xref: /openbmc/linux/mm/swapfile.c (revision 64c70b1c)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/writeback.h>
20 #include <linux/proc_fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/rmap.h>
25 #include <linux/security.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mutex.h>
28 #include <linux/capability.h>
29 #include <linux/syscalls.h>
30 
31 #include <asm/pgtable.h>
32 #include <asm/tlbflush.h>
33 #include <linux/swapops.h>
34 
35 DEFINE_SPINLOCK(swap_lock);
36 unsigned int nr_swapfiles;
37 long total_swap_pages;
38 static int swap_overflow;
39 
40 static const char Bad_file[] = "Bad swap file entry ";
41 static const char Unused_file[] = "Unused swap file entry ";
42 static const char Bad_offset[] = "Bad swap offset entry ";
43 static const char Unused_offset[] = "Unused swap offset entry ";
44 
45 struct swap_list_t swap_list = {-1, -1};
46 
47 static struct swap_info_struct swap_info[MAX_SWAPFILES];
48 
49 static DEFINE_MUTEX(swapon_mutex);
50 
51 /*
52  * We need this because the bdev->unplug_fn can sleep and we cannot
53  * hold swap_lock while calling the unplug_fn. And swap_lock
54  * cannot be turned into a mutex.
55  */
56 static DECLARE_RWSEM(swap_unplug_sem);
57 
58 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
59 {
60 	swp_entry_t entry;
61 
62 	down_read(&swap_unplug_sem);
63 	entry.val = page_private(page);
64 	if (PageSwapCache(page)) {
65 		struct block_device *bdev = swap_info[swp_type(entry)].bdev;
66 		struct backing_dev_info *bdi;
67 
68 		/*
69 		 * If the page is removed from swapcache from under us (with a
70 		 * racy try_to_unuse/swapoff) we need an additional reference
71 		 * count to avoid reading garbage from page_private(page) above.
72 		 * If the WARN_ON triggers during a swapoff it maybe the race
73 		 * condition and it's harmless. However if it triggers without
74 		 * swapoff it signals a problem.
75 		 */
76 		WARN_ON(page_count(page) <= 1);
77 
78 		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
79 		blk_run_backing_dev(bdi, page);
80 	}
81 	up_read(&swap_unplug_sem);
82 }
83 
84 #define SWAPFILE_CLUSTER	256
85 #define LATENCY_LIMIT		256
86 
87 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
88 {
89 	unsigned long offset, last_in_cluster;
90 	int latency_ration = LATENCY_LIMIT;
91 
92 	/*
93 	 * We try to cluster swap pages by allocating them sequentially
94 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
95 	 * way, however, we resort to first-free allocation, starting
96 	 * a new cluster.  This prevents us from scattering swap pages
97 	 * all over the entire swap partition, so that we reduce
98 	 * overall disk seek times between swap pages.  -- sct
99 	 * But we do now try to find an empty cluster.  -Andrea
100 	 */
101 
102 	si->flags += SWP_SCANNING;
103 	if (unlikely(!si->cluster_nr)) {
104 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
105 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER)
106 			goto lowest;
107 		spin_unlock(&swap_lock);
108 
109 		offset = si->lowest_bit;
110 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
111 
112 		/* Locate the first empty (unaligned) cluster */
113 		for (; last_in_cluster <= si->highest_bit; offset++) {
114 			if (si->swap_map[offset])
115 				last_in_cluster = offset + SWAPFILE_CLUSTER;
116 			else if (offset == last_in_cluster) {
117 				spin_lock(&swap_lock);
118 				si->cluster_next = offset-SWAPFILE_CLUSTER+1;
119 				goto cluster;
120 			}
121 			if (unlikely(--latency_ration < 0)) {
122 				cond_resched();
123 				latency_ration = LATENCY_LIMIT;
124 			}
125 		}
126 		spin_lock(&swap_lock);
127 		goto lowest;
128 	}
129 
130 	si->cluster_nr--;
131 cluster:
132 	offset = si->cluster_next;
133 	if (offset > si->highest_bit)
134 lowest:		offset = si->lowest_bit;
135 checks:	if (!(si->flags & SWP_WRITEOK))
136 		goto no_page;
137 	if (!si->highest_bit)
138 		goto no_page;
139 	if (!si->swap_map[offset]) {
140 		if (offset == si->lowest_bit)
141 			si->lowest_bit++;
142 		if (offset == si->highest_bit)
143 			si->highest_bit--;
144 		si->inuse_pages++;
145 		if (si->inuse_pages == si->pages) {
146 			si->lowest_bit = si->max;
147 			si->highest_bit = 0;
148 		}
149 		si->swap_map[offset] = 1;
150 		si->cluster_next = offset + 1;
151 		si->flags -= SWP_SCANNING;
152 		return offset;
153 	}
154 
155 	spin_unlock(&swap_lock);
156 	while (++offset <= si->highest_bit) {
157 		if (!si->swap_map[offset]) {
158 			spin_lock(&swap_lock);
159 			goto checks;
160 		}
161 		if (unlikely(--latency_ration < 0)) {
162 			cond_resched();
163 			latency_ration = LATENCY_LIMIT;
164 		}
165 	}
166 	spin_lock(&swap_lock);
167 	goto lowest;
168 
169 no_page:
170 	si->flags -= SWP_SCANNING;
171 	return 0;
172 }
173 
174 swp_entry_t get_swap_page(void)
175 {
176 	struct swap_info_struct *si;
177 	pgoff_t offset;
178 	int type, next;
179 	int wrapped = 0;
180 
181 	spin_lock(&swap_lock);
182 	if (nr_swap_pages <= 0)
183 		goto noswap;
184 	nr_swap_pages--;
185 
186 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
187 		si = swap_info + type;
188 		next = si->next;
189 		if (next < 0 ||
190 		    (!wrapped && si->prio != swap_info[next].prio)) {
191 			next = swap_list.head;
192 			wrapped++;
193 		}
194 
195 		if (!si->highest_bit)
196 			continue;
197 		if (!(si->flags & SWP_WRITEOK))
198 			continue;
199 
200 		swap_list.next = next;
201 		offset = scan_swap_map(si);
202 		if (offset) {
203 			spin_unlock(&swap_lock);
204 			return swp_entry(type, offset);
205 		}
206 		next = swap_list.next;
207 	}
208 
209 	nr_swap_pages++;
210 noswap:
211 	spin_unlock(&swap_lock);
212 	return (swp_entry_t) {0};
213 }
214 
215 swp_entry_t get_swap_page_of_type(int type)
216 {
217 	struct swap_info_struct *si;
218 	pgoff_t offset;
219 
220 	spin_lock(&swap_lock);
221 	si = swap_info + type;
222 	if (si->flags & SWP_WRITEOK) {
223 		nr_swap_pages--;
224 		offset = scan_swap_map(si);
225 		if (offset) {
226 			spin_unlock(&swap_lock);
227 			return swp_entry(type, offset);
228 		}
229 		nr_swap_pages++;
230 	}
231 	spin_unlock(&swap_lock);
232 	return (swp_entry_t) {0};
233 }
234 
235 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
236 {
237 	struct swap_info_struct * p;
238 	unsigned long offset, type;
239 
240 	if (!entry.val)
241 		goto out;
242 	type = swp_type(entry);
243 	if (type >= nr_swapfiles)
244 		goto bad_nofile;
245 	p = & swap_info[type];
246 	if (!(p->flags & SWP_USED))
247 		goto bad_device;
248 	offset = swp_offset(entry);
249 	if (offset >= p->max)
250 		goto bad_offset;
251 	if (!p->swap_map[offset])
252 		goto bad_free;
253 	spin_lock(&swap_lock);
254 	return p;
255 
256 bad_free:
257 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
258 	goto out;
259 bad_offset:
260 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
261 	goto out;
262 bad_device:
263 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
264 	goto out;
265 bad_nofile:
266 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
267 out:
268 	return NULL;
269 }
270 
271 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
272 {
273 	int count = p->swap_map[offset];
274 
275 	if (count < SWAP_MAP_MAX) {
276 		count--;
277 		p->swap_map[offset] = count;
278 		if (!count) {
279 			if (offset < p->lowest_bit)
280 				p->lowest_bit = offset;
281 			if (offset > p->highest_bit)
282 				p->highest_bit = offset;
283 			if (p->prio > swap_info[swap_list.next].prio)
284 				swap_list.next = p - swap_info;
285 			nr_swap_pages++;
286 			p->inuse_pages--;
287 		}
288 	}
289 	return count;
290 }
291 
292 /*
293  * Caller has made sure that the swapdevice corresponding to entry
294  * is still around or has not been recycled.
295  */
296 void swap_free(swp_entry_t entry)
297 {
298 	struct swap_info_struct * p;
299 
300 	p = swap_info_get(entry);
301 	if (p) {
302 		swap_entry_free(p, swp_offset(entry));
303 		spin_unlock(&swap_lock);
304 	}
305 }
306 
307 /*
308  * How many references to page are currently swapped out?
309  */
310 static inline int page_swapcount(struct page *page)
311 {
312 	int count = 0;
313 	struct swap_info_struct *p;
314 	swp_entry_t entry;
315 
316 	entry.val = page_private(page);
317 	p = swap_info_get(entry);
318 	if (p) {
319 		/* Subtract the 1 for the swap cache itself */
320 		count = p->swap_map[swp_offset(entry)] - 1;
321 		spin_unlock(&swap_lock);
322 	}
323 	return count;
324 }
325 
326 /*
327  * We can use this swap cache entry directly
328  * if there are no other references to it.
329  */
330 int can_share_swap_page(struct page *page)
331 {
332 	int count;
333 
334 	BUG_ON(!PageLocked(page));
335 	count = page_mapcount(page);
336 	if (count <= 1 && PageSwapCache(page))
337 		count += page_swapcount(page);
338 	return count == 1;
339 }
340 
341 /*
342  * Work out if there are any other processes sharing this
343  * swap cache page. Free it if you can. Return success.
344  */
345 int remove_exclusive_swap_page(struct page *page)
346 {
347 	int retval;
348 	struct swap_info_struct * p;
349 	swp_entry_t entry;
350 
351 	BUG_ON(PagePrivate(page));
352 	BUG_ON(!PageLocked(page));
353 
354 	if (!PageSwapCache(page))
355 		return 0;
356 	if (PageWriteback(page))
357 		return 0;
358 	if (page_count(page) != 2) /* 2: us + cache */
359 		return 0;
360 
361 	entry.val = page_private(page);
362 	p = swap_info_get(entry);
363 	if (!p)
364 		return 0;
365 
366 	/* Is the only swap cache user the cache itself? */
367 	retval = 0;
368 	if (p->swap_map[swp_offset(entry)] == 1) {
369 		/* Recheck the page count with the swapcache lock held.. */
370 		write_lock_irq(&swapper_space.tree_lock);
371 		if ((page_count(page) == 2) && !PageWriteback(page)) {
372 			__delete_from_swap_cache(page);
373 			SetPageDirty(page);
374 			retval = 1;
375 		}
376 		write_unlock_irq(&swapper_space.tree_lock);
377 	}
378 	spin_unlock(&swap_lock);
379 
380 	if (retval) {
381 		swap_free(entry);
382 		page_cache_release(page);
383 	}
384 
385 	return retval;
386 }
387 
388 /*
389  * Free the swap entry like above, but also try to
390  * free the page cache entry if it is the last user.
391  */
392 void free_swap_and_cache(swp_entry_t entry)
393 {
394 	struct swap_info_struct * p;
395 	struct page *page = NULL;
396 
397 	if (is_migration_entry(entry))
398 		return;
399 
400 	p = swap_info_get(entry);
401 	if (p) {
402 		if (swap_entry_free(p, swp_offset(entry)) == 1) {
403 			page = find_get_page(&swapper_space, entry.val);
404 			if (page && unlikely(TestSetPageLocked(page))) {
405 				page_cache_release(page);
406 				page = NULL;
407 			}
408 		}
409 		spin_unlock(&swap_lock);
410 	}
411 	if (page) {
412 		int one_user;
413 
414 		BUG_ON(PagePrivate(page));
415 		one_user = (page_count(page) == 2);
416 		/* Only cache user (+us), or swap space full? Free it! */
417 		/* Also recheck PageSwapCache after page is locked (above) */
418 		if (PageSwapCache(page) && !PageWriteback(page) &&
419 					(one_user || vm_swap_full())) {
420 			delete_from_swap_cache(page);
421 			SetPageDirty(page);
422 		}
423 		unlock_page(page);
424 		page_cache_release(page);
425 	}
426 }
427 
428 #ifdef CONFIG_SOFTWARE_SUSPEND
429 /*
430  * Find the swap type that corresponds to given device (if any).
431  *
432  * @offset - number of the PAGE_SIZE-sized block of the device, starting
433  * from 0, in which the swap header is expected to be located.
434  *
435  * This is needed for the suspend to disk (aka swsusp).
436  */
437 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
438 {
439 	struct block_device *bdev = NULL;
440 	int i;
441 
442 	if (device)
443 		bdev = bdget(device);
444 
445 	spin_lock(&swap_lock);
446 	for (i = 0; i < nr_swapfiles; i++) {
447 		struct swap_info_struct *sis = swap_info + i;
448 
449 		if (!(sis->flags & SWP_WRITEOK))
450 			continue;
451 
452 		if (!bdev) {
453 			if (bdev_p)
454 				*bdev_p = sis->bdev;
455 
456 			spin_unlock(&swap_lock);
457 			return i;
458 		}
459 		if (bdev == sis->bdev) {
460 			struct swap_extent *se;
461 
462 			se = list_entry(sis->extent_list.next,
463 					struct swap_extent, list);
464 			if (se->start_block == offset) {
465 				if (bdev_p)
466 					*bdev_p = sis->bdev;
467 
468 				spin_unlock(&swap_lock);
469 				bdput(bdev);
470 				return i;
471 			}
472 		}
473 	}
474 	spin_unlock(&swap_lock);
475 	if (bdev)
476 		bdput(bdev);
477 
478 	return -ENODEV;
479 }
480 
481 /*
482  * Return either the total number of swap pages of given type, or the number
483  * of free pages of that type (depending on @free)
484  *
485  * This is needed for software suspend
486  */
487 unsigned int count_swap_pages(int type, int free)
488 {
489 	unsigned int n = 0;
490 
491 	if (type < nr_swapfiles) {
492 		spin_lock(&swap_lock);
493 		if (swap_info[type].flags & SWP_WRITEOK) {
494 			n = swap_info[type].pages;
495 			if (free)
496 				n -= swap_info[type].inuse_pages;
497 		}
498 		spin_unlock(&swap_lock);
499 	}
500 	return n;
501 }
502 #endif
503 
504 /*
505  * No need to decide whether this PTE shares the swap entry with others,
506  * just let do_wp_page work it out if a write is requested later - to
507  * force COW, vm_page_prot omits write permission from any private vma.
508  */
509 static void unuse_pte(struct vm_area_struct *vma, pte_t *pte,
510 		unsigned long addr, swp_entry_t entry, struct page *page)
511 {
512 	inc_mm_counter(vma->vm_mm, anon_rss);
513 	get_page(page);
514 	set_pte_at(vma->vm_mm, addr, pte,
515 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
516 	page_add_anon_rmap(page, vma, addr);
517 	swap_free(entry);
518 	/*
519 	 * Move the page to the active list so it is not
520 	 * immediately swapped out again after swapon.
521 	 */
522 	activate_page(page);
523 }
524 
525 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
526 				unsigned long addr, unsigned long end,
527 				swp_entry_t entry, struct page *page)
528 {
529 	pte_t swp_pte = swp_entry_to_pte(entry);
530 	pte_t *pte;
531 	spinlock_t *ptl;
532 	int found = 0;
533 
534 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
535 	do {
536 		/*
537 		 * swapoff spends a _lot_ of time in this loop!
538 		 * Test inline before going to call unuse_pte.
539 		 */
540 		if (unlikely(pte_same(*pte, swp_pte))) {
541 			unuse_pte(vma, pte++, addr, entry, page);
542 			found = 1;
543 			break;
544 		}
545 	} while (pte++, addr += PAGE_SIZE, addr != end);
546 	pte_unmap_unlock(pte - 1, ptl);
547 	return found;
548 }
549 
550 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
551 				unsigned long addr, unsigned long end,
552 				swp_entry_t entry, struct page *page)
553 {
554 	pmd_t *pmd;
555 	unsigned long next;
556 
557 	pmd = pmd_offset(pud, addr);
558 	do {
559 		next = pmd_addr_end(addr, end);
560 		if (pmd_none_or_clear_bad(pmd))
561 			continue;
562 		if (unuse_pte_range(vma, pmd, addr, next, entry, page))
563 			return 1;
564 	} while (pmd++, addr = next, addr != end);
565 	return 0;
566 }
567 
568 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
569 				unsigned long addr, unsigned long end,
570 				swp_entry_t entry, struct page *page)
571 {
572 	pud_t *pud;
573 	unsigned long next;
574 
575 	pud = pud_offset(pgd, addr);
576 	do {
577 		next = pud_addr_end(addr, end);
578 		if (pud_none_or_clear_bad(pud))
579 			continue;
580 		if (unuse_pmd_range(vma, pud, addr, next, entry, page))
581 			return 1;
582 	} while (pud++, addr = next, addr != end);
583 	return 0;
584 }
585 
586 static int unuse_vma(struct vm_area_struct *vma,
587 				swp_entry_t entry, struct page *page)
588 {
589 	pgd_t *pgd;
590 	unsigned long addr, end, next;
591 
592 	if (page->mapping) {
593 		addr = page_address_in_vma(page, vma);
594 		if (addr == -EFAULT)
595 			return 0;
596 		else
597 			end = addr + PAGE_SIZE;
598 	} else {
599 		addr = vma->vm_start;
600 		end = vma->vm_end;
601 	}
602 
603 	pgd = pgd_offset(vma->vm_mm, addr);
604 	do {
605 		next = pgd_addr_end(addr, end);
606 		if (pgd_none_or_clear_bad(pgd))
607 			continue;
608 		if (unuse_pud_range(vma, pgd, addr, next, entry, page))
609 			return 1;
610 	} while (pgd++, addr = next, addr != end);
611 	return 0;
612 }
613 
614 static int unuse_mm(struct mm_struct *mm,
615 				swp_entry_t entry, struct page *page)
616 {
617 	struct vm_area_struct *vma;
618 
619 	if (!down_read_trylock(&mm->mmap_sem)) {
620 		/*
621 		 * Activate page so shrink_cache is unlikely to unmap its
622 		 * ptes while lock is dropped, so swapoff can make progress.
623 		 */
624 		activate_page(page);
625 		unlock_page(page);
626 		down_read(&mm->mmap_sem);
627 		lock_page(page);
628 	}
629 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
630 		if (vma->anon_vma && unuse_vma(vma, entry, page))
631 			break;
632 	}
633 	up_read(&mm->mmap_sem);
634 	/*
635 	 * Currently unuse_mm cannot fail, but leave error handling
636 	 * at call sites for now, since we change it from time to time.
637 	 */
638 	return 0;
639 }
640 
641 /*
642  * Scan swap_map from current position to next entry still in use.
643  * Recycle to start on reaching the end, returning 0 when empty.
644  */
645 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
646 					unsigned int prev)
647 {
648 	unsigned int max = si->max;
649 	unsigned int i = prev;
650 	int count;
651 
652 	/*
653 	 * No need for swap_lock here: we're just looking
654 	 * for whether an entry is in use, not modifying it; false
655 	 * hits are okay, and sys_swapoff() has already prevented new
656 	 * allocations from this area (while holding swap_lock).
657 	 */
658 	for (;;) {
659 		if (++i >= max) {
660 			if (!prev) {
661 				i = 0;
662 				break;
663 			}
664 			/*
665 			 * No entries in use at top of swap_map,
666 			 * loop back to start and recheck there.
667 			 */
668 			max = prev + 1;
669 			prev = 0;
670 			i = 1;
671 		}
672 		count = si->swap_map[i];
673 		if (count && count != SWAP_MAP_BAD)
674 			break;
675 	}
676 	return i;
677 }
678 
679 /*
680  * We completely avoid races by reading each swap page in advance,
681  * and then search for the process using it.  All the necessary
682  * page table adjustments can then be made atomically.
683  */
684 static int try_to_unuse(unsigned int type)
685 {
686 	struct swap_info_struct * si = &swap_info[type];
687 	struct mm_struct *start_mm;
688 	unsigned short *swap_map;
689 	unsigned short swcount;
690 	struct page *page;
691 	swp_entry_t entry;
692 	unsigned int i = 0;
693 	int retval = 0;
694 	int reset_overflow = 0;
695 	int shmem;
696 
697 	/*
698 	 * When searching mms for an entry, a good strategy is to
699 	 * start at the first mm we freed the previous entry from
700 	 * (though actually we don't notice whether we or coincidence
701 	 * freed the entry).  Initialize this start_mm with a hold.
702 	 *
703 	 * A simpler strategy would be to start at the last mm we
704 	 * freed the previous entry from; but that would take less
705 	 * advantage of mmlist ordering, which clusters forked mms
706 	 * together, child after parent.  If we race with dup_mmap(), we
707 	 * prefer to resolve parent before child, lest we miss entries
708 	 * duplicated after we scanned child: using last mm would invert
709 	 * that.  Though it's only a serious concern when an overflowed
710 	 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
711 	 */
712 	start_mm = &init_mm;
713 	atomic_inc(&init_mm.mm_users);
714 
715 	/*
716 	 * Keep on scanning until all entries have gone.  Usually,
717 	 * one pass through swap_map is enough, but not necessarily:
718 	 * there are races when an instance of an entry might be missed.
719 	 */
720 	while ((i = find_next_to_unuse(si, i)) != 0) {
721 		if (signal_pending(current)) {
722 			retval = -EINTR;
723 			break;
724 		}
725 
726 		/*
727 		 * Get a page for the entry, using the existing swap
728 		 * cache page if there is one.  Otherwise, get a clean
729 		 * page and read the swap into it.
730 		 */
731 		swap_map = &si->swap_map[i];
732 		entry = swp_entry(type, i);
733 		page = read_swap_cache_async(entry, NULL, 0);
734 		if (!page) {
735 			/*
736 			 * Either swap_duplicate() failed because entry
737 			 * has been freed independently, and will not be
738 			 * reused since sys_swapoff() already disabled
739 			 * allocation from here, or alloc_page() failed.
740 			 */
741 			if (!*swap_map)
742 				continue;
743 			retval = -ENOMEM;
744 			break;
745 		}
746 
747 		/*
748 		 * Don't hold on to start_mm if it looks like exiting.
749 		 */
750 		if (atomic_read(&start_mm->mm_users) == 1) {
751 			mmput(start_mm);
752 			start_mm = &init_mm;
753 			atomic_inc(&init_mm.mm_users);
754 		}
755 
756 		/*
757 		 * Wait for and lock page.  When do_swap_page races with
758 		 * try_to_unuse, do_swap_page can handle the fault much
759 		 * faster than try_to_unuse can locate the entry.  This
760 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
761 		 * defer to do_swap_page in such a case - in some tests,
762 		 * do_swap_page and try_to_unuse repeatedly compete.
763 		 */
764 		wait_on_page_locked(page);
765 		wait_on_page_writeback(page);
766 		lock_page(page);
767 		wait_on_page_writeback(page);
768 
769 		/*
770 		 * Remove all references to entry.
771 		 * Whenever we reach init_mm, there's no address space
772 		 * to search, but use it as a reminder to search shmem.
773 		 */
774 		shmem = 0;
775 		swcount = *swap_map;
776 		if (swcount > 1) {
777 			if (start_mm == &init_mm)
778 				shmem = shmem_unuse(entry, page);
779 			else
780 				retval = unuse_mm(start_mm, entry, page);
781 		}
782 		if (*swap_map > 1) {
783 			int set_start_mm = (*swap_map >= swcount);
784 			struct list_head *p = &start_mm->mmlist;
785 			struct mm_struct *new_start_mm = start_mm;
786 			struct mm_struct *prev_mm = start_mm;
787 			struct mm_struct *mm;
788 
789 			atomic_inc(&new_start_mm->mm_users);
790 			atomic_inc(&prev_mm->mm_users);
791 			spin_lock(&mmlist_lock);
792 			while (*swap_map > 1 && !retval &&
793 					(p = p->next) != &start_mm->mmlist) {
794 				mm = list_entry(p, struct mm_struct, mmlist);
795 				if (!atomic_inc_not_zero(&mm->mm_users))
796 					continue;
797 				spin_unlock(&mmlist_lock);
798 				mmput(prev_mm);
799 				prev_mm = mm;
800 
801 				cond_resched();
802 
803 				swcount = *swap_map;
804 				if (swcount <= 1)
805 					;
806 				else if (mm == &init_mm) {
807 					set_start_mm = 1;
808 					shmem = shmem_unuse(entry, page);
809 				} else
810 					retval = unuse_mm(mm, entry, page);
811 				if (set_start_mm && *swap_map < swcount) {
812 					mmput(new_start_mm);
813 					atomic_inc(&mm->mm_users);
814 					new_start_mm = mm;
815 					set_start_mm = 0;
816 				}
817 				spin_lock(&mmlist_lock);
818 			}
819 			spin_unlock(&mmlist_lock);
820 			mmput(prev_mm);
821 			mmput(start_mm);
822 			start_mm = new_start_mm;
823 		}
824 		if (retval) {
825 			unlock_page(page);
826 			page_cache_release(page);
827 			break;
828 		}
829 
830 		/*
831 		 * How could swap count reach 0x7fff when the maximum
832 		 * pid is 0x7fff, and there's no way to repeat a swap
833 		 * page within an mm (except in shmem, where it's the
834 		 * shared object which takes the reference count)?
835 		 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
836 		 *
837 		 * If that's wrong, then we should worry more about
838 		 * exit_mmap() and do_munmap() cases described above:
839 		 * we might be resetting SWAP_MAP_MAX too early here.
840 		 * We know "Undead"s can happen, they're okay, so don't
841 		 * report them; but do report if we reset SWAP_MAP_MAX.
842 		 */
843 		if (*swap_map == SWAP_MAP_MAX) {
844 			spin_lock(&swap_lock);
845 			*swap_map = 1;
846 			spin_unlock(&swap_lock);
847 			reset_overflow = 1;
848 		}
849 
850 		/*
851 		 * If a reference remains (rare), we would like to leave
852 		 * the page in the swap cache; but try_to_unmap could
853 		 * then re-duplicate the entry once we drop page lock,
854 		 * so we might loop indefinitely; also, that page could
855 		 * not be swapped out to other storage meanwhile.  So:
856 		 * delete from cache even if there's another reference,
857 		 * after ensuring that the data has been saved to disk -
858 		 * since if the reference remains (rarer), it will be
859 		 * read from disk into another page.  Splitting into two
860 		 * pages would be incorrect if swap supported "shared
861 		 * private" pages, but they are handled by tmpfs files.
862 		 *
863 		 * Note shmem_unuse already deleted a swappage from
864 		 * the swap cache, unless the move to filepage failed:
865 		 * in which case it left swappage in cache, lowered its
866 		 * swap count to pass quickly through the loops above,
867 		 * and now we must reincrement count to try again later.
868 		 */
869 		if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
870 			struct writeback_control wbc = {
871 				.sync_mode = WB_SYNC_NONE,
872 			};
873 
874 			swap_writepage(page, &wbc);
875 			lock_page(page);
876 			wait_on_page_writeback(page);
877 		}
878 		if (PageSwapCache(page)) {
879 			if (shmem)
880 				swap_duplicate(entry);
881 			else
882 				delete_from_swap_cache(page);
883 		}
884 
885 		/*
886 		 * So we could skip searching mms once swap count went
887 		 * to 1, we did not mark any present ptes as dirty: must
888 		 * mark page dirty so shrink_list will preserve it.
889 		 */
890 		SetPageDirty(page);
891 		unlock_page(page);
892 		page_cache_release(page);
893 
894 		/*
895 		 * Make sure that we aren't completely killing
896 		 * interactive performance.
897 		 */
898 		cond_resched();
899 	}
900 
901 	mmput(start_mm);
902 	if (reset_overflow) {
903 		printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
904 		swap_overflow = 0;
905 	}
906 	return retval;
907 }
908 
909 /*
910  * After a successful try_to_unuse, if no swap is now in use, we know
911  * we can empty the mmlist.  swap_lock must be held on entry and exit.
912  * Note that mmlist_lock nests inside swap_lock, and an mm must be
913  * added to the mmlist just after page_duplicate - before would be racy.
914  */
915 static void drain_mmlist(void)
916 {
917 	struct list_head *p, *next;
918 	unsigned int i;
919 
920 	for (i = 0; i < nr_swapfiles; i++)
921 		if (swap_info[i].inuse_pages)
922 			return;
923 	spin_lock(&mmlist_lock);
924 	list_for_each_safe(p, next, &init_mm.mmlist)
925 		list_del_init(p);
926 	spin_unlock(&mmlist_lock);
927 }
928 
929 /*
930  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
931  * corresponds to page offset `offset'.
932  */
933 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
934 {
935 	struct swap_extent *se = sis->curr_swap_extent;
936 	struct swap_extent *start_se = se;
937 
938 	for ( ; ; ) {
939 		struct list_head *lh;
940 
941 		if (se->start_page <= offset &&
942 				offset < (se->start_page + se->nr_pages)) {
943 			return se->start_block + (offset - se->start_page);
944 		}
945 		lh = se->list.next;
946 		if (lh == &sis->extent_list)
947 			lh = lh->next;
948 		se = list_entry(lh, struct swap_extent, list);
949 		sis->curr_swap_extent = se;
950 		BUG_ON(se == start_se);		/* It *must* be present */
951 	}
952 }
953 
954 #ifdef CONFIG_SOFTWARE_SUSPEND
955 /*
956  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
957  * corresponding to given index in swap_info (swap type).
958  */
959 sector_t swapdev_block(int swap_type, pgoff_t offset)
960 {
961 	struct swap_info_struct *sis;
962 
963 	if (swap_type >= nr_swapfiles)
964 		return 0;
965 
966 	sis = swap_info + swap_type;
967 	return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
968 }
969 #endif /* CONFIG_SOFTWARE_SUSPEND */
970 
971 /*
972  * Free all of a swapdev's extent information
973  */
974 static void destroy_swap_extents(struct swap_info_struct *sis)
975 {
976 	while (!list_empty(&sis->extent_list)) {
977 		struct swap_extent *se;
978 
979 		se = list_entry(sis->extent_list.next,
980 				struct swap_extent, list);
981 		list_del(&se->list);
982 		kfree(se);
983 	}
984 }
985 
986 /*
987  * Add a block range (and the corresponding page range) into this swapdev's
988  * extent list.  The extent list is kept sorted in page order.
989  *
990  * This function rather assumes that it is called in ascending page order.
991  */
992 static int
993 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
994 		unsigned long nr_pages, sector_t start_block)
995 {
996 	struct swap_extent *se;
997 	struct swap_extent *new_se;
998 	struct list_head *lh;
999 
1000 	lh = sis->extent_list.prev;	/* The highest page extent */
1001 	if (lh != &sis->extent_list) {
1002 		se = list_entry(lh, struct swap_extent, list);
1003 		BUG_ON(se->start_page + se->nr_pages != start_page);
1004 		if (se->start_block + se->nr_pages == start_block) {
1005 			/* Merge it */
1006 			se->nr_pages += nr_pages;
1007 			return 0;
1008 		}
1009 	}
1010 
1011 	/*
1012 	 * No merge.  Insert a new extent, preserving ordering.
1013 	 */
1014 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1015 	if (new_se == NULL)
1016 		return -ENOMEM;
1017 	new_se->start_page = start_page;
1018 	new_se->nr_pages = nr_pages;
1019 	new_se->start_block = start_block;
1020 
1021 	list_add_tail(&new_se->list, &sis->extent_list);
1022 	return 1;
1023 }
1024 
1025 /*
1026  * A `swap extent' is a simple thing which maps a contiguous range of pages
1027  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1028  * is built at swapon time and is then used at swap_writepage/swap_readpage
1029  * time for locating where on disk a page belongs.
1030  *
1031  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1032  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1033  * swap files identically.
1034  *
1035  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1036  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1037  * swapfiles are handled *identically* after swapon time.
1038  *
1039  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1040  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1041  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1042  * requirements, they are simply tossed out - we will never use those blocks
1043  * for swapping.
1044  *
1045  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1046  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1047  * which will scribble on the fs.
1048  *
1049  * The amount of disk space which a single swap extent represents varies.
1050  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1051  * extents in the list.  To avoid much list walking, we cache the previous
1052  * search location in `curr_swap_extent', and start new searches from there.
1053  * This is extremely effective.  The average number of iterations in
1054  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1055  */
1056 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1057 {
1058 	struct inode *inode;
1059 	unsigned blocks_per_page;
1060 	unsigned long page_no;
1061 	unsigned blkbits;
1062 	sector_t probe_block;
1063 	sector_t last_block;
1064 	sector_t lowest_block = -1;
1065 	sector_t highest_block = 0;
1066 	int nr_extents = 0;
1067 	int ret;
1068 
1069 	inode = sis->swap_file->f_mapping->host;
1070 	if (S_ISBLK(inode->i_mode)) {
1071 		ret = add_swap_extent(sis, 0, sis->max, 0);
1072 		*span = sis->pages;
1073 		goto done;
1074 	}
1075 
1076 	blkbits = inode->i_blkbits;
1077 	blocks_per_page = PAGE_SIZE >> blkbits;
1078 
1079 	/*
1080 	 * Map all the blocks into the extent list.  This code doesn't try
1081 	 * to be very smart.
1082 	 */
1083 	probe_block = 0;
1084 	page_no = 0;
1085 	last_block = i_size_read(inode) >> blkbits;
1086 	while ((probe_block + blocks_per_page) <= last_block &&
1087 			page_no < sis->max) {
1088 		unsigned block_in_page;
1089 		sector_t first_block;
1090 
1091 		first_block = bmap(inode, probe_block);
1092 		if (first_block == 0)
1093 			goto bad_bmap;
1094 
1095 		/*
1096 		 * It must be PAGE_SIZE aligned on-disk
1097 		 */
1098 		if (first_block & (blocks_per_page - 1)) {
1099 			probe_block++;
1100 			goto reprobe;
1101 		}
1102 
1103 		for (block_in_page = 1; block_in_page < blocks_per_page;
1104 					block_in_page++) {
1105 			sector_t block;
1106 
1107 			block = bmap(inode, probe_block + block_in_page);
1108 			if (block == 0)
1109 				goto bad_bmap;
1110 			if (block != first_block + block_in_page) {
1111 				/* Discontiguity */
1112 				probe_block++;
1113 				goto reprobe;
1114 			}
1115 		}
1116 
1117 		first_block >>= (PAGE_SHIFT - blkbits);
1118 		if (page_no) {	/* exclude the header page */
1119 			if (first_block < lowest_block)
1120 				lowest_block = first_block;
1121 			if (first_block > highest_block)
1122 				highest_block = first_block;
1123 		}
1124 
1125 		/*
1126 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1127 		 */
1128 		ret = add_swap_extent(sis, page_no, 1, first_block);
1129 		if (ret < 0)
1130 			goto out;
1131 		nr_extents += ret;
1132 		page_no++;
1133 		probe_block += blocks_per_page;
1134 reprobe:
1135 		continue;
1136 	}
1137 	ret = nr_extents;
1138 	*span = 1 + highest_block - lowest_block;
1139 	if (page_no == 0)
1140 		page_no = 1;	/* force Empty message */
1141 	sis->max = page_no;
1142 	sis->pages = page_no - 1;
1143 	sis->highest_bit = page_no - 1;
1144 done:
1145 	sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1146 					struct swap_extent, list);
1147 	goto out;
1148 bad_bmap:
1149 	printk(KERN_ERR "swapon: swapfile has holes\n");
1150 	ret = -EINVAL;
1151 out:
1152 	return ret;
1153 }
1154 
1155 #if 0	/* We don't need this yet */
1156 #include <linux/backing-dev.h>
1157 int page_queue_congested(struct page *page)
1158 {
1159 	struct backing_dev_info *bdi;
1160 
1161 	BUG_ON(!PageLocked(page));	/* It pins the swap_info_struct */
1162 
1163 	if (PageSwapCache(page)) {
1164 		swp_entry_t entry = { .val = page_private(page) };
1165 		struct swap_info_struct *sis;
1166 
1167 		sis = get_swap_info_struct(swp_type(entry));
1168 		bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1169 	} else
1170 		bdi = page->mapping->backing_dev_info;
1171 	return bdi_write_congested(bdi);
1172 }
1173 #endif
1174 
1175 asmlinkage long sys_swapoff(const char __user * specialfile)
1176 {
1177 	struct swap_info_struct * p = NULL;
1178 	unsigned short *swap_map;
1179 	struct file *swap_file, *victim;
1180 	struct address_space *mapping;
1181 	struct inode *inode;
1182 	char * pathname;
1183 	int i, type, prev;
1184 	int err;
1185 
1186 	if (!capable(CAP_SYS_ADMIN))
1187 		return -EPERM;
1188 
1189 	pathname = getname(specialfile);
1190 	err = PTR_ERR(pathname);
1191 	if (IS_ERR(pathname))
1192 		goto out;
1193 
1194 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1195 	putname(pathname);
1196 	err = PTR_ERR(victim);
1197 	if (IS_ERR(victim))
1198 		goto out;
1199 
1200 	mapping = victim->f_mapping;
1201 	prev = -1;
1202 	spin_lock(&swap_lock);
1203 	for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1204 		p = swap_info + type;
1205 		if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) {
1206 			if (p->swap_file->f_mapping == mapping)
1207 				break;
1208 		}
1209 		prev = type;
1210 	}
1211 	if (type < 0) {
1212 		err = -EINVAL;
1213 		spin_unlock(&swap_lock);
1214 		goto out_dput;
1215 	}
1216 	if (!security_vm_enough_memory(p->pages))
1217 		vm_unacct_memory(p->pages);
1218 	else {
1219 		err = -ENOMEM;
1220 		spin_unlock(&swap_lock);
1221 		goto out_dput;
1222 	}
1223 	if (prev < 0) {
1224 		swap_list.head = p->next;
1225 	} else {
1226 		swap_info[prev].next = p->next;
1227 	}
1228 	if (type == swap_list.next) {
1229 		/* just pick something that's safe... */
1230 		swap_list.next = swap_list.head;
1231 	}
1232 	nr_swap_pages -= p->pages;
1233 	total_swap_pages -= p->pages;
1234 	p->flags &= ~SWP_WRITEOK;
1235 	spin_unlock(&swap_lock);
1236 
1237 	current->flags |= PF_SWAPOFF;
1238 	err = try_to_unuse(type);
1239 	current->flags &= ~PF_SWAPOFF;
1240 
1241 	if (err) {
1242 		/* re-insert swap space back into swap_list */
1243 		spin_lock(&swap_lock);
1244 		for (prev = -1, i = swap_list.head; i >= 0; prev = i, i = swap_info[i].next)
1245 			if (p->prio >= swap_info[i].prio)
1246 				break;
1247 		p->next = i;
1248 		if (prev < 0)
1249 			swap_list.head = swap_list.next = p - swap_info;
1250 		else
1251 			swap_info[prev].next = p - swap_info;
1252 		nr_swap_pages += p->pages;
1253 		total_swap_pages += p->pages;
1254 		p->flags |= SWP_WRITEOK;
1255 		spin_unlock(&swap_lock);
1256 		goto out_dput;
1257 	}
1258 
1259 	/* wait for any unplug function to finish */
1260 	down_write(&swap_unplug_sem);
1261 	up_write(&swap_unplug_sem);
1262 
1263 	destroy_swap_extents(p);
1264 	mutex_lock(&swapon_mutex);
1265 	spin_lock(&swap_lock);
1266 	drain_mmlist();
1267 
1268 	/* wait for anyone still in scan_swap_map */
1269 	p->highest_bit = 0;		/* cuts scans short */
1270 	while (p->flags >= SWP_SCANNING) {
1271 		spin_unlock(&swap_lock);
1272 		schedule_timeout_uninterruptible(1);
1273 		spin_lock(&swap_lock);
1274 	}
1275 
1276 	swap_file = p->swap_file;
1277 	p->swap_file = NULL;
1278 	p->max = 0;
1279 	swap_map = p->swap_map;
1280 	p->swap_map = NULL;
1281 	p->flags = 0;
1282 	spin_unlock(&swap_lock);
1283 	mutex_unlock(&swapon_mutex);
1284 	vfree(swap_map);
1285 	inode = mapping->host;
1286 	if (S_ISBLK(inode->i_mode)) {
1287 		struct block_device *bdev = I_BDEV(inode);
1288 		set_blocksize(bdev, p->old_block_size);
1289 		bd_release(bdev);
1290 	} else {
1291 		mutex_lock(&inode->i_mutex);
1292 		inode->i_flags &= ~S_SWAPFILE;
1293 		mutex_unlock(&inode->i_mutex);
1294 	}
1295 	filp_close(swap_file, NULL);
1296 	err = 0;
1297 
1298 out_dput:
1299 	filp_close(victim, NULL);
1300 out:
1301 	return err;
1302 }
1303 
1304 #ifdef CONFIG_PROC_FS
1305 /* iterator */
1306 static void *swap_start(struct seq_file *swap, loff_t *pos)
1307 {
1308 	struct swap_info_struct *ptr = swap_info;
1309 	int i;
1310 	loff_t l = *pos;
1311 
1312 	mutex_lock(&swapon_mutex);
1313 
1314 	if (!l)
1315 		return SEQ_START_TOKEN;
1316 
1317 	for (i = 0; i < nr_swapfiles; i++, ptr++) {
1318 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1319 			continue;
1320 		if (!--l)
1321 			return ptr;
1322 	}
1323 
1324 	return NULL;
1325 }
1326 
1327 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1328 {
1329 	struct swap_info_struct *ptr;
1330 	struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1331 
1332 	if (v == SEQ_START_TOKEN)
1333 		ptr = swap_info;
1334 	else {
1335 		ptr = v;
1336 		ptr++;
1337 	}
1338 
1339 	for (; ptr < endptr; ptr++) {
1340 		if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1341 			continue;
1342 		++*pos;
1343 		return ptr;
1344 	}
1345 
1346 	return NULL;
1347 }
1348 
1349 static void swap_stop(struct seq_file *swap, void *v)
1350 {
1351 	mutex_unlock(&swapon_mutex);
1352 }
1353 
1354 static int swap_show(struct seq_file *swap, void *v)
1355 {
1356 	struct swap_info_struct *ptr = v;
1357 	struct file *file;
1358 	int len;
1359 
1360 	if (ptr == SEQ_START_TOKEN) {
1361 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1362 		return 0;
1363 	}
1364 
1365 	file = ptr->swap_file;
1366 	len = seq_path(swap, file->f_path.mnt, file->f_path.dentry, " \t\n\\");
1367 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1368 		       len < 40 ? 40 - len : 1, " ",
1369 		       S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1370 				"partition" : "file\t",
1371 		       ptr->pages << (PAGE_SHIFT - 10),
1372 		       ptr->inuse_pages << (PAGE_SHIFT - 10),
1373 		       ptr->prio);
1374 	return 0;
1375 }
1376 
1377 static const struct seq_operations swaps_op = {
1378 	.start =	swap_start,
1379 	.next =		swap_next,
1380 	.stop =		swap_stop,
1381 	.show =		swap_show
1382 };
1383 
1384 static int swaps_open(struct inode *inode, struct file *file)
1385 {
1386 	return seq_open(file, &swaps_op);
1387 }
1388 
1389 static const struct file_operations proc_swaps_operations = {
1390 	.open		= swaps_open,
1391 	.read		= seq_read,
1392 	.llseek		= seq_lseek,
1393 	.release	= seq_release,
1394 };
1395 
1396 static int __init procswaps_init(void)
1397 {
1398 	struct proc_dir_entry *entry;
1399 
1400 	entry = create_proc_entry("swaps", 0, NULL);
1401 	if (entry)
1402 		entry->proc_fops = &proc_swaps_operations;
1403 	return 0;
1404 }
1405 __initcall(procswaps_init);
1406 #endif /* CONFIG_PROC_FS */
1407 
1408 /*
1409  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1410  *
1411  * The swapon system call
1412  */
1413 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1414 {
1415 	struct swap_info_struct * p;
1416 	char *name = NULL;
1417 	struct block_device *bdev = NULL;
1418 	struct file *swap_file = NULL;
1419 	struct address_space *mapping;
1420 	unsigned int type;
1421 	int i, prev;
1422 	int error;
1423 	static int least_priority;
1424 	union swap_header *swap_header = NULL;
1425 	int swap_header_version;
1426 	unsigned int nr_good_pages = 0;
1427 	int nr_extents = 0;
1428 	sector_t span;
1429 	unsigned long maxpages = 1;
1430 	int swapfilesize;
1431 	unsigned short *swap_map;
1432 	struct page *page = NULL;
1433 	struct inode *inode = NULL;
1434 	int did_down = 0;
1435 
1436 	if (!capable(CAP_SYS_ADMIN))
1437 		return -EPERM;
1438 	spin_lock(&swap_lock);
1439 	p = swap_info;
1440 	for (type = 0 ; type < nr_swapfiles ; type++,p++)
1441 		if (!(p->flags & SWP_USED))
1442 			break;
1443 	error = -EPERM;
1444 	if (type >= MAX_SWAPFILES) {
1445 		spin_unlock(&swap_lock);
1446 		goto out;
1447 	}
1448 	if (type >= nr_swapfiles)
1449 		nr_swapfiles = type+1;
1450 	INIT_LIST_HEAD(&p->extent_list);
1451 	p->flags = SWP_USED;
1452 	p->swap_file = NULL;
1453 	p->old_block_size = 0;
1454 	p->swap_map = NULL;
1455 	p->lowest_bit = 0;
1456 	p->highest_bit = 0;
1457 	p->cluster_nr = 0;
1458 	p->inuse_pages = 0;
1459 	p->next = -1;
1460 	if (swap_flags & SWAP_FLAG_PREFER) {
1461 		p->prio =
1462 		  (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;
1463 	} else {
1464 		p->prio = --least_priority;
1465 	}
1466 	spin_unlock(&swap_lock);
1467 	name = getname(specialfile);
1468 	error = PTR_ERR(name);
1469 	if (IS_ERR(name)) {
1470 		name = NULL;
1471 		goto bad_swap_2;
1472 	}
1473 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1474 	error = PTR_ERR(swap_file);
1475 	if (IS_ERR(swap_file)) {
1476 		swap_file = NULL;
1477 		goto bad_swap_2;
1478 	}
1479 
1480 	p->swap_file = swap_file;
1481 	mapping = swap_file->f_mapping;
1482 	inode = mapping->host;
1483 
1484 	error = -EBUSY;
1485 	for (i = 0; i < nr_swapfiles; i++) {
1486 		struct swap_info_struct *q = &swap_info[i];
1487 
1488 		if (i == type || !q->swap_file)
1489 			continue;
1490 		if (mapping == q->swap_file->f_mapping)
1491 			goto bad_swap;
1492 	}
1493 
1494 	error = -EINVAL;
1495 	if (S_ISBLK(inode->i_mode)) {
1496 		bdev = I_BDEV(inode);
1497 		error = bd_claim(bdev, sys_swapon);
1498 		if (error < 0) {
1499 			bdev = NULL;
1500 			error = -EINVAL;
1501 			goto bad_swap;
1502 		}
1503 		p->old_block_size = block_size(bdev);
1504 		error = set_blocksize(bdev, PAGE_SIZE);
1505 		if (error < 0)
1506 			goto bad_swap;
1507 		p->bdev = bdev;
1508 	} else if (S_ISREG(inode->i_mode)) {
1509 		p->bdev = inode->i_sb->s_bdev;
1510 		mutex_lock(&inode->i_mutex);
1511 		did_down = 1;
1512 		if (IS_SWAPFILE(inode)) {
1513 			error = -EBUSY;
1514 			goto bad_swap;
1515 		}
1516 	} else {
1517 		goto bad_swap;
1518 	}
1519 
1520 	swapfilesize = i_size_read(inode) >> PAGE_SHIFT;
1521 
1522 	/*
1523 	 * Read the swap header.
1524 	 */
1525 	if (!mapping->a_ops->readpage) {
1526 		error = -EINVAL;
1527 		goto bad_swap;
1528 	}
1529 	page = read_mapping_page(mapping, 0, swap_file);
1530 	if (IS_ERR(page)) {
1531 		error = PTR_ERR(page);
1532 		goto bad_swap;
1533 	}
1534 	kmap(page);
1535 	swap_header = page_address(page);
1536 
1537 	if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))
1538 		swap_header_version = 1;
1539 	else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))
1540 		swap_header_version = 2;
1541 	else {
1542 		printk(KERN_ERR "Unable to find swap-space signature\n");
1543 		error = -EINVAL;
1544 		goto bad_swap;
1545 	}
1546 
1547 	switch (swap_header_version) {
1548 	case 1:
1549 		printk(KERN_ERR "version 0 swap is no longer supported. "
1550 			"Use mkswap -v1 %s\n", name);
1551 		error = -EINVAL;
1552 		goto bad_swap;
1553 	case 2:
1554 		/* Check the swap header's sub-version and the size of
1555                    the swap file and bad block lists */
1556 		if (swap_header->info.version != 1) {
1557 			printk(KERN_WARNING
1558 			       "Unable to handle swap header version %d\n",
1559 			       swap_header->info.version);
1560 			error = -EINVAL;
1561 			goto bad_swap;
1562 		}
1563 
1564 		p->lowest_bit  = 1;
1565 		p->cluster_next = 1;
1566 
1567 		/*
1568 		 * Find out how many pages are allowed for a single swap
1569 		 * device. There are two limiting factors: 1) the number of
1570 		 * bits for the swap offset in the swp_entry_t type and
1571 		 * 2) the number of bits in the a swap pte as defined by
1572 		 * the different architectures. In order to find the
1573 		 * largest possible bit mask a swap entry with swap type 0
1574 		 * and swap offset ~0UL is created, encoded to a swap pte,
1575 		 * decoded to a swp_entry_t again and finally the swap
1576 		 * offset is extracted. This will mask all the bits from
1577 		 * the initial ~0UL mask that can't be encoded in either
1578 		 * the swp_entry_t or the architecture definition of a
1579 		 * swap pte.
1580 		 */
1581 		maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1;
1582 		if (maxpages > swap_header->info.last_page)
1583 			maxpages = swap_header->info.last_page;
1584 		p->highest_bit = maxpages - 1;
1585 
1586 		error = -EINVAL;
1587 		if (!maxpages)
1588 			goto bad_swap;
1589 		if (swapfilesize && maxpages > swapfilesize) {
1590 			printk(KERN_WARNING
1591 			       "Swap area shorter than signature indicates\n");
1592 			goto bad_swap;
1593 		}
1594 		if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1595 			goto bad_swap;
1596 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1597 			goto bad_swap;
1598 
1599 		/* OK, set up the swap map and apply the bad block list */
1600 		if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {
1601 			error = -ENOMEM;
1602 			goto bad_swap;
1603 		}
1604 
1605 		error = 0;
1606 		memset(p->swap_map, 0, maxpages * sizeof(short));
1607 		for (i = 0; i < swap_header->info.nr_badpages; i++) {
1608 			int page_nr = swap_header->info.badpages[i];
1609 			if (page_nr <= 0 || page_nr >= swap_header->info.last_page)
1610 				error = -EINVAL;
1611 			else
1612 				p->swap_map[page_nr] = SWAP_MAP_BAD;
1613 		}
1614 		nr_good_pages = swap_header->info.last_page -
1615 				swap_header->info.nr_badpages -
1616 				1 /* header page */;
1617 		if (error)
1618 			goto bad_swap;
1619 	}
1620 
1621 	if (nr_good_pages) {
1622 		p->swap_map[0] = SWAP_MAP_BAD;
1623 		p->max = maxpages;
1624 		p->pages = nr_good_pages;
1625 		nr_extents = setup_swap_extents(p, &span);
1626 		if (nr_extents < 0) {
1627 			error = nr_extents;
1628 			goto bad_swap;
1629 		}
1630 		nr_good_pages = p->pages;
1631 	}
1632 	if (!nr_good_pages) {
1633 		printk(KERN_WARNING "Empty swap-file\n");
1634 		error = -EINVAL;
1635 		goto bad_swap;
1636 	}
1637 
1638 	mutex_lock(&swapon_mutex);
1639 	spin_lock(&swap_lock);
1640 	p->flags = SWP_ACTIVE;
1641 	nr_swap_pages += nr_good_pages;
1642 	total_swap_pages += nr_good_pages;
1643 
1644 	printk(KERN_INFO "Adding %uk swap on %s.  "
1645 			"Priority:%d extents:%d across:%lluk\n",
1646 		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1647 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10));
1648 
1649 	/* insert swap space into swap_list: */
1650 	prev = -1;
1651 	for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1652 		if (p->prio >= swap_info[i].prio) {
1653 			break;
1654 		}
1655 		prev = i;
1656 	}
1657 	p->next = i;
1658 	if (prev < 0) {
1659 		swap_list.head = swap_list.next = p - swap_info;
1660 	} else {
1661 		swap_info[prev].next = p - swap_info;
1662 	}
1663 	spin_unlock(&swap_lock);
1664 	mutex_unlock(&swapon_mutex);
1665 	error = 0;
1666 	goto out;
1667 bad_swap:
1668 	if (bdev) {
1669 		set_blocksize(bdev, p->old_block_size);
1670 		bd_release(bdev);
1671 	}
1672 	destroy_swap_extents(p);
1673 bad_swap_2:
1674 	spin_lock(&swap_lock);
1675 	swap_map = p->swap_map;
1676 	p->swap_file = NULL;
1677 	p->swap_map = NULL;
1678 	p->flags = 0;
1679 	if (!(swap_flags & SWAP_FLAG_PREFER))
1680 		++least_priority;
1681 	spin_unlock(&swap_lock);
1682 	vfree(swap_map);
1683 	if (swap_file)
1684 		filp_close(swap_file, NULL);
1685 out:
1686 	if (page && !IS_ERR(page)) {
1687 		kunmap(page);
1688 		page_cache_release(page);
1689 	}
1690 	if (name)
1691 		putname(name);
1692 	if (did_down) {
1693 		if (!error)
1694 			inode->i_flags |= S_SWAPFILE;
1695 		mutex_unlock(&inode->i_mutex);
1696 	}
1697 	return error;
1698 }
1699 
1700 void si_swapinfo(struct sysinfo *val)
1701 {
1702 	unsigned int i;
1703 	unsigned long nr_to_be_unused = 0;
1704 
1705 	spin_lock(&swap_lock);
1706 	for (i = 0; i < nr_swapfiles; i++) {
1707 		if (!(swap_info[i].flags & SWP_USED) ||
1708 		     (swap_info[i].flags & SWP_WRITEOK))
1709 			continue;
1710 		nr_to_be_unused += swap_info[i].inuse_pages;
1711 	}
1712 	val->freeswap = nr_swap_pages + nr_to_be_unused;
1713 	val->totalswap = total_swap_pages + nr_to_be_unused;
1714 	spin_unlock(&swap_lock);
1715 }
1716 
1717 /*
1718  * Verify that a swap entry is valid and increment its swap map count.
1719  *
1720  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1721  * "permanent", but will be reclaimed by the next swapoff.
1722  */
1723 int swap_duplicate(swp_entry_t entry)
1724 {
1725 	struct swap_info_struct * p;
1726 	unsigned long offset, type;
1727 	int result = 0;
1728 
1729 	if (is_migration_entry(entry))
1730 		return 1;
1731 
1732 	type = swp_type(entry);
1733 	if (type >= nr_swapfiles)
1734 		goto bad_file;
1735 	p = type + swap_info;
1736 	offset = swp_offset(entry);
1737 
1738 	spin_lock(&swap_lock);
1739 	if (offset < p->max && p->swap_map[offset]) {
1740 		if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1741 			p->swap_map[offset]++;
1742 			result = 1;
1743 		} else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1744 			if (swap_overflow++ < 5)
1745 				printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1746 			p->swap_map[offset] = SWAP_MAP_MAX;
1747 			result = 1;
1748 		}
1749 	}
1750 	spin_unlock(&swap_lock);
1751 out:
1752 	return result;
1753 
1754 bad_file:
1755 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1756 	goto out;
1757 }
1758 
1759 struct swap_info_struct *
1760 get_swap_info_struct(unsigned type)
1761 {
1762 	return &swap_info[type];
1763 }
1764 
1765 /*
1766  * swap_lock prevents swap_map being freed. Don't grab an extra
1767  * reference on the swaphandle, it doesn't matter if it becomes unused.
1768  */
1769 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1770 {
1771 	int our_page_cluster = page_cluster;
1772 	int ret = 0, i = 1 << our_page_cluster;
1773 	unsigned long toff;
1774 	struct swap_info_struct *swapdev = swp_type(entry) + swap_info;
1775 
1776 	if (!our_page_cluster)	/* no readahead */
1777 		return 0;
1778 	toff = (swp_offset(entry) >> our_page_cluster) << our_page_cluster;
1779 	if (!toff)		/* first page is swap header */
1780 		toff++, i--;
1781 	*offset = toff;
1782 
1783 	spin_lock(&swap_lock);
1784 	do {
1785 		/* Don't read-ahead past the end of the swap area */
1786 		if (toff >= swapdev->max)
1787 			break;
1788 		/* Don't read in free or bad pages */
1789 		if (!swapdev->swap_map[toff])
1790 			break;
1791 		if (swapdev->swap_map[toff] == SWAP_MAP_BAD)
1792 			break;
1793 		toff++;
1794 		ret++;
1795 	} while (--i);
1796 	spin_unlock(&swap_lock);
1797 	return ret;
1798 }
1799