xref: /openbmc/linux/mm/swapfile.c (revision 6e10e219)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blk-cgroup.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47 
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 				 unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64 
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69 
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75 
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90 
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92 
93 static DEFINE_MUTEX(swapon_mutex);
94 
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98 
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100 
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103 	if (type >= MAX_SWAPFILES)
104 		return NULL;
105 
106 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
107 }
108 
109 static inline unsigned char swap_count(unsigned char ent)
110 {
111 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
112 }
113 
114 /* Reclaim the swap entry anyway if possible */
115 #define TTRS_ANYWAY		0x1
116 /*
117  * Reclaim the swap entry if there are no more mappings of the
118  * corresponding page
119  */
120 #define TTRS_UNMAPPED		0x2
121 /* Reclaim the swap entry if swap is getting full*/
122 #define TTRS_FULL		0x4
123 
124 /* returns 1 if swap entry is freed */
125 static int __try_to_reclaim_swap(struct swap_info_struct *si,
126 				 unsigned long offset, unsigned long flags)
127 {
128 	swp_entry_t entry = swp_entry(si->type, offset);
129 	struct page *page;
130 	int ret = 0;
131 
132 	page = find_get_page(swap_address_space(entry), offset);
133 	if (!page)
134 		return 0;
135 	/*
136 	 * When this function is called from scan_swap_map_slots() and it's
137 	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
138 	 * here. We have to use trylock for avoiding deadlock. This is a special
139 	 * case and you should use try_to_free_swap() with explicit lock_page()
140 	 * in usual operations.
141 	 */
142 	if (trylock_page(page)) {
143 		if ((flags & TTRS_ANYWAY) ||
144 		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
145 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
146 			ret = try_to_free_swap(page);
147 		unlock_page(page);
148 	}
149 	put_page(page);
150 	return ret;
151 }
152 
153 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
154 {
155 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
156 	return rb_entry(rb, struct swap_extent, rb_node);
157 }
158 
159 static inline struct swap_extent *next_se(struct swap_extent *se)
160 {
161 	struct rb_node *rb = rb_next(&se->rb_node);
162 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
163 }
164 
165 /*
166  * swapon tell device that all the old swap contents can be discarded,
167  * to allow the swap device to optimize its wear-levelling.
168  */
169 static int discard_swap(struct swap_info_struct *si)
170 {
171 	struct swap_extent *se;
172 	sector_t start_block;
173 	sector_t nr_blocks;
174 	int err = 0;
175 
176 	/* Do not discard the swap header page! */
177 	se = first_se(si);
178 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
179 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
180 	if (nr_blocks) {
181 		err = blkdev_issue_discard(si->bdev, start_block,
182 				nr_blocks, GFP_KERNEL, 0);
183 		if (err)
184 			return err;
185 		cond_resched();
186 	}
187 
188 	for (se = next_se(se); se; se = next_se(se)) {
189 		start_block = se->start_block << (PAGE_SHIFT - 9);
190 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
191 
192 		err = blkdev_issue_discard(si->bdev, start_block,
193 				nr_blocks, GFP_KERNEL, 0);
194 		if (err)
195 			break;
196 
197 		cond_resched();
198 	}
199 	return err;		/* That will often be -EOPNOTSUPP */
200 }
201 
202 static struct swap_extent *
203 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
204 {
205 	struct swap_extent *se;
206 	struct rb_node *rb;
207 
208 	rb = sis->swap_extent_root.rb_node;
209 	while (rb) {
210 		se = rb_entry(rb, struct swap_extent, rb_node);
211 		if (offset < se->start_page)
212 			rb = rb->rb_left;
213 		else if (offset >= se->start_page + se->nr_pages)
214 			rb = rb->rb_right;
215 		else
216 			return se;
217 	}
218 	/* It *must* be present */
219 	BUG();
220 }
221 
222 sector_t swap_page_sector(struct page *page)
223 {
224 	struct swap_info_struct *sis = page_swap_info(page);
225 	struct swap_extent *se;
226 	sector_t sector;
227 	pgoff_t offset;
228 
229 	offset = __page_file_index(page);
230 	se = offset_to_swap_extent(sis, offset);
231 	sector = se->start_block + (offset - se->start_page);
232 	return sector << (PAGE_SHIFT - 9);
233 }
234 
235 /*
236  * swap allocation tell device that a cluster of swap can now be discarded,
237  * to allow the swap device to optimize its wear-levelling.
238  */
239 static void discard_swap_cluster(struct swap_info_struct *si,
240 				 pgoff_t start_page, pgoff_t nr_pages)
241 {
242 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
243 
244 	while (nr_pages) {
245 		pgoff_t offset = start_page - se->start_page;
246 		sector_t start_block = se->start_block + offset;
247 		sector_t nr_blocks = se->nr_pages - offset;
248 
249 		if (nr_blocks > nr_pages)
250 			nr_blocks = nr_pages;
251 		start_page += nr_blocks;
252 		nr_pages -= nr_blocks;
253 
254 		start_block <<= PAGE_SHIFT - 9;
255 		nr_blocks <<= PAGE_SHIFT - 9;
256 		if (blkdev_issue_discard(si->bdev, start_block,
257 					nr_blocks, GFP_NOIO, 0))
258 			break;
259 
260 		se = next_se(se);
261 	}
262 }
263 
264 #ifdef CONFIG_THP_SWAP
265 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
266 
267 #define swap_entry_size(size)	(size)
268 #else
269 #define SWAPFILE_CLUSTER	256
270 
271 /*
272  * Define swap_entry_size() as constant to let compiler to optimize
273  * out some code if !CONFIG_THP_SWAP
274  */
275 #define swap_entry_size(size)	1
276 #endif
277 #define LATENCY_LIMIT		256
278 
279 static inline void cluster_set_flag(struct swap_cluster_info *info,
280 	unsigned int flag)
281 {
282 	info->flags = flag;
283 }
284 
285 static inline unsigned int cluster_count(struct swap_cluster_info *info)
286 {
287 	return info->data;
288 }
289 
290 static inline void cluster_set_count(struct swap_cluster_info *info,
291 				     unsigned int c)
292 {
293 	info->data = c;
294 }
295 
296 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
297 					 unsigned int c, unsigned int f)
298 {
299 	info->flags = f;
300 	info->data = c;
301 }
302 
303 static inline unsigned int cluster_next(struct swap_cluster_info *info)
304 {
305 	return info->data;
306 }
307 
308 static inline void cluster_set_next(struct swap_cluster_info *info,
309 				    unsigned int n)
310 {
311 	info->data = n;
312 }
313 
314 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
315 					 unsigned int n, unsigned int f)
316 {
317 	info->flags = f;
318 	info->data = n;
319 }
320 
321 static inline bool cluster_is_free(struct swap_cluster_info *info)
322 {
323 	return info->flags & CLUSTER_FLAG_FREE;
324 }
325 
326 static inline bool cluster_is_null(struct swap_cluster_info *info)
327 {
328 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
329 }
330 
331 static inline void cluster_set_null(struct swap_cluster_info *info)
332 {
333 	info->flags = CLUSTER_FLAG_NEXT_NULL;
334 	info->data = 0;
335 }
336 
337 static inline bool cluster_is_huge(struct swap_cluster_info *info)
338 {
339 	if (IS_ENABLED(CONFIG_THP_SWAP))
340 		return info->flags & CLUSTER_FLAG_HUGE;
341 	return false;
342 }
343 
344 static inline void cluster_clear_huge(struct swap_cluster_info *info)
345 {
346 	info->flags &= ~CLUSTER_FLAG_HUGE;
347 }
348 
349 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
350 						     unsigned long offset)
351 {
352 	struct swap_cluster_info *ci;
353 
354 	ci = si->cluster_info;
355 	if (ci) {
356 		ci += offset / SWAPFILE_CLUSTER;
357 		spin_lock(&ci->lock);
358 	}
359 	return ci;
360 }
361 
362 static inline void unlock_cluster(struct swap_cluster_info *ci)
363 {
364 	if (ci)
365 		spin_unlock(&ci->lock);
366 }
367 
368 /*
369  * Determine the locking method in use for this device.  Return
370  * swap_cluster_info if SSD-style cluster-based locking is in place.
371  */
372 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
373 		struct swap_info_struct *si, unsigned long offset)
374 {
375 	struct swap_cluster_info *ci;
376 
377 	/* Try to use fine-grained SSD-style locking if available: */
378 	ci = lock_cluster(si, offset);
379 	/* Otherwise, fall back to traditional, coarse locking: */
380 	if (!ci)
381 		spin_lock(&si->lock);
382 
383 	return ci;
384 }
385 
386 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
387 					       struct swap_cluster_info *ci)
388 {
389 	if (ci)
390 		unlock_cluster(ci);
391 	else
392 		spin_unlock(&si->lock);
393 }
394 
395 static inline bool cluster_list_empty(struct swap_cluster_list *list)
396 {
397 	return cluster_is_null(&list->head);
398 }
399 
400 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
401 {
402 	return cluster_next(&list->head);
403 }
404 
405 static void cluster_list_init(struct swap_cluster_list *list)
406 {
407 	cluster_set_null(&list->head);
408 	cluster_set_null(&list->tail);
409 }
410 
411 static void cluster_list_add_tail(struct swap_cluster_list *list,
412 				  struct swap_cluster_info *ci,
413 				  unsigned int idx)
414 {
415 	if (cluster_list_empty(list)) {
416 		cluster_set_next_flag(&list->head, idx, 0);
417 		cluster_set_next_flag(&list->tail, idx, 0);
418 	} else {
419 		struct swap_cluster_info *ci_tail;
420 		unsigned int tail = cluster_next(&list->tail);
421 
422 		/*
423 		 * Nested cluster lock, but both cluster locks are
424 		 * only acquired when we held swap_info_struct->lock
425 		 */
426 		ci_tail = ci + tail;
427 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
428 		cluster_set_next(ci_tail, idx);
429 		spin_unlock(&ci_tail->lock);
430 		cluster_set_next_flag(&list->tail, idx, 0);
431 	}
432 }
433 
434 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
435 					   struct swap_cluster_info *ci)
436 {
437 	unsigned int idx;
438 
439 	idx = cluster_next(&list->head);
440 	if (cluster_next(&list->tail) == idx) {
441 		cluster_set_null(&list->head);
442 		cluster_set_null(&list->tail);
443 	} else
444 		cluster_set_next_flag(&list->head,
445 				      cluster_next(&ci[idx]), 0);
446 
447 	return idx;
448 }
449 
450 /* Add a cluster to discard list and schedule it to do discard */
451 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
452 		unsigned int idx)
453 {
454 	/*
455 	 * If scan_swap_map_slots() can't find a free cluster, it will check
456 	 * si->swap_map directly. To make sure the discarding cluster isn't
457 	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
458 	 * It will be cleared after discard
459 	 */
460 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
461 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
462 
463 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
464 
465 	schedule_work(&si->discard_work);
466 }
467 
468 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
469 {
470 	struct swap_cluster_info *ci = si->cluster_info;
471 
472 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
473 	cluster_list_add_tail(&si->free_clusters, ci, idx);
474 }
475 
476 /*
477  * Doing discard actually. After a cluster discard is finished, the cluster
478  * will be added to free cluster list. caller should hold si->lock.
479 */
480 static void swap_do_scheduled_discard(struct swap_info_struct *si)
481 {
482 	struct swap_cluster_info *info, *ci;
483 	unsigned int idx;
484 
485 	info = si->cluster_info;
486 
487 	while (!cluster_list_empty(&si->discard_clusters)) {
488 		idx = cluster_list_del_first(&si->discard_clusters, info);
489 		spin_unlock(&si->lock);
490 
491 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
492 				SWAPFILE_CLUSTER);
493 
494 		spin_lock(&si->lock);
495 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
496 		__free_cluster(si, idx);
497 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
498 				0, SWAPFILE_CLUSTER);
499 		unlock_cluster(ci);
500 	}
501 }
502 
503 static void swap_discard_work(struct work_struct *work)
504 {
505 	struct swap_info_struct *si;
506 
507 	si = container_of(work, struct swap_info_struct, discard_work);
508 
509 	spin_lock(&si->lock);
510 	swap_do_scheduled_discard(si);
511 	spin_unlock(&si->lock);
512 }
513 
514 static void swap_users_ref_free(struct percpu_ref *ref)
515 {
516 	struct swap_info_struct *si;
517 
518 	si = container_of(ref, struct swap_info_struct, users);
519 	complete(&si->comp);
520 }
521 
522 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
523 {
524 	struct swap_cluster_info *ci = si->cluster_info;
525 
526 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
527 	cluster_list_del_first(&si->free_clusters, ci);
528 	cluster_set_count_flag(ci + idx, 0, 0);
529 }
530 
531 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
532 {
533 	struct swap_cluster_info *ci = si->cluster_info + idx;
534 
535 	VM_BUG_ON(cluster_count(ci) != 0);
536 	/*
537 	 * If the swap is discardable, prepare discard the cluster
538 	 * instead of free it immediately. The cluster will be freed
539 	 * after discard.
540 	 */
541 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
542 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
543 		swap_cluster_schedule_discard(si, idx);
544 		return;
545 	}
546 
547 	__free_cluster(si, idx);
548 }
549 
550 /*
551  * The cluster corresponding to page_nr will be used. The cluster will be
552  * removed from free cluster list and its usage counter will be increased.
553  */
554 static void inc_cluster_info_page(struct swap_info_struct *p,
555 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
556 {
557 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558 
559 	if (!cluster_info)
560 		return;
561 	if (cluster_is_free(&cluster_info[idx]))
562 		alloc_cluster(p, idx);
563 
564 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
565 	cluster_set_count(&cluster_info[idx],
566 		cluster_count(&cluster_info[idx]) + 1);
567 }
568 
569 /*
570  * The cluster corresponding to page_nr decreases one usage. If the usage
571  * counter becomes 0, which means no page in the cluster is in using, we can
572  * optionally discard the cluster and add it to free cluster list.
573  */
574 static void dec_cluster_info_page(struct swap_info_struct *p,
575 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
576 {
577 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
578 
579 	if (!cluster_info)
580 		return;
581 
582 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
583 	cluster_set_count(&cluster_info[idx],
584 		cluster_count(&cluster_info[idx]) - 1);
585 
586 	if (cluster_count(&cluster_info[idx]) == 0)
587 		free_cluster(p, idx);
588 }
589 
590 /*
591  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
592  * cluster list. Avoiding such abuse to avoid list corruption.
593  */
594 static bool
595 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
596 	unsigned long offset)
597 {
598 	struct percpu_cluster *percpu_cluster;
599 	bool conflict;
600 
601 	offset /= SWAPFILE_CLUSTER;
602 	conflict = !cluster_list_empty(&si->free_clusters) &&
603 		offset != cluster_list_first(&si->free_clusters) &&
604 		cluster_is_free(&si->cluster_info[offset]);
605 
606 	if (!conflict)
607 		return false;
608 
609 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
610 	cluster_set_null(&percpu_cluster->index);
611 	return true;
612 }
613 
614 /*
615  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
616  * might involve allocating a new cluster for current CPU too.
617  */
618 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
619 	unsigned long *offset, unsigned long *scan_base)
620 {
621 	struct percpu_cluster *cluster;
622 	struct swap_cluster_info *ci;
623 	unsigned long tmp, max;
624 
625 new_cluster:
626 	cluster = this_cpu_ptr(si->percpu_cluster);
627 	if (cluster_is_null(&cluster->index)) {
628 		if (!cluster_list_empty(&si->free_clusters)) {
629 			cluster->index = si->free_clusters.head;
630 			cluster->next = cluster_next(&cluster->index) *
631 					SWAPFILE_CLUSTER;
632 		} else if (!cluster_list_empty(&si->discard_clusters)) {
633 			/*
634 			 * we don't have free cluster but have some clusters in
635 			 * discarding, do discard now and reclaim them, then
636 			 * reread cluster_next_cpu since we dropped si->lock
637 			 */
638 			swap_do_scheduled_discard(si);
639 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
640 			*offset = *scan_base;
641 			goto new_cluster;
642 		} else
643 			return false;
644 	}
645 
646 	/*
647 	 * Other CPUs can use our cluster if they can't find a free cluster,
648 	 * check if there is still free entry in the cluster
649 	 */
650 	tmp = cluster->next;
651 	max = min_t(unsigned long, si->max,
652 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
653 	if (tmp < max) {
654 		ci = lock_cluster(si, tmp);
655 		while (tmp < max) {
656 			if (!si->swap_map[tmp])
657 				break;
658 			tmp++;
659 		}
660 		unlock_cluster(ci);
661 	}
662 	if (tmp >= max) {
663 		cluster_set_null(&cluster->index);
664 		goto new_cluster;
665 	}
666 	cluster->next = tmp + 1;
667 	*offset = tmp;
668 	*scan_base = tmp;
669 	return true;
670 }
671 
672 static void __del_from_avail_list(struct swap_info_struct *p)
673 {
674 	int nid;
675 
676 	for_each_node(nid)
677 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
678 }
679 
680 static void del_from_avail_list(struct swap_info_struct *p)
681 {
682 	spin_lock(&swap_avail_lock);
683 	__del_from_avail_list(p);
684 	spin_unlock(&swap_avail_lock);
685 }
686 
687 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
688 			     unsigned int nr_entries)
689 {
690 	unsigned int end = offset + nr_entries - 1;
691 
692 	if (offset == si->lowest_bit)
693 		si->lowest_bit += nr_entries;
694 	if (end == si->highest_bit)
695 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
696 	si->inuse_pages += nr_entries;
697 	if (si->inuse_pages == si->pages) {
698 		si->lowest_bit = si->max;
699 		si->highest_bit = 0;
700 		del_from_avail_list(si);
701 	}
702 }
703 
704 static void add_to_avail_list(struct swap_info_struct *p)
705 {
706 	int nid;
707 
708 	spin_lock(&swap_avail_lock);
709 	for_each_node(nid) {
710 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
711 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
712 	}
713 	spin_unlock(&swap_avail_lock);
714 }
715 
716 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
717 			    unsigned int nr_entries)
718 {
719 	unsigned long begin = offset;
720 	unsigned long end = offset + nr_entries - 1;
721 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
722 
723 	if (offset < si->lowest_bit)
724 		si->lowest_bit = offset;
725 	if (end > si->highest_bit) {
726 		bool was_full = !si->highest_bit;
727 
728 		WRITE_ONCE(si->highest_bit, end);
729 		if (was_full && (si->flags & SWP_WRITEOK))
730 			add_to_avail_list(si);
731 	}
732 	atomic_long_add(nr_entries, &nr_swap_pages);
733 	si->inuse_pages -= nr_entries;
734 	if (si->flags & SWP_BLKDEV)
735 		swap_slot_free_notify =
736 			si->bdev->bd_disk->fops->swap_slot_free_notify;
737 	else
738 		swap_slot_free_notify = NULL;
739 	while (offset <= end) {
740 		arch_swap_invalidate_page(si->type, offset);
741 		frontswap_invalidate_page(si->type, offset);
742 		if (swap_slot_free_notify)
743 			swap_slot_free_notify(si->bdev, offset);
744 		offset++;
745 	}
746 	clear_shadow_from_swap_cache(si->type, begin, end);
747 }
748 
749 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
750 {
751 	unsigned long prev;
752 
753 	if (!(si->flags & SWP_SOLIDSTATE)) {
754 		si->cluster_next = next;
755 		return;
756 	}
757 
758 	prev = this_cpu_read(*si->cluster_next_cpu);
759 	/*
760 	 * Cross the swap address space size aligned trunk, choose
761 	 * another trunk randomly to avoid lock contention on swap
762 	 * address space if possible.
763 	 */
764 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
765 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
766 		/* No free swap slots available */
767 		if (si->highest_bit <= si->lowest_bit)
768 			return;
769 		next = si->lowest_bit +
770 			prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
771 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
772 		next = max_t(unsigned int, next, si->lowest_bit);
773 	}
774 	this_cpu_write(*si->cluster_next_cpu, next);
775 }
776 
777 static int scan_swap_map_slots(struct swap_info_struct *si,
778 			       unsigned char usage, int nr,
779 			       swp_entry_t slots[])
780 {
781 	struct swap_cluster_info *ci;
782 	unsigned long offset;
783 	unsigned long scan_base;
784 	unsigned long last_in_cluster = 0;
785 	int latency_ration = LATENCY_LIMIT;
786 	int n_ret = 0;
787 	bool scanned_many = false;
788 
789 	/*
790 	 * We try to cluster swap pages by allocating them sequentially
791 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
792 	 * way, however, we resort to first-free allocation, starting
793 	 * a new cluster.  This prevents us from scattering swap pages
794 	 * all over the entire swap partition, so that we reduce
795 	 * overall disk seek times between swap pages.  -- sct
796 	 * But we do now try to find an empty cluster.  -Andrea
797 	 * And we let swap pages go all over an SSD partition.  Hugh
798 	 */
799 
800 	si->flags += SWP_SCANNING;
801 	/*
802 	 * Use percpu scan base for SSD to reduce lock contention on
803 	 * cluster and swap cache.  For HDD, sequential access is more
804 	 * important.
805 	 */
806 	if (si->flags & SWP_SOLIDSTATE)
807 		scan_base = this_cpu_read(*si->cluster_next_cpu);
808 	else
809 		scan_base = si->cluster_next;
810 	offset = scan_base;
811 
812 	/* SSD algorithm */
813 	if (si->cluster_info) {
814 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
815 			goto scan;
816 	} else if (unlikely(!si->cluster_nr--)) {
817 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
818 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
819 			goto checks;
820 		}
821 
822 		spin_unlock(&si->lock);
823 
824 		/*
825 		 * If seek is expensive, start searching for new cluster from
826 		 * start of partition, to minimize the span of allocated swap.
827 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
828 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
829 		 */
830 		scan_base = offset = si->lowest_bit;
831 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
832 
833 		/* Locate the first empty (unaligned) cluster */
834 		for (; last_in_cluster <= si->highest_bit; offset++) {
835 			if (si->swap_map[offset])
836 				last_in_cluster = offset + SWAPFILE_CLUSTER;
837 			else if (offset == last_in_cluster) {
838 				spin_lock(&si->lock);
839 				offset -= SWAPFILE_CLUSTER - 1;
840 				si->cluster_next = offset;
841 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
842 				goto checks;
843 			}
844 			if (unlikely(--latency_ration < 0)) {
845 				cond_resched();
846 				latency_ration = LATENCY_LIMIT;
847 			}
848 		}
849 
850 		offset = scan_base;
851 		spin_lock(&si->lock);
852 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
853 	}
854 
855 checks:
856 	if (si->cluster_info) {
857 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
858 		/* take a break if we already got some slots */
859 			if (n_ret)
860 				goto done;
861 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
862 							&scan_base))
863 				goto scan;
864 		}
865 	}
866 	if (!(si->flags & SWP_WRITEOK))
867 		goto no_page;
868 	if (!si->highest_bit)
869 		goto no_page;
870 	if (offset > si->highest_bit)
871 		scan_base = offset = si->lowest_bit;
872 
873 	ci = lock_cluster(si, offset);
874 	/* reuse swap entry of cache-only swap if not busy. */
875 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
876 		int swap_was_freed;
877 		unlock_cluster(ci);
878 		spin_unlock(&si->lock);
879 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
880 		spin_lock(&si->lock);
881 		/* entry was freed successfully, try to use this again */
882 		if (swap_was_freed)
883 			goto checks;
884 		goto scan; /* check next one */
885 	}
886 
887 	if (si->swap_map[offset]) {
888 		unlock_cluster(ci);
889 		if (!n_ret)
890 			goto scan;
891 		else
892 			goto done;
893 	}
894 	WRITE_ONCE(si->swap_map[offset], usage);
895 	inc_cluster_info_page(si, si->cluster_info, offset);
896 	unlock_cluster(ci);
897 
898 	swap_range_alloc(si, offset, 1);
899 	slots[n_ret++] = swp_entry(si->type, offset);
900 
901 	/* got enough slots or reach max slots? */
902 	if ((n_ret == nr) || (offset >= si->highest_bit))
903 		goto done;
904 
905 	/* search for next available slot */
906 
907 	/* time to take a break? */
908 	if (unlikely(--latency_ration < 0)) {
909 		if (n_ret)
910 			goto done;
911 		spin_unlock(&si->lock);
912 		cond_resched();
913 		spin_lock(&si->lock);
914 		latency_ration = LATENCY_LIMIT;
915 	}
916 
917 	/* try to get more slots in cluster */
918 	if (si->cluster_info) {
919 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
920 			goto checks;
921 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
922 		/* non-ssd case, still more slots in cluster? */
923 		--si->cluster_nr;
924 		goto checks;
925 	}
926 
927 	/*
928 	 * Even if there's no free clusters available (fragmented),
929 	 * try to scan a little more quickly with lock held unless we
930 	 * have scanned too many slots already.
931 	 */
932 	if (!scanned_many) {
933 		unsigned long scan_limit;
934 
935 		if (offset < scan_base)
936 			scan_limit = scan_base;
937 		else
938 			scan_limit = si->highest_bit;
939 		for (; offset <= scan_limit && --latency_ration > 0;
940 		     offset++) {
941 			if (!si->swap_map[offset])
942 				goto checks;
943 		}
944 	}
945 
946 done:
947 	set_cluster_next(si, offset + 1);
948 	si->flags -= SWP_SCANNING;
949 	return n_ret;
950 
951 scan:
952 	spin_unlock(&si->lock);
953 	while (++offset <= READ_ONCE(si->highest_bit)) {
954 		if (data_race(!si->swap_map[offset])) {
955 			spin_lock(&si->lock);
956 			goto checks;
957 		}
958 		if (vm_swap_full() &&
959 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
960 			spin_lock(&si->lock);
961 			goto checks;
962 		}
963 		if (unlikely(--latency_ration < 0)) {
964 			cond_resched();
965 			latency_ration = LATENCY_LIMIT;
966 			scanned_many = true;
967 		}
968 	}
969 	offset = si->lowest_bit;
970 	while (offset < scan_base) {
971 		if (data_race(!si->swap_map[offset])) {
972 			spin_lock(&si->lock);
973 			goto checks;
974 		}
975 		if (vm_swap_full() &&
976 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
977 			spin_lock(&si->lock);
978 			goto checks;
979 		}
980 		if (unlikely(--latency_ration < 0)) {
981 			cond_resched();
982 			latency_ration = LATENCY_LIMIT;
983 			scanned_many = true;
984 		}
985 		offset++;
986 	}
987 	spin_lock(&si->lock);
988 
989 no_page:
990 	si->flags -= SWP_SCANNING;
991 	return n_ret;
992 }
993 
994 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
995 {
996 	unsigned long idx;
997 	struct swap_cluster_info *ci;
998 	unsigned long offset;
999 
1000 	/*
1001 	 * Should not even be attempting cluster allocations when huge
1002 	 * page swap is disabled.  Warn and fail the allocation.
1003 	 */
1004 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1005 		VM_WARN_ON_ONCE(1);
1006 		return 0;
1007 	}
1008 
1009 	if (cluster_list_empty(&si->free_clusters))
1010 		return 0;
1011 
1012 	idx = cluster_list_first(&si->free_clusters);
1013 	offset = idx * SWAPFILE_CLUSTER;
1014 	ci = lock_cluster(si, offset);
1015 	alloc_cluster(si, idx);
1016 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1017 
1018 	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1019 	unlock_cluster(ci);
1020 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1021 	*slot = swp_entry(si->type, offset);
1022 
1023 	return 1;
1024 }
1025 
1026 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1027 {
1028 	unsigned long offset = idx * SWAPFILE_CLUSTER;
1029 	struct swap_cluster_info *ci;
1030 
1031 	ci = lock_cluster(si, offset);
1032 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1033 	cluster_set_count_flag(ci, 0, 0);
1034 	free_cluster(si, idx);
1035 	unlock_cluster(ci);
1036 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1037 }
1038 
1039 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1040 {
1041 	unsigned long size = swap_entry_size(entry_size);
1042 	struct swap_info_struct *si, *next;
1043 	long avail_pgs;
1044 	int n_ret = 0;
1045 	int node;
1046 
1047 	/* Only single cluster request supported */
1048 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1049 
1050 	spin_lock(&swap_avail_lock);
1051 
1052 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1053 	if (avail_pgs <= 0) {
1054 		spin_unlock(&swap_avail_lock);
1055 		goto noswap;
1056 	}
1057 
1058 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1059 
1060 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1061 
1062 start_over:
1063 	node = numa_node_id();
1064 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1065 		/* requeue si to after same-priority siblings */
1066 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1067 		spin_unlock(&swap_avail_lock);
1068 		spin_lock(&si->lock);
1069 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1070 			spin_lock(&swap_avail_lock);
1071 			if (plist_node_empty(&si->avail_lists[node])) {
1072 				spin_unlock(&si->lock);
1073 				goto nextsi;
1074 			}
1075 			WARN(!si->highest_bit,
1076 			     "swap_info %d in list but !highest_bit\n",
1077 			     si->type);
1078 			WARN(!(si->flags & SWP_WRITEOK),
1079 			     "swap_info %d in list but !SWP_WRITEOK\n",
1080 			     si->type);
1081 			__del_from_avail_list(si);
1082 			spin_unlock(&si->lock);
1083 			goto nextsi;
1084 		}
1085 		if (size == SWAPFILE_CLUSTER) {
1086 			if (si->flags & SWP_BLKDEV)
1087 				n_ret = swap_alloc_cluster(si, swp_entries);
1088 		} else
1089 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1090 						    n_goal, swp_entries);
1091 		spin_unlock(&si->lock);
1092 		if (n_ret || size == SWAPFILE_CLUSTER)
1093 			goto check_out;
1094 		pr_debug("scan_swap_map of si %d failed to find offset\n",
1095 			si->type);
1096 
1097 		spin_lock(&swap_avail_lock);
1098 nextsi:
1099 		/*
1100 		 * if we got here, it's likely that si was almost full before,
1101 		 * and since scan_swap_map_slots() can drop the si->lock,
1102 		 * multiple callers probably all tried to get a page from the
1103 		 * same si and it filled up before we could get one; or, the si
1104 		 * filled up between us dropping swap_avail_lock and taking
1105 		 * si->lock. Since we dropped the swap_avail_lock, the
1106 		 * swap_avail_head list may have been modified; so if next is
1107 		 * still in the swap_avail_head list then try it, otherwise
1108 		 * start over if we have not gotten any slots.
1109 		 */
1110 		if (plist_node_empty(&next->avail_lists[node]))
1111 			goto start_over;
1112 	}
1113 
1114 	spin_unlock(&swap_avail_lock);
1115 
1116 check_out:
1117 	if (n_ret < n_goal)
1118 		atomic_long_add((long)(n_goal - n_ret) * size,
1119 				&nr_swap_pages);
1120 noswap:
1121 	return n_ret;
1122 }
1123 
1124 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1125 {
1126 	struct swap_info_struct *p;
1127 	unsigned long offset;
1128 
1129 	if (!entry.val)
1130 		goto out;
1131 	p = swp_swap_info(entry);
1132 	if (!p)
1133 		goto bad_nofile;
1134 	if (data_race(!(p->flags & SWP_USED)))
1135 		goto bad_device;
1136 	offset = swp_offset(entry);
1137 	if (offset >= p->max)
1138 		goto bad_offset;
1139 	return p;
1140 
1141 bad_offset:
1142 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1143 	goto out;
1144 bad_device:
1145 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1146 	goto out;
1147 bad_nofile:
1148 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1149 out:
1150 	return NULL;
1151 }
1152 
1153 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1154 {
1155 	struct swap_info_struct *p;
1156 
1157 	p = __swap_info_get(entry);
1158 	if (!p)
1159 		goto out;
1160 	if (data_race(!p->swap_map[swp_offset(entry)]))
1161 		goto bad_free;
1162 	return p;
1163 
1164 bad_free:
1165 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1166 out:
1167 	return NULL;
1168 }
1169 
1170 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1171 {
1172 	struct swap_info_struct *p;
1173 
1174 	p = _swap_info_get(entry);
1175 	if (p)
1176 		spin_lock(&p->lock);
1177 	return p;
1178 }
1179 
1180 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1181 					struct swap_info_struct *q)
1182 {
1183 	struct swap_info_struct *p;
1184 
1185 	p = _swap_info_get(entry);
1186 
1187 	if (p != q) {
1188 		if (q != NULL)
1189 			spin_unlock(&q->lock);
1190 		if (p != NULL)
1191 			spin_lock(&p->lock);
1192 	}
1193 	return p;
1194 }
1195 
1196 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1197 					      unsigned long offset,
1198 					      unsigned char usage)
1199 {
1200 	unsigned char count;
1201 	unsigned char has_cache;
1202 
1203 	count = p->swap_map[offset];
1204 
1205 	has_cache = count & SWAP_HAS_CACHE;
1206 	count &= ~SWAP_HAS_CACHE;
1207 
1208 	if (usage == SWAP_HAS_CACHE) {
1209 		VM_BUG_ON(!has_cache);
1210 		has_cache = 0;
1211 	} else if (count == SWAP_MAP_SHMEM) {
1212 		/*
1213 		 * Or we could insist on shmem.c using a special
1214 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1215 		 */
1216 		count = 0;
1217 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1218 		if (count == COUNT_CONTINUED) {
1219 			if (swap_count_continued(p, offset, count))
1220 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1221 			else
1222 				count = SWAP_MAP_MAX;
1223 		} else
1224 			count--;
1225 	}
1226 
1227 	usage = count | has_cache;
1228 	if (usage)
1229 		WRITE_ONCE(p->swap_map[offset], usage);
1230 	else
1231 		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1232 
1233 	return usage;
1234 }
1235 
1236 /*
1237  * Check whether swap entry is valid in the swap device.  If so,
1238  * return pointer to swap_info_struct, and keep the swap entry valid
1239  * via preventing the swap device from being swapoff, until
1240  * put_swap_device() is called.  Otherwise return NULL.
1241  *
1242  * Notice that swapoff or swapoff+swapon can still happen before the
1243  * percpu_ref_tryget_live() in get_swap_device() or after the
1244  * percpu_ref_put() in put_swap_device() if there isn't any other way
1245  * to prevent swapoff, such as page lock, page table lock, etc.  The
1246  * caller must be prepared for that.  For example, the following
1247  * situation is possible.
1248  *
1249  *   CPU1				CPU2
1250  *   do_swap_page()
1251  *     ...				swapoff+swapon
1252  *     __read_swap_cache_async()
1253  *       swapcache_prepare()
1254  *         __swap_duplicate()
1255  *           // check swap_map
1256  *     // verify PTE not changed
1257  *
1258  * In __swap_duplicate(), the swap_map need to be checked before
1259  * changing partly because the specified swap entry may be for another
1260  * swap device which has been swapoff.  And in do_swap_page(), after
1261  * the page is read from the swap device, the PTE is verified not
1262  * changed with the page table locked to check whether the swap device
1263  * has been swapoff or swapoff+swapon.
1264  */
1265 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1266 {
1267 	struct swap_info_struct *si;
1268 	unsigned long offset;
1269 
1270 	if (!entry.val)
1271 		goto out;
1272 	si = swp_swap_info(entry);
1273 	if (!si)
1274 		goto bad_nofile;
1275 	if (!percpu_ref_tryget_live(&si->users))
1276 		goto out;
1277 	/*
1278 	 * Guarantee the si->users are checked before accessing other
1279 	 * fields of swap_info_struct.
1280 	 *
1281 	 * Paired with the spin_unlock() after setup_swap_info() in
1282 	 * enable_swap_info().
1283 	 */
1284 	smp_rmb();
1285 	offset = swp_offset(entry);
1286 	if (offset >= si->max)
1287 		goto put_out;
1288 
1289 	return si;
1290 bad_nofile:
1291 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1292 out:
1293 	return NULL;
1294 put_out:
1295 	percpu_ref_put(&si->users);
1296 	return NULL;
1297 }
1298 
1299 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1300 				       swp_entry_t entry)
1301 {
1302 	struct swap_cluster_info *ci;
1303 	unsigned long offset = swp_offset(entry);
1304 	unsigned char usage;
1305 
1306 	ci = lock_cluster_or_swap_info(p, offset);
1307 	usage = __swap_entry_free_locked(p, offset, 1);
1308 	unlock_cluster_or_swap_info(p, ci);
1309 	if (!usage)
1310 		free_swap_slot(entry);
1311 
1312 	return usage;
1313 }
1314 
1315 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1316 {
1317 	struct swap_cluster_info *ci;
1318 	unsigned long offset = swp_offset(entry);
1319 	unsigned char count;
1320 
1321 	ci = lock_cluster(p, offset);
1322 	count = p->swap_map[offset];
1323 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1324 	p->swap_map[offset] = 0;
1325 	dec_cluster_info_page(p, p->cluster_info, offset);
1326 	unlock_cluster(ci);
1327 
1328 	mem_cgroup_uncharge_swap(entry, 1);
1329 	swap_range_free(p, offset, 1);
1330 }
1331 
1332 /*
1333  * Caller has made sure that the swap device corresponding to entry
1334  * is still around or has not been recycled.
1335  */
1336 void swap_free(swp_entry_t entry)
1337 {
1338 	struct swap_info_struct *p;
1339 
1340 	p = _swap_info_get(entry);
1341 	if (p)
1342 		__swap_entry_free(p, entry);
1343 }
1344 
1345 /*
1346  * Called after dropping swapcache to decrease refcnt to swap entries.
1347  */
1348 void put_swap_page(struct page *page, swp_entry_t entry)
1349 {
1350 	unsigned long offset = swp_offset(entry);
1351 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1352 	struct swap_cluster_info *ci;
1353 	struct swap_info_struct *si;
1354 	unsigned char *map;
1355 	unsigned int i, free_entries = 0;
1356 	unsigned char val;
1357 	int size = swap_entry_size(thp_nr_pages(page));
1358 
1359 	si = _swap_info_get(entry);
1360 	if (!si)
1361 		return;
1362 
1363 	ci = lock_cluster_or_swap_info(si, offset);
1364 	if (size == SWAPFILE_CLUSTER) {
1365 		VM_BUG_ON(!cluster_is_huge(ci));
1366 		map = si->swap_map + offset;
1367 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1368 			val = map[i];
1369 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1370 			if (val == SWAP_HAS_CACHE)
1371 				free_entries++;
1372 		}
1373 		cluster_clear_huge(ci);
1374 		if (free_entries == SWAPFILE_CLUSTER) {
1375 			unlock_cluster_or_swap_info(si, ci);
1376 			spin_lock(&si->lock);
1377 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1378 			swap_free_cluster(si, idx);
1379 			spin_unlock(&si->lock);
1380 			return;
1381 		}
1382 	}
1383 	for (i = 0; i < size; i++, entry.val++) {
1384 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1385 			unlock_cluster_or_swap_info(si, ci);
1386 			free_swap_slot(entry);
1387 			if (i == size - 1)
1388 				return;
1389 			lock_cluster_or_swap_info(si, offset);
1390 		}
1391 	}
1392 	unlock_cluster_or_swap_info(si, ci);
1393 }
1394 
1395 #ifdef CONFIG_THP_SWAP
1396 int split_swap_cluster(swp_entry_t entry)
1397 {
1398 	struct swap_info_struct *si;
1399 	struct swap_cluster_info *ci;
1400 	unsigned long offset = swp_offset(entry);
1401 
1402 	si = _swap_info_get(entry);
1403 	if (!si)
1404 		return -EBUSY;
1405 	ci = lock_cluster(si, offset);
1406 	cluster_clear_huge(ci);
1407 	unlock_cluster(ci);
1408 	return 0;
1409 }
1410 #endif
1411 
1412 static int swp_entry_cmp(const void *ent1, const void *ent2)
1413 {
1414 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1415 
1416 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1417 }
1418 
1419 void swapcache_free_entries(swp_entry_t *entries, int n)
1420 {
1421 	struct swap_info_struct *p, *prev;
1422 	int i;
1423 
1424 	if (n <= 0)
1425 		return;
1426 
1427 	prev = NULL;
1428 	p = NULL;
1429 
1430 	/*
1431 	 * Sort swap entries by swap device, so each lock is only taken once.
1432 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1433 	 * so low that it isn't necessary to optimize further.
1434 	 */
1435 	if (nr_swapfiles > 1)
1436 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1437 	for (i = 0; i < n; ++i) {
1438 		p = swap_info_get_cont(entries[i], prev);
1439 		if (p)
1440 			swap_entry_free(p, entries[i]);
1441 		prev = p;
1442 	}
1443 	if (p)
1444 		spin_unlock(&p->lock);
1445 }
1446 
1447 /*
1448  * How many references to page are currently swapped out?
1449  * This does not give an exact answer when swap count is continued,
1450  * but does include the high COUNT_CONTINUED flag to allow for that.
1451  */
1452 int page_swapcount(struct page *page)
1453 {
1454 	int count = 0;
1455 	struct swap_info_struct *p;
1456 	struct swap_cluster_info *ci;
1457 	swp_entry_t entry;
1458 	unsigned long offset;
1459 
1460 	entry.val = page_private(page);
1461 	p = _swap_info_get(entry);
1462 	if (p) {
1463 		offset = swp_offset(entry);
1464 		ci = lock_cluster_or_swap_info(p, offset);
1465 		count = swap_count(p->swap_map[offset]);
1466 		unlock_cluster_or_swap_info(p, ci);
1467 	}
1468 	return count;
1469 }
1470 
1471 int __swap_count(swp_entry_t entry)
1472 {
1473 	struct swap_info_struct *si;
1474 	pgoff_t offset = swp_offset(entry);
1475 	int count = 0;
1476 
1477 	si = get_swap_device(entry);
1478 	if (si) {
1479 		count = swap_count(si->swap_map[offset]);
1480 		put_swap_device(si);
1481 	}
1482 	return count;
1483 }
1484 
1485 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1486 {
1487 	int count = 0;
1488 	pgoff_t offset = swp_offset(entry);
1489 	struct swap_cluster_info *ci;
1490 
1491 	ci = lock_cluster_or_swap_info(si, offset);
1492 	count = swap_count(si->swap_map[offset]);
1493 	unlock_cluster_or_swap_info(si, ci);
1494 	return count;
1495 }
1496 
1497 /*
1498  * How many references to @entry are currently swapped out?
1499  * This does not give an exact answer when swap count is continued,
1500  * but does include the high COUNT_CONTINUED flag to allow for that.
1501  */
1502 int __swp_swapcount(swp_entry_t entry)
1503 {
1504 	int count = 0;
1505 	struct swap_info_struct *si;
1506 
1507 	si = get_swap_device(entry);
1508 	if (si) {
1509 		count = swap_swapcount(si, entry);
1510 		put_swap_device(si);
1511 	}
1512 	return count;
1513 }
1514 
1515 /*
1516  * How many references to @entry are currently swapped out?
1517  * This considers COUNT_CONTINUED so it returns exact answer.
1518  */
1519 int swp_swapcount(swp_entry_t entry)
1520 {
1521 	int count, tmp_count, n;
1522 	struct swap_info_struct *p;
1523 	struct swap_cluster_info *ci;
1524 	struct page *page;
1525 	pgoff_t offset;
1526 	unsigned char *map;
1527 
1528 	p = _swap_info_get(entry);
1529 	if (!p)
1530 		return 0;
1531 
1532 	offset = swp_offset(entry);
1533 
1534 	ci = lock_cluster_or_swap_info(p, offset);
1535 
1536 	count = swap_count(p->swap_map[offset]);
1537 	if (!(count & COUNT_CONTINUED))
1538 		goto out;
1539 
1540 	count &= ~COUNT_CONTINUED;
1541 	n = SWAP_MAP_MAX + 1;
1542 
1543 	page = vmalloc_to_page(p->swap_map + offset);
1544 	offset &= ~PAGE_MASK;
1545 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1546 
1547 	do {
1548 		page = list_next_entry(page, lru);
1549 		map = kmap_atomic(page);
1550 		tmp_count = map[offset];
1551 		kunmap_atomic(map);
1552 
1553 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1554 		n *= (SWAP_CONT_MAX + 1);
1555 	} while (tmp_count & COUNT_CONTINUED);
1556 out:
1557 	unlock_cluster_or_swap_info(p, ci);
1558 	return count;
1559 }
1560 
1561 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1562 					 swp_entry_t entry)
1563 {
1564 	struct swap_cluster_info *ci;
1565 	unsigned char *map = si->swap_map;
1566 	unsigned long roffset = swp_offset(entry);
1567 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1568 	int i;
1569 	bool ret = false;
1570 
1571 	ci = lock_cluster_or_swap_info(si, offset);
1572 	if (!ci || !cluster_is_huge(ci)) {
1573 		if (swap_count(map[roffset]))
1574 			ret = true;
1575 		goto unlock_out;
1576 	}
1577 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1578 		if (swap_count(map[offset + i])) {
1579 			ret = true;
1580 			break;
1581 		}
1582 	}
1583 unlock_out:
1584 	unlock_cluster_or_swap_info(si, ci);
1585 	return ret;
1586 }
1587 
1588 static bool page_swapped(struct page *page)
1589 {
1590 	swp_entry_t entry;
1591 	struct swap_info_struct *si;
1592 
1593 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1594 		return page_swapcount(page) != 0;
1595 
1596 	page = compound_head(page);
1597 	entry.val = page_private(page);
1598 	si = _swap_info_get(entry);
1599 	if (si)
1600 		return swap_page_trans_huge_swapped(si, entry);
1601 	return false;
1602 }
1603 
1604 static int page_trans_huge_map_swapcount(struct page *page,
1605 					 int *total_swapcount)
1606 {
1607 	int i, map_swapcount, _total_swapcount;
1608 	unsigned long offset = 0;
1609 	struct swap_info_struct *si;
1610 	struct swap_cluster_info *ci = NULL;
1611 	unsigned char *map = NULL;
1612 	int swapcount = 0;
1613 
1614 	/* hugetlbfs shouldn't call it */
1615 	VM_BUG_ON_PAGE(PageHuge(page), page);
1616 
1617 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1618 		if (PageSwapCache(page))
1619 			swapcount = page_swapcount(page);
1620 		if (total_swapcount)
1621 			*total_swapcount = swapcount;
1622 		return swapcount + page_trans_huge_mapcount(page);
1623 	}
1624 
1625 	page = compound_head(page);
1626 
1627 	_total_swapcount = map_swapcount = 0;
1628 	if (PageSwapCache(page)) {
1629 		swp_entry_t entry;
1630 
1631 		entry.val = page_private(page);
1632 		si = _swap_info_get(entry);
1633 		if (si) {
1634 			map = si->swap_map;
1635 			offset = swp_offset(entry);
1636 		}
1637 	}
1638 	if (map)
1639 		ci = lock_cluster(si, offset);
1640 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1641 		int mapcount = atomic_read(&page[i]._mapcount) + 1;
1642 		if (map) {
1643 			swapcount = swap_count(map[offset + i]);
1644 			_total_swapcount += swapcount;
1645 		}
1646 		map_swapcount = max(map_swapcount, mapcount + swapcount);
1647 	}
1648 	unlock_cluster(ci);
1649 
1650 	if (PageDoubleMap(page))
1651 		map_swapcount -= 1;
1652 
1653 	if (total_swapcount)
1654 		*total_swapcount = _total_swapcount;
1655 
1656 	return map_swapcount + compound_mapcount(page);
1657 }
1658 
1659 /*
1660  * We can write to an anon page without COW if there are no other references
1661  * to it.  And as a side-effect, free up its swap: because the old content
1662  * on disk will never be read, and seeking back there to write new content
1663  * later would only waste time away from clustering.
1664  */
1665 bool reuse_swap_page(struct page *page)
1666 {
1667 	int count, total_swapcount;
1668 
1669 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1670 	if (unlikely(PageKsm(page)))
1671 		return false;
1672 	count = page_trans_huge_map_swapcount(page, &total_swapcount);
1673 	if (count == 1 && PageSwapCache(page) &&
1674 	    (likely(!PageTransCompound(page)) ||
1675 	     /* The remaining swap count will be freed soon */
1676 	     total_swapcount == page_swapcount(page))) {
1677 		if (!PageWriteback(page)) {
1678 			page = compound_head(page);
1679 			delete_from_swap_cache(page);
1680 			SetPageDirty(page);
1681 		} else {
1682 			swp_entry_t entry;
1683 			struct swap_info_struct *p;
1684 
1685 			entry.val = page_private(page);
1686 			p = swap_info_get(entry);
1687 			if (p->flags & SWP_STABLE_WRITES) {
1688 				spin_unlock(&p->lock);
1689 				return false;
1690 			}
1691 			spin_unlock(&p->lock);
1692 		}
1693 	}
1694 
1695 	return count <= 1;
1696 }
1697 
1698 /*
1699  * If swap is getting full, or if there are no more mappings of this page,
1700  * then try_to_free_swap is called to free its swap space.
1701  */
1702 int try_to_free_swap(struct page *page)
1703 {
1704 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1705 
1706 	if (!PageSwapCache(page))
1707 		return 0;
1708 	if (PageWriteback(page))
1709 		return 0;
1710 	if (page_swapped(page))
1711 		return 0;
1712 
1713 	/*
1714 	 * Once hibernation has begun to create its image of memory,
1715 	 * there's a danger that one of the calls to try_to_free_swap()
1716 	 * - most probably a call from __try_to_reclaim_swap() while
1717 	 * hibernation is allocating its own swap pages for the image,
1718 	 * but conceivably even a call from memory reclaim - will free
1719 	 * the swap from a page which has already been recorded in the
1720 	 * image as a clean swapcache page, and then reuse its swap for
1721 	 * another page of the image.  On waking from hibernation, the
1722 	 * original page might be freed under memory pressure, then
1723 	 * later read back in from swap, now with the wrong data.
1724 	 *
1725 	 * Hibernation suspends storage while it is writing the image
1726 	 * to disk so check that here.
1727 	 */
1728 	if (pm_suspended_storage())
1729 		return 0;
1730 
1731 	page = compound_head(page);
1732 	delete_from_swap_cache(page);
1733 	SetPageDirty(page);
1734 	return 1;
1735 }
1736 
1737 /*
1738  * Free the swap entry like above, but also try to
1739  * free the page cache entry if it is the last user.
1740  */
1741 int free_swap_and_cache(swp_entry_t entry)
1742 {
1743 	struct swap_info_struct *p;
1744 	unsigned char count;
1745 
1746 	if (non_swap_entry(entry))
1747 		return 1;
1748 
1749 	p = _swap_info_get(entry);
1750 	if (p) {
1751 		count = __swap_entry_free(p, entry);
1752 		if (count == SWAP_HAS_CACHE &&
1753 		    !swap_page_trans_huge_swapped(p, entry))
1754 			__try_to_reclaim_swap(p, swp_offset(entry),
1755 					      TTRS_UNMAPPED | TTRS_FULL);
1756 	}
1757 	return p != NULL;
1758 }
1759 
1760 #ifdef CONFIG_HIBERNATION
1761 
1762 swp_entry_t get_swap_page_of_type(int type)
1763 {
1764 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1765 	swp_entry_t entry = {0};
1766 
1767 	if (!si)
1768 		goto fail;
1769 
1770 	/* This is called for allocating swap entry, not cache */
1771 	spin_lock(&si->lock);
1772 	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1773 		atomic_long_dec(&nr_swap_pages);
1774 	spin_unlock(&si->lock);
1775 fail:
1776 	return entry;
1777 }
1778 
1779 /*
1780  * Find the swap type that corresponds to given device (if any).
1781  *
1782  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1783  * from 0, in which the swap header is expected to be located.
1784  *
1785  * This is needed for the suspend to disk (aka swsusp).
1786  */
1787 int swap_type_of(dev_t device, sector_t offset)
1788 {
1789 	int type;
1790 
1791 	if (!device)
1792 		return -1;
1793 
1794 	spin_lock(&swap_lock);
1795 	for (type = 0; type < nr_swapfiles; type++) {
1796 		struct swap_info_struct *sis = swap_info[type];
1797 
1798 		if (!(sis->flags & SWP_WRITEOK))
1799 			continue;
1800 
1801 		if (device == sis->bdev->bd_dev) {
1802 			struct swap_extent *se = first_se(sis);
1803 
1804 			if (se->start_block == offset) {
1805 				spin_unlock(&swap_lock);
1806 				return type;
1807 			}
1808 		}
1809 	}
1810 	spin_unlock(&swap_lock);
1811 	return -ENODEV;
1812 }
1813 
1814 int find_first_swap(dev_t *device)
1815 {
1816 	int type;
1817 
1818 	spin_lock(&swap_lock);
1819 	for (type = 0; type < nr_swapfiles; type++) {
1820 		struct swap_info_struct *sis = swap_info[type];
1821 
1822 		if (!(sis->flags & SWP_WRITEOK))
1823 			continue;
1824 		*device = sis->bdev->bd_dev;
1825 		spin_unlock(&swap_lock);
1826 		return type;
1827 	}
1828 	spin_unlock(&swap_lock);
1829 	return -ENODEV;
1830 }
1831 
1832 /*
1833  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1834  * corresponding to given index in swap_info (swap type).
1835  */
1836 sector_t swapdev_block(int type, pgoff_t offset)
1837 {
1838 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1839 	struct swap_extent *se;
1840 
1841 	if (!si || !(si->flags & SWP_WRITEOK))
1842 		return 0;
1843 	se = offset_to_swap_extent(si, offset);
1844 	return se->start_block + (offset - se->start_page);
1845 }
1846 
1847 /*
1848  * Return either the total number of swap pages of given type, or the number
1849  * of free pages of that type (depending on @free)
1850  *
1851  * This is needed for software suspend
1852  */
1853 unsigned int count_swap_pages(int type, int free)
1854 {
1855 	unsigned int n = 0;
1856 
1857 	spin_lock(&swap_lock);
1858 	if ((unsigned int)type < nr_swapfiles) {
1859 		struct swap_info_struct *sis = swap_info[type];
1860 
1861 		spin_lock(&sis->lock);
1862 		if (sis->flags & SWP_WRITEOK) {
1863 			n = sis->pages;
1864 			if (free)
1865 				n -= sis->inuse_pages;
1866 		}
1867 		spin_unlock(&sis->lock);
1868 	}
1869 	spin_unlock(&swap_lock);
1870 	return n;
1871 }
1872 #endif /* CONFIG_HIBERNATION */
1873 
1874 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1875 {
1876 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1877 }
1878 
1879 /*
1880  * No need to decide whether this PTE shares the swap entry with others,
1881  * just let do_wp_page work it out if a write is requested later - to
1882  * force COW, vm_page_prot omits write permission from any private vma.
1883  */
1884 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1885 		unsigned long addr, swp_entry_t entry, struct page *page)
1886 {
1887 	struct page *swapcache;
1888 	spinlock_t *ptl;
1889 	pte_t *pte;
1890 	int ret = 1;
1891 
1892 	swapcache = page;
1893 	page = ksm_might_need_to_copy(page, vma, addr);
1894 	if (unlikely(!page))
1895 		return -ENOMEM;
1896 
1897 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1898 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1899 		ret = 0;
1900 		goto out;
1901 	}
1902 
1903 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1904 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1905 	get_page(page);
1906 	if (page == swapcache) {
1907 		page_add_anon_rmap(page, vma, addr, false);
1908 	} else { /* ksm created a completely new copy */
1909 		page_add_new_anon_rmap(page, vma, addr, false);
1910 		lru_cache_add_inactive_or_unevictable(page, vma);
1911 	}
1912 	set_pte_at(vma->vm_mm, addr, pte,
1913 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1914 	swap_free(entry);
1915 out:
1916 	pte_unmap_unlock(pte, ptl);
1917 	if (page != swapcache) {
1918 		unlock_page(page);
1919 		put_page(page);
1920 	}
1921 	return ret;
1922 }
1923 
1924 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1925 			unsigned long addr, unsigned long end,
1926 			unsigned int type, bool frontswap,
1927 			unsigned long *fs_pages_to_unuse)
1928 {
1929 	struct page *page;
1930 	swp_entry_t entry;
1931 	pte_t *pte;
1932 	struct swap_info_struct *si;
1933 	unsigned long offset;
1934 	int ret = 0;
1935 	volatile unsigned char *swap_map;
1936 
1937 	si = swap_info[type];
1938 	pte = pte_offset_map(pmd, addr);
1939 	do {
1940 		if (!is_swap_pte(*pte))
1941 			continue;
1942 
1943 		entry = pte_to_swp_entry(*pte);
1944 		if (swp_type(entry) != type)
1945 			continue;
1946 
1947 		offset = swp_offset(entry);
1948 		if (frontswap && !frontswap_test(si, offset))
1949 			continue;
1950 
1951 		pte_unmap(pte);
1952 		swap_map = &si->swap_map[offset];
1953 		page = lookup_swap_cache(entry, vma, addr);
1954 		if (!page) {
1955 			struct vm_fault vmf = {
1956 				.vma = vma,
1957 				.address = addr,
1958 				.pmd = pmd,
1959 			};
1960 
1961 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1962 						&vmf);
1963 		}
1964 		if (!page) {
1965 			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1966 				goto try_next;
1967 			return -ENOMEM;
1968 		}
1969 
1970 		lock_page(page);
1971 		wait_on_page_writeback(page);
1972 		ret = unuse_pte(vma, pmd, addr, entry, page);
1973 		if (ret < 0) {
1974 			unlock_page(page);
1975 			put_page(page);
1976 			goto out;
1977 		}
1978 
1979 		try_to_free_swap(page);
1980 		unlock_page(page);
1981 		put_page(page);
1982 
1983 		if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1984 			ret = FRONTSWAP_PAGES_UNUSED;
1985 			goto out;
1986 		}
1987 try_next:
1988 		pte = pte_offset_map(pmd, addr);
1989 	} while (pte++, addr += PAGE_SIZE, addr != end);
1990 	pte_unmap(pte - 1);
1991 
1992 	ret = 0;
1993 out:
1994 	return ret;
1995 }
1996 
1997 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1998 				unsigned long addr, unsigned long end,
1999 				unsigned int type, bool frontswap,
2000 				unsigned long *fs_pages_to_unuse)
2001 {
2002 	pmd_t *pmd;
2003 	unsigned long next;
2004 	int ret;
2005 
2006 	pmd = pmd_offset(pud, addr);
2007 	do {
2008 		cond_resched();
2009 		next = pmd_addr_end(addr, end);
2010 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2011 			continue;
2012 		ret = unuse_pte_range(vma, pmd, addr, next, type,
2013 				      frontswap, fs_pages_to_unuse);
2014 		if (ret)
2015 			return ret;
2016 	} while (pmd++, addr = next, addr != end);
2017 	return 0;
2018 }
2019 
2020 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2021 				unsigned long addr, unsigned long end,
2022 				unsigned int type, bool frontswap,
2023 				unsigned long *fs_pages_to_unuse)
2024 {
2025 	pud_t *pud;
2026 	unsigned long next;
2027 	int ret;
2028 
2029 	pud = pud_offset(p4d, addr);
2030 	do {
2031 		next = pud_addr_end(addr, end);
2032 		if (pud_none_or_clear_bad(pud))
2033 			continue;
2034 		ret = unuse_pmd_range(vma, pud, addr, next, type,
2035 				      frontswap, fs_pages_to_unuse);
2036 		if (ret)
2037 			return ret;
2038 	} while (pud++, addr = next, addr != end);
2039 	return 0;
2040 }
2041 
2042 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2043 				unsigned long addr, unsigned long end,
2044 				unsigned int type, bool frontswap,
2045 				unsigned long *fs_pages_to_unuse)
2046 {
2047 	p4d_t *p4d;
2048 	unsigned long next;
2049 	int ret;
2050 
2051 	p4d = p4d_offset(pgd, addr);
2052 	do {
2053 		next = p4d_addr_end(addr, end);
2054 		if (p4d_none_or_clear_bad(p4d))
2055 			continue;
2056 		ret = unuse_pud_range(vma, p4d, addr, next, type,
2057 				      frontswap, fs_pages_to_unuse);
2058 		if (ret)
2059 			return ret;
2060 	} while (p4d++, addr = next, addr != end);
2061 	return 0;
2062 }
2063 
2064 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2065 		     bool frontswap, unsigned long *fs_pages_to_unuse)
2066 {
2067 	pgd_t *pgd;
2068 	unsigned long addr, end, next;
2069 	int ret;
2070 
2071 	addr = vma->vm_start;
2072 	end = vma->vm_end;
2073 
2074 	pgd = pgd_offset(vma->vm_mm, addr);
2075 	do {
2076 		next = pgd_addr_end(addr, end);
2077 		if (pgd_none_or_clear_bad(pgd))
2078 			continue;
2079 		ret = unuse_p4d_range(vma, pgd, addr, next, type,
2080 				      frontswap, fs_pages_to_unuse);
2081 		if (ret)
2082 			return ret;
2083 	} while (pgd++, addr = next, addr != end);
2084 	return 0;
2085 }
2086 
2087 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2088 		    bool frontswap, unsigned long *fs_pages_to_unuse)
2089 {
2090 	struct vm_area_struct *vma;
2091 	int ret = 0;
2092 
2093 	mmap_read_lock(mm);
2094 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2095 		if (vma->anon_vma) {
2096 			ret = unuse_vma(vma, type, frontswap,
2097 					fs_pages_to_unuse);
2098 			if (ret)
2099 				break;
2100 		}
2101 		cond_resched();
2102 	}
2103 	mmap_read_unlock(mm);
2104 	return ret;
2105 }
2106 
2107 /*
2108  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2109  * from current position to next entry still in use. Return 0
2110  * if there are no inuse entries after prev till end of the map.
2111  */
2112 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2113 					unsigned int prev, bool frontswap)
2114 {
2115 	unsigned int i;
2116 	unsigned char count;
2117 
2118 	/*
2119 	 * No need for swap_lock here: we're just looking
2120 	 * for whether an entry is in use, not modifying it; false
2121 	 * hits are okay, and sys_swapoff() has already prevented new
2122 	 * allocations from this area (while holding swap_lock).
2123 	 */
2124 	for (i = prev + 1; i < si->max; i++) {
2125 		count = READ_ONCE(si->swap_map[i]);
2126 		if (count && swap_count(count) != SWAP_MAP_BAD)
2127 			if (!frontswap || frontswap_test(si, i))
2128 				break;
2129 		if ((i % LATENCY_LIMIT) == 0)
2130 			cond_resched();
2131 	}
2132 
2133 	if (i == si->max)
2134 		i = 0;
2135 
2136 	return i;
2137 }
2138 
2139 /*
2140  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2141  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2142  */
2143 int try_to_unuse(unsigned int type, bool frontswap,
2144 		 unsigned long pages_to_unuse)
2145 {
2146 	struct mm_struct *prev_mm;
2147 	struct mm_struct *mm;
2148 	struct list_head *p;
2149 	int retval = 0;
2150 	struct swap_info_struct *si = swap_info[type];
2151 	struct page *page;
2152 	swp_entry_t entry;
2153 	unsigned int i;
2154 
2155 	if (!READ_ONCE(si->inuse_pages))
2156 		return 0;
2157 
2158 	if (!frontswap)
2159 		pages_to_unuse = 0;
2160 
2161 retry:
2162 	retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2163 	if (retval)
2164 		goto out;
2165 
2166 	prev_mm = &init_mm;
2167 	mmget(prev_mm);
2168 
2169 	spin_lock(&mmlist_lock);
2170 	p = &init_mm.mmlist;
2171 	while (READ_ONCE(si->inuse_pages) &&
2172 	       !signal_pending(current) &&
2173 	       (p = p->next) != &init_mm.mmlist) {
2174 
2175 		mm = list_entry(p, struct mm_struct, mmlist);
2176 		if (!mmget_not_zero(mm))
2177 			continue;
2178 		spin_unlock(&mmlist_lock);
2179 		mmput(prev_mm);
2180 		prev_mm = mm;
2181 		retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2182 
2183 		if (retval) {
2184 			mmput(prev_mm);
2185 			goto out;
2186 		}
2187 
2188 		/*
2189 		 * Make sure that we aren't completely killing
2190 		 * interactive performance.
2191 		 */
2192 		cond_resched();
2193 		spin_lock(&mmlist_lock);
2194 	}
2195 	spin_unlock(&mmlist_lock);
2196 
2197 	mmput(prev_mm);
2198 
2199 	i = 0;
2200 	while (READ_ONCE(si->inuse_pages) &&
2201 	       !signal_pending(current) &&
2202 	       (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2203 
2204 		entry = swp_entry(type, i);
2205 		page = find_get_page(swap_address_space(entry), i);
2206 		if (!page)
2207 			continue;
2208 
2209 		/*
2210 		 * It is conceivable that a racing task removed this page from
2211 		 * swap cache just before we acquired the page lock. The page
2212 		 * might even be back in swap cache on another swap area. But
2213 		 * that is okay, try_to_free_swap() only removes stale pages.
2214 		 */
2215 		lock_page(page);
2216 		wait_on_page_writeback(page);
2217 		try_to_free_swap(page);
2218 		unlock_page(page);
2219 		put_page(page);
2220 
2221 		/*
2222 		 * For frontswap, we just need to unuse pages_to_unuse, if
2223 		 * it was specified. Need not check frontswap again here as
2224 		 * we already zeroed out pages_to_unuse if not frontswap.
2225 		 */
2226 		if (pages_to_unuse && --pages_to_unuse == 0)
2227 			goto out;
2228 	}
2229 
2230 	/*
2231 	 * Lets check again to see if there are still swap entries in the map.
2232 	 * If yes, we would need to do retry the unuse logic again.
2233 	 * Under global memory pressure, swap entries can be reinserted back
2234 	 * into process space after the mmlist loop above passes over them.
2235 	 *
2236 	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2237 	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2238 	 * at its own independent pace; and even shmem_writepage() could have
2239 	 * been preempted after get_swap_page(), temporarily hiding that swap.
2240 	 * It's easy and robust (though cpu-intensive) just to keep retrying.
2241 	 */
2242 	if (READ_ONCE(si->inuse_pages)) {
2243 		if (!signal_pending(current))
2244 			goto retry;
2245 		retval = -EINTR;
2246 	}
2247 out:
2248 	return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2249 }
2250 
2251 /*
2252  * After a successful try_to_unuse, if no swap is now in use, we know
2253  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2254  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2255  * added to the mmlist just after page_duplicate - before would be racy.
2256  */
2257 static void drain_mmlist(void)
2258 {
2259 	struct list_head *p, *next;
2260 	unsigned int type;
2261 
2262 	for (type = 0; type < nr_swapfiles; type++)
2263 		if (swap_info[type]->inuse_pages)
2264 			return;
2265 	spin_lock(&mmlist_lock);
2266 	list_for_each_safe(p, next, &init_mm.mmlist)
2267 		list_del_init(p);
2268 	spin_unlock(&mmlist_lock);
2269 }
2270 
2271 /*
2272  * Free all of a swapdev's extent information
2273  */
2274 static void destroy_swap_extents(struct swap_info_struct *sis)
2275 {
2276 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2277 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2278 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2279 
2280 		rb_erase(rb, &sis->swap_extent_root);
2281 		kfree(se);
2282 	}
2283 
2284 	if (sis->flags & SWP_ACTIVATED) {
2285 		struct file *swap_file = sis->swap_file;
2286 		struct address_space *mapping = swap_file->f_mapping;
2287 
2288 		sis->flags &= ~SWP_ACTIVATED;
2289 		if (mapping->a_ops->swap_deactivate)
2290 			mapping->a_ops->swap_deactivate(swap_file);
2291 	}
2292 }
2293 
2294 /*
2295  * Add a block range (and the corresponding page range) into this swapdev's
2296  * extent tree.
2297  *
2298  * This function rather assumes that it is called in ascending page order.
2299  */
2300 int
2301 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2302 		unsigned long nr_pages, sector_t start_block)
2303 {
2304 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2305 	struct swap_extent *se;
2306 	struct swap_extent *new_se;
2307 
2308 	/*
2309 	 * place the new node at the right most since the
2310 	 * function is called in ascending page order.
2311 	 */
2312 	while (*link) {
2313 		parent = *link;
2314 		link = &parent->rb_right;
2315 	}
2316 
2317 	if (parent) {
2318 		se = rb_entry(parent, struct swap_extent, rb_node);
2319 		BUG_ON(se->start_page + se->nr_pages != start_page);
2320 		if (se->start_block + se->nr_pages == start_block) {
2321 			/* Merge it */
2322 			se->nr_pages += nr_pages;
2323 			return 0;
2324 		}
2325 	}
2326 
2327 	/* No merge, insert a new extent. */
2328 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2329 	if (new_se == NULL)
2330 		return -ENOMEM;
2331 	new_se->start_page = start_page;
2332 	new_se->nr_pages = nr_pages;
2333 	new_se->start_block = start_block;
2334 
2335 	rb_link_node(&new_se->rb_node, parent, link);
2336 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2337 	return 1;
2338 }
2339 EXPORT_SYMBOL_GPL(add_swap_extent);
2340 
2341 /*
2342  * A `swap extent' is a simple thing which maps a contiguous range of pages
2343  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2344  * is built at swapon time and is then used at swap_writepage/swap_readpage
2345  * time for locating where on disk a page belongs.
2346  *
2347  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2348  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2349  * swap files identically.
2350  *
2351  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2352  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2353  * swapfiles are handled *identically* after swapon time.
2354  *
2355  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2356  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2357  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2358  * requirements, they are simply tossed out - we will never use those blocks
2359  * for swapping.
2360  *
2361  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2362  * prevents users from writing to the swap device, which will corrupt memory.
2363  *
2364  * The amount of disk space which a single swap extent represents varies.
2365  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2366  * extents in the list.  To avoid much list walking, we cache the previous
2367  * search location in `curr_swap_extent', and start new searches from there.
2368  * This is extremely effective.  The average number of iterations in
2369  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2370  */
2371 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2372 {
2373 	struct file *swap_file = sis->swap_file;
2374 	struct address_space *mapping = swap_file->f_mapping;
2375 	struct inode *inode = mapping->host;
2376 	int ret;
2377 
2378 	if (S_ISBLK(inode->i_mode)) {
2379 		ret = add_swap_extent(sis, 0, sis->max, 0);
2380 		*span = sis->pages;
2381 		return ret;
2382 	}
2383 
2384 	if (mapping->a_ops->swap_activate) {
2385 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2386 		if (ret >= 0)
2387 			sis->flags |= SWP_ACTIVATED;
2388 		if (!ret) {
2389 			sis->flags |= SWP_FS_OPS;
2390 			ret = add_swap_extent(sis, 0, sis->max, 0);
2391 			*span = sis->pages;
2392 		}
2393 		return ret;
2394 	}
2395 
2396 	return generic_swapfile_activate(sis, swap_file, span);
2397 }
2398 
2399 static int swap_node(struct swap_info_struct *p)
2400 {
2401 	struct block_device *bdev;
2402 
2403 	if (p->bdev)
2404 		bdev = p->bdev;
2405 	else
2406 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2407 
2408 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2409 }
2410 
2411 static void setup_swap_info(struct swap_info_struct *p, int prio,
2412 			    unsigned char *swap_map,
2413 			    struct swap_cluster_info *cluster_info)
2414 {
2415 	int i;
2416 
2417 	if (prio >= 0)
2418 		p->prio = prio;
2419 	else
2420 		p->prio = --least_priority;
2421 	/*
2422 	 * the plist prio is negated because plist ordering is
2423 	 * low-to-high, while swap ordering is high-to-low
2424 	 */
2425 	p->list.prio = -p->prio;
2426 	for_each_node(i) {
2427 		if (p->prio >= 0)
2428 			p->avail_lists[i].prio = -p->prio;
2429 		else {
2430 			if (swap_node(p) == i)
2431 				p->avail_lists[i].prio = 1;
2432 			else
2433 				p->avail_lists[i].prio = -p->prio;
2434 		}
2435 	}
2436 	p->swap_map = swap_map;
2437 	p->cluster_info = cluster_info;
2438 }
2439 
2440 static void _enable_swap_info(struct swap_info_struct *p)
2441 {
2442 	p->flags |= SWP_WRITEOK;
2443 	atomic_long_add(p->pages, &nr_swap_pages);
2444 	total_swap_pages += p->pages;
2445 
2446 	assert_spin_locked(&swap_lock);
2447 	/*
2448 	 * both lists are plists, and thus priority ordered.
2449 	 * swap_active_head needs to be priority ordered for swapoff(),
2450 	 * which on removal of any swap_info_struct with an auto-assigned
2451 	 * (i.e. negative) priority increments the auto-assigned priority
2452 	 * of any lower-priority swap_info_structs.
2453 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2454 	 * which allocates swap pages from the highest available priority
2455 	 * swap_info_struct.
2456 	 */
2457 	plist_add(&p->list, &swap_active_head);
2458 	add_to_avail_list(p);
2459 }
2460 
2461 static void enable_swap_info(struct swap_info_struct *p, int prio,
2462 				unsigned char *swap_map,
2463 				struct swap_cluster_info *cluster_info,
2464 				unsigned long *frontswap_map)
2465 {
2466 	frontswap_init(p->type, frontswap_map);
2467 	spin_lock(&swap_lock);
2468 	spin_lock(&p->lock);
2469 	setup_swap_info(p, prio, swap_map, cluster_info);
2470 	spin_unlock(&p->lock);
2471 	spin_unlock(&swap_lock);
2472 	/*
2473 	 * Finished initializing swap device, now it's safe to reference it.
2474 	 */
2475 	percpu_ref_resurrect(&p->users);
2476 	spin_lock(&swap_lock);
2477 	spin_lock(&p->lock);
2478 	_enable_swap_info(p);
2479 	spin_unlock(&p->lock);
2480 	spin_unlock(&swap_lock);
2481 }
2482 
2483 static void reinsert_swap_info(struct swap_info_struct *p)
2484 {
2485 	spin_lock(&swap_lock);
2486 	spin_lock(&p->lock);
2487 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2488 	_enable_swap_info(p);
2489 	spin_unlock(&p->lock);
2490 	spin_unlock(&swap_lock);
2491 }
2492 
2493 bool has_usable_swap(void)
2494 {
2495 	bool ret = true;
2496 
2497 	spin_lock(&swap_lock);
2498 	if (plist_head_empty(&swap_active_head))
2499 		ret = false;
2500 	spin_unlock(&swap_lock);
2501 	return ret;
2502 }
2503 
2504 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2505 {
2506 	struct swap_info_struct *p = NULL;
2507 	unsigned char *swap_map;
2508 	struct swap_cluster_info *cluster_info;
2509 	unsigned long *frontswap_map;
2510 	struct file *swap_file, *victim;
2511 	struct address_space *mapping;
2512 	struct inode *inode;
2513 	struct filename *pathname;
2514 	int err, found = 0;
2515 	unsigned int old_block_size;
2516 
2517 	if (!capable(CAP_SYS_ADMIN))
2518 		return -EPERM;
2519 
2520 	BUG_ON(!current->mm);
2521 
2522 	pathname = getname(specialfile);
2523 	if (IS_ERR(pathname))
2524 		return PTR_ERR(pathname);
2525 
2526 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2527 	err = PTR_ERR(victim);
2528 	if (IS_ERR(victim))
2529 		goto out;
2530 
2531 	mapping = victim->f_mapping;
2532 	spin_lock(&swap_lock);
2533 	plist_for_each_entry(p, &swap_active_head, list) {
2534 		if (p->flags & SWP_WRITEOK) {
2535 			if (p->swap_file->f_mapping == mapping) {
2536 				found = 1;
2537 				break;
2538 			}
2539 		}
2540 	}
2541 	if (!found) {
2542 		err = -EINVAL;
2543 		spin_unlock(&swap_lock);
2544 		goto out_dput;
2545 	}
2546 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2547 		vm_unacct_memory(p->pages);
2548 	else {
2549 		err = -ENOMEM;
2550 		spin_unlock(&swap_lock);
2551 		goto out_dput;
2552 	}
2553 	del_from_avail_list(p);
2554 	spin_lock(&p->lock);
2555 	if (p->prio < 0) {
2556 		struct swap_info_struct *si = p;
2557 		int nid;
2558 
2559 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2560 			si->prio++;
2561 			si->list.prio--;
2562 			for_each_node(nid) {
2563 				if (si->avail_lists[nid].prio != 1)
2564 					si->avail_lists[nid].prio--;
2565 			}
2566 		}
2567 		least_priority++;
2568 	}
2569 	plist_del(&p->list, &swap_active_head);
2570 	atomic_long_sub(p->pages, &nr_swap_pages);
2571 	total_swap_pages -= p->pages;
2572 	p->flags &= ~SWP_WRITEOK;
2573 	spin_unlock(&p->lock);
2574 	spin_unlock(&swap_lock);
2575 
2576 	disable_swap_slots_cache_lock();
2577 
2578 	set_current_oom_origin();
2579 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2580 	clear_current_oom_origin();
2581 
2582 	if (err) {
2583 		/* re-insert swap space back into swap_list */
2584 		reinsert_swap_info(p);
2585 		reenable_swap_slots_cache_unlock();
2586 		goto out_dput;
2587 	}
2588 
2589 	reenable_swap_slots_cache_unlock();
2590 
2591 	/*
2592 	 * Wait for swap operations protected by get/put_swap_device()
2593 	 * to complete.
2594 	 *
2595 	 * We need synchronize_rcu() here to protect the accessing to
2596 	 * the swap cache data structure.
2597 	 */
2598 	percpu_ref_kill(&p->users);
2599 	synchronize_rcu();
2600 	wait_for_completion(&p->comp);
2601 
2602 	flush_work(&p->discard_work);
2603 
2604 	destroy_swap_extents(p);
2605 	if (p->flags & SWP_CONTINUED)
2606 		free_swap_count_continuations(p);
2607 
2608 	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2609 		atomic_dec(&nr_rotate_swap);
2610 
2611 	mutex_lock(&swapon_mutex);
2612 	spin_lock(&swap_lock);
2613 	spin_lock(&p->lock);
2614 	drain_mmlist();
2615 
2616 	/* wait for anyone still in scan_swap_map_slots */
2617 	p->highest_bit = 0;		/* cuts scans short */
2618 	while (p->flags >= SWP_SCANNING) {
2619 		spin_unlock(&p->lock);
2620 		spin_unlock(&swap_lock);
2621 		schedule_timeout_uninterruptible(1);
2622 		spin_lock(&swap_lock);
2623 		spin_lock(&p->lock);
2624 	}
2625 
2626 	swap_file = p->swap_file;
2627 	old_block_size = p->old_block_size;
2628 	p->swap_file = NULL;
2629 	p->max = 0;
2630 	swap_map = p->swap_map;
2631 	p->swap_map = NULL;
2632 	cluster_info = p->cluster_info;
2633 	p->cluster_info = NULL;
2634 	frontswap_map = frontswap_map_get(p);
2635 	spin_unlock(&p->lock);
2636 	spin_unlock(&swap_lock);
2637 	arch_swap_invalidate_area(p->type);
2638 	frontswap_invalidate_area(p->type);
2639 	frontswap_map_set(p, NULL);
2640 	mutex_unlock(&swapon_mutex);
2641 	free_percpu(p->percpu_cluster);
2642 	p->percpu_cluster = NULL;
2643 	free_percpu(p->cluster_next_cpu);
2644 	p->cluster_next_cpu = NULL;
2645 	vfree(swap_map);
2646 	kvfree(cluster_info);
2647 	kvfree(frontswap_map);
2648 	/* Destroy swap account information */
2649 	swap_cgroup_swapoff(p->type);
2650 	exit_swap_address_space(p->type);
2651 
2652 	inode = mapping->host;
2653 	if (S_ISBLK(inode->i_mode)) {
2654 		struct block_device *bdev = I_BDEV(inode);
2655 
2656 		set_blocksize(bdev, old_block_size);
2657 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2658 	}
2659 
2660 	inode_lock(inode);
2661 	inode->i_flags &= ~S_SWAPFILE;
2662 	inode_unlock(inode);
2663 	filp_close(swap_file, NULL);
2664 
2665 	/*
2666 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2667 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2668 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2669 	 */
2670 	spin_lock(&swap_lock);
2671 	p->flags = 0;
2672 	spin_unlock(&swap_lock);
2673 
2674 	err = 0;
2675 	atomic_inc(&proc_poll_event);
2676 	wake_up_interruptible(&proc_poll_wait);
2677 
2678 out_dput:
2679 	filp_close(victim, NULL);
2680 out:
2681 	putname(pathname);
2682 	return err;
2683 }
2684 
2685 #ifdef CONFIG_PROC_FS
2686 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2687 {
2688 	struct seq_file *seq = file->private_data;
2689 
2690 	poll_wait(file, &proc_poll_wait, wait);
2691 
2692 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2693 		seq->poll_event = atomic_read(&proc_poll_event);
2694 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2695 	}
2696 
2697 	return EPOLLIN | EPOLLRDNORM;
2698 }
2699 
2700 /* iterator */
2701 static void *swap_start(struct seq_file *swap, loff_t *pos)
2702 {
2703 	struct swap_info_struct *si;
2704 	int type;
2705 	loff_t l = *pos;
2706 
2707 	mutex_lock(&swapon_mutex);
2708 
2709 	if (!l)
2710 		return SEQ_START_TOKEN;
2711 
2712 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2713 		if (!(si->flags & SWP_USED) || !si->swap_map)
2714 			continue;
2715 		if (!--l)
2716 			return si;
2717 	}
2718 
2719 	return NULL;
2720 }
2721 
2722 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2723 {
2724 	struct swap_info_struct *si = v;
2725 	int type;
2726 
2727 	if (v == SEQ_START_TOKEN)
2728 		type = 0;
2729 	else
2730 		type = si->type + 1;
2731 
2732 	++(*pos);
2733 	for (; (si = swap_type_to_swap_info(type)); type++) {
2734 		if (!(si->flags & SWP_USED) || !si->swap_map)
2735 			continue;
2736 		return si;
2737 	}
2738 
2739 	return NULL;
2740 }
2741 
2742 static void swap_stop(struct seq_file *swap, void *v)
2743 {
2744 	mutex_unlock(&swapon_mutex);
2745 }
2746 
2747 static int swap_show(struct seq_file *swap, void *v)
2748 {
2749 	struct swap_info_struct *si = v;
2750 	struct file *file;
2751 	int len;
2752 	unsigned long bytes, inuse;
2753 
2754 	if (si == SEQ_START_TOKEN) {
2755 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2756 		return 0;
2757 	}
2758 
2759 	bytes = si->pages << (PAGE_SHIFT - 10);
2760 	inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2761 
2762 	file = si->swap_file;
2763 	len = seq_file_path(swap, file, " \t\n\\");
2764 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2765 			len < 40 ? 40 - len : 1, " ",
2766 			S_ISBLK(file_inode(file)->i_mode) ?
2767 				"partition" : "file\t",
2768 			bytes, bytes < 10000000 ? "\t" : "",
2769 			inuse, inuse < 10000000 ? "\t" : "",
2770 			si->prio);
2771 	return 0;
2772 }
2773 
2774 static const struct seq_operations swaps_op = {
2775 	.start =	swap_start,
2776 	.next =		swap_next,
2777 	.stop =		swap_stop,
2778 	.show =		swap_show
2779 };
2780 
2781 static int swaps_open(struct inode *inode, struct file *file)
2782 {
2783 	struct seq_file *seq;
2784 	int ret;
2785 
2786 	ret = seq_open(file, &swaps_op);
2787 	if (ret)
2788 		return ret;
2789 
2790 	seq = file->private_data;
2791 	seq->poll_event = atomic_read(&proc_poll_event);
2792 	return 0;
2793 }
2794 
2795 static const struct proc_ops swaps_proc_ops = {
2796 	.proc_flags	= PROC_ENTRY_PERMANENT,
2797 	.proc_open	= swaps_open,
2798 	.proc_read	= seq_read,
2799 	.proc_lseek	= seq_lseek,
2800 	.proc_release	= seq_release,
2801 	.proc_poll	= swaps_poll,
2802 };
2803 
2804 static int __init procswaps_init(void)
2805 {
2806 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2807 	return 0;
2808 }
2809 __initcall(procswaps_init);
2810 #endif /* CONFIG_PROC_FS */
2811 
2812 #ifdef MAX_SWAPFILES_CHECK
2813 static int __init max_swapfiles_check(void)
2814 {
2815 	MAX_SWAPFILES_CHECK();
2816 	return 0;
2817 }
2818 late_initcall(max_swapfiles_check);
2819 #endif
2820 
2821 static struct swap_info_struct *alloc_swap_info(void)
2822 {
2823 	struct swap_info_struct *p;
2824 	struct swap_info_struct *defer = NULL;
2825 	unsigned int type;
2826 	int i;
2827 
2828 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2829 	if (!p)
2830 		return ERR_PTR(-ENOMEM);
2831 
2832 	if (percpu_ref_init(&p->users, swap_users_ref_free,
2833 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2834 		kvfree(p);
2835 		return ERR_PTR(-ENOMEM);
2836 	}
2837 
2838 	spin_lock(&swap_lock);
2839 	for (type = 0; type < nr_swapfiles; type++) {
2840 		if (!(swap_info[type]->flags & SWP_USED))
2841 			break;
2842 	}
2843 	if (type >= MAX_SWAPFILES) {
2844 		spin_unlock(&swap_lock);
2845 		percpu_ref_exit(&p->users);
2846 		kvfree(p);
2847 		return ERR_PTR(-EPERM);
2848 	}
2849 	if (type >= nr_swapfiles) {
2850 		p->type = type;
2851 		/*
2852 		 * Publish the swap_info_struct after initializing it.
2853 		 * Note that kvzalloc() above zeroes all its fields.
2854 		 */
2855 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2856 		nr_swapfiles++;
2857 	} else {
2858 		defer = p;
2859 		p = swap_info[type];
2860 		/*
2861 		 * Do not memset this entry: a racing procfs swap_next()
2862 		 * would be relying on p->type to remain valid.
2863 		 */
2864 	}
2865 	p->swap_extent_root = RB_ROOT;
2866 	plist_node_init(&p->list, 0);
2867 	for_each_node(i)
2868 		plist_node_init(&p->avail_lists[i], 0);
2869 	p->flags = SWP_USED;
2870 	spin_unlock(&swap_lock);
2871 	if (defer) {
2872 		percpu_ref_exit(&defer->users);
2873 		kvfree(defer);
2874 	}
2875 	spin_lock_init(&p->lock);
2876 	spin_lock_init(&p->cont_lock);
2877 	init_completion(&p->comp);
2878 
2879 	return p;
2880 }
2881 
2882 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2883 {
2884 	int error;
2885 
2886 	if (S_ISBLK(inode->i_mode)) {
2887 		p->bdev = blkdev_get_by_dev(inode->i_rdev,
2888 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2889 		if (IS_ERR(p->bdev)) {
2890 			error = PTR_ERR(p->bdev);
2891 			p->bdev = NULL;
2892 			return error;
2893 		}
2894 		p->old_block_size = block_size(p->bdev);
2895 		error = set_blocksize(p->bdev, PAGE_SIZE);
2896 		if (error < 0)
2897 			return error;
2898 		/*
2899 		 * Zoned block devices contain zones that have a sequential
2900 		 * write only restriction.  Hence zoned block devices are not
2901 		 * suitable for swapping.  Disallow them here.
2902 		 */
2903 		if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2904 			return -EINVAL;
2905 		p->flags |= SWP_BLKDEV;
2906 	} else if (S_ISREG(inode->i_mode)) {
2907 		p->bdev = inode->i_sb->s_bdev;
2908 	}
2909 
2910 	return 0;
2911 }
2912 
2913 
2914 /*
2915  * Find out how many pages are allowed for a single swap device. There
2916  * are two limiting factors:
2917  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2918  * 2) the number of bits in the swap pte, as defined by the different
2919  * architectures.
2920  *
2921  * In order to find the largest possible bit mask, a swap entry with
2922  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2923  * decoded to a swp_entry_t again, and finally the swap offset is
2924  * extracted.
2925  *
2926  * This will mask all the bits from the initial ~0UL mask that can't
2927  * be encoded in either the swp_entry_t or the architecture definition
2928  * of a swap pte.
2929  */
2930 unsigned long generic_max_swapfile_size(void)
2931 {
2932 	return swp_offset(pte_to_swp_entry(
2933 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2934 }
2935 
2936 /* Can be overridden by an architecture for additional checks. */
2937 __weak unsigned long max_swapfile_size(void)
2938 {
2939 	return generic_max_swapfile_size();
2940 }
2941 
2942 static unsigned long read_swap_header(struct swap_info_struct *p,
2943 					union swap_header *swap_header,
2944 					struct inode *inode)
2945 {
2946 	int i;
2947 	unsigned long maxpages;
2948 	unsigned long swapfilepages;
2949 	unsigned long last_page;
2950 
2951 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2952 		pr_err("Unable to find swap-space signature\n");
2953 		return 0;
2954 	}
2955 
2956 	/* swap partition endianness hack... */
2957 	if (swab32(swap_header->info.version) == 1) {
2958 		swab32s(&swap_header->info.version);
2959 		swab32s(&swap_header->info.last_page);
2960 		swab32s(&swap_header->info.nr_badpages);
2961 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2962 			return 0;
2963 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2964 			swab32s(&swap_header->info.badpages[i]);
2965 	}
2966 	/* Check the swap header's sub-version */
2967 	if (swap_header->info.version != 1) {
2968 		pr_warn("Unable to handle swap header version %d\n",
2969 			swap_header->info.version);
2970 		return 0;
2971 	}
2972 
2973 	p->lowest_bit  = 1;
2974 	p->cluster_next = 1;
2975 	p->cluster_nr = 0;
2976 
2977 	maxpages = max_swapfile_size();
2978 	last_page = swap_header->info.last_page;
2979 	if (!last_page) {
2980 		pr_warn("Empty swap-file\n");
2981 		return 0;
2982 	}
2983 	if (last_page > maxpages) {
2984 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2985 			maxpages << (PAGE_SHIFT - 10),
2986 			last_page << (PAGE_SHIFT - 10));
2987 	}
2988 	if (maxpages > last_page) {
2989 		maxpages = last_page + 1;
2990 		/* p->max is an unsigned int: don't overflow it */
2991 		if ((unsigned int)maxpages == 0)
2992 			maxpages = UINT_MAX;
2993 	}
2994 	p->highest_bit = maxpages - 1;
2995 
2996 	if (!maxpages)
2997 		return 0;
2998 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2999 	if (swapfilepages && maxpages > swapfilepages) {
3000 		pr_warn("Swap area shorter than signature indicates\n");
3001 		return 0;
3002 	}
3003 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3004 		return 0;
3005 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3006 		return 0;
3007 
3008 	return maxpages;
3009 }
3010 
3011 #define SWAP_CLUSTER_INFO_COLS						\
3012 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3013 #define SWAP_CLUSTER_SPACE_COLS						\
3014 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3015 #define SWAP_CLUSTER_COLS						\
3016 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3017 
3018 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3019 					union swap_header *swap_header,
3020 					unsigned char *swap_map,
3021 					struct swap_cluster_info *cluster_info,
3022 					unsigned long maxpages,
3023 					sector_t *span)
3024 {
3025 	unsigned int j, k;
3026 	unsigned int nr_good_pages;
3027 	int nr_extents;
3028 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3029 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3030 	unsigned long i, idx;
3031 
3032 	nr_good_pages = maxpages - 1;	/* omit header page */
3033 
3034 	cluster_list_init(&p->free_clusters);
3035 	cluster_list_init(&p->discard_clusters);
3036 
3037 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3038 		unsigned int page_nr = swap_header->info.badpages[i];
3039 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3040 			return -EINVAL;
3041 		if (page_nr < maxpages) {
3042 			swap_map[page_nr] = SWAP_MAP_BAD;
3043 			nr_good_pages--;
3044 			/*
3045 			 * Haven't marked the cluster free yet, no list
3046 			 * operation involved
3047 			 */
3048 			inc_cluster_info_page(p, cluster_info, page_nr);
3049 		}
3050 	}
3051 
3052 	/* Haven't marked the cluster free yet, no list operation involved */
3053 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3054 		inc_cluster_info_page(p, cluster_info, i);
3055 
3056 	if (nr_good_pages) {
3057 		swap_map[0] = SWAP_MAP_BAD;
3058 		/*
3059 		 * Not mark the cluster free yet, no list
3060 		 * operation involved
3061 		 */
3062 		inc_cluster_info_page(p, cluster_info, 0);
3063 		p->max = maxpages;
3064 		p->pages = nr_good_pages;
3065 		nr_extents = setup_swap_extents(p, span);
3066 		if (nr_extents < 0)
3067 			return nr_extents;
3068 		nr_good_pages = p->pages;
3069 	}
3070 	if (!nr_good_pages) {
3071 		pr_warn("Empty swap-file\n");
3072 		return -EINVAL;
3073 	}
3074 
3075 	if (!cluster_info)
3076 		return nr_extents;
3077 
3078 
3079 	/*
3080 	 * Reduce false cache line sharing between cluster_info and
3081 	 * sharing same address space.
3082 	 */
3083 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3084 		j = (k + col) % SWAP_CLUSTER_COLS;
3085 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3086 			idx = i * SWAP_CLUSTER_COLS + j;
3087 			if (idx >= nr_clusters)
3088 				continue;
3089 			if (cluster_count(&cluster_info[idx]))
3090 				continue;
3091 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3092 			cluster_list_add_tail(&p->free_clusters, cluster_info,
3093 					      idx);
3094 		}
3095 	}
3096 	return nr_extents;
3097 }
3098 
3099 /*
3100  * Helper to sys_swapon determining if a given swap
3101  * backing device queue supports DISCARD operations.
3102  */
3103 static bool swap_discardable(struct swap_info_struct *si)
3104 {
3105 	struct request_queue *q = bdev_get_queue(si->bdev);
3106 
3107 	if (!blk_queue_discard(q))
3108 		return false;
3109 
3110 	return true;
3111 }
3112 
3113 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3114 {
3115 	struct swap_info_struct *p;
3116 	struct filename *name;
3117 	struct file *swap_file = NULL;
3118 	struct address_space *mapping;
3119 	struct dentry *dentry;
3120 	int prio;
3121 	int error;
3122 	union swap_header *swap_header;
3123 	int nr_extents;
3124 	sector_t span;
3125 	unsigned long maxpages;
3126 	unsigned char *swap_map = NULL;
3127 	struct swap_cluster_info *cluster_info = NULL;
3128 	unsigned long *frontswap_map = NULL;
3129 	struct page *page = NULL;
3130 	struct inode *inode = NULL;
3131 	bool inced_nr_rotate_swap = false;
3132 
3133 	if (swap_flags & ~SWAP_FLAGS_VALID)
3134 		return -EINVAL;
3135 
3136 	if (!capable(CAP_SYS_ADMIN))
3137 		return -EPERM;
3138 
3139 	if (!swap_avail_heads)
3140 		return -ENOMEM;
3141 
3142 	p = alloc_swap_info();
3143 	if (IS_ERR(p))
3144 		return PTR_ERR(p);
3145 
3146 	INIT_WORK(&p->discard_work, swap_discard_work);
3147 
3148 	name = getname(specialfile);
3149 	if (IS_ERR(name)) {
3150 		error = PTR_ERR(name);
3151 		name = NULL;
3152 		goto bad_swap;
3153 	}
3154 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3155 	if (IS_ERR(swap_file)) {
3156 		error = PTR_ERR(swap_file);
3157 		swap_file = NULL;
3158 		goto bad_swap;
3159 	}
3160 
3161 	p->swap_file = swap_file;
3162 	mapping = swap_file->f_mapping;
3163 	dentry = swap_file->f_path.dentry;
3164 	inode = mapping->host;
3165 
3166 	error = claim_swapfile(p, inode);
3167 	if (unlikely(error))
3168 		goto bad_swap;
3169 
3170 	inode_lock(inode);
3171 	if (d_unlinked(dentry) || cant_mount(dentry)) {
3172 		error = -ENOENT;
3173 		goto bad_swap_unlock_inode;
3174 	}
3175 	if (IS_SWAPFILE(inode)) {
3176 		error = -EBUSY;
3177 		goto bad_swap_unlock_inode;
3178 	}
3179 
3180 	/*
3181 	 * Read the swap header.
3182 	 */
3183 	if (!mapping->a_ops->readpage) {
3184 		error = -EINVAL;
3185 		goto bad_swap_unlock_inode;
3186 	}
3187 	page = read_mapping_page(mapping, 0, swap_file);
3188 	if (IS_ERR(page)) {
3189 		error = PTR_ERR(page);
3190 		goto bad_swap_unlock_inode;
3191 	}
3192 	swap_header = kmap(page);
3193 
3194 	maxpages = read_swap_header(p, swap_header, inode);
3195 	if (unlikely(!maxpages)) {
3196 		error = -EINVAL;
3197 		goto bad_swap_unlock_inode;
3198 	}
3199 
3200 	/* OK, set up the swap map and apply the bad block list */
3201 	swap_map = vzalloc(maxpages);
3202 	if (!swap_map) {
3203 		error = -ENOMEM;
3204 		goto bad_swap_unlock_inode;
3205 	}
3206 
3207 	if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3208 		p->flags |= SWP_STABLE_WRITES;
3209 
3210 	if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3211 		p->flags |= SWP_SYNCHRONOUS_IO;
3212 
3213 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3214 		int cpu;
3215 		unsigned long ci, nr_cluster;
3216 
3217 		p->flags |= SWP_SOLIDSTATE;
3218 		p->cluster_next_cpu = alloc_percpu(unsigned int);
3219 		if (!p->cluster_next_cpu) {
3220 			error = -ENOMEM;
3221 			goto bad_swap_unlock_inode;
3222 		}
3223 		/*
3224 		 * select a random position to start with to help wear leveling
3225 		 * SSD
3226 		 */
3227 		for_each_possible_cpu(cpu) {
3228 			per_cpu(*p->cluster_next_cpu, cpu) =
3229 				1 + prandom_u32_max(p->highest_bit);
3230 		}
3231 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3232 
3233 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3234 					GFP_KERNEL);
3235 		if (!cluster_info) {
3236 			error = -ENOMEM;
3237 			goto bad_swap_unlock_inode;
3238 		}
3239 
3240 		for (ci = 0; ci < nr_cluster; ci++)
3241 			spin_lock_init(&((cluster_info + ci)->lock));
3242 
3243 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3244 		if (!p->percpu_cluster) {
3245 			error = -ENOMEM;
3246 			goto bad_swap_unlock_inode;
3247 		}
3248 		for_each_possible_cpu(cpu) {
3249 			struct percpu_cluster *cluster;
3250 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3251 			cluster_set_null(&cluster->index);
3252 		}
3253 	} else {
3254 		atomic_inc(&nr_rotate_swap);
3255 		inced_nr_rotate_swap = true;
3256 	}
3257 
3258 	error = swap_cgroup_swapon(p->type, maxpages);
3259 	if (error)
3260 		goto bad_swap_unlock_inode;
3261 
3262 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3263 		cluster_info, maxpages, &span);
3264 	if (unlikely(nr_extents < 0)) {
3265 		error = nr_extents;
3266 		goto bad_swap_unlock_inode;
3267 	}
3268 	/* frontswap enabled? set up bit-per-page map for frontswap */
3269 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3270 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3271 					 sizeof(long),
3272 					 GFP_KERNEL);
3273 
3274 	if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3275 		/*
3276 		 * When discard is enabled for swap with no particular
3277 		 * policy flagged, we set all swap discard flags here in
3278 		 * order to sustain backward compatibility with older
3279 		 * swapon(8) releases.
3280 		 */
3281 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3282 			     SWP_PAGE_DISCARD);
3283 
3284 		/*
3285 		 * By flagging sys_swapon, a sysadmin can tell us to
3286 		 * either do single-time area discards only, or to just
3287 		 * perform discards for released swap page-clusters.
3288 		 * Now it's time to adjust the p->flags accordingly.
3289 		 */
3290 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3291 			p->flags &= ~SWP_PAGE_DISCARD;
3292 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3293 			p->flags &= ~SWP_AREA_DISCARD;
3294 
3295 		/* issue a swapon-time discard if it's still required */
3296 		if (p->flags & SWP_AREA_DISCARD) {
3297 			int err = discard_swap(p);
3298 			if (unlikely(err))
3299 				pr_err("swapon: discard_swap(%p): %d\n",
3300 					p, err);
3301 		}
3302 	}
3303 
3304 	error = init_swap_address_space(p->type, maxpages);
3305 	if (error)
3306 		goto bad_swap_unlock_inode;
3307 
3308 	/*
3309 	 * Flush any pending IO and dirty mappings before we start using this
3310 	 * swap device.
3311 	 */
3312 	inode->i_flags |= S_SWAPFILE;
3313 	error = inode_drain_writes(inode);
3314 	if (error) {
3315 		inode->i_flags &= ~S_SWAPFILE;
3316 		goto free_swap_address_space;
3317 	}
3318 
3319 	mutex_lock(&swapon_mutex);
3320 	prio = -1;
3321 	if (swap_flags & SWAP_FLAG_PREFER)
3322 		prio =
3323 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3324 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3325 
3326 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3327 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3328 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3329 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3330 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3331 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3332 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3333 		(frontswap_map) ? "FS" : "");
3334 
3335 	mutex_unlock(&swapon_mutex);
3336 	atomic_inc(&proc_poll_event);
3337 	wake_up_interruptible(&proc_poll_wait);
3338 
3339 	error = 0;
3340 	goto out;
3341 free_swap_address_space:
3342 	exit_swap_address_space(p->type);
3343 bad_swap_unlock_inode:
3344 	inode_unlock(inode);
3345 bad_swap:
3346 	free_percpu(p->percpu_cluster);
3347 	p->percpu_cluster = NULL;
3348 	free_percpu(p->cluster_next_cpu);
3349 	p->cluster_next_cpu = NULL;
3350 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3351 		set_blocksize(p->bdev, p->old_block_size);
3352 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3353 	}
3354 	inode = NULL;
3355 	destroy_swap_extents(p);
3356 	swap_cgroup_swapoff(p->type);
3357 	spin_lock(&swap_lock);
3358 	p->swap_file = NULL;
3359 	p->flags = 0;
3360 	spin_unlock(&swap_lock);
3361 	vfree(swap_map);
3362 	kvfree(cluster_info);
3363 	kvfree(frontswap_map);
3364 	if (inced_nr_rotate_swap)
3365 		atomic_dec(&nr_rotate_swap);
3366 	if (swap_file)
3367 		filp_close(swap_file, NULL);
3368 out:
3369 	if (page && !IS_ERR(page)) {
3370 		kunmap(page);
3371 		put_page(page);
3372 	}
3373 	if (name)
3374 		putname(name);
3375 	if (inode)
3376 		inode_unlock(inode);
3377 	if (!error)
3378 		enable_swap_slots_cache();
3379 	return error;
3380 }
3381 
3382 void si_swapinfo(struct sysinfo *val)
3383 {
3384 	unsigned int type;
3385 	unsigned long nr_to_be_unused = 0;
3386 
3387 	spin_lock(&swap_lock);
3388 	for (type = 0; type < nr_swapfiles; type++) {
3389 		struct swap_info_struct *si = swap_info[type];
3390 
3391 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3392 			nr_to_be_unused += si->inuse_pages;
3393 	}
3394 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3395 	val->totalswap = total_swap_pages + nr_to_be_unused;
3396 	spin_unlock(&swap_lock);
3397 }
3398 
3399 /*
3400  * Verify that a swap entry is valid and increment its swap map count.
3401  *
3402  * Returns error code in following case.
3403  * - success -> 0
3404  * - swp_entry is invalid -> EINVAL
3405  * - swp_entry is migration entry -> EINVAL
3406  * - swap-cache reference is requested but there is already one. -> EEXIST
3407  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3408  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3409  */
3410 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3411 {
3412 	struct swap_info_struct *p;
3413 	struct swap_cluster_info *ci;
3414 	unsigned long offset;
3415 	unsigned char count;
3416 	unsigned char has_cache;
3417 	int err;
3418 
3419 	p = get_swap_device(entry);
3420 	if (!p)
3421 		return -EINVAL;
3422 
3423 	offset = swp_offset(entry);
3424 	ci = lock_cluster_or_swap_info(p, offset);
3425 
3426 	count = p->swap_map[offset];
3427 
3428 	/*
3429 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3430 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3431 	 */
3432 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3433 		err = -ENOENT;
3434 		goto unlock_out;
3435 	}
3436 
3437 	has_cache = count & SWAP_HAS_CACHE;
3438 	count &= ~SWAP_HAS_CACHE;
3439 	err = 0;
3440 
3441 	if (usage == SWAP_HAS_CACHE) {
3442 
3443 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3444 		if (!has_cache && count)
3445 			has_cache = SWAP_HAS_CACHE;
3446 		else if (has_cache)		/* someone else added cache */
3447 			err = -EEXIST;
3448 		else				/* no users remaining */
3449 			err = -ENOENT;
3450 
3451 	} else if (count || has_cache) {
3452 
3453 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3454 			count += usage;
3455 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3456 			err = -EINVAL;
3457 		else if (swap_count_continued(p, offset, count))
3458 			count = COUNT_CONTINUED;
3459 		else
3460 			err = -ENOMEM;
3461 	} else
3462 		err = -ENOENT;			/* unused swap entry */
3463 
3464 	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3465 
3466 unlock_out:
3467 	unlock_cluster_or_swap_info(p, ci);
3468 	if (p)
3469 		put_swap_device(p);
3470 	return err;
3471 }
3472 
3473 /*
3474  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3475  * (in which case its reference count is never incremented).
3476  */
3477 void swap_shmem_alloc(swp_entry_t entry)
3478 {
3479 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3480 }
3481 
3482 /*
3483  * Increase reference count of swap entry by 1.
3484  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3485  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3486  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3487  * might occur if a page table entry has got corrupted.
3488  */
3489 int swap_duplicate(swp_entry_t entry)
3490 {
3491 	int err = 0;
3492 
3493 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3494 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3495 	return err;
3496 }
3497 
3498 /*
3499  * @entry: swap entry for which we allocate swap cache.
3500  *
3501  * Called when allocating swap cache for existing swap entry,
3502  * This can return error codes. Returns 0 at success.
3503  * -EEXIST means there is a swap cache.
3504  * Note: return code is different from swap_duplicate().
3505  */
3506 int swapcache_prepare(swp_entry_t entry)
3507 {
3508 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3509 }
3510 
3511 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3512 {
3513 	return swap_type_to_swap_info(swp_type(entry));
3514 }
3515 
3516 struct swap_info_struct *page_swap_info(struct page *page)
3517 {
3518 	swp_entry_t entry = { .val = page_private(page) };
3519 	return swp_swap_info(entry);
3520 }
3521 
3522 /*
3523  * out-of-line methods to avoid include hell.
3524  */
3525 struct address_space *swapcache_mapping(struct folio *folio)
3526 {
3527 	return page_swap_info(&folio->page)->swap_file->f_mapping;
3528 }
3529 EXPORT_SYMBOL_GPL(swapcache_mapping);
3530 
3531 pgoff_t __page_file_index(struct page *page)
3532 {
3533 	swp_entry_t swap = { .val = page_private(page) };
3534 	return swp_offset(swap);
3535 }
3536 EXPORT_SYMBOL_GPL(__page_file_index);
3537 
3538 /*
3539  * add_swap_count_continuation - called when a swap count is duplicated
3540  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3541  * page of the original vmalloc'ed swap_map, to hold the continuation count
3542  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3543  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3544  *
3545  * These continuation pages are seldom referenced: the common paths all work
3546  * on the original swap_map, only referring to a continuation page when the
3547  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3548  *
3549  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3550  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3551  * can be called after dropping locks.
3552  */
3553 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3554 {
3555 	struct swap_info_struct *si;
3556 	struct swap_cluster_info *ci;
3557 	struct page *head;
3558 	struct page *page;
3559 	struct page *list_page;
3560 	pgoff_t offset;
3561 	unsigned char count;
3562 	int ret = 0;
3563 
3564 	/*
3565 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3566 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3567 	 */
3568 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3569 
3570 	si = get_swap_device(entry);
3571 	if (!si) {
3572 		/*
3573 		 * An acceptable race has occurred since the failing
3574 		 * __swap_duplicate(): the swap device may be swapoff
3575 		 */
3576 		goto outer;
3577 	}
3578 	spin_lock(&si->lock);
3579 
3580 	offset = swp_offset(entry);
3581 
3582 	ci = lock_cluster(si, offset);
3583 
3584 	count = swap_count(si->swap_map[offset]);
3585 
3586 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3587 		/*
3588 		 * The higher the swap count, the more likely it is that tasks
3589 		 * will race to add swap count continuation: we need to avoid
3590 		 * over-provisioning.
3591 		 */
3592 		goto out;
3593 	}
3594 
3595 	if (!page) {
3596 		ret = -ENOMEM;
3597 		goto out;
3598 	}
3599 
3600 	/*
3601 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3602 	 * no architecture is using highmem pages for kernel page tables: so it
3603 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3604 	 */
3605 	head = vmalloc_to_page(si->swap_map + offset);
3606 	offset &= ~PAGE_MASK;
3607 
3608 	spin_lock(&si->cont_lock);
3609 	/*
3610 	 * Page allocation does not initialize the page's lru field,
3611 	 * but it does always reset its private field.
3612 	 */
3613 	if (!page_private(head)) {
3614 		BUG_ON(count & COUNT_CONTINUED);
3615 		INIT_LIST_HEAD(&head->lru);
3616 		set_page_private(head, SWP_CONTINUED);
3617 		si->flags |= SWP_CONTINUED;
3618 	}
3619 
3620 	list_for_each_entry(list_page, &head->lru, lru) {
3621 		unsigned char *map;
3622 
3623 		/*
3624 		 * If the previous map said no continuation, but we've found
3625 		 * a continuation page, free our allocation and use this one.
3626 		 */
3627 		if (!(count & COUNT_CONTINUED))
3628 			goto out_unlock_cont;
3629 
3630 		map = kmap_atomic(list_page) + offset;
3631 		count = *map;
3632 		kunmap_atomic(map);
3633 
3634 		/*
3635 		 * If this continuation count now has some space in it,
3636 		 * free our allocation and use this one.
3637 		 */
3638 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3639 			goto out_unlock_cont;
3640 	}
3641 
3642 	list_add_tail(&page->lru, &head->lru);
3643 	page = NULL;			/* now it's attached, don't free it */
3644 out_unlock_cont:
3645 	spin_unlock(&si->cont_lock);
3646 out:
3647 	unlock_cluster(ci);
3648 	spin_unlock(&si->lock);
3649 	put_swap_device(si);
3650 outer:
3651 	if (page)
3652 		__free_page(page);
3653 	return ret;
3654 }
3655 
3656 /*
3657  * swap_count_continued - when the original swap_map count is incremented
3658  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3659  * into, carry if so, or else fail until a new continuation page is allocated;
3660  * when the original swap_map count is decremented from 0 with continuation,
3661  * borrow from the continuation and report whether it still holds more.
3662  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3663  * lock.
3664  */
3665 static bool swap_count_continued(struct swap_info_struct *si,
3666 				 pgoff_t offset, unsigned char count)
3667 {
3668 	struct page *head;
3669 	struct page *page;
3670 	unsigned char *map;
3671 	bool ret;
3672 
3673 	head = vmalloc_to_page(si->swap_map + offset);
3674 	if (page_private(head) != SWP_CONTINUED) {
3675 		BUG_ON(count & COUNT_CONTINUED);
3676 		return false;		/* need to add count continuation */
3677 	}
3678 
3679 	spin_lock(&si->cont_lock);
3680 	offset &= ~PAGE_MASK;
3681 	page = list_next_entry(head, lru);
3682 	map = kmap_atomic(page) + offset;
3683 
3684 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3685 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3686 
3687 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3688 		/*
3689 		 * Think of how you add 1 to 999
3690 		 */
3691 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3692 			kunmap_atomic(map);
3693 			page = list_next_entry(page, lru);
3694 			BUG_ON(page == head);
3695 			map = kmap_atomic(page) + offset;
3696 		}
3697 		if (*map == SWAP_CONT_MAX) {
3698 			kunmap_atomic(map);
3699 			page = list_next_entry(page, lru);
3700 			if (page == head) {
3701 				ret = false;	/* add count continuation */
3702 				goto out;
3703 			}
3704 			map = kmap_atomic(page) + offset;
3705 init_map:		*map = 0;		/* we didn't zero the page */
3706 		}
3707 		*map += 1;
3708 		kunmap_atomic(map);
3709 		while ((page = list_prev_entry(page, lru)) != head) {
3710 			map = kmap_atomic(page) + offset;
3711 			*map = COUNT_CONTINUED;
3712 			kunmap_atomic(map);
3713 		}
3714 		ret = true;			/* incremented */
3715 
3716 	} else {				/* decrementing */
3717 		/*
3718 		 * Think of how you subtract 1 from 1000
3719 		 */
3720 		BUG_ON(count != COUNT_CONTINUED);
3721 		while (*map == COUNT_CONTINUED) {
3722 			kunmap_atomic(map);
3723 			page = list_next_entry(page, lru);
3724 			BUG_ON(page == head);
3725 			map = kmap_atomic(page) + offset;
3726 		}
3727 		BUG_ON(*map == 0);
3728 		*map -= 1;
3729 		if (*map == 0)
3730 			count = 0;
3731 		kunmap_atomic(map);
3732 		while ((page = list_prev_entry(page, lru)) != head) {
3733 			map = kmap_atomic(page) + offset;
3734 			*map = SWAP_CONT_MAX | count;
3735 			count = COUNT_CONTINUED;
3736 			kunmap_atomic(map);
3737 		}
3738 		ret = count == COUNT_CONTINUED;
3739 	}
3740 out:
3741 	spin_unlock(&si->cont_lock);
3742 	return ret;
3743 }
3744 
3745 /*
3746  * free_swap_count_continuations - swapoff free all the continuation pages
3747  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3748  */
3749 static void free_swap_count_continuations(struct swap_info_struct *si)
3750 {
3751 	pgoff_t offset;
3752 
3753 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3754 		struct page *head;
3755 		head = vmalloc_to_page(si->swap_map + offset);
3756 		if (page_private(head)) {
3757 			struct page *page, *next;
3758 
3759 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3760 				list_del(&page->lru);
3761 				__free_page(page);
3762 			}
3763 		}
3764 	}
3765 }
3766 
3767 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3768 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3769 {
3770 	struct swap_info_struct *si, *next;
3771 	int nid = page_to_nid(page);
3772 
3773 	if (!(gfp_mask & __GFP_IO))
3774 		return;
3775 
3776 	if (!blk_cgroup_congested())
3777 		return;
3778 
3779 	/*
3780 	 * We've already scheduled a throttle, avoid taking the global swap
3781 	 * lock.
3782 	 */
3783 	if (current->throttle_queue)
3784 		return;
3785 
3786 	spin_lock(&swap_avail_lock);
3787 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3788 				  avail_lists[nid]) {
3789 		if (si->bdev) {
3790 			blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3791 			break;
3792 		}
3793 	}
3794 	spin_unlock(&swap_avail_lock);
3795 }
3796 #endif
3797 
3798 static int __init swapfile_init(void)
3799 {
3800 	int nid;
3801 
3802 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3803 					 GFP_KERNEL);
3804 	if (!swap_avail_heads) {
3805 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3806 		return -ENOMEM;
3807 	}
3808 
3809 	for_each_node(nid)
3810 		plist_head_init(&swap_avail_heads[nid]);
3811 
3812 	return 0;
3813 }
3814 subsys_initcall(swapfile_init);
3815