1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shmem_fs.h> 18 #include <linux/blkdev.h> 19 #include <linux/random.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/security.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mutex.h> 29 #include <linux/capability.h> 30 #include <linux/syscalls.h> 31 #include <linux/memcontrol.h> 32 #include <linux/poll.h> 33 #include <linux/oom.h> 34 #include <linux/frontswap.h> 35 #include <linux/swapfile.h> 36 #include <linux/export.h> 37 38 #include <asm/pgtable.h> 39 #include <asm/tlbflush.h> 40 #include <linux/swapops.h> 41 #include <linux/swap_cgroup.h> 42 43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 44 unsigned char); 45 static void free_swap_count_continuations(struct swap_info_struct *); 46 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 47 48 DEFINE_SPINLOCK(swap_lock); 49 static unsigned int nr_swapfiles; 50 atomic_long_t nr_swap_pages; 51 /* 52 * Some modules use swappable objects and may try to swap them out under 53 * memory pressure (via the shrinker). Before doing so, they may wish to 54 * check to see if any swap space is available. 55 */ 56 EXPORT_SYMBOL_GPL(nr_swap_pages); 57 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 58 long total_swap_pages; 59 static int least_priority; 60 61 static const char Bad_file[] = "Bad swap file entry "; 62 static const char Unused_file[] = "Unused swap file entry "; 63 static const char Bad_offset[] = "Bad swap offset entry "; 64 static const char Unused_offset[] = "Unused swap offset entry "; 65 66 /* 67 * all active swap_info_structs 68 * protected with swap_lock, and ordered by priority. 69 */ 70 PLIST_HEAD(swap_active_head); 71 72 /* 73 * all available (active, not full) swap_info_structs 74 * protected with swap_avail_lock, ordered by priority. 75 * This is used by get_swap_page() instead of swap_active_head 76 * because swap_active_head includes all swap_info_structs, 77 * but get_swap_page() doesn't need to look at full ones. 78 * This uses its own lock instead of swap_lock because when a 79 * swap_info_struct changes between not-full/full, it needs to 80 * add/remove itself to/from this list, but the swap_info_struct->lock 81 * is held and the locking order requires swap_lock to be taken 82 * before any swap_info_struct->lock. 83 */ 84 static PLIST_HEAD(swap_avail_head); 85 static DEFINE_SPINLOCK(swap_avail_lock); 86 87 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 88 89 static DEFINE_MUTEX(swapon_mutex); 90 91 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 92 /* Activity counter to indicate that a swapon or swapoff has occurred */ 93 static atomic_t proc_poll_event = ATOMIC_INIT(0); 94 95 static inline unsigned char swap_count(unsigned char ent) 96 { 97 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ 98 } 99 100 /* returns 1 if swap entry is freed */ 101 static int 102 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) 103 { 104 swp_entry_t entry = swp_entry(si->type, offset); 105 struct page *page; 106 int ret = 0; 107 108 page = find_get_page(swap_address_space(entry), swp_offset(entry)); 109 if (!page) 110 return 0; 111 /* 112 * This function is called from scan_swap_map() and it's called 113 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. 114 * We have to use trylock for avoiding deadlock. This is a special 115 * case and you should use try_to_free_swap() with explicit lock_page() 116 * in usual operations. 117 */ 118 if (trylock_page(page)) { 119 ret = try_to_free_swap(page); 120 unlock_page(page); 121 } 122 put_page(page); 123 return ret; 124 } 125 126 /* 127 * swapon tell device that all the old swap contents can be discarded, 128 * to allow the swap device to optimize its wear-levelling. 129 */ 130 static int discard_swap(struct swap_info_struct *si) 131 { 132 struct swap_extent *se; 133 sector_t start_block; 134 sector_t nr_blocks; 135 int err = 0; 136 137 /* Do not discard the swap header page! */ 138 se = &si->first_swap_extent; 139 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 140 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 141 if (nr_blocks) { 142 err = blkdev_issue_discard(si->bdev, start_block, 143 nr_blocks, GFP_KERNEL, 0); 144 if (err) 145 return err; 146 cond_resched(); 147 } 148 149 list_for_each_entry(se, &si->first_swap_extent.list, list) { 150 start_block = se->start_block << (PAGE_SHIFT - 9); 151 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 152 153 err = blkdev_issue_discard(si->bdev, start_block, 154 nr_blocks, GFP_KERNEL, 0); 155 if (err) 156 break; 157 158 cond_resched(); 159 } 160 return err; /* That will often be -EOPNOTSUPP */ 161 } 162 163 /* 164 * swap allocation tell device that a cluster of swap can now be discarded, 165 * to allow the swap device to optimize its wear-levelling. 166 */ 167 static void discard_swap_cluster(struct swap_info_struct *si, 168 pgoff_t start_page, pgoff_t nr_pages) 169 { 170 struct swap_extent *se = si->curr_swap_extent; 171 int found_extent = 0; 172 173 while (nr_pages) { 174 if (se->start_page <= start_page && 175 start_page < se->start_page + se->nr_pages) { 176 pgoff_t offset = start_page - se->start_page; 177 sector_t start_block = se->start_block + offset; 178 sector_t nr_blocks = se->nr_pages - offset; 179 180 if (nr_blocks > nr_pages) 181 nr_blocks = nr_pages; 182 start_page += nr_blocks; 183 nr_pages -= nr_blocks; 184 185 if (!found_extent++) 186 si->curr_swap_extent = se; 187 188 start_block <<= PAGE_SHIFT - 9; 189 nr_blocks <<= PAGE_SHIFT - 9; 190 if (blkdev_issue_discard(si->bdev, start_block, 191 nr_blocks, GFP_NOIO, 0)) 192 break; 193 } 194 195 se = list_next_entry(se, list); 196 } 197 } 198 199 #define SWAPFILE_CLUSTER 256 200 #define LATENCY_LIMIT 256 201 202 static inline void cluster_set_flag(struct swap_cluster_info *info, 203 unsigned int flag) 204 { 205 info->flags = flag; 206 } 207 208 static inline unsigned int cluster_count(struct swap_cluster_info *info) 209 { 210 return info->data; 211 } 212 213 static inline void cluster_set_count(struct swap_cluster_info *info, 214 unsigned int c) 215 { 216 info->data = c; 217 } 218 219 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 220 unsigned int c, unsigned int f) 221 { 222 info->flags = f; 223 info->data = c; 224 } 225 226 static inline unsigned int cluster_next(struct swap_cluster_info *info) 227 { 228 return info->data; 229 } 230 231 static inline void cluster_set_next(struct swap_cluster_info *info, 232 unsigned int n) 233 { 234 info->data = n; 235 } 236 237 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 238 unsigned int n, unsigned int f) 239 { 240 info->flags = f; 241 info->data = n; 242 } 243 244 static inline bool cluster_is_free(struct swap_cluster_info *info) 245 { 246 return info->flags & CLUSTER_FLAG_FREE; 247 } 248 249 static inline bool cluster_is_null(struct swap_cluster_info *info) 250 { 251 return info->flags & CLUSTER_FLAG_NEXT_NULL; 252 } 253 254 static inline void cluster_set_null(struct swap_cluster_info *info) 255 { 256 info->flags = CLUSTER_FLAG_NEXT_NULL; 257 info->data = 0; 258 } 259 260 static inline bool cluster_list_empty(struct swap_cluster_list *list) 261 { 262 return cluster_is_null(&list->head); 263 } 264 265 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 266 { 267 return cluster_next(&list->head); 268 } 269 270 static void cluster_list_init(struct swap_cluster_list *list) 271 { 272 cluster_set_null(&list->head); 273 cluster_set_null(&list->tail); 274 } 275 276 static void cluster_list_add_tail(struct swap_cluster_list *list, 277 struct swap_cluster_info *ci, 278 unsigned int idx) 279 { 280 if (cluster_list_empty(list)) { 281 cluster_set_next_flag(&list->head, idx, 0); 282 cluster_set_next_flag(&list->tail, idx, 0); 283 } else { 284 unsigned int tail = cluster_next(&list->tail); 285 286 cluster_set_next(&ci[tail], idx); 287 cluster_set_next_flag(&list->tail, idx, 0); 288 } 289 } 290 291 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 292 struct swap_cluster_info *ci) 293 { 294 unsigned int idx; 295 296 idx = cluster_next(&list->head); 297 if (cluster_next(&list->tail) == idx) { 298 cluster_set_null(&list->head); 299 cluster_set_null(&list->tail); 300 } else 301 cluster_set_next_flag(&list->head, 302 cluster_next(&ci[idx]), 0); 303 304 return idx; 305 } 306 307 /* Add a cluster to discard list and schedule it to do discard */ 308 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 309 unsigned int idx) 310 { 311 /* 312 * If scan_swap_map() can't find a free cluster, it will check 313 * si->swap_map directly. To make sure the discarding cluster isn't 314 * taken by scan_swap_map(), mark the swap entries bad (occupied). It 315 * will be cleared after discard 316 */ 317 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 318 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 319 320 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 321 322 schedule_work(&si->discard_work); 323 } 324 325 /* 326 * Doing discard actually. After a cluster discard is finished, the cluster 327 * will be added to free cluster list. caller should hold si->lock. 328 */ 329 static void swap_do_scheduled_discard(struct swap_info_struct *si) 330 { 331 struct swap_cluster_info *info; 332 unsigned int idx; 333 334 info = si->cluster_info; 335 336 while (!cluster_list_empty(&si->discard_clusters)) { 337 idx = cluster_list_del_first(&si->discard_clusters, info); 338 spin_unlock(&si->lock); 339 340 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 341 SWAPFILE_CLUSTER); 342 343 spin_lock(&si->lock); 344 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE); 345 cluster_list_add_tail(&si->free_clusters, info, idx); 346 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 347 0, SWAPFILE_CLUSTER); 348 } 349 } 350 351 static void swap_discard_work(struct work_struct *work) 352 { 353 struct swap_info_struct *si; 354 355 si = container_of(work, struct swap_info_struct, discard_work); 356 357 spin_lock(&si->lock); 358 swap_do_scheduled_discard(si); 359 spin_unlock(&si->lock); 360 } 361 362 /* 363 * The cluster corresponding to page_nr will be used. The cluster will be 364 * removed from free cluster list and its usage counter will be increased. 365 */ 366 static void inc_cluster_info_page(struct swap_info_struct *p, 367 struct swap_cluster_info *cluster_info, unsigned long page_nr) 368 { 369 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 370 371 if (!cluster_info) 372 return; 373 if (cluster_is_free(&cluster_info[idx])) { 374 VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx); 375 cluster_list_del_first(&p->free_clusters, cluster_info); 376 cluster_set_count_flag(&cluster_info[idx], 0, 0); 377 } 378 379 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 380 cluster_set_count(&cluster_info[idx], 381 cluster_count(&cluster_info[idx]) + 1); 382 } 383 384 /* 385 * The cluster corresponding to page_nr decreases one usage. If the usage 386 * counter becomes 0, which means no page in the cluster is in using, we can 387 * optionally discard the cluster and add it to free cluster list. 388 */ 389 static void dec_cluster_info_page(struct swap_info_struct *p, 390 struct swap_cluster_info *cluster_info, unsigned long page_nr) 391 { 392 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 393 394 if (!cluster_info) 395 return; 396 397 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 398 cluster_set_count(&cluster_info[idx], 399 cluster_count(&cluster_info[idx]) - 1); 400 401 if (cluster_count(&cluster_info[idx]) == 0) { 402 /* 403 * If the swap is discardable, prepare discard the cluster 404 * instead of free it immediately. The cluster will be freed 405 * after discard. 406 */ 407 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 408 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 409 swap_cluster_schedule_discard(p, idx); 410 return; 411 } 412 413 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 414 cluster_list_add_tail(&p->free_clusters, cluster_info, idx); 415 } 416 } 417 418 /* 419 * It's possible scan_swap_map() uses a free cluster in the middle of free 420 * cluster list. Avoiding such abuse to avoid list corruption. 421 */ 422 static bool 423 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 424 unsigned long offset) 425 { 426 struct percpu_cluster *percpu_cluster; 427 bool conflict; 428 429 offset /= SWAPFILE_CLUSTER; 430 conflict = !cluster_list_empty(&si->free_clusters) && 431 offset != cluster_list_first(&si->free_clusters) && 432 cluster_is_free(&si->cluster_info[offset]); 433 434 if (!conflict) 435 return false; 436 437 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 438 cluster_set_null(&percpu_cluster->index); 439 return true; 440 } 441 442 /* 443 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 444 * might involve allocating a new cluster for current CPU too. 445 */ 446 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 447 unsigned long *offset, unsigned long *scan_base) 448 { 449 struct percpu_cluster *cluster; 450 bool found_free; 451 unsigned long tmp; 452 453 new_cluster: 454 cluster = this_cpu_ptr(si->percpu_cluster); 455 if (cluster_is_null(&cluster->index)) { 456 if (!cluster_list_empty(&si->free_clusters)) { 457 cluster->index = si->free_clusters.head; 458 cluster->next = cluster_next(&cluster->index) * 459 SWAPFILE_CLUSTER; 460 } else if (!cluster_list_empty(&si->discard_clusters)) { 461 /* 462 * we don't have free cluster but have some clusters in 463 * discarding, do discard now and reclaim them 464 */ 465 swap_do_scheduled_discard(si); 466 *scan_base = *offset = si->cluster_next; 467 goto new_cluster; 468 } else 469 return; 470 } 471 472 found_free = false; 473 474 /* 475 * Other CPUs can use our cluster if they can't find a free cluster, 476 * check if there is still free entry in the cluster 477 */ 478 tmp = cluster->next; 479 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) * 480 SWAPFILE_CLUSTER) { 481 if (!si->swap_map[tmp]) { 482 found_free = true; 483 break; 484 } 485 tmp++; 486 } 487 if (!found_free) { 488 cluster_set_null(&cluster->index); 489 goto new_cluster; 490 } 491 cluster->next = tmp + 1; 492 *offset = tmp; 493 *scan_base = tmp; 494 } 495 496 static unsigned long scan_swap_map(struct swap_info_struct *si, 497 unsigned char usage) 498 { 499 unsigned long offset; 500 unsigned long scan_base; 501 unsigned long last_in_cluster = 0; 502 int latency_ration = LATENCY_LIMIT; 503 504 /* 505 * We try to cluster swap pages by allocating them sequentially 506 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 507 * way, however, we resort to first-free allocation, starting 508 * a new cluster. This prevents us from scattering swap pages 509 * all over the entire swap partition, so that we reduce 510 * overall disk seek times between swap pages. -- sct 511 * But we do now try to find an empty cluster. -Andrea 512 * And we let swap pages go all over an SSD partition. Hugh 513 */ 514 515 si->flags += SWP_SCANNING; 516 scan_base = offset = si->cluster_next; 517 518 /* SSD algorithm */ 519 if (si->cluster_info) { 520 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base); 521 goto checks; 522 } 523 524 if (unlikely(!si->cluster_nr--)) { 525 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 526 si->cluster_nr = SWAPFILE_CLUSTER - 1; 527 goto checks; 528 } 529 530 spin_unlock(&si->lock); 531 532 /* 533 * If seek is expensive, start searching for new cluster from 534 * start of partition, to minimize the span of allocated swap. 535 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 536 * case, just handled by scan_swap_map_try_ssd_cluster() above. 537 */ 538 scan_base = offset = si->lowest_bit; 539 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 540 541 /* Locate the first empty (unaligned) cluster */ 542 for (; last_in_cluster <= si->highest_bit; offset++) { 543 if (si->swap_map[offset]) 544 last_in_cluster = offset + SWAPFILE_CLUSTER; 545 else if (offset == last_in_cluster) { 546 spin_lock(&si->lock); 547 offset -= SWAPFILE_CLUSTER - 1; 548 si->cluster_next = offset; 549 si->cluster_nr = SWAPFILE_CLUSTER - 1; 550 goto checks; 551 } 552 if (unlikely(--latency_ration < 0)) { 553 cond_resched(); 554 latency_ration = LATENCY_LIMIT; 555 } 556 } 557 558 offset = scan_base; 559 spin_lock(&si->lock); 560 si->cluster_nr = SWAPFILE_CLUSTER - 1; 561 } 562 563 checks: 564 if (si->cluster_info) { 565 while (scan_swap_map_ssd_cluster_conflict(si, offset)) 566 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base); 567 } 568 if (!(si->flags & SWP_WRITEOK)) 569 goto no_page; 570 if (!si->highest_bit) 571 goto no_page; 572 if (offset > si->highest_bit) 573 scan_base = offset = si->lowest_bit; 574 575 /* reuse swap entry of cache-only swap if not busy. */ 576 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 577 int swap_was_freed; 578 spin_unlock(&si->lock); 579 swap_was_freed = __try_to_reclaim_swap(si, offset); 580 spin_lock(&si->lock); 581 /* entry was freed successfully, try to use this again */ 582 if (swap_was_freed) 583 goto checks; 584 goto scan; /* check next one */ 585 } 586 587 if (si->swap_map[offset]) 588 goto scan; 589 590 if (offset == si->lowest_bit) 591 si->lowest_bit++; 592 if (offset == si->highest_bit) 593 si->highest_bit--; 594 si->inuse_pages++; 595 if (si->inuse_pages == si->pages) { 596 si->lowest_bit = si->max; 597 si->highest_bit = 0; 598 spin_lock(&swap_avail_lock); 599 plist_del(&si->avail_list, &swap_avail_head); 600 spin_unlock(&swap_avail_lock); 601 } 602 si->swap_map[offset] = usage; 603 inc_cluster_info_page(si, si->cluster_info, offset); 604 si->cluster_next = offset + 1; 605 si->flags -= SWP_SCANNING; 606 607 return offset; 608 609 scan: 610 spin_unlock(&si->lock); 611 while (++offset <= si->highest_bit) { 612 if (!si->swap_map[offset]) { 613 spin_lock(&si->lock); 614 goto checks; 615 } 616 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 617 spin_lock(&si->lock); 618 goto checks; 619 } 620 if (unlikely(--latency_ration < 0)) { 621 cond_resched(); 622 latency_ration = LATENCY_LIMIT; 623 } 624 } 625 offset = si->lowest_bit; 626 while (offset < scan_base) { 627 if (!si->swap_map[offset]) { 628 spin_lock(&si->lock); 629 goto checks; 630 } 631 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 632 spin_lock(&si->lock); 633 goto checks; 634 } 635 if (unlikely(--latency_ration < 0)) { 636 cond_resched(); 637 latency_ration = LATENCY_LIMIT; 638 } 639 offset++; 640 } 641 spin_lock(&si->lock); 642 643 no_page: 644 si->flags -= SWP_SCANNING; 645 return 0; 646 } 647 648 swp_entry_t get_swap_page(void) 649 { 650 struct swap_info_struct *si, *next; 651 pgoff_t offset; 652 653 if (atomic_long_read(&nr_swap_pages) <= 0) 654 goto noswap; 655 atomic_long_dec(&nr_swap_pages); 656 657 spin_lock(&swap_avail_lock); 658 659 start_over: 660 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) { 661 /* requeue si to after same-priority siblings */ 662 plist_requeue(&si->avail_list, &swap_avail_head); 663 spin_unlock(&swap_avail_lock); 664 spin_lock(&si->lock); 665 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 666 spin_lock(&swap_avail_lock); 667 if (plist_node_empty(&si->avail_list)) { 668 spin_unlock(&si->lock); 669 goto nextsi; 670 } 671 WARN(!si->highest_bit, 672 "swap_info %d in list but !highest_bit\n", 673 si->type); 674 WARN(!(si->flags & SWP_WRITEOK), 675 "swap_info %d in list but !SWP_WRITEOK\n", 676 si->type); 677 plist_del(&si->avail_list, &swap_avail_head); 678 spin_unlock(&si->lock); 679 goto nextsi; 680 } 681 682 /* This is called for allocating swap entry for cache */ 683 offset = scan_swap_map(si, SWAP_HAS_CACHE); 684 spin_unlock(&si->lock); 685 if (offset) 686 return swp_entry(si->type, offset); 687 pr_debug("scan_swap_map of si %d failed to find offset\n", 688 si->type); 689 spin_lock(&swap_avail_lock); 690 nextsi: 691 /* 692 * if we got here, it's likely that si was almost full before, 693 * and since scan_swap_map() can drop the si->lock, multiple 694 * callers probably all tried to get a page from the same si 695 * and it filled up before we could get one; or, the si filled 696 * up between us dropping swap_avail_lock and taking si->lock. 697 * Since we dropped the swap_avail_lock, the swap_avail_head 698 * list may have been modified; so if next is still in the 699 * swap_avail_head list then try it, otherwise start over. 700 */ 701 if (plist_node_empty(&next->avail_list)) 702 goto start_over; 703 } 704 705 spin_unlock(&swap_avail_lock); 706 707 atomic_long_inc(&nr_swap_pages); 708 noswap: 709 return (swp_entry_t) {0}; 710 } 711 712 /* The only caller of this function is now suspend routine */ 713 swp_entry_t get_swap_page_of_type(int type) 714 { 715 struct swap_info_struct *si; 716 pgoff_t offset; 717 718 si = swap_info[type]; 719 spin_lock(&si->lock); 720 if (si && (si->flags & SWP_WRITEOK)) { 721 atomic_long_dec(&nr_swap_pages); 722 /* This is called for allocating swap entry, not cache */ 723 offset = scan_swap_map(si, 1); 724 if (offset) { 725 spin_unlock(&si->lock); 726 return swp_entry(type, offset); 727 } 728 atomic_long_inc(&nr_swap_pages); 729 } 730 spin_unlock(&si->lock); 731 return (swp_entry_t) {0}; 732 } 733 734 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 735 { 736 struct swap_info_struct *p; 737 unsigned long offset, type; 738 739 if (!entry.val) 740 goto out; 741 type = swp_type(entry); 742 if (type >= nr_swapfiles) 743 goto bad_nofile; 744 p = swap_info[type]; 745 if (!(p->flags & SWP_USED)) 746 goto bad_device; 747 offset = swp_offset(entry); 748 if (offset >= p->max) 749 goto bad_offset; 750 if (!p->swap_map[offset]) 751 goto bad_free; 752 spin_lock(&p->lock); 753 return p; 754 755 bad_free: 756 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val); 757 goto out; 758 bad_offset: 759 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val); 760 goto out; 761 bad_device: 762 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val); 763 goto out; 764 bad_nofile: 765 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val); 766 out: 767 return NULL; 768 } 769 770 static unsigned char swap_entry_free(struct swap_info_struct *p, 771 swp_entry_t entry, unsigned char usage) 772 { 773 unsigned long offset = swp_offset(entry); 774 unsigned char count; 775 unsigned char has_cache; 776 777 count = p->swap_map[offset]; 778 has_cache = count & SWAP_HAS_CACHE; 779 count &= ~SWAP_HAS_CACHE; 780 781 if (usage == SWAP_HAS_CACHE) { 782 VM_BUG_ON(!has_cache); 783 has_cache = 0; 784 } else if (count == SWAP_MAP_SHMEM) { 785 /* 786 * Or we could insist on shmem.c using a special 787 * swap_shmem_free() and free_shmem_swap_and_cache()... 788 */ 789 count = 0; 790 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 791 if (count == COUNT_CONTINUED) { 792 if (swap_count_continued(p, offset, count)) 793 count = SWAP_MAP_MAX | COUNT_CONTINUED; 794 else 795 count = SWAP_MAP_MAX; 796 } else 797 count--; 798 } 799 800 usage = count | has_cache; 801 p->swap_map[offset] = usage; 802 803 /* free if no reference */ 804 if (!usage) { 805 mem_cgroup_uncharge_swap(entry); 806 dec_cluster_info_page(p, p->cluster_info, offset); 807 if (offset < p->lowest_bit) 808 p->lowest_bit = offset; 809 if (offset > p->highest_bit) { 810 bool was_full = !p->highest_bit; 811 p->highest_bit = offset; 812 if (was_full && (p->flags & SWP_WRITEOK)) { 813 spin_lock(&swap_avail_lock); 814 WARN_ON(!plist_node_empty(&p->avail_list)); 815 if (plist_node_empty(&p->avail_list)) 816 plist_add(&p->avail_list, 817 &swap_avail_head); 818 spin_unlock(&swap_avail_lock); 819 } 820 } 821 atomic_long_inc(&nr_swap_pages); 822 p->inuse_pages--; 823 frontswap_invalidate_page(p->type, offset); 824 if (p->flags & SWP_BLKDEV) { 825 struct gendisk *disk = p->bdev->bd_disk; 826 if (disk->fops->swap_slot_free_notify) 827 disk->fops->swap_slot_free_notify(p->bdev, 828 offset); 829 } 830 } 831 832 return usage; 833 } 834 835 /* 836 * Caller has made sure that the swap device corresponding to entry 837 * is still around or has not been recycled. 838 */ 839 void swap_free(swp_entry_t entry) 840 { 841 struct swap_info_struct *p; 842 843 p = swap_info_get(entry); 844 if (p) { 845 swap_entry_free(p, entry, 1); 846 spin_unlock(&p->lock); 847 } 848 } 849 850 /* 851 * Called after dropping swapcache to decrease refcnt to swap entries. 852 */ 853 void swapcache_free(swp_entry_t entry) 854 { 855 struct swap_info_struct *p; 856 857 p = swap_info_get(entry); 858 if (p) { 859 swap_entry_free(p, entry, SWAP_HAS_CACHE); 860 spin_unlock(&p->lock); 861 } 862 } 863 864 /* 865 * How many references to page are currently swapped out? 866 * This does not give an exact answer when swap count is continued, 867 * but does include the high COUNT_CONTINUED flag to allow for that. 868 */ 869 int page_swapcount(struct page *page) 870 { 871 int count = 0; 872 struct swap_info_struct *p; 873 swp_entry_t entry; 874 875 entry.val = page_private(page); 876 p = swap_info_get(entry); 877 if (p) { 878 count = swap_count(p->swap_map[swp_offset(entry)]); 879 spin_unlock(&p->lock); 880 } 881 return count; 882 } 883 884 /* 885 * How many references to @entry are currently swapped out? 886 * This considers COUNT_CONTINUED so it returns exact answer. 887 */ 888 int swp_swapcount(swp_entry_t entry) 889 { 890 int count, tmp_count, n; 891 struct swap_info_struct *p; 892 struct page *page; 893 pgoff_t offset; 894 unsigned char *map; 895 896 p = swap_info_get(entry); 897 if (!p) 898 return 0; 899 900 count = swap_count(p->swap_map[swp_offset(entry)]); 901 if (!(count & COUNT_CONTINUED)) 902 goto out; 903 904 count &= ~COUNT_CONTINUED; 905 n = SWAP_MAP_MAX + 1; 906 907 offset = swp_offset(entry); 908 page = vmalloc_to_page(p->swap_map + offset); 909 offset &= ~PAGE_MASK; 910 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 911 912 do { 913 page = list_next_entry(page, lru); 914 map = kmap_atomic(page); 915 tmp_count = map[offset]; 916 kunmap_atomic(map); 917 918 count += (tmp_count & ~COUNT_CONTINUED) * n; 919 n *= (SWAP_CONT_MAX + 1); 920 } while (tmp_count & COUNT_CONTINUED); 921 out: 922 spin_unlock(&p->lock); 923 return count; 924 } 925 926 /* 927 * We can write to an anon page without COW if there are no other references 928 * to it. And as a side-effect, free up its swap: because the old content 929 * on disk will never be read, and seeking back there to write new content 930 * later would only waste time away from clustering. 931 * 932 * NOTE: total_mapcount should not be relied upon by the caller if 933 * reuse_swap_page() returns false, but it may be always overwritten 934 * (see the other implementation for CONFIG_SWAP=n). 935 */ 936 bool reuse_swap_page(struct page *page, int *total_mapcount) 937 { 938 int count; 939 940 VM_BUG_ON_PAGE(!PageLocked(page), page); 941 if (unlikely(PageKsm(page))) 942 return false; 943 count = page_trans_huge_mapcount(page, total_mapcount); 944 if (count <= 1 && PageSwapCache(page)) { 945 count += page_swapcount(page); 946 if (count == 1 && !PageWriteback(page)) { 947 delete_from_swap_cache(page); 948 SetPageDirty(page); 949 } 950 } 951 return count <= 1; 952 } 953 954 /* 955 * If swap is getting full, or if there are no more mappings of this page, 956 * then try_to_free_swap is called to free its swap space. 957 */ 958 int try_to_free_swap(struct page *page) 959 { 960 VM_BUG_ON_PAGE(!PageLocked(page), page); 961 962 if (!PageSwapCache(page)) 963 return 0; 964 if (PageWriteback(page)) 965 return 0; 966 if (page_swapcount(page)) 967 return 0; 968 969 /* 970 * Once hibernation has begun to create its image of memory, 971 * there's a danger that one of the calls to try_to_free_swap() 972 * - most probably a call from __try_to_reclaim_swap() while 973 * hibernation is allocating its own swap pages for the image, 974 * but conceivably even a call from memory reclaim - will free 975 * the swap from a page which has already been recorded in the 976 * image as a clean swapcache page, and then reuse its swap for 977 * another page of the image. On waking from hibernation, the 978 * original page might be freed under memory pressure, then 979 * later read back in from swap, now with the wrong data. 980 * 981 * Hibernation suspends storage while it is writing the image 982 * to disk so check that here. 983 */ 984 if (pm_suspended_storage()) 985 return 0; 986 987 delete_from_swap_cache(page); 988 SetPageDirty(page); 989 return 1; 990 } 991 992 /* 993 * Free the swap entry like above, but also try to 994 * free the page cache entry if it is the last user. 995 */ 996 int free_swap_and_cache(swp_entry_t entry) 997 { 998 struct swap_info_struct *p; 999 struct page *page = NULL; 1000 1001 if (non_swap_entry(entry)) 1002 return 1; 1003 1004 p = swap_info_get(entry); 1005 if (p) { 1006 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) { 1007 page = find_get_page(swap_address_space(entry), 1008 swp_offset(entry)); 1009 if (page && !trylock_page(page)) { 1010 put_page(page); 1011 page = NULL; 1012 } 1013 } 1014 spin_unlock(&p->lock); 1015 } 1016 if (page) { 1017 /* 1018 * Not mapped elsewhere, or swap space full? Free it! 1019 * Also recheck PageSwapCache now page is locked (above). 1020 */ 1021 if (PageSwapCache(page) && !PageWriteback(page) && 1022 (!page_mapped(page) || mem_cgroup_swap_full(page))) { 1023 delete_from_swap_cache(page); 1024 SetPageDirty(page); 1025 } 1026 unlock_page(page); 1027 put_page(page); 1028 } 1029 return p != NULL; 1030 } 1031 1032 #ifdef CONFIG_HIBERNATION 1033 /* 1034 * Find the swap type that corresponds to given device (if any). 1035 * 1036 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1037 * from 0, in which the swap header is expected to be located. 1038 * 1039 * This is needed for the suspend to disk (aka swsusp). 1040 */ 1041 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 1042 { 1043 struct block_device *bdev = NULL; 1044 int type; 1045 1046 if (device) 1047 bdev = bdget(device); 1048 1049 spin_lock(&swap_lock); 1050 for (type = 0; type < nr_swapfiles; type++) { 1051 struct swap_info_struct *sis = swap_info[type]; 1052 1053 if (!(sis->flags & SWP_WRITEOK)) 1054 continue; 1055 1056 if (!bdev) { 1057 if (bdev_p) 1058 *bdev_p = bdgrab(sis->bdev); 1059 1060 spin_unlock(&swap_lock); 1061 return type; 1062 } 1063 if (bdev == sis->bdev) { 1064 struct swap_extent *se = &sis->first_swap_extent; 1065 1066 if (se->start_block == offset) { 1067 if (bdev_p) 1068 *bdev_p = bdgrab(sis->bdev); 1069 1070 spin_unlock(&swap_lock); 1071 bdput(bdev); 1072 return type; 1073 } 1074 } 1075 } 1076 spin_unlock(&swap_lock); 1077 if (bdev) 1078 bdput(bdev); 1079 1080 return -ENODEV; 1081 } 1082 1083 /* 1084 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1085 * corresponding to given index in swap_info (swap type). 1086 */ 1087 sector_t swapdev_block(int type, pgoff_t offset) 1088 { 1089 struct block_device *bdev; 1090 1091 if ((unsigned int)type >= nr_swapfiles) 1092 return 0; 1093 if (!(swap_info[type]->flags & SWP_WRITEOK)) 1094 return 0; 1095 return map_swap_entry(swp_entry(type, offset), &bdev); 1096 } 1097 1098 /* 1099 * Return either the total number of swap pages of given type, or the number 1100 * of free pages of that type (depending on @free) 1101 * 1102 * This is needed for software suspend 1103 */ 1104 unsigned int count_swap_pages(int type, int free) 1105 { 1106 unsigned int n = 0; 1107 1108 spin_lock(&swap_lock); 1109 if ((unsigned int)type < nr_swapfiles) { 1110 struct swap_info_struct *sis = swap_info[type]; 1111 1112 spin_lock(&sis->lock); 1113 if (sis->flags & SWP_WRITEOK) { 1114 n = sis->pages; 1115 if (free) 1116 n -= sis->inuse_pages; 1117 } 1118 spin_unlock(&sis->lock); 1119 } 1120 spin_unlock(&swap_lock); 1121 return n; 1122 } 1123 #endif /* CONFIG_HIBERNATION */ 1124 1125 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1126 { 1127 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte); 1128 } 1129 1130 /* 1131 * No need to decide whether this PTE shares the swap entry with others, 1132 * just let do_wp_page work it out if a write is requested later - to 1133 * force COW, vm_page_prot omits write permission from any private vma. 1134 */ 1135 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1136 unsigned long addr, swp_entry_t entry, struct page *page) 1137 { 1138 struct page *swapcache; 1139 struct mem_cgroup *memcg; 1140 spinlock_t *ptl; 1141 pte_t *pte; 1142 int ret = 1; 1143 1144 swapcache = page; 1145 page = ksm_might_need_to_copy(page, vma, addr); 1146 if (unlikely(!page)) 1147 return -ENOMEM; 1148 1149 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, 1150 &memcg, false)) { 1151 ret = -ENOMEM; 1152 goto out_nolock; 1153 } 1154 1155 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1156 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1157 mem_cgroup_cancel_charge(page, memcg, false); 1158 ret = 0; 1159 goto out; 1160 } 1161 1162 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1163 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1164 get_page(page); 1165 set_pte_at(vma->vm_mm, addr, pte, 1166 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1167 if (page == swapcache) { 1168 page_add_anon_rmap(page, vma, addr, false); 1169 mem_cgroup_commit_charge(page, memcg, true, false); 1170 } else { /* ksm created a completely new copy */ 1171 page_add_new_anon_rmap(page, vma, addr, false); 1172 mem_cgroup_commit_charge(page, memcg, false, false); 1173 lru_cache_add_active_or_unevictable(page, vma); 1174 } 1175 swap_free(entry); 1176 /* 1177 * Move the page to the active list so it is not 1178 * immediately swapped out again after swapon. 1179 */ 1180 activate_page(page); 1181 out: 1182 pte_unmap_unlock(pte, ptl); 1183 out_nolock: 1184 if (page != swapcache) { 1185 unlock_page(page); 1186 put_page(page); 1187 } 1188 return ret; 1189 } 1190 1191 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1192 unsigned long addr, unsigned long end, 1193 swp_entry_t entry, struct page *page) 1194 { 1195 pte_t swp_pte = swp_entry_to_pte(entry); 1196 pte_t *pte; 1197 int ret = 0; 1198 1199 /* 1200 * We don't actually need pte lock while scanning for swp_pte: since 1201 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 1202 * page table while we're scanning; though it could get zapped, and on 1203 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 1204 * of unmatched parts which look like swp_pte, so unuse_pte must 1205 * recheck under pte lock. Scanning without pte lock lets it be 1206 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 1207 */ 1208 pte = pte_offset_map(pmd, addr); 1209 do { 1210 /* 1211 * swapoff spends a _lot_ of time in this loop! 1212 * Test inline before going to call unuse_pte. 1213 */ 1214 if (unlikely(pte_same_as_swp(*pte, swp_pte))) { 1215 pte_unmap(pte); 1216 ret = unuse_pte(vma, pmd, addr, entry, page); 1217 if (ret) 1218 goto out; 1219 pte = pte_offset_map(pmd, addr); 1220 } 1221 } while (pte++, addr += PAGE_SIZE, addr != end); 1222 pte_unmap(pte - 1); 1223 out: 1224 return ret; 1225 } 1226 1227 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1228 unsigned long addr, unsigned long end, 1229 swp_entry_t entry, struct page *page) 1230 { 1231 pmd_t *pmd; 1232 unsigned long next; 1233 int ret; 1234 1235 pmd = pmd_offset(pud, addr); 1236 do { 1237 next = pmd_addr_end(addr, end); 1238 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1239 continue; 1240 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 1241 if (ret) 1242 return ret; 1243 } while (pmd++, addr = next, addr != end); 1244 return 0; 1245 } 1246 1247 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 1248 unsigned long addr, unsigned long end, 1249 swp_entry_t entry, struct page *page) 1250 { 1251 pud_t *pud; 1252 unsigned long next; 1253 int ret; 1254 1255 pud = pud_offset(pgd, addr); 1256 do { 1257 next = pud_addr_end(addr, end); 1258 if (pud_none_or_clear_bad(pud)) 1259 continue; 1260 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 1261 if (ret) 1262 return ret; 1263 } while (pud++, addr = next, addr != end); 1264 return 0; 1265 } 1266 1267 static int unuse_vma(struct vm_area_struct *vma, 1268 swp_entry_t entry, struct page *page) 1269 { 1270 pgd_t *pgd; 1271 unsigned long addr, end, next; 1272 int ret; 1273 1274 if (page_anon_vma(page)) { 1275 addr = page_address_in_vma(page, vma); 1276 if (addr == -EFAULT) 1277 return 0; 1278 else 1279 end = addr + PAGE_SIZE; 1280 } else { 1281 addr = vma->vm_start; 1282 end = vma->vm_end; 1283 } 1284 1285 pgd = pgd_offset(vma->vm_mm, addr); 1286 do { 1287 next = pgd_addr_end(addr, end); 1288 if (pgd_none_or_clear_bad(pgd)) 1289 continue; 1290 ret = unuse_pud_range(vma, pgd, addr, next, entry, page); 1291 if (ret) 1292 return ret; 1293 } while (pgd++, addr = next, addr != end); 1294 return 0; 1295 } 1296 1297 static int unuse_mm(struct mm_struct *mm, 1298 swp_entry_t entry, struct page *page) 1299 { 1300 struct vm_area_struct *vma; 1301 int ret = 0; 1302 1303 if (!down_read_trylock(&mm->mmap_sem)) { 1304 /* 1305 * Activate page so shrink_inactive_list is unlikely to unmap 1306 * its ptes while lock is dropped, so swapoff can make progress. 1307 */ 1308 activate_page(page); 1309 unlock_page(page); 1310 down_read(&mm->mmap_sem); 1311 lock_page(page); 1312 } 1313 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1314 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 1315 break; 1316 } 1317 up_read(&mm->mmap_sem); 1318 return (ret < 0)? ret: 0; 1319 } 1320 1321 /* 1322 * Scan swap_map (or frontswap_map if frontswap parameter is true) 1323 * from current position to next entry still in use. 1324 * Recycle to start on reaching the end, returning 0 when empty. 1325 */ 1326 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1327 unsigned int prev, bool frontswap) 1328 { 1329 unsigned int max = si->max; 1330 unsigned int i = prev; 1331 unsigned char count; 1332 1333 /* 1334 * No need for swap_lock here: we're just looking 1335 * for whether an entry is in use, not modifying it; false 1336 * hits are okay, and sys_swapoff() has already prevented new 1337 * allocations from this area (while holding swap_lock). 1338 */ 1339 for (;;) { 1340 if (++i >= max) { 1341 if (!prev) { 1342 i = 0; 1343 break; 1344 } 1345 /* 1346 * No entries in use at top of swap_map, 1347 * loop back to start and recheck there. 1348 */ 1349 max = prev + 1; 1350 prev = 0; 1351 i = 1; 1352 } 1353 if (frontswap) { 1354 if (frontswap_test(si, i)) 1355 break; 1356 else 1357 continue; 1358 } 1359 count = READ_ONCE(si->swap_map[i]); 1360 if (count && swap_count(count) != SWAP_MAP_BAD) 1361 break; 1362 } 1363 return i; 1364 } 1365 1366 /* 1367 * We completely avoid races by reading each swap page in advance, 1368 * and then search for the process using it. All the necessary 1369 * page table adjustments can then be made atomically. 1370 * 1371 * if the boolean frontswap is true, only unuse pages_to_unuse pages; 1372 * pages_to_unuse==0 means all pages; ignored if frontswap is false 1373 */ 1374 int try_to_unuse(unsigned int type, bool frontswap, 1375 unsigned long pages_to_unuse) 1376 { 1377 struct swap_info_struct *si = swap_info[type]; 1378 struct mm_struct *start_mm; 1379 volatile unsigned char *swap_map; /* swap_map is accessed without 1380 * locking. Mark it as volatile 1381 * to prevent compiler doing 1382 * something odd. 1383 */ 1384 unsigned char swcount; 1385 struct page *page; 1386 swp_entry_t entry; 1387 unsigned int i = 0; 1388 int retval = 0; 1389 1390 /* 1391 * When searching mms for an entry, a good strategy is to 1392 * start at the first mm we freed the previous entry from 1393 * (though actually we don't notice whether we or coincidence 1394 * freed the entry). Initialize this start_mm with a hold. 1395 * 1396 * A simpler strategy would be to start at the last mm we 1397 * freed the previous entry from; but that would take less 1398 * advantage of mmlist ordering, which clusters forked mms 1399 * together, child after parent. If we race with dup_mmap(), we 1400 * prefer to resolve parent before child, lest we miss entries 1401 * duplicated after we scanned child: using last mm would invert 1402 * that. 1403 */ 1404 start_mm = &init_mm; 1405 atomic_inc(&init_mm.mm_users); 1406 1407 /* 1408 * Keep on scanning until all entries have gone. Usually, 1409 * one pass through swap_map is enough, but not necessarily: 1410 * there are races when an instance of an entry might be missed. 1411 */ 1412 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) { 1413 if (signal_pending(current)) { 1414 retval = -EINTR; 1415 break; 1416 } 1417 1418 /* 1419 * Get a page for the entry, using the existing swap 1420 * cache page if there is one. Otherwise, get a clean 1421 * page and read the swap into it. 1422 */ 1423 swap_map = &si->swap_map[i]; 1424 entry = swp_entry(type, i); 1425 page = read_swap_cache_async(entry, 1426 GFP_HIGHUSER_MOVABLE, NULL, 0); 1427 if (!page) { 1428 /* 1429 * Either swap_duplicate() failed because entry 1430 * has been freed independently, and will not be 1431 * reused since sys_swapoff() already disabled 1432 * allocation from here, or alloc_page() failed. 1433 */ 1434 swcount = *swap_map; 1435 /* 1436 * We don't hold lock here, so the swap entry could be 1437 * SWAP_MAP_BAD (when the cluster is discarding). 1438 * Instead of fail out, We can just skip the swap 1439 * entry because swapoff will wait for discarding 1440 * finish anyway. 1441 */ 1442 if (!swcount || swcount == SWAP_MAP_BAD) 1443 continue; 1444 retval = -ENOMEM; 1445 break; 1446 } 1447 1448 /* 1449 * Don't hold on to start_mm if it looks like exiting. 1450 */ 1451 if (atomic_read(&start_mm->mm_users) == 1) { 1452 mmput(start_mm); 1453 start_mm = &init_mm; 1454 atomic_inc(&init_mm.mm_users); 1455 } 1456 1457 /* 1458 * Wait for and lock page. When do_swap_page races with 1459 * try_to_unuse, do_swap_page can handle the fault much 1460 * faster than try_to_unuse can locate the entry. This 1461 * apparently redundant "wait_on_page_locked" lets try_to_unuse 1462 * defer to do_swap_page in such a case - in some tests, 1463 * do_swap_page and try_to_unuse repeatedly compete. 1464 */ 1465 wait_on_page_locked(page); 1466 wait_on_page_writeback(page); 1467 lock_page(page); 1468 wait_on_page_writeback(page); 1469 1470 /* 1471 * Remove all references to entry. 1472 */ 1473 swcount = *swap_map; 1474 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 1475 retval = shmem_unuse(entry, page); 1476 /* page has already been unlocked and released */ 1477 if (retval < 0) 1478 break; 1479 continue; 1480 } 1481 if (swap_count(swcount) && start_mm != &init_mm) 1482 retval = unuse_mm(start_mm, entry, page); 1483 1484 if (swap_count(*swap_map)) { 1485 int set_start_mm = (*swap_map >= swcount); 1486 struct list_head *p = &start_mm->mmlist; 1487 struct mm_struct *new_start_mm = start_mm; 1488 struct mm_struct *prev_mm = start_mm; 1489 struct mm_struct *mm; 1490 1491 atomic_inc(&new_start_mm->mm_users); 1492 atomic_inc(&prev_mm->mm_users); 1493 spin_lock(&mmlist_lock); 1494 while (swap_count(*swap_map) && !retval && 1495 (p = p->next) != &start_mm->mmlist) { 1496 mm = list_entry(p, struct mm_struct, mmlist); 1497 if (!atomic_inc_not_zero(&mm->mm_users)) 1498 continue; 1499 spin_unlock(&mmlist_lock); 1500 mmput(prev_mm); 1501 prev_mm = mm; 1502 1503 cond_resched(); 1504 1505 swcount = *swap_map; 1506 if (!swap_count(swcount)) /* any usage ? */ 1507 ; 1508 else if (mm == &init_mm) 1509 set_start_mm = 1; 1510 else 1511 retval = unuse_mm(mm, entry, page); 1512 1513 if (set_start_mm && *swap_map < swcount) { 1514 mmput(new_start_mm); 1515 atomic_inc(&mm->mm_users); 1516 new_start_mm = mm; 1517 set_start_mm = 0; 1518 } 1519 spin_lock(&mmlist_lock); 1520 } 1521 spin_unlock(&mmlist_lock); 1522 mmput(prev_mm); 1523 mmput(start_mm); 1524 start_mm = new_start_mm; 1525 } 1526 if (retval) { 1527 unlock_page(page); 1528 put_page(page); 1529 break; 1530 } 1531 1532 /* 1533 * If a reference remains (rare), we would like to leave 1534 * the page in the swap cache; but try_to_unmap could 1535 * then re-duplicate the entry once we drop page lock, 1536 * so we might loop indefinitely; also, that page could 1537 * not be swapped out to other storage meanwhile. So: 1538 * delete from cache even if there's another reference, 1539 * after ensuring that the data has been saved to disk - 1540 * since if the reference remains (rarer), it will be 1541 * read from disk into another page. Splitting into two 1542 * pages would be incorrect if swap supported "shared 1543 * private" pages, but they are handled by tmpfs files. 1544 * 1545 * Given how unuse_vma() targets one particular offset 1546 * in an anon_vma, once the anon_vma has been determined, 1547 * this splitting happens to be just what is needed to 1548 * handle where KSM pages have been swapped out: re-reading 1549 * is unnecessarily slow, but we can fix that later on. 1550 */ 1551 if (swap_count(*swap_map) && 1552 PageDirty(page) && PageSwapCache(page)) { 1553 struct writeback_control wbc = { 1554 .sync_mode = WB_SYNC_NONE, 1555 }; 1556 1557 swap_writepage(page, &wbc); 1558 lock_page(page); 1559 wait_on_page_writeback(page); 1560 } 1561 1562 /* 1563 * It is conceivable that a racing task removed this page from 1564 * swap cache just before we acquired the page lock at the top, 1565 * or while we dropped it in unuse_mm(). The page might even 1566 * be back in swap cache on another swap area: that we must not 1567 * delete, since it may not have been written out to swap yet. 1568 */ 1569 if (PageSwapCache(page) && 1570 likely(page_private(page) == entry.val)) 1571 delete_from_swap_cache(page); 1572 1573 /* 1574 * So we could skip searching mms once swap count went 1575 * to 1, we did not mark any present ptes as dirty: must 1576 * mark page dirty so shrink_page_list will preserve it. 1577 */ 1578 SetPageDirty(page); 1579 unlock_page(page); 1580 put_page(page); 1581 1582 /* 1583 * Make sure that we aren't completely killing 1584 * interactive performance. 1585 */ 1586 cond_resched(); 1587 if (frontswap && pages_to_unuse > 0) { 1588 if (!--pages_to_unuse) 1589 break; 1590 } 1591 } 1592 1593 mmput(start_mm); 1594 return retval; 1595 } 1596 1597 /* 1598 * After a successful try_to_unuse, if no swap is now in use, we know 1599 * we can empty the mmlist. swap_lock must be held on entry and exit. 1600 * Note that mmlist_lock nests inside swap_lock, and an mm must be 1601 * added to the mmlist just after page_duplicate - before would be racy. 1602 */ 1603 static void drain_mmlist(void) 1604 { 1605 struct list_head *p, *next; 1606 unsigned int type; 1607 1608 for (type = 0; type < nr_swapfiles; type++) 1609 if (swap_info[type]->inuse_pages) 1610 return; 1611 spin_lock(&mmlist_lock); 1612 list_for_each_safe(p, next, &init_mm.mmlist) 1613 list_del_init(p); 1614 spin_unlock(&mmlist_lock); 1615 } 1616 1617 /* 1618 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 1619 * corresponds to page offset for the specified swap entry. 1620 * Note that the type of this function is sector_t, but it returns page offset 1621 * into the bdev, not sector offset. 1622 */ 1623 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 1624 { 1625 struct swap_info_struct *sis; 1626 struct swap_extent *start_se; 1627 struct swap_extent *se; 1628 pgoff_t offset; 1629 1630 sis = swap_info[swp_type(entry)]; 1631 *bdev = sis->bdev; 1632 1633 offset = swp_offset(entry); 1634 start_se = sis->curr_swap_extent; 1635 se = start_se; 1636 1637 for ( ; ; ) { 1638 if (se->start_page <= offset && 1639 offset < (se->start_page + se->nr_pages)) { 1640 return se->start_block + (offset - se->start_page); 1641 } 1642 se = list_next_entry(se, list); 1643 sis->curr_swap_extent = se; 1644 BUG_ON(se == start_se); /* It *must* be present */ 1645 } 1646 } 1647 1648 /* 1649 * Returns the page offset into bdev for the specified page's swap entry. 1650 */ 1651 sector_t map_swap_page(struct page *page, struct block_device **bdev) 1652 { 1653 swp_entry_t entry; 1654 entry.val = page_private(page); 1655 return map_swap_entry(entry, bdev); 1656 } 1657 1658 /* 1659 * Free all of a swapdev's extent information 1660 */ 1661 static void destroy_swap_extents(struct swap_info_struct *sis) 1662 { 1663 while (!list_empty(&sis->first_swap_extent.list)) { 1664 struct swap_extent *se; 1665 1666 se = list_first_entry(&sis->first_swap_extent.list, 1667 struct swap_extent, list); 1668 list_del(&se->list); 1669 kfree(se); 1670 } 1671 1672 if (sis->flags & SWP_FILE) { 1673 struct file *swap_file = sis->swap_file; 1674 struct address_space *mapping = swap_file->f_mapping; 1675 1676 sis->flags &= ~SWP_FILE; 1677 mapping->a_ops->swap_deactivate(swap_file); 1678 } 1679 } 1680 1681 /* 1682 * Add a block range (and the corresponding page range) into this swapdev's 1683 * extent list. The extent list is kept sorted in page order. 1684 * 1685 * This function rather assumes that it is called in ascending page order. 1686 */ 1687 int 1688 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1689 unsigned long nr_pages, sector_t start_block) 1690 { 1691 struct swap_extent *se; 1692 struct swap_extent *new_se; 1693 struct list_head *lh; 1694 1695 if (start_page == 0) { 1696 se = &sis->first_swap_extent; 1697 sis->curr_swap_extent = se; 1698 se->start_page = 0; 1699 se->nr_pages = nr_pages; 1700 se->start_block = start_block; 1701 return 1; 1702 } else { 1703 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 1704 se = list_entry(lh, struct swap_extent, list); 1705 BUG_ON(se->start_page + se->nr_pages != start_page); 1706 if (se->start_block + se->nr_pages == start_block) { 1707 /* Merge it */ 1708 se->nr_pages += nr_pages; 1709 return 0; 1710 } 1711 } 1712 1713 /* 1714 * No merge. Insert a new extent, preserving ordering. 1715 */ 1716 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 1717 if (new_se == NULL) 1718 return -ENOMEM; 1719 new_se->start_page = start_page; 1720 new_se->nr_pages = nr_pages; 1721 new_se->start_block = start_block; 1722 1723 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 1724 return 1; 1725 } 1726 1727 /* 1728 * A `swap extent' is a simple thing which maps a contiguous range of pages 1729 * onto a contiguous range of disk blocks. An ordered list of swap extents 1730 * is built at swapon time and is then used at swap_writepage/swap_readpage 1731 * time for locating where on disk a page belongs. 1732 * 1733 * If the swapfile is an S_ISBLK block device, a single extent is installed. 1734 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 1735 * swap files identically. 1736 * 1737 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 1738 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1739 * swapfiles are handled *identically* after swapon time. 1740 * 1741 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1742 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1743 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1744 * requirements, they are simply tossed out - we will never use those blocks 1745 * for swapping. 1746 * 1747 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1748 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1749 * which will scribble on the fs. 1750 * 1751 * The amount of disk space which a single swap extent represents varies. 1752 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1753 * extents in the list. To avoid much list walking, we cache the previous 1754 * search location in `curr_swap_extent', and start new searches from there. 1755 * This is extremely effective. The average number of iterations in 1756 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1757 */ 1758 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1759 { 1760 struct file *swap_file = sis->swap_file; 1761 struct address_space *mapping = swap_file->f_mapping; 1762 struct inode *inode = mapping->host; 1763 int ret; 1764 1765 if (S_ISBLK(inode->i_mode)) { 1766 ret = add_swap_extent(sis, 0, sis->max, 0); 1767 *span = sis->pages; 1768 return ret; 1769 } 1770 1771 if (mapping->a_ops->swap_activate) { 1772 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 1773 if (!ret) { 1774 sis->flags |= SWP_FILE; 1775 ret = add_swap_extent(sis, 0, sis->max, 0); 1776 *span = sis->pages; 1777 } 1778 return ret; 1779 } 1780 1781 return generic_swapfile_activate(sis, swap_file, span); 1782 } 1783 1784 static void _enable_swap_info(struct swap_info_struct *p, int prio, 1785 unsigned char *swap_map, 1786 struct swap_cluster_info *cluster_info) 1787 { 1788 if (prio >= 0) 1789 p->prio = prio; 1790 else 1791 p->prio = --least_priority; 1792 /* 1793 * the plist prio is negated because plist ordering is 1794 * low-to-high, while swap ordering is high-to-low 1795 */ 1796 p->list.prio = -p->prio; 1797 p->avail_list.prio = -p->prio; 1798 p->swap_map = swap_map; 1799 p->cluster_info = cluster_info; 1800 p->flags |= SWP_WRITEOK; 1801 atomic_long_add(p->pages, &nr_swap_pages); 1802 total_swap_pages += p->pages; 1803 1804 assert_spin_locked(&swap_lock); 1805 /* 1806 * both lists are plists, and thus priority ordered. 1807 * swap_active_head needs to be priority ordered for swapoff(), 1808 * which on removal of any swap_info_struct with an auto-assigned 1809 * (i.e. negative) priority increments the auto-assigned priority 1810 * of any lower-priority swap_info_structs. 1811 * swap_avail_head needs to be priority ordered for get_swap_page(), 1812 * which allocates swap pages from the highest available priority 1813 * swap_info_struct. 1814 */ 1815 plist_add(&p->list, &swap_active_head); 1816 spin_lock(&swap_avail_lock); 1817 plist_add(&p->avail_list, &swap_avail_head); 1818 spin_unlock(&swap_avail_lock); 1819 } 1820 1821 static void enable_swap_info(struct swap_info_struct *p, int prio, 1822 unsigned char *swap_map, 1823 struct swap_cluster_info *cluster_info, 1824 unsigned long *frontswap_map) 1825 { 1826 frontswap_init(p->type, frontswap_map); 1827 spin_lock(&swap_lock); 1828 spin_lock(&p->lock); 1829 _enable_swap_info(p, prio, swap_map, cluster_info); 1830 spin_unlock(&p->lock); 1831 spin_unlock(&swap_lock); 1832 } 1833 1834 static void reinsert_swap_info(struct swap_info_struct *p) 1835 { 1836 spin_lock(&swap_lock); 1837 spin_lock(&p->lock); 1838 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info); 1839 spin_unlock(&p->lock); 1840 spin_unlock(&swap_lock); 1841 } 1842 1843 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 1844 { 1845 struct swap_info_struct *p = NULL; 1846 unsigned char *swap_map; 1847 struct swap_cluster_info *cluster_info; 1848 unsigned long *frontswap_map; 1849 struct file *swap_file, *victim; 1850 struct address_space *mapping; 1851 struct inode *inode; 1852 struct filename *pathname; 1853 int err, found = 0; 1854 unsigned int old_block_size; 1855 1856 if (!capable(CAP_SYS_ADMIN)) 1857 return -EPERM; 1858 1859 BUG_ON(!current->mm); 1860 1861 pathname = getname(specialfile); 1862 if (IS_ERR(pathname)) 1863 return PTR_ERR(pathname); 1864 1865 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 1866 err = PTR_ERR(victim); 1867 if (IS_ERR(victim)) 1868 goto out; 1869 1870 mapping = victim->f_mapping; 1871 spin_lock(&swap_lock); 1872 plist_for_each_entry(p, &swap_active_head, list) { 1873 if (p->flags & SWP_WRITEOK) { 1874 if (p->swap_file->f_mapping == mapping) { 1875 found = 1; 1876 break; 1877 } 1878 } 1879 } 1880 if (!found) { 1881 err = -EINVAL; 1882 spin_unlock(&swap_lock); 1883 goto out_dput; 1884 } 1885 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 1886 vm_unacct_memory(p->pages); 1887 else { 1888 err = -ENOMEM; 1889 spin_unlock(&swap_lock); 1890 goto out_dput; 1891 } 1892 spin_lock(&swap_avail_lock); 1893 plist_del(&p->avail_list, &swap_avail_head); 1894 spin_unlock(&swap_avail_lock); 1895 spin_lock(&p->lock); 1896 if (p->prio < 0) { 1897 struct swap_info_struct *si = p; 1898 1899 plist_for_each_entry_continue(si, &swap_active_head, list) { 1900 si->prio++; 1901 si->list.prio--; 1902 si->avail_list.prio--; 1903 } 1904 least_priority++; 1905 } 1906 plist_del(&p->list, &swap_active_head); 1907 atomic_long_sub(p->pages, &nr_swap_pages); 1908 total_swap_pages -= p->pages; 1909 p->flags &= ~SWP_WRITEOK; 1910 spin_unlock(&p->lock); 1911 spin_unlock(&swap_lock); 1912 1913 set_current_oom_origin(); 1914 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ 1915 clear_current_oom_origin(); 1916 1917 if (err) { 1918 /* re-insert swap space back into swap_list */ 1919 reinsert_swap_info(p); 1920 goto out_dput; 1921 } 1922 1923 flush_work(&p->discard_work); 1924 1925 destroy_swap_extents(p); 1926 if (p->flags & SWP_CONTINUED) 1927 free_swap_count_continuations(p); 1928 1929 mutex_lock(&swapon_mutex); 1930 spin_lock(&swap_lock); 1931 spin_lock(&p->lock); 1932 drain_mmlist(); 1933 1934 /* wait for anyone still in scan_swap_map */ 1935 p->highest_bit = 0; /* cuts scans short */ 1936 while (p->flags >= SWP_SCANNING) { 1937 spin_unlock(&p->lock); 1938 spin_unlock(&swap_lock); 1939 schedule_timeout_uninterruptible(1); 1940 spin_lock(&swap_lock); 1941 spin_lock(&p->lock); 1942 } 1943 1944 swap_file = p->swap_file; 1945 old_block_size = p->old_block_size; 1946 p->swap_file = NULL; 1947 p->max = 0; 1948 swap_map = p->swap_map; 1949 p->swap_map = NULL; 1950 cluster_info = p->cluster_info; 1951 p->cluster_info = NULL; 1952 frontswap_map = frontswap_map_get(p); 1953 spin_unlock(&p->lock); 1954 spin_unlock(&swap_lock); 1955 frontswap_invalidate_area(p->type); 1956 frontswap_map_set(p, NULL); 1957 mutex_unlock(&swapon_mutex); 1958 free_percpu(p->percpu_cluster); 1959 p->percpu_cluster = NULL; 1960 vfree(swap_map); 1961 vfree(cluster_info); 1962 vfree(frontswap_map); 1963 /* Destroy swap account information */ 1964 swap_cgroup_swapoff(p->type); 1965 1966 inode = mapping->host; 1967 if (S_ISBLK(inode->i_mode)) { 1968 struct block_device *bdev = I_BDEV(inode); 1969 set_blocksize(bdev, old_block_size); 1970 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 1971 } else { 1972 inode_lock(inode); 1973 inode->i_flags &= ~S_SWAPFILE; 1974 inode_unlock(inode); 1975 } 1976 filp_close(swap_file, NULL); 1977 1978 /* 1979 * Clear the SWP_USED flag after all resources are freed so that swapon 1980 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 1981 * not hold p->lock after we cleared its SWP_WRITEOK. 1982 */ 1983 spin_lock(&swap_lock); 1984 p->flags = 0; 1985 spin_unlock(&swap_lock); 1986 1987 err = 0; 1988 atomic_inc(&proc_poll_event); 1989 wake_up_interruptible(&proc_poll_wait); 1990 1991 out_dput: 1992 filp_close(victim, NULL); 1993 out: 1994 putname(pathname); 1995 return err; 1996 } 1997 1998 #ifdef CONFIG_PROC_FS 1999 static unsigned swaps_poll(struct file *file, poll_table *wait) 2000 { 2001 struct seq_file *seq = file->private_data; 2002 2003 poll_wait(file, &proc_poll_wait, wait); 2004 2005 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2006 seq->poll_event = atomic_read(&proc_poll_event); 2007 return POLLIN | POLLRDNORM | POLLERR | POLLPRI; 2008 } 2009 2010 return POLLIN | POLLRDNORM; 2011 } 2012 2013 /* iterator */ 2014 static void *swap_start(struct seq_file *swap, loff_t *pos) 2015 { 2016 struct swap_info_struct *si; 2017 int type; 2018 loff_t l = *pos; 2019 2020 mutex_lock(&swapon_mutex); 2021 2022 if (!l) 2023 return SEQ_START_TOKEN; 2024 2025 for (type = 0; type < nr_swapfiles; type++) { 2026 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2027 si = swap_info[type]; 2028 if (!(si->flags & SWP_USED) || !si->swap_map) 2029 continue; 2030 if (!--l) 2031 return si; 2032 } 2033 2034 return NULL; 2035 } 2036 2037 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2038 { 2039 struct swap_info_struct *si = v; 2040 int type; 2041 2042 if (v == SEQ_START_TOKEN) 2043 type = 0; 2044 else 2045 type = si->type + 1; 2046 2047 for (; type < nr_swapfiles; type++) { 2048 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2049 si = swap_info[type]; 2050 if (!(si->flags & SWP_USED) || !si->swap_map) 2051 continue; 2052 ++*pos; 2053 return si; 2054 } 2055 2056 return NULL; 2057 } 2058 2059 static void swap_stop(struct seq_file *swap, void *v) 2060 { 2061 mutex_unlock(&swapon_mutex); 2062 } 2063 2064 static int swap_show(struct seq_file *swap, void *v) 2065 { 2066 struct swap_info_struct *si = v; 2067 struct file *file; 2068 int len; 2069 2070 if (si == SEQ_START_TOKEN) { 2071 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 2072 return 0; 2073 } 2074 2075 file = si->swap_file; 2076 len = seq_file_path(swap, file, " \t\n\\"); 2077 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 2078 len < 40 ? 40 - len : 1, " ", 2079 S_ISBLK(file_inode(file)->i_mode) ? 2080 "partition" : "file\t", 2081 si->pages << (PAGE_SHIFT - 10), 2082 si->inuse_pages << (PAGE_SHIFT - 10), 2083 si->prio); 2084 return 0; 2085 } 2086 2087 static const struct seq_operations swaps_op = { 2088 .start = swap_start, 2089 .next = swap_next, 2090 .stop = swap_stop, 2091 .show = swap_show 2092 }; 2093 2094 static int swaps_open(struct inode *inode, struct file *file) 2095 { 2096 struct seq_file *seq; 2097 int ret; 2098 2099 ret = seq_open(file, &swaps_op); 2100 if (ret) 2101 return ret; 2102 2103 seq = file->private_data; 2104 seq->poll_event = atomic_read(&proc_poll_event); 2105 return 0; 2106 } 2107 2108 static const struct file_operations proc_swaps_operations = { 2109 .open = swaps_open, 2110 .read = seq_read, 2111 .llseek = seq_lseek, 2112 .release = seq_release, 2113 .poll = swaps_poll, 2114 }; 2115 2116 static int __init procswaps_init(void) 2117 { 2118 proc_create("swaps", 0, NULL, &proc_swaps_operations); 2119 return 0; 2120 } 2121 __initcall(procswaps_init); 2122 #endif /* CONFIG_PROC_FS */ 2123 2124 #ifdef MAX_SWAPFILES_CHECK 2125 static int __init max_swapfiles_check(void) 2126 { 2127 MAX_SWAPFILES_CHECK(); 2128 return 0; 2129 } 2130 late_initcall(max_swapfiles_check); 2131 #endif 2132 2133 static struct swap_info_struct *alloc_swap_info(void) 2134 { 2135 struct swap_info_struct *p; 2136 unsigned int type; 2137 2138 p = kzalloc(sizeof(*p), GFP_KERNEL); 2139 if (!p) 2140 return ERR_PTR(-ENOMEM); 2141 2142 spin_lock(&swap_lock); 2143 for (type = 0; type < nr_swapfiles; type++) { 2144 if (!(swap_info[type]->flags & SWP_USED)) 2145 break; 2146 } 2147 if (type >= MAX_SWAPFILES) { 2148 spin_unlock(&swap_lock); 2149 kfree(p); 2150 return ERR_PTR(-EPERM); 2151 } 2152 if (type >= nr_swapfiles) { 2153 p->type = type; 2154 swap_info[type] = p; 2155 /* 2156 * Write swap_info[type] before nr_swapfiles, in case a 2157 * racing procfs swap_start() or swap_next() is reading them. 2158 * (We never shrink nr_swapfiles, we never free this entry.) 2159 */ 2160 smp_wmb(); 2161 nr_swapfiles++; 2162 } else { 2163 kfree(p); 2164 p = swap_info[type]; 2165 /* 2166 * Do not memset this entry: a racing procfs swap_next() 2167 * would be relying on p->type to remain valid. 2168 */ 2169 } 2170 INIT_LIST_HEAD(&p->first_swap_extent.list); 2171 plist_node_init(&p->list, 0); 2172 plist_node_init(&p->avail_list, 0); 2173 p->flags = SWP_USED; 2174 spin_unlock(&swap_lock); 2175 spin_lock_init(&p->lock); 2176 2177 return p; 2178 } 2179 2180 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2181 { 2182 int error; 2183 2184 if (S_ISBLK(inode->i_mode)) { 2185 p->bdev = bdgrab(I_BDEV(inode)); 2186 error = blkdev_get(p->bdev, 2187 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2188 if (error < 0) { 2189 p->bdev = NULL; 2190 return error; 2191 } 2192 p->old_block_size = block_size(p->bdev); 2193 error = set_blocksize(p->bdev, PAGE_SIZE); 2194 if (error < 0) 2195 return error; 2196 p->flags |= SWP_BLKDEV; 2197 } else if (S_ISREG(inode->i_mode)) { 2198 p->bdev = inode->i_sb->s_bdev; 2199 inode_lock(inode); 2200 if (IS_SWAPFILE(inode)) 2201 return -EBUSY; 2202 } else 2203 return -EINVAL; 2204 2205 return 0; 2206 } 2207 2208 static unsigned long read_swap_header(struct swap_info_struct *p, 2209 union swap_header *swap_header, 2210 struct inode *inode) 2211 { 2212 int i; 2213 unsigned long maxpages; 2214 unsigned long swapfilepages; 2215 unsigned long last_page; 2216 2217 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2218 pr_err("Unable to find swap-space signature\n"); 2219 return 0; 2220 } 2221 2222 /* swap partition endianess hack... */ 2223 if (swab32(swap_header->info.version) == 1) { 2224 swab32s(&swap_header->info.version); 2225 swab32s(&swap_header->info.last_page); 2226 swab32s(&swap_header->info.nr_badpages); 2227 for (i = 0; i < swap_header->info.nr_badpages; i++) 2228 swab32s(&swap_header->info.badpages[i]); 2229 } 2230 /* Check the swap header's sub-version */ 2231 if (swap_header->info.version != 1) { 2232 pr_warn("Unable to handle swap header version %d\n", 2233 swap_header->info.version); 2234 return 0; 2235 } 2236 2237 p->lowest_bit = 1; 2238 p->cluster_next = 1; 2239 p->cluster_nr = 0; 2240 2241 /* 2242 * Find out how many pages are allowed for a single swap 2243 * device. There are two limiting factors: 1) the number 2244 * of bits for the swap offset in the swp_entry_t type, and 2245 * 2) the number of bits in the swap pte as defined by the 2246 * different architectures. In order to find the 2247 * largest possible bit mask, a swap entry with swap type 0 2248 * and swap offset ~0UL is created, encoded to a swap pte, 2249 * decoded to a swp_entry_t again, and finally the swap 2250 * offset is extracted. This will mask all the bits from 2251 * the initial ~0UL mask that can't be encoded in either 2252 * the swp_entry_t or the architecture definition of a 2253 * swap pte. 2254 */ 2255 maxpages = swp_offset(pte_to_swp_entry( 2256 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2257 last_page = swap_header->info.last_page; 2258 if (last_page > maxpages) { 2259 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2260 maxpages << (PAGE_SHIFT - 10), 2261 last_page << (PAGE_SHIFT - 10)); 2262 } 2263 if (maxpages > last_page) { 2264 maxpages = last_page + 1; 2265 /* p->max is an unsigned int: don't overflow it */ 2266 if ((unsigned int)maxpages == 0) 2267 maxpages = UINT_MAX; 2268 } 2269 p->highest_bit = maxpages - 1; 2270 2271 if (!maxpages) 2272 return 0; 2273 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2274 if (swapfilepages && maxpages > swapfilepages) { 2275 pr_warn("Swap area shorter than signature indicates\n"); 2276 return 0; 2277 } 2278 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2279 return 0; 2280 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2281 return 0; 2282 2283 return maxpages; 2284 } 2285 2286 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2287 union swap_header *swap_header, 2288 unsigned char *swap_map, 2289 struct swap_cluster_info *cluster_info, 2290 unsigned long maxpages, 2291 sector_t *span) 2292 { 2293 int i; 2294 unsigned int nr_good_pages; 2295 int nr_extents; 2296 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2297 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER; 2298 2299 nr_good_pages = maxpages - 1; /* omit header page */ 2300 2301 cluster_list_init(&p->free_clusters); 2302 cluster_list_init(&p->discard_clusters); 2303 2304 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2305 unsigned int page_nr = swap_header->info.badpages[i]; 2306 if (page_nr == 0 || page_nr > swap_header->info.last_page) 2307 return -EINVAL; 2308 if (page_nr < maxpages) { 2309 swap_map[page_nr] = SWAP_MAP_BAD; 2310 nr_good_pages--; 2311 /* 2312 * Haven't marked the cluster free yet, no list 2313 * operation involved 2314 */ 2315 inc_cluster_info_page(p, cluster_info, page_nr); 2316 } 2317 } 2318 2319 /* Haven't marked the cluster free yet, no list operation involved */ 2320 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 2321 inc_cluster_info_page(p, cluster_info, i); 2322 2323 if (nr_good_pages) { 2324 swap_map[0] = SWAP_MAP_BAD; 2325 /* 2326 * Not mark the cluster free yet, no list 2327 * operation involved 2328 */ 2329 inc_cluster_info_page(p, cluster_info, 0); 2330 p->max = maxpages; 2331 p->pages = nr_good_pages; 2332 nr_extents = setup_swap_extents(p, span); 2333 if (nr_extents < 0) 2334 return nr_extents; 2335 nr_good_pages = p->pages; 2336 } 2337 if (!nr_good_pages) { 2338 pr_warn("Empty swap-file\n"); 2339 return -EINVAL; 2340 } 2341 2342 if (!cluster_info) 2343 return nr_extents; 2344 2345 for (i = 0; i < nr_clusters; i++) { 2346 if (!cluster_count(&cluster_info[idx])) { 2347 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 2348 cluster_list_add_tail(&p->free_clusters, cluster_info, 2349 idx); 2350 } 2351 idx++; 2352 if (idx == nr_clusters) 2353 idx = 0; 2354 } 2355 return nr_extents; 2356 } 2357 2358 /* 2359 * Helper to sys_swapon determining if a given swap 2360 * backing device queue supports DISCARD operations. 2361 */ 2362 static bool swap_discardable(struct swap_info_struct *si) 2363 { 2364 struct request_queue *q = bdev_get_queue(si->bdev); 2365 2366 if (!q || !blk_queue_discard(q)) 2367 return false; 2368 2369 return true; 2370 } 2371 2372 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2373 { 2374 struct swap_info_struct *p; 2375 struct filename *name; 2376 struct file *swap_file = NULL; 2377 struct address_space *mapping; 2378 int prio; 2379 int error; 2380 union swap_header *swap_header; 2381 int nr_extents; 2382 sector_t span; 2383 unsigned long maxpages; 2384 unsigned char *swap_map = NULL; 2385 struct swap_cluster_info *cluster_info = NULL; 2386 unsigned long *frontswap_map = NULL; 2387 struct page *page = NULL; 2388 struct inode *inode = NULL; 2389 2390 if (swap_flags & ~SWAP_FLAGS_VALID) 2391 return -EINVAL; 2392 2393 if (!capable(CAP_SYS_ADMIN)) 2394 return -EPERM; 2395 2396 p = alloc_swap_info(); 2397 if (IS_ERR(p)) 2398 return PTR_ERR(p); 2399 2400 INIT_WORK(&p->discard_work, swap_discard_work); 2401 2402 name = getname(specialfile); 2403 if (IS_ERR(name)) { 2404 error = PTR_ERR(name); 2405 name = NULL; 2406 goto bad_swap; 2407 } 2408 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 2409 if (IS_ERR(swap_file)) { 2410 error = PTR_ERR(swap_file); 2411 swap_file = NULL; 2412 goto bad_swap; 2413 } 2414 2415 p->swap_file = swap_file; 2416 mapping = swap_file->f_mapping; 2417 inode = mapping->host; 2418 2419 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */ 2420 error = claim_swapfile(p, inode); 2421 if (unlikely(error)) 2422 goto bad_swap; 2423 2424 /* 2425 * Read the swap header. 2426 */ 2427 if (!mapping->a_ops->readpage) { 2428 error = -EINVAL; 2429 goto bad_swap; 2430 } 2431 page = read_mapping_page(mapping, 0, swap_file); 2432 if (IS_ERR(page)) { 2433 error = PTR_ERR(page); 2434 goto bad_swap; 2435 } 2436 swap_header = kmap(page); 2437 2438 maxpages = read_swap_header(p, swap_header, inode); 2439 if (unlikely(!maxpages)) { 2440 error = -EINVAL; 2441 goto bad_swap; 2442 } 2443 2444 /* OK, set up the swap map and apply the bad block list */ 2445 swap_map = vzalloc(maxpages); 2446 if (!swap_map) { 2447 error = -ENOMEM; 2448 goto bad_swap; 2449 } 2450 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 2451 int cpu; 2452 2453 p->flags |= SWP_SOLIDSTATE; 2454 /* 2455 * select a random position to start with to help wear leveling 2456 * SSD 2457 */ 2458 p->cluster_next = 1 + (prandom_u32() % p->highest_bit); 2459 2460 cluster_info = vzalloc(DIV_ROUND_UP(maxpages, 2461 SWAPFILE_CLUSTER) * sizeof(*cluster_info)); 2462 if (!cluster_info) { 2463 error = -ENOMEM; 2464 goto bad_swap; 2465 } 2466 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 2467 if (!p->percpu_cluster) { 2468 error = -ENOMEM; 2469 goto bad_swap; 2470 } 2471 for_each_possible_cpu(cpu) { 2472 struct percpu_cluster *cluster; 2473 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 2474 cluster_set_null(&cluster->index); 2475 } 2476 } 2477 2478 error = swap_cgroup_swapon(p->type, maxpages); 2479 if (error) 2480 goto bad_swap; 2481 2482 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 2483 cluster_info, maxpages, &span); 2484 if (unlikely(nr_extents < 0)) { 2485 error = nr_extents; 2486 goto bad_swap; 2487 } 2488 /* frontswap enabled? set up bit-per-page map for frontswap */ 2489 if (IS_ENABLED(CONFIG_FRONTSWAP)) 2490 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long)); 2491 2492 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 2493 /* 2494 * When discard is enabled for swap with no particular 2495 * policy flagged, we set all swap discard flags here in 2496 * order to sustain backward compatibility with older 2497 * swapon(8) releases. 2498 */ 2499 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 2500 SWP_PAGE_DISCARD); 2501 2502 /* 2503 * By flagging sys_swapon, a sysadmin can tell us to 2504 * either do single-time area discards only, or to just 2505 * perform discards for released swap page-clusters. 2506 * Now it's time to adjust the p->flags accordingly. 2507 */ 2508 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 2509 p->flags &= ~SWP_PAGE_DISCARD; 2510 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 2511 p->flags &= ~SWP_AREA_DISCARD; 2512 2513 /* issue a swapon-time discard if it's still required */ 2514 if (p->flags & SWP_AREA_DISCARD) { 2515 int err = discard_swap(p); 2516 if (unlikely(err)) 2517 pr_err("swapon: discard_swap(%p): %d\n", 2518 p, err); 2519 } 2520 } 2521 2522 mutex_lock(&swapon_mutex); 2523 prio = -1; 2524 if (swap_flags & SWAP_FLAG_PREFER) 2525 prio = 2526 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 2527 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 2528 2529 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 2530 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 2531 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 2532 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 2533 (p->flags & SWP_DISCARDABLE) ? "D" : "", 2534 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 2535 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 2536 (frontswap_map) ? "FS" : ""); 2537 2538 mutex_unlock(&swapon_mutex); 2539 atomic_inc(&proc_poll_event); 2540 wake_up_interruptible(&proc_poll_wait); 2541 2542 if (S_ISREG(inode->i_mode)) 2543 inode->i_flags |= S_SWAPFILE; 2544 error = 0; 2545 goto out; 2546 bad_swap: 2547 free_percpu(p->percpu_cluster); 2548 p->percpu_cluster = NULL; 2549 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 2550 set_blocksize(p->bdev, p->old_block_size); 2551 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2552 } 2553 destroy_swap_extents(p); 2554 swap_cgroup_swapoff(p->type); 2555 spin_lock(&swap_lock); 2556 p->swap_file = NULL; 2557 p->flags = 0; 2558 spin_unlock(&swap_lock); 2559 vfree(swap_map); 2560 vfree(cluster_info); 2561 if (swap_file) { 2562 if (inode && S_ISREG(inode->i_mode)) { 2563 inode_unlock(inode); 2564 inode = NULL; 2565 } 2566 filp_close(swap_file, NULL); 2567 } 2568 out: 2569 if (page && !IS_ERR(page)) { 2570 kunmap(page); 2571 put_page(page); 2572 } 2573 if (name) 2574 putname(name); 2575 if (inode && S_ISREG(inode->i_mode)) 2576 inode_unlock(inode); 2577 return error; 2578 } 2579 2580 void si_swapinfo(struct sysinfo *val) 2581 { 2582 unsigned int type; 2583 unsigned long nr_to_be_unused = 0; 2584 2585 spin_lock(&swap_lock); 2586 for (type = 0; type < nr_swapfiles; type++) { 2587 struct swap_info_struct *si = swap_info[type]; 2588 2589 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 2590 nr_to_be_unused += si->inuse_pages; 2591 } 2592 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 2593 val->totalswap = total_swap_pages + nr_to_be_unused; 2594 spin_unlock(&swap_lock); 2595 } 2596 2597 /* 2598 * Verify that a swap entry is valid and increment its swap map count. 2599 * 2600 * Returns error code in following case. 2601 * - success -> 0 2602 * - swp_entry is invalid -> EINVAL 2603 * - swp_entry is migration entry -> EINVAL 2604 * - swap-cache reference is requested but there is already one. -> EEXIST 2605 * - swap-cache reference is requested but the entry is not used. -> ENOENT 2606 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 2607 */ 2608 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 2609 { 2610 struct swap_info_struct *p; 2611 unsigned long offset, type; 2612 unsigned char count; 2613 unsigned char has_cache; 2614 int err = -EINVAL; 2615 2616 if (non_swap_entry(entry)) 2617 goto out; 2618 2619 type = swp_type(entry); 2620 if (type >= nr_swapfiles) 2621 goto bad_file; 2622 p = swap_info[type]; 2623 offset = swp_offset(entry); 2624 2625 spin_lock(&p->lock); 2626 if (unlikely(offset >= p->max)) 2627 goto unlock_out; 2628 2629 count = p->swap_map[offset]; 2630 2631 /* 2632 * swapin_readahead() doesn't check if a swap entry is valid, so the 2633 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 2634 */ 2635 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 2636 err = -ENOENT; 2637 goto unlock_out; 2638 } 2639 2640 has_cache = count & SWAP_HAS_CACHE; 2641 count &= ~SWAP_HAS_CACHE; 2642 err = 0; 2643 2644 if (usage == SWAP_HAS_CACHE) { 2645 2646 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 2647 if (!has_cache && count) 2648 has_cache = SWAP_HAS_CACHE; 2649 else if (has_cache) /* someone else added cache */ 2650 err = -EEXIST; 2651 else /* no users remaining */ 2652 err = -ENOENT; 2653 2654 } else if (count || has_cache) { 2655 2656 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 2657 count += usage; 2658 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 2659 err = -EINVAL; 2660 else if (swap_count_continued(p, offset, count)) 2661 count = COUNT_CONTINUED; 2662 else 2663 err = -ENOMEM; 2664 } else 2665 err = -ENOENT; /* unused swap entry */ 2666 2667 p->swap_map[offset] = count | has_cache; 2668 2669 unlock_out: 2670 spin_unlock(&p->lock); 2671 out: 2672 return err; 2673 2674 bad_file: 2675 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val); 2676 goto out; 2677 } 2678 2679 /* 2680 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 2681 * (in which case its reference count is never incremented). 2682 */ 2683 void swap_shmem_alloc(swp_entry_t entry) 2684 { 2685 __swap_duplicate(entry, SWAP_MAP_SHMEM); 2686 } 2687 2688 /* 2689 * Increase reference count of swap entry by 1. 2690 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 2691 * but could not be atomically allocated. Returns 0, just as if it succeeded, 2692 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 2693 * might occur if a page table entry has got corrupted. 2694 */ 2695 int swap_duplicate(swp_entry_t entry) 2696 { 2697 int err = 0; 2698 2699 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 2700 err = add_swap_count_continuation(entry, GFP_ATOMIC); 2701 return err; 2702 } 2703 2704 /* 2705 * @entry: swap entry for which we allocate swap cache. 2706 * 2707 * Called when allocating swap cache for existing swap entry, 2708 * This can return error codes. Returns 0 at success. 2709 * -EBUSY means there is a swap cache. 2710 * Note: return code is different from swap_duplicate(). 2711 */ 2712 int swapcache_prepare(swp_entry_t entry) 2713 { 2714 return __swap_duplicate(entry, SWAP_HAS_CACHE); 2715 } 2716 2717 struct swap_info_struct *page_swap_info(struct page *page) 2718 { 2719 swp_entry_t swap = { .val = page_private(page) }; 2720 return swap_info[swp_type(swap)]; 2721 } 2722 2723 /* 2724 * out-of-line __page_file_ methods to avoid include hell. 2725 */ 2726 struct address_space *__page_file_mapping(struct page *page) 2727 { 2728 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 2729 return page_swap_info(page)->swap_file->f_mapping; 2730 } 2731 EXPORT_SYMBOL_GPL(__page_file_mapping); 2732 2733 pgoff_t __page_file_index(struct page *page) 2734 { 2735 swp_entry_t swap = { .val = page_private(page) }; 2736 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 2737 return swp_offset(swap); 2738 } 2739 EXPORT_SYMBOL_GPL(__page_file_index); 2740 2741 /* 2742 * add_swap_count_continuation - called when a swap count is duplicated 2743 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 2744 * page of the original vmalloc'ed swap_map, to hold the continuation count 2745 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 2746 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 2747 * 2748 * These continuation pages are seldom referenced: the common paths all work 2749 * on the original swap_map, only referring to a continuation page when the 2750 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 2751 * 2752 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 2753 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 2754 * can be called after dropping locks. 2755 */ 2756 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 2757 { 2758 struct swap_info_struct *si; 2759 struct page *head; 2760 struct page *page; 2761 struct page *list_page; 2762 pgoff_t offset; 2763 unsigned char count; 2764 2765 /* 2766 * When debugging, it's easier to use __GFP_ZERO here; but it's better 2767 * for latency not to zero a page while GFP_ATOMIC and holding locks. 2768 */ 2769 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 2770 2771 si = swap_info_get(entry); 2772 if (!si) { 2773 /* 2774 * An acceptable race has occurred since the failing 2775 * __swap_duplicate(): the swap entry has been freed, 2776 * perhaps even the whole swap_map cleared for swapoff. 2777 */ 2778 goto outer; 2779 } 2780 2781 offset = swp_offset(entry); 2782 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 2783 2784 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 2785 /* 2786 * The higher the swap count, the more likely it is that tasks 2787 * will race to add swap count continuation: we need to avoid 2788 * over-provisioning. 2789 */ 2790 goto out; 2791 } 2792 2793 if (!page) { 2794 spin_unlock(&si->lock); 2795 return -ENOMEM; 2796 } 2797 2798 /* 2799 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 2800 * no architecture is using highmem pages for kernel page tables: so it 2801 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 2802 */ 2803 head = vmalloc_to_page(si->swap_map + offset); 2804 offset &= ~PAGE_MASK; 2805 2806 /* 2807 * Page allocation does not initialize the page's lru field, 2808 * but it does always reset its private field. 2809 */ 2810 if (!page_private(head)) { 2811 BUG_ON(count & COUNT_CONTINUED); 2812 INIT_LIST_HEAD(&head->lru); 2813 set_page_private(head, SWP_CONTINUED); 2814 si->flags |= SWP_CONTINUED; 2815 } 2816 2817 list_for_each_entry(list_page, &head->lru, lru) { 2818 unsigned char *map; 2819 2820 /* 2821 * If the previous map said no continuation, but we've found 2822 * a continuation page, free our allocation and use this one. 2823 */ 2824 if (!(count & COUNT_CONTINUED)) 2825 goto out; 2826 2827 map = kmap_atomic(list_page) + offset; 2828 count = *map; 2829 kunmap_atomic(map); 2830 2831 /* 2832 * If this continuation count now has some space in it, 2833 * free our allocation and use this one. 2834 */ 2835 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 2836 goto out; 2837 } 2838 2839 list_add_tail(&page->lru, &head->lru); 2840 page = NULL; /* now it's attached, don't free it */ 2841 out: 2842 spin_unlock(&si->lock); 2843 outer: 2844 if (page) 2845 __free_page(page); 2846 return 0; 2847 } 2848 2849 /* 2850 * swap_count_continued - when the original swap_map count is incremented 2851 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 2852 * into, carry if so, or else fail until a new continuation page is allocated; 2853 * when the original swap_map count is decremented from 0 with continuation, 2854 * borrow from the continuation and report whether it still holds more. 2855 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock. 2856 */ 2857 static bool swap_count_continued(struct swap_info_struct *si, 2858 pgoff_t offset, unsigned char count) 2859 { 2860 struct page *head; 2861 struct page *page; 2862 unsigned char *map; 2863 2864 head = vmalloc_to_page(si->swap_map + offset); 2865 if (page_private(head) != SWP_CONTINUED) { 2866 BUG_ON(count & COUNT_CONTINUED); 2867 return false; /* need to add count continuation */ 2868 } 2869 2870 offset &= ~PAGE_MASK; 2871 page = list_entry(head->lru.next, struct page, lru); 2872 map = kmap_atomic(page) + offset; 2873 2874 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 2875 goto init_map; /* jump over SWAP_CONT_MAX checks */ 2876 2877 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 2878 /* 2879 * Think of how you add 1 to 999 2880 */ 2881 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 2882 kunmap_atomic(map); 2883 page = list_entry(page->lru.next, struct page, lru); 2884 BUG_ON(page == head); 2885 map = kmap_atomic(page) + offset; 2886 } 2887 if (*map == SWAP_CONT_MAX) { 2888 kunmap_atomic(map); 2889 page = list_entry(page->lru.next, struct page, lru); 2890 if (page == head) 2891 return false; /* add count continuation */ 2892 map = kmap_atomic(page) + offset; 2893 init_map: *map = 0; /* we didn't zero the page */ 2894 } 2895 *map += 1; 2896 kunmap_atomic(map); 2897 page = list_entry(page->lru.prev, struct page, lru); 2898 while (page != head) { 2899 map = kmap_atomic(page) + offset; 2900 *map = COUNT_CONTINUED; 2901 kunmap_atomic(map); 2902 page = list_entry(page->lru.prev, struct page, lru); 2903 } 2904 return true; /* incremented */ 2905 2906 } else { /* decrementing */ 2907 /* 2908 * Think of how you subtract 1 from 1000 2909 */ 2910 BUG_ON(count != COUNT_CONTINUED); 2911 while (*map == COUNT_CONTINUED) { 2912 kunmap_atomic(map); 2913 page = list_entry(page->lru.next, struct page, lru); 2914 BUG_ON(page == head); 2915 map = kmap_atomic(page) + offset; 2916 } 2917 BUG_ON(*map == 0); 2918 *map -= 1; 2919 if (*map == 0) 2920 count = 0; 2921 kunmap_atomic(map); 2922 page = list_entry(page->lru.prev, struct page, lru); 2923 while (page != head) { 2924 map = kmap_atomic(page) + offset; 2925 *map = SWAP_CONT_MAX | count; 2926 count = COUNT_CONTINUED; 2927 kunmap_atomic(map); 2928 page = list_entry(page->lru.prev, struct page, lru); 2929 } 2930 return count == COUNT_CONTINUED; 2931 } 2932 } 2933 2934 /* 2935 * free_swap_count_continuations - swapoff free all the continuation pages 2936 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 2937 */ 2938 static void free_swap_count_continuations(struct swap_info_struct *si) 2939 { 2940 pgoff_t offset; 2941 2942 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 2943 struct page *head; 2944 head = vmalloc_to_page(si->swap_map + offset); 2945 if (page_private(head)) { 2946 struct page *page, *next; 2947 2948 list_for_each_entry_safe(page, next, &head->lru, lru) { 2949 list_del(&page->lru); 2950 __free_page(page); 2951 } 2952 } 2953 } 2954 } 2955