1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shmem_fs.h> 18 #include <linux/blkdev.h> 19 #include <linux/random.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/security.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mutex.h> 29 #include <linux/capability.h> 30 #include <linux/syscalls.h> 31 #include <linux/memcontrol.h> 32 #include <linux/poll.h> 33 #include <linux/oom.h> 34 #include <linux/frontswap.h> 35 #include <linux/swapfile.h> 36 #include <linux/export.h> 37 38 #include <asm/pgtable.h> 39 #include <asm/tlbflush.h> 40 #include <linux/swapops.h> 41 #include <linux/page_cgroup.h> 42 43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 44 unsigned char); 45 static void free_swap_count_continuations(struct swap_info_struct *); 46 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 47 48 DEFINE_SPINLOCK(swap_lock); 49 static unsigned int nr_swapfiles; 50 atomic_long_t nr_swap_pages; 51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 52 long total_swap_pages; 53 static int least_priority; 54 static atomic_t highest_priority_index = ATOMIC_INIT(-1); 55 56 static const char Bad_file[] = "Bad swap file entry "; 57 static const char Unused_file[] = "Unused swap file entry "; 58 static const char Bad_offset[] = "Bad swap offset entry "; 59 static const char Unused_offset[] = "Unused swap offset entry "; 60 61 struct swap_list_t swap_list = {-1, -1}; 62 63 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 64 65 static DEFINE_MUTEX(swapon_mutex); 66 67 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 68 /* Activity counter to indicate that a swapon or swapoff has occurred */ 69 static atomic_t proc_poll_event = ATOMIC_INIT(0); 70 71 static inline unsigned char swap_count(unsigned char ent) 72 { 73 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ 74 } 75 76 /* returns 1 if swap entry is freed */ 77 static int 78 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) 79 { 80 swp_entry_t entry = swp_entry(si->type, offset); 81 struct page *page; 82 int ret = 0; 83 84 page = find_get_page(swap_address_space(entry), entry.val); 85 if (!page) 86 return 0; 87 /* 88 * This function is called from scan_swap_map() and it's called 89 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. 90 * We have to use trylock for avoiding deadlock. This is a special 91 * case and you should use try_to_free_swap() with explicit lock_page() 92 * in usual operations. 93 */ 94 if (trylock_page(page)) { 95 ret = try_to_free_swap(page); 96 unlock_page(page); 97 } 98 page_cache_release(page); 99 return ret; 100 } 101 102 /* 103 * swapon tell device that all the old swap contents can be discarded, 104 * to allow the swap device to optimize its wear-levelling. 105 */ 106 static int discard_swap(struct swap_info_struct *si) 107 { 108 struct swap_extent *se; 109 sector_t start_block; 110 sector_t nr_blocks; 111 int err = 0; 112 113 /* Do not discard the swap header page! */ 114 se = &si->first_swap_extent; 115 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 116 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 117 if (nr_blocks) { 118 err = blkdev_issue_discard(si->bdev, start_block, 119 nr_blocks, GFP_KERNEL, 0); 120 if (err) 121 return err; 122 cond_resched(); 123 } 124 125 list_for_each_entry(se, &si->first_swap_extent.list, list) { 126 start_block = se->start_block << (PAGE_SHIFT - 9); 127 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 128 129 err = blkdev_issue_discard(si->bdev, start_block, 130 nr_blocks, GFP_KERNEL, 0); 131 if (err) 132 break; 133 134 cond_resched(); 135 } 136 return err; /* That will often be -EOPNOTSUPP */ 137 } 138 139 /* 140 * swap allocation tell device that a cluster of swap can now be discarded, 141 * to allow the swap device to optimize its wear-levelling. 142 */ 143 static void discard_swap_cluster(struct swap_info_struct *si, 144 pgoff_t start_page, pgoff_t nr_pages) 145 { 146 struct swap_extent *se = si->curr_swap_extent; 147 int found_extent = 0; 148 149 while (nr_pages) { 150 struct list_head *lh; 151 152 if (se->start_page <= start_page && 153 start_page < se->start_page + se->nr_pages) { 154 pgoff_t offset = start_page - se->start_page; 155 sector_t start_block = se->start_block + offset; 156 sector_t nr_blocks = se->nr_pages - offset; 157 158 if (nr_blocks > nr_pages) 159 nr_blocks = nr_pages; 160 start_page += nr_blocks; 161 nr_pages -= nr_blocks; 162 163 if (!found_extent++) 164 si->curr_swap_extent = se; 165 166 start_block <<= PAGE_SHIFT - 9; 167 nr_blocks <<= PAGE_SHIFT - 9; 168 if (blkdev_issue_discard(si->bdev, start_block, 169 nr_blocks, GFP_NOIO, 0)) 170 break; 171 } 172 173 lh = se->list.next; 174 se = list_entry(lh, struct swap_extent, list); 175 } 176 } 177 178 #define SWAPFILE_CLUSTER 256 179 #define LATENCY_LIMIT 256 180 181 static inline void cluster_set_flag(struct swap_cluster_info *info, 182 unsigned int flag) 183 { 184 info->flags = flag; 185 } 186 187 static inline unsigned int cluster_count(struct swap_cluster_info *info) 188 { 189 return info->data; 190 } 191 192 static inline void cluster_set_count(struct swap_cluster_info *info, 193 unsigned int c) 194 { 195 info->data = c; 196 } 197 198 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 199 unsigned int c, unsigned int f) 200 { 201 info->flags = f; 202 info->data = c; 203 } 204 205 static inline unsigned int cluster_next(struct swap_cluster_info *info) 206 { 207 return info->data; 208 } 209 210 static inline void cluster_set_next(struct swap_cluster_info *info, 211 unsigned int n) 212 { 213 info->data = n; 214 } 215 216 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 217 unsigned int n, unsigned int f) 218 { 219 info->flags = f; 220 info->data = n; 221 } 222 223 static inline bool cluster_is_free(struct swap_cluster_info *info) 224 { 225 return info->flags & CLUSTER_FLAG_FREE; 226 } 227 228 static inline bool cluster_is_null(struct swap_cluster_info *info) 229 { 230 return info->flags & CLUSTER_FLAG_NEXT_NULL; 231 } 232 233 static inline void cluster_set_null(struct swap_cluster_info *info) 234 { 235 info->flags = CLUSTER_FLAG_NEXT_NULL; 236 info->data = 0; 237 } 238 239 /* Add a cluster to discard list and schedule it to do discard */ 240 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 241 unsigned int idx) 242 { 243 /* 244 * If scan_swap_map() can't find a free cluster, it will check 245 * si->swap_map directly. To make sure the discarding cluster isn't 246 * taken by scan_swap_map(), mark the swap entries bad (occupied). It 247 * will be cleared after discard 248 */ 249 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 250 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 251 252 if (cluster_is_null(&si->discard_cluster_head)) { 253 cluster_set_next_flag(&si->discard_cluster_head, 254 idx, 0); 255 cluster_set_next_flag(&si->discard_cluster_tail, 256 idx, 0); 257 } else { 258 unsigned int tail = cluster_next(&si->discard_cluster_tail); 259 cluster_set_next(&si->cluster_info[tail], idx); 260 cluster_set_next_flag(&si->discard_cluster_tail, 261 idx, 0); 262 } 263 264 schedule_work(&si->discard_work); 265 } 266 267 /* 268 * Doing discard actually. After a cluster discard is finished, the cluster 269 * will be added to free cluster list. caller should hold si->lock. 270 */ 271 static void swap_do_scheduled_discard(struct swap_info_struct *si) 272 { 273 struct swap_cluster_info *info; 274 unsigned int idx; 275 276 info = si->cluster_info; 277 278 while (!cluster_is_null(&si->discard_cluster_head)) { 279 idx = cluster_next(&si->discard_cluster_head); 280 281 cluster_set_next_flag(&si->discard_cluster_head, 282 cluster_next(&info[idx]), 0); 283 if (cluster_next(&si->discard_cluster_tail) == idx) { 284 cluster_set_null(&si->discard_cluster_head); 285 cluster_set_null(&si->discard_cluster_tail); 286 } 287 spin_unlock(&si->lock); 288 289 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 290 SWAPFILE_CLUSTER); 291 292 spin_lock(&si->lock); 293 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE); 294 if (cluster_is_null(&si->free_cluster_head)) { 295 cluster_set_next_flag(&si->free_cluster_head, 296 idx, 0); 297 cluster_set_next_flag(&si->free_cluster_tail, 298 idx, 0); 299 } else { 300 unsigned int tail; 301 302 tail = cluster_next(&si->free_cluster_tail); 303 cluster_set_next(&info[tail], idx); 304 cluster_set_next_flag(&si->free_cluster_tail, 305 idx, 0); 306 } 307 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 308 0, SWAPFILE_CLUSTER); 309 } 310 } 311 312 static void swap_discard_work(struct work_struct *work) 313 { 314 struct swap_info_struct *si; 315 316 si = container_of(work, struct swap_info_struct, discard_work); 317 318 spin_lock(&si->lock); 319 swap_do_scheduled_discard(si); 320 spin_unlock(&si->lock); 321 } 322 323 /* 324 * The cluster corresponding to page_nr will be used. The cluster will be 325 * removed from free cluster list and its usage counter will be increased. 326 */ 327 static void inc_cluster_info_page(struct swap_info_struct *p, 328 struct swap_cluster_info *cluster_info, unsigned long page_nr) 329 { 330 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 331 332 if (!cluster_info) 333 return; 334 if (cluster_is_free(&cluster_info[idx])) { 335 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx); 336 cluster_set_next_flag(&p->free_cluster_head, 337 cluster_next(&cluster_info[idx]), 0); 338 if (cluster_next(&p->free_cluster_tail) == idx) { 339 cluster_set_null(&p->free_cluster_tail); 340 cluster_set_null(&p->free_cluster_head); 341 } 342 cluster_set_count_flag(&cluster_info[idx], 0, 0); 343 } 344 345 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 346 cluster_set_count(&cluster_info[idx], 347 cluster_count(&cluster_info[idx]) + 1); 348 } 349 350 /* 351 * The cluster corresponding to page_nr decreases one usage. If the usage 352 * counter becomes 0, which means no page in the cluster is in using, we can 353 * optionally discard the cluster and add it to free cluster list. 354 */ 355 static void dec_cluster_info_page(struct swap_info_struct *p, 356 struct swap_cluster_info *cluster_info, unsigned long page_nr) 357 { 358 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 359 360 if (!cluster_info) 361 return; 362 363 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 364 cluster_set_count(&cluster_info[idx], 365 cluster_count(&cluster_info[idx]) - 1); 366 367 if (cluster_count(&cluster_info[idx]) == 0) { 368 /* 369 * If the swap is discardable, prepare discard the cluster 370 * instead of free it immediately. The cluster will be freed 371 * after discard. 372 */ 373 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 374 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 375 swap_cluster_schedule_discard(p, idx); 376 return; 377 } 378 379 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 380 if (cluster_is_null(&p->free_cluster_head)) { 381 cluster_set_next_flag(&p->free_cluster_head, idx, 0); 382 cluster_set_next_flag(&p->free_cluster_tail, idx, 0); 383 } else { 384 unsigned int tail = cluster_next(&p->free_cluster_tail); 385 cluster_set_next(&cluster_info[tail], idx); 386 cluster_set_next_flag(&p->free_cluster_tail, idx, 0); 387 } 388 } 389 } 390 391 /* 392 * It's possible scan_swap_map() uses a free cluster in the middle of free 393 * cluster list. Avoiding such abuse to avoid list corruption. 394 */ 395 static bool 396 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 397 unsigned long offset) 398 { 399 struct percpu_cluster *percpu_cluster; 400 bool conflict; 401 402 offset /= SWAPFILE_CLUSTER; 403 conflict = !cluster_is_null(&si->free_cluster_head) && 404 offset != cluster_next(&si->free_cluster_head) && 405 cluster_is_free(&si->cluster_info[offset]); 406 407 if (!conflict) 408 return false; 409 410 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 411 cluster_set_null(&percpu_cluster->index); 412 return true; 413 } 414 415 /* 416 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 417 * might involve allocating a new cluster for current CPU too. 418 */ 419 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 420 unsigned long *offset, unsigned long *scan_base) 421 { 422 struct percpu_cluster *cluster; 423 bool found_free; 424 unsigned long tmp; 425 426 new_cluster: 427 cluster = this_cpu_ptr(si->percpu_cluster); 428 if (cluster_is_null(&cluster->index)) { 429 if (!cluster_is_null(&si->free_cluster_head)) { 430 cluster->index = si->free_cluster_head; 431 cluster->next = cluster_next(&cluster->index) * 432 SWAPFILE_CLUSTER; 433 } else if (!cluster_is_null(&si->discard_cluster_head)) { 434 /* 435 * we don't have free cluster but have some clusters in 436 * discarding, do discard now and reclaim them 437 */ 438 swap_do_scheduled_discard(si); 439 *scan_base = *offset = si->cluster_next; 440 goto new_cluster; 441 } else 442 return; 443 } 444 445 found_free = false; 446 447 /* 448 * Other CPUs can use our cluster if they can't find a free cluster, 449 * check if there is still free entry in the cluster 450 */ 451 tmp = cluster->next; 452 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) * 453 SWAPFILE_CLUSTER) { 454 if (!si->swap_map[tmp]) { 455 found_free = true; 456 break; 457 } 458 tmp++; 459 } 460 if (!found_free) { 461 cluster_set_null(&cluster->index); 462 goto new_cluster; 463 } 464 cluster->next = tmp + 1; 465 *offset = tmp; 466 *scan_base = tmp; 467 } 468 469 static unsigned long scan_swap_map(struct swap_info_struct *si, 470 unsigned char usage) 471 { 472 unsigned long offset; 473 unsigned long scan_base; 474 unsigned long last_in_cluster = 0; 475 int latency_ration = LATENCY_LIMIT; 476 477 /* 478 * We try to cluster swap pages by allocating them sequentially 479 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 480 * way, however, we resort to first-free allocation, starting 481 * a new cluster. This prevents us from scattering swap pages 482 * all over the entire swap partition, so that we reduce 483 * overall disk seek times between swap pages. -- sct 484 * But we do now try to find an empty cluster. -Andrea 485 * And we let swap pages go all over an SSD partition. Hugh 486 */ 487 488 si->flags += SWP_SCANNING; 489 scan_base = offset = si->cluster_next; 490 491 /* SSD algorithm */ 492 if (si->cluster_info) { 493 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base); 494 goto checks; 495 } 496 497 if (unlikely(!si->cluster_nr--)) { 498 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 499 si->cluster_nr = SWAPFILE_CLUSTER - 1; 500 goto checks; 501 } 502 503 spin_unlock(&si->lock); 504 505 /* 506 * If seek is expensive, start searching for new cluster from 507 * start of partition, to minimize the span of allocated swap. 508 * But if seek is cheap, search from our current position, so 509 * that swap is allocated from all over the partition: if the 510 * Flash Translation Layer only remaps within limited zones, 511 * we don't want to wear out the first zone too quickly. 512 */ 513 if (!(si->flags & SWP_SOLIDSTATE)) 514 scan_base = offset = si->lowest_bit; 515 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 516 517 /* Locate the first empty (unaligned) cluster */ 518 for (; last_in_cluster <= si->highest_bit; offset++) { 519 if (si->swap_map[offset]) 520 last_in_cluster = offset + SWAPFILE_CLUSTER; 521 else if (offset == last_in_cluster) { 522 spin_lock(&si->lock); 523 offset -= SWAPFILE_CLUSTER - 1; 524 si->cluster_next = offset; 525 si->cluster_nr = SWAPFILE_CLUSTER - 1; 526 goto checks; 527 } 528 if (unlikely(--latency_ration < 0)) { 529 cond_resched(); 530 latency_ration = LATENCY_LIMIT; 531 } 532 } 533 534 offset = si->lowest_bit; 535 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 536 537 /* Locate the first empty (unaligned) cluster */ 538 for (; last_in_cluster < scan_base; offset++) { 539 if (si->swap_map[offset]) 540 last_in_cluster = offset + SWAPFILE_CLUSTER; 541 else if (offset == last_in_cluster) { 542 spin_lock(&si->lock); 543 offset -= SWAPFILE_CLUSTER - 1; 544 si->cluster_next = offset; 545 si->cluster_nr = SWAPFILE_CLUSTER - 1; 546 goto checks; 547 } 548 if (unlikely(--latency_ration < 0)) { 549 cond_resched(); 550 latency_ration = LATENCY_LIMIT; 551 } 552 } 553 554 offset = scan_base; 555 spin_lock(&si->lock); 556 si->cluster_nr = SWAPFILE_CLUSTER - 1; 557 } 558 559 checks: 560 if (si->cluster_info) { 561 while (scan_swap_map_ssd_cluster_conflict(si, offset)) 562 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base); 563 } 564 if (!(si->flags & SWP_WRITEOK)) 565 goto no_page; 566 if (!si->highest_bit) 567 goto no_page; 568 if (offset > si->highest_bit) 569 scan_base = offset = si->lowest_bit; 570 571 /* reuse swap entry of cache-only swap if not busy. */ 572 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 573 int swap_was_freed; 574 spin_unlock(&si->lock); 575 swap_was_freed = __try_to_reclaim_swap(si, offset); 576 spin_lock(&si->lock); 577 /* entry was freed successfully, try to use this again */ 578 if (swap_was_freed) 579 goto checks; 580 goto scan; /* check next one */ 581 } 582 583 if (si->swap_map[offset]) 584 goto scan; 585 586 if (offset == si->lowest_bit) 587 si->lowest_bit++; 588 if (offset == si->highest_bit) 589 si->highest_bit--; 590 si->inuse_pages++; 591 if (si->inuse_pages == si->pages) { 592 si->lowest_bit = si->max; 593 si->highest_bit = 0; 594 } 595 si->swap_map[offset] = usage; 596 inc_cluster_info_page(si, si->cluster_info, offset); 597 si->cluster_next = offset + 1; 598 si->flags -= SWP_SCANNING; 599 600 return offset; 601 602 scan: 603 spin_unlock(&si->lock); 604 while (++offset <= si->highest_bit) { 605 if (!si->swap_map[offset]) { 606 spin_lock(&si->lock); 607 goto checks; 608 } 609 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 610 spin_lock(&si->lock); 611 goto checks; 612 } 613 if (unlikely(--latency_ration < 0)) { 614 cond_resched(); 615 latency_ration = LATENCY_LIMIT; 616 } 617 } 618 offset = si->lowest_bit; 619 while (++offset < scan_base) { 620 if (!si->swap_map[offset]) { 621 spin_lock(&si->lock); 622 goto checks; 623 } 624 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 625 spin_lock(&si->lock); 626 goto checks; 627 } 628 if (unlikely(--latency_ration < 0)) { 629 cond_resched(); 630 latency_ration = LATENCY_LIMIT; 631 } 632 } 633 spin_lock(&si->lock); 634 635 no_page: 636 si->flags -= SWP_SCANNING; 637 return 0; 638 } 639 640 swp_entry_t get_swap_page(void) 641 { 642 struct swap_info_struct *si; 643 pgoff_t offset; 644 int type, next; 645 int wrapped = 0; 646 int hp_index; 647 648 spin_lock(&swap_lock); 649 if (atomic_long_read(&nr_swap_pages) <= 0) 650 goto noswap; 651 atomic_long_dec(&nr_swap_pages); 652 653 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { 654 hp_index = atomic_xchg(&highest_priority_index, -1); 655 /* 656 * highest_priority_index records current highest priority swap 657 * type which just frees swap entries. If its priority is 658 * higher than that of swap_list.next swap type, we use it. It 659 * isn't protected by swap_lock, so it can be an invalid value 660 * if the corresponding swap type is swapoff. We double check 661 * the flags here. It's even possible the swap type is swapoff 662 * and swapon again and its priority is changed. In such rare 663 * case, low prority swap type might be used, but eventually 664 * high priority swap will be used after several rounds of 665 * swap. 666 */ 667 if (hp_index != -1 && hp_index != type && 668 swap_info[type]->prio < swap_info[hp_index]->prio && 669 (swap_info[hp_index]->flags & SWP_WRITEOK)) { 670 type = hp_index; 671 swap_list.next = type; 672 } 673 674 si = swap_info[type]; 675 next = si->next; 676 if (next < 0 || 677 (!wrapped && si->prio != swap_info[next]->prio)) { 678 next = swap_list.head; 679 wrapped++; 680 } 681 682 spin_lock(&si->lock); 683 if (!si->highest_bit) { 684 spin_unlock(&si->lock); 685 continue; 686 } 687 if (!(si->flags & SWP_WRITEOK)) { 688 spin_unlock(&si->lock); 689 continue; 690 } 691 692 swap_list.next = next; 693 694 spin_unlock(&swap_lock); 695 /* This is called for allocating swap entry for cache */ 696 offset = scan_swap_map(si, SWAP_HAS_CACHE); 697 spin_unlock(&si->lock); 698 if (offset) 699 return swp_entry(type, offset); 700 spin_lock(&swap_lock); 701 next = swap_list.next; 702 } 703 704 atomic_long_inc(&nr_swap_pages); 705 noswap: 706 spin_unlock(&swap_lock); 707 return (swp_entry_t) {0}; 708 } 709 710 /* The only caller of this function is now suspend routine */ 711 swp_entry_t get_swap_page_of_type(int type) 712 { 713 struct swap_info_struct *si; 714 pgoff_t offset; 715 716 si = swap_info[type]; 717 spin_lock(&si->lock); 718 if (si && (si->flags & SWP_WRITEOK)) { 719 atomic_long_dec(&nr_swap_pages); 720 /* This is called for allocating swap entry, not cache */ 721 offset = scan_swap_map(si, 1); 722 if (offset) { 723 spin_unlock(&si->lock); 724 return swp_entry(type, offset); 725 } 726 atomic_long_inc(&nr_swap_pages); 727 } 728 spin_unlock(&si->lock); 729 return (swp_entry_t) {0}; 730 } 731 732 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 733 { 734 struct swap_info_struct *p; 735 unsigned long offset, type; 736 737 if (!entry.val) 738 goto out; 739 type = swp_type(entry); 740 if (type >= nr_swapfiles) 741 goto bad_nofile; 742 p = swap_info[type]; 743 if (!(p->flags & SWP_USED)) 744 goto bad_device; 745 offset = swp_offset(entry); 746 if (offset >= p->max) 747 goto bad_offset; 748 if (!p->swap_map[offset]) 749 goto bad_free; 750 spin_lock(&p->lock); 751 return p; 752 753 bad_free: 754 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val); 755 goto out; 756 bad_offset: 757 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val); 758 goto out; 759 bad_device: 760 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val); 761 goto out; 762 bad_nofile: 763 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val); 764 out: 765 return NULL; 766 } 767 768 /* 769 * This swap type frees swap entry, check if it is the highest priority swap 770 * type which just frees swap entry. get_swap_page() uses 771 * highest_priority_index to search highest priority swap type. The 772 * swap_info_struct.lock can't protect us if there are multiple swap types 773 * active, so we use atomic_cmpxchg. 774 */ 775 static void set_highest_priority_index(int type) 776 { 777 int old_hp_index, new_hp_index; 778 779 do { 780 old_hp_index = atomic_read(&highest_priority_index); 781 if (old_hp_index != -1 && 782 swap_info[old_hp_index]->prio >= swap_info[type]->prio) 783 break; 784 new_hp_index = type; 785 } while (atomic_cmpxchg(&highest_priority_index, 786 old_hp_index, new_hp_index) != old_hp_index); 787 } 788 789 static unsigned char swap_entry_free(struct swap_info_struct *p, 790 swp_entry_t entry, unsigned char usage) 791 { 792 unsigned long offset = swp_offset(entry); 793 unsigned char count; 794 unsigned char has_cache; 795 796 count = p->swap_map[offset]; 797 has_cache = count & SWAP_HAS_CACHE; 798 count &= ~SWAP_HAS_CACHE; 799 800 if (usage == SWAP_HAS_CACHE) { 801 VM_BUG_ON(!has_cache); 802 has_cache = 0; 803 } else if (count == SWAP_MAP_SHMEM) { 804 /* 805 * Or we could insist on shmem.c using a special 806 * swap_shmem_free() and free_shmem_swap_and_cache()... 807 */ 808 count = 0; 809 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 810 if (count == COUNT_CONTINUED) { 811 if (swap_count_continued(p, offset, count)) 812 count = SWAP_MAP_MAX | COUNT_CONTINUED; 813 else 814 count = SWAP_MAP_MAX; 815 } else 816 count--; 817 } 818 819 if (!count) 820 mem_cgroup_uncharge_swap(entry); 821 822 usage = count | has_cache; 823 p->swap_map[offset] = usage; 824 825 /* free if no reference */ 826 if (!usage) { 827 dec_cluster_info_page(p, p->cluster_info, offset); 828 if (offset < p->lowest_bit) 829 p->lowest_bit = offset; 830 if (offset > p->highest_bit) 831 p->highest_bit = offset; 832 set_highest_priority_index(p->type); 833 atomic_long_inc(&nr_swap_pages); 834 p->inuse_pages--; 835 frontswap_invalidate_page(p->type, offset); 836 if (p->flags & SWP_BLKDEV) { 837 struct gendisk *disk = p->bdev->bd_disk; 838 if (disk->fops->swap_slot_free_notify) 839 disk->fops->swap_slot_free_notify(p->bdev, 840 offset); 841 } 842 } 843 844 return usage; 845 } 846 847 /* 848 * Caller has made sure that the swap device corresponding to entry 849 * is still around or has not been recycled. 850 */ 851 void swap_free(swp_entry_t entry) 852 { 853 struct swap_info_struct *p; 854 855 p = swap_info_get(entry); 856 if (p) { 857 swap_entry_free(p, entry, 1); 858 spin_unlock(&p->lock); 859 } 860 } 861 862 /* 863 * Called after dropping swapcache to decrease refcnt to swap entries. 864 */ 865 void swapcache_free(swp_entry_t entry, struct page *page) 866 { 867 struct swap_info_struct *p; 868 unsigned char count; 869 870 p = swap_info_get(entry); 871 if (p) { 872 count = swap_entry_free(p, entry, SWAP_HAS_CACHE); 873 if (page) 874 mem_cgroup_uncharge_swapcache(page, entry, count != 0); 875 spin_unlock(&p->lock); 876 } 877 } 878 879 /* 880 * How many references to page are currently swapped out? 881 * This does not give an exact answer when swap count is continued, 882 * but does include the high COUNT_CONTINUED flag to allow for that. 883 */ 884 int page_swapcount(struct page *page) 885 { 886 int count = 0; 887 struct swap_info_struct *p; 888 swp_entry_t entry; 889 890 entry.val = page_private(page); 891 p = swap_info_get(entry); 892 if (p) { 893 count = swap_count(p->swap_map[swp_offset(entry)]); 894 spin_unlock(&p->lock); 895 } 896 return count; 897 } 898 899 /* 900 * We can write to an anon page without COW if there are no other references 901 * to it. And as a side-effect, free up its swap: because the old content 902 * on disk will never be read, and seeking back there to write new content 903 * later would only waste time away from clustering. 904 */ 905 int reuse_swap_page(struct page *page) 906 { 907 int count; 908 909 VM_BUG_ON(!PageLocked(page)); 910 if (unlikely(PageKsm(page))) 911 return 0; 912 count = page_mapcount(page); 913 if (count <= 1 && PageSwapCache(page)) { 914 count += page_swapcount(page); 915 if (count == 1 && !PageWriteback(page)) { 916 delete_from_swap_cache(page); 917 SetPageDirty(page); 918 } 919 } 920 return count <= 1; 921 } 922 923 /* 924 * If swap is getting full, or if there are no more mappings of this page, 925 * then try_to_free_swap is called to free its swap space. 926 */ 927 int try_to_free_swap(struct page *page) 928 { 929 VM_BUG_ON(!PageLocked(page)); 930 931 if (!PageSwapCache(page)) 932 return 0; 933 if (PageWriteback(page)) 934 return 0; 935 if (page_swapcount(page)) 936 return 0; 937 938 /* 939 * Once hibernation has begun to create its image of memory, 940 * there's a danger that one of the calls to try_to_free_swap() 941 * - most probably a call from __try_to_reclaim_swap() while 942 * hibernation is allocating its own swap pages for the image, 943 * but conceivably even a call from memory reclaim - will free 944 * the swap from a page which has already been recorded in the 945 * image as a clean swapcache page, and then reuse its swap for 946 * another page of the image. On waking from hibernation, the 947 * original page might be freed under memory pressure, then 948 * later read back in from swap, now with the wrong data. 949 * 950 * Hibernation suspends storage while it is writing the image 951 * to disk so check that here. 952 */ 953 if (pm_suspended_storage()) 954 return 0; 955 956 delete_from_swap_cache(page); 957 SetPageDirty(page); 958 return 1; 959 } 960 961 /* 962 * Free the swap entry like above, but also try to 963 * free the page cache entry if it is the last user. 964 */ 965 int free_swap_and_cache(swp_entry_t entry) 966 { 967 struct swap_info_struct *p; 968 struct page *page = NULL; 969 970 if (non_swap_entry(entry)) 971 return 1; 972 973 p = swap_info_get(entry); 974 if (p) { 975 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) { 976 page = find_get_page(swap_address_space(entry), 977 entry.val); 978 if (page && !trylock_page(page)) { 979 page_cache_release(page); 980 page = NULL; 981 } 982 } 983 spin_unlock(&p->lock); 984 } 985 if (page) { 986 /* 987 * Not mapped elsewhere, or swap space full? Free it! 988 * Also recheck PageSwapCache now page is locked (above). 989 */ 990 if (PageSwapCache(page) && !PageWriteback(page) && 991 (!page_mapped(page) || vm_swap_full())) { 992 delete_from_swap_cache(page); 993 SetPageDirty(page); 994 } 995 unlock_page(page); 996 page_cache_release(page); 997 } 998 return p != NULL; 999 } 1000 1001 #ifdef CONFIG_HIBERNATION 1002 /* 1003 * Find the swap type that corresponds to given device (if any). 1004 * 1005 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1006 * from 0, in which the swap header is expected to be located. 1007 * 1008 * This is needed for the suspend to disk (aka swsusp). 1009 */ 1010 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 1011 { 1012 struct block_device *bdev = NULL; 1013 int type; 1014 1015 if (device) 1016 bdev = bdget(device); 1017 1018 spin_lock(&swap_lock); 1019 for (type = 0; type < nr_swapfiles; type++) { 1020 struct swap_info_struct *sis = swap_info[type]; 1021 1022 if (!(sis->flags & SWP_WRITEOK)) 1023 continue; 1024 1025 if (!bdev) { 1026 if (bdev_p) 1027 *bdev_p = bdgrab(sis->bdev); 1028 1029 spin_unlock(&swap_lock); 1030 return type; 1031 } 1032 if (bdev == sis->bdev) { 1033 struct swap_extent *se = &sis->first_swap_extent; 1034 1035 if (se->start_block == offset) { 1036 if (bdev_p) 1037 *bdev_p = bdgrab(sis->bdev); 1038 1039 spin_unlock(&swap_lock); 1040 bdput(bdev); 1041 return type; 1042 } 1043 } 1044 } 1045 spin_unlock(&swap_lock); 1046 if (bdev) 1047 bdput(bdev); 1048 1049 return -ENODEV; 1050 } 1051 1052 /* 1053 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1054 * corresponding to given index in swap_info (swap type). 1055 */ 1056 sector_t swapdev_block(int type, pgoff_t offset) 1057 { 1058 struct block_device *bdev; 1059 1060 if ((unsigned int)type >= nr_swapfiles) 1061 return 0; 1062 if (!(swap_info[type]->flags & SWP_WRITEOK)) 1063 return 0; 1064 return map_swap_entry(swp_entry(type, offset), &bdev); 1065 } 1066 1067 /* 1068 * Return either the total number of swap pages of given type, or the number 1069 * of free pages of that type (depending on @free) 1070 * 1071 * This is needed for software suspend 1072 */ 1073 unsigned int count_swap_pages(int type, int free) 1074 { 1075 unsigned int n = 0; 1076 1077 spin_lock(&swap_lock); 1078 if ((unsigned int)type < nr_swapfiles) { 1079 struct swap_info_struct *sis = swap_info[type]; 1080 1081 spin_lock(&sis->lock); 1082 if (sis->flags & SWP_WRITEOK) { 1083 n = sis->pages; 1084 if (free) 1085 n -= sis->inuse_pages; 1086 } 1087 spin_unlock(&sis->lock); 1088 } 1089 spin_unlock(&swap_lock); 1090 return n; 1091 } 1092 #endif /* CONFIG_HIBERNATION */ 1093 1094 static inline int maybe_same_pte(pte_t pte, pte_t swp_pte) 1095 { 1096 #ifdef CONFIG_MEM_SOFT_DIRTY 1097 /* 1098 * When pte keeps soft dirty bit the pte generated 1099 * from swap entry does not has it, still it's same 1100 * pte from logical point of view. 1101 */ 1102 pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte); 1103 return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty); 1104 #else 1105 return pte_same(pte, swp_pte); 1106 #endif 1107 } 1108 1109 /* 1110 * No need to decide whether this PTE shares the swap entry with others, 1111 * just let do_wp_page work it out if a write is requested later - to 1112 * force COW, vm_page_prot omits write permission from any private vma. 1113 */ 1114 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1115 unsigned long addr, swp_entry_t entry, struct page *page) 1116 { 1117 struct page *swapcache; 1118 struct mem_cgroup *memcg; 1119 spinlock_t *ptl; 1120 pte_t *pte; 1121 int ret = 1; 1122 1123 swapcache = page; 1124 page = ksm_might_need_to_copy(page, vma, addr); 1125 if (unlikely(!page)) 1126 return -ENOMEM; 1127 1128 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, 1129 GFP_KERNEL, &memcg)) { 1130 ret = -ENOMEM; 1131 goto out_nolock; 1132 } 1133 1134 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1135 if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) { 1136 mem_cgroup_cancel_charge_swapin(memcg); 1137 ret = 0; 1138 goto out; 1139 } 1140 1141 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1142 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1143 get_page(page); 1144 set_pte_at(vma->vm_mm, addr, pte, 1145 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1146 if (page == swapcache) 1147 page_add_anon_rmap(page, vma, addr); 1148 else /* ksm created a completely new copy */ 1149 page_add_new_anon_rmap(page, vma, addr); 1150 mem_cgroup_commit_charge_swapin(page, memcg); 1151 swap_free(entry); 1152 /* 1153 * Move the page to the active list so it is not 1154 * immediately swapped out again after swapon. 1155 */ 1156 activate_page(page); 1157 out: 1158 pte_unmap_unlock(pte, ptl); 1159 out_nolock: 1160 if (page != swapcache) { 1161 unlock_page(page); 1162 put_page(page); 1163 } 1164 return ret; 1165 } 1166 1167 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1168 unsigned long addr, unsigned long end, 1169 swp_entry_t entry, struct page *page) 1170 { 1171 pte_t swp_pte = swp_entry_to_pte(entry); 1172 pte_t *pte; 1173 int ret = 0; 1174 1175 /* 1176 * We don't actually need pte lock while scanning for swp_pte: since 1177 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 1178 * page table while we're scanning; though it could get zapped, and on 1179 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 1180 * of unmatched parts which look like swp_pte, so unuse_pte must 1181 * recheck under pte lock. Scanning without pte lock lets it be 1182 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 1183 */ 1184 pte = pte_offset_map(pmd, addr); 1185 do { 1186 /* 1187 * swapoff spends a _lot_ of time in this loop! 1188 * Test inline before going to call unuse_pte. 1189 */ 1190 if (unlikely(maybe_same_pte(*pte, swp_pte))) { 1191 pte_unmap(pte); 1192 ret = unuse_pte(vma, pmd, addr, entry, page); 1193 if (ret) 1194 goto out; 1195 pte = pte_offset_map(pmd, addr); 1196 } 1197 } while (pte++, addr += PAGE_SIZE, addr != end); 1198 pte_unmap(pte - 1); 1199 out: 1200 return ret; 1201 } 1202 1203 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1204 unsigned long addr, unsigned long end, 1205 swp_entry_t entry, struct page *page) 1206 { 1207 pmd_t *pmd; 1208 unsigned long next; 1209 int ret; 1210 1211 pmd = pmd_offset(pud, addr); 1212 do { 1213 next = pmd_addr_end(addr, end); 1214 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1215 continue; 1216 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 1217 if (ret) 1218 return ret; 1219 } while (pmd++, addr = next, addr != end); 1220 return 0; 1221 } 1222 1223 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 1224 unsigned long addr, unsigned long end, 1225 swp_entry_t entry, struct page *page) 1226 { 1227 pud_t *pud; 1228 unsigned long next; 1229 int ret; 1230 1231 pud = pud_offset(pgd, addr); 1232 do { 1233 next = pud_addr_end(addr, end); 1234 if (pud_none_or_clear_bad(pud)) 1235 continue; 1236 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 1237 if (ret) 1238 return ret; 1239 } while (pud++, addr = next, addr != end); 1240 return 0; 1241 } 1242 1243 static int unuse_vma(struct vm_area_struct *vma, 1244 swp_entry_t entry, struct page *page) 1245 { 1246 pgd_t *pgd; 1247 unsigned long addr, end, next; 1248 int ret; 1249 1250 if (page_anon_vma(page)) { 1251 addr = page_address_in_vma(page, vma); 1252 if (addr == -EFAULT) 1253 return 0; 1254 else 1255 end = addr + PAGE_SIZE; 1256 } else { 1257 addr = vma->vm_start; 1258 end = vma->vm_end; 1259 } 1260 1261 pgd = pgd_offset(vma->vm_mm, addr); 1262 do { 1263 next = pgd_addr_end(addr, end); 1264 if (pgd_none_or_clear_bad(pgd)) 1265 continue; 1266 ret = unuse_pud_range(vma, pgd, addr, next, entry, page); 1267 if (ret) 1268 return ret; 1269 } while (pgd++, addr = next, addr != end); 1270 return 0; 1271 } 1272 1273 static int unuse_mm(struct mm_struct *mm, 1274 swp_entry_t entry, struct page *page) 1275 { 1276 struct vm_area_struct *vma; 1277 int ret = 0; 1278 1279 if (!down_read_trylock(&mm->mmap_sem)) { 1280 /* 1281 * Activate page so shrink_inactive_list is unlikely to unmap 1282 * its ptes while lock is dropped, so swapoff can make progress. 1283 */ 1284 activate_page(page); 1285 unlock_page(page); 1286 down_read(&mm->mmap_sem); 1287 lock_page(page); 1288 } 1289 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1290 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 1291 break; 1292 } 1293 up_read(&mm->mmap_sem); 1294 return (ret < 0)? ret: 0; 1295 } 1296 1297 /* 1298 * Scan swap_map (or frontswap_map if frontswap parameter is true) 1299 * from current position to next entry still in use. 1300 * Recycle to start on reaching the end, returning 0 when empty. 1301 */ 1302 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1303 unsigned int prev, bool frontswap) 1304 { 1305 unsigned int max = si->max; 1306 unsigned int i = prev; 1307 unsigned char count; 1308 1309 /* 1310 * No need for swap_lock here: we're just looking 1311 * for whether an entry is in use, not modifying it; false 1312 * hits are okay, and sys_swapoff() has already prevented new 1313 * allocations from this area (while holding swap_lock). 1314 */ 1315 for (;;) { 1316 if (++i >= max) { 1317 if (!prev) { 1318 i = 0; 1319 break; 1320 } 1321 /* 1322 * No entries in use at top of swap_map, 1323 * loop back to start and recheck there. 1324 */ 1325 max = prev + 1; 1326 prev = 0; 1327 i = 1; 1328 } 1329 if (frontswap) { 1330 if (frontswap_test(si, i)) 1331 break; 1332 else 1333 continue; 1334 } 1335 count = ACCESS_ONCE(si->swap_map[i]); 1336 if (count && swap_count(count) != SWAP_MAP_BAD) 1337 break; 1338 } 1339 return i; 1340 } 1341 1342 /* 1343 * We completely avoid races by reading each swap page in advance, 1344 * and then search for the process using it. All the necessary 1345 * page table adjustments can then be made atomically. 1346 * 1347 * if the boolean frontswap is true, only unuse pages_to_unuse pages; 1348 * pages_to_unuse==0 means all pages; ignored if frontswap is false 1349 */ 1350 int try_to_unuse(unsigned int type, bool frontswap, 1351 unsigned long pages_to_unuse) 1352 { 1353 struct swap_info_struct *si = swap_info[type]; 1354 struct mm_struct *start_mm; 1355 volatile unsigned char *swap_map; /* swap_map is accessed without 1356 * locking. Mark it as volatile 1357 * to prevent compiler doing 1358 * something odd. 1359 */ 1360 unsigned char swcount; 1361 struct page *page; 1362 swp_entry_t entry; 1363 unsigned int i = 0; 1364 int retval = 0; 1365 1366 /* 1367 * When searching mms for an entry, a good strategy is to 1368 * start at the first mm we freed the previous entry from 1369 * (though actually we don't notice whether we or coincidence 1370 * freed the entry). Initialize this start_mm with a hold. 1371 * 1372 * A simpler strategy would be to start at the last mm we 1373 * freed the previous entry from; but that would take less 1374 * advantage of mmlist ordering, which clusters forked mms 1375 * together, child after parent. If we race with dup_mmap(), we 1376 * prefer to resolve parent before child, lest we miss entries 1377 * duplicated after we scanned child: using last mm would invert 1378 * that. 1379 */ 1380 start_mm = &init_mm; 1381 atomic_inc(&init_mm.mm_users); 1382 1383 /* 1384 * Keep on scanning until all entries have gone. Usually, 1385 * one pass through swap_map is enough, but not necessarily: 1386 * there are races when an instance of an entry might be missed. 1387 */ 1388 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) { 1389 if (signal_pending(current)) { 1390 retval = -EINTR; 1391 break; 1392 } 1393 1394 /* 1395 * Get a page for the entry, using the existing swap 1396 * cache page if there is one. Otherwise, get a clean 1397 * page and read the swap into it. 1398 */ 1399 swap_map = &si->swap_map[i]; 1400 entry = swp_entry(type, i); 1401 page = read_swap_cache_async(entry, 1402 GFP_HIGHUSER_MOVABLE, NULL, 0); 1403 if (!page) { 1404 /* 1405 * Either swap_duplicate() failed because entry 1406 * has been freed independently, and will not be 1407 * reused since sys_swapoff() already disabled 1408 * allocation from here, or alloc_page() failed. 1409 */ 1410 swcount = *swap_map; 1411 /* 1412 * We don't hold lock here, so the swap entry could be 1413 * SWAP_MAP_BAD (when the cluster is discarding). 1414 * Instead of fail out, We can just skip the swap 1415 * entry because swapoff will wait for discarding 1416 * finish anyway. 1417 */ 1418 if (!swcount || swcount == SWAP_MAP_BAD) 1419 continue; 1420 retval = -ENOMEM; 1421 break; 1422 } 1423 1424 /* 1425 * Don't hold on to start_mm if it looks like exiting. 1426 */ 1427 if (atomic_read(&start_mm->mm_users) == 1) { 1428 mmput(start_mm); 1429 start_mm = &init_mm; 1430 atomic_inc(&init_mm.mm_users); 1431 } 1432 1433 /* 1434 * Wait for and lock page. When do_swap_page races with 1435 * try_to_unuse, do_swap_page can handle the fault much 1436 * faster than try_to_unuse can locate the entry. This 1437 * apparently redundant "wait_on_page_locked" lets try_to_unuse 1438 * defer to do_swap_page in such a case - in some tests, 1439 * do_swap_page and try_to_unuse repeatedly compete. 1440 */ 1441 wait_on_page_locked(page); 1442 wait_on_page_writeback(page); 1443 lock_page(page); 1444 wait_on_page_writeback(page); 1445 1446 /* 1447 * Remove all references to entry. 1448 */ 1449 swcount = *swap_map; 1450 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 1451 retval = shmem_unuse(entry, page); 1452 /* page has already been unlocked and released */ 1453 if (retval < 0) 1454 break; 1455 continue; 1456 } 1457 if (swap_count(swcount) && start_mm != &init_mm) 1458 retval = unuse_mm(start_mm, entry, page); 1459 1460 if (swap_count(*swap_map)) { 1461 int set_start_mm = (*swap_map >= swcount); 1462 struct list_head *p = &start_mm->mmlist; 1463 struct mm_struct *new_start_mm = start_mm; 1464 struct mm_struct *prev_mm = start_mm; 1465 struct mm_struct *mm; 1466 1467 atomic_inc(&new_start_mm->mm_users); 1468 atomic_inc(&prev_mm->mm_users); 1469 spin_lock(&mmlist_lock); 1470 while (swap_count(*swap_map) && !retval && 1471 (p = p->next) != &start_mm->mmlist) { 1472 mm = list_entry(p, struct mm_struct, mmlist); 1473 if (!atomic_inc_not_zero(&mm->mm_users)) 1474 continue; 1475 spin_unlock(&mmlist_lock); 1476 mmput(prev_mm); 1477 prev_mm = mm; 1478 1479 cond_resched(); 1480 1481 swcount = *swap_map; 1482 if (!swap_count(swcount)) /* any usage ? */ 1483 ; 1484 else if (mm == &init_mm) 1485 set_start_mm = 1; 1486 else 1487 retval = unuse_mm(mm, entry, page); 1488 1489 if (set_start_mm && *swap_map < swcount) { 1490 mmput(new_start_mm); 1491 atomic_inc(&mm->mm_users); 1492 new_start_mm = mm; 1493 set_start_mm = 0; 1494 } 1495 spin_lock(&mmlist_lock); 1496 } 1497 spin_unlock(&mmlist_lock); 1498 mmput(prev_mm); 1499 mmput(start_mm); 1500 start_mm = new_start_mm; 1501 } 1502 if (retval) { 1503 unlock_page(page); 1504 page_cache_release(page); 1505 break; 1506 } 1507 1508 /* 1509 * If a reference remains (rare), we would like to leave 1510 * the page in the swap cache; but try_to_unmap could 1511 * then re-duplicate the entry once we drop page lock, 1512 * so we might loop indefinitely; also, that page could 1513 * not be swapped out to other storage meanwhile. So: 1514 * delete from cache even if there's another reference, 1515 * after ensuring that the data has been saved to disk - 1516 * since if the reference remains (rarer), it will be 1517 * read from disk into another page. Splitting into two 1518 * pages would be incorrect if swap supported "shared 1519 * private" pages, but they are handled by tmpfs files. 1520 * 1521 * Given how unuse_vma() targets one particular offset 1522 * in an anon_vma, once the anon_vma has been determined, 1523 * this splitting happens to be just what is needed to 1524 * handle where KSM pages have been swapped out: re-reading 1525 * is unnecessarily slow, but we can fix that later on. 1526 */ 1527 if (swap_count(*swap_map) && 1528 PageDirty(page) && PageSwapCache(page)) { 1529 struct writeback_control wbc = { 1530 .sync_mode = WB_SYNC_NONE, 1531 }; 1532 1533 swap_writepage(page, &wbc); 1534 lock_page(page); 1535 wait_on_page_writeback(page); 1536 } 1537 1538 /* 1539 * It is conceivable that a racing task removed this page from 1540 * swap cache just before we acquired the page lock at the top, 1541 * or while we dropped it in unuse_mm(). The page might even 1542 * be back in swap cache on another swap area: that we must not 1543 * delete, since it may not have been written out to swap yet. 1544 */ 1545 if (PageSwapCache(page) && 1546 likely(page_private(page) == entry.val)) 1547 delete_from_swap_cache(page); 1548 1549 /* 1550 * So we could skip searching mms once swap count went 1551 * to 1, we did not mark any present ptes as dirty: must 1552 * mark page dirty so shrink_page_list will preserve it. 1553 */ 1554 SetPageDirty(page); 1555 unlock_page(page); 1556 page_cache_release(page); 1557 1558 /* 1559 * Make sure that we aren't completely killing 1560 * interactive performance. 1561 */ 1562 cond_resched(); 1563 if (frontswap && pages_to_unuse > 0) { 1564 if (!--pages_to_unuse) 1565 break; 1566 } 1567 } 1568 1569 mmput(start_mm); 1570 return retval; 1571 } 1572 1573 /* 1574 * After a successful try_to_unuse, if no swap is now in use, we know 1575 * we can empty the mmlist. swap_lock must be held on entry and exit. 1576 * Note that mmlist_lock nests inside swap_lock, and an mm must be 1577 * added to the mmlist just after page_duplicate - before would be racy. 1578 */ 1579 static void drain_mmlist(void) 1580 { 1581 struct list_head *p, *next; 1582 unsigned int type; 1583 1584 for (type = 0; type < nr_swapfiles; type++) 1585 if (swap_info[type]->inuse_pages) 1586 return; 1587 spin_lock(&mmlist_lock); 1588 list_for_each_safe(p, next, &init_mm.mmlist) 1589 list_del_init(p); 1590 spin_unlock(&mmlist_lock); 1591 } 1592 1593 /* 1594 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 1595 * corresponds to page offset for the specified swap entry. 1596 * Note that the type of this function is sector_t, but it returns page offset 1597 * into the bdev, not sector offset. 1598 */ 1599 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 1600 { 1601 struct swap_info_struct *sis; 1602 struct swap_extent *start_se; 1603 struct swap_extent *se; 1604 pgoff_t offset; 1605 1606 sis = swap_info[swp_type(entry)]; 1607 *bdev = sis->bdev; 1608 1609 offset = swp_offset(entry); 1610 start_se = sis->curr_swap_extent; 1611 se = start_se; 1612 1613 for ( ; ; ) { 1614 struct list_head *lh; 1615 1616 if (se->start_page <= offset && 1617 offset < (se->start_page + se->nr_pages)) { 1618 return se->start_block + (offset - se->start_page); 1619 } 1620 lh = se->list.next; 1621 se = list_entry(lh, struct swap_extent, list); 1622 sis->curr_swap_extent = se; 1623 BUG_ON(se == start_se); /* It *must* be present */ 1624 } 1625 } 1626 1627 /* 1628 * Returns the page offset into bdev for the specified page's swap entry. 1629 */ 1630 sector_t map_swap_page(struct page *page, struct block_device **bdev) 1631 { 1632 swp_entry_t entry; 1633 entry.val = page_private(page); 1634 return map_swap_entry(entry, bdev); 1635 } 1636 1637 /* 1638 * Free all of a swapdev's extent information 1639 */ 1640 static void destroy_swap_extents(struct swap_info_struct *sis) 1641 { 1642 while (!list_empty(&sis->first_swap_extent.list)) { 1643 struct swap_extent *se; 1644 1645 se = list_entry(sis->first_swap_extent.list.next, 1646 struct swap_extent, list); 1647 list_del(&se->list); 1648 kfree(se); 1649 } 1650 1651 if (sis->flags & SWP_FILE) { 1652 struct file *swap_file = sis->swap_file; 1653 struct address_space *mapping = swap_file->f_mapping; 1654 1655 sis->flags &= ~SWP_FILE; 1656 mapping->a_ops->swap_deactivate(swap_file); 1657 } 1658 } 1659 1660 /* 1661 * Add a block range (and the corresponding page range) into this swapdev's 1662 * extent list. The extent list is kept sorted in page order. 1663 * 1664 * This function rather assumes that it is called in ascending page order. 1665 */ 1666 int 1667 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1668 unsigned long nr_pages, sector_t start_block) 1669 { 1670 struct swap_extent *se; 1671 struct swap_extent *new_se; 1672 struct list_head *lh; 1673 1674 if (start_page == 0) { 1675 se = &sis->first_swap_extent; 1676 sis->curr_swap_extent = se; 1677 se->start_page = 0; 1678 se->nr_pages = nr_pages; 1679 se->start_block = start_block; 1680 return 1; 1681 } else { 1682 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 1683 se = list_entry(lh, struct swap_extent, list); 1684 BUG_ON(se->start_page + se->nr_pages != start_page); 1685 if (se->start_block + se->nr_pages == start_block) { 1686 /* Merge it */ 1687 se->nr_pages += nr_pages; 1688 return 0; 1689 } 1690 } 1691 1692 /* 1693 * No merge. Insert a new extent, preserving ordering. 1694 */ 1695 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 1696 if (new_se == NULL) 1697 return -ENOMEM; 1698 new_se->start_page = start_page; 1699 new_se->nr_pages = nr_pages; 1700 new_se->start_block = start_block; 1701 1702 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 1703 return 1; 1704 } 1705 1706 /* 1707 * A `swap extent' is a simple thing which maps a contiguous range of pages 1708 * onto a contiguous range of disk blocks. An ordered list of swap extents 1709 * is built at swapon time and is then used at swap_writepage/swap_readpage 1710 * time for locating where on disk a page belongs. 1711 * 1712 * If the swapfile is an S_ISBLK block device, a single extent is installed. 1713 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 1714 * swap files identically. 1715 * 1716 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 1717 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1718 * swapfiles are handled *identically* after swapon time. 1719 * 1720 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1721 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1722 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1723 * requirements, they are simply tossed out - we will never use those blocks 1724 * for swapping. 1725 * 1726 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1727 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1728 * which will scribble on the fs. 1729 * 1730 * The amount of disk space which a single swap extent represents varies. 1731 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1732 * extents in the list. To avoid much list walking, we cache the previous 1733 * search location in `curr_swap_extent', and start new searches from there. 1734 * This is extremely effective. The average number of iterations in 1735 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1736 */ 1737 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1738 { 1739 struct file *swap_file = sis->swap_file; 1740 struct address_space *mapping = swap_file->f_mapping; 1741 struct inode *inode = mapping->host; 1742 int ret; 1743 1744 if (S_ISBLK(inode->i_mode)) { 1745 ret = add_swap_extent(sis, 0, sis->max, 0); 1746 *span = sis->pages; 1747 return ret; 1748 } 1749 1750 if (mapping->a_ops->swap_activate) { 1751 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 1752 if (!ret) { 1753 sis->flags |= SWP_FILE; 1754 ret = add_swap_extent(sis, 0, sis->max, 0); 1755 *span = sis->pages; 1756 } 1757 return ret; 1758 } 1759 1760 return generic_swapfile_activate(sis, swap_file, span); 1761 } 1762 1763 static void _enable_swap_info(struct swap_info_struct *p, int prio, 1764 unsigned char *swap_map, 1765 struct swap_cluster_info *cluster_info) 1766 { 1767 int i, prev; 1768 1769 if (prio >= 0) 1770 p->prio = prio; 1771 else 1772 p->prio = --least_priority; 1773 p->swap_map = swap_map; 1774 p->cluster_info = cluster_info; 1775 p->flags |= SWP_WRITEOK; 1776 atomic_long_add(p->pages, &nr_swap_pages); 1777 total_swap_pages += p->pages; 1778 1779 /* insert swap space into swap_list: */ 1780 prev = -1; 1781 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) { 1782 if (p->prio >= swap_info[i]->prio) 1783 break; 1784 prev = i; 1785 } 1786 p->next = i; 1787 if (prev < 0) 1788 swap_list.head = swap_list.next = p->type; 1789 else 1790 swap_info[prev]->next = p->type; 1791 } 1792 1793 static void enable_swap_info(struct swap_info_struct *p, int prio, 1794 unsigned char *swap_map, 1795 struct swap_cluster_info *cluster_info, 1796 unsigned long *frontswap_map) 1797 { 1798 frontswap_init(p->type, frontswap_map); 1799 spin_lock(&swap_lock); 1800 spin_lock(&p->lock); 1801 _enable_swap_info(p, prio, swap_map, cluster_info); 1802 spin_unlock(&p->lock); 1803 spin_unlock(&swap_lock); 1804 } 1805 1806 static void reinsert_swap_info(struct swap_info_struct *p) 1807 { 1808 spin_lock(&swap_lock); 1809 spin_lock(&p->lock); 1810 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info); 1811 spin_unlock(&p->lock); 1812 spin_unlock(&swap_lock); 1813 } 1814 1815 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 1816 { 1817 struct swap_info_struct *p = NULL; 1818 unsigned char *swap_map; 1819 struct swap_cluster_info *cluster_info; 1820 unsigned long *frontswap_map; 1821 struct file *swap_file, *victim; 1822 struct address_space *mapping; 1823 struct inode *inode; 1824 struct filename *pathname; 1825 int i, type, prev; 1826 int err; 1827 unsigned int old_block_size; 1828 1829 if (!capable(CAP_SYS_ADMIN)) 1830 return -EPERM; 1831 1832 BUG_ON(!current->mm); 1833 1834 pathname = getname(specialfile); 1835 if (IS_ERR(pathname)) 1836 return PTR_ERR(pathname); 1837 1838 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 1839 err = PTR_ERR(victim); 1840 if (IS_ERR(victim)) 1841 goto out; 1842 1843 mapping = victim->f_mapping; 1844 prev = -1; 1845 spin_lock(&swap_lock); 1846 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) { 1847 p = swap_info[type]; 1848 if (p->flags & SWP_WRITEOK) { 1849 if (p->swap_file->f_mapping == mapping) 1850 break; 1851 } 1852 prev = type; 1853 } 1854 if (type < 0) { 1855 err = -EINVAL; 1856 spin_unlock(&swap_lock); 1857 goto out_dput; 1858 } 1859 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 1860 vm_unacct_memory(p->pages); 1861 else { 1862 err = -ENOMEM; 1863 spin_unlock(&swap_lock); 1864 goto out_dput; 1865 } 1866 if (prev < 0) 1867 swap_list.head = p->next; 1868 else 1869 swap_info[prev]->next = p->next; 1870 if (type == swap_list.next) { 1871 /* just pick something that's safe... */ 1872 swap_list.next = swap_list.head; 1873 } 1874 spin_lock(&p->lock); 1875 if (p->prio < 0) { 1876 for (i = p->next; i >= 0; i = swap_info[i]->next) 1877 swap_info[i]->prio = p->prio--; 1878 least_priority++; 1879 } 1880 atomic_long_sub(p->pages, &nr_swap_pages); 1881 total_swap_pages -= p->pages; 1882 p->flags &= ~SWP_WRITEOK; 1883 spin_unlock(&p->lock); 1884 spin_unlock(&swap_lock); 1885 1886 set_current_oom_origin(); 1887 err = try_to_unuse(type, false, 0); /* force all pages to be unused */ 1888 clear_current_oom_origin(); 1889 1890 if (err) { 1891 /* re-insert swap space back into swap_list */ 1892 reinsert_swap_info(p); 1893 goto out_dput; 1894 } 1895 1896 flush_work(&p->discard_work); 1897 1898 destroy_swap_extents(p); 1899 if (p->flags & SWP_CONTINUED) 1900 free_swap_count_continuations(p); 1901 1902 mutex_lock(&swapon_mutex); 1903 spin_lock(&swap_lock); 1904 spin_lock(&p->lock); 1905 drain_mmlist(); 1906 1907 /* wait for anyone still in scan_swap_map */ 1908 p->highest_bit = 0; /* cuts scans short */ 1909 while (p->flags >= SWP_SCANNING) { 1910 spin_unlock(&p->lock); 1911 spin_unlock(&swap_lock); 1912 schedule_timeout_uninterruptible(1); 1913 spin_lock(&swap_lock); 1914 spin_lock(&p->lock); 1915 } 1916 1917 swap_file = p->swap_file; 1918 old_block_size = p->old_block_size; 1919 p->swap_file = NULL; 1920 p->max = 0; 1921 swap_map = p->swap_map; 1922 p->swap_map = NULL; 1923 cluster_info = p->cluster_info; 1924 p->cluster_info = NULL; 1925 p->flags = 0; 1926 frontswap_map = frontswap_map_get(p); 1927 spin_unlock(&p->lock); 1928 spin_unlock(&swap_lock); 1929 frontswap_invalidate_area(type); 1930 frontswap_map_set(p, NULL); 1931 mutex_unlock(&swapon_mutex); 1932 free_percpu(p->percpu_cluster); 1933 p->percpu_cluster = NULL; 1934 vfree(swap_map); 1935 vfree(cluster_info); 1936 vfree(frontswap_map); 1937 /* Destroy swap account information */ 1938 swap_cgroup_swapoff(type); 1939 1940 inode = mapping->host; 1941 if (S_ISBLK(inode->i_mode)) { 1942 struct block_device *bdev = I_BDEV(inode); 1943 set_blocksize(bdev, old_block_size); 1944 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 1945 } else { 1946 mutex_lock(&inode->i_mutex); 1947 inode->i_flags &= ~S_SWAPFILE; 1948 mutex_unlock(&inode->i_mutex); 1949 } 1950 filp_close(swap_file, NULL); 1951 err = 0; 1952 atomic_inc(&proc_poll_event); 1953 wake_up_interruptible(&proc_poll_wait); 1954 1955 out_dput: 1956 filp_close(victim, NULL); 1957 out: 1958 putname(pathname); 1959 return err; 1960 } 1961 1962 #ifdef CONFIG_PROC_FS 1963 static unsigned swaps_poll(struct file *file, poll_table *wait) 1964 { 1965 struct seq_file *seq = file->private_data; 1966 1967 poll_wait(file, &proc_poll_wait, wait); 1968 1969 if (seq->poll_event != atomic_read(&proc_poll_event)) { 1970 seq->poll_event = atomic_read(&proc_poll_event); 1971 return POLLIN | POLLRDNORM | POLLERR | POLLPRI; 1972 } 1973 1974 return POLLIN | POLLRDNORM; 1975 } 1976 1977 /* iterator */ 1978 static void *swap_start(struct seq_file *swap, loff_t *pos) 1979 { 1980 struct swap_info_struct *si; 1981 int type; 1982 loff_t l = *pos; 1983 1984 mutex_lock(&swapon_mutex); 1985 1986 if (!l) 1987 return SEQ_START_TOKEN; 1988 1989 for (type = 0; type < nr_swapfiles; type++) { 1990 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 1991 si = swap_info[type]; 1992 if (!(si->flags & SWP_USED) || !si->swap_map) 1993 continue; 1994 if (!--l) 1995 return si; 1996 } 1997 1998 return NULL; 1999 } 2000 2001 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2002 { 2003 struct swap_info_struct *si = v; 2004 int type; 2005 2006 if (v == SEQ_START_TOKEN) 2007 type = 0; 2008 else 2009 type = si->type + 1; 2010 2011 for (; type < nr_swapfiles; type++) { 2012 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2013 si = swap_info[type]; 2014 if (!(si->flags & SWP_USED) || !si->swap_map) 2015 continue; 2016 ++*pos; 2017 return si; 2018 } 2019 2020 return NULL; 2021 } 2022 2023 static void swap_stop(struct seq_file *swap, void *v) 2024 { 2025 mutex_unlock(&swapon_mutex); 2026 } 2027 2028 static int swap_show(struct seq_file *swap, void *v) 2029 { 2030 struct swap_info_struct *si = v; 2031 struct file *file; 2032 int len; 2033 2034 if (si == SEQ_START_TOKEN) { 2035 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 2036 return 0; 2037 } 2038 2039 file = si->swap_file; 2040 len = seq_path(swap, &file->f_path, " \t\n\\"); 2041 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 2042 len < 40 ? 40 - len : 1, " ", 2043 S_ISBLK(file_inode(file)->i_mode) ? 2044 "partition" : "file\t", 2045 si->pages << (PAGE_SHIFT - 10), 2046 si->inuse_pages << (PAGE_SHIFT - 10), 2047 si->prio); 2048 return 0; 2049 } 2050 2051 static const struct seq_operations swaps_op = { 2052 .start = swap_start, 2053 .next = swap_next, 2054 .stop = swap_stop, 2055 .show = swap_show 2056 }; 2057 2058 static int swaps_open(struct inode *inode, struct file *file) 2059 { 2060 struct seq_file *seq; 2061 int ret; 2062 2063 ret = seq_open(file, &swaps_op); 2064 if (ret) 2065 return ret; 2066 2067 seq = file->private_data; 2068 seq->poll_event = atomic_read(&proc_poll_event); 2069 return 0; 2070 } 2071 2072 static const struct file_operations proc_swaps_operations = { 2073 .open = swaps_open, 2074 .read = seq_read, 2075 .llseek = seq_lseek, 2076 .release = seq_release, 2077 .poll = swaps_poll, 2078 }; 2079 2080 static int __init procswaps_init(void) 2081 { 2082 proc_create("swaps", 0, NULL, &proc_swaps_operations); 2083 return 0; 2084 } 2085 __initcall(procswaps_init); 2086 #endif /* CONFIG_PROC_FS */ 2087 2088 #ifdef MAX_SWAPFILES_CHECK 2089 static int __init max_swapfiles_check(void) 2090 { 2091 MAX_SWAPFILES_CHECK(); 2092 return 0; 2093 } 2094 late_initcall(max_swapfiles_check); 2095 #endif 2096 2097 static struct swap_info_struct *alloc_swap_info(void) 2098 { 2099 struct swap_info_struct *p; 2100 unsigned int type; 2101 2102 p = kzalloc(sizeof(*p), GFP_KERNEL); 2103 if (!p) 2104 return ERR_PTR(-ENOMEM); 2105 2106 spin_lock(&swap_lock); 2107 for (type = 0; type < nr_swapfiles; type++) { 2108 if (!(swap_info[type]->flags & SWP_USED)) 2109 break; 2110 } 2111 if (type >= MAX_SWAPFILES) { 2112 spin_unlock(&swap_lock); 2113 kfree(p); 2114 return ERR_PTR(-EPERM); 2115 } 2116 if (type >= nr_swapfiles) { 2117 p->type = type; 2118 swap_info[type] = p; 2119 /* 2120 * Write swap_info[type] before nr_swapfiles, in case a 2121 * racing procfs swap_start() or swap_next() is reading them. 2122 * (We never shrink nr_swapfiles, we never free this entry.) 2123 */ 2124 smp_wmb(); 2125 nr_swapfiles++; 2126 } else { 2127 kfree(p); 2128 p = swap_info[type]; 2129 /* 2130 * Do not memset this entry: a racing procfs swap_next() 2131 * would be relying on p->type to remain valid. 2132 */ 2133 } 2134 INIT_LIST_HEAD(&p->first_swap_extent.list); 2135 p->flags = SWP_USED; 2136 p->next = -1; 2137 spin_unlock(&swap_lock); 2138 spin_lock_init(&p->lock); 2139 2140 return p; 2141 } 2142 2143 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2144 { 2145 int error; 2146 2147 if (S_ISBLK(inode->i_mode)) { 2148 p->bdev = bdgrab(I_BDEV(inode)); 2149 error = blkdev_get(p->bdev, 2150 FMODE_READ | FMODE_WRITE | FMODE_EXCL, 2151 sys_swapon); 2152 if (error < 0) { 2153 p->bdev = NULL; 2154 return -EINVAL; 2155 } 2156 p->old_block_size = block_size(p->bdev); 2157 error = set_blocksize(p->bdev, PAGE_SIZE); 2158 if (error < 0) 2159 return error; 2160 p->flags |= SWP_BLKDEV; 2161 } else if (S_ISREG(inode->i_mode)) { 2162 p->bdev = inode->i_sb->s_bdev; 2163 mutex_lock(&inode->i_mutex); 2164 if (IS_SWAPFILE(inode)) 2165 return -EBUSY; 2166 } else 2167 return -EINVAL; 2168 2169 return 0; 2170 } 2171 2172 static unsigned long read_swap_header(struct swap_info_struct *p, 2173 union swap_header *swap_header, 2174 struct inode *inode) 2175 { 2176 int i; 2177 unsigned long maxpages; 2178 unsigned long swapfilepages; 2179 unsigned long last_page; 2180 2181 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2182 pr_err("Unable to find swap-space signature\n"); 2183 return 0; 2184 } 2185 2186 /* swap partition endianess hack... */ 2187 if (swab32(swap_header->info.version) == 1) { 2188 swab32s(&swap_header->info.version); 2189 swab32s(&swap_header->info.last_page); 2190 swab32s(&swap_header->info.nr_badpages); 2191 for (i = 0; i < swap_header->info.nr_badpages; i++) 2192 swab32s(&swap_header->info.badpages[i]); 2193 } 2194 /* Check the swap header's sub-version */ 2195 if (swap_header->info.version != 1) { 2196 pr_warn("Unable to handle swap header version %d\n", 2197 swap_header->info.version); 2198 return 0; 2199 } 2200 2201 p->lowest_bit = 1; 2202 p->cluster_next = 1; 2203 p->cluster_nr = 0; 2204 2205 /* 2206 * Find out how many pages are allowed for a single swap 2207 * device. There are two limiting factors: 1) the number 2208 * of bits for the swap offset in the swp_entry_t type, and 2209 * 2) the number of bits in the swap pte as defined by the 2210 * different architectures. In order to find the 2211 * largest possible bit mask, a swap entry with swap type 0 2212 * and swap offset ~0UL is created, encoded to a swap pte, 2213 * decoded to a swp_entry_t again, and finally the swap 2214 * offset is extracted. This will mask all the bits from 2215 * the initial ~0UL mask that can't be encoded in either 2216 * the swp_entry_t or the architecture definition of a 2217 * swap pte. 2218 */ 2219 maxpages = swp_offset(pte_to_swp_entry( 2220 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2221 last_page = swap_header->info.last_page; 2222 if (last_page > maxpages) { 2223 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2224 maxpages << (PAGE_SHIFT - 10), 2225 last_page << (PAGE_SHIFT - 10)); 2226 } 2227 if (maxpages > last_page) { 2228 maxpages = last_page + 1; 2229 /* p->max is an unsigned int: don't overflow it */ 2230 if ((unsigned int)maxpages == 0) 2231 maxpages = UINT_MAX; 2232 } 2233 p->highest_bit = maxpages - 1; 2234 2235 if (!maxpages) 2236 return 0; 2237 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2238 if (swapfilepages && maxpages > swapfilepages) { 2239 pr_warn("Swap area shorter than signature indicates\n"); 2240 return 0; 2241 } 2242 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2243 return 0; 2244 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2245 return 0; 2246 2247 return maxpages; 2248 } 2249 2250 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2251 union swap_header *swap_header, 2252 unsigned char *swap_map, 2253 struct swap_cluster_info *cluster_info, 2254 unsigned long maxpages, 2255 sector_t *span) 2256 { 2257 int i; 2258 unsigned int nr_good_pages; 2259 int nr_extents; 2260 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2261 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER; 2262 2263 nr_good_pages = maxpages - 1; /* omit header page */ 2264 2265 cluster_set_null(&p->free_cluster_head); 2266 cluster_set_null(&p->free_cluster_tail); 2267 cluster_set_null(&p->discard_cluster_head); 2268 cluster_set_null(&p->discard_cluster_tail); 2269 2270 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2271 unsigned int page_nr = swap_header->info.badpages[i]; 2272 if (page_nr == 0 || page_nr > swap_header->info.last_page) 2273 return -EINVAL; 2274 if (page_nr < maxpages) { 2275 swap_map[page_nr] = SWAP_MAP_BAD; 2276 nr_good_pages--; 2277 /* 2278 * Haven't marked the cluster free yet, no list 2279 * operation involved 2280 */ 2281 inc_cluster_info_page(p, cluster_info, page_nr); 2282 } 2283 } 2284 2285 /* Haven't marked the cluster free yet, no list operation involved */ 2286 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 2287 inc_cluster_info_page(p, cluster_info, i); 2288 2289 if (nr_good_pages) { 2290 swap_map[0] = SWAP_MAP_BAD; 2291 /* 2292 * Not mark the cluster free yet, no list 2293 * operation involved 2294 */ 2295 inc_cluster_info_page(p, cluster_info, 0); 2296 p->max = maxpages; 2297 p->pages = nr_good_pages; 2298 nr_extents = setup_swap_extents(p, span); 2299 if (nr_extents < 0) 2300 return nr_extents; 2301 nr_good_pages = p->pages; 2302 } 2303 if (!nr_good_pages) { 2304 pr_warn("Empty swap-file\n"); 2305 return -EINVAL; 2306 } 2307 2308 if (!cluster_info) 2309 return nr_extents; 2310 2311 for (i = 0; i < nr_clusters; i++) { 2312 if (!cluster_count(&cluster_info[idx])) { 2313 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 2314 if (cluster_is_null(&p->free_cluster_head)) { 2315 cluster_set_next_flag(&p->free_cluster_head, 2316 idx, 0); 2317 cluster_set_next_flag(&p->free_cluster_tail, 2318 idx, 0); 2319 } else { 2320 unsigned int tail; 2321 2322 tail = cluster_next(&p->free_cluster_tail); 2323 cluster_set_next(&cluster_info[tail], idx); 2324 cluster_set_next_flag(&p->free_cluster_tail, 2325 idx, 0); 2326 } 2327 } 2328 idx++; 2329 if (idx == nr_clusters) 2330 idx = 0; 2331 } 2332 return nr_extents; 2333 } 2334 2335 /* 2336 * Helper to sys_swapon determining if a given swap 2337 * backing device queue supports DISCARD operations. 2338 */ 2339 static bool swap_discardable(struct swap_info_struct *si) 2340 { 2341 struct request_queue *q = bdev_get_queue(si->bdev); 2342 2343 if (!q || !blk_queue_discard(q)) 2344 return false; 2345 2346 return true; 2347 } 2348 2349 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2350 { 2351 struct swap_info_struct *p; 2352 struct filename *name; 2353 struct file *swap_file = NULL; 2354 struct address_space *mapping; 2355 int i; 2356 int prio; 2357 int error; 2358 union swap_header *swap_header; 2359 int nr_extents; 2360 sector_t span; 2361 unsigned long maxpages; 2362 unsigned char *swap_map = NULL; 2363 struct swap_cluster_info *cluster_info = NULL; 2364 unsigned long *frontswap_map = NULL; 2365 struct page *page = NULL; 2366 struct inode *inode = NULL; 2367 2368 if (swap_flags & ~SWAP_FLAGS_VALID) 2369 return -EINVAL; 2370 2371 if (!capable(CAP_SYS_ADMIN)) 2372 return -EPERM; 2373 2374 p = alloc_swap_info(); 2375 if (IS_ERR(p)) 2376 return PTR_ERR(p); 2377 2378 INIT_WORK(&p->discard_work, swap_discard_work); 2379 2380 name = getname(specialfile); 2381 if (IS_ERR(name)) { 2382 error = PTR_ERR(name); 2383 name = NULL; 2384 goto bad_swap; 2385 } 2386 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 2387 if (IS_ERR(swap_file)) { 2388 error = PTR_ERR(swap_file); 2389 swap_file = NULL; 2390 goto bad_swap; 2391 } 2392 2393 p->swap_file = swap_file; 2394 mapping = swap_file->f_mapping; 2395 2396 for (i = 0; i < nr_swapfiles; i++) { 2397 struct swap_info_struct *q = swap_info[i]; 2398 2399 if (q == p || !q->swap_file) 2400 continue; 2401 if (mapping == q->swap_file->f_mapping) { 2402 error = -EBUSY; 2403 goto bad_swap; 2404 } 2405 } 2406 2407 inode = mapping->host; 2408 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */ 2409 error = claim_swapfile(p, inode); 2410 if (unlikely(error)) 2411 goto bad_swap; 2412 2413 /* 2414 * Read the swap header. 2415 */ 2416 if (!mapping->a_ops->readpage) { 2417 error = -EINVAL; 2418 goto bad_swap; 2419 } 2420 page = read_mapping_page(mapping, 0, swap_file); 2421 if (IS_ERR(page)) { 2422 error = PTR_ERR(page); 2423 goto bad_swap; 2424 } 2425 swap_header = kmap(page); 2426 2427 maxpages = read_swap_header(p, swap_header, inode); 2428 if (unlikely(!maxpages)) { 2429 error = -EINVAL; 2430 goto bad_swap; 2431 } 2432 2433 /* OK, set up the swap map and apply the bad block list */ 2434 swap_map = vzalloc(maxpages); 2435 if (!swap_map) { 2436 error = -ENOMEM; 2437 goto bad_swap; 2438 } 2439 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 2440 p->flags |= SWP_SOLIDSTATE; 2441 /* 2442 * select a random position to start with to help wear leveling 2443 * SSD 2444 */ 2445 p->cluster_next = 1 + (prandom_u32() % p->highest_bit); 2446 2447 cluster_info = vzalloc(DIV_ROUND_UP(maxpages, 2448 SWAPFILE_CLUSTER) * sizeof(*cluster_info)); 2449 if (!cluster_info) { 2450 error = -ENOMEM; 2451 goto bad_swap; 2452 } 2453 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 2454 if (!p->percpu_cluster) { 2455 error = -ENOMEM; 2456 goto bad_swap; 2457 } 2458 for_each_possible_cpu(i) { 2459 struct percpu_cluster *cluster; 2460 cluster = per_cpu_ptr(p->percpu_cluster, i); 2461 cluster_set_null(&cluster->index); 2462 } 2463 } 2464 2465 error = swap_cgroup_swapon(p->type, maxpages); 2466 if (error) 2467 goto bad_swap; 2468 2469 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 2470 cluster_info, maxpages, &span); 2471 if (unlikely(nr_extents < 0)) { 2472 error = nr_extents; 2473 goto bad_swap; 2474 } 2475 /* frontswap enabled? set up bit-per-page map for frontswap */ 2476 if (frontswap_enabled) 2477 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long)); 2478 2479 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 2480 /* 2481 * When discard is enabled for swap with no particular 2482 * policy flagged, we set all swap discard flags here in 2483 * order to sustain backward compatibility with older 2484 * swapon(8) releases. 2485 */ 2486 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 2487 SWP_PAGE_DISCARD); 2488 2489 /* 2490 * By flagging sys_swapon, a sysadmin can tell us to 2491 * either do single-time area discards only, or to just 2492 * perform discards for released swap page-clusters. 2493 * Now it's time to adjust the p->flags accordingly. 2494 */ 2495 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 2496 p->flags &= ~SWP_PAGE_DISCARD; 2497 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 2498 p->flags &= ~SWP_AREA_DISCARD; 2499 2500 /* issue a swapon-time discard if it's still required */ 2501 if (p->flags & SWP_AREA_DISCARD) { 2502 int err = discard_swap(p); 2503 if (unlikely(err)) 2504 pr_err("swapon: discard_swap(%p): %d\n", 2505 p, err); 2506 } 2507 } 2508 2509 mutex_lock(&swapon_mutex); 2510 prio = -1; 2511 if (swap_flags & SWAP_FLAG_PREFER) 2512 prio = 2513 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 2514 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 2515 2516 pr_info("Adding %uk swap on %s. " 2517 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 2518 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 2519 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 2520 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 2521 (p->flags & SWP_DISCARDABLE) ? "D" : "", 2522 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 2523 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 2524 (frontswap_map) ? "FS" : ""); 2525 2526 mutex_unlock(&swapon_mutex); 2527 atomic_inc(&proc_poll_event); 2528 wake_up_interruptible(&proc_poll_wait); 2529 2530 if (S_ISREG(inode->i_mode)) 2531 inode->i_flags |= S_SWAPFILE; 2532 error = 0; 2533 goto out; 2534 bad_swap: 2535 free_percpu(p->percpu_cluster); 2536 p->percpu_cluster = NULL; 2537 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 2538 set_blocksize(p->bdev, p->old_block_size); 2539 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2540 } 2541 destroy_swap_extents(p); 2542 swap_cgroup_swapoff(p->type); 2543 spin_lock(&swap_lock); 2544 p->swap_file = NULL; 2545 p->flags = 0; 2546 spin_unlock(&swap_lock); 2547 vfree(swap_map); 2548 vfree(cluster_info); 2549 if (swap_file) { 2550 if (inode && S_ISREG(inode->i_mode)) { 2551 mutex_unlock(&inode->i_mutex); 2552 inode = NULL; 2553 } 2554 filp_close(swap_file, NULL); 2555 } 2556 out: 2557 if (page && !IS_ERR(page)) { 2558 kunmap(page); 2559 page_cache_release(page); 2560 } 2561 if (name) 2562 putname(name); 2563 if (inode && S_ISREG(inode->i_mode)) 2564 mutex_unlock(&inode->i_mutex); 2565 return error; 2566 } 2567 2568 void si_swapinfo(struct sysinfo *val) 2569 { 2570 unsigned int type; 2571 unsigned long nr_to_be_unused = 0; 2572 2573 spin_lock(&swap_lock); 2574 for (type = 0; type < nr_swapfiles; type++) { 2575 struct swap_info_struct *si = swap_info[type]; 2576 2577 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 2578 nr_to_be_unused += si->inuse_pages; 2579 } 2580 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 2581 val->totalswap = total_swap_pages + nr_to_be_unused; 2582 spin_unlock(&swap_lock); 2583 } 2584 2585 /* 2586 * Verify that a swap entry is valid and increment its swap map count. 2587 * 2588 * Returns error code in following case. 2589 * - success -> 0 2590 * - swp_entry is invalid -> EINVAL 2591 * - swp_entry is migration entry -> EINVAL 2592 * - swap-cache reference is requested but there is already one. -> EEXIST 2593 * - swap-cache reference is requested but the entry is not used. -> ENOENT 2594 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 2595 */ 2596 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 2597 { 2598 struct swap_info_struct *p; 2599 unsigned long offset, type; 2600 unsigned char count; 2601 unsigned char has_cache; 2602 int err = -EINVAL; 2603 2604 if (non_swap_entry(entry)) 2605 goto out; 2606 2607 type = swp_type(entry); 2608 if (type >= nr_swapfiles) 2609 goto bad_file; 2610 p = swap_info[type]; 2611 offset = swp_offset(entry); 2612 2613 spin_lock(&p->lock); 2614 if (unlikely(offset >= p->max)) 2615 goto unlock_out; 2616 2617 count = p->swap_map[offset]; 2618 2619 /* 2620 * swapin_readahead() doesn't check if a swap entry is valid, so the 2621 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 2622 */ 2623 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 2624 err = -ENOENT; 2625 goto unlock_out; 2626 } 2627 2628 has_cache = count & SWAP_HAS_CACHE; 2629 count &= ~SWAP_HAS_CACHE; 2630 err = 0; 2631 2632 if (usage == SWAP_HAS_CACHE) { 2633 2634 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 2635 if (!has_cache && count) 2636 has_cache = SWAP_HAS_CACHE; 2637 else if (has_cache) /* someone else added cache */ 2638 err = -EEXIST; 2639 else /* no users remaining */ 2640 err = -ENOENT; 2641 2642 } else if (count || has_cache) { 2643 2644 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 2645 count += usage; 2646 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 2647 err = -EINVAL; 2648 else if (swap_count_continued(p, offset, count)) 2649 count = COUNT_CONTINUED; 2650 else 2651 err = -ENOMEM; 2652 } else 2653 err = -ENOENT; /* unused swap entry */ 2654 2655 p->swap_map[offset] = count | has_cache; 2656 2657 unlock_out: 2658 spin_unlock(&p->lock); 2659 out: 2660 return err; 2661 2662 bad_file: 2663 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val); 2664 goto out; 2665 } 2666 2667 /* 2668 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 2669 * (in which case its reference count is never incremented). 2670 */ 2671 void swap_shmem_alloc(swp_entry_t entry) 2672 { 2673 __swap_duplicate(entry, SWAP_MAP_SHMEM); 2674 } 2675 2676 /* 2677 * Increase reference count of swap entry by 1. 2678 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 2679 * but could not be atomically allocated. Returns 0, just as if it succeeded, 2680 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 2681 * might occur if a page table entry has got corrupted. 2682 */ 2683 int swap_duplicate(swp_entry_t entry) 2684 { 2685 int err = 0; 2686 2687 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 2688 err = add_swap_count_continuation(entry, GFP_ATOMIC); 2689 return err; 2690 } 2691 2692 /* 2693 * @entry: swap entry for which we allocate swap cache. 2694 * 2695 * Called when allocating swap cache for existing swap entry, 2696 * This can return error codes. Returns 0 at success. 2697 * -EBUSY means there is a swap cache. 2698 * Note: return code is different from swap_duplicate(). 2699 */ 2700 int swapcache_prepare(swp_entry_t entry) 2701 { 2702 return __swap_duplicate(entry, SWAP_HAS_CACHE); 2703 } 2704 2705 struct swap_info_struct *page_swap_info(struct page *page) 2706 { 2707 swp_entry_t swap = { .val = page_private(page) }; 2708 BUG_ON(!PageSwapCache(page)); 2709 return swap_info[swp_type(swap)]; 2710 } 2711 2712 /* 2713 * out-of-line __page_file_ methods to avoid include hell. 2714 */ 2715 struct address_space *__page_file_mapping(struct page *page) 2716 { 2717 VM_BUG_ON(!PageSwapCache(page)); 2718 return page_swap_info(page)->swap_file->f_mapping; 2719 } 2720 EXPORT_SYMBOL_GPL(__page_file_mapping); 2721 2722 pgoff_t __page_file_index(struct page *page) 2723 { 2724 swp_entry_t swap = { .val = page_private(page) }; 2725 VM_BUG_ON(!PageSwapCache(page)); 2726 return swp_offset(swap); 2727 } 2728 EXPORT_SYMBOL_GPL(__page_file_index); 2729 2730 /* 2731 * add_swap_count_continuation - called when a swap count is duplicated 2732 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 2733 * page of the original vmalloc'ed swap_map, to hold the continuation count 2734 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 2735 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 2736 * 2737 * These continuation pages are seldom referenced: the common paths all work 2738 * on the original swap_map, only referring to a continuation page when the 2739 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 2740 * 2741 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 2742 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 2743 * can be called after dropping locks. 2744 */ 2745 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 2746 { 2747 struct swap_info_struct *si; 2748 struct page *head; 2749 struct page *page; 2750 struct page *list_page; 2751 pgoff_t offset; 2752 unsigned char count; 2753 2754 /* 2755 * When debugging, it's easier to use __GFP_ZERO here; but it's better 2756 * for latency not to zero a page while GFP_ATOMIC and holding locks. 2757 */ 2758 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 2759 2760 si = swap_info_get(entry); 2761 if (!si) { 2762 /* 2763 * An acceptable race has occurred since the failing 2764 * __swap_duplicate(): the swap entry has been freed, 2765 * perhaps even the whole swap_map cleared for swapoff. 2766 */ 2767 goto outer; 2768 } 2769 2770 offset = swp_offset(entry); 2771 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 2772 2773 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 2774 /* 2775 * The higher the swap count, the more likely it is that tasks 2776 * will race to add swap count continuation: we need to avoid 2777 * over-provisioning. 2778 */ 2779 goto out; 2780 } 2781 2782 if (!page) { 2783 spin_unlock(&si->lock); 2784 return -ENOMEM; 2785 } 2786 2787 /* 2788 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 2789 * no architecture is using highmem pages for kernel page tables: so it 2790 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 2791 */ 2792 head = vmalloc_to_page(si->swap_map + offset); 2793 offset &= ~PAGE_MASK; 2794 2795 /* 2796 * Page allocation does not initialize the page's lru field, 2797 * but it does always reset its private field. 2798 */ 2799 if (!page_private(head)) { 2800 BUG_ON(count & COUNT_CONTINUED); 2801 INIT_LIST_HEAD(&head->lru); 2802 set_page_private(head, SWP_CONTINUED); 2803 si->flags |= SWP_CONTINUED; 2804 } 2805 2806 list_for_each_entry(list_page, &head->lru, lru) { 2807 unsigned char *map; 2808 2809 /* 2810 * If the previous map said no continuation, but we've found 2811 * a continuation page, free our allocation and use this one. 2812 */ 2813 if (!(count & COUNT_CONTINUED)) 2814 goto out; 2815 2816 map = kmap_atomic(list_page) + offset; 2817 count = *map; 2818 kunmap_atomic(map); 2819 2820 /* 2821 * If this continuation count now has some space in it, 2822 * free our allocation and use this one. 2823 */ 2824 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 2825 goto out; 2826 } 2827 2828 list_add_tail(&page->lru, &head->lru); 2829 page = NULL; /* now it's attached, don't free it */ 2830 out: 2831 spin_unlock(&si->lock); 2832 outer: 2833 if (page) 2834 __free_page(page); 2835 return 0; 2836 } 2837 2838 /* 2839 * swap_count_continued - when the original swap_map count is incremented 2840 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 2841 * into, carry if so, or else fail until a new continuation page is allocated; 2842 * when the original swap_map count is decremented from 0 with continuation, 2843 * borrow from the continuation and report whether it still holds more. 2844 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock. 2845 */ 2846 static bool swap_count_continued(struct swap_info_struct *si, 2847 pgoff_t offset, unsigned char count) 2848 { 2849 struct page *head; 2850 struct page *page; 2851 unsigned char *map; 2852 2853 head = vmalloc_to_page(si->swap_map + offset); 2854 if (page_private(head) != SWP_CONTINUED) { 2855 BUG_ON(count & COUNT_CONTINUED); 2856 return false; /* need to add count continuation */ 2857 } 2858 2859 offset &= ~PAGE_MASK; 2860 page = list_entry(head->lru.next, struct page, lru); 2861 map = kmap_atomic(page) + offset; 2862 2863 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 2864 goto init_map; /* jump over SWAP_CONT_MAX checks */ 2865 2866 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 2867 /* 2868 * Think of how you add 1 to 999 2869 */ 2870 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 2871 kunmap_atomic(map); 2872 page = list_entry(page->lru.next, struct page, lru); 2873 BUG_ON(page == head); 2874 map = kmap_atomic(page) + offset; 2875 } 2876 if (*map == SWAP_CONT_MAX) { 2877 kunmap_atomic(map); 2878 page = list_entry(page->lru.next, struct page, lru); 2879 if (page == head) 2880 return false; /* add count continuation */ 2881 map = kmap_atomic(page) + offset; 2882 init_map: *map = 0; /* we didn't zero the page */ 2883 } 2884 *map += 1; 2885 kunmap_atomic(map); 2886 page = list_entry(page->lru.prev, struct page, lru); 2887 while (page != head) { 2888 map = kmap_atomic(page) + offset; 2889 *map = COUNT_CONTINUED; 2890 kunmap_atomic(map); 2891 page = list_entry(page->lru.prev, struct page, lru); 2892 } 2893 return true; /* incremented */ 2894 2895 } else { /* decrementing */ 2896 /* 2897 * Think of how you subtract 1 from 1000 2898 */ 2899 BUG_ON(count != COUNT_CONTINUED); 2900 while (*map == COUNT_CONTINUED) { 2901 kunmap_atomic(map); 2902 page = list_entry(page->lru.next, struct page, lru); 2903 BUG_ON(page == head); 2904 map = kmap_atomic(page) + offset; 2905 } 2906 BUG_ON(*map == 0); 2907 *map -= 1; 2908 if (*map == 0) 2909 count = 0; 2910 kunmap_atomic(map); 2911 page = list_entry(page->lru.prev, struct page, lru); 2912 while (page != head) { 2913 map = kmap_atomic(page) + offset; 2914 *map = SWAP_CONT_MAX | count; 2915 count = COUNT_CONTINUED; 2916 kunmap_atomic(map); 2917 page = list_entry(page->lru.prev, struct page, lru); 2918 } 2919 return count == COUNT_CONTINUED; 2920 } 2921 } 2922 2923 /* 2924 * free_swap_count_continuations - swapoff free all the continuation pages 2925 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 2926 */ 2927 static void free_swap_count_continuations(struct swap_info_struct *si) 2928 { 2929 pgoff_t offset; 2930 2931 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 2932 struct page *head; 2933 head = vmalloc_to_page(si->swap_map + offset); 2934 if (page_private(head)) { 2935 struct list_head *this, *next; 2936 list_for_each_safe(this, next, &head->lru) { 2937 struct page *page; 2938 page = list_entry(this, struct page, lru); 2939 list_del(this); 2940 __free_page(page); 2941 } 2942 } 2943 } 2944 } 2945