xref: /openbmc/linux/mm/swapfile.c (revision 78bb17f7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 
43 #include <asm/pgtable.h>
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47 
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 				 unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52 
53 DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57  * Some modules use swappable objects and may try to swap them out under
58  * memory pressure (via the shrinker). Before doing so, they may wish to
59  * check to see if any swap space is available.
60  */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65 
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70 
71 /*
72  * all active swap_info_structs
73  * protected with swap_lock, and ordered by priority.
74  */
75 PLIST_HEAD(swap_active_head);
76 
77 /*
78  * all available (active, not full) swap_info_structs
79  * protected with swap_avail_lock, ordered by priority.
80  * This is used by get_swap_page() instead of swap_active_head
81  * because swap_active_head includes all swap_info_structs,
82  * but get_swap_page() doesn't need to look at full ones.
83  * This uses its own lock instead of swap_lock because when a
84  * swap_info_struct changes between not-full/full, it needs to
85  * add/remove itself to/from this list, but the swap_info_struct->lock
86  * is held and the locking order requires swap_lock to be taken
87  * before any swap_info_struct->lock.
88  */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91 
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93 
94 static DEFINE_MUTEX(swapon_mutex);
95 
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99 
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101 
102 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104 	if (type >= READ_ONCE(nr_swapfiles))
105 		return NULL;
106 
107 	smp_rmb();	/* Pairs with smp_wmb in alloc_swap_info. */
108 	return READ_ONCE(swap_info[type]);
109 }
110 
111 static inline unsigned char swap_count(unsigned char ent)
112 {
113 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
114 }
115 
116 /* Reclaim the swap entry anyway if possible */
117 #define TTRS_ANYWAY		0x1
118 /*
119  * Reclaim the swap entry if there are no more mappings of the
120  * corresponding page
121  */
122 #define TTRS_UNMAPPED		0x2
123 /* Reclaim the swap entry if swap is getting full*/
124 #define TTRS_FULL		0x4
125 
126 /* returns 1 if swap entry is freed */
127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
128 				 unsigned long offset, unsigned long flags)
129 {
130 	swp_entry_t entry = swp_entry(si->type, offset);
131 	struct page *page;
132 	int ret = 0;
133 
134 	page = find_get_page(swap_address_space(entry), offset);
135 	if (!page)
136 		return 0;
137 	/*
138 	 * When this function is called from scan_swap_map_slots() and it's
139 	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140 	 * here. We have to use trylock for avoiding deadlock. This is a special
141 	 * case and you should use try_to_free_swap() with explicit lock_page()
142 	 * in usual operations.
143 	 */
144 	if (trylock_page(page)) {
145 		if ((flags & TTRS_ANYWAY) ||
146 		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148 			ret = try_to_free_swap(page);
149 		unlock_page(page);
150 	}
151 	put_page(page);
152 	return ret;
153 }
154 
155 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156 {
157 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
158 	return rb_entry(rb, struct swap_extent, rb_node);
159 }
160 
161 static inline struct swap_extent *next_se(struct swap_extent *se)
162 {
163 	struct rb_node *rb = rb_next(&se->rb_node);
164 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165 }
166 
167 /*
168  * swapon tell device that all the old swap contents can be discarded,
169  * to allow the swap device to optimize its wear-levelling.
170  */
171 static int discard_swap(struct swap_info_struct *si)
172 {
173 	struct swap_extent *se;
174 	sector_t start_block;
175 	sector_t nr_blocks;
176 	int err = 0;
177 
178 	/* Do not discard the swap header page! */
179 	se = first_se(si);
180 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182 	if (nr_blocks) {
183 		err = blkdev_issue_discard(si->bdev, start_block,
184 				nr_blocks, GFP_KERNEL, 0);
185 		if (err)
186 			return err;
187 		cond_resched();
188 	}
189 
190 	for (se = next_se(se); se; se = next_se(se)) {
191 		start_block = se->start_block << (PAGE_SHIFT - 9);
192 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
193 
194 		err = blkdev_issue_discard(si->bdev, start_block,
195 				nr_blocks, GFP_KERNEL, 0);
196 		if (err)
197 			break;
198 
199 		cond_resched();
200 	}
201 	return err;		/* That will often be -EOPNOTSUPP */
202 }
203 
204 static struct swap_extent *
205 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206 {
207 	struct swap_extent *se;
208 	struct rb_node *rb;
209 
210 	rb = sis->swap_extent_root.rb_node;
211 	while (rb) {
212 		se = rb_entry(rb, struct swap_extent, rb_node);
213 		if (offset < se->start_page)
214 			rb = rb->rb_left;
215 		else if (offset >= se->start_page + se->nr_pages)
216 			rb = rb->rb_right;
217 		else
218 			return se;
219 	}
220 	/* It *must* be present */
221 	BUG();
222 }
223 
224 /*
225  * swap allocation tell device that a cluster of swap can now be discarded,
226  * to allow the swap device to optimize its wear-levelling.
227  */
228 static void discard_swap_cluster(struct swap_info_struct *si,
229 				 pgoff_t start_page, pgoff_t nr_pages)
230 {
231 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
232 
233 	while (nr_pages) {
234 		pgoff_t offset = start_page - se->start_page;
235 		sector_t start_block = se->start_block + offset;
236 		sector_t nr_blocks = se->nr_pages - offset;
237 
238 		if (nr_blocks > nr_pages)
239 			nr_blocks = nr_pages;
240 		start_page += nr_blocks;
241 		nr_pages -= nr_blocks;
242 
243 		start_block <<= PAGE_SHIFT - 9;
244 		nr_blocks <<= PAGE_SHIFT - 9;
245 		if (blkdev_issue_discard(si->bdev, start_block,
246 					nr_blocks, GFP_NOIO, 0))
247 			break;
248 
249 		se = next_se(se);
250 	}
251 }
252 
253 #ifdef CONFIG_THP_SWAP
254 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
255 
256 #define swap_entry_size(size)	(size)
257 #else
258 #define SWAPFILE_CLUSTER	256
259 
260 /*
261  * Define swap_entry_size() as constant to let compiler to optimize
262  * out some code if !CONFIG_THP_SWAP
263  */
264 #define swap_entry_size(size)	1
265 #endif
266 #define LATENCY_LIMIT		256
267 
268 static inline void cluster_set_flag(struct swap_cluster_info *info,
269 	unsigned int flag)
270 {
271 	info->flags = flag;
272 }
273 
274 static inline unsigned int cluster_count(struct swap_cluster_info *info)
275 {
276 	return info->data;
277 }
278 
279 static inline void cluster_set_count(struct swap_cluster_info *info,
280 				     unsigned int c)
281 {
282 	info->data = c;
283 }
284 
285 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
286 					 unsigned int c, unsigned int f)
287 {
288 	info->flags = f;
289 	info->data = c;
290 }
291 
292 static inline unsigned int cluster_next(struct swap_cluster_info *info)
293 {
294 	return info->data;
295 }
296 
297 static inline void cluster_set_next(struct swap_cluster_info *info,
298 				    unsigned int n)
299 {
300 	info->data = n;
301 }
302 
303 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
304 					 unsigned int n, unsigned int f)
305 {
306 	info->flags = f;
307 	info->data = n;
308 }
309 
310 static inline bool cluster_is_free(struct swap_cluster_info *info)
311 {
312 	return info->flags & CLUSTER_FLAG_FREE;
313 }
314 
315 static inline bool cluster_is_null(struct swap_cluster_info *info)
316 {
317 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
318 }
319 
320 static inline void cluster_set_null(struct swap_cluster_info *info)
321 {
322 	info->flags = CLUSTER_FLAG_NEXT_NULL;
323 	info->data = 0;
324 }
325 
326 static inline bool cluster_is_huge(struct swap_cluster_info *info)
327 {
328 	if (IS_ENABLED(CONFIG_THP_SWAP))
329 		return info->flags & CLUSTER_FLAG_HUGE;
330 	return false;
331 }
332 
333 static inline void cluster_clear_huge(struct swap_cluster_info *info)
334 {
335 	info->flags &= ~CLUSTER_FLAG_HUGE;
336 }
337 
338 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
339 						     unsigned long offset)
340 {
341 	struct swap_cluster_info *ci;
342 
343 	ci = si->cluster_info;
344 	if (ci) {
345 		ci += offset / SWAPFILE_CLUSTER;
346 		spin_lock(&ci->lock);
347 	}
348 	return ci;
349 }
350 
351 static inline void unlock_cluster(struct swap_cluster_info *ci)
352 {
353 	if (ci)
354 		spin_unlock(&ci->lock);
355 }
356 
357 /*
358  * Determine the locking method in use for this device.  Return
359  * swap_cluster_info if SSD-style cluster-based locking is in place.
360  */
361 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
362 		struct swap_info_struct *si, unsigned long offset)
363 {
364 	struct swap_cluster_info *ci;
365 
366 	/* Try to use fine-grained SSD-style locking if available: */
367 	ci = lock_cluster(si, offset);
368 	/* Otherwise, fall back to traditional, coarse locking: */
369 	if (!ci)
370 		spin_lock(&si->lock);
371 
372 	return ci;
373 }
374 
375 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
376 					       struct swap_cluster_info *ci)
377 {
378 	if (ci)
379 		unlock_cluster(ci);
380 	else
381 		spin_unlock(&si->lock);
382 }
383 
384 static inline bool cluster_list_empty(struct swap_cluster_list *list)
385 {
386 	return cluster_is_null(&list->head);
387 }
388 
389 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
390 {
391 	return cluster_next(&list->head);
392 }
393 
394 static void cluster_list_init(struct swap_cluster_list *list)
395 {
396 	cluster_set_null(&list->head);
397 	cluster_set_null(&list->tail);
398 }
399 
400 static void cluster_list_add_tail(struct swap_cluster_list *list,
401 				  struct swap_cluster_info *ci,
402 				  unsigned int idx)
403 {
404 	if (cluster_list_empty(list)) {
405 		cluster_set_next_flag(&list->head, idx, 0);
406 		cluster_set_next_flag(&list->tail, idx, 0);
407 	} else {
408 		struct swap_cluster_info *ci_tail;
409 		unsigned int tail = cluster_next(&list->tail);
410 
411 		/*
412 		 * Nested cluster lock, but both cluster locks are
413 		 * only acquired when we held swap_info_struct->lock
414 		 */
415 		ci_tail = ci + tail;
416 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
417 		cluster_set_next(ci_tail, idx);
418 		spin_unlock(&ci_tail->lock);
419 		cluster_set_next_flag(&list->tail, idx, 0);
420 	}
421 }
422 
423 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
424 					   struct swap_cluster_info *ci)
425 {
426 	unsigned int idx;
427 
428 	idx = cluster_next(&list->head);
429 	if (cluster_next(&list->tail) == idx) {
430 		cluster_set_null(&list->head);
431 		cluster_set_null(&list->tail);
432 	} else
433 		cluster_set_next_flag(&list->head,
434 				      cluster_next(&ci[idx]), 0);
435 
436 	return idx;
437 }
438 
439 /* Add a cluster to discard list and schedule it to do discard */
440 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
441 		unsigned int idx)
442 {
443 	/*
444 	 * If scan_swap_map() can't find a free cluster, it will check
445 	 * si->swap_map directly. To make sure the discarding cluster isn't
446 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
447 	 * will be cleared after discard
448 	 */
449 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
450 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
451 
452 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
453 
454 	schedule_work(&si->discard_work);
455 }
456 
457 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
458 {
459 	struct swap_cluster_info *ci = si->cluster_info;
460 
461 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
462 	cluster_list_add_tail(&si->free_clusters, ci, idx);
463 }
464 
465 /*
466  * Doing discard actually. After a cluster discard is finished, the cluster
467  * will be added to free cluster list. caller should hold si->lock.
468 */
469 static void swap_do_scheduled_discard(struct swap_info_struct *si)
470 {
471 	struct swap_cluster_info *info, *ci;
472 	unsigned int idx;
473 
474 	info = si->cluster_info;
475 
476 	while (!cluster_list_empty(&si->discard_clusters)) {
477 		idx = cluster_list_del_first(&si->discard_clusters, info);
478 		spin_unlock(&si->lock);
479 
480 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
481 				SWAPFILE_CLUSTER);
482 
483 		spin_lock(&si->lock);
484 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
485 		__free_cluster(si, idx);
486 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
487 				0, SWAPFILE_CLUSTER);
488 		unlock_cluster(ci);
489 	}
490 }
491 
492 static void swap_discard_work(struct work_struct *work)
493 {
494 	struct swap_info_struct *si;
495 
496 	si = container_of(work, struct swap_info_struct, discard_work);
497 
498 	spin_lock(&si->lock);
499 	swap_do_scheduled_discard(si);
500 	spin_unlock(&si->lock);
501 }
502 
503 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
504 {
505 	struct swap_cluster_info *ci = si->cluster_info;
506 
507 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
508 	cluster_list_del_first(&si->free_clusters, ci);
509 	cluster_set_count_flag(ci + idx, 0, 0);
510 }
511 
512 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
513 {
514 	struct swap_cluster_info *ci = si->cluster_info + idx;
515 
516 	VM_BUG_ON(cluster_count(ci) != 0);
517 	/*
518 	 * If the swap is discardable, prepare discard the cluster
519 	 * instead of free it immediately. The cluster will be freed
520 	 * after discard.
521 	 */
522 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
523 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
524 		swap_cluster_schedule_discard(si, idx);
525 		return;
526 	}
527 
528 	__free_cluster(si, idx);
529 }
530 
531 /*
532  * The cluster corresponding to page_nr will be used. The cluster will be
533  * removed from free cluster list and its usage counter will be increased.
534  */
535 static void inc_cluster_info_page(struct swap_info_struct *p,
536 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
537 {
538 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
539 
540 	if (!cluster_info)
541 		return;
542 	if (cluster_is_free(&cluster_info[idx]))
543 		alloc_cluster(p, idx);
544 
545 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
546 	cluster_set_count(&cluster_info[idx],
547 		cluster_count(&cluster_info[idx]) + 1);
548 }
549 
550 /*
551  * The cluster corresponding to page_nr decreases one usage. If the usage
552  * counter becomes 0, which means no page in the cluster is in using, we can
553  * optionally discard the cluster and add it to free cluster list.
554  */
555 static void dec_cluster_info_page(struct swap_info_struct *p,
556 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
557 {
558 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559 
560 	if (!cluster_info)
561 		return;
562 
563 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
564 	cluster_set_count(&cluster_info[idx],
565 		cluster_count(&cluster_info[idx]) - 1);
566 
567 	if (cluster_count(&cluster_info[idx]) == 0)
568 		free_cluster(p, idx);
569 }
570 
571 /*
572  * It's possible scan_swap_map() uses a free cluster in the middle of free
573  * cluster list. Avoiding such abuse to avoid list corruption.
574  */
575 static bool
576 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
577 	unsigned long offset)
578 {
579 	struct percpu_cluster *percpu_cluster;
580 	bool conflict;
581 
582 	offset /= SWAPFILE_CLUSTER;
583 	conflict = !cluster_list_empty(&si->free_clusters) &&
584 		offset != cluster_list_first(&si->free_clusters) &&
585 		cluster_is_free(&si->cluster_info[offset]);
586 
587 	if (!conflict)
588 		return false;
589 
590 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
591 	cluster_set_null(&percpu_cluster->index);
592 	return true;
593 }
594 
595 /*
596  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
597  * might involve allocating a new cluster for current CPU too.
598  */
599 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
600 	unsigned long *offset, unsigned long *scan_base)
601 {
602 	struct percpu_cluster *cluster;
603 	struct swap_cluster_info *ci;
604 	unsigned long tmp, max;
605 
606 new_cluster:
607 	cluster = this_cpu_ptr(si->percpu_cluster);
608 	if (cluster_is_null(&cluster->index)) {
609 		if (!cluster_list_empty(&si->free_clusters)) {
610 			cluster->index = si->free_clusters.head;
611 			cluster->next = cluster_next(&cluster->index) *
612 					SWAPFILE_CLUSTER;
613 		} else if (!cluster_list_empty(&si->discard_clusters)) {
614 			/*
615 			 * we don't have free cluster but have some clusters in
616 			 * discarding, do discard now and reclaim them, then
617 			 * reread cluster_next_cpu since we dropped si->lock
618 			 */
619 			swap_do_scheduled_discard(si);
620 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
621 			*offset = *scan_base;
622 			goto new_cluster;
623 		} else
624 			return false;
625 	}
626 
627 	/*
628 	 * Other CPUs can use our cluster if they can't find a free cluster,
629 	 * check if there is still free entry in the cluster
630 	 */
631 	tmp = cluster->next;
632 	max = min_t(unsigned long, si->max,
633 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
634 	if (tmp < max) {
635 		ci = lock_cluster(si, tmp);
636 		while (tmp < max) {
637 			if (!si->swap_map[tmp])
638 				break;
639 			tmp++;
640 		}
641 		unlock_cluster(ci);
642 	}
643 	if (tmp >= max) {
644 		cluster_set_null(&cluster->index);
645 		goto new_cluster;
646 	}
647 	cluster->next = tmp + 1;
648 	*offset = tmp;
649 	*scan_base = tmp;
650 	return true;
651 }
652 
653 static void __del_from_avail_list(struct swap_info_struct *p)
654 {
655 	int nid;
656 
657 	for_each_node(nid)
658 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
659 }
660 
661 static void del_from_avail_list(struct swap_info_struct *p)
662 {
663 	spin_lock(&swap_avail_lock);
664 	__del_from_avail_list(p);
665 	spin_unlock(&swap_avail_lock);
666 }
667 
668 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
669 			     unsigned int nr_entries)
670 {
671 	unsigned int end = offset + nr_entries - 1;
672 
673 	if (offset == si->lowest_bit)
674 		si->lowest_bit += nr_entries;
675 	if (end == si->highest_bit)
676 		si->highest_bit -= nr_entries;
677 	si->inuse_pages += nr_entries;
678 	if (si->inuse_pages == si->pages) {
679 		si->lowest_bit = si->max;
680 		si->highest_bit = 0;
681 		del_from_avail_list(si);
682 	}
683 }
684 
685 static void add_to_avail_list(struct swap_info_struct *p)
686 {
687 	int nid;
688 
689 	spin_lock(&swap_avail_lock);
690 	for_each_node(nid) {
691 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
692 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
693 	}
694 	spin_unlock(&swap_avail_lock);
695 }
696 
697 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
698 			    unsigned int nr_entries)
699 {
700 	unsigned long end = offset + nr_entries - 1;
701 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
702 
703 	if (offset < si->lowest_bit)
704 		si->lowest_bit = offset;
705 	if (end > si->highest_bit) {
706 		bool was_full = !si->highest_bit;
707 
708 		si->highest_bit = end;
709 		if (was_full && (si->flags & SWP_WRITEOK))
710 			add_to_avail_list(si);
711 	}
712 	atomic_long_add(nr_entries, &nr_swap_pages);
713 	si->inuse_pages -= nr_entries;
714 	if (si->flags & SWP_BLKDEV)
715 		swap_slot_free_notify =
716 			si->bdev->bd_disk->fops->swap_slot_free_notify;
717 	else
718 		swap_slot_free_notify = NULL;
719 	while (offset <= end) {
720 		frontswap_invalidate_page(si->type, offset);
721 		if (swap_slot_free_notify)
722 			swap_slot_free_notify(si->bdev, offset);
723 		offset++;
724 	}
725 }
726 
727 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
728 {
729 	unsigned long prev;
730 
731 	if (!(si->flags & SWP_SOLIDSTATE)) {
732 		si->cluster_next = next;
733 		return;
734 	}
735 
736 	prev = this_cpu_read(*si->cluster_next_cpu);
737 	/*
738 	 * Cross the swap address space size aligned trunk, choose
739 	 * another trunk randomly to avoid lock contention on swap
740 	 * address space if possible.
741 	 */
742 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
743 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
744 		/* No free swap slots available */
745 		if (si->highest_bit <= si->lowest_bit)
746 			return;
747 		next = si->lowest_bit +
748 			prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
749 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
750 		next = max_t(unsigned int, next, si->lowest_bit);
751 	}
752 	this_cpu_write(*si->cluster_next_cpu, next);
753 }
754 
755 static int scan_swap_map_slots(struct swap_info_struct *si,
756 			       unsigned char usage, int nr,
757 			       swp_entry_t slots[])
758 {
759 	struct swap_cluster_info *ci;
760 	unsigned long offset;
761 	unsigned long scan_base;
762 	unsigned long last_in_cluster = 0;
763 	int latency_ration = LATENCY_LIMIT;
764 	int n_ret = 0;
765 	bool scanned_many = false;
766 
767 	/*
768 	 * We try to cluster swap pages by allocating them sequentially
769 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
770 	 * way, however, we resort to first-free allocation, starting
771 	 * a new cluster.  This prevents us from scattering swap pages
772 	 * all over the entire swap partition, so that we reduce
773 	 * overall disk seek times between swap pages.  -- sct
774 	 * But we do now try to find an empty cluster.  -Andrea
775 	 * And we let swap pages go all over an SSD partition.  Hugh
776 	 */
777 
778 	si->flags += SWP_SCANNING;
779 	/*
780 	 * Use percpu scan base for SSD to reduce lock contention on
781 	 * cluster and swap cache.  For HDD, sequential access is more
782 	 * important.
783 	 */
784 	if (si->flags & SWP_SOLIDSTATE)
785 		scan_base = this_cpu_read(*si->cluster_next_cpu);
786 	else
787 		scan_base = si->cluster_next;
788 	offset = scan_base;
789 
790 	/* SSD algorithm */
791 	if (si->cluster_info) {
792 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
793 			goto scan;
794 	} else if (unlikely(!si->cluster_nr--)) {
795 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
796 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
797 			goto checks;
798 		}
799 
800 		spin_unlock(&si->lock);
801 
802 		/*
803 		 * If seek is expensive, start searching for new cluster from
804 		 * start of partition, to minimize the span of allocated swap.
805 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
806 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
807 		 */
808 		scan_base = offset = si->lowest_bit;
809 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
810 
811 		/* Locate the first empty (unaligned) cluster */
812 		for (; last_in_cluster <= si->highest_bit; offset++) {
813 			if (si->swap_map[offset])
814 				last_in_cluster = offset + SWAPFILE_CLUSTER;
815 			else if (offset == last_in_cluster) {
816 				spin_lock(&si->lock);
817 				offset -= SWAPFILE_CLUSTER - 1;
818 				si->cluster_next = offset;
819 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
820 				goto checks;
821 			}
822 			if (unlikely(--latency_ration < 0)) {
823 				cond_resched();
824 				latency_ration = LATENCY_LIMIT;
825 			}
826 		}
827 
828 		offset = scan_base;
829 		spin_lock(&si->lock);
830 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
831 	}
832 
833 checks:
834 	if (si->cluster_info) {
835 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
836 		/* take a break if we already got some slots */
837 			if (n_ret)
838 				goto done;
839 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
840 							&scan_base))
841 				goto scan;
842 		}
843 	}
844 	if (!(si->flags & SWP_WRITEOK))
845 		goto no_page;
846 	if (!si->highest_bit)
847 		goto no_page;
848 	if (offset > si->highest_bit)
849 		scan_base = offset = si->lowest_bit;
850 
851 	ci = lock_cluster(si, offset);
852 	/* reuse swap entry of cache-only swap if not busy. */
853 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
854 		int swap_was_freed;
855 		unlock_cluster(ci);
856 		spin_unlock(&si->lock);
857 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
858 		spin_lock(&si->lock);
859 		/* entry was freed successfully, try to use this again */
860 		if (swap_was_freed)
861 			goto checks;
862 		goto scan; /* check next one */
863 	}
864 
865 	if (si->swap_map[offset]) {
866 		unlock_cluster(ci);
867 		if (!n_ret)
868 			goto scan;
869 		else
870 			goto done;
871 	}
872 	si->swap_map[offset] = usage;
873 	inc_cluster_info_page(si, si->cluster_info, offset);
874 	unlock_cluster(ci);
875 
876 	swap_range_alloc(si, offset, 1);
877 	slots[n_ret++] = swp_entry(si->type, offset);
878 
879 	/* got enough slots or reach max slots? */
880 	if ((n_ret == nr) || (offset >= si->highest_bit))
881 		goto done;
882 
883 	/* search for next available slot */
884 
885 	/* time to take a break? */
886 	if (unlikely(--latency_ration < 0)) {
887 		if (n_ret)
888 			goto done;
889 		spin_unlock(&si->lock);
890 		cond_resched();
891 		spin_lock(&si->lock);
892 		latency_ration = LATENCY_LIMIT;
893 	}
894 
895 	/* try to get more slots in cluster */
896 	if (si->cluster_info) {
897 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
898 			goto checks;
899 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
900 		/* non-ssd case, still more slots in cluster? */
901 		--si->cluster_nr;
902 		goto checks;
903 	}
904 
905 	/*
906 	 * Even if there's no free clusters available (fragmented),
907 	 * try to scan a little more quickly with lock held unless we
908 	 * have scanned too many slots already.
909 	 */
910 	if (!scanned_many) {
911 		unsigned long scan_limit;
912 
913 		if (offset < scan_base)
914 			scan_limit = scan_base;
915 		else
916 			scan_limit = si->highest_bit;
917 		for (; offset <= scan_limit && --latency_ration > 0;
918 		     offset++) {
919 			if (!si->swap_map[offset])
920 				goto checks;
921 		}
922 	}
923 
924 done:
925 	set_cluster_next(si, offset + 1);
926 	si->flags -= SWP_SCANNING;
927 	return n_ret;
928 
929 scan:
930 	spin_unlock(&si->lock);
931 	while (++offset <= si->highest_bit) {
932 		if (!si->swap_map[offset]) {
933 			spin_lock(&si->lock);
934 			goto checks;
935 		}
936 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
937 			spin_lock(&si->lock);
938 			goto checks;
939 		}
940 		if (unlikely(--latency_ration < 0)) {
941 			cond_resched();
942 			latency_ration = LATENCY_LIMIT;
943 			scanned_many = true;
944 		}
945 	}
946 	offset = si->lowest_bit;
947 	while (offset < scan_base) {
948 		if (!si->swap_map[offset]) {
949 			spin_lock(&si->lock);
950 			goto checks;
951 		}
952 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
953 			spin_lock(&si->lock);
954 			goto checks;
955 		}
956 		if (unlikely(--latency_ration < 0)) {
957 			cond_resched();
958 			latency_ration = LATENCY_LIMIT;
959 			scanned_many = true;
960 		}
961 		offset++;
962 	}
963 	spin_lock(&si->lock);
964 
965 no_page:
966 	si->flags -= SWP_SCANNING;
967 	return n_ret;
968 }
969 
970 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
971 {
972 	unsigned long idx;
973 	struct swap_cluster_info *ci;
974 	unsigned long offset, i;
975 	unsigned char *map;
976 
977 	/*
978 	 * Should not even be attempting cluster allocations when huge
979 	 * page swap is disabled.  Warn and fail the allocation.
980 	 */
981 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
982 		VM_WARN_ON_ONCE(1);
983 		return 0;
984 	}
985 
986 	if (cluster_list_empty(&si->free_clusters))
987 		return 0;
988 
989 	idx = cluster_list_first(&si->free_clusters);
990 	offset = idx * SWAPFILE_CLUSTER;
991 	ci = lock_cluster(si, offset);
992 	alloc_cluster(si, idx);
993 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
994 
995 	map = si->swap_map + offset;
996 	for (i = 0; i < SWAPFILE_CLUSTER; i++)
997 		map[i] = SWAP_HAS_CACHE;
998 	unlock_cluster(ci);
999 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1000 	*slot = swp_entry(si->type, offset);
1001 
1002 	return 1;
1003 }
1004 
1005 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1006 {
1007 	unsigned long offset = idx * SWAPFILE_CLUSTER;
1008 	struct swap_cluster_info *ci;
1009 
1010 	ci = lock_cluster(si, offset);
1011 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1012 	cluster_set_count_flag(ci, 0, 0);
1013 	free_cluster(si, idx);
1014 	unlock_cluster(ci);
1015 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1016 }
1017 
1018 static unsigned long scan_swap_map(struct swap_info_struct *si,
1019 				   unsigned char usage)
1020 {
1021 	swp_entry_t entry;
1022 	int n_ret;
1023 
1024 	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1025 
1026 	if (n_ret)
1027 		return swp_offset(entry);
1028 	else
1029 		return 0;
1030 
1031 }
1032 
1033 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1034 {
1035 	unsigned long size = swap_entry_size(entry_size);
1036 	struct swap_info_struct *si, *next;
1037 	long avail_pgs;
1038 	int n_ret = 0;
1039 	int node;
1040 
1041 	/* Only single cluster request supported */
1042 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1043 
1044 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1045 	if (avail_pgs <= 0)
1046 		goto noswap;
1047 
1048 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1049 
1050 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1051 
1052 	spin_lock(&swap_avail_lock);
1053 
1054 start_over:
1055 	node = numa_node_id();
1056 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1057 		/* requeue si to after same-priority siblings */
1058 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1059 		spin_unlock(&swap_avail_lock);
1060 		spin_lock(&si->lock);
1061 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1062 			spin_lock(&swap_avail_lock);
1063 			if (plist_node_empty(&si->avail_lists[node])) {
1064 				spin_unlock(&si->lock);
1065 				goto nextsi;
1066 			}
1067 			WARN(!si->highest_bit,
1068 			     "swap_info %d in list but !highest_bit\n",
1069 			     si->type);
1070 			WARN(!(si->flags & SWP_WRITEOK),
1071 			     "swap_info %d in list but !SWP_WRITEOK\n",
1072 			     si->type);
1073 			__del_from_avail_list(si);
1074 			spin_unlock(&si->lock);
1075 			goto nextsi;
1076 		}
1077 		if (size == SWAPFILE_CLUSTER) {
1078 			if (!(si->flags & SWP_FS))
1079 				n_ret = swap_alloc_cluster(si, swp_entries);
1080 		} else
1081 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1082 						    n_goal, swp_entries);
1083 		spin_unlock(&si->lock);
1084 		if (n_ret || size == SWAPFILE_CLUSTER)
1085 			goto check_out;
1086 		pr_debug("scan_swap_map of si %d failed to find offset\n",
1087 			si->type);
1088 
1089 		spin_lock(&swap_avail_lock);
1090 nextsi:
1091 		/*
1092 		 * if we got here, it's likely that si was almost full before,
1093 		 * and since scan_swap_map() can drop the si->lock, multiple
1094 		 * callers probably all tried to get a page from the same si
1095 		 * and it filled up before we could get one; or, the si filled
1096 		 * up between us dropping swap_avail_lock and taking si->lock.
1097 		 * Since we dropped the swap_avail_lock, the swap_avail_head
1098 		 * list may have been modified; so if next is still in the
1099 		 * swap_avail_head list then try it, otherwise start over
1100 		 * if we have not gotten any slots.
1101 		 */
1102 		if (plist_node_empty(&next->avail_lists[node]))
1103 			goto start_over;
1104 	}
1105 
1106 	spin_unlock(&swap_avail_lock);
1107 
1108 check_out:
1109 	if (n_ret < n_goal)
1110 		atomic_long_add((long)(n_goal - n_ret) * size,
1111 				&nr_swap_pages);
1112 noswap:
1113 	return n_ret;
1114 }
1115 
1116 /* The only caller of this function is now suspend routine */
1117 swp_entry_t get_swap_page_of_type(int type)
1118 {
1119 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1120 	pgoff_t offset;
1121 
1122 	if (!si)
1123 		goto fail;
1124 
1125 	spin_lock(&si->lock);
1126 	if (si->flags & SWP_WRITEOK) {
1127 		atomic_long_dec(&nr_swap_pages);
1128 		/* This is called for allocating swap entry, not cache */
1129 		offset = scan_swap_map(si, 1);
1130 		if (offset) {
1131 			spin_unlock(&si->lock);
1132 			return swp_entry(type, offset);
1133 		}
1134 		atomic_long_inc(&nr_swap_pages);
1135 	}
1136 	spin_unlock(&si->lock);
1137 fail:
1138 	return (swp_entry_t) {0};
1139 }
1140 
1141 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1142 {
1143 	struct swap_info_struct *p;
1144 	unsigned long offset;
1145 
1146 	if (!entry.val)
1147 		goto out;
1148 	p = swp_swap_info(entry);
1149 	if (!p)
1150 		goto bad_nofile;
1151 	if (!(p->flags & SWP_USED))
1152 		goto bad_device;
1153 	offset = swp_offset(entry);
1154 	if (offset >= p->max)
1155 		goto bad_offset;
1156 	return p;
1157 
1158 bad_offset:
1159 	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1160 	goto out;
1161 bad_device:
1162 	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1163 	goto out;
1164 bad_nofile:
1165 	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1166 out:
1167 	return NULL;
1168 }
1169 
1170 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1171 {
1172 	struct swap_info_struct *p;
1173 
1174 	p = __swap_info_get(entry);
1175 	if (!p)
1176 		goto out;
1177 	if (!p->swap_map[swp_offset(entry)])
1178 		goto bad_free;
1179 	return p;
1180 
1181 bad_free:
1182 	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1183 	goto out;
1184 out:
1185 	return NULL;
1186 }
1187 
1188 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1189 {
1190 	struct swap_info_struct *p;
1191 
1192 	p = _swap_info_get(entry);
1193 	if (p)
1194 		spin_lock(&p->lock);
1195 	return p;
1196 }
1197 
1198 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1199 					struct swap_info_struct *q)
1200 {
1201 	struct swap_info_struct *p;
1202 
1203 	p = _swap_info_get(entry);
1204 
1205 	if (p != q) {
1206 		if (q != NULL)
1207 			spin_unlock(&q->lock);
1208 		if (p != NULL)
1209 			spin_lock(&p->lock);
1210 	}
1211 	return p;
1212 }
1213 
1214 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1215 					      unsigned long offset,
1216 					      unsigned char usage)
1217 {
1218 	unsigned char count;
1219 	unsigned char has_cache;
1220 
1221 	count = p->swap_map[offset];
1222 
1223 	has_cache = count & SWAP_HAS_CACHE;
1224 	count &= ~SWAP_HAS_CACHE;
1225 
1226 	if (usage == SWAP_HAS_CACHE) {
1227 		VM_BUG_ON(!has_cache);
1228 		has_cache = 0;
1229 	} else if (count == SWAP_MAP_SHMEM) {
1230 		/*
1231 		 * Or we could insist on shmem.c using a special
1232 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1233 		 */
1234 		count = 0;
1235 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1236 		if (count == COUNT_CONTINUED) {
1237 			if (swap_count_continued(p, offset, count))
1238 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1239 			else
1240 				count = SWAP_MAP_MAX;
1241 		} else
1242 			count--;
1243 	}
1244 
1245 	usage = count | has_cache;
1246 	p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1247 
1248 	return usage;
1249 }
1250 
1251 /*
1252  * Check whether swap entry is valid in the swap device.  If so,
1253  * return pointer to swap_info_struct, and keep the swap entry valid
1254  * via preventing the swap device from being swapoff, until
1255  * put_swap_device() is called.  Otherwise return NULL.
1256  *
1257  * The entirety of the RCU read critical section must come before the
1258  * return from or after the call to synchronize_rcu() in
1259  * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1260  * true, the si->map, si->cluster_info, etc. must be valid in the
1261  * critical section.
1262  *
1263  * Notice that swapoff or swapoff+swapon can still happen before the
1264  * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1265  * in put_swap_device() if there isn't any other way to prevent
1266  * swapoff, such as page lock, page table lock, etc.  The caller must
1267  * be prepared for that.  For example, the following situation is
1268  * possible.
1269  *
1270  *   CPU1				CPU2
1271  *   do_swap_page()
1272  *     ...				swapoff+swapon
1273  *     __read_swap_cache_async()
1274  *       swapcache_prepare()
1275  *         __swap_duplicate()
1276  *           // check swap_map
1277  *     // verify PTE not changed
1278  *
1279  * In __swap_duplicate(), the swap_map need to be checked before
1280  * changing partly because the specified swap entry may be for another
1281  * swap device which has been swapoff.  And in do_swap_page(), after
1282  * the page is read from the swap device, the PTE is verified not
1283  * changed with the page table locked to check whether the swap device
1284  * has been swapoff or swapoff+swapon.
1285  */
1286 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1287 {
1288 	struct swap_info_struct *si;
1289 	unsigned long offset;
1290 
1291 	if (!entry.val)
1292 		goto out;
1293 	si = swp_swap_info(entry);
1294 	if (!si)
1295 		goto bad_nofile;
1296 
1297 	rcu_read_lock();
1298 	if (!(si->flags & SWP_VALID))
1299 		goto unlock_out;
1300 	offset = swp_offset(entry);
1301 	if (offset >= si->max)
1302 		goto unlock_out;
1303 
1304 	return si;
1305 bad_nofile:
1306 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1307 out:
1308 	return NULL;
1309 unlock_out:
1310 	rcu_read_unlock();
1311 	return NULL;
1312 }
1313 
1314 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1315 				       swp_entry_t entry)
1316 {
1317 	struct swap_cluster_info *ci;
1318 	unsigned long offset = swp_offset(entry);
1319 	unsigned char usage;
1320 
1321 	ci = lock_cluster_or_swap_info(p, offset);
1322 	usage = __swap_entry_free_locked(p, offset, 1);
1323 	unlock_cluster_or_swap_info(p, ci);
1324 	if (!usage)
1325 		free_swap_slot(entry);
1326 
1327 	return usage;
1328 }
1329 
1330 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1331 {
1332 	struct swap_cluster_info *ci;
1333 	unsigned long offset = swp_offset(entry);
1334 	unsigned char count;
1335 
1336 	ci = lock_cluster(p, offset);
1337 	count = p->swap_map[offset];
1338 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1339 	p->swap_map[offset] = 0;
1340 	dec_cluster_info_page(p, p->cluster_info, offset);
1341 	unlock_cluster(ci);
1342 
1343 	mem_cgroup_uncharge_swap(entry, 1);
1344 	swap_range_free(p, offset, 1);
1345 }
1346 
1347 /*
1348  * Caller has made sure that the swap device corresponding to entry
1349  * is still around or has not been recycled.
1350  */
1351 void swap_free(swp_entry_t entry)
1352 {
1353 	struct swap_info_struct *p;
1354 
1355 	p = _swap_info_get(entry);
1356 	if (p)
1357 		__swap_entry_free(p, entry);
1358 }
1359 
1360 /*
1361  * Called after dropping swapcache to decrease refcnt to swap entries.
1362  */
1363 void put_swap_page(struct page *page, swp_entry_t entry)
1364 {
1365 	unsigned long offset = swp_offset(entry);
1366 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1367 	struct swap_cluster_info *ci;
1368 	struct swap_info_struct *si;
1369 	unsigned char *map;
1370 	unsigned int i, free_entries = 0;
1371 	unsigned char val;
1372 	int size = swap_entry_size(hpage_nr_pages(page));
1373 
1374 	si = _swap_info_get(entry);
1375 	if (!si)
1376 		return;
1377 
1378 	ci = lock_cluster_or_swap_info(si, offset);
1379 	if (size == SWAPFILE_CLUSTER) {
1380 		VM_BUG_ON(!cluster_is_huge(ci));
1381 		map = si->swap_map + offset;
1382 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1383 			val = map[i];
1384 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1385 			if (val == SWAP_HAS_CACHE)
1386 				free_entries++;
1387 		}
1388 		cluster_clear_huge(ci);
1389 		if (free_entries == SWAPFILE_CLUSTER) {
1390 			unlock_cluster_or_swap_info(si, ci);
1391 			spin_lock(&si->lock);
1392 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1393 			swap_free_cluster(si, idx);
1394 			spin_unlock(&si->lock);
1395 			return;
1396 		}
1397 	}
1398 	for (i = 0; i < size; i++, entry.val++) {
1399 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1400 			unlock_cluster_or_swap_info(si, ci);
1401 			free_swap_slot(entry);
1402 			if (i == size - 1)
1403 				return;
1404 			lock_cluster_or_swap_info(si, offset);
1405 		}
1406 	}
1407 	unlock_cluster_or_swap_info(si, ci);
1408 }
1409 
1410 #ifdef CONFIG_THP_SWAP
1411 int split_swap_cluster(swp_entry_t entry)
1412 {
1413 	struct swap_info_struct *si;
1414 	struct swap_cluster_info *ci;
1415 	unsigned long offset = swp_offset(entry);
1416 
1417 	si = _swap_info_get(entry);
1418 	if (!si)
1419 		return -EBUSY;
1420 	ci = lock_cluster(si, offset);
1421 	cluster_clear_huge(ci);
1422 	unlock_cluster(ci);
1423 	return 0;
1424 }
1425 #endif
1426 
1427 static int swp_entry_cmp(const void *ent1, const void *ent2)
1428 {
1429 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1430 
1431 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1432 }
1433 
1434 void swapcache_free_entries(swp_entry_t *entries, int n)
1435 {
1436 	struct swap_info_struct *p, *prev;
1437 	int i;
1438 
1439 	if (n <= 0)
1440 		return;
1441 
1442 	prev = NULL;
1443 	p = NULL;
1444 
1445 	/*
1446 	 * Sort swap entries by swap device, so each lock is only taken once.
1447 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1448 	 * so low that it isn't necessary to optimize further.
1449 	 */
1450 	if (nr_swapfiles > 1)
1451 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1452 	for (i = 0; i < n; ++i) {
1453 		p = swap_info_get_cont(entries[i], prev);
1454 		if (p)
1455 			swap_entry_free(p, entries[i]);
1456 		prev = p;
1457 	}
1458 	if (p)
1459 		spin_unlock(&p->lock);
1460 }
1461 
1462 /*
1463  * How many references to page are currently swapped out?
1464  * This does not give an exact answer when swap count is continued,
1465  * but does include the high COUNT_CONTINUED flag to allow for that.
1466  */
1467 int page_swapcount(struct page *page)
1468 {
1469 	int count = 0;
1470 	struct swap_info_struct *p;
1471 	struct swap_cluster_info *ci;
1472 	swp_entry_t entry;
1473 	unsigned long offset;
1474 
1475 	entry.val = page_private(page);
1476 	p = _swap_info_get(entry);
1477 	if (p) {
1478 		offset = swp_offset(entry);
1479 		ci = lock_cluster_or_swap_info(p, offset);
1480 		count = swap_count(p->swap_map[offset]);
1481 		unlock_cluster_or_swap_info(p, ci);
1482 	}
1483 	return count;
1484 }
1485 
1486 int __swap_count(swp_entry_t entry)
1487 {
1488 	struct swap_info_struct *si;
1489 	pgoff_t offset = swp_offset(entry);
1490 	int count = 0;
1491 
1492 	si = get_swap_device(entry);
1493 	if (si) {
1494 		count = swap_count(si->swap_map[offset]);
1495 		put_swap_device(si);
1496 	}
1497 	return count;
1498 }
1499 
1500 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1501 {
1502 	int count = 0;
1503 	pgoff_t offset = swp_offset(entry);
1504 	struct swap_cluster_info *ci;
1505 
1506 	ci = lock_cluster_or_swap_info(si, offset);
1507 	count = swap_count(si->swap_map[offset]);
1508 	unlock_cluster_or_swap_info(si, ci);
1509 	return count;
1510 }
1511 
1512 /*
1513  * How many references to @entry are currently swapped out?
1514  * This does not give an exact answer when swap count is continued,
1515  * but does include the high COUNT_CONTINUED flag to allow for that.
1516  */
1517 int __swp_swapcount(swp_entry_t entry)
1518 {
1519 	int count = 0;
1520 	struct swap_info_struct *si;
1521 
1522 	si = get_swap_device(entry);
1523 	if (si) {
1524 		count = swap_swapcount(si, entry);
1525 		put_swap_device(si);
1526 	}
1527 	return count;
1528 }
1529 
1530 /*
1531  * How many references to @entry are currently swapped out?
1532  * This considers COUNT_CONTINUED so it returns exact answer.
1533  */
1534 int swp_swapcount(swp_entry_t entry)
1535 {
1536 	int count, tmp_count, n;
1537 	struct swap_info_struct *p;
1538 	struct swap_cluster_info *ci;
1539 	struct page *page;
1540 	pgoff_t offset;
1541 	unsigned char *map;
1542 
1543 	p = _swap_info_get(entry);
1544 	if (!p)
1545 		return 0;
1546 
1547 	offset = swp_offset(entry);
1548 
1549 	ci = lock_cluster_or_swap_info(p, offset);
1550 
1551 	count = swap_count(p->swap_map[offset]);
1552 	if (!(count & COUNT_CONTINUED))
1553 		goto out;
1554 
1555 	count &= ~COUNT_CONTINUED;
1556 	n = SWAP_MAP_MAX + 1;
1557 
1558 	page = vmalloc_to_page(p->swap_map + offset);
1559 	offset &= ~PAGE_MASK;
1560 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1561 
1562 	do {
1563 		page = list_next_entry(page, lru);
1564 		map = kmap_atomic(page);
1565 		tmp_count = map[offset];
1566 		kunmap_atomic(map);
1567 
1568 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1569 		n *= (SWAP_CONT_MAX + 1);
1570 	} while (tmp_count & COUNT_CONTINUED);
1571 out:
1572 	unlock_cluster_or_swap_info(p, ci);
1573 	return count;
1574 }
1575 
1576 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1577 					 swp_entry_t entry)
1578 {
1579 	struct swap_cluster_info *ci;
1580 	unsigned char *map = si->swap_map;
1581 	unsigned long roffset = swp_offset(entry);
1582 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1583 	int i;
1584 	bool ret = false;
1585 
1586 	ci = lock_cluster_or_swap_info(si, offset);
1587 	if (!ci || !cluster_is_huge(ci)) {
1588 		if (swap_count(map[roffset]))
1589 			ret = true;
1590 		goto unlock_out;
1591 	}
1592 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1593 		if (swap_count(map[offset + i])) {
1594 			ret = true;
1595 			break;
1596 		}
1597 	}
1598 unlock_out:
1599 	unlock_cluster_or_swap_info(si, ci);
1600 	return ret;
1601 }
1602 
1603 static bool page_swapped(struct page *page)
1604 {
1605 	swp_entry_t entry;
1606 	struct swap_info_struct *si;
1607 
1608 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1609 		return page_swapcount(page) != 0;
1610 
1611 	page = compound_head(page);
1612 	entry.val = page_private(page);
1613 	si = _swap_info_get(entry);
1614 	if (si)
1615 		return swap_page_trans_huge_swapped(si, entry);
1616 	return false;
1617 }
1618 
1619 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1620 					 int *total_swapcount)
1621 {
1622 	int i, map_swapcount, _total_mapcount, _total_swapcount;
1623 	unsigned long offset = 0;
1624 	struct swap_info_struct *si;
1625 	struct swap_cluster_info *ci = NULL;
1626 	unsigned char *map = NULL;
1627 	int mapcount, swapcount = 0;
1628 
1629 	/* hugetlbfs shouldn't call it */
1630 	VM_BUG_ON_PAGE(PageHuge(page), page);
1631 
1632 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1633 		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1634 		if (PageSwapCache(page))
1635 			swapcount = page_swapcount(page);
1636 		if (total_swapcount)
1637 			*total_swapcount = swapcount;
1638 		return mapcount + swapcount;
1639 	}
1640 
1641 	page = compound_head(page);
1642 
1643 	_total_mapcount = _total_swapcount = map_swapcount = 0;
1644 	if (PageSwapCache(page)) {
1645 		swp_entry_t entry;
1646 
1647 		entry.val = page_private(page);
1648 		si = _swap_info_get(entry);
1649 		if (si) {
1650 			map = si->swap_map;
1651 			offset = swp_offset(entry);
1652 		}
1653 	}
1654 	if (map)
1655 		ci = lock_cluster(si, offset);
1656 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1657 		mapcount = atomic_read(&page[i]._mapcount) + 1;
1658 		_total_mapcount += mapcount;
1659 		if (map) {
1660 			swapcount = swap_count(map[offset + i]);
1661 			_total_swapcount += swapcount;
1662 		}
1663 		map_swapcount = max(map_swapcount, mapcount + swapcount);
1664 	}
1665 	unlock_cluster(ci);
1666 	if (PageDoubleMap(page)) {
1667 		map_swapcount -= 1;
1668 		_total_mapcount -= HPAGE_PMD_NR;
1669 	}
1670 	mapcount = compound_mapcount(page);
1671 	map_swapcount += mapcount;
1672 	_total_mapcount += mapcount;
1673 	if (total_mapcount)
1674 		*total_mapcount = _total_mapcount;
1675 	if (total_swapcount)
1676 		*total_swapcount = _total_swapcount;
1677 
1678 	return map_swapcount;
1679 }
1680 
1681 /*
1682  * We can write to an anon page without COW if there are no other references
1683  * to it.  And as a side-effect, free up its swap: because the old content
1684  * on disk will never be read, and seeking back there to write new content
1685  * later would only waste time away from clustering.
1686  *
1687  * NOTE: total_map_swapcount should not be relied upon by the caller if
1688  * reuse_swap_page() returns false, but it may be always overwritten
1689  * (see the other implementation for CONFIG_SWAP=n).
1690  */
1691 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1692 {
1693 	int count, total_mapcount, total_swapcount;
1694 
1695 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1696 	if (unlikely(PageKsm(page)))
1697 		return false;
1698 	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1699 					      &total_swapcount);
1700 	if (total_map_swapcount)
1701 		*total_map_swapcount = total_mapcount + total_swapcount;
1702 	if (count == 1 && PageSwapCache(page) &&
1703 	    (likely(!PageTransCompound(page)) ||
1704 	     /* The remaining swap count will be freed soon */
1705 	     total_swapcount == page_swapcount(page))) {
1706 		if (!PageWriteback(page)) {
1707 			page = compound_head(page);
1708 			delete_from_swap_cache(page);
1709 			SetPageDirty(page);
1710 		} else {
1711 			swp_entry_t entry;
1712 			struct swap_info_struct *p;
1713 
1714 			entry.val = page_private(page);
1715 			p = swap_info_get(entry);
1716 			if (p->flags & SWP_STABLE_WRITES) {
1717 				spin_unlock(&p->lock);
1718 				return false;
1719 			}
1720 			spin_unlock(&p->lock);
1721 		}
1722 	}
1723 
1724 	return count <= 1;
1725 }
1726 
1727 /*
1728  * If swap is getting full, or if there are no more mappings of this page,
1729  * then try_to_free_swap is called to free its swap space.
1730  */
1731 int try_to_free_swap(struct page *page)
1732 {
1733 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1734 
1735 	if (!PageSwapCache(page))
1736 		return 0;
1737 	if (PageWriteback(page))
1738 		return 0;
1739 	if (page_swapped(page))
1740 		return 0;
1741 
1742 	/*
1743 	 * Once hibernation has begun to create its image of memory,
1744 	 * there's a danger that one of the calls to try_to_free_swap()
1745 	 * - most probably a call from __try_to_reclaim_swap() while
1746 	 * hibernation is allocating its own swap pages for the image,
1747 	 * but conceivably even a call from memory reclaim - will free
1748 	 * the swap from a page which has already been recorded in the
1749 	 * image as a clean swapcache page, and then reuse its swap for
1750 	 * another page of the image.  On waking from hibernation, the
1751 	 * original page might be freed under memory pressure, then
1752 	 * later read back in from swap, now with the wrong data.
1753 	 *
1754 	 * Hibernation suspends storage while it is writing the image
1755 	 * to disk so check that here.
1756 	 */
1757 	if (pm_suspended_storage())
1758 		return 0;
1759 
1760 	page = compound_head(page);
1761 	delete_from_swap_cache(page);
1762 	SetPageDirty(page);
1763 	return 1;
1764 }
1765 
1766 /*
1767  * Free the swap entry like above, but also try to
1768  * free the page cache entry if it is the last user.
1769  */
1770 int free_swap_and_cache(swp_entry_t entry)
1771 {
1772 	struct swap_info_struct *p;
1773 	unsigned char count;
1774 
1775 	if (non_swap_entry(entry))
1776 		return 1;
1777 
1778 	p = _swap_info_get(entry);
1779 	if (p) {
1780 		count = __swap_entry_free(p, entry);
1781 		if (count == SWAP_HAS_CACHE &&
1782 		    !swap_page_trans_huge_swapped(p, entry))
1783 			__try_to_reclaim_swap(p, swp_offset(entry),
1784 					      TTRS_UNMAPPED | TTRS_FULL);
1785 	}
1786 	return p != NULL;
1787 }
1788 
1789 #ifdef CONFIG_HIBERNATION
1790 /*
1791  * Find the swap type that corresponds to given device (if any).
1792  *
1793  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1794  * from 0, in which the swap header is expected to be located.
1795  *
1796  * This is needed for the suspend to disk (aka swsusp).
1797  */
1798 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1799 {
1800 	struct block_device *bdev = NULL;
1801 	int type;
1802 
1803 	if (device)
1804 		bdev = bdget(device);
1805 
1806 	spin_lock(&swap_lock);
1807 	for (type = 0; type < nr_swapfiles; type++) {
1808 		struct swap_info_struct *sis = swap_info[type];
1809 
1810 		if (!(sis->flags & SWP_WRITEOK))
1811 			continue;
1812 
1813 		if (!bdev) {
1814 			if (bdev_p)
1815 				*bdev_p = bdgrab(sis->bdev);
1816 
1817 			spin_unlock(&swap_lock);
1818 			return type;
1819 		}
1820 		if (bdev == sis->bdev) {
1821 			struct swap_extent *se = first_se(sis);
1822 
1823 			if (se->start_block == offset) {
1824 				if (bdev_p)
1825 					*bdev_p = bdgrab(sis->bdev);
1826 
1827 				spin_unlock(&swap_lock);
1828 				bdput(bdev);
1829 				return type;
1830 			}
1831 		}
1832 	}
1833 	spin_unlock(&swap_lock);
1834 	if (bdev)
1835 		bdput(bdev);
1836 
1837 	return -ENODEV;
1838 }
1839 
1840 /*
1841  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1842  * corresponding to given index in swap_info (swap type).
1843  */
1844 sector_t swapdev_block(int type, pgoff_t offset)
1845 {
1846 	struct block_device *bdev;
1847 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1848 
1849 	if (!si || !(si->flags & SWP_WRITEOK))
1850 		return 0;
1851 	return map_swap_entry(swp_entry(type, offset), &bdev);
1852 }
1853 
1854 /*
1855  * Return either the total number of swap pages of given type, or the number
1856  * of free pages of that type (depending on @free)
1857  *
1858  * This is needed for software suspend
1859  */
1860 unsigned int count_swap_pages(int type, int free)
1861 {
1862 	unsigned int n = 0;
1863 
1864 	spin_lock(&swap_lock);
1865 	if ((unsigned int)type < nr_swapfiles) {
1866 		struct swap_info_struct *sis = swap_info[type];
1867 
1868 		spin_lock(&sis->lock);
1869 		if (sis->flags & SWP_WRITEOK) {
1870 			n = sis->pages;
1871 			if (free)
1872 				n -= sis->inuse_pages;
1873 		}
1874 		spin_unlock(&sis->lock);
1875 	}
1876 	spin_unlock(&swap_lock);
1877 	return n;
1878 }
1879 #endif /* CONFIG_HIBERNATION */
1880 
1881 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1882 {
1883 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1884 }
1885 
1886 /*
1887  * No need to decide whether this PTE shares the swap entry with others,
1888  * just let do_wp_page work it out if a write is requested later - to
1889  * force COW, vm_page_prot omits write permission from any private vma.
1890  */
1891 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1892 		unsigned long addr, swp_entry_t entry, struct page *page)
1893 {
1894 	struct page *swapcache;
1895 	struct mem_cgroup *memcg;
1896 	spinlock_t *ptl;
1897 	pte_t *pte;
1898 	int ret = 1;
1899 
1900 	swapcache = page;
1901 	page = ksm_might_need_to_copy(page, vma, addr);
1902 	if (unlikely(!page))
1903 		return -ENOMEM;
1904 
1905 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1906 				&memcg, false)) {
1907 		ret = -ENOMEM;
1908 		goto out_nolock;
1909 	}
1910 
1911 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1912 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1913 		mem_cgroup_cancel_charge(page, memcg, false);
1914 		ret = 0;
1915 		goto out;
1916 	}
1917 
1918 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1919 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1920 	get_page(page);
1921 	set_pte_at(vma->vm_mm, addr, pte,
1922 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1923 	if (page == swapcache) {
1924 		page_add_anon_rmap(page, vma, addr, false);
1925 		mem_cgroup_commit_charge(page, memcg, true, false);
1926 	} else { /* ksm created a completely new copy */
1927 		page_add_new_anon_rmap(page, vma, addr, false);
1928 		mem_cgroup_commit_charge(page, memcg, false, false);
1929 		lru_cache_add_active_or_unevictable(page, vma);
1930 	}
1931 	swap_free(entry);
1932 	/*
1933 	 * Move the page to the active list so it is not
1934 	 * immediately swapped out again after swapon.
1935 	 */
1936 	activate_page(page);
1937 out:
1938 	pte_unmap_unlock(pte, ptl);
1939 out_nolock:
1940 	if (page != swapcache) {
1941 		unlock_page(page);
1942 		put_page(page);
1943 	}
1944 	return ret;
1945 }
1946 
1947 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1948 			unsigned long addr, unsigned long end,
1949 			unsigned int type, bool frontswap,
1950 			unsigned long *fs_pages_to_unuse)
1951 {
1952 	struct page *page;
1953 	swp_entry_t entry;
1954 	pte_t *pte;
1955 	struct swap_info_struct *si;
1956 	unsigned long offset;
1957 	int ret = 0;
1958 	volatile unsigned char *swap_map;
1959 
1960 	si = swap_info[type];
1961 	pte = pte_offset_map(pmd, addr);
1962 	do {
1963 		struct vm_fault vmf;
1964 
1965 		if (!is_swap_pte(*pte))
1966 			continue;
1967 
1968 		entry = pte_to_swp_entry(*pte);
1969 		if (swp_type(entry) != type)
1970 			continue;
1971 
1972 		offset = swp_offset(entry);
1973 		if (frontswap && !frontswap_test(si, offset))
1974 			continue;
1975 
1976 		pte_unmap(pte);
1977 		swap_map = &si->swap_map[offset];
1978 		page = lookup_swap_cache(entry, vma, addr);
1979 		if (!page) {
1980 			vmf.vma = vma;
1981 			vmf.address = addr;
1982 			vmf.pmd = pmd;
1983 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1984 						&vmf);
1985 		}
1986 		if (!page) {
1987 			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1988 				goto try_next;
1989 			return -ENOMEM;
1990 		}
1991 
1992 		lock_page(page);
1993 		wait_on_page_writeback(page);
1994 		ret = unuse_pte(vma, pmd, addr, entry, page);
1995 		if (ret < 0) {
1996 			unlock_page(page);
1997 			put_page(page);
1998 			goto out;
1999 		}
2000 
2001 		try_to_free_swap(page);
2002 		unlock_page(page);
2003 		put_page(page);
2004 
2005 		if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
2006 			ret = FRONTSWAP_PAGES_UNUSED;
2007 			goto out;
2008 		}
2009 try_next:
2010 		pte = pte_offset_map(pmd, addr);
2011 	} while (pte++, addr += PAGE_SIZE, addr != end);
2012 	pte_unmap(pte - 1);
2013 
2014 	ret = 0;
2015 out:
2016 	return ret;
2017 }
2018 
2019 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2020 				unsigned long addr, unsigned long end,
2021 				unsigned int type, bool frontswap,
2022 				unsigned long *fs_pages_to_unuse)
2023 {
2024 	pmd_t *pmd;
2025 	unsigned long next;
2026 	int ret;
2027 
2028 	pmd = pmd_offset(pud, addr);
2029 	do {
2030 		cond_resched();
2031 		next = pmd_addr_end(addr, end);
2032 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2033 			continue;
2034 		ret = unuse_pte_range(vma, pmd, addr, next, type,
2035 				      frontswap, fs_pages_to_unuse);
2036 		if (ret)
2037 			return ret;
2038 	} while (pmd++, addr = next, addr != end);
2039 	return 0;
2040 }
2041 
2042 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2043 				unsigned long addr, unsigned long end,
2044 				unsigned int type, bool frontswap,
2045 				unsigned long *fs_pages_to_unuse)
2046 {
2047 	pud_t *pud;
2048 	unsigned long next;
2049 	int ret;
2050 
2051 	pud = pud_offset(p4d, addr);
2052 	do {
2053 		next = pud_addr_end(addr, end);
2054 		if (pud_none_or_clear_bad(pud))
2055 			continue;
2056 		ret = unuse_pmd_range(vma, pud, addr, next, type,
2057 				      frontswap, fs_pages_to_unuse);
2058 		if (ret)
2059 			return ret;
2060 	} while (pud++, addr = next, addr != end);
2061 	return 0;
2062 }
2063 
2064 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2065 				unsigned long addr, unsigned long end,
2066 				unsigned int type, bool frontswap,
2067 				unsigned long *fs_pages_to_unuse)
2068 {
2069 	p4d_t *p4d;
2070 	unsigned long next;
2071 	int ret;
2072 
2073 	p4d = p4d_offset(pgd, addr);
2074 	do {
2075 		next = p4d_addr_end(addr, end);
2076 		if (p4d_none_or_clear_bad(p4d))
2077 			continue;
2078 		ret = unuse_pud_range(vma, p4d, addr, next, type,
2079 				      frontswap, fs_pages_to_unuse);
2080 		if (ret)
2081 			return ret;
2082 	} while (p4d++, addr = next, addr != end);
2083 	return 0;
2084 }
2085 
2086 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2087 		     bool frontswap, unsigned long *fs_pages_to_unuse)
2088 {
2089 	pgd_t *pgd;
2090 	unsigned long addr, end, next;
2091 	int ret;
2092 
2093 	addr = vma->vm_start;
2094 	end = vma->vm_end;
2095 
2096 	pgd = pgd_offset(vma->vm_mm, addr);
2097 	do {
2098 		next = pgd_addr_end(addr, end);
2099 		if (pgd_none_or_clear_bad(pgd))
2100 			continue;
2101 		ret = unuse_p4d_range(vma, pgd, addr, next, type,
2102 				      frontswap, fs_pages_to_unuse);
2103 		if (ret)
2104 			return ret;
2105 	} while (pgd++, addr = next, addr != end);
2106 	return 0;
2107 }
2108 
2109 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2110 		    bool frontswap, unsigned long *fs_pages_to_unuse)
2111 {
2112 	struct vm_area_struct *vma;
2113 	int ret = 0;
2114 
2115 	down_read(&mm->mmap_sem);
2116 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2117 		if (vma->anon_vma) {
2118 			ret = unuse_vma(vma, type, frontswap,
2119 					fs_pages_to_unuse);
2120 			if (ret)
2121 				break;
2122 		}
2123 		cond_resched();
2124 	}
2125 	up_read(&mm->mmap_sem);
2126 	return ret;
2127 }
2128 
2129 /*
2130  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2131  * from current position to next entry still in use. Return 0
2132  * if there are no inuse entries after prev till end of the map.
2133  */
2134 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2135 					unsigned int prev, bool frontswap)
2136 {
2137 	unsigned int i;
2138 	unsigned char count;
2139 
2140 	/*
2141 	 * No need for swap_lock here: we're just looking
2142 	 * for whether an entry is in use, not modifying it; false
2143 	 * hits are okay, and sys_swapoff() has already prevented new
2144 	 * allocations from this area (while holding swap_lock).
2145 	 */
2146 	for (i = prev + 1; i < si->max; i++) {
2147 		count = READ_ONCE(si->swap_map[i]);
2148 		if (count && swap_count(count) != SWAP_MAP_BAD)
2149 			if (!frontswap || frontswap_test(si, i))
2150 				break;
2151 		if ((i % LATENCY_LIMIT) == 0)
2152 			cond_resched();
2153 	}
2154 
2155 	if (i == si->max)
2156 		i = 0;
2157 
2158 	return i;
2159 }
2160 
2161 /*
2162  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2163  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2164  */
2165 int try_to_unuse(unsigned int type, bool frontswap,
2166 		 unsigned long pages_to_unuse)
2167 {
2168 	struct mm_struct *prev_mm;
2169 	struct mm_struct *mm;
2170 	struct list_head *p;
2171 	int retval = 0;
2172 	struct swap_info_struct *si = swap_info[type];
2173 	struct page *page;
2174 	swp_entry_t entry;
2175 	unsigned int i;
2176 
2177 	if (!READ_ONCE(si->inuse_pages))
2178 		return 0;
2179 
2180 	if (!frontswap)
2181 		pages_to_unuse = 0;
2182 
2183 retry:
2184 	retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2185 	if (retval)
2186 		goto out;
2187 
2188 	prev_mm = &init_mm;
2189 	mmget(prev_mm);
2190 
2191 	spin_lock(&mmlist_lock);
2192 	p = &init_mm.mmlist;
2193 	while (READ_ONCE(si->inuse_pages) &&
2194 	       !signal_pending(current) &&
2195 	       (p = p->next) != &init_mm.mmlist) {
2196 
2197 		mm = list_entry(p, struct mm_struct, mmlist);
2198 		if (!mmget_not_zero(mm))
2199 			continue;
2200 		spin_unlock(&mmlist_lock);
2201 		mmput(prev_mm);
2202 		prev_mm = mm;
2203 		retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2204 
2205 		if (retval) {
2206 			mmput(prev_mm);
2207 			goto out;
2208 		}
2209 
2210 		/*
2211 		 * Make sure that we aren't completely killing
2212 		 * interactive performance.
2213 		 */
2214 		cond_resched();
2215 		spin_lock(&mmlist_lock);
2216 	}
2217 	spin_unlock(&mmlist_lock);
2218 
2219 	mmput(prev_mm);
2220 
2221 	i = 0;
2222 	while (READ_ONCE(si->inuse_pages) &&
2223 	       !signal_pending(current) &&
2224 	       (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2225 
2226 		entry = swp_entry(type, i);
2227 		page = find_get_page(swap_address_space(entry), i);
2228 		if (!page)
2229 			continue;
2230 
2231 		/*
2232 		 * It is conceivable that a racing task removed this page from
2233 		 * swap cache just before we acquired the page lock. The page
2234 		 * might even be back in swap cache on another swap area. But
2235 		 * that is okay, try_to_free_swap() only removes stale pages.
2236 		 */
2237 		lock_page(page);
2238 		wait_on_page_writeback(page);
2239 		try_to_free_swap(page);
2240 		unlock_page(page);
2241 		put_page(page);
2242 
2243 		/*
2244 		 * For frontswap, we just need to unuse pages_to_unuse, if
2245 		 * it was specified. Need not check frontswap again here as
2246 		 * we already zeroed out pages_to_unuse if not frontswap.
2247 		 */
2248 		if (pages_to_unuse && --pages_to_unuse == 0)
2249 			goto out;
2250 	}
2251 
2252 	/*
2253 	 * Lets check again to see if there are still swap entries in the map.
2254 	 * If yes, we would need to do retry the unuse logic again.
2255 	 * Under global memory pressure, swap entries can be reinserted back
2256 	 * into process space after the mmlist loop above passes over them.
2257 	 *
2258 	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2259 	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2260 	 * at its own independent pace; and even shmem_writepage() could have
2261 	 * been preempted after get_swap_page(), temporarily hiding that swap.
2262 	 * It's easy and robust (though cpu-intensive) just to keep retrying.
2263 	 */
2264 	if (READ_ONCE(si->inuse_pages)) {
2265 		if (!signal_pending(current))
2266 			goto retry;
2267 		retval = -EINTR;
2268 	}
2269 out:
2270 	return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2271 }
2272 
2273 /*
2274  * After a successful try_to_unuse, if no swap is now in use, we know
2275  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2276  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2277  * added to the mmlist just after page_duplicate - before would be racy.
2278  */
2279 static void drain_mmlist(void)
2280 {
2281 	struct list_head *p, *next;
2282 	unsigned int type;
2283 
2284 	for (type = 0; type < nr_swapfiles; type++)
2285 		if (swap_info[type]->inuse_pages)
2286 			return;
2287 	spin_lock(&mmlist_lock);
2288 	list_for_each_safe(p, next, &init_mm.mmlist)
2289 		list_del_init(p);
2290 	spin_unlock(&mmlist_lock);
2291 }
2292 
2293 /*
2294  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2295  * corresponds to page offset for the specified swap entry.
2296  * Note that the type of this function is sector_t, but it returns page offset
2297  * into the bdev, not sector offset.
2298  */
2299 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2300 {
2301 	struct swap_info_struct *sis;
2302 	struct swap_extent *se;
2303 	pgoff_t offset;
2304 
2305 	sis = swp_swap_info(entry);
2306 	*bdev = sis->bdev;
2307 
2308 	offset = swp_offset(entry);
2309 	se = offset_to_swap_extent(sis, offset);
2310 	return se->start_block + (offset - se->start_page);
2311 }
2312 
2313 /*
2314  * Returns the page offset into bdev for the specified page's swap entry.
2315  */
2316 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2317 {
2318 	swp_entry_t entry;
2319 	entry.val = page_private(page);
2320 	return map_swap_entry(entry, bdev);
2321 }
2322 
2323 /*
2324  * Free all of a swapdev's extent information
2325  */
2326 static void destroy_swap_extents(struct swap_info_struct *sis)
2327 {
2328 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2329 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2330 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2331 
2332 		rb_erase(rb, &sis->swap_extent_root);
2333 		kfree(se);
2334 	}
2335 
2336 	if (sis->flags & SWP_ACTIVATED) {
2337 		struct file *swap_file = sis->swap_file;
2338 		struct address_space *mapping = swap_file->f_mapping;
2339 
2340 		sis->flags &= ~SWP_ACTIVATED;
2341 		if (mapping->a_ops->swap_deactivate)
2342 			mapping->a_ops->swap_deactivate(swap_file);
2343 	}
2344 }
2345 
2346 /*
2347  * Add a block range (and the corresponding page range) into this swapdev's
2348  * extent tree.
2349  *
2350  * This function rather assumes that it is called in ascending page order.
2351  */
2352 int
2353 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2354 		unsigned long nr_pages, sector_t start_block)
2355 {
2356 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2357 	struct swap_extent *se;
2358 	struct swap_extent *new_se;
2359 
2360 	/*
2361 	 * place the new node at the right most since the
2362 	 * function is called in ascending page order.
2363 	 */
2364 	while (*link) {
2365 		parent = *link;
2366 		link = &parent->rb_right;
2367 	}
2368 
2369 	if (parent) {
2370 		se = rb_entry(parent, struct swap_extent, rb_node);
2371 		BUG_ON(se->start_page + se->nr_pages != start_page);
2372 		if (se->start_block + se->nr_pages == start_block) {
2373 			/* Merge it */
2374 			se->nr_pages += nr_pages;
2375 			return 0;
2376 		}
2377 	}
2378 
2379 	/* No merge, insert a new extent. */
2380 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2381 	if (new_se == NULL)
2382 		return -ENOMEM;
2383 	new_se->start_page = start_page;
2384 	new_se->nr_pages = nr_pages;
2385 	new_se->start_block = start_block;
2386 
2387 	rb_link_node(&new_se->rb_node, parent, link);
2388 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2389 	return 1;
2390 }
2391 EXPORT_SYMBOL_GPL(add_swap_extent);
2392 
2393 /*
2394  * A `swap extent' is a simple thing which maps a contiguous range of pages
2395  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2396  * is built at swapon time and is then used at swap_writepage/swap_readpage
2397  * time for locating where on disk a page belongs.
2398  *
2399  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2400  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2401  * swap files identically.
2402  *
2403  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2404  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2405  * swapfiles are handled *identically* after swapon time.
2406  *
2407  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2408  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2409  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2410  * requirements, they are simply tossed out - we will never use those blocks
2411  * for swapping.
2412  *
2413  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2414  * prevents users from writing to the swap device, which will corrupt memory.
2415  *
2416  * The amount of disk space which a single swap extent represents varies.
2417  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2418  * extents in the list.  To avoid much list walking, we cache the previous
2419  * search location in `curr_swap_extent', and start new searches from there.
2420  * This is extremely effective.  The average number of iterations in
2421  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2422  */
2423 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2424 {
2425 	struct file *swap_file = sis->swap_file;
2426 	struct address_space *mapping = swap_file->f_mapping;
2427 	struct inode *inode = mapping->host;
2428 	int ret;
2429 
2430 	if (S_ISBLK(inode->i_mode)) {
2431 		ret = add_swap_extent(sis, 0, sis->max, 0);
2432 		*span = sis->pages;
2433 		return ret;
2434 	}
2435 
2436 	if (mapping->a_ops->swap_activate) {
2437 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2438 		if (ret >= 0)
2439 			sis->flags |= SWP_ACTIVATED;
2440 		if (!ret) {
2441 			sis->flags |= SWP_FS;
2442 			ret = add_swap_extent(sis, 0, sis->max, 0);
2443 			*span = sis->pages;
2444 		}
2445 		return ret;
2446 	}
2447 
2448 	return generic_swapfile_activate(sis, swap_file, span);
2449 }
2450 
2451 static int swap_node(struct swap_info_struct *p)
2452 {
2453 	struct block_device *bdev;
2454 
2455 	if (p->bdev)
2456 		bdev = p->bdev;
2457 	else
2458 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2459 
2460 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2461 }
2462 
2463 static void setup_swap_info(struct swap_info_struct *p, int prio,
2464 			    unsigned char *swap_map,
2465 			    struct swap_cluster_info *cluster_info)
2466 {
2467 	int i;
2468 
2469 	if (prio >= 0)
2470 		p->prio = prio;
2471 	else
2472 		p->prio = --least_priority;
2473 	/*
2474 	 * the plist prio is negated because plist ordering is
2475 	 * low-to-high, while swap ordering is high-to-low
2476 	 */
2477 	p->list.prio = -p->prio;
2478 	for_each_node(i) {
2479 		if (p->prio >= 0)
2480 			p->avail_lists[i].prio = -p->prio;
2481 		else {
2482 			if (swap_node(p) == i)
2483 				p->avail_lists[i].prio = 1;
2484 			else
2485 				p->avail_lists[i].prio = -p->prio;
2486 		}
2487 	}
2488 	p->swap_map = swap_map;
2489 	p->cluster_info = cluster_info;
2490 }
2491 
2492 static void _enable_swap_info(struct swap_info_struct *p)
2493 {
2494 	p->flags |= SWP_WRITEOK | SWP_VALID;
2495 	atomic_long_add(p->pages, &nr_swap_pages);
2496 	total_swap_pages += p->pages;
2497 
2498 	assert_spin_locked(&swap_lock);
2499 	/*
2500 	 * both lists are plists, and thus priority ordered.
2501 	 * swap_active_head needs to be priority ordered for swapoff(),
2502 	 * which on removal of any swap_info_struct with an auto-assigned
2503 	 * (i.e. negative) priority increments the auto-assigned priority
2504 	 * of any lower-priority swap_info_structs.
2505 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2506 	 * which allocates swap pages from the highest available priority
2507 	 * swap_info_struct.
2508 	 */
2509 	plist_add(&p->list, &swap_active_head);
2510 	add_to_avail_list(p);
2511 }
2512 
2513 static void enable_swap_info(struct swap_info_struct *p, int prio,
2514 				unsigned char *swap_map,
2515 				struct swap_cluster_info *cluster_info,
2516 				unsigned long *frontswap_map)
2517 {
2518 	frontswap_init(p->type, frontswap_map);
2519 	spin_lock(&swap_lock);
2520 	spin_lock(&p->lock);
2521 	setup_swap_info(p, prio, swap_map, cluster_info);
2522 	spin_unlock(&p->lock);
2523 	spin_unlock(&swap_lock);
2524 	/*
2525 	 * Guarantee swap_map, cluster_info, etc. fields are valid
2526 	 * between get/put_swap_device() if SWP_VALID bit is set
2527 	 */
2528 	synchronize_rcu();
2529 	spin_lock(&swap_lock);
2530 	spin_lock(&p->lock);
2531 	_enable_swap_info(p);
2532 	spin_unlock(&p->lock);
2533 	spin_unlock(&swap_lock);
2534 }
2535 
2536 static void reinsert_swap_info(struct swap_info_struct *p)
2537 {
2538 	spin_lock(&swap_lock);
2539 	spin_lock(&p->lock);
2540 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2541 	_enable_swap_info(p);
2542 	spin_unlock(&p->lock);
2543 	spin_unlock(&swap_lock);
2544 }
2545 
2546 bool has_usable_swap(void)
2547 {
2548 	bool ret = true;
2549 
2550 	spin_lock(&swap_lock);
2551 	if (plist_head_empty(&swap_active_head))
2552 		ret = false;
2553 	spin_unlock(&swap_lock);
2554 	return ret;
2555 }
2556 
2557 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2558 {
2559 	struct swap_info_struct *p = NULL;
2560 	unsigned char *swap_map;
2561 	struct swap_cluster_info *cluster_info;
2562 	unsigned long *frontswap_map;
2563 	struct file *swap_file, *victim;
2564 	struct address_space *mapping;
2565 	struct inode *inode;
2566 	struct filename *pathname;
2567 	int err, found = 0;
2568 	unsigned int old_block_size;
2569 
2570 	if (!capable(CAP_SYS_ADMIN))
2571 		return -EPERM;
2572 
2573 	BUG_ON(!current->mm);
2574 
2575 	pathname = getname(specialfile);
2576 	if (IS_ERR(pathname))
2577 		return PTR_ERR(pathname);
2578 
2579 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2580 	err = PTR_ERR(victim);
2581 	if (IS_ERR(victim))
2582 		goto out;
2583 
2584 	mapping = victim->f_mapping;
2585 	spin_lock(&swap_lock);
2586 	plist_for_each_entry(p, &swap_active_head, list) {
2587 		if (p->flags & SWP_WRITEOK) {
2588 			if (p->swap_file->f_mapping == mapping) {
2589 				found = 1;
2590 				break;
2591 			}
2592 		}
2593 	}
2594 	if (!found) {
2595 		err = -EINVAL;
2596 		spin_unlock(&swap_lock);
2597 		goto out_dput;
2598 	}
2599 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2600 		vm_unacct_memory(p->pages);
2601 	else {
2602 		err = -ENOMEM;
2603 		spin_unlock(&swap_lock);
2604 		goto out_dput;
2605 	}
2606 	del_from_avail_list(p);
2607 	spin_lock(&p->lock);
2608 	if (p->prio < 0) {
2609 		struct swap_info_struct *si = p;
2610 		int nid;
2611 
2612 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2613 			si->prio++;
2614 			si->list.prio--;
2615 			for_each_node(nid) {
2616 				if (si->avail_lists[nid].prio != 1)
2617 					si->avail_lists[nid].prio--;
2618 			}
2619 		}
2620 		least_priority++;
2621 	}
2622 	plist_del(&p->list, &swap_active_head);
2623 	atomic_long_sub(p->pages, &nr_swap_pages);
2624 	total_swap_pages -= p->pages;
2625 	p->flags &= ~SWP_WRITEOK;
2626 	spin_unlock(&p->lock);
2627 	spin_unlock(&swap_lock);
2628 
2629 	disable_swap_slots_cache_lock();
2630 
2631 	set_current_oom_origin();
2632 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2633 	clear_current_oom_origin();
2634 
2635 	if (err) {
2636 		/* re-insert swap space back into swap_list */
2637 		reinsert_swap_info(p);
2638 		reenable_swap_slots_cache_unlock();
2639 		goto out_dput;
2640 	}
2641 
2642 	reenable_swap_slots_cache_unlock();
2643 
2644 	spin_lock(&swap_lock);
2645 	spin_lock(&p->lock);
2646 	p->flags &= ~SWP_VALID;		/* mark swap device as invalid */
2647 	spin_unlock(&p->lock);
2648 	spin_unlock(&swap_lock);
2649 	/*
2650 	 * wait for swap operations protected by get/put_swap_device()
2651 	 * to complete
2652 	 */
2653 	synchronize_rcu();
2654 
2655 	flush_work(&p->discard_work);
2656 
2657 	destroy_swap_extents(p);
2658 	if (p->flags & SWP_CONTINUED)
2659 		free_swap_count_continuations(p);
2660 
2661 	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2662 		atomic_dec(&nr_rotate_swap);
2663 
2664 	mutex_lock(&swapon_mutex);
2665 	spin_lock(&swap_lock);
2666 	spin_lock(&p->lock);
2667 	drain_mmlist();
2668 
2669 	/* wait for anyone still in scan_swap_map */
2670 	p->highest_bit = 0;		/* cuts scans short */
2671 	while (p->flags >= SWP_SCANNING) {
2672 		spin_unlock(&p->lock);
2673 		spin_unlock(&swap_lock);
2674 		schedule_timeout_uninterruptible(1);
2675 		spin_lock(&swap_lock);
2676 		spin_lock(&p->lock);
2677 	}
2678 
2679 	swap_file = p->swap_file;
2680 	old_block_size = p->old_block_size;
2681 	p->swap_file = NULL;
2682 	p->max = 0;
2683 	swap_map = p->swap_map;
2684 	p->swap_map = NULL;
2685 	cluster_info = p->cluster_info;
2686 	p->cluster_info = NULL;
2687 	frontswap_map = frontswap_map_get(p);
2688 	spin_unlock(&p->lock);
2689 	spin_unlock(&swap_lock);
2690 	frontswap_invalidate_area(p->type);
2691 	frontswap_map_set(p, NULL);
2692 	mutex_unlock(&swapon_mutex);
2693 	free_percpu(p->percpu_cluster);
2694 	p->percpu_cluster = NULL;
2695 	free_percpu(p->cluster_next_cpu);
2696 	p->cluster_next_cpu = NULL;
2697 	vfree(swap_map);
2698 	kvfree(cluster_info);
2699 	kvfree(frontswap_map);
2700 	/* Destroy swap account information */
2701 	swap_cgroup_swapoff(p->type);
2702 	exit_swap_address_space(p->type);
2703 
2704 	inode = mapping->host;
2705 	if (S_ISBLK(inode->i_mode)) {
2706 		struct block_device *bdev = I_BDEV(inode);
2707 
2708 		set_blocksize(bdev, old_block_size);
2709 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2710 	}
2711 
2712 	inode_lock(inode);
2713 	inode->i_flags &= ~S_SWAPFILE;
2714 	inode_unlock(inode);
2715 	filp_close(swap_file, NULL);
2716 
2717 	/*
2718 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2719 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2720 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2721 	 */
2722 	spin_lock(&swap_lock);
2723 	p->flags = 0;
2724 	spin_unlock(&swap_lock);
2725 
2726 	err = 0;
2727 	atomic_inc(&proc_poll_event);
2728 	wake_up_interruptible(&proc_poll_wait);
2729 
2730 out_dput:
2731 	filp_close(victim, NULL);
2732 out:
2733 	putname(pathname);
2734 	return err;
2735 }
2736 
2737 #ifdef CONFIG_PROC_FS
2738 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2739 {
2740 	struct seq_file *seq = file->private_data;
2741 
2742 	poll_wait(file, &proc_poll_wait, wait);
2743 
2744 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2745 		seq->poll_event = atomic_read(&proc_poll_event);
2746 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2747 	}
2748 
2749 	return EPOLLIN | EPOLLRDNORM;
2750 }
2751 
2752 /* iterator */
2753 static void *swap_start(struct seq_file *swap, loff_t *pos)
2754 {
2755 	struct swap_info_struct *si;
2756 	int type;
2757 	loff_t l = *pos;
2758 
2759 	mutex_lock(&swapon_mutex);
2760 
2761 	if (!l)
2762 		return SEQ_START_TOKEN;
2763 
2764 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2765 		if (!(si->flags & SWP_USED) || !si->swap_map)
2766 			continue;
2767 		if (!--l)
2768 			return si;
2769 	}
2770 
2771 	return NULL;
2772 }
2773 
2774 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2775 {
2776 	struct swap_info_struct *si = v;
2777 	int type;
2778 
2779 	if (v == SEQ_START_TOKEN)
2780 		type = 0;
2781 	else
2782 		type = si->type + 1;
2783 
2784 	++(*pos);
2785 	for (; (si = swap_type_to_swap_info(type)); type++) {
2786 		if (!(si->flags & SWP_USED) || !si->swap_map)
2787 			continue;
2788 		return si;
2789 	}
2790 
2791 	return NULL;
2792 }
2793 
2794 static void swap_stop(struct seq_file *swap, void *v)
2795 {
2796 	mutex_unlock(&swapon_mutex);
2797 }
2798 
2799 static int swap_show(struct seq_file *swap, void *v)
2800 {
2801 	struct swap_info_struct *si = v;
2802 	struct file *file;
2803 	int len;
2804 	unsigned int bytes, inuse;
2805 
2806 	if (si == SEQ_START_TOKEN) {
2807 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2808 		return 0;
2809 	}
2810 
2811 	bytes = si->pages << (PAGE_SHIFT - 10);
2812 	inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2813 
2814 	file = si->swap_file;
2815 	len = seq_file_path(swap, file, " \t\n\\");
2816 	seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2817 			len < 40 ? 40 - len : 1, " ",
2818 			S_ISBLK(file_inode(file)->i_mode) ?
2819 				"partition" : "file\t",
2820 			bytes, bytes < 10000000 ? "\t" : "",
2821 			inuse, inuse < 10000000 ? "\t" : "",
2822 			si->prio);
2823 	return 0;
2824 }
2825 
2826 static const struct seq_operations swaps_op = {
2827 	.start =	swap_start,
2828 	.next =		swap_next,
2829 	.stop =		swap_stop,
2830 	.show =		swap_show
2831 };
2832 
2833 static int swaps_open(struct inode *inode, struct file *file)
2834 {
2835 	struct seq_file *seq;
2836 	int ret;
2837 
2838 	ret = seq_open(file, &swaps_op);
2839 	if (ret)
2840 		return ret;
2841 
2842 	seq = file->private_data;
2843 	seq->poll_event = atomic_read(&proc_poll_event);
2844 	return 0;
2845 }
2846 
2847 static const struct proc_ops swaps_proc_ops = {
2848 	.proc_flags	= PROC_ENTRY_PERMANENT,
2849 	.proc_open	= swaps_open,
2850 	.proc_read	= seq_read,
2851 	.proc_lseek	= seq_lseek,
2852 	.proc_release	= seq_release,
2853 	.proc_poll	= swaps_poll,
2854 };
2855 
2856 static int __init procswaps_init(void)
2857 {
2858 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2859 	return 0;
2860 }
2861 __initcall(procswaps_init);
2862 #endif /* CONFIG_PROC_FS */
2863 
2864 #ifdef MAX_SWAPFILES_CHECK
2865 static int __init max_swapfiles_check(void)
2866 {
2867 	MAX_SWAPFILES_CHECK();
2868 	return 0;
2869 }
2870 late_initcall(max_swapfiles_check);
2871 #endif
2872 
2873 static struct swap_info_struct *alloc_swap_info(void)
2874 {
2875 	struct swap_info_struct *p;
2876 	unsigned int type;
2877 	int i;
2878 
2879 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2880 	if (!p)
2881 		return ERR_PTR(-ENOMEM);
2882 
2883 	spin_lock(&swap_lock);
2884 	for (type = 0; type < nr_swapfiles; type++) {
2885 		if (!(swap_info[type]->flags & SWP_USED))
2886 			break;
2887 	}
2888 	if (type >= MAX_SWAPFILES) {
2889 		spin_unlock(&swap_lock);
2890 		kvfree(p);
2891 		return ERR_PTR(-EPERM);
2892 	}
2893 	if (type >= nr_swapfiles) {
2894 		p->type = type;
2895 		WRITE_ONCE(swap_info[type], p);
2896 		/*
2897 		 * Write swap_info[type] before nr_swapfiles, in case a
2898 		 * racing procfs swap_start() or swap_next() is reading them.
2899 		 * (We never shrink nr_swapfiles, we never free this entry.)
2900 		 */
2901 		smp_wmb();
2902 		WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2903 	} else {
2904 		kvfree(p);
2905 		p = swap_info[type];
2906 		/*
2907 		 * Do not memset this entry: a racing procfs swap_next()
2908 		 * would be relying on p->type to remain valid.
2909 		 */
2910 	}
2911 	p->swap_extent_root = RB_ROOT;
2912 	plist_node_init(&p->list, 0);
2913 	for_each_node(i)
2914 		plist_node_init(&p->avail_lists[i], 0);
2915 	p->flags = SWP_USED;
2916 	spin_unlock(&swap_lock);
2917 	spin_lock_init(&p->lock);
2918 	spin_lock_init(&p->cont_lock);
2919 
2920 	return p;
2921 }
2922 
2923 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2924 {
2925 	int error;
2926 
2927 	if (S_ISBLK(inode->i_mode)) {
2928 		p->bdev = bdgrab(I_BDEV(inode));
2929 		error = blkdev_get(p->bdev,
2930 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2931 		if (error < 0) {
2932 			p->bdev = NULL;
2933 			return error;
2934 		}
2935 		p->old_block_size = block_size(p->bdev);
2936 		error = set_blocksize(p->bdev, PAGE_SIZE);
2937 		if (error < 0)
2938 			return error;
2939 		/*
2940 		 * Zoned block devices contain zones that have a sequential
2941 		 * write only restriction.  Hence zoned block devices are not
2942 		 * suitable for swapping.  Disallow them here.
2943 		 */
2944 		if (blk_queue_is_zoned(p->bdev->bd_queue))
2945 			return -EINVAL;
2946 		p->flags |= SWP_BLKDEV;
2947 	} else if (S_ISREG(inode->i_mode)) {
2948 		p->bdev = inode->i_sb->s_bdev;
2949 	}
2950 
2951 	return 0;
2952 }
2953 
2954 
2955 /*
2956  * Find out how many pages are allowed for a single swap device. There
2957  * are two limiting factors:
2958  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2959  * 2) the number of bits in the swap pte, as defined by the different
2960  * architectures.
2961  *
2962  * In order to find the largest possible bit mask, a swap entry with
2963  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2964  * decoded to a swp_entry_t again, and finally the swap offset is
2965  * extracted.
2966  *
2967  * This will mask all the bits from the initial ~0UL mask that can't
2968  * be encoded in either the swp_entry_t or the architecture definition
2969  * of a swap pte.
2970  */
2971 unsigned long generic_max_swapfile_size(void)
2972 {
2973 	return swp_offset(pte_to_swp_entry(
2974 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2975 }
2976 
2977 /* Can be overridden by an architecture for additional checks. */
2978 __weak unsigned long max_swapfile_size(void)
2979 {
2980 	return generic_max_swapfile_size();
2981 }
2982 
2983 static unsigned long read_swap_header(struct swap_info_struct *p,
2984 					union swap_header *swap_header,
2985 					struct inode *inode)
2986 {
2987 	int i;
2988 	unsigned long maxpages;
2989 	unsigned long swapfilepages;
2990 	unsigned long last_page;
2991 
2992 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2993 		pr_err("Unable to find swap-space signature\n");
2994 		return 0;
2995 	}
2996 
2997 	/* swap partition endianess hack... */
2998 	if (swab32(swap_header->info.version) == 1) {
2999 		swab32s(&swap_header->info.version);
3000 		swab32s(&swap_header->info.last_page);
3001 		swab32s(&swap_header->info.nr_badpages);
3002 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3003 			return 0;
3004 		for (i = 0; i < swap_header->info.nr_badpages; i++)
3005 			swab32s(&swap_header->info.badpages[i]);
3006 	}
3007 	/* Check the swap header's sub-version */
3008 	if (swap_header->info.version != 1) {
3009 		pr_warn("Unable to handle swap header version %d\n",
3010 			swap_header->info.version);
3011 		return 0;
3012 	}
3013 
3014 	p->lowest_bit  = 1;
3015 	p->cluster_next = 1;
3016 	p->cluster_nr = 0;
3017 
3018 	maxpages = max_swapfile_size();
3019 	last_page = swap_header->info.last_page;
3020 	if (!last_page) {
3021 		pr_warn("Empty swap-file\n");
3022 		return 0;
3023 	}
3024 	if (last_page > maxpages) {
3025 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3026 			maxpages << (PAGE_SHIFT - 10),
3027 			last_page << (PAGE_SHIFT - 10));
3028 	}
3029 	if (maxpages > last_page) {
3030 		maxpages = last_page + 1;
3031 		/* p->max is an unsigned int: don't overflow it */
3032 		if ((unsigned int)maxpages == 0)
3033 			maxpages = UINT_MAX;
3034 	}
3035 	p->highest_bit = maxpages - 1;
3036 
3037 	if (!maxpages)
3038 		return 0;
3039 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3040 	if (swapfilepages && maxpages > swapfilepages) {
3041 		pr_warn("Swap area shorter than signature indicates\n");
3042 		return 0;
3043 	}
3044 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3045 		return 0;
3046 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3047 		return 0;
3048 
3049 	return maxpages;
3050 }
3051 
3052 #define SWAP_CLUSTER_INFO_COLS						\
3053 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3054 #define SWAP_CLUSTER_SPACE_COLS						\
3055 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3056 #define SWAP_CLUSTER_COLS						\
3057 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3058 
3059 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3060 					union swap_header *swap_header,
3061 					unsigned char *swap_map,
3062 					struct swap_cluster_info *cluster_info,
3063 					unsigned long maxpages,
3064 					sector_t *span)
3065 {
3066 	unsigned int j, k;
3067 	unsigned int nr_good_pages;
3068 	int nr_extents;
3069 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3070 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3071 	unsigned long i, idx;
3072 
3073 	nr_good_pages = maxpages - 1;	/* omit header page */
3074 
3075 	cluster_list_init(&p->free_clusters);
3076 	cluster_list_init(&p->discard_clusters);
3077 
3078 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3079 		unsigned int page_nr = swap_header->info.badpages[i];
3080 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3081 			return -EINVAL;
3082 		if (page_nr < maxpages) {
3083 			swap_map[page_nr] = SWAP_MAP_BAD;
3084 			nr_good_pages--;
3085 			/*
3086 			 * Haven't marked the cluster free yet, no list
3087 			 * operation involved
3088 			 */
3089 			inc_cluster_info_page(p, cluster_info, page_nr);
3090 		}
3091 	}
3092 
3093 	/* Haven't marked the cluster free yet, no list operation involved */
3094 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3095 		inc_cluster_info_page(p, cluster_info, i);
3096 
3097 	if (nr_good_pages) {
3098 		swap_map[0] = SWAP_MAP_BAD;
3099 		/*
3100 		 * Not mark the cluster free yet, no list
3101 		 * operation involved
3102 		 */
3103 		inc_cluster_info_page(p, cluster_info, 0);
3104 		p->max = maxpages;
3105 		p->pages = nr_good_pages;
3106 		nr_extents = setup_swap_extents(p, span);
3107 		if (nr_extents < 0)
3108 			return nr_extents;
3109 		nr_good_pages = p->pages;
3110 	}
3111 	if (!nr_good_pages) {
3112 		pr_warn("Empty swap-file\n");
3113 		return -EINVAL;
3114 	}
3115 
3116 	if (!cluster_info)
3117 		return nr_extents;
3118 
3119 
3120 	/*
3121 	 * Reduce false cache line sharing between cluster_info and
3122 	 * sharing same address space.
3123 	 */
3124 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3125 		j = (k + col) % SWAP_CLUSTER_COLS;
3126 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3127 			idx = i * SWAP_CLUSTER_COLS + j;
3128 			if (idx >= nr_clusters)
3129 				continue;
3130 			if (cluster_count(&cluster_info[idx]))
3131 				continue;
3132 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3133 			cluster_list_add_tail(&p->free_clusters, cluster_info,
3134 					      idx);
3135 		}
3136 	}
3137 	return nr_extents;
3138 }
3139 
3140 /*
3141  * Helper to sys_swapon determining if a given swap
3142  * backing device queue supports DISCARD operations.
3143  */
3144 static bool swap_discardable(struct swap_info_struct *si)
3145 {
3146 	struct request_queue *q = bdev_get_queue(si->bdev);
3147 
3148 	if (!q || !blk_queue_discard(q))
3149 		return false;
3150 
3151 	return true;
3152 }
3153 
3154 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3155 {
3156 	struct swap_info_struct *p;
3157 	struct filename *name;
3158 	struct file *swap_file = NULL;
3159 	struct address_space *mapping;
3160 	int prio;
3161 	int error;
3162 	union swap_header *swap_header;
3163 	int nr_extents;
3164 	sector_t span;
3165 	unsigned long maxpages;
3166 	unsigned char *swap_map = NULL;
3167 	struct swap_cluster_info *cluster_info = NULL;
3168 	unsigned long *frontswap_map = NULL;
3169 	struct page *page = NULL;
3170 	struct inode *inode = NULL;
3171 	bool inced_nr_rotate_swap = false;
3172 
3173 	if (swap_flags & ~SWAP_FLAGS_VALID)
3174 		return -EINVAL;
3175 
3176 	if (!capable(CAP_SYS_ADMIN))
3177 		return -EPERM;
3178 
3179 	if (!swap_avail_heads)
3180 		return -ENOMEM;
3181 
3182 	p = alloc_swap_info();
3183 	if (IS_ERR(p))
3184 		return PTR_ERR(p);
3185 
3186 	INIT_WORK(&p->discard_work, swap_discard_work);
3187 
3188 	name = getname(specialfile);
3189 	if (IS_ERR(name)) {
3190 		error = PTR_ERR(name);
3191 		name = NULL;
3192 		goto bad_swap;
3193 	}
3194 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3195 	if (IS_ERR(swap_file)) {
3196 		error = PTR_ERR(swap_file);
3197 		swap_file = NULL;
3198 		goto bad_swap;
3199 	}
3200 
3201 	p->swap_file = swap_file;
3202 	mapping = swap_file->f_mapping;
3203 	inode = mapping->host;
3204 
3205 	error = claim_swapfile(p, inode);
3206 	if (unlikely(error))
3207 		goto bad_swap;
3208 
3209 	inode_lock(inode);
3210 	if (IS_SWAPFILE(inode)) {
3211 		error = -EBUSY;
3212 		goto bad_swap_unlock_inode;
3213 	}
3214 
3215 	/*
3216 	 * Read the swap header.
3217 	 */
3218 	if (!mapping->a_ops->readpage) {
3219 		error = -EINVAL;
3220 		goto bad_swap_unlock_inode;
3221 	}
3222 	page = read_mapping_page(mapping, 0, swap_file);
3223 	if (IS_ERR(page)) {
3224 		error = PTR_ERR(page);
3225 		goto bad_swap_unlock_inode;
3226 	}
3227 	swap_header = kmap(page);
3228 
3229 	maxpages = read_swap_header(p, swap_header, inode);
3230 	if (unlikely(!maxpages)) {
3231 		error = -EINVAL;
3232 		goto bad_swap_unlock_inode;
3233 	}
3234 
3235 	/* OK, set up the swap map and apply the bad block list */
3236 	swap_map = vzalloc(maxpages);
3237 	if (!swap_map) {
3238 		error = -ENOMEM;
3239 		goto bad_swap_unlock_inode;
3240 	}
3241 
3242 	if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3243 		p->flags |= SWP_STABLE_WRITES;
3244 
3245 	if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3246 		p->flags |= SWP_SYNCHRONOUS_IO;
3247 
3248 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3249 		int cpu;
3250 		unsigned long ci, nr_cluster;
3251 
3252 		p->flags |= SWP_SOLIDSTATE;
3253 		p->cluster_next_cpu = alloc_percpu(unsigned int);
3254 		if (!p->cluster_next_cpu) {
3255 			error = -ENOMEM;
3256 			goto bad_swap_unlock_inode;
3257 		}
3258 		/*
3259 		 * select a random position to start with to help wear leveling
3260 		 * SSD
3261 		 */
3262 		for_each_possible_cpu(cpu) {
3263 			per_cpu(*p->cluster_next_cpu, cpu) =
3264 				1 + prandom_u32_max(p->highest_bit);
3265 		}
3266 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3267 
3268 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3269 					GFP_KERNEL);
3270 		if (!cluster_info) {
3271 			error = -ENOMEM;
3272 			goto bad_swap_unlock_inode;
3273 		}
3274 
3275 		for (ci = 0; ci < nr_cluster; ci++)
3276 			spin_lock_init(&((cluster_info + ci)->lock));
3277 
3278 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3279 		if (!p->percpu_cluster) {
3280 			error = -ENOMEM;
3281 			goto bad_swap_unlock_inode;
3282 		}
3283 		for_each_possible_cpu(cpu) {
3284 			struct percpu_cluster *cluster;
3285 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3286 			cluster_set_null(&cluster->index);
3287 		}
3288 	} else {
3289 		atomic_inc(&nr_rotate_swap);
3290 		inced_nr_rotate_swap = true;
3291 	}
3292 
3293 	error = swap_cgroup_swapon(p->type, maxpages);
3294 	if (error)
3295 		goto bad_swap_unlock_inode;
3296 
3297 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3298 		cluster_info, maxpages, &span);
3299 	if (unlikely(nr_extents < 0)) {
3300 		error = nr_extents;
3301 		goto bad_swap_unlock_inode;
3302 	}
3303 	/* frontswap enabled? set up bit-per-page map for frontswap */
3304 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3305 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3306 					 sizeof(long),
3307 					 GFP_KERNEL);
3308 
3309 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3310 		/*
3311 		 * When discard is enabled for swap with no particular
3312 		 * policy flagged, we set all swap discard flags here in
3313 		 * order to sustain backward compatibility with older
3314 		 * swapon(8) releases.
3315 		 */
3316 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3317 			     SWP_PAGE_DISCARD);
3318 
3319 		/*
3320 		 * By flagging sys_swapon, a sysadmin can tell us to
3321 		 * either do single-time area discards only, or to just
3322 		 * perform discards for released swap page-clusters.
3323 		 * Now it's time to adjust the p->flags accordingly.
3324 		 */
3325 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3326 			p->flags &= ~SWP_PAGE_DISCARD;
3327 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3328 			p->flags &= ~SWP_AREA_DISCARD;
3329 
3330 		/* issue a swapon-time discard if it's still required */
3331 		if (p->flags & SWP_AREA_DISCARD) {
3332 			int err = discard_swap(p);
3333 			if (unlikely(err))
3334 				pr_err("swapon: discard_swap(%p): %d\n",
3335 					p, err);
3336 		}
3337 	}
3338 
3339 	error = init_swap_address_space(p->type, maxpages);
3340 	if (error)
3341 		goto bad_swap_unlock_inode;
3342 
3343 	/*
3344 	 * Flush any pending IO and dirty mappings before we start using this
3345 	 * swap device.
3346 	 */
3347 	inode->i_flags |= S_SWAPFILE;
3348 	error = inode_drain_writes(inode);
3349 	if (error) {
3350 		inode->i_flags &= ~S_SWAPFILE;
3351 		goto bad_swap_unlock_inode;
3352 	}
3353 
3354 	mutex_lock(&swapon_mutex);
3355 	prio = -1;
3356 	if (swap_flags & SWAP_FLAG_PREFER)
3357 		prio =
3358 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3359 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3360 
3361 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3362 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3363 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3364 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3365 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3366 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3367 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3368 		(frontswap_map) ? "FS" : "");
3369 
3370 	mutex_unlock(&swapon_mutex);
3371 	atomic_inc(&proc_poll_event);
3372 	wake_up_interruptible(&proc_poll_wait);
3373 
3374 	error = 0;
3375 	goto out;
3376 bad_swap_unlock_inode:
3377 	inode_unlock(inode);
3378 bad_swap:
3379 	free_percpu(p->percpu_cluster);
3380 	p->percpu_cluster = NULL;
3381 	free_percpu(p->cluster_next_cpu);
3382 	p->cluster_next_cpu = NULL;
3383 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3384 		set_blocksize(p->bdev, p->old_block_size);
3385 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3386 	}
3387 	inode = NULL;
3388 	destroy_swap_extents(p);
3389 	swap_cgroup_swapoff(p->type);
3390 	spin_lock(&swap_lock);
3391 	p->swap_file = NULL;
3392 	p->flags = 0;
3393 	spin_unlock(&swap_lock);
3394 	vfree(swap_map);
3395 	kvfree(cluster_info);
3396 	kvfree(frontswap_map);
3397 	if (inced_nr_rotate_swap)
3398 		atomic_dec(&nr_rotate_swap);
3399 	if (swap_file)
3400 		filp_close(swap_file, NULL);
3401 out:
3402 	if (page && !IS_ERR(page)) {
3403 		kunmap(page);
3404 		put_page(page);
3405 	}
3406 	if (name)
3407 		putname(name);
3408 	if (inode)
3409 		inode_unlock(inode);
3410 	if (!error)
3411 		enable_swap_slots_cache();
3412 	return error;
3413 }
3414 
3415 void si_swapinfo(struct sysinfo *val)
3416 {
3417 	unsigned int type;
3418 	unsigned long nr_to_be_unused = 0;
3419 
3420 	spin_lock(&swap_lock);
3421 	for (type = 0; type < nr_swapfiles; type++) {
3422 		struct swap_info_struct *si = swap_info[type];
3423 
3424 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3425 			nr_to_be_unused += si->inuse_pages;
3426 	}
3427 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3428 	val->totalswap = total_swap_pages + nr_to_be_unused;
3429 	spin_unlock(&swap_lock);
3430 }
3431 
3432 /*
3433  * Verify that a swap entry is valid and increment its swap map count.
3434  *
3435  * Returns error code in following case.
3436  * - success -> 0
3437  * - swp_entry is invalid -> EINVAL
3438  * - swp_entry is migration entry -> EINVAL
3439  * - swap-cache reference is requested but there is already one. -> EEXIST
3440  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3441  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3442  */
3443 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3444 {
3445 	struct swap_info_struct *p;
3446 	struct swap_cluster_info *ci;
3447 	unsigned long offset;
3448 	unsigned char count;
3449 	unsigned char has_cache;
3450 	int err = -EINVAL;
3451 
3452 	p = get_swap_device(entry);
3453 	if (!p)
3454 		goto out;
3455 
3456 	offset = swp_offset(entry);
3457 	ci = lock_cluster_or_swap_info(p, offset);
3458 
3459 	count = p->swap_map[offset];
3460 
3461 	/*
3462 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3463 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3464 	 */
3465 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3466 		err = -ENOENT;
3467 		goto unlock_out;
3468 	}
3469 
3470 	has_cache = count & SWAP_HAS_CACHE;
3471 	count &= ~SWAP_HAS_CACHE;
3472 	err = 0;
3473 
3474 	if (usage == SWAP_HAS_CACHE) {
3475 
3476 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3477 		if (!has_cache && count)
3478 			has_cache = SWAP_HAS_CACHE;
3479 		else if (has_cache)		/* someone else added cache */
3480 			err = -EEXIST;
3481 		else				/* no users remaining */
3482 			err = -ENOENT;
3483 
3484 	} else if (count || has_cache) {
3485 
3486 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3487 			count += usage;
3488 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3489 			err = -EINVAL;
3490 		else if (swap_count_continued(p, offset, count))
3491 			count = COUNT_CONTINUED;
3492 		else
3493 			err = -ENOMEM;
3494 	} else
3495 		err = -ENOENT;			/* unused swap entry */
3496 
3497 	p->swap_map[offset] = count | has_cache;
3498 
3499 unlock_out:
3500 	unlock_cluster_or_swap_info(p, ci);
3501 out:
3502 	if (p)
3503 		put_swap_device(p);
3504 	return err;
3505 }
3506 
3507 /*
3508  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3509  * (in which case its reference count is never incremented).
3510  */
3511 void swap_shmem_alloc(swp_entry_t entry)
3512 {
3513 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3514 }
3515 
3516 /*
3517  * Increase reference count of swap entry by 1.
3518  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3519  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3520  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3521  * might occur if a page table entry has got corrupted.
3522  */
3523 int swap_duplicate(swp_entry_t entry)
3524 {
3525 	int err = 0;
3526 
3527 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3528 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3529 	return err;
3530 }
3531 
3532 /*
3533  * @entry: swap entry for which we allocate swap cache.
3534  *
3535  * Called when allocating swap cache for existing swap entry,
3536  * This can return error codes. Returns 0 at success.
3537  * -EEXIST means there is a swap cache.
3538  * Note: return code is different from swap_duplicate().
3539  */
3540 int swapcache_prepare(swp_entry_t entry)
3541 {
3542 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3543 }
3544 
3545 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3546 {
3547 	return swap_type_to_swap_info(swp_type(entry));
3548 }
3549 
3550 struct swap_info_struct *page_swap_info(struct page *page)
3551 {
3552 	swp_entry_t entry = { .val = page_private(page) };
3553 	return swp_swap_info(entry);
3554 }
3555 
3556 /*
3557  * out-of-line __page_file_ methods to avoid include hell.
3558  */
3559 struct address_space *__page_file_mapping(struct page *page)
3560 {
3561 	return page_swap_info(page)->swap_file->f_mapping;
3562 }
3563 EXPORT_SYMBOL_GPL(__page_file_mapping);
3564 
3565 pgoff_t __page_file_index(struct page *page)
3566 {
3567 	swp_entry_t swap = { .val = page_private(page) };
3568 	return swp_offset(swap);
3569 }
3570 EXPORT_SYMBOL_GPL(__page_file_index);
3571 
3572 /*
3573  * add_swap_count_continuation - called when a swap count is duplicated
3574  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3575  * page of the original vmalloc'ed swap_map, to hold the continuation count
3576  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3577  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3578  *
3579  * These continuation pages are seldom referenced: the common paths all work
3580  * on the original swap_map, only referring to a continuation page when the
3581  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3582  *
3583  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3584  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3585  * can be called after dropping locks.
3586  */
3587 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3588 {
3589 	struct swap_info_struct *si;
3590 	struct swap_cluster_info *ci;
3591 	struct page *head;
3592 	struct page *page;
3593 	struct page *list_page;
3594 	pgoff_t offset;
3595 	unsigned char count;
3596 	int ret = 0;
3597 
3598 	/*
3599 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3600 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3601 	 */
3602 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3603 
3604 	si = get_swap_device(entry);
3605 	if (!si) {
3606 		/*
3607 		 * An acceptable race has occurred since the failing
3608 		 * __swap_duplicate(): the swap device may be swapoff
3609 		 */
3610 		goto outer;
3611 	}
3612 	spin_lock(&si->lock);
3613 
3614 	offset = swp_offset(entry);
3615 
3616 	ci = lock_cluster(si, offset);
3617 
3618 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3619 
3620 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3621 		/*
3622 		 * The higher the swap count, the more likely it is that tasks
3623 		 * will race to add swap count continuation: we need to avoid
3624 		 * over-provisioning.
3625 		 */
3626 		goto out;
3627 	}
3628 
3629 	if (!page) {
3630 		ret = -ENOMEM;
3631 		goto out;
3632 	}
3633 
3634 	/*
3635 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3636 	 * no architecture is using highmem pages for kernel page tables: so it
3637 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3638 	 */
3639 	head = vmalloc_to_page(si->swap_map + offset);
3640 	offset &= ~PAGE_MASK;
3641 
3642 	spin_lock(&si->cont_lock);
3643 	/*
3644 	 * Page allocation does not initialize the page's lru field,
3645 	 * but it does always reset its private field.
3646 	 */
3647 	if (!page_private(head)) {
3648 		BUG_ON(count & COUNT_CONTINUED);
3649 		INIT_LIST_HEAD(&head->lru);
3650 		set_page_private(head, SWP_CONTINUED);
3651 		si->flags |= SWP_CONTINUED;
3652 	}
3653 
3654 	list_for_each_entry(list_page, &head->lru, lru) {
3655 		unsigned char *map;
3656 
3657 		/*
3658 		 * If the previous map said no continuation, but we've found
3659 		 * a continuation page, free our allocation and use this one.
3660 		 */
3661 		if (!(count & COUNT_CONTINUED))
3662 			goto out_unlock_cont;
3663 
3664 		map = kmap_atomic(list_page) + offset;
3665 		count = *map;
3666 		kunmap_atomic(map);
3667 
3668 		/*
3669 		 * If this continuation count now has some space in it,
3670 		 * free our allocation and use this one.
3671 		 */
3672 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3673 			goto out_unlock_cont;
3674 	}
3675 
3676 	list_add_tail(&page->lru, &head->lru);
3677 	page = NULL;			/* now it's attached, don't free it */
3678 out_unlock_cont:
3679 	spin_unlock(&si->cont_lock);
3680 out:
3681 	unlock_cluster(ci);
3682 	spin_unlock(&si->lock);
3683 	put_swap_device(si);
3684 outer:
3685 	if (page)
3686 		__free_page(page);
3687 	return ret;
3688 }
3689 
3690 /*
3691  * swap_count_continued - when the original swap_map count is incremented
3692  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3693  * into, carry if so, or else fail until a new continuation page is allocated;
3694  * when the original swap_map count is decremented from 0 with continuation,
3695  * borrow from the continuation and report whether it still holds more.
3696  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3697  * lock.
3698  */
3699 static bool swap_count_continued(struct swap_info_struct *si,
3700 				 pgoff_t offset, unsigned char count)
3701 {
3702 	struct page *head;
3703 	struct page *page;
3704 	unsigned char *map;
3705 	bool ret;
3706 
3707 	head = vmalloc_to_page(si->swap_map + offset);
3708 	if (page_private(head) != SWP_CONTINUED) {
3709 		BUG_ON(count & COUNT_CONTINUED);
3710 		return false;		/* need to add count continuation */
3711 	}
3712 
3713 	spin_lock(&si->cont_lock);
3714 	offset &= ~PAGE_MASK;
3715 	page = list_next_entry(head, lru);
3716 	map = kmap_atomic(page) + offset;
3717 
3718 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3719 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3720 
3721 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3722 		/*
3723 		 * Think of how you add 1 to 999
3724 		 */
3725 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3726 			kunmap_atomic(map);
3727 			page = list_next_entry(page, lru);
3728 			BUG_ON(page == head);
3729 			map = kmap_atomic(page) + offset;
3730 		}
3731 		if (*map == SWAP_CONT_MAX) {
3732 			kunmap_atomic(map);
3733 			page = list_next_entry(page, lru);
3734 			if (page == head) {
3735 				ret = false;	/* add count continuation */
3736 				goto out;
3737 			}
3738 			map = kmap_atomic(page) + offset;
3739 init_map:		*map = 0;		/* we didn't zero the page */
3740 		}
3741 		*map += 1;
3742 		kunmap_atomic(map);
3743 		while ((page = list_prev_entry(page, lru)) != head) {
3744 			map = kmap_atomic(page) + offset;
3745 			*map = COUNT_CONTINUED;
3746 			kunmap_atomic(map);
3747 		}
3748 		ret = true;			/* incremented */
3749 
3750 	} else {				/* decrementing */
3751 		/*
3752 		 * Think of how you subtract 1 from 1000
3753 		 */
3754 		BUG_ON(count != COUNT_CONTINUED);
3755 		while (*map == COUNT_CONTINUED) {
3756 			kunmap_atomic(map);
3757 			page = list_next_entry(page, lru);
3758 			BUG_ON(page == head);
3759 			map = kmap_atomic(page) + offset;
3760 		}
3761 		BUG_ON(*map == 0);
3762 		*map -= 1;
3763 		if (*map == 0)
3764 			count = 0;
3765 		kunmap_atomic(map);
3766 		while ((page = list_prev_entry(page, lru)) != head) {
3767 			map = kmap_atomic(page) + offset;
3768 			*map = SWAP_CONT_MAX | count;
3769 			count = COUNT_CONTINUED;
3770 			kunmap_atomic(map);
3771 		}
3772 		ret = count == COUNT_CONTINUED;
3773 	}
3774 out:
3775 	spin_unlock(&si->cont_lock);
3776 	return ret;
3777 }
3778 
3779 /*
3780  * free_swap_count_continuations - swapoff free all the continuation pages
3781  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3782  */
3783 static void free_swap_count_continuations(struct swap_info_struct *si)
3784 {
3785 	pgoff_t offset;
3786 
3787 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3788 		struct page *head;
3789 		head = vmalloc_to_page(si->swap_map + offset);
3790 		if (page_private(head)) {
3791 			struct page *page, *next;
3792 
3793 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3794 				list_del(&page->lru);
3795 				__free_page(page);
3796 			}
3797 		}
3798 	}
3799 }
3800 
3801 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3802 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3803 				  gfp_t gfp_mask)
3804 {
3805 	struct swap_info_struct *si, *next;
3806 	if (!(gfp_mask & __GFP_IO) || !memcg)
3807 		return;
3808 
3809 	if (!blk_cgroup_congested())
3810 		return;
3811 
3812 	/*
3813 	 * We've already scheduled a throttle, avoid taking the global swap
3814 	 * lock.
3815 	 */
3816 	if (current->throttle_queue)
3817 		return;
3818 
3819 	spin_lock(&swap_avail_lock);
3820 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3821 				  avail_lists[node]) {
3822 		if (si->bdev) {
3823 			blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3824 						true);
3825 			break;
3826 		}
3827 	}
3828 	spin_unlock(&swap_avail_lock);
3829 }
3830 #endif
3831 
3832 static int __init swapfile_init(void)
3833 {
3834 	int nid;
3835 
3836 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3837 					 GFP_KERNEL);
3838 	if (!swap_avail_heads) {
3839 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3840 		return -ENOMEM;
3841 	}
3842 
3843 	for_each_node(nid)
3844 		plist_head_init(&swap_avail_heads[nid]);
3845 
3846 	return 0;
3847 }
3848 subsys_initcall(swapfile_init);
3849