1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/mm.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/task.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mman.h> 15 #include <linux/slab.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/swap.h> 18 #include <linux/vmalloc.h> 19 #include <linux/pagemap.h> 20 #include <linux/namei.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/blk-cgroup.h> 23 #include <linux/random.h> 24 #include <linux/writeback.h> 25 #include <linux/proc_fs.h> 26 #include <linux/seq_file.h> 27 #include <linux/init.h> 28 #include <linux/ksm.h> 29 #include <linux/rmap.h> 30 #include <linux/security.h> 31 #include <linux/backing-dev.h> 32 #include <linux/mutex.h> 33 #include <linux/capability.h> 34 #include <linux/syscalls.h> 35 #include <linux/memcontrol.h> 36 #include <linux/poll.h> 37 #include <linux/oom.h> 38 #include <linux/frontswap.h> 39 #include <linux/swapfile.h> 40 #include <linux/export.h> 41 #include <linux/swap_slots.h> 42 #include <linux/sort.h> 43 #include <linux/completion.h> 44 45 #include <asm/tlbflush.h> 46 #include <linux/swapops.h> 47 #include <linux/swap_cgroup.h> 48 #include "swap.h" 49 50 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 51 unsigned char); 52 static void free_swap_count_continuations(struct swap_info_struct *); 53 54 static DEFINE_SPINLOCK(swap_lock); 55 static unsigned int nr_swapfiles; 56 atomic_long_t nr_swap_pages; 57 /* 58 * Some modules use swappable objects and may try to swap them out under 59 * memory pressure (via the shrinker). Before doing so, they may wish to 60 * check to see if any swap space is available. 61 */ 62 EXPORT_SYMBOL_GPL(nr_swap_pages); 63 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 64 long total_swap_pages; 65 static int least_priority = -1; 66 unsigned long swapfile_maximum_size; 67 #ifdef CONFIG_MIGRATION 68 bool swap_migration_ad_supported; 69 #endif /* CONFIG_MIGRATION */ 70 71 static const char Bad_file[] = "Bad swap file entry "; 72 static const char Unused_file[] = "Unused swap file entry "; 73 static const char Bad_offset[] = "Bad swap offset entry "; 74 static const char Unused_offset[] = "Unused swap offset entry "; 75 76 /* 77 * all active swap_info_structs 78 * protected with swap_lock, and ordered by priority. 79 */ 80 static PLIST_HEAD(swap_active_head); 81 82 /* 83 * all available (active, not full) swap_info_structs 84 * protected with swap_avail_lock, ordered by priority. 85 * This is used by folio_alloc_swap() instead of swap_active_head 86 * because swap_active_head includes all swap_info_structs, 87 * but folio_alloc_swap() doesn't need to look at full ones. 88 * This uses its own lock instead of swap_lock because when a 89 * swap_info_struct changes between not-full/full, it needs to 90 * add/remove itself to/from this list, but the swap_info_struct->lock 91 * is held and the locking order requires swap_lock to be taken 92 * before any swap_info_struct->lock. 93 */ 94 static struct plist_head *swap_avail_heads; 95 static DEFINE_SPINLOCK(swap_avail_lock); 96 97 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 98 99 static DEFINE_MUTEX(swapon_mutex); 100 101 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 102 /* Activity counter to indicate that a swapon or swapoff has occurred */ 103 static atomic_t proc_poll_event = ATOMIC_INIT(0); 104 105 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 106 107 static struct swap_info_struct *swap_type_to_swap_info(int type) 108 { 109 if (type >= MAX_SWAPFILES) 110 return NULL; 111 112 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 113 } 114 115 static inline unsigned char swap_count(unsigned char ent) 116 { 117 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 118 } 119 120 /* Reclaim the swap entry anyway if possible */ 121 #define TTRS_ANYWAY 0x1 122 /* 123 * Reclaim the swap entry if there are no more mappings of the 124 * corresponding page 125 */ 126 #define TTRS_UNMAPPED 0x2 127 /* Reclaim the swap entry if swap is getting full*/ 128 #define TTRS_FULL 0x4 129 130 /* returns 1 if swap entry is freed */ 131 static int __try_to_reclaim_swap(struct swap_info_struct *si, 132 unsigned long offset, unsigned long flags) 133 { 134 swp_entry_t entry = swp_entry(si->type, offset); 135 struct folio *folio; 136 int ret = 0; 137 138 folio = filemap_get_folio(swap_address_space(entry), offset); 139 if (IS_ERR(folio)) 140 return 0; 141 /* 142 * When this function is called from scan_swap_map_slots() and it's 143 * called by vmscan.c at reclaiming folios. So we hold a folio lock 144 * here. We have to use trylock for avoiding deadlock. This is a special 145 * case and you should use folio_free_swap() with explicit folio_lock() 146 * in usual operations. 147 */ 148 if (folio_trylock(folio)) { 149 if ((flags & TTRS_ANYWAY) || 150 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) || 151 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio))) 152 ret = folio_free_swap(folio); 153 folio_unlock(folio); 154 } 155 folio_put(folio); 156 return ret; 157 } 158 159 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 160 { 161 struct rb_node *rb = rb_first(&sis->swap_extent_root); 162 return rb_entry(rb, struct swap_extent, rb_node); 163 } 164 165 static inline struct swap_extent *next_se(struct swap_extent *se) 166 { 167 struct rb_node *rb = rb_next(&se->rb_node); 168 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 169 } 170 171 /* 172 * swapon tell device that all the old swap contents can be discarded, 173 * to allow the swap device to optimize its wear-levelling. 174 */ 175 static int discard_swap(struct swap_info_struct *si) 176 { 177 struct swap_extent *se; 178 sector_t start_block; 179 sector_t nr_blocks; 180 int err = 0; 181 182 /* Do not discard the swap header page! */ 183 se = first_se(si); 184 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 185 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 186 if (nr_blocks) { 187 err = blkdev_issue_discard(si->bdev, start_block, 188 nr_blocks, GFP_KERNEL); 189 if (err) 190 return err; 191 cond_resched(); 192 } 193 194 for (se = next_se(se); se; se = next_se(se)) { 195 start_block = se->start_block << (PAGE_SHIFT - 9); 196 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 197 198 err = blkdev_issue_discard(si->bdev, start_block, 199 nr_blocks, GFP_KERNEL); 200 if (err) 201 break; 202 203 cond_resched(); 204 } 205 return err; /* That will often be -EOPNOTSUPP */ 206 } 207 208 static struct swap_extent * 209 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 210 { 211 struct swap_extent *se; 212 struct rb_node *rb; 213 214 rb = sis->swap_extent_root.rb_node; 215 while (rb) { 216 se = rb_entry(rb, struct swap_extent, rb_node); 217 if (offset < se->start_page) 218 rb = rb->rb_left; 219 else if (offset >= se->start_page + se->nr_pages) 220 rb = rb->rb_right; 221 else 222 return se; 223 } 224 /* It *must* be present */ 225 BUG(); 226 } 227 228 sector_t swap_page_sector(struct page *page) 229 { 230 struct swap_info_struct *sis = page_swap_info(page); 231 struct swap_extent *se; 232 sector_t sector; 233 pgoff_t offset; 234 235 offset = __page_file_index(page); 236 se = offset_to_swap_extent(sis, offset); 237 sector = se->start_block + (offset - se->start_page); 238 return sector << (PAGE_SHIFT - 9); 239 } 240 241 /* 242 * swap allocation tell device that a cluster of swap can now be discarded, 243 * to allow the swap device to optimize its wear-levelling. 244 */ 245 static void discard_swap_cluster(struct swap_info_struct *si, 246 pgoff_t start_page, pgoff_t nr_pages) 247 { 248 struct swap_extent *se = offset_to_swap_extent(si, start_page); 249 250 while (nr_pages) { 251 pgoff_t offset = start_page - se->start_page; 252 sector_t start_block = se->start_block + offset; 253 sector_t nr_blocks = se->nr_pages - offset; 254 255 if (nr_blocks > nr_pages) 256 nr_blocks = nr_pages; 257 start_page += nr_blocks; 258 nr_pages -= nr_blocks; 259 260 start_block <<= PAGE_SHIFT - 9; 261 nr_blocks <<= PAGE_SHIFT - 9; 262 if (blkdev_issue_discard(si->bdev, start_block, 263 nr_blocks, GFP_NOIO)) 264 break; 265 266 se = next_se(se); 267 } 268 } 269 270 #ifdef CONFIG_THP_SWAP 271 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 272 273 #define swap_entry_size(size) (size) 274 #else 275 #define SWAPFILE_CLUSTER 256 276 277 /* 278 * Define swap_entry_size() as constant to let compiler to optimize 279 * out some code if !CONFIG_THP_SWAP 280 */ 281 #define swap_entry_size(size) 1 282 #endif 283 #define LATENCY_LIMIT 256 284 285 static inline void cluster_set_flag(struct swap_cluster_info *info, 286 unsigned int flag) 287 { 288 info->flags = flag; 289 } 290 291 static inline unsigned int cluster_count(struct swap_cluster_info *info) 292 { 293 return info->data; 294 } 295 296 static inline void cluster_set_count(struct swap_cluster_info *info, 297 unsigned int c) 298 { 299 info->data = c; 300 } 301 302 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 303 unsigned int c, unsigned int f) 304 { 305 info->flags = f; 306 info->data = c; 307 } 308 309 static inline unsigned int cluster_next(struct swap_cluster_info *info) 310 { 311 return info->data; 312 } 313 314 static inline void cluster_set_next(struct swap_cluster_info *info, 315 unsigned int n) 316 { 317 info->data = n; 318 } 319 320 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 321 unsigned int n, unsigned int f) 322 { 323 info->flags = f; 324 info->data = n; 325 } 326 327 static inline bool cluster_is_free(struct swap_cluster_info *info) 328 { 329 return info->flags & CLUSTER_FLAG_FREE; 330 } 331 332 static inline bool cluster_is_null(struct swap_cluster_info *info) 333 { 334 return info->flags & CLUSTER_FLAG_NEXT_NULL; 335 } 336 337 static inline void cluster_set_null(struct swap_cluster_info *info) 338 { 339 info->flags = CLUSTER_FLAG_NEXT_NULL; 340 info->data = 0; 341 } 342 343 static inline bool cluster_is_huge(struct swap_cluster_info *info) 344 { 345 if (IS_ENABLED(CONFIG_THP_SWAP)) 346 return info->flags & CLUSTER_FLAG_HUGE; 347 return false; 348 } 349 350 static inline void cluster_clear_huge(struct swap_cluster_info *info) 351 { 352 info->flags &= ~CLUSTER_FLAG_HUGE; 353 } 354 355 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 356 unsigned long offset) 357 { 358 struct swap_cluster_info *ci; 359 360 ci = si->cluster_info; 361 if (ci) { 362 ci += offset / SWAPFILE_CLUSTER; 363 spin_lock(&ci->lock); 364 } 365 return ci; 366 } 367 368 static inline void unlock_cluster(struct swap_cluster_info *ci) 369 { 370 if (ci) 371 spin_unlock(&ci->lock); 372 } 373 374 /* 375 * Determine the locking method in use for this device. Return 376 * swap_cluster_info if SSD-style cluster-based locking is in place. 377 */ 378 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 379 struct swap_info_struct *si, unsigned long offset) 380 { 381 struct swap_cluster_info *ci; 382 383 /* Try to use fine-grained SSD-style locking if available: */ 384 ci = lock_cluster(si, offset); 385 /* Otherwise, fall back to traditional, coarse locking: */ 386 if (!ci) 387 spin_lock(&si->lock); 388 389 return ci; 390 } 391 392 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 393 struct swap_cluster_info *ci) 394 { 395 if (ci) 396 unlock_cluster(ci); 397 else 398 spin_unlock(&si->lock); 399 } 400 401 static inline bool cluster_list_empty(struct swap_cluster_list *list) 402 { 403 return cluster_is_null(&list->head); 404 } 405 406 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 407 { 408 return cluster_next(&list->head); 409 } 410 411 static void cluster_list_init(struct swap_cluster_list *list) 412 { 413 cluster_set_null(&list->head); 414 cluster_set_null(&list->tail); 415 } 416 417 static void cluster_list_add_tail(struct swap_cluster_list *list, 418 struct swap_cluster_info *ci, 419 unsigned int idx) 420 { 421 if (cluster_list_empty(list)) { 422 cluster_set_next_flag(&list->head, idx, 0); 423 cluster_set_next_flag(&list->tail, idx, 0); 424 } else { 425 struct swap_cluster_info *ci_tail; 426 unsigned int tail = cluster_next(&list->tail); 427 428 /* 429 * Nested cluster lock, but both cluster locks are 430 * only acquired when we held swap_info_struct->lock 431 */ 432 ci_tail = ci + tail; 433 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 434 cluster_set_next(ci_tail, idx); 435 spin_unlock(&ci_tail->lock); 436 cluster_set_next_flag(&list->tail, idx, 0); 437 } 438 } 439 440 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 441 struct swap_cluster_info *ci) 442 { 443 unsigned int idx; 444 445 idx = cluster_next(&list->head); 446 if (cluster_next(&list->tail) == idx) { 447 cluster_set_null(&list->head); 448 cluster_set_null(&list->tail); 449 } else 450 cluster_set_next_flag(&list->head, 451 cluster_next(&ci[idx]), 0); 452 453 return idx; 454 } 455 456 /* Add a cluster to discard list and schedule it to do discard */ 457 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 458 unsigned int idx) 459 { 460 /* 461 * If scan_swap_map_slots() can't find a free cluster, it will check 462 * si->swap_map directly. To make sure the discarding cluster isn't 463 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied). 464 * It will be cleared after discard 465 */ 466 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 467 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 468 469 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 470 471 schedule_work(&si->discard_work); 472 } 473 474 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 475 { 476 struct swap_cluster_info *ci = si->cluster_info; 477 478 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 479 cluster_list_add_tail(&si->free_clusters, ci, idx); 480 } 481 482 /* 483 * Doing discard actually. After a cluster discard is finished, the cluster 484 * will be added to free cluster list. caller should hold si->lock. 485 */ 486 static void swap_do_scheduled_discard(struct swap_info_struct *si) 487 { 488 struct swap_cluster_info *info, *ci; 489 unsigned int idx; 490 491 info = si->cluster_info; 492 493 while (!cluster_list_empty(&si->discard_clusters)) { 494 idx = cluster_list_del_first(&si->discard_clusters, info); 495 spin_unlock(&si->lock); 496 497 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 498 SWAPFILE_CLUSTER); 499 500 spin_lock(&si->lock); 501 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 502 __free_cluster(si, idx); 503 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 504 0, SWAPFILE_CLUSTER); 505 unlock_cluster(ci); 506 } 507 } 508 509 static void swap_discard_work(struct work_struct *work) 510 { 511 struct swap_info_struct *si; 512 513 si = container_of(work, struct swap_info_struct, discard_work); 514 515 spin_lock(&si->lock); 516 swap_do_scheduled_discard(si); 517 spin_unlock(&si->lock); 518 } 519 520 static void swap_users_ref_free(struct percpu_ref *ref) 521 { 522 struct swap_info_struct *si; 523 524 si = container_of(ref, struct swap_info_struct, users); 525 complete(&si->comp); 526 } 527 528 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 529 { 530 struct swap_cluster_info *ci = si->cluster_info; 531 532 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 533 cluster_list_del_first(&si->free_clusters, ci); 534 cluster_set_count_flag(ci + idx, 0, 0); 535 } 536 537 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 538 { 539 struct swap_cluster_info *ci = si->cluster_info + idx; 540 541 VM_BUG_ON(cluster_count(ci) != 0); 542 /* 543 * If the swap is discardable, prepare discard the cluster 544 * instead of free it immediately. The cluster will be freed 545 * after discard. 546 */ 547 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 548 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 549 swap_cluster_schedule_discard(si, idx); 550 return; 551 } 552 553 __free_cluster(si, idx); 554 } 555 556 /* 557 * The cluster corresponding to page_nr will be used. The cluster will be 558 * removed from free cluster list and its usage counter will be increased. 559 */ 560 static void inc_cluster_info_page(struct swap_info_struct *p, 561 struct swap_cluster_info *cluster_info, unsigned long page_nr) 562 { 563 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 564 565 if (!cluster_info) 566 return; 567 if (cluster_is_free(&cluster_info[idx])) 568 alloc_cluster(p, idx); 569 570 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 571 cluster_set_count(&cluster_info[idx], 572 cluster_count(&cluster_info[idx]) + 1); 573 } 574 575 /* 576 * The cluster corresponding to page_nr decreases one usage. If the usage 577 * counter becomes 0, which means no page in the cluster is in using, we can 578 * optionally discard the cluster and add it to free cluster list. 579 */ 580 static void dec_cluster_info_page(struct swap_info_struct *p, 581 struct swap_cluster_info *cluster_info, unsigned long page_nr) 582 { 583 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 584 585 if (!cluster_info) 586 return; 587 588 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 589 cluster_set_count(&cluster_info[idx], 590 cluster_count(&cluster_info[idx]) - 1); 591 592 if (cluster_count(&cluster_info[idx]) == 0) 593 free_cluster(p, idx); 594 } 595 596 /* 597 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free 598 * cluster list. Avoiding such abuse to avoid list corruption. 599 */ 600 static bool 601 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 602 unsigned long offset) 603 { 604 struct percpu_cluster *percpu_cluster; 605 bool conflict; 606 607 offset /= SWAPFILE_CLUSTER; 608 conflict = !cluster_list_empty(&si->free_clusters) && 609 offset != cluster_list_first(&si->free_clusters) && 610 cluster_is_free(&si->cluster_info[offset]); 611 612 if (!conflict) 613 return false; 614 615 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 616 cluster_set_null(&percpu_cluster->index); 617 return true; 618 } 619 620 /* 621 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 622 * might involve allocating a new cluster for current CPU too. 623 */ 624 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 625 unsigned long *offset, unsigned long *scan_base) 626 { 627 struct percpu_cluster *cluster; 628 struct swap_cluster_info *ci; 629 unsigned long tmp, max; 630 631 new_cluster: 632 cluster = this_cpu_ptr(si->percpu_cluster); 633 if (cluster_is_null(&cluster->index)) { 634 if (!cluster_list_empty(&si->free_clusters)) { 635 cluster->index = si->free_clusters.head; 636 cluster->next = cluster_next(&cluster->index) * 637 SWAPFILE_CLUSTER; 638 } else if (!cluster_list_empty(&si->discard_clusters)) { 639 /* 640 * we don't have free cluster but have some clusters in 641 * discarding, do discard now and reclaim them, then 642 * reread cluster_next_cpu since we dropped si->lock 643 */ 644 swap_do_scheduled_discard(si); 645 *scan_base = this_cpu_read(*si->cluster_next_cpu); 646 *offset = *scan_base; 647 goto new_cluster; 648 } else 649 return false; 650 } 651 652 /* 653 * Other CPUs can use our cluster if they can't find a free cluster, 654 * check if there is still free entry in the cluster 655 */ 656 tmp = cluster->next; 657 max = min_t(unsigned long, si->max, 658 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 659 if (tmp < max) { 660 ci = lock_cluster(si, tmp); 661 while (tmp < max) { 662 if (!si->swap_map[tmp]) 663 break; 664 tmp++; 665 } 666 unlock_cluster(ci); 667 } 668 if (tmp >= max) { 669 cluster_set_null(&cluster->index); 670 goto new_cluster; 671 } 672 cluster->next = tmp + 1; 673 *offset = tmp; 674 *scan_base = tmp; 675 return true; 676 } 677 678 static void __del_from_avail_list(struct swap_info_struct *p) 679 { 680 int nid; 681 682 assert_spin_locked(&p->lock); 683 for_each_node(nid) 684 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 685 } 686 687 static void del_from_avail_list(struct swap_info_struct *p) 688 { 689 spin_lock(&swap_avail_lock); 690 __del_from_avail_list(p); 691 spin_unlock(&swap_avail_lock); 692 } 693 694 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 695 unsigned int nr_entries) 696 { 697 unsigned int end = offset + nr_entries - 1; 698 699 if (offset == si->lowest_bit) 700 si->lowest_bit += nr_entries; 701 if (end == si->highest_bit) 702 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries); 703 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries); 704 if (si->inuse_pages == si->pages) { 705 si->lowest_bit = si->max; 706 si->highest_bit = 0; 707 del_from_avail_list(si); 708 } 709 } 710 711 static void add_to_avail_list(struct swap_info_struct *p) 712 { 713 int nid; 714 715 spin_lock(&swap_avail_lock); 716 for_each_node(nid) { 717 WARN_ON(!plist_node_empty(&p->avail_lists[nid])); 718 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 719 } 720 spin_unlock(&swap_avail_lock); 721 } 722 723 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 724 unsigned int nr_entries) 725 { 726 unsigned long begin = offset; 727 unsigned long end = offset + nr_entries - 1; 728 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 729 730 if (offset < si->lowest_bit) 731 si->lowest_bit = offset; 732 if (end > si->highest_bit) { 733 bool was_full = !si->highest_bit; 734 735 WRITE_ONCE(si->highest_bit, end); 736 if (was_full && (si->flags & SWP_WRITEOK)) 737 add_to_avail_list(si); 738 } 739 atomic_long_add(nr_entries, &nr_swap_pages); 740 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries); 741 if (si->flags & SWP_BLKDEV) 742 swap_slot_free_notify = 743 si->bdev->bd_disk->fops->swap_slot_free_notify; 744 else 745 swap_slot_free_notify = NULL; 746 while (offset <= end) { 747 arch_swap_invalidate_page(si->type, offset); 748 frontswap_invalidate_page(si->type, offset); 749 if (swap_slot_free_notify) 750 swap_slot_free_notify(si->bdev, offset); 751 offset++; 752 } 753 clear_shadow_from_swap_cache(si->type, begin, end); 754 } 755 756 static void set_cluster_next(struct swap_info_struct *si, unsigned long next) 757 { 758 unsigned long prev; 759 760 if (!(si->flags & SWP_SOLIDSTATE)) { 761 si->cluster_next = next; 762 return; 763 } 764 765 prev = this_cpu_read(*si->cluster_next_cpu); 766 /* 767 * Cross the swap address space size aligned trunk, choose 768 * another trunk randomly to avoid lock contention on swap 769 * address space if possible. 770 */ 771 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) != 772 (next >> SWAP_ADDRESS_SPACE_SHIFT)) { 773 /* No free swap slots available */ 774 if (si->highest_bit <= si->lowest_bit) 775 return; 776 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit); 777 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES); 778 next = max_t(unsigned int, next, si->lowest_bit); 779 } 780 this_cpu_write(*si->cluster_next_cpu, next); 781 } 782 783 static bool swap_offset_available_and_locked(struct swap_info_struct *si, 784 unsigned long offset) 785 { 786 if (data_race(!si->swap_map[offset])) { 787 spin_lock(&si->lock); 788 return true; 789 } 790 791 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 792 spin_lock(&si->lock); 793 return true; 794 } 795 796 return false; 797 } 798 799 static int scan_swap_map_slots(struct swap_info_struct *si, 800 unsigned char usage, int nr, 801 swp_entry_t slots[]) 802 { 803 struct swap_cluster_info *ci; 804 unsigned long offset; 805 unsigned long scan_base; 806 unsigned long last_in_cluster = 0; 807 int latency_ration = LATENCY_LIMIT; 808 int n_ret = 0; 809 bool scanned_many = false; 810 811 /* 812 * We try to cluster swap pages by allocating them sequentially 813 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 814 * way, however, we resort to first-free allocation, starting 815 * a new cluster. This prevents us from scattering swap pages 816 * all over the entire swap partition, so that we reduce 817 * overall disk seek times between swap pages. -- sct 818 * But we do now try to find an empty cluster. -Andrea 819 * And we let swap pages go all over an SSD partition. Hugh 820 */ 821 822 si->flags += SWP_SCANNING; 823 /* 824 * Use percpu scan base for SSD to reduce lock contention on 825 * cluster and swap cache. For HDD, sequential access is more 826 * important. 827 */ 828 if (si->flags & SWP_SOLIDSTATE) 829 scan_base = this_cpu_read(*si->cluster_next_cpu); 830 else 831 scan_base = si->cluster_next; 832 offset = scan_base; 833 834 /* SSD algorithm */ 835 if (si->cluster_info) { 836 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 837 goto scan; 838 } else if (unlikely(!si->cluster_nr--)) { 839 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 840 si->cluster_nr = SWAPFILE_CLUSTER - 1; 841 goto checks; 842 } 843 844 spin_unlock(&si->lock); 845 846 /* 847 * If seek is expensive, start searching for new cluster from 848 * start of partition, to minimize the span of allocated swap. 849 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 850 * case, just handled by scan_swap_map_try_ssd_cluster() above. 851 */ 852 scan_base = offset = si->lowest_bit; 853 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 854 855 /* Locate the first empty (unaligned) cluster */ 856 for (; last_in_cluster <= si->highest_bit; offset++) { 857 if (si->swap_map[offset]) 858 last_in_cluster = offset + SWAPFILE_CLUSTER; 859 else if (offset == last_in_cluster) { 860 spin_lock(&si->lock); 861 offset -= SWAPFILE_CLUSTER - 1; 862 si->cluster_next = offset; 863 si->cluster_nr = SWAPFILE_CLUSTER - 1; 864 goto checks; 865 } 866 if (unlikely(--latency_ration < 0)) { 867 cond_resched(); 868 latency_ration = LATENCY_LIMIT; 869 } 870 } 871 872 offset = scan_base; 873 spin_lock(&si->lock); 874 si->cluster_nr = SWAPFILE_CLUSTER - 1; 875 } 876 877 checks: 878 if (si->cluster_info) { 879 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 880 /* take a break if we already got some slots */ 881 if (n_ret) 882 goto done; 883 if (!scan_swap_map_try_ssd_cluster(si, &offset, 884 &scan_base)) 885 goto scan; 886 } 887 } 888 if (!(si->flags & SWP_WRITEOK)) 889 goto no_page; 890 if (!si->highest_bit) 891 goto no_page; 892 if (offset > si->highest_bit) 893 scan_base = offset = si->lowest_bit; 894 895 ci = lock_cluster(si, offset); 896 /* reuse swap entry of cache-only swap if not busy. */ 897 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 898 int swap_was_freed; 899 unlock_cluster(ci); 900 spin_unlock(&si->lock); 901 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 902 spin_lock(&si->lock); 903 /* entry was freed successfully, try to use this again */ 904 if (swap_was_freed) 905 goto checks; 906 goto scan; /* check next one */ 907 } 908 909 if (si->swap_map[offset]) { 910 unlock_cluster(ci); 911 if (!n_ret) 912 goto scan; 913 else 914 goto done; 915 } 916 WRITE_ONCE(si->swap_map[offset], usage); 917 inc_cluster_info_page(si, si->cluster_info, offset); 918 unlock_cluster(ci); 919 920 swap_range_alloc(si, offset, 1); 921 slots[n_ret++] = swp_entry(si->type, offset); 922 923 /* got enough slots or reach max slots? */ 924 if ((n_ret == nr) || (offset >= si->highest_bit)) 925 goto done; 926 927 /* search for next available slot */ 928 929 /* time to take a break? */ 930 if (unlikely(--latency_ration < 0)) { 931 if (n_ret) 932 goto done; 933 spin_unlock(&si->lock); 934 cond_resched(); 935 spin_lock(&si->lock); 936 latency_ration = LATENCY_LIMIT; 937 } 938 939 /* try to get more slots in cluster */ 940 if (si->cluster_info) { 941 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 942 goto checks; 943 } else if (si->cluster_nr && !si->swap_map[++offset]) { 944 /* non-ssd case, still more slots in cluster? */ 945 --si->cluster_nr; 946 goto checks; 947 } 948 949 /* 950 * Even if there's no free clusters available (fragmented), 951 * try to scan a little more quickly with lock held unless we 952 * have scanned too many slots already. 953 */ 954 if (!scanned_many) { 955 unsigned long scan_limit; 956 957 if (offset < scan_base) 958 scan_limit = scan_base; 959 else 960 scan_limit = si->highest_bit; 961 for (; offset <= scan_limit && --latency_ration > 0; 962 offset++) { 963 if (!si->swap_map[offset]) 964 goto checks; 965 } 966 } 967 968 done: 969 set_cluster_next(si, offset + 1); 970 si->flags -= SWP_SCANNING; 971 return n_ret; 972 973 scan: 974 spin_unlock(&si->lock); 975 while (++offset <= READ_ONCE(si->highest_bit)) { 976 if (unlikely(--latency_ration < 0)) { 977 cond_resched(); 978 latency_ration = LATENCY_LIMIT; 979 scanned_many = true; 980 } 981 if (swap_offset_available_and_locked(si, offset)) 982 goto checks; 983 } 984 offset = si->lowest_bit; 985 while (offset < scan_base) { 986 if (unlikely(--latency_ration < 0)) { 987 cond_resched(); 988 latency_ration = LATENCY_LIMIT; 989 scanned_many = true; 990 } 991 if (swap_offset_available_and_locked(si, offset)) 992 goto checks; 993 offset++; 994 } 995 spin_lock(&si->lock); 996 997 no_page: 998 si->flags -= SWP_SCANNING; 999 return n_ret; 1000 } 1001 1002 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 1003 { 1004 unsigned long idx; 1005 struct swap_cluster_info *ci; 1006 unsigned long offset; 1007 1008 /* 1009 * Should not even be attempting cluster allocations when huge 1010 * page swap is disabled. Warn and fail the allocation. 1011 */ 1012 if (!IS_ENABLED(CONFIG_THP_SWAP)) { 1013 VM_WARN_ON_ONCE(1); 1014 return 0; 1015 } 1016 1017 if (cluster_list_empty(&si->free_clusters)) 1018 return 0; 1019 1020 idx = cluster_list_first(&si->free_clusters); 1021 offset = idx * SWAPFILE_CLUSTER; 1022 ci = lock_cluster(si, offset); 1023 alloc_cluster(si, idx); 1024 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 1025 1026 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER); 1027 unlock_cluster(ci); 1028 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 1029 *slot = swp_entry(si->type, offset); 1030 1031 return 1; 1032 } 1033 1034 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 1035 { 1036 unsigned long offset = idx * SWAPFILE_CLUSTER; 1037 struct swap_cluster_info *ci; 1038 1039 ci = lock_cluster(si, offset); 1040 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 1041 cluster_set_count_flag(ci, 0, 0); 1042 free_cluster(si, idx); 1043 unlock_cluster(ci); 1044 swap_range_free(si, offset, SWAPFILE_CLUSTER); 1045 } 1046 1047 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) 1048 { 1049 unsigned long size = swap_entry_size(entry_size); 1050 struct swap_info_struct *si, *next; 1051 long avail_pgs; 1052 int n_ret = 0; 1053 int node; 1054 1055 /* Only single cluster request supported */ 1056 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); 1057 1058 spin_lock(&swap_avail_lock); 1059 1060 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 1061 if (avail_pgs <= 0) { 1062 spin_unlock(&swap_avail_lock); 1063 goto noswap; 1064 } 1065 1066 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); 1067 1068 atomic_long_sub(n_goal * size, &nr_swap_pages); 1069 1070 start_over: 1071 node = numa_node_id(); 1072 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1073 /* requeue si to after same-priority siblings */ 1074 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1075 spin_unlock(&swap_avail_lock); 1076 spin_lock(&si->lock); 1077 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 1078 spin_lock(&swap_avail_lock); 1079 if (plist_node_empty(&si->avail_lists[node])) { 1080 spin_unlock(&si->lock); 1081 goto nextsi; 1082 } 1083 WARN(!si->highest_bit, 1084 "swap_info %d in list but !highest_bit\n", 1085 si->type); 1086 WARN(!(si->flags & SWP_WRITEOK), 1087 "swap_info %d in list but !SWP_WRITEOK\n", 1088 si->type); 1089 __del_from_avail_list(si); 1090 spin_unlock(&si->lock); 1091 goto nextsi; 1092 } 1093 if (size == SWAPFILE_CLUSTER) { 1094 if (si->flags & SWP_BLKDEV) 1095 n_ret = swap_alloc_cluster(si, swp_entries); 1096 } else 1097 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1098 n_goal, swp_entries); 1099 spin_unlock(&si->lock); 1100 if (n_ret || size == SWAPFILE_CLUSTER) 1101 goto check_out; 1102 cond_resched(); 1103 1104 spin_lock(&swap_avail_lock); 1105 nextsi: 1106 /* 1107 * if we got here, it's likely that si was almost full before, 1108 * and since scan_swap_map_slots() can drop the si->lock, 1109 * multiple callers probably all tried to get a page from the 1110 * same si and it filled up before we could get one; or, the si 1111 * filled up between us dropping swap_avail_lock and taking 1112 * si->lock. Since we dropped the swap_avail_lock, the 1113 * swap_avail_head list may have been modified; so if next is 1114 * still in the swap_avail_head list then try it, otherwise 1115 * start over if we have not gotten any slots. 1116 */ 1117 if (plist_node_empty(&next->avail_lists[node])) 1118 goto start_over; 1119 } 1120 1121 spin_unlock(&swap_avail_lock); 1122 1123 check_out: 1124 if (n_ret < n_goal) 1125 atomic_long_add((long)(n_goal - n_ret) * size, 1126 &nr_swap_pages); 1127 noswap: 1128 return n_ret; 1129 } 1130 1131 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1132 { 1133 struct swap_info_struct *p; 1134 unsigned long offset; 1135 1136 if (!entry.val) 1137 goto out; 1138 p = swp_swap_info(entry); 1139 if (!p) 1140 goto bad_nofile; 1141 if (data_race(!(p->flags & SWP_USED))) 1142 goto bad_device; 1143 offset = swp_offset(entry); 1144 if (offset >= p->max) 1145 goto bad_offset; 1146 if (data_race(!p->swap_map[swp_offset(entry)])) 1147 goto bad_free; 1148 return p; 1149 1150 bad_free: 1151 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1152 goto out; 1153 bad_offset: 1154 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1155 goto out; 1156 bad_device: 1157 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1158 goto out; 1159 bad_nofile: 1160 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1161 out: 1162 return NULL; 1163 } 1164 1165 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1166 struct swap_info_struct *q) 1167 { 1168 struct swap_info_struct *p; 1169 1170 p = _swap_info_get(entry); 1171 1172 if (p != q) { 1173 if (q != NULL) 1174 spin_unlock(&q->lock); 1175 if (p != NULL) 1176 spin_lock(&p->lock); 1177 } 1178 return p; 1179 } 1180 1181 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1182 unsigned long offset, 1183 unsigned char usage) 1184 { 1185 unsigned char count; 1186 unsigned char has_cache; 1187 1188 count = p->swap_map[offset]; 1189 1190 has_cache = count & SWAP_HAS_CACHE; 1191 count &= ~SWAP_HAS_CACHE; 1192 1193 if (usage == SWAP_HAS_CACHE) { 1194 VM_BUG_ON(!has_cache); 1195 has_cache = 0; 1196 } else if (count == SWAP_MAP_SHMEM) { 1197 /* 1198 * Or we could insist on shmem.c using a special 1199 * swap_shmem_free() and free_shmem_swap_and_cache()... 1200 */ 1201 count = 0; 1202 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1203 if (count == COUNT_CONTINUED) { 1204 if (swap_count_continued(p, offset, count)) 1205 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1206 else 1207 count = SWAP_MAP_MAX; 1208 } else 1209 count--; 1210 } 1211 1212 usage = count | has_cache; 1213 if (usage) 1214 WRITE_ONCE(p->swap_map[offset], usage); 1215 else 1216 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE); 1217 1218 return usage; 1219 } 1220 1221 /* 1222 * Check whether swap entry is valid in the swap device. If so, 1223 * return pointer to swap_info_struct, and keep the swap entry valid 1224 * via preventing the swap device from being swapoff, until 1225 * put_swap_device() is called. Otherwise return NULL. 1226 * 1227 * Notice that swapoff or swapoff+swapon can still happen before the 1228 * percpu_ref_tryget_live() in get_swap_device() or after the 1229 * percpu_ref_put() in put_swap_device() if there isn't any other way 1230 * to prevent swapoff, such as page lock, page table lock, etc. The 1231 * caller must be prepared for that. For example, the following 1232 * situation is possible. 1233 * 1234 * CPU1 CPU2 1235 * do_swap_page() 1236 * ... swapoff+swapon 1237 * __read_swap_cache_async() 1238 * swapcache_prepare() 1239 * __swap_duplicate() 1240 * // check swap_map 1241 * // verify PTE not changed 1242 * 1243 * In __swap_duplicate(), the swap_map need to be checked before 1244 * changing partly because the specified swap entry may be for another 1245 * swap device which has been swapoff. And in do_swap_page(), after 1246 * the page is read from the swap device, the PTE is verified not 1247 * changed with the page table locked to check whether the swap device 1248 * has been swapoff or swapoff+swapon. 1249 */ 1250 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1251 { 1252 struct swap_info_struct *si; 1253 unsigned long offset; 1254 1255 if (!entry.val) 1256 goto out; 1257 si = swp_swap_info(entry); 1258 if (!si) 1259 goto bad_nofile; 1260 if (!percpu_ref_tryget_live(&si->users)) 1261 goto out; 1262 /* 1263 * Guarantee the si->users are checked before accessing other 1264 * fields of swap_info_struct. 1265 * 1266 * Paired with the spin_unlock() after setup_swap_info() in 1267 * enable_swap_info(). 1268 */ 1269 smp_rmb(); 1270 offset = swp_offset(entry); 1271 if (offset >= si->max) 1272 goto put_out; 1273 1274 return si; 1275 bad_nofile: 1276 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1277 out: 1278 return NULL; 1279 put_out: 1280 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1281 percpu_ref_put(&si->users); 1282 return NULL; 1283 } 1284 1285 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1286 swp_entry_t entry) 1287 { 1288 struct swap_cluster_info *ci; 1289 unsigned long offset = swp_offset(entry); 1290 unsigned char usage; 1291 1292 ci = lock_cluster_or_swap_info(p, offset); 1293 usage = __swap_entry_free_locked(p, offset, 1); 1294 unlock_cluster_or_swap_info(p, ci); 1295 if (!usage) 1296 free_swap_slot(entry); 1297 1298 return usage; 1299 } 1300 1301 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1302 { 1303 struct swap_cluster_info *ci; 1304 unsigned long offset = swp_offset(entry); 1305 unsigned char count; 1306 1307 ci = lock_cluster(p, offset); 1308 count = p->swap_map[offset]; 1309 VM_BUG_ON(count != SWAP_HAS_CACHE); 1310 p->swap_map[offset] = 0; 1311 dec_cluster_info_page(p, p->cluster_info, offset); 1312 unlock_cluster(ci); 1313 1314 mem_cgroup_uncharge_swap(entry, 1); 1315 swap_range_free(p, offset, 1); 1316 } 1317 1318 /* 1319 * Caller has made sure that the swap device corresponding to entry 1320 * is still around or has not been recycled. 1321 */ 1322 void swap_free(swp_entry_t entry) 1323 { 1324 struct swap_info_struct *p; 1325 1326 p = _swap_info_get(entry); 1327 if (p) 1328 __swap_entry_free(p, entry); 1329 } 1330 1331 /* 1332 * Called after dropping swapcache to decrease refcnt to swap entries. 1333 */ 1334 void put_swap_folio(struct folio *folio, swp_entry_t entry) 1335 { 1336 unsigned long offset = swp_offset(entry); 1337 unsigned long idx = offset / SWAPFILE_CLUSTER; 1338 struct swap_cluster_info *ci; 1339 struct swap_info_struct *si; 1340 unsigned char *map; 1341 unsigned int i, free_entries = 0; 1342 unsigned char val; 1343 int size = swap_entry_size(folio_nr_pages(folio)); 1344 1345 si = _swap_info_get(entry); 1346 if (!si) 1347 return; 1348 1349 ci = lock_cluster_or_swap_info(si, offset); 1350 if (size == SWAPFILE_CLUSTER) { 1351 VM_BUG_ON(!cluster_is_huge(ci)); 1352 map = si->swap_map + offset; 1353 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1354 val = map[i]; 1355 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1356 if (val == SWAP_HAS_CACHE) 1357 free_entries++; 1358 } 1359 cluster_clear_huge(ci); 1360 if (free_entries == SWAPFILE_CLUSTER) { 1361 unlock_cluster_or_swap_info(si, ci); 1362 spin_lock(&si->lock); 1363 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1364 swap_free_cluster(si, idx); 1365 spin_unlock(&si->lock); 1366 return; 1367 } 1368 } 1369 for (i = 0; i < size; i++, entry.val++) { 1370 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1371 unlock_cluster_or_swap_info(si, ci); 1372 free_swap_slot(entry); 1373 if (i == size - 1) 1374 return; 1375 lock_cluster_or_swap_info(si, offset); 1376 } 1377 } 1378 unlock_cluster_or_swap_info(si, ci); 1379 } 1380 1381 #ifdef CONFIG_THP_SWAP 1382 int split_swap_cluster(swp_entry_t entry) 1383 { 1384 struct swap_info_struct *si; 1385 struct swap_cluster_info *ci; 1386 unsigned long offset = swp_offset(entry); 1387 1388 si = _swap_info_get(entry); 1389 if (!si) 1390 return -EBUSY; 1391 ci = lock_cluster(si, offset); 1392 cluster_clear_huge(ci); 1393 unlock_cluster(ci); 1394 return 0; 1395 } 1396 #endif 1397 1398 static int swp_entry_cmp(const void *ent1, const void *ent2) 1399 { 1400 const swp_entry_t *e1 = ent1, *e2 = ent2; 1401 1402 return (int)swp_type(*e1) - (int)swp_type(*e2); 1403 } 1404 1405 void swapcache_free_entries(swp_entry_t *entries, int n) 1406 { 1407 struct swap_info_struct *p, *prev; 1408 int i; 1409 1410 if (n <= 0) 1411 return; 1412 1413 prev = NULL; 1414 p = NULL; 1415 1416 /* 1417 * Sort swap entries by swap device, so each lock is only taken once. 1418 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1419 * so low that it isn't necessary to optimize further. 1420 */ 1421 if (nr_swapfiles > 1) 1422 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1423 for (i = 0; i < n; ++i) { 1424 p = swap_info_get_cont(entries[i], prev); 1425 if (p) 1426 swap_entry_free(p, entries[i]); 1427 prev = p; 1428 } 1429 if (p) 1430 spin_unlock(&p->lock); 1431 } 1432 1433 int __swap_count(swp_entry_t entry) 1434 { 1435 struct swap_info_struct *si; 1436 pgoff_t offset = swp_offset(entry); 1437 int count = 0; 1438 1439 si = get_swap_device(entry); 1440 if (si) { 1441 count = swap_count(si->swap_map[offset]); 1442 put_swap_device(si); 1443 } 1444 return count; 1445 } 1446 1447 /* 1448 * How many references to @entry are currently swapped out? 1449 * This does not give an exact answer when swap count is continued, 1450 * but does include the high COUNT_CONTINUED flag to allow for that. 1451 */ 1452 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1453 { 1454 pgoff_t offset = swp_offset(entry); 1455 struct swap_cluster_info *ci; 1456 int count; 1457 1458 ci = lock_cluster_or_swap_info(si, offset); 1459 count = swap_count(si->swap_map[offset]); 1460 unlock_cluster_or_swap_info(si, ci); 1461 return count; 1462 } 1463 1464 /* 1465 * How many references to @entry are currently swapped out? 1466 * This does not give an exact answer when swap count is continued, 1467 * but does include the high COUNT_CONTINUED flag to allow for that. 1468 */ 1469 int __swp_swapcount(swp_entry_t entry) 1470 { 1471 int count = 0; 1472 struct swap_info_struct *si; 1473 1474 si = get_swap_device(entry); 1475 if (si) { 1476 count = swap_swapcount(si, entry); 1477 put_swap_device(si); 1478 } 1479 return count; 1480 } 1481 1482 /* 1483 * How many references to @entry are currently swapped out? 1484 * This considers COUNT_CONTINUED so it returns exact answer. 1485 */ 1486 int swp_swapcount(swp_entry_t entry) 1487 { 1488 int count, tmp_count, n; 1489 struct swap_info_struct *p; 1490 struct swap_cluster_info *ci; 1491 struct page *page; 1492 pgoff_t offset; 1493 unsigned char *map; 1494 1495 p = _swap_info_get(entry); 1496 if (!p) 1497 return 0; 1498 1499 offset = swp_offset(entry); 1500 1501 ci = lock_cluster_or_swap_info(p, offset); 1502 1503 count = swap_count(p->swap_map[offset]); 1504 if (!(count & COUNT_CONTINUED)) 1505 goto out; 1506 1507 count &= ~COUNT_CONTINUED; 1508 n = SWAP_MAP_MAX + 1; 1509 1510 page = vmalloc_to_page(p->swap_map + offset); 1511 offset &= ~PAGE_MASK; 1512 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1513 1514 do { 1515 page = list_next_entry(page, lru); 1516 map = kmap_atomic(page); 1517 tmp_count = map[offset]; 1518 kunmap_atomic(map); 1519 1520 count += (tmp_count & ~COUNT_CONTINUED) * n; 1521 n *= (SWAP_CONT_MAX + 1); 1522 } while (tmp_count & COUNT_CONTINUED); 1523 out: 1524 unlock_cluster_or_swap_info(p, ci); 1525 return count; 1526 } 1527 1528 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1529 swp_entry_t entry) 1530 { 1531 struct swap_cluster_info *ci; 1532 unsigned char *map = si->swap_map; 1533 unsigned long roffset = swp_offset(entry); 1534 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1535 int i; 1536 bool ret = false; 1537 1538 ci = lock_cluster_or_swap_info(si, offset); 1539 if (!ci || !cluster_is_huge(ci)) { 1540 if (swap_count(map[roffset])) 1541 ret = true; 1542 goto unlock_out; 1543 } 1544 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1545 if (swap_count(map[offset + i])) { 1546 ret = true; 1547 break; 1548 } 1549 } 1550 unlock_out: 1551 unlock_cluster_or_swap_info(si, ci); 1552 return ret; 1553 } 1554 1555 static bool folio_swapped(struct folio *folio) 1556 { 1557 swp_entry_t entry = folio_swap_entry(folio); 1558 struct swap_info_struct *si = _swap_info_get(entry); 1559 1560 if (!si) 1561 return false; 1562 1563 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio))) 1564 return swap_swapcount(si, entry) != 0; 1565 1566 return swap_page_trans_huge_swapped(si, entry); 1567 } 1568 1569 /** 1570 * folio_free_swap() - Free the swap space used for this folio. 1571 * @folio: The folio to remove. 1572 * 1573 * If swap is getting full, or if there are no more mappings of this folio, 1574 * then call folio_free_swap to free its swap space. 1575 * 1576 * Return: true if we were able to release the swap space. 1577 */ 1578 bool folio_free_swap(struct folio *folio) 1579 { 1580 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1581 1582 if (!folio_test_swapcache(folio)) 1583 return false; 1584 if (folio_test_writeback(folio)) 1585 return false; 1586 if (folio_swapped(folio)) 1587 return false; 1588 1589 /* 1590 * Once hibernation has begun to create its image of memory, 1591 * there's a danger that one of the calls to folio_free_swap() 1592 * - most probably a call from __try_to_reclaim_swap() while 1593 * hibernation is allocating its own swap pages for the image, 1594 * but conceivably even a call from memory reclaim - will free 1595 * the swap from a folio which has already been recorded in the 1596 * image as a clean swapcache folio, and then reuse its swap for 1597 * another page of the image. On waking from hibernation, the 1598 * original folio might be freed under memory pressure, then 1599 * later read back in from swap, now with the wrong data. 1600 * 1601 * Hibernation suspends storage while it is writing the image 1602 * to disk so check that here. 1603 */ 1604 if (pm_suspended_storage()) 1605 return false; 1606 1607 delete_from_swap_cache(folio); 1608 folio_set_dirty(folio); 1609 return true; 1610 } 1611 1612 /* 1613 * Free the swap entry like above, but also try to 1614 * free the page cache entry if it is the last user. 1615 */ 1616 int free_swap_and_cache(swp_entry_t entry) 1617 { 1618 struct swap_info_struct *p; 1619 unsigned char count; 1620 1621 if (non_swap_entry(entry)) 1622 return 1; 1623 1624 p = _swap_info_get(entry); 1625 if (p) { 1626 count = __swap_entry_free(p, entry); 1627 if (count == SWAP_HAS_CACHE && 1628 !swap_page_trans_huge_swapped(p, entry)) 1629 __try_to_reclaim_swap(p, swp_offset(entry), 1630 TTRS_UNMAPPED | TTRS_FULL); 1631 } 1632 return p != NULL; 1633 } 1634 1635 #ifdef CONFIG_HIBERNATION 1636 1637 swp_entry_t get_swap_page_of_type(int type) 1638 { 1639 struct swap_info_struct *si = swap_type_to_swap_info(type); 1640 swp_entry_t entry = {0}; 1641 1642 if (!si) 1643 goto fail; 1644 1645 /* This is called for allocating swap entry, not cache */ 1646 spin_lock(&si->lock); 1647 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry)) 1648 atomic_long_dec(&nr_swap_pages); 1649 spin_unlock(&si->lock); 1650 fail: 1651 return entry; 1652 } 1653 1654 /* 1655 * Find the swap type that corresponds to given device (if any). 1656 * 1657 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1658 * from 0, in which the swap header is expected to be located. 1659 * 1660 * This is needed for the suspend to disk (aka swsusp). 1661 */ 1662 int swap_type_of(dev_t device, sector_t offset) 1663 { 1664 int type; 1665 1666 if (!device) 1667 return -1; 1668 1669 spin_lock(&swap_lock); 1670 for (type = 0; type < nr_swapfiles; type++) { 1671 struct swap_info_struct *sis = swap_info[type]; 1672 1673 if (!(sis->flags & SWP_WRITEOK)) 1674 continue; 1675 1676 if (device == sis->bdev->bd_dev) { 1677 struct swap_extent *se = first_se(sis); 1678 1679 if (se->start_block == offset) { 1680 spin_unlock(&swap_lock); 1681 return type; 1682 } 1683 } 1684 } 1685 spin_unlock(&swap_lock); 1686 return -ENODEV; 1687 } 1688 1689 int find_first_swap(dev_t *device) 1690 { 1691 int type; 1692 1693 spin_lock(&swap_lock); 1694 for (type = 0; type < nr_swapfiles; type++) { 1695 struct swap_info_struct *sis = swap_info[type]; 1696 1697 if (!(sis->flags & SWP_WRITEOK)) 1698 continue; 1699 *device = sis->bdev->bd_dev; 1700 spin_unlock(&swap_lock); 1701 return type; 1702 } 1703 spin_unlock(&swap_lock); 1704 return -ENODEV; 1705 } 1706 1707 /* 1708 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1709 * corresponding to given index in swap_info (swap type). 1710 */ 1711 sector_t swapdev_block(int type, pgoff_t offset) 1712 { 1713 struct swap_info_struct *si = swap_type_to_swap_info(type); 1714 struct swap_extent *se; 1715 1716 if (!si || !(si->flags & SWP_WRITEOK)) 1717 return 0; 1718 se = offset_to_swap_extent(si, offset); 1719 return se->start_block + (offset - se->start_page); 1720 } 1721 1722 /* 1723 * Return either the total number of swap pages of given type, or the number 1724 * of free pages of that type (depending on @free) 1725 * 1726 * This is needed for software suspend 1727 */ 1728 unsigned int count_swap_pages(int type, int free) 1729 { 1730 unsigned int n = 0; 1731 1732 spin_lock(&swap_lock); 1733 if ((unsigned int)type < nr_swapfiles) { 1734 struct swap_info_struct *sis = swap_info[type]; 1735 1736 spin_lock(&sis->lock); 1737 if (sis->flags & SWP_WRITEOK) { 1738 n = sis->pages; 1739 if (free) 1740 n -= sis->inuse_pages; 1741 } 1742 spin_unlock(&sis->lock); 1743 } 1744 spin_unlock(&swap_lock); 1745 return n; 1746 } 1747 #endif /* CONFIG_HIBERNATION */ 1748 1749 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1750 { 1751 return pte_same(pte_swp_clear_flags(pte), swp_pte); 1752 } 1753 1754 /* 1755 * No need to decide whether this PTE shares the swap entry with others, 1756 * just let do_wp_page work it out if a write is requested later - to 1757 * force COW, vm_page_prot omits write permission from any private vma. 1758 */ 1759 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1760 unsigned long addr, swp_entry_t entry, struct folio *folio) 1761 { 1762 struct page *page = folio_file_page(folio, swp_offset(entry)); 1763 struct page *swapcache; 1764 spinlock_t *ptl; 1765 pte_t *pte, new_pte; 1766 bool hwposioned = false; 1767 int ret = 1; 1768 1769 swapcache = page; 1770 page = ksm_might_need_to_copy(page, vma, addr); 1771 if (unlikely(!page)) 1772 return -ENOMEM; 1773 else if (unlikely(PTR_ERR(page) == -EHWPOISON)) 1774 hwposioned = true; 1775 1776 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1777 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1778 ret = 0; 1779 goto out; 1780 } 1781 1782 if (unlikely(hwposioned || !PageUptodate(page))) { 1783 swp_entry_t swp_entry; 1784 1785 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1786 if (hwposioned) { 1787 swp_entry = make_hwpoison_entry(swapcache); 1788 page = swapcache; 1789 } else { 1790 swp_entry = make_swapin_error_entry(); 1791 } 1792 new_pte = swp_entry_to_pte(swp_entry); 1793 ret = 0; 1794 goto setpte; 1795 } 1796 1797 /* See do_swap_page() */ 1798 BUG_ON(!PageAnon(page) && PageMappedToDisk(page)); 1799 BUG_ON(PageAnon(page) && PageAnonExclusive(page)); 1800 1801 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1802 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1803 get_page(page); 1804 if (page == swapcache) { 1805 rmap_t rmap_flags = RMAP_NONE; 1806 1807 /* 1808 * See do_swap_page(): PageWriteback() would be problematic. 1809 * However, we do a wait_on_page_writeback() just before this 1810 * call and have the page locked. 1811 */ 1812 VM_BUG_ON_PAGE(PageWriteback(page), page); 1813 if (pte_swp_exclusive(*pte)) 1814 rmap_flags |= RMAP_EXCLUSIVE; 1815 1816 page_add_anon_rmap(page, vma, addr, rmap_flags); 1817 } else { /* ksm created a completely new copy */ 1818 page_add_new_anon_rmap(page, vma, addr); 1819 lru_cache_add_inactive_or_unevictable(page, vma); 1820 } 1821 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot)); 1822 if (pte_swp_soft_dirty(*pte)) 1823 new_pte = pte_mksoft_dirty(new_pte); 1824 if (pte_swp_uffd_wp(*pte)) 1825 new_pte = pte_mkuffd_wp(new_pte); 1826 setpte: 1827 set_pte_at(vma->vm_mm, addr, pte, new_pte); 1828 swap_free(entry); 1829 out: 1830 pte_unmap_unlock(pte, ptl); 1831 if (page != swapcache) { 1832 unlock_page(page); 1833 put_page(page); 1834 } 1835 return ret; 1836 } 1837 1838 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1839 unsigned long addr, unsigned long end, 1840 unsigned int type) 1841 { 1842 swp_entry_t entry; 1843 pte_t *pte; 1844 struct swap_info_struct *si; 1845 int ret = 0; 1846 1847 si = swap_info[type]; 1848 pte = pte_offset_map(pmd, addr); 1849 do { 1850 struct folio *folio; 1851 unsigned long offset; 1852 unsigned char swp_count; 1853 1854 if (!is_swap_pte(*pte)) 1855 continue; 1856 1857 entry = pte_to_swp_entry(*pte); 1858 if (swp_type(entry) != type) 1859 continue; 1860 1861 offset = swp_offset(entry); 1862 pte_unmap(pte); 1863 folio = swap_cache_get_folio(entry, vma, addr); 1864 if (!folio) { 1865 struct page *page; 1866 struct vm_fault vmf = { 1867 .vma = vma, 1868 .address = addr, 1869 .real_address = addr, 1870 .pmd = pmd, 1871 }; 1872 1873 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 1874 &vmf); 1875 if (page) 1876 folio = page_folio(page); 1877 } 1878 if (!folio) { 1879 swp_count = READ_ONCE(si->swap_map[offset]); 1880 if (swp_count == 0 || swp_count == SWAP_MAP_BAD) 1881 goto try_next; 1882 1883 return -ENOMEM; 1884 } 1885 1886 folio_lock(folio); 1887 folio_wait_writeback(folio); 1888 ret = unuse_pte(vma, pmd, addr, entry, folio); 1889 if (ret < 0) { 1890 folio_unlock(folio); 1891 folio_put(folio); 1892 goto out; 1893 } 1894 1895 folio_free_swap(folio); 1896 folio_unlock(folio); 1897 folio_put(folio); 1898 try_next: 1899 pte = pte_offset_map(pmd, addr); 1900 } while (pte++, addr += PAGE_SIZE, addr != end); 1901 pte_unmap(pte - 1); 1902 1903 ret = 0; 1904 out: 1905 return ret; 1906 } 1907 1908 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1909 unsigned long addr, unsigned long end, 1910 unsigned int type) 1911 { 1912 pmd_t *pmd; 1913 unsigned long next; 1914 int ret; 1915 1916 pmd = pmd_offset(pud, addr); 1917 do { 1918 cond_resched(); 1919 next = pmd_addr_end(addr, end); 1920 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1921 continue; 1922 ret = unuse_pte_range(vma, pmd, addr, next, type); 1923 if (ret) 1924 return ret; 1925 } while (pmd++, addr = next, addr != end); 1926 return 0; 1927 } 1928 1929 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 1930 unsigned long addr, unsigned long end, 1931 unsigned int type) 1932 { 1933 pud_t *pud; 1934 unsigned long next; 1935 int ret; 1936 1937 pud = pud_offset(p4d, addr); 1938 do { 1939 next = pud_addr_end(addr, end); 1940 if (pud_none_or_clear_bad(pud)) 1941 continue; 1942 ret = unuse_pmd_range(vma, pud, addr, next, type); 1943 if (ret) 1944 return ret; 1945 } while (pud++, addr = next, addr != end); 1946 return 0; 1947 } 1948 1949 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 1950 unsigned long addr, unsigned long end, 1951 unsigned int type) 1952 { 1953 p4d_t *p4d; 1954 unsigned long next; 1955 int ret; 1956 1957 p4d = p4d_offset(pgd, addr); 1958 do { 1959 next = p4d_addr_end(addr, end); 1960 if (p4d_none_or_clear_bad(p4d)) 1961 continue; 1962 ret = unuse_pud_range(vma, p4d, addr, next, type); 1963 if (ret) 1964 return ret; 1965 } while (p4d++, addr = next, addr != end); 1966 return 0; 1967 } 1968 1969 static int unuse_vma(struct vm_area_struct *vma, unsigned int type) 1970 { 1971 pgd_t *pgd; 1972 unsigned long addr, end, next; 1973 int ret; 1974 1975 addr = vma->vm_start; 1976 end = vma->vm_end; 1977 1978 pgd = pgd_offset(vma->vm_mm, addr); 1979 do { 1980 next = pgd_addr_end(addr, end); 1981 if (pgd_none_or_clear_bad(pgd)) 1982 continue; 1983 ret = unuse_p4d_range(vma, pgd, addr, next, type); 1984 if (ret) 1985 return ret; 1986 } while (pgd++, addr = next, addr != end); 1987 return 0; 1988 } 1989 1990 static int unuse_mm(struct mm_struct *mm, unsigned int type) 1991 { 1992 struct vm_area_struct *vma; 1993 int ret = 0; 1994 VMA_ITERATOR(vmi, mm, 0); 1995 1996 mmap_read_lock(mm); 1997 for_each_vma(vmi, vma) { 1998 if (vma->anon_vma) { 1999 ret = unuse_vma(vma, type); 2000 if (ret) 2001 break; 2002 } 2003 2004 cond_resched(); 2005 } 2006 mmap_read_unlock(mm); 2007 return ret; 2008 } 2009 2010 /* 2011 * Scan swap_map from current position to next entry still in use. 2012 * Return 0 if there are no inuse entries after prev till end of 2013 * the map. 2014 */ 2015 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2016 unsigned int prev) 2017 { 2018 unsigned int i; 2019 unsigned char count; 2020 2021 /* 2022 * No need for swap_lock here: we're just looking 2023 * for whether an entry is in use, not modifying it; false 2024 * hits are okay, and sys_swapoff() has already prevented new 2025 * allocations from this area (while holding swap_lock). 2026 */ 2027 for (i = prev + 1; i < si->max; i++) { 2028 count = READ_ONCE(si->swap_map[i]); 2029 if (count && swap_count(count) != SWAP_MAP_BAD) 2030 break; 2031 if ((i % LATENCY_LIMIT) == 0) 2032 cond_resched(); 2033 } 2034 2035 if (i == si->max) 2036 i = 0; 2037 2038 return i; 2039 } 2040 2041 static int try_to_unuse(unsigned int type) 2042 { 2043 struct mm_struct *prev_mm; 2044 struct mm_struct *mm; 2045 struct list_head *p; 2046 int retval = 0; 2047 struct swap_info_struct *si = swap_info[type]; 2048 struct folio *folio; 2049 swp_entry_t entry; 2050 unsigned int i; 2051 2052 if (!READ_ONCE(si->inuse_pages)) 2053 return 0; 2054 2055 retry: 2056 retval = shmem_unuse(type); 2057 if (retval) 2058 return retval; 2059 2060 prev_mm = &init_mm; 2061 mmget(prev_mm); 2062 2063 spin_lock(&mmlist_lock); 2064 p = &init_mm.mmlist; 2065 while (READ_ONCE(si->inuse_pages) && 2066 !signal_pending(current) && 2067 (p = p->next) != &init_mm.mmlist) { 2068 2069 mm = list_entry(p, struct mm_struct, mmlist); 2070 if (!mmget_not_zero(mm)) 2071 continue; 2072 spin_unlock(&mmlist_lock); 2073 mmput(prev_mm); 2074 prev_mm = mm; 2075 retval = unuse_mm(mm, type); 2076 if (retval) { 2077 mmput(prev_mm); 2078 return retval; 2079 } 2080 2081 /* 2082 * Make sure that we aren't completely killing 2083 * interactive performance. 2084 */ 2085 cond_resched(); 2086 spin_lock(&mmlist_lock); 2087 } 2088 spin_unlock(&mmlist_lock); 2089 2090 mmput(prev_mm); 2091 2092 i = 0; 2093 while (READ_ONCE(si->inuse_pages) && 2094 !signal_pending(current) && 2095 (i = find_next_to_unuse(si, i)) != 0) { 2096 2097 entry = swp_entry(type, i); 2098 folio = filemap_get_folio(swap_address_space(entry), i); 2099 if (IS_ERR(folio)) 2100 continue; 2101 2102 /* 2103 * It is conceivable that a racing task removed this folio from 2104 * swap cache just before we acquired the page lock. The folio 2105 * might even be back in swap cache on another swap area. But 2106 * that is okay, folio_free_swap() only removes stale folios. 2107 */ 2108 folio_lock(folio); 2109 folio_wait_writeback(folio); 2110 folio_free_swap(folio); 2111 folio_unlock(folio); 2112 folio_put(folio); 2113 } 2114 2115 /* 2116 * Lets check again to see if there are still swap entries in the map. 2117 * If yes, we would need to do retry the unuse logic again. 2118 * Under global memory pressure, swap entries can be reinserted back 2119 * into process space after the mmlist loop above passes over them. 2120 * 2121 * Limit the number of retries? No: when mmget_not_zero() 2122 * above fails, that mm is likely to be freeing swap from 2123 * exit_mmap(), which proceeds at its own independent pace; 2124 * and even shmem_writepage() could have been preempted after 2125 * folio_alloc_swap(), temporarily hiding that swap. It's easy 2126 * and robust (though cpu-intensive) just to keep retrying. 2127 */ 2128 if (READ_ONCE(si->inuse_pages)) { 2129 if (!signal_pending(current)) 2130 goto retry; 2131 return -EINTR; 2132 } 2133 2134 return 0; 2135 } 2136 2137 /* 2138 * After a successful try_to_unuse, if no swap is now in use, we know 2139 * we can empty the mmlist. swap_lock must be held on entry and exit. 2140 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2141 * added to the mmlist just after page_duplicate - before would be racy. 2142 */ 2143 static void drain_mmlist(void) 2144 { 2145 struct list_head *p, *next; 2146 unsigned int type; 2147 2148 for (type = 0; type < nr_swapfiles; type++) 2149 if (swap_info[type]->inuse_pages) 2150 return; 2151 spin_lock(&mmlist_lock); 2152 list_for_each_safe(p, next, &init_mm.mmlist) 2153 list_del_init(p); 2154 spin_unlock(&mmlist_lock); 2155 } 2156 2157 /* 2158 * Free all of a swapdev's extent information 2159 */ 2160 static void destroy_swap_extents(struct swap_info_struct *sis) 2161 { 2162 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2163 struct rb_node *rb = sis->swap_extent_root.rb_node; 2164 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2165 2166 rb_erase(rb, &sis->swap_extent_root); 2167 kfree(se); 2168 } 2169 2170 if (sis->flags & SWP_ACTIVATED) { 2171 struct file *swap_file = sis->swap_file; 2172 struct address_space *mapping = swap_file->f_mapping; 2173 2174 sis->flags &= ~SWP_ACTIVATED; 2175 if (mapping->a_ops->swap_deactivate) 2176 mapping->a_ops->swap_deactivate(swap_file); 2177 } 2178 } 2179 2180 /* 2181 * Add a block range (and the corresponding page range) into this swapdev's 2182 * extent tree. 2183 * 2184 * This function rather assumes that it is called in ascending page order. 2185 */ 2186 int 2187 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2188 unsigned long nr_pages, sector_t start_block) 2189 { 2190 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2191 struct swap_extent *se; 2192 struct swap_extent *new_se; 2193 2194 /* 2195 * place the new node at the right most since the 2196 * function is called in ascending page order. 2197 */ 2198 while (*link) { 2199 parent = *link; 2200 link = &parent->rb_right; 2201 } 2202 2203 if (parent) { 2204 se = rb_entry(parent, struct swap_extent, rb_node); 2205 BUG_ON(se->start_page + se->nr_pages != start_page); 2206 if (se->start_block + se->nr_pages == start_block) { 2207 /* Merge it */ 2208 se->nr_pages += nr_pages; 2209 return 0; 2210 } 2211 } 2212 2213 /* No merge, insert a new extent. */ 2214 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2215 if (new_se == NULL) 2216 return -ENOMEM; 2217 new_se->start_page = start_page; 2218 new_se->nr_pages = nr_pages; 2219 new_se->start_block = start_block; 2220 2221 rb_link_node(&new_se->rb_node, parent, link); 2222 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2223 return 1; 2224 } 2225 EXPORT_SYMBOL_GPL(add_swap_extent); 2226 2227 /* 2228 * A `swap extent' is a simple thing which maps a contiguous range of pages 2229 * onto a contiguous range of disk blocks. A rbtree of swap extents is 2230 * built at swapon time and is then used at swap_writepage/swap_readpage 2231 * time for locating where on disk a page belongs. 2232 * 2233 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2234 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2235 * swap files identically. 2236 * 2237 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2238 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2239 * swapfiles are handled *identically* after swapon time. 2240 * 2241 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2242 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray 2243 * blocks are found which do not fall within the PAGE_SIZE alignment 2244 * requirements, they are simply tossed out - we will never use those blocks 2245 * for swapping. 2246 * 2247 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2248 * prevents users from writing to the swap device, which will corrupt memory. 2249 * 2250 * The amount of disk space which a single swap extent represents varies. 2251 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2252 * extents in the rbtree. - akpm. 2253 */ 2254 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2255 { 2256 struct file *swap_file = sis->swap_file; 2257 struct address_space *mapping = swap_file->f_mapping; 2258 struct inode *inode = mapping->host; 2259 int ret; 2260 2261 if (S_ISBLK(inode->i_mode)) { 2262 ret = add_swap_extent(sis, 0, sis->max, 0); 2263 *span = sis->pages; 2264 return ret; 2265 } 2266 2267 if (mapping->a_ops->swap_activate) { 2268 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2269 if (ret < 0) 2270 return ret; 2271 sis->flags |= SWP_ACTIVATED; 2272 if ((sis->flags & SWP_FS_OPS) && 2273 sio_pool_init() != 0) { 2274 destroy_swap_extents(sis); 2275 return -ENOMEM; 2276 } 2277 return ret; 2278 } 2279 2280 return generic_swapfile_activate(sis, swap_file, span); 2281 } 2282 2283 static int swap_node(struct swap_info_struct *p) 2284 { 2285 struct block_device *bdev; 2286 2287 if (p->bdev) 2288 bdev = p->bdev; 2289 else 2290 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2291 2292 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2293 } 2294 2295 static void setup_swap_info(struct swap_info_struct *p, int prio, 2296 unsigned char *swap_map, 2297 struct swap_cluster_info *cluster_info) 2298 { 2299 int i; 2300 2301 if (prio >= 0) 2302 p->prio = prio; 2303 else 2304 p->prio = --least_priority; 2305 /* 2306 * the plist prio is negated because plist ordering is 2307 * low-to-high, while swap ordering is high-to-low 2308 */ 2309 p->list.prio = -p->prio; 2310 for_each_node(i) { 2311 if (p->prio >= 0) 2312 p->avail_lists[i].prio = -p->prio; 2313 else { 2314 if (swap_node(p) == i) 2315 p->avail_lists[i].prio = 1; 2316 else 2317 p->avail_lists[i].prio = -p->prio; 2318 } 2319 } 2320 p->swap_map = swap_map; 2321 p->cluster_info = cluster_info; 2322 } 2323 2324 static void _enable_swap_info(struct swap_info_struct *p) 2325 { 2326 p->flags |= SWP_WRITEOK; 2327 atomic_long_add(p->pages, &nr_swap_pages); 2328 total_swap_pages += p->pages; 2329 2330 assert_spin_locked(&swap_lock); 2331 /* 2332 * both lists are plists, and thus priority ordered. 2333 * swap_active_head needs to be priority ordered for swapoff(), 2334 * which on removal of any swap_info_struct with an auto-assigned 2335 * (i.e. negative) priority increments the auto-assigned priority 2336 * of any lower-priority swap_info_structs. 2337 * swap_avail_head needs to be priority ordered for folio_alloc_swap(), 2338 * which allocates swap pages from the highest available priority 2339 * swap_info_struct. 2340 */ 2341 plist_add(&p->list, &swap_active_head); 2342 add_to_avail_list(p); 2343 } 2344 2345 static void enable_swap_info(struct swap_info_struct *p, int prio, 2346 unsigned char *swap_map, 2347 struct swap_cluster_info *cluster_info, 2348 unsigned long *frontswap_map) 2349 { 2350 if (IS_ENABLED(CONFIG_FRONTSWAP)) 2351 frontswap_init(p->type, frontswap_map); 2352 spin_lock(&swap_lock); 2353 spin_lock(&p->lock); 2354 setup_swap_info(p, prio, swap_map, cluster_info); 2355 spin_unlock(&p->lock); 2356 spin_unlock(&swap_lock); 2357 /* 2358 * Finished initializing swap device, now it's safe to reference it. 2359 */ 2360 percpu_ref_resurrect(&p->users); 2361 spin_lock(&swap_lock); 2362 spin_lock(&p->lock); 2363 _enable_swap_info(p); 2364 spin_unlock(&p->lock); 2365 spin_unlock(&swap_lock); 2366 } 2367 2368 static void reinsert_swap_info(struct swap_info_struct *p) 2369 { 2370 spin_lock(&swap_lock); 2371 spin_lock(&p->lock); 2372 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2373 _enable_swap_info(p); 2374 spin_unlock(&p->lock); 2375 spin_unlock(&swap_lock); 2376 } 2377 2378 bool has_usable_swap(void) 2379 { 2380 bool ret = true; 2381 2382 spin_lock(&swap_lock); 2383 if (plist_head_empty(&swap_active_head)) 2384 ret = false; 2385 spin_unlock(&swap_lock); 2386 return ret; 2387 } 2388 2389 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2390 { 2391 struct swap_info_struct *p = NULL; 2392 unsigned char *swap_map; 2393 struct swap_cluster_info *cluster_info; 2394 unsigned long *frontswap_map; 2395 struct file *swap_file, *victim; 2396 struct address_space *mapping; 2397 struct inode *inode; 2398 struct filename *pathname; 2399 int err, found = 0; 2400 unsigned int old_block_size; 2401 2402 if (!capable(CAP_SYS_ADMIN)) 2403 return -EPERM; 2404 2405 BUG_ON(!current->mm); 2406 2407 pathname = getname(specialfile); 2408 if (IS_ERR(pathname)) 2409 return PTR_ERR(pathname); 2410 2411 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2412 err = PTR_ERR(victim); 2413 if (IS_ERR(victim)) 2414 goto out; 2415 2416 mapping = victim->f_mapping; 2417 spin_lock(&swap_lock); 2418 plist_for_each_entry(p, &swap_active_head, list) { 2419 if (p->flags & SWP_WRITEOK) { 2420 if (p->swap_file->f_mapping == mapping) { 2421 found = 1; 2422 break; 2423 } 2424 } 2425 } 2426 if (!found) { 2427 err = -EINVAL; 2428 spin_unlock(&swap_lock); 2429 goto out_dput; 2430 } 2431 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2432 vm_unacct_memory(p->pages); 2433 else { 2434 err = -ENOMEM; 2435 spin_unlock(&swap_lock); 2436 goto out_dput; 2437 } 2438 spin_lock(&p->lock); 2439 del_from_avail_list(p); 2440 if (p->prio < 0) { 2441 struct swap_info_struct *si = p; 2442 int nid; 2443 2444 plist_for_each_entry_continue(si, &swap_active_head, list) { 2445 si->prio++; 2446 si->list.prio--; 2447 for_each_node(nid) { 2448 if (si->avail_lists[nid].prio != 1) 2449 si->avail_lists[nid].prio--; 2450 } 2451 } 2452 least_priority++; 2453 } 2454 plist_del(&p->list, &swap_active_head); 2455 atomic_long_sub(p->pages, &nr_swap_pages); 2456 total_swap_pages -= p->pages; 2457 p->flags &= ~SWP_WRITEOK; 2458 spin_unlock(&p->lock); 2459 spin_unlock(&swap_lock); 2460 2461 disable_swap_slots_cache_lock(); 2462 2463 set_current_oom_origin(); 2464 err = try_to_unuse(p->type); 2465 clear_current_oom_origin(); 2466 2467 if (err) { 2468 /* re-insert swap space back into swap_list */ 2469 reinsert_swap_info(p); 2470 reenable_swap_slots_cache_unlock(); 2471 goto out_dput; 2472 } 2473 2474 reenable_swap_slots_cache_unlock(); 2475 2476 /* 2477 * Wait for swap operations protected by get/put_swap_device() 2478 * to complete. 2479 * 2480 * We need synchronize_rcu() here to protect the accessing to 2481 * the swap cache data structure. 2482 */ 2483 percpu_ref_kill(&p->users); 2484 synchronize_rcu(); 2485 wait_for_completion(&p->comp); 2486 2487 flush_work(&p->discard_work); 2488 2489 destroy_swap_extents(p); 2490 if (p->flags & SWP_CONTINUED) 2491 free_swap_count_continuations(p); 2492 2493 if (!p->bdev || !bdev_nonrot(p->bdev)) 2494 atomic_dec(&nr_rotate_swap); 2495 2496 mutex_lock(&swapon_mutex); 2497 spin_lock(&swap_lock); 2498 spin_lock(&p->lock); 2499 drain_mmlist(); 2500 2501 /* wait for anyone still in scan_swap_map_slots */ 2502 p->highest_bit = 0; /* cuts scans short */ 2503 while (p->flags >= SWP_SCANNING) { 2504 spin_unlock(&p->lock); 2505 spin_unlock(&swap_lock); 2506 schedule_timeout_uninterruptible(1); 2507 spin_lock(&swap_lock); 2508 spin_lock(&p->lock); 2509 } 2510 2511 swap_file = p->swap_file; 2512 old_block_size = p->old_block_size; 2513 p->swap_file = NULL; 2514 p->max = 0; 2515 swap_map = p->swap_map; 2516 p->swap_map = NULL; 2517 cluster_info = p->cluster_info; 2518 p->cluster_info = NULL; 2519 frontswap_map = frontswap_map_get(p); 2520 spin_unlock(&p->lock); 2521 spin_unlock(&swap_lock); 2522 arch_swap_invalidate_area(p->type); 2523 frontswap_invalidate_area(p->type); 2524 frontswap_map_set(p, NULL); 2525 mutex_unlock(&swapon_mutex); 2526 free_percpu(p->percpu_cluster); 2527 p->percpu_cluster = NULL; 2528 free_percpu(p->cluster_next_cpu); 2529 p->cluster_next_cpu = NULL; 2530 vfree(swap_map); 2531 kvfree(cluster_info); 2532 kvfree(frontswap_map); 2533 /* Destroy swap account information */ 2534 swap_cgroup_swapoff(p->type); 2535 exit_swap_address_space(p->type); 2536 2537 inode = mapping->host; 2538 if (S_ISBLK(inode->i_mode)) { 2539 struct block_device *bdev = I_BDEV(inode); 2540 2541 set_blocksize(bdev, old_block_size); 2542 blkdev_put(bdev, p); 2543 } 2544 2545 inode_lock(inode); 2546 inode->i_flags &= ~S_SWAPFILE; 2547 inode_unlock(inode); 2548 filp_close(swap_file, NULL); 2549 2550 /* 2551 * Clear the SWP_USED flag after all resources are freed so that swapon 2552 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2553 * not hold p->lock after we cleared its SWP_WRITEOK. 2554 */ 2555 spin_lock(&swap_lock); 2556 p->flags = 0; 2557 spin_unlock(&swap_lock); 2558 2559 err = 0; 2560 atomic_inc(&proc_poll_event); 2561 wake_up_interruptible(&proc_poll_wait); 2562 2563 out_dput: 2564 filp_close(victim, NULL); 2565 out: 2566 putname(pathname); 2567 return err; 2568 } 2569 2570 #ifdef CONFIG_PROC_FS 2571 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2572 { 2573 struct seq_file *seq = file->private_data; 2574 2575 poll_wait(file, &proc_poll_wait, wait); 2576 2577 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2578 seq->poll_event = atomic_read(&proc_poll_event); 2579 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2580 } 2581 2582 return EPOLLIN | EPOLLRDNORM; 2583 } 2584 2585 /* iterator */ 2586 static void *swap_start(struct seq_file *swap, loff_t *pos) 2587 { 2588 struct swap_info_struct *si; 2589 int type; 2590 loff_t l = *pos; 2591 2592 mutex_lock(&swapon_mutex); 2593 2594 if (!l) 2595 return SEQ_START_TOKEN; 2596 2597 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2598 if (!(si->flags & SWP_USED) || !si->swap_map) 2599 continue; 2600 if (!--l) 2601 return si; 2602 } 2603 2604 return NULL; 2605 } 2606 2607 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2608 { 2609 struct swap_info_struct *si = v; 2610 int type; 2611 2612 if (v == SEQ_START_TOKEN) 2613 type = 0; 2614 else 2615 type = si->type + 1; 2616 2617 ++(*pos); 2618 for (; (si = swap_type_to_swap_info(type)); type++) { 2619 if (!(si->flags & SWP_USED) || !si->swap_map) 2620 continue; 2621 return si; 2622 } 2623 2624 return NULL; 2625 } 2626 2627 static void swap_stop(struct seq_file *swap, void *v) 2628 { 2629 mutex_unlock(&swapon_mutex); 2630 } 2631 2632 static int swap_show(struct seq_file *swap, void *v) 2633 { 2634 struct swap_info_struct *si = v; 2635 struct file *file; 2636 int len; 2637 unsigned long bytes, inuse; 2638 2639 if (si == SEQ_START_TOKEN) { 2640 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2641 return 0; 2642 } 2643 2644 bytes = si->pages << (PAGE_SHIFT - 10); 2645 inuse = READ_ONCE(si->inuse_pages) << (PAGE_SHIFT - 10); 2646 2647 file = si->swap_file; 2648 len = seq_file_path(swap, file, " \t\n\\"); 2649 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", 2650 len < 40 ? 40 - len : 1, " ", 2651 S_ISBLK(file_inode(file)->i_mode) ? 2652 "partition" : "file\t", 2653 bytes, bytes < 10000000 ? "\t" : "", 2654 inuse, inuse < 10000000 ? "\t" : "", 2655 si->prio); 2656 return 0; 2657 } 2658 2659 static const struct seq_operations swaps_op = { 2660 .start = swap_start, 2661 .next = swap_next, 2662 .stop = swap_stop, 2663 .show = swap_show 2664 }; 2665 2666 static int swaps_open(struct inode *inode, struct file *file) 2667 { 2668 struct seq_file *seq; 2669 int ret; 2670 2671 ret = seq_open(file, &swaps_op); 2672 if (ret) 2673 return ret; 2674 2675 seq = file->private_data; 2676 seq->poll_event = atomic_read(&proc_poll_event); 2677 return 0; 2678 } 2679 2680 static const struct proc_ops swaps_proc_ops = { 2681 .proc_flags = PROC_ENTRY_PERMANENT, 2682 .proc_open = swaps_open, 2683 .proc_read = seq_read, 2684 .proc_lseek = seq_lseek, 2685 .proc_release = seq_release, 2686 .proc_poll = swaps_poll, 2687 }; 2688 2689 static int __init procswaps_init(void) 2690 { 2691 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2692 return 0; 2693 } 2694 __initcall(procswaps_init); 2695 #endif /* CONFIG_PROC_FS */ 2696 2697 #ifdef MAX_SWAPFILES_CHECK 2698 static int __init max_swapfiles_check(void) 2699 { 2700 MAX_SWAPFILES_CHECK(); 2701 return 0; 2702 } 2703 late_initcall(max_swapfiles_check); 2704 #endif 2705 2706 static struct swap_info_struct *alloc_swap_info(void) 2707 { 2708 struct swap_info_struct *p; 2709 struct swap_info_struct *defer = NULL; 2710 unsigned int type; 2711 int i; 2712 2713 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2714 if (!p) 2715 return ERR_PTR(-ENOMEM); 2716 2717 if (percpu_ref_init(&p->users, swap_users_ref_free, 2718 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 2719 kvfree(p); 2720 return ERR_PTR(-ENOMEM); 2721 } 2722 2723 spin_lock(&swap_lock); 2724 for (type = 0; type < nr_swapfiles; type++) { 2725 if (!(swap_info[type]->flags & SWP_USED)) 2726 break; 2727 } 2728 if (type >= MAX_SWAPFILES) { 2729 spin_unlock(&swap_lock); 2730 percpu_ref_exit(&p->users); 2731 kvfree(p); 2732 return ERR_PTR(-EPERM); 2733 } 2734 if (type >= nr_swapfiles) { 2735 p->type = type; 2736 /* 2737 * Publish the swap_info_struct after initializing it. 2738 * Note that kvzalloc() above zeroes all its fields. 2739 */ 2740 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 2741 nr_swapfiles++; 2742 } else { 2743 defer = p; 2744 p = swap_info[type]; 2745 /* 2746 * Do not memset this entry: a racing procfs swap_next() 2747 * would be relying on p->type to remain valid. 2748 */ 2749 } 2750 p->swap_extent_root = RB_ROOT; 2751 plist_node_init(&p->list, 0); 2752 for_each_node(i) 2753 plist_node_init(&p->avail_lists[i], 0); 2754 p->flags = SWP_USED; 2755 spin_unlock(&swap_lock); 2756 if (defer) { 2757 percpu_ref_exit(&defer->users); 2758 kvfree(defer); 2759 } 2760 spin_lock_init(&p->lock); 2761 spin_lock_init(&p->cont_lock); 2762 init_completion(&p->comp); 2763 2764 return p; 2765 } 2766 2767 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2768 { 2769 int error; 2770 2771 if (S_ISBLK(inode->i_mode)) { 2772 p->bdev = blkdev_get_by_dev(inode->i_rdev, 2773 BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL); 2774 if (IS_ERR(p->bdev)) { 2775 error = PTR_ERR(p->bdev); 2776 p->bdev = NULL; 2777 return error; 2778 } 2779 p->old_block_size = block_size(p->bdev); 2780 error = set_blocksize(p->bdev, PAGE_SIZE); 2781 if (error < 0) 2782 return error; 2783 /* 2784 * Zoned block devices contain zones that have a sequential 2785 * write only restriction. Hence zoned block devices are not 2786 * suitable for swapping. Disallow them here. 2787 */ 2788 if (bdev_is_zoned(p->bdev)) 2789 return -EINVAL; 2790 p->flags |= SWP_BLKDEV; 2791 } else if (S_ISREG(inode->i_mode)) { 2792 p->bdev = inode->i_sb->s_bdev; 2793 } 2794 2795 return 0; 2796 } 2797 2798 2799 /* 2800 * Find out how many pages are allowed for a single swap device. There 2801 * are two limiting factors: 2802 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2803 * 2) the number of bits in the swap pte, as defined by the different 2804 * architectures. 2805 * 2806 * In order to find the largest possible bit mask, a swap entry with 2807 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2808 * decoded to a swp_entry_t again, and finally the swap offset is 2809 * extracted. 2810 * 2811 * This will mask all the bits from the initial ~0UL mask that can't 2812 * be encoded in either the swp_entry_t or the architecture definition 2813 * of a swap pte. 2814 */ 2815 unsigned long generic_max_swapfile_size(void) 2816 { 2817 return swp_offset(pte_to_swp_entry( 2818 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2819 } 2820 2821 /* Can be overridden by an architecture for additional checks. */ 2822 __weak unsigned long arch_max_swapfile_size(void) 2823 { 2824 return generic_max_swapfile_size(); 2825 } 2826 2827 static unsigned long read_swap_header(struct swap_info_struct *p, 2828 union swap_header *swap_header, 2829 struct inode *inode) 2830 { 2831 int i; 2832 unsigned long maxpages; 2833 unsigned long swapfilepages; 2834 unsigned long last_page; 2835 2836 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2837 pr_err("Unable to find swap-space signature\n"); 2838 return 0; 2839 } 2840 2841 /* swap partition endianness hack... */ 2842 if (swab32(swap_header->info.version) == 1) { 2843 swab32s(&swap_header->info.version); 2844 swab32s(&swap_header->info.last_page); 2845 swab32s(&swap_header->info.nr_badpages); 2846 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2847 return 0; 2848 for (i = 0; i < swap_header->info.nr_badpages; i++) 2849 swab32s(&swap_header->info.badpages[i]); 2850 } 2851 /* Check the swap header's sub-version */ 2852 if (swap_header->info.version != 1) { 2853 pr_warn("Unable to handle swap header version %d\n", 2854 swap_header->info.version); 2855 return 0; 2856 } 2857 2858 p->lowest_bit = 1; 2859 p->cluster_next = 1; 2860 p->cluster_nr = 0; 2861 2862 maxpages = swapfile_maximum_size; 2863 last_page = swap_header->info.last_page; 2864 if (!last_page) { 2865 pr_warn("Empty swap-file\n"); 2866 return 0; 2867 } 2868 if (last_page > maxpages) { 2869 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2870 maxpages << (PAGE_SHIFT - 10), 2871 last_page << (PAGE_SHIFT - 10)); 2872 } 2873 if (maxpages > last_page) { 2874 maxpages = last_page + 1; 2875 /* p->max is an unsigned int: don't overflow it */ 2876 if ((unsigned int)maxpages == 0) 2877 maxpages = UINT_MAX; 2878 } 2879 p->highest_bit = maxpages - 1; 2880 2881 if (!maxpages) 2882 return 0; 2883 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2884 if (swapfilepages && maxpages > swapfilepages) { 2885 pr_warn("Swap area shorter than signature indicates\n"); 2886 return 0; 2887 } 2888 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2889 return 0; 2890 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2891 return 0; 2892 2893 return maxpages; 2894 } 2895 2896 #define SWAP_CLUSTER_INFO_COLS \ 2897 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 2898 #define SWAP_CLUSTER_SPACE_COLS \ 2899 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 2900 #define SWAP_CLUSTER_COLS \ 2901 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 2902 2903 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2904 union swap_header *swap_header, 2905 unsigned char *swap_map, 2906 struct swap_cluster_info *cluster_info, 2907 unsigned long maxpages, 2908 sector_t *span) 2909 { 2910 unsigned int j, k; 2911 unsigned int nr_good_pages; 2912 int nr_extents; 2913 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2914 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 2915 unsigned long i, idx; 2916 2917 nr_good_pages = maxpages - 1; /* omit header page */ 2918 2919 cluster_list_init(&p->free_clusters); 2920 cluster_list_init(&p->discard_clusters); 2921 2922 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2923 unsigned int page_nr = swap_header->info.badpages[i]; 2924 if (page_nr == 0 || page_nr > swap_header->info.last_page) 2925 return -EINVAL; 2926 if (page_nr < maxpages) { 2927 swap_map[page_nr] = SWAP_MAP_BAD; 2928 nr_good_pages--; 2929 /* 2930 * Haven't marked the cluster free yet, no list 2931 * operation involved 2932 */ 2933 inc_cluster_info_page(p, cluster_info, page_nr); 2934 } 2935 } 2936 2937 /* Haven't marked the cluster free yet, no list operation involved */ 2938 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 2939 inc_cluster_info_page(p, cluster_info, i); 2940 2941 if (nr_good_pages) { 2942 swap_map[0] = SWAP_MAP_BAD; 2943 /* 2944 * Not mark the cluster free yet, no list 2945 * operation involved 2946 */ 2947 inc_cluster_info_page(p, cluster_info, 0); 2948 p->max = maxpages; 2949 p->pages = nr_good_pages; 2950 nr_extents = setup_swap_extents(p, span); 2951 if (nr_extents < 0) 2952 return nr_extents; 2953 nr_good_pages = p->pages; 2954 } 2955 if (!nr_good_pages) { 2956 pr_warn("Empty swap-file\n"); 2957 return -EINVAL; 2958 } 2959 2960 if (!cluster_info) 2961 return nr_extents; 2962 2963 2964 /* 2965 * Reduce false cache line sharing between cluster_info and 2966 * sharing same address space. 2967 */ 2968 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 2969 j = (k + col) % SWAP_CLUSTER_COLS; 2970 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 2971 idx = i * SWAP_CLUSTER_COLS + j; 2972 if (idx >= nr_clusters) 2973 continue; 2974 if (cluster_count(&cluster_info[idx])) 2975 continue; 2976 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 2977 cluster_list_add_tail(&p->free_clusters, cluster_info, 2978 idx); 2979 } 2980 } 2981 return nr_extents; 2982 } 2983 2984 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2985 { 2986 struct swap_info_struct *p; 2987 struct filename *name; 2988 struct file *swap_file = NULL; 2989 struct address_space *mapping; 2990 struct dentry *dentry; 2991 int prio; 2992 int error; 2993 union swap_header *swap_header; 2994 int nr_extents; 2995 sector_t span; 2996 unsigned long maxpages; 2997 unsigned char *swap_map = NULL; 2998 struct swap_cluster_info *cluster_info = NULL; 2999 unsigned long *frontswap_map = NULL; 3000 struct page *page = NULL; 3001 struct inode *inode = NULL; 3002 bool inced_nr_rotate_swap = false; 3003 3004 if (swap_flags & ~SWAP_FLAGS_VALID) 3005 return -EINVAL; 3006 3007 if (!capable(CAP_SYS_ADMIN)) 3008 return -EPERM; 3009 3010 if (!swap_avail_heads) 3011 return -ENOMEM; 3012 3013 p = alloc_swap_info(); 3014 if (IS_ERR(p)) 3015 return PTR_ERR(p); 3016 3017 INIT_WORK(&p->discard_work, swap_discard_work); 3018 3019 name = getname(specialfile); 3020 if (IS_ERR(name)) { 3021 error = PTR_ERR(name); 3022 name = NULL; 3023 goto bad_swap; 3024 } 3025 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3026 if (IS_ERR(swap_file)) { 3027 error = PTR_ERR(swap_file); 3028 swap_file = NULL; 3029 goto bad_swap; 3030 } 3031 3032 p->swap_file = swap_file; 3033 mapping = swap_file->f_mapping; 3034 dentry = swap_file->f_path.dentry; 3035 inode = mapping->host; 3036 3037 error = claim_swapfile(p, inode); 3038 if (unlikely(error)) 3039 goto bad_swap; 3040 3041 inode_lock(inode); 3042 if (d_unlinked(dentry) || cant_mount(dentry)) { 3043 error = -ENOENT; 3044 goto bad_swap_unlock_inode; 3045 } 3046 if (IS_SWAPFILE(inode)) { 3047 error = -EBUSY; 3048 goto bad_swap_unlock_inode; 3049 } 3050 3051 /* 3052 * Read the swap header. 3053 */ 3054 if (!mapping->a_ops->read_folio) { 3055 error = -EINVAL; 3056 goto bad_swap_unlock_inode; 3057 } 3058 page = read_mapping_page(mapping, 0, swap_file); 3059 if (IS_ERR(page)) { 3060 error = PTR_ERR(page); 3061 goto bad_swap_unlock_inode; 3062 } 3063 swap_header = kmap(page); 3064 3065 maxpages = read_swap_header(p, swap_header, inode); 3066 if (unlikely(!maxpages)) { 3067 error = -EINVAL; 3068 goto bad_swap_unlock_inode; 3069 } 3070 3071 /* OK, set up the swap map and apply the bad block list */ 3072 swap_map = vzalloc(maxpages); 3073 if (!swap_map) { 3074 error = -ENOMEM; 3075 goto bad_swap_unlock_inode; 3076 } 3077 3078 if (p->bdev && bdev_stable_writes(p->bdev)) 3079 p->flags |= SWP_STABLE_WRITES; 3080 3081 if (p->bdev && bdev_synchronous(p->bdev)) 3082 p->flags |= SWP_SYNCHRONOUS_IO; 3083 3084 if (p->bdev && bdev_nonrot(p->bdev)) { 3085 int cpu; 3086 unsigned long ci, nr_cluster; 3087 3088 p->flags |= SWP_SOLIDSTATE; 3089 p->cluster_next_cpu = alloc_percpu(unsigned int); 3090 if (!p->cluster_next_cpu) { 3091 error = -ENOMEM; 3092 goto bad_swap_unlock_inode; 3093 } 3094 /* 3095 * select a random position to start with to help wear leveling 3096 * SSD 3097 */ 3098 for_each_possible_cpu(cpu) { 3099 per_cpu(*p->cluster_next_cpu, cpu) = 3100 get_random_u32_inclusive(1, p->highest_bit); 3101 } 3102 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3103 3104 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3105 GFP_KERNEL); 3106 if (!cluster_info) { 3107 error = -ENOMEM; 3108 goto bad_swap_unlock_inode; 3109 } 3110 3111 for (ci = 0; ci < nr_cluster; ci++) 3112 spin_lock_init(&((cluster_info + ci)->lock)); 3113 3114 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3115 if (!p->percpu_cluster) { 3116 error = -ENOMEM; 3117 goto bad_swap_unlock_inode; 3118 } 3119 for_each_possible_cpu(cpu) { 3120 struct percpu_cluster *cluster; 3121 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3122 cluster_set_null(&cluster->index); 3123 } 3124 } else { 3125 atomic_inc(&nr_rotate_swap); 3126 inced_nr_rotate_swap = true; 3127 } 3128 3129 error = swap_cgroup_swapon(p->type, maxpages); 3130 if (error) 3131 goto bad_swap_unlock_inode; 3132 3133 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3134 cluster_info, maxpages, &span); 3135 if (unlikely(nr_extents < 0)) { 3136 error = nr_extents; 3137 goto bad_swap_unlock_inode; 3138 } 3139 /* frontswap enabled? set up bit-per-page map for frontswap */ 3140 if (IS_ENABLED(CONFIG_FRONTSWAP)) 3141 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages), 3142 sizeof(long), 3143 GFP_KERNEL); 3144 3145 if ((swap_flags & SWAP_FLAG_DISCARD) && 3146 p->bdev && bdev_max_discard_sectors(p->bdev)) { 3147 /* 3148 * When discard is enabled for swap with no particular 3149 * policy flagged, we set all swap discard flags here in 3150 * order to sustain backward compatibility with older 3151 * swapon(8) releases. 3152 */ 3153 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3154 SWP_PAGE_DISCARD); 3155 3156 /* 3157 * By flagging sys_swapon, a sysadmin can tell us to 3158 * either do single-time area discards only, or to just 3159 * perform discards for released swap page-clusters. 3160 * Now it's time to adjust the p->flags accordingly. 3161 */ 3162 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3163 p->flags &= ~SWP_PAGE_DISCARD; 3164 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3165 p->flags &= ~SWP_AREA_DISCARD; 3166 3167 /* issue a swapon-time discard if it's still required */ 3168 if (p->flags & SWP_AREA_DISCARD) { 3169 int err = discard_swap(p); 3170 if (unlikely(err)) 3171 pr_err("swapon: discard_swap(%p): %d\n", 3172 p, err); 3173 } 3174 } 3175 3176 error = init_swap_address_space(p->type, maxpages); 3177 if (error) 3178 goto bad_swap_unlock_inode; 3179 3180 /* 3181 * Flush any pending IO and dirty mappings before we start using this 3182 * swap device. 3183 */ 3184 inode->i_flags |= S_SWAPFILE; 3185 error = inode_drain_writes(inode); 3186 if (error) { 3187 inode->i_flags &= ~S_SWAPFILE; 3188 goto free_swap_address_space; 3189 } 3190 3191 mutex_lock(&swapon_mutex); 3192 prio = -1; 3193 if (swap_flags & SWAP_FLAG_PREFER) 3194 prio = 3195 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3196 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 3197 3198 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 3199 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 3200 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 3201 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3202 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3203 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3204 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 3205 (frontswap_map) ? "FS" : ""); 3206 3207 mutex_unlock(&swapon_mutex); 3208 atomic_inc(&proc_poll_event); 3209 wake_up_interruptible(&proc_poll_wait); 3210 3211 error = 0; 3212 goto out; 3213 free_swap_address_space: 3214 exit_swap_address_space(p->type); 3215 bad_swap_unlock_inode: 3216 inode_unlock(inode); 3217 bad_swap: 3218 free_percpu(p->percpu_cluster); 3219 p->percpu_cluster = NULL; 3220 free_percpu(p->cluster_next_cpu); 3221 p->cluster_next_cpu = NULL; 3222 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 3223 set_blocksize(p->bdev, p->old_block_size); 3224 blkdev_put(p->bdev, p); 3225 } 3226 inode = NULL; 3227 destroy_swap_extents(p); 3228 swap_cgroup_swapoff(p->type); 3229 spin_lock(&swap_lock); 3230 p->swap_file = NULL; 3231 p->flags = 0; 3232 spin_unlock(&swap_lock); 3233 vfree(swap_map); 3234 kvfree(cluster_info); 3235 kvfree(frontswap_map); 3236 if (inced_nr_rotate_swap) 3237 atomic_dec(&nr_rotate_swap); 3238 if (swap_file) 3239 filp_close(swap_file, NULL); 3240 out: 3241 if (page && !IS_ERR(page)) { 3242 kunmap(page); 3243 put_page(page); 3244 } 3245 if (name) 3246 putname(name); 3247 if (inode) 3248 inode_unlock(inode); 3249 if (!error) 3250 enable_swap_slots_cache(); 3251 return error; 3252 } 3253 3254 void si_swapinfo(struct sysinfo *val) 3255 { 3256 unsigned int type; 3257 unsigned long nr_to_be_unused = 0; 3258 3259 spin_lock(&swap_lock); 3260 for (type = 0; type < nr_swapfiles; type++) { 3261 struct swap_info_struct *si = swap_info[type]; 3262 3263 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3264 nr_to_be_unused += READ_ONCE(si->inuse_pages); 3265 } 3266 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3267 val->totalswap = total_swap_pages + nr_to_be_unused; 3268 spin_unlock(&swap_lock); 3269 } 3270 3271 /* 3272 * Verify that a swap entry is valid and increment its swap map count. 3273 * 3274 * Returns error code in following case. 3275 * - success -> 0 3276 * - swp_entry is invalid -> EINVAL 3277 * - swp_entry is migration entry -> EINVAL 3278 * - swap-cache reference is requested but there is already one. -> EEXIST 3279 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3280 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3281 */ 3282 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3283 { 3284 struct swap_info_struct *p; 3285 struct swap_cluster_info *ci; 3286 unsigned long offset; 3287 unsigned char count; 3288 unsigned char has_cache; 3289 int err; 3290 3291 p = get_swap_device(entry); 3292 if (!p) 3293 return -EINVAL; 3294 3295 offset = swp_offset(entry); 3296 ci = lock_cluster_or_swap_info(p, offset); 3297 3298 count = p->swap_map[offset]; 3299 3300 /* 3301 * swapin_readahead() doesn't check if a swap entry is valid, so the 3302 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3303 */ 3304 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3305 err = -ENOENT; 3306 goto unlock_out; 3307 } 3308 3309 has_cache = count & SWAP_HAS_CACHE; 3310 count &= ~SWAP_HAS_CACHE; 3311 err = 0; 3312 3313 if (usage == SWAP_HAS_CACHE) { 3314 3315 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3316 if (!has_cache && count) 3317 has_cache = SWAP_HAS_CACHE; 3318 else if (has_cache) /* someone else added cache */ 3319 err = -EEXIST; 3320 else /* no users remaining */ 3321 err = -ENOENT; 3322 3323 } else if (count || has_cache) { 3324 3325 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3326 count += usage; 3327 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3328 err = -EINVAL; 3329 else if (swap_count_continued(p, offset, count)) 3330 count = COUNT_CONTINUED; 3331 else 3332 err = -ENOMEM; 3333 } else 3334 err = -ENOENT; /* unused swap entry */ 3335 3336 WRITE_ONCE(p->swap_map[offset], count | has_cache); 3337 3338 unlock_out: 3339 unlock_cluster_or_swap_info(p, ci); 3340 put_swap_device(p); 3341 return err; 3342 } 3343 3344 /* 3345 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3346 * (in which case its reference count is never incremented). 3347 */ 3348 void swap_shmem_alloc(swp_entry_t entry) 3349 { 3350 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3351 } 3352 3353 /* 3354 * Increase reference count of swap entry by 1. 3355 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3356 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3357 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3358 * might occur if a page table entry has got corrupted. 3359 */ 3360 int swap_duplicate(swp_entry_t entry) 3361 { 3362 int err = 0; 3363 3364 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3365 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3366 return err; 3367 } 3368 3369 /* 3370 * @entry: swap entry for which we allocate swap cache. 3371 * 3372 * Called when allocating swap cache for existing swap entry, 3373 * This can return error codes. Returns 0 at success. 3374 * -EEXIST means there is a swap cache. 3375 * Note: return code is different from swap_duplicate(). 3376 */ 3377 int swapcache_prepare(swp_entry_t entry) 3378 { 3379 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3380 } 3381 3382 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3383 { 3384 return swap_type_to_swap_info(swp_type(entry)); 3385 } 3386 3387 struct swap_info_struct *page_swap_info(struct page *page) 3388 { 3389 swp_entry_t entry = { .val = page_private(page) }; 3390 return swp_swap_info(entry); 3391 } 3392 3393 /* 3394 * out-of-line methods to avoid include hell. 3395 */ 3396 struct address_space *swapcache_mapping(struct folio *folio) 3397 { 3398 return page_swap_info(&folio->page)->swap_file->f_mapping; 3399 } 3400 EXPORT_SYMBOL_GPL(swapcache_mapping); 3401 3402 pgoff_t __page_file_index(struct page *page) 3403 { 3404 swp_entry_t swap = { .val = page_private(page) }; 3405 return swp_offset(swap); 3406 } 3407 EXPORT_SYMBOL_GPL(__page_file_index); 3408 3409 /* 3410 * add_swap_count_continuation - called when a swap count is duplicated 3411 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3412 * page of the original vmalloc'ed swap_map, to hold the continuation count 3413 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3414 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3415 * 3416 * These continuation pages are seldom referenced: the common paths all work 3417 * on the original swap_map, only referring to a continuation page when the 3418 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3419 * 3420 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3421 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3422 * can be called after dropping locks. 3423 */ 3424 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3425 { 3426 struct swap_info_struct *si; 3427 struct swap_cluster_info *ci; 3428 struct page *head; 3429 struct page *page; 3430 struct page *list_page; 3431 pgoff_t offset; 3432 unsigned char count; 3433 int ret = 0; 3434 3435 /* 3436 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3437 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3438 */ 3439 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3440 3441 si = get_swap_device(entry); 3442 if (!si) { 3443 /* 3444 * An acceptable race has occurred since the failing 3445 * __swap_duplicate(): the swap device may be swapoff 3446 */ 3447 goto outer; 3448 } 3449 spin_lock(&si->lock); 3450 3451 offset = swp_offset(entry); 3452 3453 ci = lock_cluster(si, offset); 3454 3455 count = swap_count(si->swap_map[offset]); 3456 3457 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3458 /* 3459 * The higher the swap count, the more likely it is that tasks 3460 * will race to add swap count continuation: we need to avoid 3461 * over-provisioning. 3462 */ 3463 goto out; 3464 } 3465 3466 if (!page) { 3467 ret = -ENOMEM; 3468 goto out; 3469 } 3470 3471 /* 3472 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 3473 * no architecture is using highmem pages for kernel page tables: so it 3474 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 3475 */ 3476 head = vmalloc_to_page(si->swap_map + offset); 3477 offset &= ~PAGE_MASK; 3478 3479 spin_lock(&si->cont_lock); 3480 /* 3481 * Page allocation does not initialize the page's lru field, 3482 * but it does always reset its private field. 3483 */ 3484 if (!page_private(head)) { 3485 BUG_ON(count & COUNT_CONTINUED); 3486 INIT_LIST_HEAD(&head->lru); 3487 set_page_private(head, SWP_CONTINUED); 3488 si->flags |= SWP_CONTINUED; 3489 } 3490 3491 list_for_each_entry(list_page, &head->lru, lru) { 3492 unsigned char *map; 3493 3494 /* 3495 * If the previous map said no continuation, but we've found 3496 * a continuation page, free our allocation and use this one. 3497 */ 3498 if (!(count & COUNT_CONTINUED)) 3499 goto out_unlock_cont; 3500 3501 map = kmap_atomic(list_page) + offset; 3502 count = *map; 3503 kunmap_atomic(map); 3504 3505 /* 3506 * If this continuation count now has some space in it, 3507 * free our allocation and use this one. 3508 */ 3509 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3510 goto out_unlock_cont; 3511 } 3512 3513 list_add_tail(&page->lru, &head->lru); 3514 page = NULL; /* now it's attached, don't free it */ 3515 out_unlock_cont: 3516 spin_unlock(&si->cont_lock); 3517 out: 3518 unlock_cluster(ci); 3519 spin_unlock(&si->lock); 3520 put_swap_device(si); 3521 outer: 3522 if (page) 3523 __free_page(page); 3524 return ret; 3525 } 3526 3527 /* 3528 * swap_count_continued - when the original swap_map count is incremented 3529 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3530 * into, carry if so, or else fail until a new continuation page is allocated; 3531 * when the original swap_map count is decremented from 0 with continuation, 3532 * borrow from the continuation and report whether it still holds more. 3533 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3534 * lock. 3535 */ 3536 static bool swap_count_continued(struct swap_info_struct *si, 3537 pgoff_t offset, unsigned char count) 3538 { 3539 struct page *head; 3540 struct page *page; 3541 unsigned char *map; 3542 bool ret; 3543 3544 head = vmalloc_to_page(si->swap_map + offset); 3545 if (page_private(head) != SWP_CONTINUED) { 3546 BUG_ON(count & COUNT_CONTINUED); 3547 return false; /* need to add count continuation */ 3548 } 3549 3550 spin_lock(&si->cont_lock); 3551 offset &= ~PAGE_MASK; 3552 page = list_next_entry(head, lru); 3553 map = kmap_atomic(page) + offset; 3554 3555 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3556 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3557 3558 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3559 /* 3560 * Think of how you add 1 to 999 3561 */ 3562 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3563 kunmap_atomic(map); 3564 page = list_next_entry(page, lru); 3565 BUG_ON(page == head); 3566 map = kmap_atomic(page) + offset; 3567 } 3568 if (*map == SWAP_CONT_MAX) { 3569 kunmap_atomic(map); 3570 page = list_next_entry(page, lru); 3571 if (page == head) { 3572 ret = false; /* add count continuation */ 3573 goto out; 3574 } 3575 map = kmap_atomic(page) + offset; 3576 init_map: *map = 0; /* we didn't zero the page */ 3577 } 3578 *map += 1; 3579 kunmap_atomic(map); 3580 while ((page = list_prev_entry(page, lru)) != head) { 3581 map = kmap_atomic(page) + offset; 3582 *map = COUNT_CONTINUED; 3583 kunmap_atomic(map); 3584 } 3585 ret = true; /* incremented */ 3586 3587 } else { /* decrementing */ 3588 /* 3589 * Think of how you subtract 1 from 1000 3590 */ 3591 BUG_ON(count != COUNT_CONTINUED); 3592 while (*map == COUNT_CONTINUED) { 3593 kunmap_atomic(map); 3594 page = list_next_entry(page, lru); 3595 BUG_ON(page == head); 3596 map = kmap_atomic(page) + offset; 3597 } 3598 BUG_ON(*map == 0); 3599 *map -= 1; 3600 if (*map == 0) 3601 count = 0; 3602 kunmap_atomic(map); 3603 while ((page = list_prev_entry(page, lru)) != head) { 3604 map = kmap_atomic(page) + offset; 3605 *map = SWAP_CONT_MAX | count; 3606 count = COUNT_CONTINUED; 3607 kunmap_atomic(map); 3608 } 3609 ret = count == COUNT_CONTINUED; 3610 } 3611 out: 3612 spin_unlock(&si->cont_lock); 3613 return ret; 3614 } 3615 3616 /* 3617 * free_swap_count_continuations - swapoff free all the continuation pages 3618 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3619 */ 3620 static void free_swap_count_continuations(struct swap_info_struct *si) 3621 { 3622 pgoff_t offset; 3623 3624 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3625 struct page *head; 3626 head = vmalloc_to_page(si->swap_map + offset); 3627 if (page_private(head)) { 3628 struct page *page, *next; 3629 3630 list_for_each_entry_safe(page, next, &head->lru, lru) { 3631 list_del(&page->lru); 3632 __free_page(page); 3633 } 3634 } 3635 } 3636 } 3637 3638 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3639 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp) 3640 { 3641 struct swap_info_struct *si, *next; 3642 int nid = folio_nid(folio); 3643 3644 if (!(gfp & __GFP_IO)) 3645 return; 3646 3647 if (!blk_cgroup_congested()) 3648 return; 3649 3650 /* 3651 * We've already scheduled a throttle, avoid taking the global swap 3652 * lock. 3653 */ 3654 if (current->throttle_disk) 3655 return; 3656 3657 spin_lock(&swap_avail_lock); 3658 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3659 avail_lists[nid]) { 3660 if (si->bdev) { 3661 blkcg_schedule_throttle(si->bdev->bd_disk, true); 3662 break; 3663 } 3664 } 3665 spin_unlock(&swap_avail_lock); 3666 } 3667 #endif 3668 3669 static int __init swapfile_init(void) 3670 { 3671 int nid; 3672 3673 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3674 GFP_KERNEL); 3675 if (!swap_avail_heads) { 3676 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3677 return -ENOMEM; 3678 } 3679 3680 for_each_node(nid) 3681 plist_head_init(&swap_avail_heads[nid]); 3682 3683 swapfile_maximum_size = arch_max_swapfile_size(); 3684 3685 #ifdef CONFIG_MIGRATION 3686 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS)) 3687 swap_migration_ad_supported = true; 3688 #endif /* CONFIG_MIGRATION */ 3689 3690 return 0; 3691 } 3692 subsys_initcall(swapfile_init); 3693