xref: /openbmc/linux/mm/swapfile.c (revision 664a722b)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37 
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
42 
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 				 unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47 
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /*
52  * Some modules use swappable objects and may try to swap them out under
53  * memory pressure (via the shrinker). Before doing so, they may wish to
54  * check to see if any swap space is available.
55  */
56 EXPORT_SYMBOL_GPL(nr_swap_pages);
57 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
58 long total_swap_pages;
59 static int least_priority;
60 
61 static const char Bad_file[] = "Bad swap file entry ";
62 static const char Unused_file[] = "Unused swap file entry ";
63 static const char Bad_offset[] = "Bad swap offset entry ";
64 static const char Unused_offset[] = "Unused swap offset entry ";
65 
66 /*
67  * all active swap_info_structs
68  * protected with swap_lock, and ordered by priority.
69  */
70 PLIST_HEAD(swap_active_head);
71 
72 /*
73  * all available (active, not full) swap_info_structs
74  * protected with swap_avail_lock, ordered by priority.
75  * This is used by get_swap_page() instead of swap_active_head
76  * because swap_active_head includes all swap_info_structs,
77  * but get_swap_page() doesn't need to look at full ones.
78  * This uses its own lock instead of swap_lock because when a
79  * swap_info_struct changes between not-full/full, it needs to
80  * add/remove itself to/from this list, but the swap_info_struct->lock
81  * is held and the locking order requires swap_lock to be taken
82  * before any swap_info_struct->lock.
83  */
84 static PLIST_HEAD(swap_avail_head);
85 static DEFINE_SPINLOCK(swap_avail_lock);
86 
87 struct swap_info_struct *swap_info[MAX_SWAPFILES];
88 
89 static DEFINE_MUTEX(swapon_mutex);
90 
91 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
92 /* Activity counter to indicate that a swapon or swapoff has occurred */
93 static atomic_t proc_poll_event = ATOMIC_INIT(0);
94 
95 static inline unsigned char swap_count(unsigned char ent)
96 {
97 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
98 }
99 
100 /* returns 1 if swap entry is freed */
101 static int
102 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
103 {
104 	swp_entry_t entry = swp_entry(si->type, offset);
105 	struct page *page;
106 	int ret = 0;
107 
108 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
109 	if (!page)
110 		return 0;
111 	/*
112 	 * This function is called from scan_swap_map() and it's called
113 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
114 	 * We have to use trylock for avoiding deadlock. This is a special
115 	 * case and you should use try_to_free_swap() with explicit lock_page()
116 	 * in usual operations.
117 	 */
118 	if (trylock_page(page)) {
119 		ret = try_to_free_swap(page);
120 		unlock_page(page);
121 	}
122 	put_page(page);
123 	return ret;
124 }
125 
126 /*
127  * swapon tell device that all the old swap contents can be discarded,
128  * to allow the swap device to optimize its wear-levelling.
129  */
130 static int discard_swap(struct swap_info_struct *si)
131 {
132 	struct swap_extent *se;
133 	sector_t start_block;
134 	sector_t nr_blocks;
135 	int err = 0;
136 
137 	/* Do not discard the swap header page! */
138 	se = &si->first_swap_extent;
139 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
140 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
141 	if (nr_blocks) {
142 		err = blkdev_issue_discard(si->bdev, start_block,
143 				nr_blocks, GFP_KERNEL, 0);
144 		if (err)
145 			return err;
146 		cond_resched();
147 	}
148 
149 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
150 		start_block = se->start_block << (PAGE_SHIFT - 9);
151 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
152 
153 		err = blkdev_issue_discard(si->bdev, start_block,
154 				nr_blocks, GFP_KERNEL, 0);
155 		if (err)
156 			break;
157 
158 		cond_resched();
159 	}
160 	return err;		/* That will often be -EOPNOTSUPP */
161 }
162 
163 /*
164  * swap allocation tell device that a cluster of swap can now be discarded,
165  * to allow the swap device to optimize its wear-levelling.
166  */
167 static void discard_swap_cluster(struct swap_info_struct *si,
168 				 pgoff_t start_page, pgoff_t nr_pages)
169 {
170 	struct swap_extent *se = si->curr_swap_extent;
171 	int found_extent = 0;
172 
173 	while (nr_pages) {
174 		if (se->start_page <= start_page &&
175 		    start_page < se->start_page + se->nr_pages) {
176 			pgoff_t offset = start_page - se->start_page;
177 			sector_t start_block = se->start_block + offset;
178 			sector_t nr_blocks = se->nr_pages - offset;
179 
180 			if (nr_blocks > nr_pages)
181 				nr_blocks = nr_pages;
182 			start_page += nr_blocks;
183 			nr_pages -= nr_blocks;
184 
185 			if (!found_extent++)
186 				si->curr_swap_extent = se;
187 
188 			start_block <<= PAGE_SHIFT - 9;
189 			nr_blocks <<= PAGE_SHIFT - 9;
190 			if (blkdev_issue_discard(si->bdev, start_block,
191 				    nr_blocks, GFP_NOIO, 0))
192 				break;
193 		}
194 
195 		se = list_next_entry(se, list);
196 	}
197 }
198 
199 #define SWAPFILE_CLUSTER	256
200 #define LATENCY_LIMIT		256
201 
202 static inline void cluster_set_flag(struct swap_cluster_info *info,
203 	unsigned int flag)
204 {
205 	info->flags = flag;
206 }
207 
208 static inline unsigned int cluster_count(struct swap_cluster_info *info)
209 {
210 	return info->data;
211 }
212 
213 static inline void cluster_set_count(struct swap_cluster_info *info,
214 				     unsigned int c)
215 {
216 	info->data = c;
217 }
218 
219 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
220 					 unsigned int c, unsigned int f)
221 {
222 	info->flags = f;
223 	info->data = c;
224 }
225 
226 static inline unsigned int cluster_next(struct swap_cluster_info *info)
227 {
228 	return info->data;
229 }
230 
231 static inline void cluster_set_next(struct swap_cluster_info *info,
232 				    unsigned int n)
233 {
234 	info->data = n;
235 }
236 
237 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
238 					 unsigned int n, unsigned int f)
239 {
240 	info->flags = f;
241 	info->data = n;
242 }
243 
244 static inline bool cluster_is_free(struct swap_cluster_info *info)
245 {
246 	return info->flags & CLUSTER_FLAG_FREE;
247 }
248 
249 static inline bool cluster_is_null(struct swap_cluster_info *info)
250 {
251 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
252 }
253 
254 static inline void cluster_set_null(struct swap_cluster_info *info)
255 {
256 	info->flags = CLUSTER_FLAG_NEXT_NULL;
257 	info->data = 0;
258 }
259 
260 static inline bool cluster_list_empty(struct swap_cluster_list *list)
261 {
262 	return cluster_is_null(&list->head);
263 }
264 
265 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
266 {
267 	return cluster_next(&list->head);
268 }
269 
270 static void cluster_list_init(struct swap_cluster_list *list)
271 {
272 	cluster_set_null(&list->head);
273 	cluster_set_null(&list->tail);
274 }
275 
276 static void cluster_list_add_tail(struct swap_cluster_list *list,
277 				  struct swap_cluster_info *ci,
278 				  unsigned int idx)
279 {
280 	if (cluster_list_empty(list)) {
281 		cluster_set_next_flag(&list->head, idx, 0);
282 		cluster_set_next_flag(&list->tail, idx, 0);
283 	} else {
284 		unsigned int tail = cluster_next(&list->tail);
285 
286 		cluster_set_next(&ci[tail], idx);
287 		cluster_set_next_flag(&list->tail, idx, 0);
288 	}
289 }
290 
291 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
292 					   struct swap_cluster_info *ci)
293 {
294 	unsigned int idx;
295 
296 	idx = cluster_next(&list->head);
297 	if (cluster_next(&list->tail) == idx) {
298 		cluster_set_null(&list->head);
299 		cluster_set_null(&list->tail);
300 	} else
301 		cluster_set_next_flag(&list->head,
302 				      cluster_next(&ci[idx]), 0);
303 
304 	return idx;
305 }
306 
307 /* Add a cluster to discard list and schedule it to do discard */
308 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
309 		unsigned int idx)
310 {
311 	/*
312 	 * If scan_swap_map() can't find a free cluster, it will check
313 	 * si->swap_map directly. To make sure the discarding cluster isn't
314 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
315 	 * will be cleared after discard
316 	 */
317 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
318 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
319 
320 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
321 
322 	schedule_work(&si->discard_work);
323 }
324 
325 /*
326  * Doing discard actually. After a cluster discard is finished, the cluster
327  * will be added to free cluster list. caller should hold si->lock.
328 */
329 static void swap_do_scheduled_discard(struct swap_info_struct *si)
330 {
331 	struct swap_cluster_info *info;
332 	unsigned int idx;
333 
334 	info = si->cluster_info;
335 
336 	while (!cluster_list_empty(&si->discard_clusters)) {
337 		idx = cluster_list_del_first(&si->discard_clusters, info);
338 		spin_unlock(&si->lock);
339 
340 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
341 				SWAPFILE_CLUSTER);
342 
343 		spin_lock(&si->lock);
344 		cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
345 		cluster_list_add_tail(&si->free_clusters, info, idx);
346 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
347 				0, SWAPFILE_CLUSTER);
348 	}
349 }
350 
351 static void swap_discard_work(struct work_struct *work)
352 {
353 	struct swap_info_struct *si;
354 
355 	si = container_of(work, struct swap_info_struct, discard_work);
356 
357 	spin_lock(&si->lock);
358 	swap_do_scheduled_discard(si);
359 	spin_unlock(&si->lock);
360 }
361 
362 /*
363  * The cluster corresponding to page_nr will be used. The cluster will be
364  * removed from free cluster list and its usage counter will be increased.
365  */
366 static void inc_cluster_info_page(struct swap_info_struct *p,
367 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
368 {
369 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
370 
371 	if (!cluster_info)
372 		return;
373 	if (cluster_is_free(&cluster_info[idx])) {
374 		VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
375 		cluster_list_del_first(&p->free_clusters, cluster_info);
376 		cluster_set_count_flag(&cluster_info[idx], 0, 0);
377 	}
378 
379 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
380 	cluster_set_count(&cluster_info[idx],
381 		cluster_count(&cluster_info[idx]) + 1);
382 }
383 
384 /*
385  * The cluster corresponding to page_nr decreases one usage. If the usage
386  * counter becomes 0, which means no page in the cluster is in using, we can
387  * optionally discard the cluster and add it to free cluster list.
388  */
389 static void dec_cluster_info_page(struct swap_info_struct *p,
390 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
391 {
392 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
393 
394 	if (!cluster_info)
395 		return;
396 
397 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
398 	cluster_set_count(&cluster_info[idx],
399 		cluster_count(&cluster_info[idx]) - 1);
400 
401 	if (cluster_count(&cluster_info[idx]) == 0) {
402 		/*
403 		 * If the swap is discardable, prepare discard the cluster
404 		 * instead of free it immediately. The cluster will be freed
405 		 * after discard.
406 		 */
407 		if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
408 				 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
409 			swap_cluster_schedule_discard(p, idx);
410 			return;
411 		}
412 
413 		cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
414 		cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
415 	}
416 }
417 
418 /*
419  * It's possible scan_swap_map() uses a free cluster in the middle of free
420  * cluster list. Avoiding such abuse to avoid list corruption.
421  */
422 static bool
423 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
424 	unsigned long offset)
425 {
426 	struct percpu_cluster *percpu_cluster;
427 	bool conflict;
428 
429 	offset /= SWAPFILE_CLUSTER;
430 	conflict = !cluster_list_empty(&si->free_clusters) &&
431 		offset != cluster_list_first(&si->free_clusters) &&
432 		cluster_is_free(&si->cluster_info[offset]);
433 
434 	if (!conflict)
435 		return false;
436 
437 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
438 	cluster_set_null(&percpu_cluster->index);
439 	return true;
440 }
441 
442 /*
443  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
444  * might involve allocating a new cluster for current CPU too.
445  */
446 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
447 	unsigned long *offset, unsigned long *scan_base)
448 {
449 	struct percpu_cluster *cluster;
450 	bool found_free;
451 	unsigned long tmp;
452 
453 new_cluster:
454 	cluster = this_cpu_ptr(si->percpu_cluster);
455 	if (cluster_is_null(&cluster->index)) {
456 		if (!cluster_list_empty(&si->free_clusters)) {
457 			cluster->index = si->free_clusters.head;
458 			cluster->next = cluster_next(&cluster->index) *
459 					SWAPFILE_CLUSTER;
460 		} else if (!cluster_list_empty(&si->discard_clusters)) {
461 			/*
462 			 * we don't have free cluster but have some clusters in
463 			 * discarding, do discard now and reclaim them
464 			 */
465 			swap_do_scheduled_discard(si);
466 			*scan_base = *offset = si->cluster_next;
467 			goto new_cluster;
468 		} else
469 			return;
470 	}
471 
472 	found_free = false;
473 
474 	/*
475 	 * Other CPUs can use our cluster if they can't find a free cluster,
476 	 * check if there is still free entry in the cluster
477 	 */
478 	tmp = cluster->next;
479 	while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
480 	       SWAPFILE_CLUSTER) {
481 		if (!si->swap_map[tmp]) {
482 			found_free = true;
483 			break;
484 		}
485 		tmp++;
486 	}
487 	if (!found_free) {
488 		cluster_set_null(&cluster->index);
489 		goto new_cluster;
490 	}
491 	cluster->next = tmp + 1;
492 	*offset = tmp;
493 	*scan_base = tmp;
494 }
495 
496 static unsigned long scan_swap_map(struct swap_info_struct *si,
497 				   unsigned char usage)
498 {
499 	unsigned long offset;
500 	unsigned long scan_base;
501 	unsigned long last_in_cluster = 0;
502 	int latency_ration = LATENCY_LIMIT;
503 
504 	/*
505 	 * We try to cluster swap pages by allocating them sequentially
506 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
507 	 * way, however, we resort to first-free allocation, starting
508 	 * a new cluster.  This prevents us from scattering swap pages
509 	 * all over the entire swap partition, so that we reduce
510 	 * overall disk seek times between swap pages.  -- sct
511 	 * But we do now try to find an empty cluster.  -Andrea
512 	 * And we let swap pages go all over an SSD partition.  Hugh
513 	 */
514 
515 	si->flags += SWP_SCANNING;
516 	scan_base = offset = si->cluster_next;
517 
518 	/* SSD algorithm */
519 	if (si->cluster_info) {
520 		scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
521 		goto checks;
522 	}
523 
524 	if (unlikely(!si->cluster_nr--)) {
525 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
526 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
527 			goto checks;
528 		}
529 
530 		spin_unlock(&si->lock);
531 
532 		/*
533 		 * If seek is expensive, start searching for new cluster from
534 		 * start of partition, to minimize the span of allocated swap.
535 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
536 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
537 		 */
538 		scan_base = offset = si->lowest_bit;
539 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
540 
541 		/* Locate the first empty (unaligned) cluster */
542 		for (; last_in_cluster <= si->highest_bit; offset++) {
543 			if (si->swap_map[offset])
544 				last_in_cluster = offset + SWAPFILE_CLUSTER;
545 			else if (offset == last_in_cluster) {
546 				spin_lock(&si->lock);
547 				offset -= SWAPFILE_CLUSTER - 1;
548 				si->cluster_next = offset;
549 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
550 				goto checks;
551 			}
552 			if (unlikely(--latency_ration < 0)) {
553 				cond_resched();
554 				latency_ration = LATENCY_LIMIT;
555 			}
556 		}
557 
558 		offset = scan_base;
559 		spin_lock(&si->lock);
560 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
561 	}
562 
563 checks:
564 	if (si->cluster_info) {
565 		while (scan_swap_map_ssd_cluster_conflict(si, offset))
566 			scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
567 	}
568 	if (!(si->flags & SWP_WRITEOK))
569 		goto no_page;
570 	if (!si->highest_bit)
571 		goto no_page;
572 	if (offset > si->highest_bit)
573 		scan_base = offset = si->lowest_bit;
574 
575 	/* reuse swap entry of cache-only swap if not busy. */
576 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
577 		int swap_was_freed;
578 		spin_unlock(&si->lock);
579 		swap_was_freed = __try_to_reclaim_swap(si, offset);
580 		spin_lock(&si->lock);
581 		/* entry was freed successfully, try to use this again */
582 		if (swap_was_freed)
583 			goto checks;
584 		goto scan; /* check next one */
585 	}
586 
587 	if (si->swap_map[offset])
588 		goto scan;
589 
590 	if (offset == si->lowest_bit)
591 		si->lowest_bit++;
592 	if (offset == si->highest_bit)
593 		si->highest_bit--;
594 	si->inuse_pages++;
595 	if (si->inuse_pages == si->pages) {
596 		si->lowest_bit = si->max;
597 		si->highest_bit = 0;
598 		spin_lock(&swap_avail_lock);
599 		plist_del(&si->avail_list, &swap_avail_head);
600 		spin_unlock(&swap_avail_lock);
601 	}
602 	si->swap_map[offset] = usage;
603 	inc_cluster_info_page(si, si->cluster_info, offset);
604 	si->cluster_next = offset + 1;
605 	si->flags -= SWP_SCANNING;
606 
607 	return offset;
608 
609 scan:
610 	spin_unlock(&si->lock);
611 	while (++offset <= si->highest_bit) {
612 		if (!si->swap_map[offset]) {
613 			spin_lock(&si->lock);
614 			goto checks;
615 		}
616 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
617 			spin_lock(&si->lock);
618 			goto checks;
619 		}
620 		if (unlikely(--latency_ration < 0)) {
621 			cond_resched();
622 			latency_ration = LATENCY_LIMIT;
623 		}
624 	}
625 	offset = si->lowest_bit;
626 	while (offset < scan_base) {
627 		if (!si->swap_map[offset]) {
628 			spin_lock(&si->lock);
629 			goto checks;
630 		}
631 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
632 			spin_lock(&si->lock);
633 			goto checks;
634 		}
635 		if (unlikely(--latency_ration < 0)) {
636 			cond_resched();
637 			latency_ration = LATENCY_LIMIT;
638 		}
639 		offset++;
640 	}
641 	spin_lock(&si->lock);
642 
643 no_page:
644 	si->flags -= SWP_SCANNING;
645 	return 0;
646 }
647 
648 swp_entry_t get_swap_page(void)
649 {
650 	struct swap_info_struct *si, *next;
651 	pgoff_t offset;
652 
653 	if (atomic_long_read(&nr_swap_pages) <= 0)
654 		goto noswap;
655 	atomic_long_dec(&nr_swap_pages);
656 
657 	spin_lock(&swap_avail_lock);
658 
659 start_over:
660 	plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
661 		/* requeue si to after same-priority siblings */
662 		plist_requeue(&si->avail_list, &swap_avail_head);
663 		spin_unlock(&swap_avail_lock);
664 		spin_lock(&si->lock);
665 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
666 			spin_lock(&swap_avail_lock);
667 			if (plist_node_empty(&si->avail_list)) {
668 				spin_unlock(&si->lock);
669 				goto nextsi;
670 			}
671 			WARN(!si->highest_bit,
672 			     "swap_info %d in list but !highest_bit\n",
673 			     si->type);
674 			WARN(!(si->flags & SWP_WRITEOK),
675 			     "swap_info %d in list but !SWP_WRITEOK\n",
676 			     si->type);
677 			plist_del(&si->avail_list, &swap_avail_head);
678 			spin_unlock(&si->lock);
679 			goto nextsi;
680 		}
681 
682 		/* This is called for allocating swap entry for cache */
683 		offset = scan_swap_map(si, SWAP_HAS_CACHE);
684 		spin_unlock(&si->lock);
685 		if (offset)
686 			return swp_entry(si->type, offset);
687 		pr_debug("scan_swap_map of si %d failed to find offset\n",
688 		       si->type);
689 		spin_lock(&swap_avail_lock);
690 nextsi:
691 		/*
692 		 * if we got here, it's likely that si was almost full before,
693 		 * and since scan_swap_map() can drop the si->lock, multiple
694 		 * callers probably all tried to get a page from the same si
695 		 * and it filled up before we could get one; or, the si filled
696 		 * up between us dropping swap_avail_lock and taking si->lock.
697 		 * Since we dropped the swap_avail_lock, the swap_avail_head
698 		 * list may have been modified; so if next is still in the
699 		 * swap_avail_head list then try it, otherwise start over.
700 		 */
701 		if (plist_node_empty(&next->avail_list))
702 			goto start_over;
703 	}
704 
705 	spin_unlock(&swap_avail_lock);
706 
707 	atomic_long_inc(&nr_swap_pages);
708 noswap:
709 	return (swp_entry_t) {0};
710 }
711 
712 /* The only caller of this function is now suspend routine */
713 swp_entry_t get_swap_page_of_type(int type)
714 {
715 	struct swap_info_struct *si;
716 	pgoff_t offset;
717 
718 	si = swap_info[type];
719 	spin_lock(&si->lock);
720 	if (si && (si->flags & SWP_WRITEOK)) {
721 		atomic_long_dec(&nr_swap_pages);
722 		/* This is called for allocating swap entry, not cache */
723 		offset = scan_swap_map(si, 1);
724 		if (offset) {
725 			spin_unlock(&si->lock);
726 			return swp_entry(type, offset);
727 		}
728 		atomic_long_inc(&nr_swap_pages);
729 	}
730 	spin_unlock(&si->lock);
731 	return (swp_entry_t) {0};
732 }
733 
734 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
735 {
736 	struct swap_info_struct *p;
737 	unsigned long offset, type;
738 
739 	if (!entry.val)
740 		goto out;
741 	type = swp_type(entry);
742 	if (type >= nr_swapfiles)
743 		goto bad_nofile;
744 	p = swap_info[type];
745 	if (!(p->flags & SWP_USED))
746 		goto bad_device;
747 	offset = swp_offset(entry);
748 	if (offset >= p->max)
749 		goto bad_offset;
750 	if (!p->swap_map[offset])
751 		goto bad_free;
752 	spin_lock(&p->lock);
753 	return p;
754 
755 bad_free:
756 	pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
757 	goto out;
758 bad_offset:
759 	pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
760 	goto out;
761 bad_device:
762 	pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
763 	goto out;
764 bad_nofile:
765 	pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
766 out:
767 	return NULL;
768 }
769 
770 static unsigned char swap_entry_free(struct swap_info_struct *p,
771 				     swp_entry_t entry, unsigned char usage)
772 {
773 	unsigned long offset = swp_offset(entry);
774 	unsigned char count;
775 	unsigned char has_cache;
776 
777 	count = p->swap_map[offset];
778 	has_cache = count & SWAP_HAS_CACHE;
779 	count &= ~SWAP_HAS_CACHE;
780 
781 	if (usage == SWAP_HAS_CACHE) {
782 		VM_BUG_ON(!has_cache);
783 		has_cache = 0;
784 	} else if (count == SWAP_MAP_SHMEM) {
785 		/*
786 		 * Or we could insist on shmem.c using a special
787 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
788 		 */
789 		count = 0;
790 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
791 		if (count == COUNT_CONTINUED) {
792 			if (swap_count_continued(p, offset, count))
793 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
794 			else
795 				count = SWAP_MAP_MAX;
796 		} else
797 			count--;
798 	}
799 
800 	usage = count | has_cache;
801 	p->swap_map[offset] = usage;
802 
803 	/* free if no reference */
804 	if (!usage) {
805 		mem_cgroup_uncharge_swap(entry);
806 		dec_cluster_info_page(p, p->cluster_info, offset);
807 		if (offset < p->lowest_bit)
808 			p->lowest_bit = offset;
809 		if (offset > p->highest_bit) {
810 			bool was_full = !p->highest_bit;
811 			p->highest_bit = offset;
812 			if (was_full && (p->flags & SWP_WRITEOK)) {
813 				spin_lock(&swap_avail_lock);
814 				WARN_ON(!plist_node_empty(&p->avail_list));
815 				if (plist_node_empty(&p->avail_list))
816 					plist_add(&p->avail_list,
817 						  &swap_avail_head);
818 				spin_unlock(&swap_avail_lock);
819 			}
820 		}
821 		atomic_long_inc(&nr_swap_pages);
822 		p->inuse_pages--;
823 		frontswap_invalidate_page(p->type, offset);
824 		if (p->flags & SWP_BLKDEV) {
825 			struct gendisk *disk = p->bdev->bd_disk;
826 			if (disk->fops->swap_slot_free_notify)
827 				disk->fops->swap_slot_free_notify(p->bdev,
828 								  offset);
829 		}
830 	}
831 
832 	return usage;
833 }
834 
835 /*
836  * Caller has made sure that the swap device corresponding to entry
837  * is still around or has not been recycled.
838  */
839 void swap_free(swp_entry_t entry)
840 {
841 	struct swap_info_struct *p;
842 
843 	p = swap_info_get(entry);
844 	if (p) {
845 		swap_entry_free(p, entry, 1);
846 		spin_unlock(&p->lock);
847 	}
848 }
849 
850 /*
851  * Called after dropping swapcache to decrease refcnt to swap entries.
852  */
853 void swapcache_free(swp_entry_t entry)
854 {
855 	struct swap_info_struct *p;
856 
857 	p = swap_info_get(entry);
858 	if (p) {
859 		swap_entry_free(p, entry, SWAP_HAS_CACHE);
860 		spin_unlock(&p->lock);
861 	}
862 }
863 
864 /*
865  * How many references to page are currently swapped out?
866  * This does not give an exact answer when swap count is continued,
867  * but does include the high COUNT_CONTINUED flag to allow for that.
868  */
869 int page_swapcount(struct page *page)
870 {
871 	int count = 0;
872 	struct swap_info_struct *p;
873 	swp_entry_t entry;
874 
875 	entry.val = page_private(page);
876 	p = swap_info_get(entry);
877 	if (p) {
878 		count = swap_count(p->swap_map[swp_offset(entry)]);
879 		spin_unlock(&p->lock);
880 	}
881 	return count;
882 }
883 
884 /*
885  * How many references to @entry are currently swapped out?
886  * This considers COUNT_CONTINUED so it returns exact answer.
887  */
888 int swp_swapcount(swp_entry_t entry)
889 {
890 	int count, tmp_count, n;
891 	struct swap_info_struct *p;
892 	struct page *page;
893 	pgoff_t offset;
894 	unsigned char *map;
895 
896 	p = swap_info_get(entry);
897 	if (!p)
898 		return 0;
899 
900 	count = swap_count(p->swap_map[swp_offset(entry)]);
901 	if (!(count & COUNT_CONTINUED))
902 		goto out;
903 
904 	count &= ~COUNT_CONTINUED;
905 	n = SWAP_MAP_MAX + 1;
906 
907 	offset = swp_offset(entry);
908 	page = vmalloc_to_page(p->swap_map + offset);
909 	offset &= ~PAGE_MASK;
910 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
911 
912 	do {
913 		page = list_next_entry(page, lru);
914 		map = kmap_atomic(page);
915 		tmp_count = map[offset];
916 		kunmap_atomic(map);
917 
918 		count += (tmp_count & ~COUNT_CONTINUED) * n;
919 		n *= (SWAP_CONT_MAX + 1);
920 	} while (tmp_count & COUNT_CONTINUED);
921 out:
922 	spin_unlock(&p->lock);
923 	return count;
924 }
925 
926 /*
927  * We can write to an anon page without COW if there are no other references
928  * to it.  And as a side-effect, free up its swap: because the old content
929  * on disk will never be read, and seeking back there to write new content
930  * later would only waste time away from clustering.
931  *
932  * NOTE: total_mapcount should not be relied upon by the caller if
933  * reuse_swap_page() returns false, but it may be always overwritten
934  * (see the other implementation for CONFIG_SWAP=n).
935  */
936 bool reuse_swap_page(struct page *page, int *total_mapcount)
937 {
938 	int count;
939 
940 	VM_BUG_ON_PAGE(!PageLocked(page), page);
941 	if (unlikely(PageKsm(page)))
942 		return false;
943 	count = page_trans_huge_mapcount(page, total_mapcount);
944 	if (count <= 1 && PageSwapCache(page)) {
945 		count += page_swapcount(page);
946 		if (count != 1)
947 			goto out;
948 		if (!PageWriteback(page)) {
949 			delete_from_swap_cache(page);
950 			SetPageDirty(page);
951 		} else {
952 			swp_entry_t entry;
953 			struct swap_info_struct *p;
954 
955 			entry.val = page_private(page);
956 			p = swap_info_get(entry);
957 			if (p->flags & SWP_STABLE_WRITES) {
958 				spin_unlock(&p->lock);
959 				return false;
960 			}
961 			spin_unlock(&p->lock);
962 		}
963 	}
964 out:
965 	return count <= 1;
966 }
967 
968 /*
969  * If swap is getting full, or if there are no more mappings of this page,
970  * then try_to_free_swap is called to free its swap space.
971  */
972 int try_to_free_swap(struct page *page)
973 {
974 	VM_BUG_ON_PAGE(!PageLocked(page), page);
975 
976 	if (!PageSwapCache(page))
977 		return 0;
978 	if (PageWriteback(page))
979 		return 0;
980 	if (page_swapcount(page))
981 		return 0;
982 
983 	/*
984 	 * Once hibernation has begun to create its image of memory,
985 	 * there's a danger that one of the calls to try_to_free_swap()
986 	 * - most probably a call from __try_to_reclaim_swap() while
987 	 * hibernation is allocating its own swap pages for the image,
988 	 * but conceivably even a call from memory reclaim - will free
989 	 * the swap from a page which has already been recorded in the
990 	 * image as a clean swapcache page, and then reuse its swap for
991 	 * another page of the image.  On waking from hibernation, the
992 	 * original page might be freed under memory pressure, then
993 	 * later read back in from swap, now with the wrong data.
994 	 *
995 	 * Hibernation suspends storage while it is writing the image
996 	 * to disk so check that here.
997 	 */
998 	if (pm_suspended_storage())
999 		return 0;
1000 
1001 	delete_from_swap_cache(page);
1002 	SetPageDirty(page);
1003 	return 1;
1004 }
1005 
1006 /*
1007  * Free the swap entry like above, but also try to
1008  * free the page cache entry if it is the last user.
1009  */
1010 int free_swap_and_cache(swp_entry_t entry)
1011 {
1012 	struct swap_info_struct *p;
1013 	struct page *page = NULL;
1014 
1015 	if (non_swap_entry(entry))
1016 		return 1;
1017 
1018 	p = swap_info_get(entry);
1019 	if (p) {
1020 		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
1021 			page = find_get_page(swap_address_space(entry),
1022 					     swp_offset(entry));
1023 			if (page && !trylock_page(page)) {
1024 				put_page(page);
1025 				page = NULL;
1026 			}
1027 		}
1028 		spin_unlock(&p->lock);
1029 	}
1030 	if (page) {
1031 		/*
1032 		 * Not mapped elsewhere, or swap space full? Free it!
1033 		 * Also recheck PageSwapCache now page is locked (above).
1034 		 */
1035 		if (PageSwapCache(page) && !PageWriteback(page) &&
1036 		    (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1037 			delete_from_swap_cache(page);
1038 			SetPageDirty(page);
1039 		}
1040 		unlock_page(page);
1041 		put_page(page);
1042 	}
1043 	return p != NULL;
1044 }
1045 
1046 #ifdef CONFIG_HIBERNATION
1047 /*
1048  * Find the swap type that corresponds to given device (if any).
1049  *
1050  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1051  * from 0, in which the swap header is expected to be located.
1052  *
1053  * This is needed for the suspend to disk (aka swsusp).
1054  */
1055 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1056 {
1057 	struct block_device *bdev = NULL;
1058 	int type;
1059 
1060 	if (device)
1061 		bdev = bdget(device);
1062 
1063 	spin_lock(&swap_lock);
1064 	for (type = 0; type < nr_swapfiles; type++) {
1065 		struct swap_info_struct *sis = swap_info[type];
1066 
1067 		if (!(sis->flags & SWP_WRITEOK))
1068 			continue;
1069 
1070 		if (!bdev) {
1071 			if (bdev_p)
1072 				*bdev_p = bdgrab(sis->bdev);
1073 
1074 			spin_unlock(&swap_lock);
1075 			return type;
1076 		}
1077 		if (bdev == sis->bdev) {
1078 			struct swap_extent *se = &sis->first_swap_extent;
1079 
1080 			if (se->start_block == offset) {
1081 				if (bdev_p)
1082 					*bdev_p = bdgrab(sis->bdev);
1083 
1084 				spin_unlock(&swap_lock);
1085 				bdput(bdev);
1086 				return type;
1087 			}
1088 		}
1089 	}
1090 	spin_unlock(&swap_lock);
1091 	if (bdev)
1092 		bdput(bdev);
1093 
1094 	return -ENODEV;
1095 }
1096 
1097 /*
1098  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1099  * corresponding to given index in swap_info (swap type).
1100  */
1101 sector_t swapdev_block(int type, pgoff_t offset)
1102 {
1103 	struct block_device *bdev;
1104 
1105 	if ((unsigned int)type >= nr_swapfiles)
1106 		return 0;
1107 	if (!(swap_info[type]->flags & SWP_WRITEOK))
1108 		return 0;
1109 	return map_swap_entry(swp_entry(type, offset), &bdev);
1110 }
1111 
1112 /*
1113  * Return either the total number of swap pages of given type, or the number
1114  * of free pages of that type (depending on @free)
1115  *
1116  * This is needed for software suspend
1117  */
1118 unsigned int count_swap_pages(int type, int free)
1119 {
1120 	unsigned int n = 0;
1121 
1122 	spin_lock(&swap_lock);
1123 	if ((unsigned int)type < nr_swapfiles) {
1124 		struct swap_info_struct *sis = swap_info[type];
1125 
1126 		spin_lock(&sis->lock);
1127 		if (sis->flags & SWP_WRITEOK) {
1128 			n = sis->pages;
1129 			if (free)
1130 				n -= sis->inuse_pages;
1131 		}
1132 		spin_unlock(&sis->lock);
1133 	}
1134 	spin_unlock(&swap_lock);
1135 	return n;
1136 }
1137 #endif /* CONFIG_HIBERNATION */
1138 
1139 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1140 {
1141 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1142 }
1143 
1144 /*
1145  * No need to decide whether this PTE shares the swap entry with others,
1146  * just let do_wp_page work it out if a write is requested later - to
1147  * force COW, vm_page_prot omits write permission from any private vma.
1148  */
1149 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1150 		unsigned long addr, swp_entry_t entry, struct page *page)
1151 {
1152 	struct page *swapcache;
1153 	struct mem_cgroup *memcg;
1154 	spinlock_t *ptl;
1155 	pte_t *pte;
1156 	int ret = 1;
1157 
1158 	swapcache = page;
1159 	page = ksm_might_need_to_copy(page, vma, addr);
1160 	if (unlikely(!page))
1161 		return -ENOMEM;
1162 
1163 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1164 				&memcg, false)) {
1165 		ret = -ENOMEM;
1166 		goto out_nolock;
1167 	}
1168 
1169 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1170 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1171 		mem_cgroup_cancel_charge(page, memcg, false);
1172 		ret = 0;
1173 		goto out;
1174 	}
1175 
1176 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1177 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1178 	get_page(page);
1179 	set_pte_at(vma->vm_mm, addr, pte,
1180 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1181 	if (page == swapcache) {
1182 		page_add_anon_rmap(page, vma, addr, false);
1183 		mem_cgroup_commit_charge(page, memcg, true, false);
1184 	} else { /* ksm created a completely new copy */
1185 		page_add_new_anon_rmap(page, vma, addr, false);
1186 		mem_cgroup_commit_charge(page, memcg, false, false);
1187 		lru_cache_add_active_or_unevictable(page, vma);
1188 	}
1189 	swap_free(entry);
1190 	/*
1191 	 * Move the page to the active list so it is not
1192 	 * immediately swapped out again after swapon.
1193 	 */
1194 	activate_page(page);
1195 out:
1196 	pte_unmap_unlock(pte, ptl);
1197 out_nolock:
1198 	if (page != swapcache) {
1199 		unlock_page(page);
1200 		put_page(page);
1201 	}
1202 	return ret;
1203 }
1204 
1205 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1206 				unsigned long addr, unsigned long end,
1207 				swp_entry_t entry, struct page *page)
1208 {
1209 	pte_t swp_pte = swp_entry_to_pte(entry);
1210 	pte_t *pte;
1211 	int ret = 0;
1212 
1213 	/*
1214 	 * We don't actually need pte lock while scanning for swp_pte: since
1215 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1216 	 * page table while we're scanning; though it could get zapped, and on
1217 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1218 	 * of unmatched parts which look like swp_pte, so unuse_pte must
1219 	 * recheck under pte lock.  Scanning without pte lock lets it be
1220 	 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1221 	 */
1222 	pte = pte_offset_map(pmd, addr);
1223 	do {
1224 		/*
1225 		 * swapoff spends a _lot_ of time in this loop!
1226 		 * Test inline before going to call unuse_pte.
1227 		 */
1228 		if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1229 			pte_unmap(pte);
1230 			ret = unuse_pte(vma, pmd, addr, entry, page);
1231 			if (ret)
1232 				goto out;
1233 			pte = pte_offset_map(pmd, addr);
1234 		}
1235 	} while (pte++, addr += PAGE_SIZE, addr != end);
1236 	pte_unmap(pte - 1);
1237 out:
1238 	return ret;
1239 }
1240 
1241 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1242 				unsigned long addr, unsigned long end,
1243 				swp_entry_t entry, struct page *page)
1244 {
1245 	pmd_t *pmd;
1246 	unsigned long next;
1247 	int ret;
1248 
1249 	pmd = pmd_offset(pud, addr);
1250 	do {
1251 		cond_resched();
1252 		next = pmd_addr_end(addr, end);
1253 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1254 			continue;
1255 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1256 		if (ret)
1257 			return ret;
1258 	} while (pmd++, addr = next, addr != end);
1259 	return 0;
1260 }
1261 
1262 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1263 				unsigned long addr, unsigned long end,
1264 				swp_entry_t entry, struct page *page)
1265 {
1266 	pud_t *pud;
1267 	unsigned long next;
1268 	int ret;
1269 
1270 	pud = pud_offset(pgd, addr);
1271 	do {
1272 		next = pud_addr_end(addr, end);
1273 		if (pud_none_or_clear_bad(pud))
1274 			continue;
1275 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1276 		if (ret)
1277 			return ret;
1278 	} while (pud++, addr = next, addr != end);
1279 	return 0;
1280 }
1281 
1282 static int unuse_vma(struct vm_area_struct *vma,
1283 				swp_entry_t entry, struct page *page)
1284 {
1285 	pgd_t *pgd;
1286 	unsigned long addr, end, next;
1287 	int ret;
1288 
1289 	if (page_anon_vma(page)) {
1290 		addr = page_address_in_vma(page, vma);
1291 		if (addr == -EFAULT)
1292 			return 0;
1293 		else
1294 			end = addr + PAGE_SIZE;
1295 	} else {
1296 		addr = vma->vm_start;
1297 		end = vma->vm_end;
1298 	}
1299 
1300 	pgd = pgd_offset(vma->vm_mm, addr);
1301 	do {
1302 		next = pgd_addr_end(addr, end);
1303 		if (pgd_none_or_clear_bad(pgd))
1304 			continue;
1305 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1306 		if (ret)
1307 			return ret;
1308 	} while (pgd++, addr = next, addr != end);
1309 	return 0;
1310 }
1311 
1312 static int unuse_mm(struct mm_struct *mm,
1313 				swp_entry_t entry, struct page *page)
1314 {
1315 	struct vm_area_struct *vma;
1316 	int ret = 0;
1317 
1318 	if (!down_read_trylock(&mm->mmap_sem)) {
1319 		/*
1320 		 * Activate page so shrink_inactive_list is unlikely to unmap
1321 		 * its ptes while lock is dropped, so swapoff can make progress.
1322 		 */
1323 		activate_page(page);
1324 		unlock_page(page);
1325 		down_read(&mm->mmap_sem);
1326 		lock_page(page);
1327 	}
1328 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1329 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1330 			break;
1331 		cond_resched();
1332 	}
1333 	up_read(&mm->mmap_sem);
1334 	return (ret < 0)? ret: 0;
1335 }
1336 
1337 /*
1338  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1339  * from current position to next entry still in use.
1340  * Recycle to start on reaching the end, returning 0 when empty.
1341  */
1342 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1343 					unsigned int prev, bool frontswap)
1344 {
1345 	unsigned int max = si->max;
1346 	unsigned int i = prev;
1347 	unsigned char count;
1348 
1349 	/*
1350 	 * No need for swap_lock here: we're just looking
1351 	 * for whether an entry is in use, not modifying it; false
1352 	 * hits are okay, and sys_swapoff() has already prevented new
1353 	 * allocations from this area (while holding swap_lock).
1354 	 */
1355 	for (;;) {
1356 		if (++i >= max) {
1357 			if (!prev) {
1358 				i = 0;
1359 				break;
1360 			}
1361 			/*
1362 			 * No entries in use at top of swap_map,
1363 			 * loop back to start and recheck there.
1364 			 */
1365 			max = prev + 1;
1366 			prev = 0;
1367 			i = 1;
1368 		}
1369 		count = READ_ONCE(si->swap_map[i]);
1370 		if (count && swap_count(count) != SWAP_MAP_BAD)
1371 			if (!frontswap || frontswap_test(si, i))
1372 				break;
1373 		if ((i % LATENCY_LIMIT) == 0)
1374 			cond_resched();
1375 	}
1376 	return i;
1377 }
1378 
1379 /*
1380  * We completely avoid races by reading each swap page in advance,
1381  * and then search for the process using it.  All the necessary
1382  * page table adjustments can then be made atomically.
1383  *
1384  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1385  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1386  */
1387 int try_to_unuse(unsigned int type, bool frontswap,
1388 		 unsigned long pages_to_unuse)
1389 {
1390 	struct swap_info_struct *si = swap_info[type];
1391 	struct mm_struct *start_mm;
1392 	volatile unsigned char *swap_map; /* swap_map is accessed without
1393 					   * locking. Mark it as volatile
1394 					   * to prevent compiler doing
1395 					   * something odd.
1396 					   */
1397 	unsigned char swcount;
1398 	struct page *page;
1399 	swp_entry_t entry;
1400 	unsigned int i = 0;
1401 	int retval = 0;
1402 
1403 	/*
1404 	 * When searching mms for an entry, a good strategy is to
1405 	 * start at the first mm we freed the previous entry from
1406 	 * (though actually we don't notice whether we or coincidence
1407 	 * freed the entry).  Initialize this start_mm with a hold.
1408 	 *
1409 	 * A simpler strategy would be to start at the last mm we
1410 	 * freed the previous entry from; but that would take less
1411 	 * advantage of mmlist ordering, which clusters forked mms
1412 	 * together, child after parent.  If we race with dup_mmap(), we
1413 	 * prefer to resolve parent before child, lest we miss entries
1414 	 * duplicated after we scanned child: using last mm would invert
1415 	 * that.
1416 	 */
1417 	start_mm = &init_mm;
1418 	atomic_inc(&init_mm.mm_users);
1419 
1420 	/*
1421 	 * Keep on scanning until all entries have gone.  Usually,
1422 	 * one pass through swap_map is enough, but not necessarily:
1423 	 * there are races when an instance of an entry might be missed.
1424 	 */
1425 	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1426 		if (signal_pending(current)) {
1427 			retval = -EINTR;
1428 			break;
1429 		}
1430 
1431 		/*
1432 		 * Get a page for the entry, using the existing swap
1433 		 * cache page if there is one.  Otherwise, get a clean
1434 		 * page and read the swap into it.
1435 		 */
1436 		swap_map = &si->swap_map[i];
1437 		entry = swp_entry(type, i);
1438 		page = read_swap_cache_async(entry,
1439 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1440 		if (!page) {
1441 			/*
1442 			 * Either swap_duplicate() failed because entry
1443 			 * has been freed independently, and will not be
1444 			 * reused since sys_swapoff() already disabled
1445 			 * allocation from here, or alloc_page() failed.
1446 			 */
1447 			swcount = *swap_map;
1448 			/*
1449 			 * We don't hold lock here, so the swap entry could be
1450 			 * SWAP_MAP_BAD (when the cluster is discarding).
1451 			 * Instead of fail out, We can just skip the swap
1452 			 * entry because swapoff will wait for discarding
1453 			 * finish anyway.
1454 			 */
1455 			if (!swcount || swcount == SWAP_MAP_BAD)
1456 				continue;
1457 			retval = -ENOMEM;
1458 			break;
1459 		}
1460 
1461 		/*
1462 		 * Don't hold on to start_mm if it looks like exiting.
1463 		 */
1464 		if (atomic_read(&start_mm->mm_users) == 1) {
1465 			mmput(start_mm);
1466 			start_mm = &init_mm;
1467 			atomic_inc(&init_mm.mm_users);
1468 		}
1469 
1470 		/*
1471 		 * Wait for and lock page.  When do_swap_page races with
1472 		 * try_to_unuse, do_swap_page can handle the fault much
1473 		 * faster than try_to_unuse can locate the entry.  This
1474 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1475 		 * defer to do_swap_page in such a case - in some tests,
1476 		 * do_swap_page and try_to_unuse repeatedly compete.
1477 		 */
1478 		wait_on_page_locked(page);
1479 		wait_on_page_writeback(page);
1480 		lock_page(page);
1481 		wait_on_page_writeback(page);
1482 
1483 		/*
1484 		 * Remove all references to entry.
1485 		 */
1486 		swcount = *swap_map;
1487 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1488 			retval = shmem_unuse(entry, page);
1489 			/* page has already been unlocked and released */
1490 			if (retval < 0)
1491 				break;
1492 			continue;
1493 		}
1494 		if (swap_count(swcount) && start_mm != &init_mm)
1495 			retval = unuse_mm(start_mm, entry, page);
1496 
1497 		if (swap_count(*swap_map)) {
1498 			int set_start_mm = (*swap_map >= swcount);
1499 			struct list_head *p = &start_mm->mmlist;
1500 			struct mm_struct *new_start_mm = start_mm;
1501 			struct mm_struct *prev_mm = start_mm;
1502 			struct mm_struct *mm;
1503 
1504 			atomic_inc(&new_start_mm->mm_users);
1505 			atomic_inc(&prev_mm->mm_users);
1506 			spin_lock(&mmlist_lock);
1507 			while (swap_count(*swap_map) && !retval &&
1508 					(p = p->next) != &start_mm->mmlist) {
1509 				mm = list_entry(p, struct mm_struct, mmlist);
1510 				if (!atomic_inc_not_zero(&mm->mm_users))
1511 					continue;
1512 				spin_unlock(&mmlist_lock);
1513 				mmput(prev_mm);
1514 				prev_mm = mm;
1515 
1516 				cond_resched();
1517 
1518 				swcount = *swap_map;
1519 				if (!swap_count(swcount)) /* any usage ? */
1520 					;
1521 				else if (mm == &init_mm)
1522 					set_start_mm = 1;
1523 				else
1524 					retval = unuse_mm(mm, entry, page);
1525 
1526 				if (set_start_mm && *swap_map < swcount) {
1527 					mmput(new_start_mm);
1528 					atomic_inc(&mm->mm_users);
1529 					new_start_mm = mm;
1530 					set_start_mm = 0;
1531 				}
1532 				spin_lock(&mmlist_lock);
1533 			}
1534 			spin_unlock(&mmlist_lock);
1535 			mmput(prev_mm);
1536 			mmput(start_mm);
1537 			start_mm = new_start_mm;
1538 		}
1539 		if (retval) {
1540 			unlock_page(page);
1541 			put_page(page);
1542 			break;
1543 		}
1544 
1545 		/*
1546 		 * If a reference remains (rare), we would like to leave
1547 		 * the page in the swap cache; but try_to_unmap could
1548 		 * then re-duplicate the entry once we drop page lock,
1549 		 * so we might loop indefinitely; also, that page could
1550 		 * not be swapped out to other storage meanwhile.  So:
1551 		 * delete from cache even if there's another reference,
1552 		 * after ensuring that the data has been saved to disk -
1553 		 * since if the reference remains (rarer), it will be
1554 		 * read from disk into another page.  Splitting into two
1555 		 * pages would be incorrect if swap supported "shared
1556 		 * private" pages, but they are handled by tmpfs files.
1557 		 *
1558 		 * Given how unuse_vma() targets one particular offset
1559 		 * in an anon_vma, once the anon_vma has been determined,
1560 		 * this splitting happens to be just what is needed to
1561 		 * handle where KSM pages have been swapped out: re-reading
1562 		 * is unnecessarily slow, but we can fix that later on.
1563 		 */
1564 		if (swap_count(*swap_map) &&
1565 		     PageDirty(page) && PageSwapCache(page)) {
1566 			struct writeback_control wbc = {
1567 				.sync_mode = WB_SYNC_NONE,
1568 			};
1569 
1570 			swap_writepage(page, &wbc);
1571 			lock_page(page);
1572 			wait_on_page_writeback(page);
1573 		}
1574 
1575 		/*
1576 		 * It is conceivable that a racing task removed this page from
1577 		 * swap cache just before we acquired the page lock at the top,
1578 		 * or while we dropped it in unuse_mm().  The page might even
1579 		 * be back in swap cache on another swap area: that we must not
1580 		 * delete, since it may not have been written out to swap yet.
1581 		 */
1582 		if (PageSwapCache(page) &&
1583 		    likely(page_private(page) == entry.val))
1584 			delete_from_swap_cache(page);
1585 
1586 		/*
1587 		 * So we could skip searching mms once swap count went
1588 		 * to 1, we did not mark any present ptes as dirty: must
1589 		 * mark page dirty so shrink_page_list will preserve it.
1590 		 */
1591 		SetPageDirty(page);
1592 		unlock_page(page);
1593 		put_page(page);
1594 
1595 		/*
1596 		 * Make sure that we aren't completely killing
1597 		 * interactive performance.
1598 		 */
1599 		cond_resched();
1600 		if (frontswap && pages_to_unuse > 0) {
1601 			if (!--pages_to_unuse)
1602 				break;
1603 		}
1604 	}
1605 
1606 	mmput(start_mm);
1607 	return retval;
1608 }
1609 
1610 /*
1611  * After a successful try_to_unuse, if no swap is now in use, we know
1612  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1613  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1614  * added to the mmlist just after page_duplicate - before would be racy.
1615  */
1616 static void drain_mmlist(void)
1617 {
1618 	struct list_head *p, *next;
1619 	unsigned int type;
1620 
1621 	for (type = 0; type < nr_swapfiles; type++)
1622 		if (swap_info[type]->inuse_pages)
1623 			return;
1624 	spin_lock(&mmlist_lock);
1625 	list_for_each_safe(p, next, &init_mm.mmlist)
1626 		list_del_init(p);
1627 	spin_unlock(&mmlist_lock);
1628 }
1629 
1630 /*
1631  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1632  * corresponds to page offset for the specified swap entry.
1633  * Note that the type of this function is sector_t, but it returns page offset
1634  * into the bdev, not sector offset.
1635  */
1636 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1637 {
1638 	struct swap_info_struct *sis;
1639 	struct swap_extent *start_se;
1640 	struct swap_extent *se;
1641 	pgoff_t offset;
1642 
1643 	sis = swap_info[swp_type(entry)];
1644 	*bdev = sis->bdev;
1645 
1646 	offset = swp_offset(entry);
1647 	start_se = sis->curr_swap_extent;
1648 	se = start_se;
1649 
1650 	for ( ; ; ) {
1651 		if (se->start_page <= offset &&
1652 				offset < (se->start_page + se->nr_pages)) {
1653 			return se->start_block + (offset - se->start_page);
1654 		}
1655 		se = list_next_entry(se, list);
1656 		sis->curr_swap_extent = se;
1657 		BUG_ON(se == start_se);		/* It *must* be present */
1658 	}
1659 }
1660 
1661 /*
1662  * Returns the page offset into bdev for the specified page's swap entry.
1663  */
1664 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1665 {
1666 	swp_entry_t entry;
1667 	entry.val = page_private(page);
1668 	return map_swap_entry(entry, bdev);
1669 }
1670 
1671 /*
1672  * Free all of a swapdev's extent information
1673  */
1674 static void destroy_swap_extents(struct swap_info_struct *sis)
1675 {
1676 	while (!list_empty(&sis->first_swap_extent.list)) {
1677 		struct swap_extent *se;
1678 
1679 		se = list_first_entry(&sis->first_swap_extent.list,
1680 				struct swap_extent, list);
1681 		list_del(&se->list);
1682 		kfree(se);
1683 	}
1684 
1685 	if (sis->flags & SWP_FILE) {
1686 		struct file *swap_file = sis->swap_file;
1687 		struct address_space *mapping = swap_file->f_mapping;
1688 
1689 		sis->flags &= ~SWP_FILE;
1690 		mapping->a_ops->swap_deactivate(swap_file);
1691 	}
1692 }
1693 
1694 /*
1695  * Add a block range (and the corresponding page range) into this swapdev's
1696  * extent list.  The extent list is kept sorted in page order.
1697  *
1698  * This function rather assumes that it is called in ascending page order.
1699  */
1700 int
1701 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1702 		unsigned long nr_pages, sector_t start_block)
1703 {
1704 	struct swap_extent *se;
1705 	struct swap_extent *new_se;
1706 	struct list_head *lh;
1707 
1708 	if (start_page == 0) {
1709 		se = &sis->first_swap_extent;
1710 		sis->curr_swap_extent = se;
1711 		se->start_page = 0;
1712 		se->nr_pages = nr_pages;
1713 		se->start_block = start_block;
1714 		return 1;
1715 	} else {
1716 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1717 		se = list_entry(lh, struct swap_extent, list);
1718 		BUG_ON(se->start_page + se->nr_pages != start_page);
1719 		if (se->start_block + se->nr_pages == start_block) {
1720 			/* Merge it */
1721 			se->nr_pages += nr_pages;
1722 			return 0;
1723 		}
1724 	}
1725 
1726 	/*
1727 	 * No merge.  Insert a new extent, preserving ordering.
1728 	 */
1729 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1730 	if (new_se == NULL)
1731 		return -ENOMEM;
1732 	new_se->start_page = start_page;
1733 	new_se->nr_pages = nr_pages;
1734 	new_se->start_block = start_block;
1735 
1736 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1737 	return 1;
1738 }
1739 
1740 /*
1741  * A `swap extent' is a simple thing which maps a contiguous range of pages
1742  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1743  * is built at swapon time and is then used at swap_writepage/swap_readpage
1744  * time for locating where on disk a page belongs.
1745  *
1746  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1747  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1748  * swap files identically.
1749  *
1750  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1751  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1752  * swapfiles are handled *identically* after swapon time.
1753  *
1754  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1755  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1756  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1757  * requirements, they are simply tossed out - we will never use those blocks
1758  * for swapping.
1759  *
1760  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1761  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1762  * which will scribble on the fs.
1763  *
1764  * The amount of disk space which a single swap extent represents varies.
1765  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1766  * extents in the list.  To avoid much list walking, we cache the previous
1767  * search location in `curr_swap_extent', and start new searches from there.
1768  * This is extremely effective.  The average number of iterations in
1769  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1770  */
1771 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1772 {
1773 	struct file *swap_file = sis->swap_file;
1774 	struct address_space *mapping = swap_file->f_mapping;
1775 	struct inode *inode = mapping->host;
1776 	int ret;
1777 
1778 	if (S_ISBLK(inode->i_mode)) {
1779 		ret = add_swap_extent(sis, 0, sis->max, 0);
1780 		*span = sis->pages;
1781 		return ret;
1782 	}
1783 
1784 	if (mapping->a_ops->swap_activate) {
1785 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1786 		if (!ret) {
1787 			sis->flags |= SWP_FILE;
1788 			ret = add_swap_extent(sis, 0, sis->max, 0);
1789 			*span = sis->pages;
1790 		}
1791 		return ret;
1792 	}
1793 
1794 	return generic_swapfile_activate(sis, swap_file, span);
1795 }
1796 
1797 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1798 				unsigned char *swap_map,
1799 				struct swap_cluster_info *cluster_info)
1800 {
1801 	if (prio >= 0)
1802 		p->prio = prio;
1803 	else
1804 		p->prio = --least_priority;
1805 	/*
1806 	 * the plist prio is negated because plist ordering is
1807 	 * low-to-high, while swap ordering is high-to-low
1808 	 */
1809 	p->list.prio = -p->prio;
1810 	p->avail_list.prio = -p->prio;
1811 	p->swap_map = swap_map;
1812 	p->cluster_info = cluster_info;
1813 	p->flags |= SWP_WRITEOK;
1814 	atomic_long_add(p->pages, &nr_swap_pages);
1815 	total_swap_pages += p->pages;
1816 
1817 	assert_spin_locked(&swap_lock);
1818 	/*
1819 	 * both lists are plists, and thus priority ordered.
1820 	 * swap_active_head needs to be priority ordered for swapoff(),
1821 	 * which on removal of any swap_info_struct with an auto-assigned
1822 	 * (i.e. negative) priority increments the auto-assigned priority
1823 	 * of any lower-priority swap_info_structs.
1824 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
1825 	 * which allocates swap pages from the highest available priority
1826 	 * swap_info_struct.
1827 	 */
1828 	plist_add(&p->list, &swap_active_head);
1829 	spin_lock(&swap_avail_lock);
1830 	plist_add(&p->avail_list, &swap_avail_head);
1831 	spin_unlock(&swap_avail_lock);
1832 }
1833 
1834 static void enable_swap_info(struct swap_info_struct *p, int prio,
1835 				unsigned char *swap_map,
1836 				struct swap_cluster_info *cluster_info,
1837 				unsigned long *frontswap_map)
1838 {
1839 	frontswap_init(p->type, frontswap_map);
1840 	spin_lock(&swap_lock);
1841 	spin_lock(&p->lock);
1842 	 _enable_swap_info(p, prio, swap_map, cluster_info);
1843 	spin_unlock(&p->lock);
1844 	spin_unlock(&swap_lock);
1845 }
1846 
1847 static void reinsert_swap_info(struct swap_info_struct *p)
1848 {
1849 	spin_lock(&swap_lock);
1850 	spin_lock(&p->lock);
1851 	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1852 	spin_unlock(&p->lock);
1853 	spin_unlock(&swap_lock);
1854 }
1855 
1856 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1857 {
1858 	struct swap_info_struct *p = NULL;
1859 	unsigned char *swap_map;
1860 	struct swap_cluster_info *cluster_info;
1861 	unsigned long *frontswap_map;
1862 	struct file *swap_file, *victim;
1863 	struct address_space *mapping;
1864 	struct inode *inode;
1865 	struct filename *pathname;
1866 	int err, found = 0;
1867 	unsigned int old_block_size;
1868 
1869 	if (!capable(CAP_SYS_ADMIN))
1870 		return -EPERM;
1871 
1872 	BUG_ON(!current->mm);
1873 
1874 	pathname = getname(specialfile);
1875 	if (IS_ERR(pathname))
1876 		return PTR_ERR(pathname);
1877 
1878 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1879 	err = PTR_ERR(victim);
1880 	if (IS_ERR(victim))
1881 		goto out;
1882 
1883 	mapping = victim->f_mapping;
1884 	spin_lock(&swap_lock);
1885 	plist_for_each_entry(p, &swap_active_head, list) {
1886 		if (p->flags & SWP_WRITEOK) {
1887 			if (p->swap_file->f_mapping == mapping) {
1888 				found = 1;
1889 				break;
1890 			}
1891 		}
1892 	}
1893 	if (!found) {
1894 		err = -EINVAL;
1895 		spin_unlock(&swap_lock);
1896 		goto out_dput;
1897 	}
1898 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
1899 		vm_unacct_memory(p->pages);
1900 	else {
1901 		err = -ENOMEM;
1902 		spin_unlock(&swap_lock);
1903 		goto out_dput;
1904 	}
1905 	spin_lock(&swap_avail_lock);
1906 	plist_del(&p->avail_list, &swap_avail_head);
1907 	spin_unlock(&swap_avail_lock);
1908 	spin_lock(&p->lock);
1909 	if (p->prio < 0) {
1910 		struct swap_info_struct *si = p;
1911 
1912 		plist_for_each_entry_continue(si, &swap_active_head, list) {
1913 			si->prio++;
1914 			si->list.prio--;
1915 			si->avail_list.prio--;
1916 		}
1917 		least_priority++;
1918 	}
1919 	plist_del(&p->list, &swap_active_head);
1920 	atomic_long_sub(p->pages, &nr_swap_pages);
1921 	total_swap_pages -= p->pages;
1922 	p->flags &= ~SWP_WRITEOK;
1923 	spin_unlock(&p->lock);
1924 	spin_unlock(&swap_lock);
1925 
1926 	set_current_oom_origin();
1927 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1928 	clear_current_oom_origin();
1929 
1930 	if (err) {
1931 		/* re-insert swap space back into swap_list */
1932 		reinsert_swap_info(p);
1933 		goto out_dput;
1934 	}
1935 
1936 	flush_work(&p->discard_work);
1937 
1938 	destroy_swap_extents(p);
1939 	if (p->flags & SWP_CONTINUED)
1940 		free_swap_count_continuations(p);
1941 
1942 	mutex_lock(&swapon_mutex);
1943 	spin_lock(&swap_lock);
1944 	spin_lock(&p->lock);
1945 	drain_mmlist();
1946 
1947 	/* wait for anyone still in scan_swap_map */
1948 	p->highest_bit = 0;		/* cuts scans short */
1949 	while (p->flags >= SWP_SCANNING) {
1950 		spin_unlock(&p->lock);
1951 		spin_unlock(&swap_lock);
1952 		schedule_timeout_uninterruptible(1);
1953 		spin_lock(&swap_lock);
1954 		spin_lock(&p->lock);
1955 	}
1956 
1957 	swap_file = p->swap_file;
1958 	old_block_size = p->old_block_size;
1959 	p->swap_file = NULL;
1960 	p->max = 0;
1961 	swap_map = p->swap_map;
1962 	p->swap_map = NULL;
1963 	cluster_info = p->cluster_info;
1964 	p->cluster_info = NULL;
1965 	frontswap_map = frontswap_map_get(p);
1966 	spin_unlock(&p->lock);
1967 	spin_unlock(&swap_lock);
1968 	frontswap_invalidate_area(p->type);
1969 	frontswap_map_set(p, NULL);
1970 	mutex_unlock(&swapon_mutex);
1971 	free_percpu(p->percpu_cluster);
1972 	p->percpu_cluster = NULL;
1973 	vfree(swap_map);
1974 	vfree(cluster_info);
1975 	vfree(frontswap_map);
1976 	/* Destroy swap account information */
1977 	swap_cgroup_swapoff(p->type);
1978 
1979 	inode = mapping->host;
1980 	if (S_ISBLK(inode->i_mode)) {
1981 		struct block_device *bdev = I_BDEV(inode);
1982 		set_blocksize(bdev, old_block_size);
1983 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1984 	} else {
1985 		inode_lock(inode);
1986 		inode->i_flags &= ~S_SWAPFILE;
1987 		inode_unlock(inode);
1988 	}
1989 	filp_close(swap_file, NULL);
1990 
1991 	/*
1992 	 * Clear the SWP_USED flag after all resources are freed so that swapon
1993 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
1994 	 * not hold p->lock after we cleared its SWP_WRITEOK.
1995 	 */
1996 	spin_lock(&swap_lock);
1997 	p->flags = 0;
1998 	spin_unlock(&swap_lock);
1999 
2000 	err = 0;
2001 	atomic_inc(&proc_poll_event);
2002 	wake_up_interruptible(&proc_poll_wait);
2003 
2004 out_dput:
2005 	filp_close(victim, NULL);
2006 out:
2007 	putname(pathname);
2008 	return err;
2009 }
2010 
2011 #ifdef CONFIG_PROC_FS
2012 static unsigned swaps_poll(struct file *file, poll_table *wait)
2013 {
2014 	struct seq_file *seq = file->private_data;
2015 
2016 	poll_wait(file, &proc_poll_wait, wait);
2017 
2018 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2019 		seq->poll_event = atomic_read(&proc_poll_event);
2020 		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2021 	}
2022 
2023 	return POLLIN | POLLRDNORM;
2024 }
2025 
2026 /* iterator */
2027 static void *swap_start(struct seq_file *swap, loff_t *pos)
2028 {
2029 	struct swap_info_struct *si;
2030 	int type;
2031 	loff_t l = *pos;
2032 
2033 	mutex_lock(&swapon_mutex);
2034 
2035 	if (!l)
2036 		return SEQ_START_TOKEN;
2037 
2038 	for (type = 0; type < nr_swapfiles; type++) {
2039 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2040 		si = swap_info[type];
2041 		if (!(si->flags & SWP_USED) || !si->swap_map)
2042 			continue;
2043 		if (!--l)
2044 			return si;
2045 	}
2046 
2047 	return NULL;
2048 }
2049 
2050 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2051 {
2052 	struct swap_info_struct *si = v;
2053 	int type;
2054 
2055 	if (v == SEQ_START_TOKEN)
2056 		type = 0;
2057 	else
2058 		type = si->type + 1;
2059 
2060 	for (; type < nr_swapfiles; type++) {
2061 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2062 		si = swap_info[type];
2063 		if (!(si->flags & SWP_USED) || !si->swap_map)
2064 			continue;
2065 		++*pos;
2066 		return si;
2067 	}
2068 
2069 	return NULL;
2070 }
2071 
2072 static void swap_stop(struct seq_file *swap, void *v)
2073 {
2074 	mutex_unlock(&swapon_mutex);
2075 }
2076 
2077 static int swap_show(struct seq_file *swap, void *v)
2078 {
2079 	struct swap_info_struct *si = v;
2080 	struct file *file;
2081 	int len;
2082 
2083 	if (si == SEQ_START_TOKEN) {
2084 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2085 		return 0;
2086 	}
2087 
2088 	file = si->swap_file;
2089 	len = seq_file_path(swap, file, " \t\n\\");
2090 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2091 			len < 40 ? 40 - len : 1, " ",
2092 			S_ISBLK(file_inode(file)->i_mode) ?
2093 				"partition" : "file\t",
2094 			si->pages << (PAGE_SHIFT - 10),
2095 			si->inuse_pages << (PAGE_SHIFT - 10),
2096 			si->prio);
2097 	return 0;
2098 }
2099 
2100 static const struct seq_operations swaps_op = {
2101 	.start =	swap_start,
2102 	.next =		swap_next,
2103 	.stop =		swap_stop,
2104 	.show =		swap_show
2105 };
2106 
2107 static int swaps_open(struct inode *inode, struct file *file)
2108 {
2109 	struct seq_file *seq;
2110 	int ret;
2111 
2112 	ret = seq_open(file, &swaps_op);
2113 	if (ret)
2114 		return ret;
2115 
2116 	seq = file->private_data;
2117 	seq->poll_event = atomic_read(&proc_poll_event);
2118 	return 0;
2119 }
2120 
2121 static const struct file_operations proc_swaps_operations = {
2122 	.open		= swaps_open,
2123 	.read		= seq_read,
2124 	.llseek		= seq_lseek,
2125 	.release	= seq_release,
2126 	.poll		= swaps_poll,
2127 };
2128 
2129 static int __init procswaps_init(void)
2130 {
2131 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2132 	return 0;
2133 }
2134 __initcall(procswaps_init);
2135 #endif /* CONFIG_PROC_FS */
2136 
2137 #ifdef MAX_SWAPFILES_CHECK
2138 static int __init max_swapfiles_check(void)
2139 {
2140 	MAX_SWAPFILES_CHECK();
2141 	return 0;
2142 }
2143 late_initcall(max_swapfiles_check);
2144 #endif
2145 
2146 static struct swap_info_struct *alloc_swap_info(void)
2147 {
2148 	struct swap_info_struct *p;
2149 	unsigned int type;
2150 
2151 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2152 	if (!p)
2153 		return ERR_PTR(-ENOMEM);
2154 
2155 	spin_lock(&swap_lock);
2156 	for (type = 0; type < nr_swapfiles; type++) {
2157 		if (!(swap_info[type]->flags & SWP_USED))
2158 			break;
2159 	}
2160 	if (type >= MAX_SWAPFILES) {
2161 		spin_unlock(&swap_lock);
2162 		kfree(p);
2163 		return ERR_PTR(-EPERM);
2164 	}
2165 	if (type >= nr_swapfiles) {
2166 		p->type = type;
2167 		swap_info[type] = p;
2168 		/*
2169 		 * Write swap_info[type] before nr_swapfiles, in case a
2170 		 * racing procfs swap_start() or swap_next() is reading them.
2171 		 * (We never shrink nr_swapfiles, we never free this entry.)
2172 		 */
2173 		smp_wmb();
2174 		nr_swapfiles++;
2175 	} else {
2176 		kfree(p);
2177 		p = swap_info[type];
2178 		/*
2179 		 * Do not memset this entry: a racing procfs swap_next()
2180 		 * would be relying on p->type to remain valid.
2181 		 */
2182 	}
2183 	INIT_LIST_HEAD(&p->first_swap_extent.list);
2184 	plist_node_init(&p->list, 0);
2185 	plist_node_init(&p->avail_list, 0);
2186 	p->flags = SWP_USED;
2187 	spin_unlock(&swap_lock);
2188 	spin_lock_init(&p->lock);
2189 
2190 	return p;
2191 }
2192 
2193 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2194 {
2195 	int error;
2196 
2197 	if (S_ISBLK(inode->i_mode)) {
2198 		p->bdev = bdgrab(I_BDEV(inode));
2199 		error = blkdev_get(p->bdev,
2200 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2201 		if (error < 0) {
2202 			p->bdev = NULL;
2203 			return error;
2204 		}
2205 		p->old_block_size = block_size(p->bdev);
2206 		error = set_blocksize(p->bdev, PAGE_SIZE);
2207 		if (error < 0)
2208 			return error;
2209 		p->flags |= SWP_BLKDEV;
2210 	} else if (S_ISREG(inode->i_mode)) {
2211 		p->bdev = inode->i_sb->s_bdev;
2212 		inode_lock(inode);
2213 		if (IS_SWAPFILE(inode))
2214 			return -EBUSY;
2215 	} else
2216 		return -EINVAL;
2217 
2218 	return 0;
2219 }
2220 
2221 static unsigned long read_swap_header(struct swap_info_struct *p,
2222 					union swap_header *swap_header,
2223 					struct inode *inode)
2224 {
2225 	int i;
2226 	unsigned long maxpages;
2227 	unsigned long swapfilepages;
2228 	unsigned long last_page;
2229 
2230 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2231 		pr_err("Unable to find swap-space signature\n");
2232 		return 0;
2233 	}
2234 
2235 	/* swap partition endianess hack... */
2236 	if (swab32(swap_header->info.version) == 1) {
2237 		swab32s(&swap_header->info.version);
2238 		swab32s(&swap_header->info.last_page);
2239 		swab32s(&swap_header->info.nr_badpages);
2240 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2241 			return 0;
2242 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2243 			swab32s(&swap_header->info.badpages[i]);
2244 	}
2245 	/* Check the swap header's sub-version */
2246 	if (swap_header->info.version != 1) {
2247 		pr_warn("Unable to handle swap header version %d\n",
2248 			swap_header->info.version);
2249 		return 0;
2250 	}
2251 
2252 	p->lowest_bit  = 1;
2253 	p->cluster_next = 1;
2254 	p->cluster_nr = 0;
2255 
2256 	/*
2257 	 * Find out how many pages are allowed for a single swap
2258 	 * device. There are two limiting factors: 1) the number
2259 	 * of bits for the swap offset in the swp_entry_t type, and
2260 	 * 2) the number of bits in the swap pte as defined by the
2261 	 * different architectures. In order to find the
2262 	 * largest possible bit mask, a swap entry with swap type 0
2263 	 * and swap offset ~0UL is created, encoded to a swap pte,
2264 	 * decoded to a swp_entry_t again, and finally the swap
2265 	 * offset is extracted. This will mask all the bits from
2266 	 * the initial ~0UL mask that can't be encoded in either
2267 	 * the swp_entry_t or the architecture definition of a
2268 	 * swap pte.
2269 	 */
2270 	maxpages = swp_offset(pte_to_swp_entry(
2271 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2272 	last_page = swap_header->info.last_page;
2273 	if (last_page > maxpages) {
2274 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2275 			maxpages << (PAGE_SHIFT - 10),
2276 			last_page << (PAGE_SHIFT - 10));
2277 	}
2278 	if (maxpages > last_page) {
2279 		maxpages = last_page + 1;
2280 		/* p->max is an unsigned int: don't overflow it */
2281 		if ((unsigned int)maxpages == 0)
2282 			maxpages = UINT_MAX;
2283 	}
2284 	p->highest_bit = maxpages - 1;
2285 
2286 	if (!maxpages)
2287 		return 0;
2288 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2289 	if (swapfilepages && maxpages > swapfilepages) {
2290 		pr_warn("Swap area shorter than signature indicates\n");
2291 		return 0;
2292 	}
2293 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2294 		return 0;
2295 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2296 		return 0;
2297 
2298 	return maxpages;
2299 }
2300 
2301 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2302 					union swap_header *swap_header,
2303 					unsigned char *swap_map,
2304 					struct swap_cluster_info *cluster_info,
2305 					unsigned long maxpages,
2306 					sector_t *span)
2307 {
2308 	int i;
2309 	unsigned int nr_good_pages;
2310 	int nr_extents;
2311 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2312 	unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2313 
2314 	nr_good_pages = maxpages - 1;	/* omit header page */
2315 
2316 	cluster_list_init(&p->free_clusters);
2317 	cluster_list_init(&p->discard_clusters);
2318 
2319 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2320 		unsigned int page_nr = swap_header->info.badpages[i];
2321 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2322 			return -EINVAL;
2323 		if (page_nr < maxpages) {
2324 			swap_map[page_nr] = SWAP_MAP_BAD;
2325 			nr_good_pages--;
2326 			/*
2327 			 * Haven't marked the cluster free yet, no list
2328 			 * operation involved
2329 			 */
2330 			inc_cluster_info_page(p, cluster_info, page_nr);
2331 		}
2332 	}
2333 
2334 	/* Haven't marked the cluster free yet, no list operation involved */
2335 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2336 		inc_cluster_info_page(p, cluster_info, i);
2337 
2338 	if (nr_good_pages) {
2339 		swap_map[0] = SWAP_MAP_BAD;
2340 		/*
2341 		 * Not mark the cluster free yet, no list
2342 		 * operation involved
2343 		 */
2344 		inc_cluster_info_page(p, cluster_info, 0);
2345 		p->max = maxpages;
2346 		p->pages = nr_good_pages;
2347 		nr_extents = setup_swap_extents(p, span);
2348 		if (nr_extents < 0)
2349 			return nr_extents;
2350 		nr_good_pages = p->pages;
2351 	}
2352 	if (!nr_good_pages) {
2353 		pr_warn("Empty swap-file\n");
2354 		return -EINVAL;
2355 	}
2356 
2357 	if (!cluster_info)
2358 		return nr_extents;
2359 
2360 	for (i = 0; i < nr_clusters; i++) {
2361 		if (!cluster_count(&cluster_info[idx])) {
2362 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2363 			cluster_list_add_tail(&p->free_clusters, cluster_info,
2364 					      idx);
2365 		}
2366 		idx++;
2367 		if (idx == nr_clusters)
2368 			idx = 0;
2369 	}
2370 	return nr_extents;
2371 }
2372 
2373 /*
2374  * Helper to sys_swapon determining if a given swap
2375  * backing device queue supports DISCARD operations.
2376  */
2377 static bool swap_discardable(struct swap_info_struct *si)
2378 {
2379 	struct request_queue *q = bdev_get_queue(si->bdev);
2380 
2381 	if (!q || !blk_queue_discard(q))
2382 		return false;
2383 
2384 	return true;
2385 }
2386 
2387 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2388 {
2389 	struct swap_info_struct *p;
2390 	struct filename *name;
2391 	struct file *swap_file = NULL;
2392 	struct address_space *mapping;
2393 	int prio;
2394 	int error;
2395 	union swap_header *swap_header;
2396 	int nr_extents;
2397 	sector_t span;
2398 	unsigned long maxpages;
2399 	unsigned char *swap_map = NULL;
2400 	struct swap_cluster_info *cluster_info = NULL;
2401 	unsigned long *frontswap_map = NULL;
2402 	struct page *page = NULL;
2403 	struct inode *inode = NULL;
2404 
2405 	if (swap_flags & ~SWAP_FLAGS_VALID)
2406 		return -EINVAL;
2407 
2408 	if (!capable(CAP_SYS_ADMIN))
2409 		return -EPERM;
2410 
2411 	p = alloc_swap_info();
2412 	if (IS_ERR(p))
2413 		return PTR_ERR(p);
2414 
2415 	INIT_WORK(&p->discard_work, swap_discard_work);
2416 
2417 	name = getname(specialfile);
2418 	if (IS_ERR(name)) {
2419 		error = PTR_ERR(name);
2420 		name = NULL;
2421 		goto bad_swap;
2422 	}
2423 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2424 	if (IS_ERR(swap_file)) {
2425 		error = PTR_ERR(swap_file);
2426 		swap_file = NULL;
2427 		goto bad_swap;
2428 	}
2429 
2430 	p->swap_file = swap_file;
2431 	mapping = swap_file->f_mapping;
2432 	inode = mapping->host;
2433 
2434 	/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2435 	error = claim_swapfile(p, inode);
2436 	if (unlikely(error))
2437 		goto bad_swap;
2438 
2439 	/*
2440 	 * Read the swap header.
2441 	 */
2442 	if (!mapping->a_ops->readpage) {
2443 		error = -EINVAL;
2444 		goto bad_swap;
2445 	}
2446 	page = read_mapping_page(mapping, 0, swap_file);
2447 	if (IS_ERR(page)) {
2448 		error = PTR_ERR(page);
2449 		goto bad_swap;
2450 	}
2451 	swap_header = kmap(page);
2452 
2453 	maxpages = read_swap_header(p, swap_header, inode);
2454 	if (unlikely(!maxpages)) {
2455 		error = -EINVAL;
2456 		goto bad_swap;
2457 	}
2458 
2459 	/* OK, set up the swap map and apply the bad block list */
2460 	swap_map = vzalloc(maxpages);
2461 	if (!swap_map) {
2462 		error = -ENOMEM;
2463 		goto bad_swap;
2464 	}
2465 
2466 	if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2467 		p->flags |= SWP_STABLE_WRITES;
2468 
2469 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2470 		int cpu;
2471 
2472 		p->flags |= SWP_SOLIDSTATE;
2473 		/*
2474 		 * select a random position to start with to help wear leveling
2475 		 * SSD
2476 		 */
2477 		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2478 
2479 		cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2480 			SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2481 		if (!cluster_info) {
2482 			error = -ENOMEM;
2483 			goto bad_swap;
2484 		}
2485 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2486 		if (!p->percpu_cluster) {
2487 			error = -ENOMEM;
2488 			goto bad_swap;
2489 		}
2490 		for_each_possible_cpu(cpu) {
2491 			struct percpu_cluster *cluster;
2492 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2493 			cluster_set_null(&cluster->index);
2494 		}
2495 	}
2496 
2497 	error = swap_cgroup_swapon(p->type, maxpages);
2498 	if (error)
2499 		goto bad_swap;
2500 
2501 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2502 		cluster_info, maxpages, &span);
2503 	if (unlikely(nr_extents < 0)) {
2504 		error = nr_extents;
2505 		goto bad_swap;
2506 	}
2507 	/* frontswap enabled? set up bit-per-page map for frontswap */
2508 	if (IS_ENABLED(CONFIG_FRONTSWAP))
2509 		frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2510 
2511 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2512 		/*
2513 		 * When discard is enabled for swap with no particular
2514 		 * policy flagged, we set all swap discard flags here in
2515 		 * order to sustain backward compatibility with older
2516 		 * swapon(8) releases.
2517 		 */
2518 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2519 			     SWP_PAGE_DISCARD);
2520 
2521 		/*
2522 		 * By flagging sys_swapon, a sysadmin can tell us to
2523 		 * either do single-time area discards only, or to just
2524 		 * perform discards for released swap page-clusters.
2525 		 * Now it's time to adjust the p->flags accordingly.
2526 		 */
2527 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2528 			p->flags &= ~SWP_PAGE_DISCARD;
2529 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2530 			p->flags &= ~SWP_AREA_DISCARD;
2531 
2532 		/* issue a swapon-time discard if it's still required */
2533 		if (p->flags & SWP_AREA_DISCARD) {
2534 			int err = discard_swap(p);
2535 			if (unlikely(err))
2536 				pr_err("swapon: discard_swap(%p): %d\n",
2537 					p, err);
2538 		}
2539 	}
2540 
2541 	mutex_lock(&swapon_mutex);
2542 	prio = -1;
2543 	if (swap_flags & SWAP_FLAG_PREFER)
2544 		prio =
2545 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2546 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2547 
2548 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2549 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2550 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2551 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2552 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
2553 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
2554 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2555 		(frontswap_map) ? "FS" : "");
2556 
2557 	mutex_unlock(&swapon_mutex);
2558 	atomic_inc(&proc_poll_event);
2559 	wake_up_interruptible(&proc_poll_wait);
2560 
2561 	if (S_ISREG(inode->i_mode))
2562 		inode->i_flags |= S_SWAPFILE;
2563 	error = 0;
2564 	goto out;
2565 bad_swap:
2566 	free_percpu(p->percpu_cluster);
2567 	p->percpu_cluster = NULL;
2568 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2569 		set_blocksize(p->bdev, p->old_block_size);
2570 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2571 	}
2572 	destroy_swap_extents(p);
2573 	swap_cgroup_swapoff(p->type);
2574 	spin_lock(&swap_lock);
2575 	p->swap_file = NULL;
2576 	p->flags = 0;
2577 	spin_unlock(&swap_lock);
2578 	vfree(swap_map);
2579 	vfree(cluster_info);
2580 	if (swap_file) {
2581 		if (inode && S_ISREG(inode->i_mode)) {
2582 			inode_unlock(inode);
2583 			inode = NULL;
2584 		}
2585 		filp_close(swap_file, NULL);
2586 	}
2587 out:
2588 	if (page && !IS_ERR(page)) {
2589 		kunmap(page);
2590 		put_page(page);
2591 	}
2592 	if (name)
2593 		putname(name);
2594 	if (inode && S_ISREG(inode->i_mode))
2595 		inode_unlock(inode);
2596 	return error;
2597 }
2598 
2599 void si_swapinfo(struct sysinfo *val)
2600 {
2601 	unsigned int type;
2602 	unsigned long nr_to_be_unused = 0;
2603 
2604 	spin_lock(&swap_lock);
2605 	for (type = 0; type < nr_swapfiles; type++) {
2606 		struct swap_info_struct *si = swap_info[type];
2607 
2608 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2609 			nr_to_be_unused += si->inuse_pages;
2610 	}
2611 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2612 	val->totalswap = total_swap_pages + nr_to_be_unused;
2613 	spin_unlock(&swap_lock);
2614 }
2615 
2616 /*
2617  * Verify that a swap entry is valid and increment its swap map count.
2618  *
2619  * Returns error code in following case.
2620  * - success -> 0
2621  * - swp_entry is invalid -> EINVAL
2622  * - swp_entry is migration entry -> EINVAL
2623  * - swap-cache reference is requested but there is already one. -> EEXIST
2624  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2625  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2626  */
2627 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2628 {
2629 	struct swap_info_struct *p;
2630 	unsigned long offset, type;
2631 	unsigned char count;
2632 	unsigned char has_cache;
2633 	int err = -EINVAL;
2634 
2635 	if (non_swap_entry(entry))
2636 		goto out;
2637 
2638 	type = swp_type(entry);
2639 	if (type >= nr_swapfiles)
2640 		goto bad_file;
2641 	p = swap_info[type];
2642 	offset = swp_offset(entry);
2643 
2644 	spin_lock(&p->lock);
2645 	if (unlikely(offset >= p->max))
2646 		goto unlock_out;
2647 
2648 	count = p->swap_map[offset];
2649 
2650 	/*
2651 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
2652 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2653 	 */
2654 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2655 		err = -ENOENT;
2656 		goto unlock_out;
2657 	}
2658 
2659 	has_cache = count & SWAP_HAS_CACHE;
2660 	count &= ~SWAP_HAS_CACHE;
2661 	err = 0;
2662 
2663 	if (usage == SWAP_HAS_CACHE) {
2664 
2665 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2666 		if (!has_cache && count)
2667 			has_cache = SWAP_HAS_CACHE;
2668 		else if (has_cache)		/* someone else added cache */
2669 			err = -EEXIST;
2670 		else				/* no users remaining */
2671 			err = -ENOENT;
2672 
2673 	} else if (count || has_cache) {
2674 
2675 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2676 			count += usage;
2677 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2678 			err = -EINVAL;
2679 		else if (swap_count_continued(p, offset, count))
2680 			count = COUNT_CONTINUED;
2681 		else
2682 			err = -ENOMEM;
2683 	} else
2684 		err = -ENOENT;			/* unused swap entry */
2685 
2686 	p->swap_map[offset] = count | has_cache;
2687 
2688 unlock_out:
2689 	spin_unlock(&p->lock);
2690 out:
2691 	return err;
2692 
2693 bad_file:
2694 	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2695 	goto out;
2696 }
2697 
2698 /*
2699  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2700  * (in which case its reference count is never incremented).
2701  */
2702 void swap_shmem_alloc(swp_entry_t entry)
2703 {
2704 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2705 }
2706 
2707 /*
2708  * Increase reference count of swap entry by 1.
2709  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2710  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2711  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2712  * might occur if a page table entry has got corrupted.
2713  */
2714 int swap_duplicate(swp_entry_t entry)
2715 {
2716 	int err = 0;
2717 
2718 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2719 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2720 	return err;
2721 }
2722 
2723 /*
2724  * @entry: swap entry for which we allocate swap cache.
2725  *
2726  * Called when allocating swap cache for existing swap entry,
2727  * This can return error codes. Returns 0 at success.
2728  * -EBUSY means there is a swap cache.
2729  * Note: return code is different from swap_duplicate().
2730  */
2731 int swapcache_prepare(swp_entry_t entry)
2732 {
2733 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2734 }
2735 
2736 struct swap_info_struct *page_swap_info(struct page *page)
2737 {
2738 	swp_entry_t swap = { .val = page_private(page) };
2739 	return swap_info[swp_type(swap)];
2740 }
2741 
2742 /*
2743  * out-of-line __page_file_ methods to avoid include hell.
2744  */
2745 struct address_space *__page_file_mapping(struct page *page)
2746 {
2747 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2748 	return page_swap_info(page)->swap_file->f_mapping;
2749 }
2750 EXPORT_SYMBOL_GPL(__page_file_mapping);
2751 
2752 pgoff_t __page_file_index(struct page *page)
2753 {
2754 	swp_entry_t swap = { .val = page_private(page) };
2755 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2756 	return swp_offset(swap);
2757 }
2758 EXPORT_SYMBOL_GPL(__page_file_index);
2759 
2760 /*
2761  * add_swap_count_continuation - called when a swap count is duplicated
2762  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2763  * page of the original vmalloc'ed swap_map, to hold the continuation count
2764  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2765  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2766  *
2767  * These continuation pages are seldom referenced: the common paths all work
2768  * on the original swap_map, only referring to a continuation page when the
2769  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2770  *
2771  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2772  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2773  * can be called after dropping locks.
2774  */
2775 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2776 {
2777 	struct swap_info_struct *si;
2778 	struct page *head;
2779 	struct page *page;
2780 	struct page *list_page;
2781 	pgoff_t offset;
2782 	unsigned char count;
2783 
2784 	/*
2785 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2786 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2787 	 */
2788 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2789 
2790 	si = swap_info_get(entry);
2791 	if (!si) {
2792 		/*
2793 		 * An acceptable race has occurred since the failing
2794 		 * __swap_duplicate(): the swap entry has been freed,
2795 		 * perhaps even the whole swap_map cleared for swapoff.
2796 		 */
2797 		goto outer;
2798 	}
2799 
2800 	offset = swp_offset(entry);
2801 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2802 
2803 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2804 		/*
2805 		 * The higher the swap count, the more likely it is that tasks
2806 		 * will race to add swap count continuation: we need to avoid
2807 		 * over-provisioning.
2808 		 */
2809 		goto out;
2810 	}
2811 
2812 	if (!page) {
2813 		spin_unlock(&si->lock);
2814 		return -ENOMEM;
2815 	}
2816 
2817 	/*
2818 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2819 	 * no architecture is using highmem pages for kernel page tables: so it
2820 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2821 	 */
2822 	head = vmalloc_to_page(si->swap_map + offset);
2823 	offset &= ~PAGE_MASK;
2824 
2825 	/*
2826 	 * Page allocation does not initialize the page's lru field,
2827 	 * but it does always reset its private field.
2828 	 */
2829 	if (!page_private(head)) {
2830 		BUG_ON(count & COUNT_CONTINUED);
2831 		INIT_LIST_HEAD(&head->lru);
2832 		set_page_private(head, SWP_CONTINUED);
2833 		si->flags |= SWP_CONTINUED;
2834 	}
2835 
2836 	list_for_each_entry(list_page, &head->lru, lru) {
2837 		unsigned char *map;
2838 
2839 		/*
2840 		 * If the previous map said no continuation, but we've found
2841 		 * a continuation page, free our allocation and use this one.
2842 		 */
2843 		if (!(count & COUNT_CONTINUED))
2844 			goto out;
2845 
2846 		map = kmap_atomic(list_page) + offset;
2847 		count = *map;
2848 		kunmap_atomic(map);
2849 
2850 		/*
2851 		 * If this continuation count now has some space in it,
2852 		 * free our allocation and use this one.
2853 		 */
2854 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2855 			goto out;
2856 	}
2857 
2858 	list_add_tail(&page->lru, &head->lru);
2859 	page = NULL;			/* now it's attached, don't free it */
2860 out:
2861 	spin_unlock(&si->lock);
2862 outer:
2863 	if (page)
2864 		__free_page(page);
2865 	return 0;
2866 }
2867 
2868 /*
2869  * swap_count_continued - when the original swap_map count is incremented
2870  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2871  * into, carry if so, or else fail until a new continuation page is allocated;
2872  * when the original swap_map count is decremented from 0 with continuation,
2873  * borrow from the continuation and report whether it still holds more.
2874  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2875  */
2876 static bool swap_count_continued(struct swap_info_struct *si,
2877 				 pgoff_t offset, unsigned char count)
2878 {
2879 	struct page *head;
2880 	struct page *page;
2881 	unsigned char *map;
2882 
2883 	head = vmalloc_to_page(si->swap_map + offset);
2884 	if (page_private(head) != SWP_CONTINUED) {
2885 		BUG_ON(count & COUNT_CONTINUED);
2886 		return false;		/* need to add count continuation */
2887 	}
2888 
2889 	offset &= ~PAGE_MASK;
2890 	page = list_entry(head->lru.next, struct page, lru);
2891 	map = kmap_atomic(page) + offset;
2892 
2893 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2894 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2895 
2896 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2897 		/*
2898 		 * Think of how you add 1 to 999
2899 		 */
2900 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2901 			kunmap_atomic(map);
2902 			page = list_entry(page->lru.next, struct page, lru);
2903 			BUG_ON(page == head);
2904 			map = kmap_atomic(page) + offset;
2905 		}
2906 		if (*map == SWAP_CONT_MAX) {
2907 			kunmap_atomic(map);
2908 			page = list_entry(page->lru.next, struct page, lru);
2909 			if (page == head)
2910 				return false;	/* add count continuation */
2911 			map = kmap_atomic(page) + offset;
2912 init_map:		*map = 0;		/* we didn't zero the page */
2913 		}
2914 		*map += 1;
2915 		kunmap_atomic(map);
2916 		page = list_entry(page->lru.prev, struct page, lru);
2917 		while (page != head) {
2918 			map = kmap_atomic(page) + offset;
2919 			*map = COUNT_CONTINUED;
2920 			kunmap_atomic(map);
2921 			page = list_entry(page->lru.prev, struct page, lru);
2922 		}
2923 		return true;			/* incremented */
2924 
2925 	} else {				/* decrementing */
2926 		/*
2927 		 * Think of how you subtract 1 from 1000
2928 		 */
2929 		BUG_ON(count != COUNT_CONTINUED);
2930 		while (*map == COUNT_CONTINUED) {
2931 			kunmap_atomic(map);
2932 			page = list_entry(page->lru.next, struct page, lru);
2933 			BUG_ON(page == head);
2934 			map = kmap_atomic(page) + offset;
2935 		}
2936 		BUG_ON(*map == 0);
2937 		*map -= 1;
2938 		if (*map == 0)
2939 			count = 0;
2940 		kunmap_atomic(map);
2941 		page = list_entry(page->lru.prev, struct page, lru);
2942 		while (page != head) {
2943 			map = kmap_atomic(page) + offset;
2944 			*map = SWAP_CONT_MAX | count;
2945 			count = COUNT_CONTINUED;
2946 			kunmap_atomic(map);
2947 			page = list_entry(page->lru.prev, struct page, lru);
2948 		}
2949 		return count == COUNT_CONTINUED;
2950 	}
2951 }
2952 
2953 /*
2954  * free_swap_count_continuations - swapoff free all the continuation pages
2955  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2956  */
2957 static void free_swap_count_continuations(struct swap_info_struct *si)
2958 {
2959 	pgoff_t offset;
2960 
2961 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2962 		struct page *head;
2963 		head = vmalloc_to_page(si->swap_map + offset);
2964 		if (page_private(head)) {
2965 			struct page *page, *next;
2966 
2967 			list_for_each_entry_safe(page, next, &head->lru, lru) {
2968 				list_del(&page->lru);
2969 				__free_page(page);
2970 			}
2971 		}
2972 	}
2973 }
2974