1117 #endif /* CONFIG_HIBERNATION */
1118 
1119 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1120 {
1121 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1122 }
1123 
1124 /*
1125  * No need to decide whether this PTE shares the swap entry with others,
1126  * just let do_wp_page work it out if a write is requested later - to
1127  * force COW, vm_page_prot omits write permission from any private vma.
1128  */
1129 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1130 		unsigned long addr, swp_entry_t entry, struct page *page)
1131 {
1132 	struct page *swapcache;
1133 	struct mem_cgroup *memcg;
1134 	spinlock_t *ptl;
1135 	pte_t *pte;
1136 	int ret = 1;
1137 
1138 	swapcache = page;
1139 	page = ksm_might_need_to_copy(page, vma, addr);
1140 	if (unlikely(!page))
1141 		return -ENOMEM;
1142 
1143 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1144 				&memcg, false)) {
1145 		ret = -ENOMEM;
1146 		goto out_nolock;
1147 	}
1148 
1149 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1150 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1151 		mem_cgroup_cancel_charge(page, memcg, false);
1152 		ret = 0;
1153 		goto out;
1154 	}
1155 
1156 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1157 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1158 	get_page(page);
1159 	set_pte_at(vma->vm_mm, addr, pte,
1160 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1161 	if (page == swapcache) {
1162 		page_add_anon_rmap(page, vma, addr, false);
1163 		mem_cgroup_commit_charge(page, memcg, true, false);
1164 	} else { /* ksm created a completely new copy */
1165 		page_add_new_anon_rmap(page, vma, addr, false);
1166 		mem_cgroup_commit_charge(page, memcg, false, false);
1167 		lru_cache_add_active_or_unevictable(page, vma);
1168 	}
1169 	swap_free(entry);
1170 	/*
1171 	 * Move the page to the active list so it is not
1172 	 * immediately swapped out again after swapon.
1173 	 */
1174 	activate_page(page);
1175 out:
1176 	pte_unmap_unlock(pte, ptl);
1177 out_nolock:
1178 	if (page != swapcache) {
1179 		unlock_page(page);
1180 		put_page(page);
1181 	}
1182 	return ret;
1183 }
1184 
1185 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1186 				unsigned long addr, unsigned long end,
1187 				swp_entry_t entry, struct page *page)
1188 {
1189 	pte_t swp_pte = swp_entry_to_pte(entry);
1190 	pte_t *pte;
1191 	int ret = 0;
1192 
1193 	/*
1194 	 * We don't actually need pte lock while scanning for swp_pte: since
1195 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1196 	 * page table while we're scanning; though it could get zapped, and on
1197 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1198 	 * of unmatched parts which look like swp_pte, so unuse_pte must
1199 	 * recheck under pte lock.  Scanning without pte lock lets it be
1200 	 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1201 	 */
1202 	pte = pte_offset_map(pmd, addr);
1203 	do {
1204 		/*
1205 		 * swapoff spends a _lot_ of time in this loop!
1206 		 * Test inline before going to call unuse_pte.
1207 		 */
1208 		if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1209 			pte_unmap(pte);
1210 			ret = unuse_pte(vma, pmd, addr, entry, page);
1211 			if (ret)
1212 				goto out;
1213 			pte = pte_offset_map(pmd, addr);
1214 		}
1215 	} while (pte++, addr += PAGE_SIZE, addr != end);
1216 	pte_unmap(pte - 1);
1217 out:
1218 	return ret;
1219 }
1220 
1221 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1222 				unsigned long addr, unsigned long end,
1223 				swp_entry_t entry, struct page *page)
1224 {
1225 	pmd_t *pmd;
1226 	unsigned long next;
1227 	int ret;
1228 
1229 	pmd = pmd_offset(pud, addr);
1230 	do {
1231 		next = pmd_addr_end(addr, end);
1232 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1233 			continue;
1234 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1235 		if (ret)
1236 			return ret;
1237 	} while (pmd++, addr = next, addr != end);
1238 	return 0;
1239 }
1240 
1241 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1242 				unsigned long addr, unsigned long end,
1243 				swp_entry_t entry, struct page *page)
1244 {
1245 	pud_t *pud;
1246 	unsigned long next;
1247 	int ret;
1248 
1249 	pud = pud_offset(pgd, addr);
1250 	do {
1251 		next = pud_addr_end(addr, end);
1252 		if (pud_none_or_clear_bad(pud))
1253 			continue;
1254 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1255 		if (ret)
1256 			return ret;
1257 	} while (pud++, addr = next, addr != end);
1258 	return 0;
1259 }
1260 
1261 static int unuse_vma(struct vm_area_struct *vma,
1262 				swp_entry_t entry, struct page *page)
1263 {
1264 	pgd_t *pgd;
1265 	unsigned long addr, end, next;
1266 	int ret;
1267 
1268 	if (page_anon_vma(page)) {
1269 		addr = page_address_in_vma(page, vma);
1270 		if (addr == -EFAULT)
1271 			return 0;
1272 		else
1273 			end = addr + PAGE_SIZE;
1274 	} else {
1275 		addr = vma->vm_start;
1276 		end = vma->vm_end;
1277 	}
1278 
1279 	pgd = pgd_offset(vma->vm_mm, addr);
1280 	do {
1281 		next = pgd_addr_end(addr, end);
1282 		if (pgd_none_or_clear_bad(pgd))
1283 			continue;
1284 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1285 		if (ret)
1286 			return ret;
1287 	} while (pgd++, addr = next, addr != end);
1288 	return 0;
1289 }
1290 
1291 static int unuse_mm(struct mm_struct *mm,
1292 				swp_entry_t entry, struct page *page)
1293 {
1294 	struct vm_area_struct *vma;
1295 	int ret = 0;
1296 
1297 	if (!down_read_trylock(&mm->mmap_sem)) {
1298 		/*
1299 		 * Activate page so shrink_inactive_list is unlikely to unmap
1300 		 * its ptes while lock is dropped, so swapoff can make progress.
1301 		 */
1302 		activate_page(page);
1303 		unlock_page(page);
1304 		down_read(&mm->mmap_sem);
1305 		lock_page(page);
1306 	}
1307 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1308 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1309 			break;
1310 	}
1311 	up_read(&mm->mmap_sem);
1312 	return (ret < 0)? ret: 0;
1313 }
1314 
1315 /*
1316  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1317  * from current position to next entry still in use.
1318  * Recycle to start on reaching the end, returning 0 when empty.
1319  */
1320 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1321 					unsigned int prev, bool frontswap)
1322 {
1323 	unsigned int max = si->max;
1324 	unsigned int i = prev;
1325 	unsigned char count;
1326 
1327 	/*
1328 	 * No need for swap_lock here: we're just looking
1329 	 * for whether an entry is in use, not modifying it; false
1330 	 * hits are okay, and sys_swapoff() has already prevented new
1331 	 * allocations from this area (while holding swap_lock).
1332 	 */
1333 	for (;;) {
1334 		if (++i >= max) {
1335 			if (!prev) {
1336 				i = 0;
1337 				break;
1338 			}
1339 			/*
1340 			 * No entries in use at top of swap_map,
1341 			 * loop back to start and recheck there.
1342 			 */
1343 			max = prev + 1;
1344 			prev = 0;
1345 			i = 1;
1346 		}
1347 		if (frontswap) {
1348 			if (frontswap_test(si, i))
1349 				break;
1350 			else
1351 				continue;
1352 		}
1353 		count = READ_ONCE(si->swap_map[i]);
1354 		if (count && swap_count(count) != SWAP_MAP_BAD)
1355 			break;
1356 	}
1357 	return i;
1358 }
1359 
1360 /*
1361  * We completely avoid races by reading each swap page in advance,
1362  * and then search for the process using it.  All the necessary
1363  * page table adjustments can then be made atomically.
1364  *
1365  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1366  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1367  */
1368 int try_to_unuse(unsigned int type, bool frontswap,
1369 		 unsigned long pages_to_unuse)
1370 {
1371 	struct swap_info_struct *si = swap_info[type];
1372 	struct mm_struct *start_mm;
1373 	volatile unsigned char *swap_map; /* swap_map is accessed without
1374 					   * locking. Mark it as volatile
1375 					   * to prevent compiler doing
1376 					   * something odd.
1377 					   */
1378 	unsigned char swcount;
1379 	struct page *page;
1380 	swp_entry_t entry;
1381 	unsigned int i = 0;
1382 	int retval = 0;
1383 
1384 	/*
1385 	 * When searching mms for an entry, a good strategy is to
1386 	 * start at the first mm we freed the previous entry from
1387 	 * (though actually we don't notice whether we or coincidence
1388 	 * freed the entry).  Initialize this start_mm with a hold.
1389 	 *
1390 	 * A simpler strategy would be to start at the last mm we
1391 	 * freed the previous entry from; but that would take less
1392 	 * advantage of mmlist ordering, which clusters forked mms
1393 	 * together, child after parent.  If we race with dup_mmap(), we
1394 	 * prefer to resolve parent before child, lest we miss entries
1395 	 * duplicated after we scanned child: using last mm would invert
1396 	 * that.
1397 	 */
1398 	start_mm = &init_mm;
1399 	atomic_inc(&init_mm.mm_users);
1400 
1401 	/*
1402 	 * Keep on scanning until all entries have gone.  Usually,
1403 	 * one pass through swap_map is enough, but not necessarily:
1404 	 * there are races when an instance of an entry might be missed.
1405 	 */
1406 	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1407 		if (signal_pending(current)) {
1408 			retval = -EINTR;
1409 			break;
1410 		}
1411 
1412 		/*
1413 		 * Get a page for the entry, using the existing swap
1414 		 * cache page if there is one.  Otherwise, get a clean
1415 		 * page and read the swap into it.
1416 		 */
1417 		swap_map = &si->swap_map[i];
1418 		entry = swp_entry(type, i);
1419 		page = read_swap_cache_async(entry,
1420 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1421 		if (!page) {
1422 			/*
1423 			 * Either swap_duplicate() failed because entry
1424 			 * has been freed independently, and will not be
1425 			 * reused since sys_swapoff() already disabled
1426 			 * allocation from here, or alloc_page() failed.
1427 			 */
1428 			swcount = *swap_map;
1429 			/*
1430 			 * We don't hold lock here, so the swap entry could be
1431 			 * SWAP_MAP_BAD (when the cluster is discarding).
1432 			 * Instead of fail out, We can just skip the swap
1433 			 * entry because swapoff will wait for discarding
1434 			 * finish anyway.
1435 			 */
1436 			if (!swcount || swcount == SWAP_MAP_BAD)
1437 				continue;
1438 			retval = -ENOMEM;
1439 			break;
1440 		}
1441 
1442 		/*
1443 		 * Don't hold on to start_mm if it looks like exiting.
1444 		 */
1445 		if (atomic_read(&start_mm->mm_users) == 1) {
1446 			mmput(start_mm);
1447 			start_mm = &init_mm;
1448 			atomic_inc(&init_mm.mm_users);
1449 		}
1450 
1451 		/*
1452 		 * Wait for and lock page.  When do_swap_page races with
1453 		 * try_to_unuse, do_swap_page can handle the fault much
1454 		 * faster than try_to_unuse can locate the entry.  This
1455 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1456 		 * defer to do_swap_page in such a case - in some tests,
1457 		 * do_swap_page and try_to_unuse repeatedly compete.
1458 		 */
1459 		wait_on_page_locked(page);
1460 		wait_on_page_writeback(page);
1461 		lock_page(page);
1462 		wait_on_page_writeback(page);
1463 
1464 		/*
1465 		 * Remove all references to entry.
1466 		 */
1467 		swcount = *swap_map;
1468 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1469 			retval = shmem_unuse(entry, page);
1470 			/* page has already been unlocked and released */
1471 			if (retval < 0)
1472 				break;
1473 			continue;
1474 		}
1475 		if (swap_count(swcount) && start_mm != &init_mm)
1476 			retval = unuse_mm(start_mm, entry, page);
1477 
1478 		if (swap_count(*swap_map)) {
1479 			int set_start_mm = (*swap_map >= swcount);
1480 			struct list_head *p = &start_mm->mmlist;
1481 			struct mm_struct *new_start_mm = start_mm;
1482 			struct mm_struct *prev_mm = start_mm;
1483 			struct mm_struct *mm;
1484 
1485 			atomic_inc(&new_start_mm->mm_users);
1486 			atomic_inc(&prev_mm->mm_users);
1487 			spin_lock(&mmlist_lock);
1488 			while (swap_count(*swap_map) && !retval &&
1489 					(p = p->next) != &start_mm->mmlist) {
1490 				mm = list_entry(p, struct mm_struct, mmlist);
1491 				if (!atomic_inc_not_zero(&mm->mm_users))
1492 					continue;
1493 				spin_unlock(&mmlist_lock);
1494 				mmput(prev_mm);
1495 				prev_mm = mm;
1496 
1497 				cond_resched();
1498 
1499 				swcount = *swap_map;
1500 				if (!swap_count(swcount)) /* any usage ? */
1501 					;
1502 				else if (mm == &init_mm)
1503 					set_start_mm = 1;
1504 				else
1505 					retval = unuse_mm(mm, entry, page);
1506 
1507 				if (set_start_mm && *swap_map < swcount) {
1508 					mmput(new_start_mm);
1509 					atomic_inc(&mm->mm_users);
1510 					new_start_mm = mm;
1511 					set_start_mm = 0;
1512 				}
1513 				spin_lock(&mmlist_lock);
1514 			}
1515 			spin_unlock(&mmlist_lock);
1516 			mmput(prev_mm);
1517 			mmput(start_mm);
1518 			start_mm = new_start_mm;
1519 		}
1520 		if (retval) {
1521 			unlock_page(page);
1522 			put_page(page);
1523 			break;
1524 		}
1525 
1526 		/*
1527 		 * If a reference remains (rare), we would like to leave
1528 		 * the page in the swap cache; but try_to_unmap could
1529 		 * then re-duplicate the entry once we drop page lock,
1530 		 * so we might loop indefinitely; also, that page could
1531 		 * not be swapped out to other storage meanwhile.  So:
1532 		 * delete from cache even if there's another reference,
1533 		 * after ensuring that the data has been saved to disk -
1534 		 * since if the reference remains (rarer), it will be
1535 		 * read from disk into another page.  Splitting into two
1536 		 * pages would be incorrect if swap supported "shared
1537 		 * private" pages, but they are handled by tmpfs files.
1538 		 *
1539 		 * Given how unuse_vma() targets one particular offset
1540 		 * in an anon_vma, once the anon_vma has been determined,
1541 		 * this splitting happens to be just what is needed to
1542 		 * handle where KSM pages have been swapped out: re-reading
1543 		 * is unnecessarily slow, but we can fix that later on.
1544 		 */
1545 		if (swap_count(*swap_map) &&
1546 		     PageDirty(page) && PageSwapCache(page)) {
1547 			struct writeback_control wbc = {
1548 				.sync_mode = WB_SYNC_NONE,
1549 			};
1550 
1551 			swap_writepage(page, &wbc);
1552 			lock_page(page);
1553 			wait_on_page_writeback(page);
1554 		}
1555 
1556 		/*
1557 		 * It is conceivable that a racing task removed this page from
1558 		 * swap cache just before we acquired the page lock at the top,
1559 		 * or while we dropped it in unuse_mm().  The page might even
1560 		 * be back in swap cache on another swap area: that we must not
1561 		 * delete, since it may not have been written out to swap yet.
1562 		 */
1563 		if (PageSwapCache(page) &&
1564 		    likely(page_private(page) == entry.val))
1565 			delete_from_swap_cache(page);
1566 
1567 		/*
1568 		 * So we could skip searching mms once swap count went
1569 		 * to 1, we did not mark any present ptes as dirty: must
1570 		 * mark page dirty so shrink_page_list will preserve it.
1571 		 */
1572 		SetPageDirty(page);
1573 		unlock_page(page);
1574 		put_page(page);
1575 
1576 		/*
1577 		 * Make sure that we aren't completely killing
1578 		 * interactive performance.
1579 		 */
1580 		cond_resched();
1581 		if (frontswap && pages_to_unuse > 0) {
1582 			if (!--pages_to_unuse)
1583 				break;
1584 		}
1585 	}
1586 
1587 	mmput(start_mm);
1588 	return retval;
1589 }
1590 
1591 /*
1592  * After a successful try_to_unuse, if no swap is now in use, we know
1593  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1594  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1595  * added to the mmlist just after page_duplicate - before would be racy.
1596  */
1597 static void drain_mmlist(void)
1598 {
1599 	struct list_head *p, *next;
1600 	unsigned int type;
1601 
1602 	for (type = 0; type < nr_swapfiles; type++)
1603 		if (swap_info[type]->inuse_pages)
1604 			return;
1605 	spin_lock(&mmlist_lock);
1606 	list_for_each_safe(p, next, &init_mm.mmlist)
1607 		list_del_init(p);
1608 	spin_unlock(&mmlist_lock);
1609 }
1610 
1611 /*
1612  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1613  * corresponds to page offset for the specified swap entry.
1614  * Note that the type of this function is sector_t, but it returns page offset
1615  * into the bdev, not sector offset.
1616  */
1617 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1618 {
1619 	struct swap_info_struct *sis;
1620 	struct swap_extent *start_se;
1621 	struct swap_extent *se;
1622 	pgoff_t offset;
1623 
1624 	sis = swap_info[swp_type(entry)];
1625 	*bdev = sis->bdev;
1626 
1627 	offset = swp_offset(entry);
1628 	start_se = sis->curr_swap_extent;
1629 	se = start_se;
1630 
1631 	for ( ; ; ) {
1632 		if (se->start_page <= offset &&
1633 				offset < (se->start_page + se->nr_pages)) {
1634 			return se->start_block + (offset - se->start_page);
1635 		}
1636 		se = list_next_entry(se, list);
1637 		sis->curr_swap_extent = se;
1638 		BUG_ON(se == start_se);		/* It *must* be present */
1639 	}
1640 }
1641 
1642 /*
1643  * Returns the page offset into bdev for the specified page's swap entry.
1644  */
1645 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1646 {
1647 	swp_entry_t entry;
1648 	entry.val = page_private(page);
1649 	return map_swap_entry(entry, bdev);
1650 }
1651 
1652 /*
1653  * Free all of a swapdev's extent information
1654  */
1655 static void destroy_swap_extents(struct swap_info_struct *sis)
1656 {
1657 	while (!list_empty(&sis->first_swap_extent.list)) {
1658 		struct swap_extent *se;
1659 
1660 		se = list_first_entry(&sis->first_swap_extent.list,
1661 				struct swap_extent, list);
1662 		list_del(&se->list);
1663 		kfree(se);
1664 	}
1665 
1666 	if (sis->flags & SWP_FILE) {
1667 		struct file *swap_file = sis->swap_file;
1668 		struct address_space *mapping = swap_file->f_mapping;
1669 
1670 		sis->flags &= ~SWP_FILE;
1671 		mapping->a_ops->swap_deactivate(swap_file);
1672 	}
1673 }
1674 
1675 /*
1676  * Add a block range (and the corresponding page range) into this swapdev's
1677  * extent list.  The extent list is kept sorted in page order.
1678  *
1679  * This function rather assumes that it is called in ascending page order.
1680  */
1681 int
1682 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1683 		unsigned long nr_pages, sector_t start_block)
1684 {
1685 	struct swap_extent *se;
1686 	struct swap_extent *new_se;
1687 	struct list_head *lh;
1688 
1689 	if (start_page == 0) {
1690 		se = &sis->first_swap_extent;
1691 		sis->curr_swap_extent = se;
1692 		se->start_page = 0;
1693 		se->nr_pages = nr_pages;
1694 		se->start_block = start_block;
1695 		return 1;
1696 	} else {
1697 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1698 		se = list_entry(lh, struct swap_extent, list);
1699 		BUG_ON(se->start_page + se->nr_pages != start_page);
1700 		if (se->start_block + se->nr_pages == start_block) {
1701 			/* Merge it */
1702 			se->nr_pages += nr_pages;
1703 			return 0;
1704 		}
1705 	}
1706 
1707 	/*
1708 	 * No merge.  Insert a new extent, preserving ordering.
1709 	 */
1710 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1711 	if (new_se == NULL)
1712 		return -ENOMEM;
1713 	new_se->start_page = start_page;
1714 	new_se->nr_pages = nr_pages;
1715 	new_se->start_block = start_block;
1716 
1717 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1718 	return 1;
1719 }
1720 
1721 /*
1722  * A `swap extent' is a simple thing which maps a contiguous range of pages
1723  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1724  * is built at swapon time and is then used at swap_writepage/swap_readpage
1725  * time for locating where on disk a page belongs.
1726  *
1727  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1728  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1729  * swap files identically.
1730  *
1731  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1732  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1733  * swapfiles are handled *identically* after swapon time.
1734  *
1735  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1736  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1737  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1738  * requirements, they are simply tossed out - we will never use those blocks
1739  * for swapping.
1740  *
1741  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1742  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1743  * which will scribble on the fs.
1744  *
1745  * The amount of disk space which a single swap extent represents varies.
1746  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1747  * extents in the list.  To avoid much list walking, we cache the previous
1748  * search location in `curr_swap_extent', and start new searches from there.
1749  * This is extremely effective.  The average number of iterations in
1750  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1751  */
1752 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1753 {
1754 	struct file *swap_file = sis->swap_file;
1755 	struct address_space *mapping = swap_file->f_mapping;
1756 	struct inode *inode = mapping->host;
1757 	int ret;
1758 
1759 	if (S_ISBLK(inode->i_mode)) {
1760 		ret = add_swap_extent(sis, 0, sis->max, 0);
1761 		*span = sis->pages;
1762 		return ret;
1763 	}
1764 
1765 	if (mapping->a_ops->swap_activate) {
1766 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1767 		if (!ret) {
1768 			sis->flags |= SWP_FILE;
1769 			ret = add_swap_extent(sis, 0, sis->max, 0);
1770 			*span = sis->pages;
1771 		}
1772 		return ret;
1773 	}
1774 
1775 	return generic_swapfile_activate(sis, swap_file, span);
1776 }
1777 
1778 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1779 				unsigned char *swap_map,
1780 				struct swap_cluster_info *cluster_info)
1781 {
1782 	if (prio >= 0)
1783 		p->prio = prio;
1784 	else
1785 		p->prio = --least_priority;
1786 	/*
1787 	 * the plist prio is negated because plist ordering is
1788 	 * low-to-high, while swap ordering is high-to-low
1789 	 */
1790 	p->list.prio = -p->prio;
1791 	p->avail_list.prio = -p->prio;
1792 	p->swap_map = swap_map;
1793 	p->cluster_info = cluster_info;
1794 	p->flags |= SWP_WRITEOK;
1795 	atomic_long_add(p->pages, &nr_swap_pages);
1796 	total_swap_pages += p->pages;
1797 
1798 	assert_spin_locked(&swap_lock);
1799 	/*
1800 	 * both lists are plists, and thus priority ordered.
1801 	 * swap_active_head needs to be priority ordered for swapoff(),
1802 	 * which on removal of any swap_info_struct with an auto-assigned
1803 	 * (i.e. negative) priority increments the auto-assigned priority
1804 	 * of any lower-priority swap_info_structs.
1805 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
1806 	 * which allocates swap pages from the highest available priority
1807 	 * swap_info_struct.
1808 	 */
1809 	plist_add(&p->list, &swap_active_head);
1810 	spin_lock(&swap_avail_lock);
1811 	plist_add(&p->avail_list, &swap_avail_head);
1812 	spin_unlock(&swap_avail_lock);
1813 }
1814 
1815 static void enable_swap_info(struct swap_info_struct *p, int prio,
1816 				unsigned char *swap_map,
1817 				struct swap_cluster_info *cluster_info,
1818 				unsigned long *frontswap_map)
1819 {
1820 	frontswap_init(p->type, frontswap_map);
1821 	spin_lock(&swap_lock);
1822 	spin_lock(&p->lock);
1823 	 _enable_swap_info(p, prio, swap_map, cluster_info);
1824 	spin_unlock(&p->lock);
1825 	spin_unlock(&swap_lock);
1826 }
1827 
1828 static void reinsert_swap_info(struct swap_info_struct *p)
1829 {
1830 	spin_lock(&swap_lock);
1831 	spin_lock(&p->lock);
1832 	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1833 	spin_unlock(&p->lock);
1834 	spin_unlock(&swap_lock);
1835 }
1836 
1837 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1838 {
1839 	struct swap_info_struct *p = NULL;
1840 	unsigned char *swap_map;
1841 	struct swap_cluster_info *cluster_info;
1842 	unsigned long *frontswap_map;
1843 	struct file *swap_file, *victim;
1844 	struct address_space *mapping;
1845 	struct inode *inode;
1846 	struct filename *pathname;
1847 	int err, found = 0;
1848 	unsigned int old_block_size;
1849 
1850 	if (!capable(CAP_SYS_ADMIN))
1851 		return -EPERM;
1852 
1853 	BUG_ON(!current->mm);
1854 
1855 	pathname = getname(specialfile);
1856 	if (IS_ERR(pathname))
1857 		return PTR_ERR(pathname);
1858 
1859 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1860 	err = PTR_ERR(victim);
1861 	if (IS_ERR(victim))
1862 		goto out;
1863 
1864 	mapping = victim->f_mapping;
1865 	spin_lock(&swap_lock);
1866 	plist_for_each_entry(p, &swap_active_head, list) {
1867 		if (p->flags & SWP_WRITEOK) {
1868 			if (p->swap_file->f_mapping == mapping) {
1869 				found = 1;
1870 				break;
1871 			}
1872 		}
1873 	}
1874 	if (!found) {
1875 		err = -EINVAL;
1876 		spin_unlock(&swap_lock);
1877 		goto out_dput;
1878 	}
1879 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
1880 		vm_unacct_memory(p->pages);
1881 	else {
1882 		err = -ENOMEM;
1883 		spin_unlock(&swap_lock);
1884 		goto out_dput;
1885 	}
1886 	spin_lock(&swap_avail_lock);
1887 	plist_del(&p->avail_list, &swap_avail_head);
1888 	spin_unlock(&swap_avail_lock);
1889 	spin_lock(&p->lock);
1890 	if (p->prio < 0) {
1891 		struct swap_info_struct *si = p;
1892 
1893 		plist_for_each_entry_continue(si, &swap_active_head, list) {
1894 			si->prio++;
1895 			si->list.prio--;
1896 			si->avail_list.prio--;
1897 		}
1898 		least_priority++;
1899 	}
1900 	plist_del(&p->list, &swap_active_head);
1901 	atomic_long_sub(p->pages, &nr_swap_pages);
1902 	total_swap_pages -= p->pages;
1903 	p->flags &= ~SWP_WRITEOK;
1904 	spin_unlock(&p->lock);
1905 	spin_unlock(&swap_lock);
1906 
1907 	set_current_oom_origin();
1908 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1909 	clear_current_oom_origin();
1910 
1911 	if (err) {
1912 		/* re-insert swap space back into swap_list */
1913 		reinsert_swap_info(p);
1914 		goto out_dput;
1915 	}
1916 
1917 	flush_work(&p->discard_work);
1918 
1919 	destroy_swap_extents(p);
1920 	if (p->flags & SWP_CONTINUED)
1921 		free_swap_count_continuations(p);
1922 
1923 	mutex_lock(&swapon_mutex);
1924 	spin_lock(&swap_lock);
1925 	spin_lock(&p->lock);
1926 	drain_mmlist();
1927 
1928 	/* wait for anyone still in scan_swap_map */
1929 	p->highest_bit = 0;		/* cuts scans short */
1930 	while (p->flags >= SWP_SCANNING) {
1931 		spin_unlock(&p->lock);
1932 		spin_unlock(&swap_lock);
1933 		schedule_timeout_uninterruptible(1);
1934 		spin_lock(&swap_lock);
1935 		spin_lock(&p->lock);
1936 	}
1937 
1938 	swap_file = p->swap_file;
1939 	old_block_size = p->old_block_size;
1940 	p->swap_file = NULL;
1941 	p->max = 0;
1942 	swap_map = p->swap_map;
1943 	p->swap_map = NULL;
1944 	cluster_info = p->cluster_info;
1945 	p->cluster_info = NULL;
1946 	frontswap_map = frontswap_map_get(p);
1947 	spin_unlock(&p->lock);
1948 	spin_unlock(&swap_lock);
1949 	frontswap_invalidate_area(p->type);
1950 	frontswap_map_set(p, NULL);
1951 	mutex_unlock(&swapon_mutex);
1952 	free_percpu(p->percpu_cluster);
1953 	p->percpu_cluster = NULL;
1954 	vfree(swap_map);
1955 	vfree(cluster_info);
1956 	vfree(frontswap_map);
1957 	/* Destroy swap account information */
1958 	swap_cgroup_swapoff(p->type);
1959 
1960 	inode = mapping->host;
1961 	if (S_ISBLK(inode->i_mode)) {
1962 		struct block_device *bdev = I_BDEV(inode);
1963 		set_blocksize(bdev, old_block_size);
1964 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1965 	} else {
1966 		inode_lock(inode);
1967 		inode->i_flags &= ~S_SWAPFILE;
1968 		inode_unlock(inode);
1969 	}
1970 	filp_close(swap_file, NULL);
1971 
1972 	/*
1973 	 * Clear the SWP_USED flag after all resources are freed so that swapon
1974 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
1975 	 * not hold p->lock after we cleared its SWP_WRITEOK.
1976 	 */
1977 	spin_lock(&swap_lock);
1978 	p->flags = 0;
1979 	spin_unlock(&swap_lock);
1980 
1981 	err = 0;
1982 	atomic_inc(&proc_poll_event);
1983 	wake_up_interruptible(&proc_poll_wait);
1984 
1985 out_dput:
1986 	filp_close(victim, NULL);
1987 out:
1988 	putname(pathname);
1989 	return err;
1990 }
1991 
1992 #ifdef CONFIG_PROC_FS
1993 static unsigned swaps_poll(struct file *file, poll_table *wait)
1994 {
1995 	struct seq_file *seq = file->private_data;
1996 
1997 	poll_wait(file, &proc_poll_wait, wait);
1998 
1999 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2000 		seq->poll_event = atomic_read(&proc_poll_event);
2001 		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2002 	}
2003 
2004 	return POLLIN | POLLRDNORM;
2005 }
2006 
2007 /* iterator */
2008 static void *swap_start(struct seq_file *swap, loff_t *pos)
2009 {
2010 	struct swap_info_struct *si;
2011 	int type;
2012 	loff_t l = *pos;
2013 
2014 	mutex_lock(&swapon_mutex);
2015 
2016 	if (!l)
2017 		return SEQ_START_TOKEN;
2018 
2019 	for (type = 0; type < nr_swapfiles; type++) {
2020 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2021 		si = swap_info[type];
2022 		if (!(si->flags & SWP_USED) || !si->swap_map)
2023 			continue;
2024 		if (!--l)
2025 			return si;
2026 	}
2027 
2028 	return NULL;
2029 }
2030 
2031 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2032 {
2033 	struct swap_info_struct *si = v;
2034 	int type;
2035 
2036 	if (v == SEQ_START_TOKEN)
2037 		type = 0;
2038 	else
2039 		type = si->type + 1;
2040 
2041 	for (; type < nr_swapfiles; type++) {
2042 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2043 		si = swap_info[type];
2044 		if (!(si->flags & SWP_USED) || !si->swap_map)
2045 			continue;
2046 		++*pos;
2047 		return si;
2048 	}
2049 
2050 	return NULL;
2051 }
2052 
2053 static void swap_stop(struct seq_file *swap, void *v)
2054 {
2055 	mutex_unlock(&swapon_mutex);
2056 }
2057 
2058 static int swap_show(struct seq_file *swap, void *v)
2059 {
2060 	struct swap_info_struct *si = v;
2061 	struct file *file;
2062 	int len;
2063 
2064 	if (si == SEQ_START_TOKEN) {
2065 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2066 		return 0;
2067 	}
2068 
2069 	file = si->swap_file;
2070 	len = seq_file_path(swap, file, " \t\n\\");
2071 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2072 			len < 40 ? 40 - len : 1, " ",
2073 			S_ISBLK(file_inode(file)->i_mode) ?
2074 				"partition" : "file\t",
2075 			si->pages << (PAGE_SHIFT - 10),
2076 			si->inuse_pages << (PAGE_SHIFT - 10),
2077 			si->prio);
2078 	return 0;
2079 }
2080 
2081 static const struct seq_operations swaps_op = {
2082 	.start =	swap_start,
2083 	.next =		swap_next,
2084 	.stop =		swap_stop,
2085 	.show =		swap_show
2086 };
2087 
2088 static int swaps_open(struct inode *inode, struct file *file)
2089 {
2090 	struct seq_file *seq;
2091 	int ret;
2092 
2093 	ret = seq_open(file, &swaps_op);
2094 	if (ret)
2095 		return ret;
2096 
2097 	seq = file->private_data;
2098 	seq->poll_event = atomic_read(&proc_poll_event);
2099 	return 0;
2100 }
2101 
2102 static const struct file_operations proc_swaps_operations = {
2103 	.open		= swaps_open,
2104 	.read		= seq_read,
2105 	.llseek		= seq_lseek,
2106 	.release	= seq_release,
2107 	.poll		= swaps_poll,
2108 };
2109 
2110 static int __init procswaps_init(void)
2111 {
2112 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2113 	return 0;
2114 }
2115 __initcall(procswaps_init);
2116 #endif /* CONFIG_PROC_FS */
2117 
2118 #ifdef MAX_SWAPFILES_CHECK
2119 static int __init max_swapfiles_check(void)
2120 {
2121 	MAX_SWAPFILES_CHECK();
2122 	return 0;
2123 }
2124 late_initcall(max_swapfiles_check);
2125 #endif
2126 
2127 static struct swap_info_struct *alloc_swap_info(void)
2128 {
2129 	struct swap_info_struct *p;
2130 	unsigned int type;
2131 
2132 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2133 	if (!p)
2134 		return ERR_PTR(-ENOMEM);
2135 
2136 	spin_lock(&swap_lock);
2137 	for (type = 0; type < nr_swapfiles; type++) {
2138 		if (!(swap_info[type]->flags & SWP_USED))
2139 			break;
2140 	}
2141 	if (type >= MAX_SWAPFILES) {
2142 		spin_unlock(&swap_lock);
2143 		kfree(p);
2144 		return ERR_PTR(-EPERM);
2145 	}
2146 	if (type >= nr_swapfiles) {
2147 		p->type = type;
2148 		swap_info[type] = p;
2149 		/*
2150 		 * Write swap_info[type] before nr_swapfiles, in case a
2151 		 * racing procfs swap_start() or swap_next() is reading them.
2152 		 * (We never shrink nr_swapfiles, we never free this entry.)
2153 		 */
2154 		smp_wmb();
2155 		nr_swapfiles++;
2156 	} else {
2157 		kfree(p);
2158 		p = swap_info[type];
2159 		/*
2160 		 * Do not memset this entry: a racing procfs swap_next()
2161 		 * would be relying on p->type to remain valid.
2162 		 */
2163 	}
2164 	INIT_LIST_HEAD(&p->first_swap_extent.list);
2165 	plist_node_init(&p->list, 0);
2166 	plist_node_init(&p->avail_list, 0);
2167 	p->flags = SWP_USED;
2168 	spin_unlock(&swap_lock);
2169 	spin_lock_init(&p->lock);
2170 
2171 	return p;
2172 }
2173 
2174 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2175 {
2176 	int error;
2177 
2178 	if (S_ISBLK(inode->i_mode)) {
2179 		p->bdev = bdgrab(I_BDEV(inode));
2180 		error = blkdev_get(p->bdev,
2181 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2182 		if (error < 0) {
2183 			p->bdev = NULL;
2184 			return error;
2185 		}
2186 		p->old_block_size = block_size(p->bdev);
2187 		error = set_blocksize(p->bdev, PAGE_SIZE);
2188 		if (error < 0)
2189 			return error;
2190 		p->flags |= SWP_BLKDEV;
2191 	} else if (S_ISREG(inode->i_mode)) {
2192 		p->bdev = inode->i_sb->s_bdev;
2193 		inode_lock(inode);
2194 		if (IS_SWAPFILE(inode))
2195 			return -EBUSY;
2196 	} else
2197 		return -EINVAL;
2198 
2199 	return 0;
2200 }
2201 
2202 static unsigned long read_swap_header(struct swap_info_struct *p,
2203 					union swap_header *swap_header,
2204 					struct inode *inode)
2205 {
2206 	int i;
2207 	unsigned long maxpages;
2208 	unsigned long swapfilepages;
2209 	unsigned long last_page;
2210 
2211 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2212 		pr_err("Unable to find swap-space signature\n");
2213 		return 0;
2214 	}
2215 
2216 	/* swap partition endianess hack... */
2217 	if (swab32(swap_header->info.version) == 1) {
2218 		swab32s(&swap_header->info.version);
2219 		swab32s(&swap_header->info.last_page);
2220 		swab32s(&swap_header->info.nr_badpages);
2221 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2222 			swab32s(&swap_header->info.badpages[i]);
2223 	}
2224 	/* Check the swap header's sub-version */
2225 	if (swap_header->info.version != 1) {
2226 		pr_warn("Unable to handle swap header version %d\n",
2227 			swap_header->info.version);
2228 		return 0;
2229 	}
2230 
2231 	p->lowest_bit  = 1;
2232 	p->cluster_next = 1;
2233 	p->cluster_nr = 0;
2234 
2235 	/*
2236 	 * Find out how many pages are allowed for a single swap
2237 	 * device. There are two limiting factors: 1) the number
2238 	 * of bits for the swap offset in the swp_entry_t type, and
2239 	 * 2) the number of bits in the swap pte as defined by the
2240 	 * different architectures. In order to find the
2241 	 * largest possible bit mask, a swap entry with swap type 0
2242 	 * and swap offset ~0UL is created, encoded to a swap pte,
2243 	 * decoded to a swp_entry_t again, and finally the swap
2244 	 * offset is extracted. This will mask all the bits from
2245 	 * the initial ~0UL mask that can't be encoded in either
2246 	 * the swp_entry_t or the architecture definition of a
2247 	 * swap pte.
2248 	 */
2249 	maxpages = swp_offset(pte_to_swp_entry(
2250 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2251 	last_page = swap_header->info.last_page;
2252 	if (last_page > maxpages) {
2253 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2254 			maxpages << (PAGE_SHIFT - 10),
2255 			last_page << (PAGE_SHIFT - 10));
2256 	}
2257 	if (maxpages > last_page) {
2258 		maxpages = last_page + 1;
2259 		/* p->max is an unsigned int: don't overflow it */
2260 		if ((unsigned int)maxpages == 0)
2261 			maxpages = UINT_MAX;
2262 	}
2263 	p->highest_bit = maxpages - 1;
2264 
2265 	if (!maxpages)
2266 		return 0;
2267 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2268 	if (swapfilepages && maxpages > swapfilepages) {
2269 		pr_warn("Swap area shorter than signature indicates\n");
2270 		return 0;
2271 	}
2272 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2273 		return 0;
2274 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2275 		return 0;
2276 
2277 	return maxpages;
2278 }
2279 
2280 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2281 					union swap_header *swap_header,
2282 					unsigned char *swap_map,
2283 					struct swap_cluster_info *cluster_info,
2284 					unsigned long maxpages,
2285 					sector_t *span)
2286 {
2287 	int i;
2288 	unsigned int nr_good_pages;
2289 	int nr_extents;
2290 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2291 	unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2292 
2293 	nr_good_pages = maxpages - 1;	/* omit header page */
2294 
2295 	cluster_set_null(&p->free_cluster_head);
2296 	cluster_set_null(&p->free_cluster_tail);
2297 	cluster_set_null(&p->discard_cluster_head);
2298 	cluster_set_null(&p->discard_cluster_tail);
2299 
2300 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2301 		unsigned int page_nr = swap_header->info.badpages[i];
2302 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2303 			return -EINVAL;
2304 		if (page_nr < maxpages) {
2305 			swap_map[page_nr] = SWAP_MAP_BAD;
2306 			nr_good_pages--;
2307 			/*
2308 			 * Haven't marked the cluster free yet, no list
2309 			 * operation involved
2310 			 */
2311 			inc_cluster_info_page(p, cluster_info, page_nr);
2312 		}
2313 	}
2314 
2315 	/* Haven't marked the cluster free yet, no list operation involved */
2316 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2317 		inc_cluster_info_page(p, cluster_info, i);
2318 
2319 	if (nr_good_pages) {
2320 		swap_map[0] = SWAP_MAP_BAD;
2321 		/*
2322 		 * Not mark the cluster free yet, no list
2323 		 * operation involved
2324 		 */
2325 		inc_cluster_info_page(p, cluster_info, 0);
2326 		p->max = maxpages;
2327 		p->pages = nr_good_pages;
2328 		nr_extents = setup_swap_extents(p, span);
2329 		if (nr_extents < 0)
2330 			return nr_extents;
2331 		nr_good_pages = p->pages;
2332 	}
2333 	if (!nr_good_pages) {
2334 		pr_warn("Empty swap-file\n");
2335 		return -EINVAL;
2336 	}
2337 
2338 	if (!cluster_info)
2339 		return nr_extents;
2340 
2341 	for (i = 0; i < nr_clusters; i++) {
2342 		if (!cluster_count(&cluster_info[idx])) {
2343 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2344 			if (cluster_is_null(&p->free_cluster_head)) {
2345 				cluster_set_next_flag(&p->free_cluster_head,
2346 								idx, 0);
2347 				cluster_set_next_flag(&p->free_cluster_tail,
2348 								idx, 0);
2349 			} else {
2350 				unsigned int tail;
2351 
2352 				tail = cluster_next(&p->free_cluster_tail);
2353 				cluster_set_next(&cluster_info[tail], idx);
2354 				cluster_set_next_flag(&p->free_cluster_tail,
2355 								idx, 0);
2356 			}
2357 		}
2358 		idx++;
2359 		if (idx == nr_clusters)
2360 			idx = 0;
2361 	}
2362 	return nr_extents;
2363 }
2364 
2365 /*
2366  * Helper to sys_swapon determining if a given swap
2367  * backing device queue supports DISCARD operations.
2368  */
2369 static bool swap_discardable(struct swap_info_struct *si)
2370 {
2371 	struct request_queue *q = bdev_get_queue(si->bdev);
2372 
2373 	if (!q || !blk_queue_discard(q))
2374 		return false;
2375 
2376 	return true;
2377 }
2378 
2379 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2380 {
2381 	struct swap_info_struct *p;
2382 	struct filename *name;
2383 	struct file *swap_file = NULL;
2384 	struct address_space *mapping;
2385 	int prio;
2386 	int error;
2387 	union swap_header *swap_header;
2388 	int nr_extents;
2389 	sector_t span;
2390 	unsigned long maxpages;
2391 	unsigned char *swap_map = NULL;
2392 	struct swap_cluster_info *cluster_info = NULL;
2393 	unsigned long *frontswap_map = NULL;
2394 	struct page *page = NULL;
2395 	struct inode *inode = NULL;
2396 
2397 	if (swap_flags & ~SWAP_FLAGS_VALID)
2398 		return -EINVAL;
2399 
2400 	if (!capable(CAP_SYS_ADMIN))
2401 		return -EPERM;
2402 
2403 	p = alloc_swap_info();
2404 	if (IS_ERR(p))
2405 		return PTR_ERR(p);
2406 
2407 	INIT_WORK(&p->discard_work, swap_discard_work);
2408 
2409 	name = getname(specialfile);
2410 	if (IS_ERR(name)) {
2411 		error = PTR_ERR(name);
2412 		name = NULL;
2413 		goto bad_swap;
2414 	}
2415 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2416 	if (IS_ERR(swap_file)) {
2417 		error = PTR_ERR(swap_file);
2418 		swap_file = NULL;
2419 		goto bad_swap;
2420 	}
2421 
2422 	p->swap_file = swap_file;
2423 	mapping = swap_file->f_mapping;
2424 	inode = mapping->host;
2425 
2426 	/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2427 	error = claim_swapfile(p, inode);
2428 	if (unlikely(error))
2429 		goto bad_swap;
2430 
2431 	/*
2432 	 * Read the swap header.
2433 	 */
2434 	if (!mapping->a_ops->readpage) {
2435 		error = -EINVAL;
2436 		goto bad_swap;
2437 	}
2438 	page = read_mapping_page(mapping, 0, swap_file);
2439 	if (IS_ERR(page)) {
2440 		error = PTR_ERR(page);
2441 		goto bad_swap;
2442 	}
2443 	swap_header = kmap(page);
2444 
2445 	maxpages = read_swap_header(p, swap_header, inode);
2446 	if (unlikely(!maxpages)) {
2447 		error = -EINVAL;
2448 		goto bad_swap;
2449 	}
2450 
2451 	/* OK, set up the swap map and apply the bad block list */
2452 	swap_map = vzalloc(maxpages);
2453 	if (!swap_map) {
2454 		error = -ENOMEM;
2455 		goto bad_swap;
2456 	}
2457 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2458 		int cpu;
2459 
2460 		p->flags |= SWP_SOLIDSTATE;
2461 		/*
2462 		 * select a random position to start with to help wear leveling
2463 		 * SSD
2464 		 */
2465 		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2466 
2467 		cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2468 			SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2469 		if (!cluster_info) {
2470 			error = -ENOMEM;
2471 			goto bad_swap;
2472 		}
2473 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2474 		if (!p->percpu_cluster) {
2475 			error = -ENOMEM;
2476 			goto bad_swap;
2477 		}
2478 		for_each_possible_cpu(cpu) {
2479 			struct percpu_cluster *cluster;
2480 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2481 			cluster_set_null(&cluster->index);
2482 		}
2483 	}
2484 
2485 	error = swap_cgroup_swapon(p->type, maxpages);
2486 	if (error)
2487 		goto bad_swap;
2488 
2489 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2490 		cluster_info, maxpages, &span);
2491 	if (unlikely(nr_extents < 0)) {
2492 		error = nr_extents;
2493 		goto bad_swap;
2494 	}
2495 	/* frontswap enabled? set up bit-per-page map for frontswap */
2496 	if (IS_ENABLED(CONFIG_FRONTSWAP))
2497 		frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2498 
2499 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2500 		/*
2501 		 * When discard is enabled for swap with no particular
2502 		 * policy flagged, we set all swap discard flags here in
2503 		 * order to sustain backward compatibility with older
2504 		 * swapon(8) releases.
2505 		 */
2506 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2507 			     SWP_PAGE_DISCARD);
2508 
2509 		/*
2510 		 * By flagging sys_swapon, a sysadmin can tell us to
2511 		 * either do single-time area discards only, or to just
2512 		 * perform discards for released swap page-clusters.
2513 		 * Now it's time to adjust the p->flags accordingly.
2514 		 */
2515 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2516 			p->flags &= ~SWP_PAGE_DISCARD;
2517 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2518 			p->flags &= ~SWP_AREA_DISCARD;
2519 
2520 		/* issue a swapon-time discard if it's still required */
2521 		if (p->flags & SWP_AREA_DISCARD) {
2522 			int err = discard_swap(p);
2523 			if (unlikely(err))
2524 				pr_err("swapon: discard_swap(%p): %d\n",
2525 					p, err);
2526 		}
2527 	}
2528 
2529 	mutex_lock(&swapon_mutex);
2530 	prio = -1;
2531 	if (swap_flags & SWAP_FLAG_PREFER)
2532 		prio =
2533 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2534 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2535 
2536 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2537 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2538 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2539 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2540 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
2541 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
2542 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2543 		(frontswap_map) ? "FS" : "");
2544 
2545 	mutex_unlock(&swapon_mutex);
2546 	atomic_inc(&proc_poll_event);
2547 	wake_up_interruptible(&proc_poll_wait);
2548 
2549 	if (S_ISREG(inode->i_mode))
2550 		inode->i_flags |= S_SWAPFILE;
2551 	error = 0;
2552 	goto out;
2553 bad_swap:
2554 	free_percpu(p->percpu_cluster);
2555 	p->percpu_cluster = NULL;
2556 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2557 		set_blocksize(p->bdev, p->old_block_size);
2558 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2559 	}
2560 	destroy_swap_extents(p);
2561 	swap_cgroup_swapoff(p->type);
2562 	spin_lock(&swap_lock);
2563 	p->swap_file = NULL;
2564 	p->flags = 0;
2565 	spin_unlock(&swap_lock);
2566 	vfree(swap_map);
2567 	vfree(cluster_info);
2568 	if (swap_file) {
2569 		if (inode && S_ISREG(inode->i_mode)) {
2570 			inode_unlock(inode);
2571 			inode = NULL;
2572 		}
2573 		filp_close(swap_file, NULL);
2574 	}
2575 out:
2576 	if (page && !IS_ERR(page)) {
2577 		kunmap(page);
2578 		put_page(page);
2579 	}
2580 	if (name)
2581 		putname(name);
2582 	if (inode && S_ISREG(inode->i_mode))
2583 		inode_unlock(inode);
2584 	return error;
2585 }
2586 
2587 void si_swapinfo(struct sysinfo *val)
2588 {
2589 	unsigned int type;
2590 	unsigned long nr_to_be_unused = 0;
2591 
2592 	spin_lock(&swap_lock);
2593 	for (type = 0; type < nr_swapfiles; type++) {
2594 		struct swap_info_struct *si = swap_info[type];
2595 
2596 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2597 			nr_to_be_unused += si->inuse_pages;
2598 	}
2599 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2600 	val->totalswap = total_swap_pages + nr_to_be_unused;
2601 	spin_unlock(&swap_lock);
2602 }
2603 
2604 /*
2605  * Verify that a swap entry is valid and increment its swap map count.
2606  *
2607  * Returns error code in following case.
2608  * - success -> 0
2609  * - swp_entry is invalid -> EINVAL
2610  * - swp_entry is migration entry -> EINVAL
2611  * - swap-cache reference is requested but there is already one. -> EEXIST
2612  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2613  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2614  */
2615 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2616 {
2617 	struct swap_info_struct *p;
2618 	unsigned long offset, type;
2619 	unsigned char count;
2620 	unsigned char has_cache;
2621 	int err = -EINVAL;
2622 
2623 	if (non_swap_entry(entry))
2624 		goto out;
2625 
2626 	type = swp_type(entry);
2627 	if (type >= nr_swapfiles)
2628 		goto bad_file;
2629 	p = swap_info[type];
2630 	offset = swp_offset(entry);
2631 
2632 	spin_lock(&p->lock);
2633 	if (unlikely(offset >= p->max))
2634 		goto unlock_out;
2635 
2636 	count = p->swap_map[offset];
2637 
2638 	/*
2639 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
2640 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2641 	 */
2642 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2643 		err = -ENOENT;
2644 		goto unlock_out;
2645 	}
2646 
2647 	has_cache = count & SWAP_HAS_CACHE;
2648 	count &= ~SWAP_HAS_CACHE;
2649 	err = 0;
2650 
2651 	if (usage == SWAP_HAS_CACHE) {
2652 
2653 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2654 		if (!has_cache && count)
2655 			has_cache = SWAP_HAS_CACHE;
2656 		else if (has_cache)		/* someone else added cache */
2657 			err = -EEXIST;
2658 		else				/* no users remaining */
2659 			err = -ENOENT;
2660 
2661 	} else if (count || has_cache) {
2662 
2663 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2664 			count += usage;
2665 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2666 			err = -EINVAL;
2667 		else if (swap_count_continued(p, offset, count))
2668 			count = COUNT_CONTINUED;
2669 		else
2670 			err = -ENOMEM;
2671 	} else
2672 		err = -ENOENT;			/* unused swap entry */
2673 
2674 	p->swap_map[offset] = count | has_cache;
2675 
2676 unlock_out:
2677 	spin_unlock(&p->lock);
2678 out:
2679 	return err;
2680 
2681 bad_file:
2682 	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2683 	goto out;
2684 }
2685 
2686 /*
2687  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2688  * (in which case its reference count is never incremented).
2689  */
2690 void swap_shmem_alloc(swp_entry_t entry)
2691 {
2692 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2693 }
2694 
2695 /*
2696  * Increase reference count of swap entry by 1.
2697  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2698  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2699  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2700  * might occur if a page table entry has got corrupted.
2701  */
2702 int swap_duplicate(swp_entry_t entry)
2703 {
2704 	int err = 0;
2705 
2706 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2707 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2708 	return err;
2709 }
2710 
2711 /*
2712  * @entry: swap entry for which we allocate swap cache.
2713  *
2714  * Called when allocating swap cache for existing swap entry,
2715  * This can return error codes. Returns 0 at success.
2716  * -EBUSY means there is a swap cache.
2717  * Note: return code is different from swap_duplicate().
2718  */
2719 int swapcache_prepare(swp_entry_t entry)
2720 {
2721 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2722 }
2723 
2724 struct swap_info_struct *page_swap_info(struct page *page)
2725 {
2726 	swp_entry_t swap = { .val = page_private(page) };
2727 	BUG_ON(!PageSwapCache(page));
2728 	return swap_info[swp_type(swap)];
2729 }
2730 
2731 /*
2732  * out-of-line __page_file_ methods to avoid include hell.
2733  */
2734 struct address_space *__page_file_mapping(struct page *page)
2735 {
2736 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2737 	return page_swap_info(page)->swap_file->f_mapping;
2738 }
2739 EXPORT_SYMBOL_GPL(__page_file_mapping);
2740 
2741 pgoff_t __page_file_index(struct page *page)
2742 {
2743 	swp_entry_t swap = { .val = page_private(page) };
2744 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2745 	return swp_offset(swap);
2746 }
2747 EXPORT_SYMBOL_GPL(__page_file_index);
2748 
2749 /*
2750  * add_swap_count_continuation - called when a swap count is duplicated
2751  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2752  * page of the original vmalloc'ed swap_map, to hold the continuation count
2753  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2754  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2755  *
2756  * These continuation pages are seldom referenced: the common paths all work
2757  * on the original swap_map, only referring to a continuation page when the
2758  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2759  *
2760  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2761  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2762  * can be called after dropping locks.
2763  */
2764 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2765 {
2766 	struct swap_info_struct *si;
2767 	struct page *head;
2768 	struct page *page;
2769 	struct page *list_page;
2770 	pgoff_t offset;
2771 	unsigned char count;
2772 
2773 	/*
2774 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2775 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2776 	 */
2777 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2778 
2779 	si = swap_info_get(entry);
2780 	if (!si) {
2781 		/*
2782 		 * An acceptable race has occurred since the failing
2783 		 * __swap_duplicate(): the swap entry has been freed,
2784 		 * perhaps even the whole swap_map cleared for swapoff.
2785 		 */
2786 		goto outer;
2787 	}
2788 
2789 	offset = swp_offset(entry);
2790 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2791 
2792 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2793 		/*
2794 		 * The higher the swap count, the more likely it is that tasks
2795 		 * will race to add swap count continuation: we need to avoid
2796 		 * over-provisioning.
2797 		 */
2798 		goto out;
2799 	}
2800 
2801 	if (!page) {
2802 		spin_unlock(&si->lock);
2803 		return -ENOMEM;
2804 	}
2805 
2806 	/*
2807 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2808 	 * no architecture is using highmem pages for kernel page tables: so it
2809 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2810 	 */
2811 	head = vmalloc_to_page(si->swap_map + offset);
2812 	offset &= ~PAGE_MASK;
2813 
2814 	/*
2815 	 * Page allocation does not initialize the page's lru field,
2816 	 * but it does always reset its private field.
2817 	 */
2818 	if (!page_private(head)) {
2819 		BUG_ON(count & COUNT_CONTINUED);
2820 		INIT_LIST_HEAD(&head->lru);
2821 		set_page_private(head, SWP_CONTINUED);
2822 		si->flags |= SWP_CONTINUED;
2823 	}
2824 
2825 	list_for_each_entry(list_page, &head->lru, lru) {
2826 		unsigned char *map;
2827 
2828 		/*
2829 		 * If the previous map said no continuation, but we've found
2830 		 * a continuation page, free our allocation and use this one.
2831 		 */
2832 		if (!(count & COUNT_CONTINUED))
2833 			goto out;
2834 
2835 		map = kmap_atomic(list_page) + offset;
2836 		count = *map;
2837 		kunmap_atomic(map);
2838 
2839 		/*
2840 		 * If this continuation count now has some space in it,
2841 		 * free our allocation and use this one.
2842 		 */
2843 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2844 			goto out;
2845 	}
2846 
2847 	list_add_tail(&page->lru, &head->lru);
2848 	page = NULL;			/* now it's attached, don't free it */
2849 out:
2850 	spin_unlock(&si->lock);
2851 outer:
2852 	if (page)
2853 		__free_page(page);
2854 	return 0;
2855 }
2856 
2857 /*
2858  * swap_count_continued - when the original swap_map count is incremented
2859  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2860  * into, carry if so, or else fail until a new continuation page is allocated;
2861  * when the original swap_map count is decremented from 0 with continuation,
2862  * borrow from the continuation and report whether it still holds more.
2863  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2864  */
2865 static bool swap_count_continued(struct swap_info_struct *si,
2866 				 pgoff_t offset, unsigned char count)
2867 {
2868 	struct page *head;
2869 	struct page *page;
2870 	unsigned char *map;
2871 
2872 	head = vmalloc_to_page(si->swap_map + offset);
2873 	if (page_private(head) != SWP_CONTINUED) {
2874 		BUG_ON(count & COUNT_CONTINUED);
2875 		return false;		/* need to add count continuation */
2876 	}
2877 
2878 	offset &= ~PAGE_MASK;
2879 	page = list_entry(head->lru.next, struct page, lru);
2880 	map = kmap_atomic(page) + offset;
2881 
2882 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2883 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2884 
2885 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2886 		/*
2887 		 * Think of how you add 1 to 999
2888 		 */
2889 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2890 			kunmap_atomic(map);
2891 			page = list_entry(page->lru.next, struct page, lru);
2892 			BUG_ON(page == head);
2893 			map = kmap_atomic(page) + offset;
2894 		}
2895 		if (*map == SWAP_CONT_MAX) {
2896 			kunmap_atomic(map);
2897 			page = list_entry(page->lru.next, struct page, lru);
2898 			if (page == head)
2899 				return false;	/* add count continuation */
2900 			map = kmap_atomic(page) + offset;
2901 init_map:		*map = 0;		/* we didn't zero the page */
2902 		}
2903 		*map += 1;
2904 		kunmap_atomic(map);
2905 		page = list_entry(page->lru.prev, struct page, lru);
2906 		while (page != head) {
2907 			map = kmap_atomic(page) + offset;
2908 			*map = COUNT_CONTINUED;
2909 			kunmap_atomic(map);
2910 			page = list_entry(page->lru.prev, struct page, lru);
2911 		}
2912 		return true;			/* incremented */
2913 
2914 	} else {				/* decrementing */
2915 		/*
2916 		 * Think of how you subtract 1 from 1000
2917 		 */
2918 		BUG_ON(count != COUNT_CONTINUED);
2919 		while (*map == COUNT_CONTINUED) {
2920 			kunmap_atomic(map);
2921 			page = list_entry(page->lru.next, struct page, lru);
2922 			BUG_ON(page == head);
2923 			map = kmap_atomic(page) + offset;
2924 		}
2925 		BUG_ON(*map == 0);
2926 		*map -= 1;
2927 		if (*map == 0)
2928 			count = 0;
2929 		kunmap_atomic(map);
2930 		page = list_entry(page->lru.prev, struct page, lru);
2931 		while (page != head) {
2932 			map = kmap_atomic(page) + offset;
2933 			*map = SWAP_CONT_MAX | count;
2934 			count = COUNT_CONTINUED;
2935 			kunmap_atomic(map);
2936 			page = list_entry(page->lru.prev, struct page, lru);
2937 		}
2938 		return count == COUNT_CONTINUED;
2939 	}
2940 }
2941 
2942 /*
2943  * free_swap_count_continuations - swapoff free all the continuation pages
2944  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2945  */
2946 static void free_swap_count_continuations(struct swap_info_struct *si)
2947 {
2948 	pgoff_t offset;
2949 
2950 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2951 		struct page *head;
2952 		head = vmalloc_to_page(si->swap_map + offset);
2953 		if (page_private(head)) {
2954 			struct page *page, *next;
2955 
2956 			list_for_each_entry_safe(page, next, &head->lru, lru) {
2957 				list_del(&page->lru);
2958 				__free_page(page);
2959 			}
2960 		}
2961 	}
2962 }
2963