xref: /openbmc/linux/mm/swapfile.c (revision 63dc02bd)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 
35 #include <asm/pgtable.h>
36 #include <asm/tlbflush.h>
37 #include <linux/swapops.h>
38 #include <linux/page_cgroup.h>
39 
40 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
41 				 unsigned char);
42 static void free_swap_count_continuations(struct swap_info_struct *);
43 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
44 
45 static DEFINE_SPINLOCK(swap_lock);
46 static unsigned int nr_swapfiles;
47 long nr_swap_pages;
48 long total_swap_pages;
49 static int least_priority;
50 
51 static const char Bad_file[] = "Bad swap file entry ";
52 static const char Unused_file[] = "Unused swap file entry ";
53 static const char Bad_offset[] = "Bad swap offset entry ";
54 static const char Unused_offset[] = "Unused swap offset entry ";
55 
56 static struct swap_list_t swap_list = {-1, -1};
57 
58 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
59 
60 static DEFINE_MUTEX(swapon_mutex);
61 
62 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
63 /* Activity counter to indicate that a swapon or swapoff has occurred */
64 static atomic_t proc_poll_event = ATOMIC_INIT(0);
65 
66 static inline unsigned char swap_count(unsigned char ent)
67 {
68 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
69 }
70 
71 /* returns 1 if swap entry is freed */
72 static int
73 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
74 {
75 	swp_entry_t entry = swp_entry(si->type, offset);
76 	struct page *page;
77 	int ret = 0;
78 
79 	page = find_get_page(&swapper_space, entry.val);
80 	if (!page)
81 		return 0;
82 	/*
83 	 * This function is called from scan_swap_map() and it's called
84 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
85 	 * We have to use trylock for avoiding deadlock. This is a special
86 	 * case and you should use try_to_free_swap() with explicit lock_page()
87 	 * in usual operations.
88 	 */
89 	if (trylock_page(page)) {
90 		ret = try_to_free_swap(page);
91 		unlock_page(page);
92 	}
93 	page_cache_release(page);
94 	return ret;
95 }
96 
97 /*
98  * swapon tell device that all the old swap contents can be discarded,
99  * to allow the swap device to optimize its wear-levelling.
100  */
101 static int discard_swap(struct swap_info_struct *si)
102 {
103 	struct swap_extent *se;
104 	sector_t start_block;
105 	sector_t nr_blocks;
106 	int err = 0;
107 
108 	/* Do not discard the swap header page! */
109 	se = &si->first_swap_extent;
110 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
111 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
112 	if (nr_blocks) {
113 		err = blkdev_issue_discard(si->bdev, start_block,
114 				nr_blocks, GFP_KERNEL, 0);
115 		if (err)
116 			return err;
117 		cond_resched();
118 	}
119 
120 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
121 		start_block = se->start_block << (PAGE_SHIFT - 9);
122 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
123 
124 		err = blkdev_issue_discard(si->bdev, start_block,
125 				nr_blocks, GFP_KERNEL, 0);
126 		if (err)
127 			break;
128 
129 		cond_resched();
130 	}
131 	return err;		/* That will often be -EOPNOTSUPP */
132 }
133 
134 /*
135  * swap allocation tell device that a cluster of swap can now be discarded,
136  * to allow the swap device to optimize its wear-levelling.
137  */
138 static void discard_swap_cluster(struct swap_info_struct *si,
139 				 pgoff_t start_page, pgoff_t nr_pages)
140 {
141 	struct swap_extent *se = si->curr_swap_extent;
142 	int found_extent = 0;
143 
144 	while (nr_pages) {
145 		struct list_head *lh;
146 
147 		if (se->start_page <= start_page &&
148 		    start_page < se->start_page + se->nr_pages) {
149 			pgoff_t offset = start_page - se->start_page;
150 			sector_t start_block = se->start_block + offset;
151 			sector_t nr_blocks = se->nr_pages - offset;
152 
153 			if (nr_blocks > nr_pages)
154 				nr_blocks = nr_pages;
155 			start_page += nr_blocks;
156 			nr_pages -= nr_blocks;
157 
158 			if (!found_extent++)
159 				si->curr_swap_extent = se;
160 
161 			start_block <<= PAGE_SHIFT - 9;
162 			nr_blocks <<= PAGE_SHIFT - 9;
163 			if (blkdev_issue_discard(si->bdev, start_block,
164 				    nr_blocks, GFP_NOIO, 0))
165 				break;
166 		}
167 
168 		lh = se->list.next;
169 		se = list_entry(lh, struct swap_extent, list);
170 	}
171 }
172 
173 static int wait_for_discard(void *word)
174 {
175 	schedule();
176 	return 0;
177 }
178 
179 #define SWAPFILE_CLUSTER	256
180 #define LATENCY_LIMIT		256
181 
182 static unsigned long scan_swap_map(struct swap_info_struct *si,
183 				   unsigned char usage)
184 {
185 	unsigned long offset;
186 	unsigned long scan_base;
187 	unsigned long last_in_cluster = 0;
188 	int latency_ration = LATENCY_LIMIT;
189 	int found_free_cluster = 0;
190 
191 	/*
192 	 * We try to cluster swap pages by allocating them sequentially
193 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
194 	 * way, however, we resort to first-free allocation, starting
195 	 * a new cluster.  This prevents us from scattering swap pages
196 	 * all over the entire swap partition, so that we reduce
197 	 * overall disk seek times between swap pages.  -- sct
198 	 * But we do now try to find an empty cluster.  -Andrea
199 	 * And we let swap pages go all over an SSD partition.  Hugh
200 	 */
201 
202 	si->flags += SWP_SCANNING;
203 	scan_base = offset = si->cluster_next;
204 
205 	if (unlikely(!si->cluster_nr--)) {
206 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
207 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
208 			goto checks;
209 		}
210 		if (si->flags & SWP_DISCARDABLE) {
211 			/*
212 			 * Start range check on racing allocations, in case
213 			 * they overlap the cluster we eventually decide on
214 			 * (we scan without swap_lock to allow preemption).
215 			 * It's hardly conceivable that cluster_nr could be
216 			 * wrapped during our scan, but don't depend on it.
217 			 */
218 			if (si->lowest_alloc)
219 				goto checks;
220 			si->lowest_alloc = si->max;
221 			si->highest_alloc = 0;
222 		}
223 		spin_unlock(&swap_lock);
224 
225 		/*
226 		 * If seek is expensive, start searching for new cluster from
227 		 * start of partition, to minimize the span of allocated swap.
228 		 * But if seek is cheap, search from our current position, so
229 		 * that swap is allocated from all over the partition: if the
230 		 * Flash Translation Layer only remaps within limited zones,
231 		 * we don't want to wear out the first zone too quickly.
232 		 */
233 		if (!(si->flags & SWP_SOLIDSTATE))
234 			scan_base = offset = si->lowest_bit;
235 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
236 
237 		/* Locate the first empty (unaligned) cluster */
238 		for (; last_in_cluster <= si->highest_bit; offset++) {
239 			if (si->swap_map[offset])
240 				last_in_cluster = offset + SWAPFILE_CLUSTER;
241 			else if (offset == last_in_cluster) {
242 				spin_lock(&swap_lock);
243 				offset -= SWAPFILE_CLUSTER - 1;
244 				si->cluster_next = offset;
245 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
246 				found_free_cluster = 1;
247 				goto checks;
248 			}
249 			if (unlikely(--latency_ration < 0)) {
250 				cond_resched();
251 				latency_ration = LATENCY_LIMIT;
252 			}
253 		}
254 
255 		offset = si->lowest_bit;
256 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
257 
258 		/* Locate the first empty (unaligned) cluster */
259 		for (; last_in_cluster < scan_base; offset++) {
260 			if (si->swap_map[offset])
261 				last_in_cluster = offset + SWAPFILE_CLUSTER;
262 			else if (offset == last_in_cluster) {
263 				spin_lock(&swap_lock);
264 				offset -= SWAPFILE_CLUSTER - 1;
265 				si->cluster_next = offset;
266 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
267 				found_free_cluster = 1;
268 				goto checks;
269 			}
270 			if (unlikely(--latency_ration < 0)) {
271 				cond_resched();
272 				latency_ration = LATENCY_LIMIT;
273 			}
274 		}
275 
276 		offset = scan_base;
277 		spin_lock(&swap_lock);
278 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
279 		si->lowest_alloc = 0;
280 	}
281 
282 checks:
283 	if (!(si->flags & SWP_WRITEOK))
284 		goto no_page;
285 	if (!si->highest_bit)
286 		goto no_page;
287 	if (offset > si->highest_bit)
288 		scan_base = offset = si->lowest_bit;
289 
290 	/* reuse swap entry of cache-only swap if not busy. */
291 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
292 		int swap_was_freed;
293 		spin_unlock(&swap_lock);
294 		swap_was_freed = __try_to_reclaim_swap(si, offset);
295 		spin_lock(&swap_lock);
296 		/* entry was freed successfully, try to use this again */
297 		if (swap_was_freed)
298 			goto checks;
299 		goto scan; /* check next one */
300 	}
301 
302 	if (si->swap_map[offset])
303 		goto scan;
304 
305 	if (offset == si->lowest_bit)
306 		si->lowest_bit++;
307 	if (offset == si->highest_bit)
308 		si->highest_bit--;
309 	si->inuse_pages++;
310 	if (si->inuse_pages == si->pages) {
311 		si->lowest_bit = si->max;
312 		si->highest_bit = 0;
313 	}
314 	si->swap_map[offset] = usage;
315 	si->cluster_next = offset + 1;
316 	si->flags -= SWP_SCANNING;
317 
318 	if (si->lowest_alloc) {
319 		/*
320 		 * Only set when SWP_DISCARDABLE, and there's a scan
321 		 * for a free cluster in progress or just completed.
322 		 */
323 		if (found_free_cluster) {
324 			/*
325 			 * To optimize wear-levelling, discard the
326 			 * old data of the cluster, taking care not to
327 			 * discard any of its pages that have already
328 			 * been allocated by racing tasks (offset has
329 			 * already stepped over any at the beginning).
330 			 */
331 			if (offset < si->highest_alloc &&
332 			    si->lowest_alloc <= last_in_cluster)
333 				last_in_cluster = si->lowest_alloc - 1;
334 			si->flags |= SWP_DISCARDING;
335 			spin_unlock(&swap_lock);
336 
337 			if (offset < last_in_cluster)
338 				discard_swap_cluster(si, offset,
339 					last_in_cluster - offset + 1);
340 
341 			spin_lock(&swap_lock);
342 			si->lowest_alloc = 0;
343 			si->flags &= ~SWP_DISCARDING;
344 
345 			smp_mb();	/* wake_up_bit advises this */
346 			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
347 
348 		} else if (si->flags & SWP_DISCARDING) {
349 			/*
350 			 * Delay using pages allocated by racing tasks
351 			 * until the whole discard has been issued. We
352 			 * could defer that delay until swap_writepage,
353 			 * but it's easier to keep this self-contained.
354 			 */
355 			spin_unlock(&swap_lock);
356 			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
357 				wait_for_discard, TASK_UNINTERRUPTIBLE);
358 			spin_lock(&swap_lock);
359 		} else {
360 			/*
361 			 * Note pages allocated by racing tasks while
362 			 * scan for a free cluster is in progress, so
363 			 * that its final discard can exclude them.
364 			 */
365 			if (offset < si->lowest_alloc)
366 				si->lowest_alloc = offset;
367 			if (offset > si->highest_alloc)
368 				si->highest_alloc = offset;
369 		}
370 	}
371 	return offset;
372 
373 scan:
374 	spin_unlock(&swap_lock);
375 	while (++offset <= si->highest_bit) {
376 		if (!si->swap_map[offset]) {
377 			spin_lock(&swap_lock);
378 			goto checks;
379 		}
380 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
381 			spin_lock(&swap_lock);
382 			goto checks;
383 		}
384 		if (unlikely(--latency_ration < 0)) {
385 			cond_resched();
386 			latency_ration = LATENCY_LIMIT;
387 		}
388 	}
389 	offset = si->lowest_bit;
390 	while (++offset < scan_base) {
391 		if (!si->swap_map[offset]) {
392 			spin_lock(&swap_lock);
393 			goto checks;
394 		}
395 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
396 			spin_lock(&swap_lock);
397 			goto checks;
398 		}
399 		if (unlikely(--latency_ration < 0)) {
400 			cond_resched();
401 			latency_ration = LATENCY_LIMIT;
402 		}
403 	}
404 	spin_lock(&swap_lock);
405 
406 no_page:
407 	si->flags -= SWP_SCANNING;
408 	return 0;
409 }
410 
411 swp_entry_t get_swap_page(void)
412 {
413 	struct swap_info_struct *si;
414 	pgoff_t offset;
415 	int type, next;
416 	int wrapped = 0;
417 
418 	spin_lock(&swap_lock);
419 	if (nr_swap_pages <= 0)
420 		goto noswap;
421 	nr_swap_pages--;
422 
423 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
424 		si = swap_info[type];
425 		next = si->next;
426 		if (next < 0 ||
427 		    (!wrapped && si->prio != swap_info[next]->prio)) {
428 			next = swap_list.head;
429 			wrapped++;
430 		}
431 
432 		if (!si->highest_bit)
433 			continue;
434 		if (!(si->flags & SWP_WRITEOK))
435 			continue;
436 
437 		swap_list.next = next;
438 		/* This is called for allocating swap entry for cache */
439 		offset = scan_swap_map(si, SWAP_HAS_CACHE);
440 		if (offset) {
441 			spin_unlock(&swap_lock);
442 			return swp_entry(type, offset);
443 		}
444 		next = swap_list.next;
445 	}
446 
447 	nr_swap_pages++;
448 noswap:
449 	spin_unlock(&swap_lock);
450 	return (swp_entry_t) {0};
451 }
452 
453 /* The only caller of this function is now susupend routine */
454 swp_entry_t get_swap_page_of_type(int type)
455 {
456 	struct swap_info_struct *si;
457 	pgoff_t offset;
458 
459 	spin_lock(&swap_lock);
460 	si = swap_info[type];
461 	if (si && (si->flags & SWP_WRITEOK)) {
462 		nr_swap_pages--;
463 		/* This is called for allocating swap entry, not cache */
464 		offset = scan_swap_map(si, 1);
465 		if (offset) {
466 			spin_unlock(&swap_lock);
467 			return swp_entry(type, offset);
468 		}
469 		nr_swap_pages++;
470 	}
471 	spin_unlock(&swap_lock);
472 	return (swp_entry_t) {0};
473 }
474 
475 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
476 {
477 	struct swap_info_struct *p;
478 	unsigned long offset, type;
479 
480 	if (!entry.val)
481 		goto out;
482 	type = swp_type(entry);
483 	if (type >= nr_swapfiles)
484 		goto bad_nofile;
485 	p = swap_info[type];
486 	if (!(p->flags & SWP_USED))
487 		goto bad_device;
488 	offset = swp_offset(entry);
489 	if (offset >= p->max)
490 		goto bad_offset;
491 	if (!p->swap_map[offset])
492 		goto bad_free;
493 	spin_lock(&swap_lock);
494 	return p;
495 
496 bad_free:
497 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
498 	goto out;
499 bad_offset:
500 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
501 	goto out;
502 bad_device:
503 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
504 	goto out;
505 bad_nofile:
506 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
507 out:
508 	return NULL;
509 }
510 
511 static unsigned char swap_entry_free(struct swap_info_struct *p,
512 				     swp_entry_t entry, unsigned char usage)
513 {
514 	unsigned long offset = swp_offset(entry);
515 	unsigned char count;
516 	unsigned char has_cache;
517 
518 	count = p->swap_map[offset];
519 	has_cache = count & SWAP_HAS_CACHE;
520 	count &= ~SWAP_HAS_CACHE;
521 
522 	if (usage == SWAP_HAS_CACHE) {
523 		VM_BUG_ON(!has_cache);
524 		has_cache = 0;
525 	} else if (count == SWAP_MAP_SHMEM) {
526 		/*
527 		 * Or we could insist on shmem.c using a special
528 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
529 		 */
530 		count = 0;
531 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
532 		if (count == COUNT_CONTINUED) {
533 			if (swap_count_continued(p, offset, count))
534 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
535 			else
536 				count = SWAP_MAP_MAX;
537 		} else
538 			count--;
539 	}
540 
541 	if (!count)
542 		mem_cgroup_uncharge_swap(entry);
543 
544 	usage = count | has_cache;
545 	p->swap_map[offset] = usage;
546 
547 	/* free if no reference */
548 	if (!usage) {
549 		struct gendisk *disk = p->bdev->bd_disk;
550 		if (offset < p->lowest_bit)
551 			p->lowest_bit = offset;
552 		if (offset > p->highest_bit)
553 			p->highest_bit = offset;
554 		if (swap_list.next >= 0 &&
555 		    p->prio > swap_info[swap_list.next]->prio)
556 			swap_list.next = p->type;
557 		nr_swap_pages++;
558 		p->inuse_pages--;
559 		if ((p->flags & SWP_BLKDEV) &&
560 				disk->fops->swap_slot_free_notify)
561 			disk->fops->swap_slot_free_notify(p->bdev, offset);
562 	}
563 
564 	return usage;
565 }
566 
567 /*
568  * Caller has made sure that the swapdevice corresponding to entry
569  * is still around or has not been recycled.
570  */
571 void swap_free(swp_entry_t entry)
572 {
573 	struct swap_info_struct *p;
574 
575 	p = swap_info_get(entry);
576 	if (p) {
577 		swap_entry_free(p, entry, 1);
578 		spin_unlock(&swap_lock);
579 	}
580 }
581 
582 /*
583  * Called after dropping swapcache to decrease refcnt to swap entries.
584  */
585 void swapcache_free(swp_entry_t entry, struct page *page)
586 {
587 	struct swap_info_struct *p;
588 	unsigned char count;
589 
590 	p = swap_info_get(entry);
591 	if (p) {
592 		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
593 		if (page)
594 			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
595 		spin_unlock(&swap_lock);
596 	}
597 }
598 
599 /*
600  * How many references to page are currently swapped out?
601  * This does not give an exact answer when swap count is continued,
602  * but does include the high COUNT_CONTINUED flag to allow for that.
603  */
604 static inline int page_swapcount(struct page *page)
605 {
606 	int count = 0;
607 	struct swap_info_struct *p;
608 	swp_entry_t entry;
609 
610 	entry.val = page_private(page);
611 	p = swap_info_get(entry);
612 	if (p) {
613 		count = swap_count(p->swap_map[swp_offset(entry)]);
614 		spin_unlock(&swap_lock);
615 	}
616 	return count;
617 }
618 
619 /*
620  * We can write to an anon page without COW if there are no other references
621  * to it.  And as a side-effect, free up its swap: because the old content
622  * on disk will never be read, and seeking back there to write new content
623  * later would only waste time away from clustering.
624  */
625 int reuse_swap_page(struct page *page)
626 {
627 	int count;
628 
629 	VM_BUG_ON(!PageLocked(page));
630 	if (unlikely(PageKsm(page)))
631 		return 0;
632 	count = page_mapcount(page);
633 	if (count <= 1 && PageSwapCache(page)) {
634 		count += page_swapcount(page);
635 		if (count == 1 && !PageWriteback(page)) {
636 			delete_from_swap_cache(page);
637 			SetPageDirty(page);
638 		}
639 	}
640 	return count <= 1;
641 }
642 
643 /*
644  * If swap is getting full, or if there are no more mappings of this page,
645  * then try_to_free_swap is called to free its swap space.
646  */
647 int try_to_free_swap(struct page *page)
648 {
649 	VM_BUG_ON(!PageLocked(page));
650 
651 	if (!PageSwapCache(page))
652 		return 0;
653 	if (PageWriteback(page))
654 		return 0;
655 	if (page_swapcount(page))
656 		return 0;
657 
658 	/*
659 	 * Once hibernation has begun to create its image of memory,
660 	 * there's a danger that one of the calls to try_to_free_swap()
661 	 * - most probably a call from __try_to_reclaim_swap() while
662 	 * hibernation is allocating its own swap pages for the image,
663 	 * but conceivably even a call from memory reclaim - will free
664 	 * the swap from a page which has already been recorded in the
665 	 * image as a clean swapcache page, and then reuse its swap for
666 	 * another page of the image.  On waking from hibernation, the
667 	 * original page might be freed under memory pressure, then
668 	 * later read back in from swap, now with the wrong data.
669 	 *
670 	 * Hibration suspends storage while it is writing the image
671 	 * to disk so check that here.
672 	 */
673 	if (pm_suspended_storage())
674 		return 0;
675 
676 	delete_from_swap_cache(page);
677 	SetPageDirty(page);
678 	return 1;
679 }
680 
681 /*
682  * Free the swap entry like above, but also try to
683  * free the page cache entry if it is the last user.
684  */
685 int free_swap_and_cache(swp_entry_t entry)
686 {
687 	struct swap_info_struct *p;
688 	struct page *page = NULL;
689 
690 	if (non_swap_entry(entry))
691 		return 1;
692 
693 	p = swap_info_get(entry);
694 	if (p) {
695 		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
696 			page = find_get_page(&swapper_space, entry.val);
697 			if (page && !trylock_page(page)) {
698 				page_cache_release(page);
699 				page = NULL;
700 			}
701 		}
702 		spin_unlock(&swap_lock);
703 	}
704 	if (page) {
705 		/*
706 		 * Not mapped elsewhere, or swap space full? Free it!
707 		 * Also recheck PageSwapCache now page is locked (above).
708 		 */
709 		if (PageSwapCache(page) && !PageWriteback(page) &&
710 				(!page_mapped(page) || vm_swap_full())) {
711 			delete_from_swap_cache(page);
712 			SetPageDirty(page);
713 		}
714 		unlock_page(page);
715 		page_cache_release(page);
716 	}
717 	return p != NULL;
718 }
719 
720 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
721 /**
722  * mem_cgroup_count_swap_user - count the user of a swap entry
723  * @ent: the swap entry to be checked
724  * @pagep: the pointer for the swap cache page of the entry to be stored
725  *
726  * Returns the number of the user of the swap entry. The number is valid only
727  * for swaps of anonymous pages.
728  * If the entry is found on swap cache, the page is stored to pagep with
729  * refcount of it being incremented.
730  */
731 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
732 {
733 	struct page *page;
734 	struct swap_info_struct *p;
735 	int count = 0;
736 
737 	page = find_get_page(&swapper_space, ent.val);
738 	if (page)
739 		count += page_mapcount(page);
740 	p = swap_info_get(ent);
741 	if (p) {
742 		count += swap_count(p->swap_map[swp_offset(ent)]);
743 		spin_unlock(&swap_lock);
744 	}
745 
746 	*pagep = page;
747 	return count;
748 }
749 #endif
750 
751 #ifdef CONFIG_HIBERNATION
752 /*
753  * Find the swap type that corresponds to given device (if any).
754  *
755  * @offset - number of the PAGE_SIZE-sized block of the device, starting
756  * from 0, in which the swap header is expected to be located.
757  *
758  * This is needed for the suspend to disk (aka swsusp).
759  */
760 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
761 {
762 	struct block_device *bdev = NULL;
763 	int type;
764 
765 	if (device)
766 		bdev = bdget(device);
767 
768 	spin_lock(&swap_lock);
769 	for (type = 0; type < nr_swapfiles; type++) {
770 		struct swap_info_struct *sis = swap_info[type];
771 
772 		if (!(sis->flags & SWP_WRITEOK))
773 			continue;
774 
775 		if (!bdev) {
776 			if (bdev_p)
777 				*bdev_p = bdgrab(sis->bdev);
778 
779 			spin_unlock(&swap_lock);
780 			return type;
781 		}
782 		if (bdev == sis->bdev) {
783 			struct swap_extent *se = &sis->first_swap_extent;
784 
785 			if (se->start_block == offset) {
786 				if (bdev_p)
787 					*bdev_p = bdgrab(sis->bdev);
788 
789 				spin_unlock(&swap_lock);
790 				bdput(bdev);
791 				return type;
792 			}
793 		}
794 	}
795 	spin_unlock(&swap_lock);
796 	if (bdev)
797 		bdput(bdev);
798 
799 	return -ENODEV;
800 }
801 
802 /*
803  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
804  * corresponding to given index in swap_info (swap type).
805  */
806 sector_t swapdev_block(int type, pgoff_t offset)
807 {
808 	struct block_device *bdev;
809 
810 	if ((unsigned int)type >= nr_swapfiles)
811 		return 0;
812 	if (!(swap_info[type]->flags & SWP_WRITEOK))
813 		return 0;
814 	return map_swap_entry(swp_entry(type, offset), &bdev);
815 }
816 
817 /*
818  * Return either the total number of swap pages of given type, or the number
819  * of free pages of that type (depending on @free)
820  *
821  * This is needed for software suspend
822  */
823 unsigned int count_swap_pages(int type, int free)
824 {
825 	unsigned int n = 0;
826 
827 	spin_lock(&swap_lock);
828 	if ((unsigned int)type < nr_swapfiles) {
829 		struct swap_info_struct *sis = swap_info[type];
830 
831 		if (sis->flags & SWP_WRITEOK) {
832 			n = sis->pages;
833 			if (free)
834 				n -= sis->inuse_pages;
835 		}
836 	}
837 	spin_unlock(&swap_lock);
838 	return n;
839 }
840 #endif /* CONFIG_HIBERNATION */
841 
842 /*
843  * No need to decide whether this PTE shares the swap entry with others,
844  * just let do_wp_page work it out if a write is requested later - to
845  * force COW, vm_page_prot omits write permission from any private vma.
846  */
847 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
848 		unsigned long addr, swp_entry_t entry, struct page *page)
849 {
850 	struct mem_cgroup *memcg;
851 	spinlock_t *ptl;
852 	pte_t *pte;
853 	int ret = 1;
854 
855 	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
856 					 GFP_KERNEL, &memcg)) {
857 		ret = -ENOMEM;
858 		goto out_nolock;
859 	}
860 
861 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
862 	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
863 		if (ret > 0)
864 			mem_cgroup_cancel_charge_swapin(memcg);
865 		ret = 0;
866 		goto out;
867 	}
868 
869 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
870 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
871 	get_page(page);
872 	set_pte_at(vma->vm_mm, addr, pte,
873 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
874 	page_add_anon_rmap(page, vma, addr);
875 	mem_cgroup_commit_charge_swapin(page, memcg);
876 	swap_free(entry);
877 	/*
878 	 * Move the page to the active list so it is not
879 	 * immediately swapped out again after swapon.
880 	 */
881 	activate_page(page);
882 out:
883 	pte_unmap_unlock(pte, ptl);
884 out_nolock:
885 	return ret;
886 }
887 
888 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
889 				unsigned long addr, unsigned long end,
890 				swp_entry_t entry, struct page *page)
891 {
892 	pte_t swp_pte = swp_entry_to_pte(entry);
893 	pte_t *pte;
894 	int ret = 0;
895 
896 	/*
897 	 * We don't actually need pte lock while scanning for swp_pte: since
898 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
899 	 * page table while we're scanning; though it could get zapped, and on
900 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
901 	 * of unmatched parts which look like swp_pte, so unuse_pte must
902 	 * recheck under pte lock.  Scanning without pte lock lets it be
903 	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
904 	 */
905 	pte = pte_offset_map(pmd, addr);
906 	do {
907 		/*
908 		 * swapoff spends a _lot_ of time in this loop!
909 		 * Test inline before going to call unuse_pte.
910 		 */
911 		if (unlikely(pte_same(*pte, swp_pte))) {
912 			pte_unmap(pte);
913 			ret = unuse_pte(vma, pmd, addr, entry, page);
914 			if (ret)
915 				goto out;
916 			pte = pte_offset_map(pmd, addr);
917 		}
918 	} while (pte++, addr += PAGE_SIZE, addr != end);
919 	pte_unmap(pte - 1);
920 out:
921 	return ret;
922 }
923 
924 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
925 				unsigned long addr, unsigned long end,
926 				swp_entry_t entry, struct page *page)
927 {
928 	pmd_t *pmd;
929 	unsigned long next;
930 	int ret;
931 
932 	pmd = pmd_offset(pud, addr);
933 	do {
934 		next = pmd_addr_end(addr, end);
935 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
936 			continue;
937 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
938 		if (ret)
939 			return ret;
940 	} while (pmd++, addr = next, addr != end);
941 	return 0;
942 }
943 
944 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
945 				unsigned long addr, unsigned long end,
946 				swp_entry_t entry, struct page *page)
947 {
948 	pud_t *pud;
949 	unsigned long next;
950 	int ret;
951 
952 	pud = pud_offset(pgd, addr);
953 	do {
954 		next = pud_addr_end(addr, end);
955 		if (pud_none_or_clear_bad(pud))
956 			continue;
957 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
958 		if (ret)
959 			return ret;
960 	} while (pud++, addr = next, addr != end);
961 	return 0;
962 }
963 
964 static int unuse_vma(struct vm_area_struct *vma,
965 				swp_entry_t entry, struct page *page)
966 {
967 	pgd_t *pgd;
968 	unsigned long addr, end, next;
969 	int ret;
970 
971 	if (page_anon_vma(page)) {
972 		addr = page_address_in_vma(page, vma);
973 		if (addr == -EFAULT)
974 			return 0;
975 		else
976 			end = addr + PAGE_SIZE;
977 	} else {
978 		addr = vma->vm_start;
979 		end = vma->vm_end;
980 	}
981 
982 	pgd = pgd_offset(vma->vm_mm, addr);
983 	do {
984 		next = pgd_addr_end(addr, end);
985 		if (pgd_none_or_clear_bad(pgd))
986 			continue;
987 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
988 		if (ret)
989 			return ret;
990 	} while (pgd++, addr = next, addr != end);
991 	return 0;
992 }
993 
994 static int unuse_mm(struct mm_struct *mm,
995 				swp_entry_t entry, struct page *page)
996 {
997 	struct vm_area_struct *vma;
998 	int ret = 0;
999 
1000 	if (!down_read_trylock(&mm->mmap_sem)) {
1001 		/*
1002 		 * Activate page so shrink_inactive_list is unlikely to unmap
1003 		 * its ptes while lock is dropped, so swapoff can make progress.
1004 		 */
1005 		activate_page(page);
1006 		unlock_page(page);
1007 		down_read(&mm->mmap_sem);
1008 		lock_page(page);
1009 	}
1010 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1011 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1012 			break;
1013 	}
1014 	up_read(&mm->mmap_sem);
1015 	return (ret < 0)? ret: 0;
1016 }
1017 
1018 /*
1019  * Scan swap_map from current position to next entry still in use.
1020  * Recycle to start on reaching the end, returning 0 when empty.
1021  */
1022 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1023 					unsigned int prev)
1024 {
1025 	unsigned int max = si->max;
1026 	unsigned int i = prev;
1027 	unsigned char count;
1028 
1029 	/*
1030 	 * No need for swap_lock here: we're just looking
1031 	 * for whether an entry is in use, not modifying it; false
1032 	 * hits are okay, and sys_swapoff() has already prevented new
1033 	 * allocations from this area (while holding swap_lock).
1034 	 */
1035 	for (;;) {
1036 		if (++i >= max) {
1037 			if (!prev) {
1038 				i = 0;
1039 				break;
1040 			}
1041 			/*
1042 			 * No entries in use at top of swap_map,
1043 			 * loop back to start and recheck there.
1044 			 */
1045 			max = prev + 1;
1046 			prev = 0;
1047 			i = 1;
1048 		}
1049 		count = si->swap_map[i];
1050 		if (count && swap_count(count) != SWAP_MAP_BAD)
1051 			break;
1052 	}
1053 	return i;
1054 }
1055 
1056 /*
1057  * We completely avoid races by reading each swap page in advance,
1058  * and then search for the process using it.  All the necessary
1059  * page table adjustments can then be made atomically.
1060  */
1061 static int try_to_unuse(unsigned int type)
1062 {
1063 	struct swap_info_struct *si = swap_info[type];
1064 	struct mm_struct *start_mm;
1065 	unsigned char *swap_map;
1066 	unsigned char swcount;
1067 	struct page *page;
1068 	swp_entry_t entry;
1069 	unsigned int i = 0;
1070 	int retval = 0;
1071 
1072 	/*
1073 	 * When searching mms for an entry, a good strategy is to
1074 	 * start at the first mm we freed the previous entry from
1075 	 * (though actually we don't notice whether we or coincidence
1076 	 * freed the entry).  Initialize this start_mm with a hold.
1077 	 *
1078 	 * A simpler strategy would be to start at the last mm we
1079 	 * freed the previous entry from; but that would take less
1080 	 * advantage of mmlist ordering, which clusters forked mms
1081 	 * together, child after parent.  If we race with dup_mmap(), we
1082 	 * prefer to resolve parent before child, lest we miss entries
1083 	 * duplicated after we scanned child: using last mm would invert
1084 	 * that.
1085 	 */
1086 	start_mm = &init_mm;
1087 	atomic_inc(&init_mm.mm_users);
1088 
1089 	/*
1090 	 * Keep on scanning until all entries have gone.  Usually,
1091 	 * one pass through swap_map is enough, but not necessarily:
1092 	 * there are races when an instance of an entry might be missed.
1093 	 */
1094 	while ((i = find_next_to_unuse(si, i)) != 0) {
1095 		if (signal_pending(current)) {
1096 			retval = -EINTR;
1097 			break;
1098 		}
1099 
1100 		/*
1101 		 * Get a page for the entry, using the existing swap
1102 		 * cache page if there is one.  Otherwise, get a clean
1103 		 * page and read the swap into it.
1104 		 */
1105 		swap_map = &si->swap_map[i];
1106 		entry = swp_entry(type, i);
1107 		page = read_swap_cache_async(entry,
1108 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1109 		if (!page) {
1110 			/*
1111 			 * Either swap_duplicate() failed because entry
1112 			 * has been freed independently, and will not be
1113 			 * reused since sys_swapoff() already disabled
1114 			 * allocation from here, or alloc_page() failed.
1115 			 */
1116 			if (!*swap_map)
1117 				continue;
1118 			retval = -ENOMEM;
1119 			break;
1120 		}
1121 
1122 		/*
1123 		 * Don't hold on to start_mm if it looks like exiting.
1124 		 */
1125 		if (atomic_read(&start_mm->mm_users) == 1) {
1126 			mmput(start_mm);
1127 			start_mm = &init_mm;
1128 			atomic_inc(&init_mm.mm_users);
1129 		}
1130 
1131 		/*
1132 		 * Wait for and lock page.  When do_swap_page races with
1133 		 * try_to_unuse, do_swap_page can handle the fault much
1134 		 * faster than try_to_unuse can locate the entry.  This
1135 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1136 		 * defer to do_swap_page in such a case - in some tests,
1137 		 * do_swap_page and try_to_unuse repeatedly compete.
1138 		 */
1139 		wait_on_page_locked(page);
1140 		wait_on_page_writeback(page);
1141 		lock_page(page);
1142 		wait_on_page_writeback(page);
1143 
1144 		/*
1145 		 * Remove all references to entry.
1146 		 */
1147 		swcount = *swap_map;
1148 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1149 			retval = shmem_unuse(entry, page);
1150 			/* page has already been unlocked and released */
1151 			if (retval < 0)
1152 				break;
1153 			continue;
1154 		}
1155 		if (swap_count(swcount) && start_mm != &init_mm)
1156 			retval = unuse_mm(start_mm, entry, page);
1157 
1158 		if (swap_count(*swap_map)) {
1159 			int set_start_mm = (*swap_map >= swcount);
1160 			struct list_head *p = &start_mm->mmlist;
1161 			struct mm_struct *new_start_mm = start_mm;
1162 			struct mm_struct *prev_mm = start_mm;
1163 			struct mm_struct *mm;
1164 
1165 			atomic_inc(&new_start_mm->mm_users);
1166 			atomic_inc(&prev_mm->mm_users);
1167 			spin_lock(&mmlist_lock);
1168 			while (swap_count(*swap_map) && !retval &&
1169 					(p = p->next) != &start_mm->mmlist) {
1170 				mm = list_entry(p, struct mm_struct, mmlist);
1171 				if (!atomic_inc_not_zero(&mm->mm_users))
1172 					continue;
1173 				spin_unlock(&mmlist_lock);
1174 				mmput(prev_mm);
1175 				prev_mm = mm;
1176 
1177 				cond_resched();
1178 
1179 				swcount = *swap_map;
1180 				if (!swap_count(swcount)) /* any usage ? */
1181 					;
1182 				else if (mm == &init_mm)
1183 					set_start_mm = 1;
1184 				else
1185 					retval = unuse_mm(mm, entry, page);
1186 
1187 				if (set_start_mm && *swap_map < swcount) {
1188 					mmput(new_start_mm);
1189 					atomic_inc(&mm->mm_users);
1190 					new_start_mm = mm;
1191 					set_start_mm = 0;
1192 				}
1193 				spin_lock(&mmlist_lock);
1194 			}
1195 			spin_unlock(&mmlist_lock);
1196 			mmput(prev_mm);
1197 			mmput(start_mm);
1198 			start_mm = new_start_mm;
1199 		}
1200 		if (retval) {
1201 			unlock_page(page);
1202 			page_cache_release(page);
1203 			break;
1204 		}
1205 
1206 		/*
1207 		 * If a reference remains (rare), we would like to leave
1208 		 * the page in the swap cache; but try_to_unmap could
1209 		 * then re-duplicate the entry once we drop page lock,
1210 		 * so we might loop indefinitely; also, that page could
1211 		 * not be swapped out to other storage meanwhile.  So:
1212 		 * delete from cache even if there's another reference,
1213 		 * after ensuring that the data has been saved to disk -
1214 		 * since if the reference remains (rarer), it will be
1215 		 * read from disk into another page.  Splitting into two
1216 		 * pages would be incorrect if swap supported "shared
1217 		 * private" pages, but they are handled by tmpfs files.
1218 		 *
1219 		 * Given how unuse_vma() targets one particular offset
1220 		 * in an anon_vma, once the anon_vma has been determined,
1221 		 * this splitting happens to be just what is needed to
1222 		 * handle where KSM pages have been swapped out: re-reading
1223 		 * is unnecessarily slow, but we can fix that later on.
1224 		 */
1225 		if (swap_count(*swap_map) &&
1226 		     PageDirty(page) && PageSwapCache(page)) {
1227 			struct writeback_control wbc = {
1228 				.sync_mode = WB_SYNC_NONE,
1229 			};
1230 
1231 			swap_writepage(page, &wbc);
1232 			lock_page(page);
1233 			wait_on_page_writeback(page);
1234 		}
1235 
1236 		/*
1237 		 * It is conceivable that a racing task removed this page from
1238 		 * swap cache just before we acquired the page lock at the top,
1239 		 * or while we dropped it in unuse_mm().  The page might even
1240 		 * be back in swap cache on another swap area: that we must not
1241 		 * delete, since it may not have been written out to swap yet.
1242 		 */
1243 		if (PageSwapCache(page) &&
1244 		    likely(page_private(page) == entry.val))
1245 			delete_from_swap_cache(page);
1246 
1247 		/*
1248 		 * So we could skip searching mms once swap count went
1249 		 * to 1, we did not mark any present ptes as dirty: must
1250 		 * mark page dirty so shrink_page_list will preserve it.
1251 		 */
1252 		SetPageDirty(page);
1253 		unlock_page(page);
1254 		page_cache_release(page);
1255 
1256 		/*
1257 		 * Make sure that we aren't completely killing
1258 		 * interactive performance.
1259 		 */
1260 		cond_resched();
1261 	}
1262 
1263 	mmput(start_mm);
1264 	return retval;
1265 }
1266 
1267 /*
1268  * After a successful try_to_unuse, if no swap is now in use, we know
1269  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1270  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1271  * added to the mmlist just after page_duplicate - before would be racy.
1272  */
1273 static void drain_mmlist(void)
1274 {
1275 	struct list_head *p, *next;
1276 	unsigned int type;
1277 
1278 	for (type = 0; type < nr_swapfiles; type++)
1279 		if (swap_info[type]->inuse_pages)
1280 			return;
1281 	spin_lock(&mmlist_lock);
1282 	list_for_each_safe(p, next, &init_mm.mmlist)
1283 		list_del_init(p);
1284 	spin_unlock(&mmlist_lock);
1285 }
1286 
1287 /*
1288  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1289  * corresponds to page offset for the specified swap entry.
1290  * Note that the type of this function is sector_t, but it returns page offset
1291  * into the bdev, not sector offset.
1292  */
1293 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1294 {
1295 	struct swap_info_struct *sis;
1296 	struct swap_extent *start_se;
1297 	struct swap_extent *se;
1298 	pgoff_t offset;
1299 
1300 	sis = swap_info[swp_type(entry)];
1301 	*bdev = sis->bdev;
1302 
1303 	offset = swp_offset(entry);
1304 	start_se = sis->curr_swap_extent;
1305 	se = start_se;
1306 
1307 	for ( ; ; ) {
1308 		struct list_head *lh;
1309 
1310 		if (se->start_page <= offset &&
1311 				offset < (se->start_page + se->nr_pages)) {
1312 			return se->start_block + (offset - se->start_page);
1313 		}
1314 		lh = se->list.next;
1315 		se = list_entry(lh, struct swap_extent, list);
1316 		sis->curr_swap_extent = se;
1317 		BUG_ON(se == start_se);		/* It *must* be present */
1318 	}
1319 }
1320 
1321 /*
1322  * Returns the page offset into bdev for the specified page's swap entry.
1323  */
1324 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1325 {
1326 	swp_entry_t entry;
1327 	entry.val = page_private(page);
1328 	return map_swap_entry(entry, bdev);
1329 }
1330 
1331 /*
1332  * Free all of a swapdev's extent information
1333  */
1334 static void destroy_swap_extents(struct swap_info_struct *sis)
1335 {
1336 	while (!list_empty(&sis->first_swap_extent.list)) {
1337 		struct swap_extent *se;
1338 
1339 		se = list_entry(sis->first_swap_extent.list.next,
1340 				struct swap_extent, list);
1341 		list_del(&se->list);
1342 		kfree(se);
1343 	}
1344 }
1345 
1346 /*
1347  * Add a block range (and the corresponding page range) into this swapdev's
1348  * extent list.  The extent list is kept sorted in page order.
1349  *
1350  * This function rather assumes that it is called in ascending page order.
1351  */
1352 static int
1353 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1354 		unsigned long nr_pages, sector_t start_block)
1355 {
1356 	struct swap_extent *se;
1357 	struct swap_extent *new_se;
1358 	struct list_head *lh;
1359 
1360 	if (start_page == 0) {
1361 		se = &sis->first_swap_extent;
1362 		sis->curr_swap_extent = se;
1363 		se->start_page = 0;
1364 		se->nr_pages = nr_pages;
1365 		se->start_block = start_block;
1366 		return 1;
1367 	} else {
1368 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1369 		se = list_entry(lh, struct swap_extent, list);
1370 		BUG_ON(se->start_page + se->nr_pages != start_page);
1371 		if (se->start_block + se->nr_pages == start_block) {
1372 			/* Merge it */
1373 			se->nr_pages += nr_pages;
1374 			return 0;
1375 		}
1376 	}
1377 
1378 	/*
1379 	 * No merge.  Insert a new extent, preserving ordering.
1380 	 */
1381 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1382 	if (new_se == NULL)
1383 		return -ENOMEM;
1384 	new_se->start_page = start_page;
1385 	new_se->nr_pages = nr_pages;
1386 	new_se->start_block = start_block;
1387 
1388 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1389 	return 1;
1390 }
1391 
1392 /*
1393  * A `swap extent' is a simple thing which maps a contiguous range of pages
1394  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1395  * is built at swapon time and is then used at swap_writepage/swap_readpage
1396  * time for locating where on disk a page belongs.
1397  *
1398  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1399  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1400  * swap files identically.
1401  *
1402  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1403  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1404  * swapfiles are handled *identically* after swapon time.
1405  *
1406  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1407  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1408  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1409  * requirements, they are simply tossed out - we will never use those blocks
1410  * for swapping.
1411  *
1412  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1413  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1414  * which will scribble on the fs.
1415  *
1416  * The amount of disk space which a single swap extent represents varies.
1417  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1418  * extents in the list.  To avoid much list walking, we cache the previous
1419  * search location in `curr_swap_extent', and start new searches from there.
1420  * This is extremely effective.  The average number of iterations in
1421  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1422  */
1423 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1424 {
1425 	struct inode *inode;
1426 	unsigned blocks_per_page;
1427 	unsigned long page_no;
1428 	unsigned blkbits;
1429 	sector_t probe_block;
1430 	sector_t last_block;
1431 	sector_t lowest_block = -1;
1432 	sector_t highest_block = 0;
1433 	int nr_extents = 0;
1434 	int ret;
1435 
1436 	inode = sis->swap_file->f_mapping->host;
1437 	if (S_ISBLK(inode->i_mode)) {
1438 		ret = add_swap_extent(sis, 0, sis->max, 0);
1439 		*span = sis->pages;
1440 		goto out;
1441 	}
1442 
1443 	blkbits = inode->i_blkbits;
1444 	blocks_per_page = PAGE_SIZE >> blkbits;
1445 
1446 	/*
1447 	 * Map all the blocks into the extent list.  This code doesn't try
1448 	 * to be very smart.
1449 	 */
1450 	probe_block = 0;
1451 	page_no = 0;
1452 	last_block = i_size_read(inode) >> blkbits;
1453 	while ((probe_block + blocks_per_page) <= last_block &&
1454 			page_no < sis->max) {
1455 		unsigned block_in_page;
1456 		sector_t first_block;
1457 
1458 		first_block = bmap(inode, probe_block);
1459 		if (first_block == 0)
1460 			goto bad_bmap;
1461 
1462 		/*
1463 		 * It must be PAGE_SIZE aligned on-disk
1464 		 */
1465 		if (first_block & (blocks_per_page - 1)) {
1466 			probe_block++;
1467 			goto reprobe;
1468 		}
1469 
1470 		for (block_in_page = 1; block_in_page < blocks_per_page;
1471 					block_in_page++) {
1472 			sector_t block;
1473 
1474 			block = bmap(inode, probe_block + block_in_page);
1475 			if (block == 0)
1476 				goto bad_bmap;
1477 			if (block != first_block + block_in_page) {
1478 				/* Discontiguity */
1479 				probe_block++;
1480 				goto reprobe;
1481 			}
1482 		}
1483 
1484 		first_block >>= (PAGE_SHIFT - blkbits);
1485 		if (page_no) {	/* exclude the header page */
1486 			if (first_block < lowest_block)
1487 				lowest_block = first_block;
1488 			if (first_block > highest_block)
1489 				highest_block = first_block;
1490 		}
1491 
1492 		/*
1493 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1494 		 */
1495 		ret = add_swap_extent(sis, page_no, 1, first_block);
1496 		if (ret < 0)
1497 			goto out;
1498 		nr_extents += ret;
1499 		page_no++;
1500 		probe_block += blocks_per_page;
1501 reprobe:
1502 		continue;
1503 	}
1504 	ret = nr_extents;
1505 	*span = 1 + highest_block - lowest_block;
1506 	if (page_no == 0)
1507 		page_no = 1;	/* force Empty message */
1508 	sis->max = page_no;
1509 	sis->pages = page_no - 1;
1510 	sis->highest_bit = page_no - 1;
1511 out:
1512 	return ret;
1513 bad_bmap:
1514 	printk(KERN_ERR "swapon: swapfile has holes\n");
1515 	ret = -EINVAL;
1516 	goto out;
1517 }
1518 
1519 static void enable_swap_info(struct swap_info_struct *p, int prio,
1520 				unsigned char *swap_map)
1521 {
1522 	int i, prev;
1523 
1524 	spin_lock(&swap_lock);
1525 	if (prio >= 0)
1526 		p->prio = prio;
1527 	else
1528 		p->prio = --least_priority;
1529 	p->swap_map = swap_map;
1530 	p->flags |= SWP_WRITEOK;
1531 	nr_swap_pages += p->pages;
1532 	total_swap_pages += p->pages;
1533 
1534 	/* insert swap space into swap_list: */
1535 	prev = -1;
1536 	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1537 		if (p->prio >= swap_info[i]->prio)
1538 			break;
1539 		prev = i;
1540 	}
1541 	p->next = i;
1542 	if (prev < 0)
1543 		swap_list.head = swap_list.next = p->type;
1544 	else
1545 		swap_info[prev]->next = p->type;
1546 	spin_unlock(&swap_lock);
1547 }
1548 
1549 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1550 {
1551 	struct swap_info_struct *p = NULL;
1552 	unsigned char *swap_map;
1553 	struct file *swap_file, *victim;
1554 	struct address_space *mapping;
1555 	struct inode *inode;
1556 	char *pathname;
1557 	int oom_score_adj;
1558 	int i, type, prev;
1559 	int err;
1560 
1561 	if (!capable(CAP_SYS_ADMIN))
1562 		return -EPERM;
1563 
1564 	BUG_ON(!current->mm);
1565 
1566 	pathname = getname(specialfile);
1567 	err = PTR_ERR(pathname);
1568 	if (IS_ERR(pathname))
1569 		goto out;
1570 
1571 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1572 	putname(pathname);
1573 	err = PTR_ERR(victim);
1574 	if (IS_ERR(victim))
1575 		goto out;
1576 
1577 	mapping = victim->f_mapping;
1578 	prev = -1;
1579 	spin_lock(&swap_lock);
1580 	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1581 		p = swap_info[type];
1582 		if (p->flags & SWP_WRITEOK) {
1583 			if (p->swap_file->f_mapping == mapping)
1584 				break;
1585 		}
1586 		prev = type;
1587 	}
1588 	if (type < 0) {
1589 		err = -EINVAL;
1590 		spin_unlock(&swap_lock);
1591 		goto out_dput;
1592 	}
1593 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
1594 		vm_unacct_memory(p->pages);
1595 	else {
1596 		err = -ENOMEM;
1597 		spin_unlock(&swap_lock);
1598 		goto out_dput;
1599 	}
1600 	if (prev < 0)
1601 		swap_list.head = p->next;
1602 	else
1603 		swap_info[prev]->next = p->next;
1604 	if (type == swap_list.next) {
1605 		/* just pick something that's safe... */
1606 		swap_list.next = swap_list.head;
1607 	}
1608 	if (p->prio < 0) {
1609 		for (i = p->next; i >= 0; i = swap_info[i]->next)
1610 			swap_info[i]->prio = p->prio--;
1611 		least_priority++;
1612 	}
1613 	nr_swap_pages -= p->pages;
1614 	total_swap_pages -= p->pages;
1615 	p->flags &= ~SWP_WRITEOK;
1616 	spin_unlock(&swap_lock);
1617 
1618 	oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
1619 	err = try_to_unuse(type);
1620 	compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj);
1621 
1622 	if (err) {
1623 		/*
1624 		 * reading p->prio and p->swap_map outside the lock is
1625 		 * safe here because only sys_swapon and sys_swapoff
1626 		 * change them, and there can be no other sys_swapon or
1627 		 * sys_swapoff for this swap_info_struct at this point.
1628 		 */
1629 		/* re-insert swap space back into swap_list */
1630 		enable_swap_info(p, p->prio, p->swap_map);
1631 		goto out_dput;
1632 	}
1633 
1634 	destroy_swap_extents(p);
1635 	if (p->flags & SWP_CONTINUED)
1636 		free_swap_count_continuations(p);
1637 
1638 	mutex_lock(&swapon_mutex);
1639 	spin_lock(&swap_lock);
1640 	drain_mmlist();
1641 
1642 	/* wait for anyone still in scan_swap_map */
1643 	p->highest_bit = 0;		/* cuts scans short */
1644 	while (p->flags >= SWP_SCANNING) {
1645 		spin_unlock(&swap_lock);
1646 		schedule_timeout_uninterruptible(1);
1647 		spin_lock(&swap_lock);
1648 	}
1649 
1650 	swap_file = p->swap_file;
1651 	p->swap_file = NULL;
1652 	p->max = 0;
1653 	swap_map = p->swap_map;
1654 	p->swap_map = NULL;
1655 	p->flags = 0;
1656 	spin_unlock(&swap_lock);
1657 	mutex_unlock(&swapon_mutex);
1658 	vfree(swap_map);
1659 	/* Destroy swap account informatin */
1660 	swap_cgroup_swapoff(type);
1661 
1662 	inode = mapping->host;
1663 	if (S_ISBLK(inode->i_mode)) {
1664 		struct block_device *bdev = I_BDEV(inode);
1665 		set_blocksize(bdev, p->old_block_size);
1666 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1667 	} else {
1668 		mutex_lock(&inode->i_mutex);
1669 		inode->i_flags &= ~S_SWAPFILE;
1670 		mutex_unlock(&inode->i_mutex);
1671 	}
1672 	filp_close(swap_file, NULL);
1673 	err = 0;
1674 	atomic_inc(&proc_poll_event);
1675 	wake_up_interruptible(&proc_poll_wait);
1676 
1677 out_dput:
1678 	filp_close(victim, NULL);
1679 out:
1680 	return err;
1681 }
1682 
1683 #ifdef CONFIG_PROC_FS
1684 static unsigned swaps_poll(struct file *file, poll_table *wait)
1685 {
1686 	struct seq_file *seq = file->private_data;
1687 
1688 	poll_wait(file, &proc_poll_wait, wait);
1689 
1690 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
1691 		seq->poll_event = atomic_read(&proc_poll_event);
1692 		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1693 	}
1694 
1695 	return POLLIN | POLLRDNORM;
1696 }
1697 
1698 /* iterator */
1699 static void *swap_start(struct seq_file *swap, loff_t *pos)
1700 {
1701 	struct swap_info_struct *si;
1702 	int type;
1703 	loff_t l = *pos;
1704 
1705 	mutex_lock(&swapon_mutex);
1706 
1707 	if (!l)
1708 		return SEQ_START_TOKEN;
1709 
1710 	for (type = 0; type < nr_swapfiles; type++) {
1711 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1712 		si = swap_info[type];
1713 		if (!(si->flags & SWP_USED) || !si->swap_map)
1714 			continue;
1715 		if (!--l)
1716 			return si;
1717 	}
1718 
1719 	return NULL;
1720 }
1721 
1722 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1723 {
1724 	struct swap_info_struct *si = v;
1725 	int type;
1726 
1727 	if (v == SEQ_START_TOKEN)
1728 		type = 0;
1729 	else
1730 		type = si->type + 1;
1731 
1732 	for (; type < nr_swapfiles; type++) {
1733 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1734 		si = swap_info[type];
1735 		if (!(si->flags & SWP_USED) || !si->swap_map)
1736 			continue;
1737 		++*pos;
1738 		return si;
1739 	}
1740 
1741 	return NULL;
1742 }
1743 
1744 static void swap_stop(struct seq_file *swap, void *v)
1745 {
1746 	mutex_unlock(&swapon_mutex);
1747 }
1748 
1749 static int swap_show(struct seq_file *swap, void *v)
1750 {
1751 	struct swap_info_struct *si = v;
1752 	struct file *file;
1753 	int len;
1754 
1755 	if (si == SEQ_START_TOKEN) {
1756 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1757 		return 0;
1758 	}
1759 
1760 	file = si->swap_file;
1761 	len = seq_path(swap, &file->f_path, " \t\n\\");
1762 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1763 			len < 40 ? 40 - len : 1, " ",
1764 			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1765 				"partition" : "file\t",
1766 			si->pages << (PAGE_SHIFT - 10),
1767 			si->inuse_pages << (PAGE_SHIFT - 10),
1768 			si->prio);
1769 	return 0;
1770 }
1771 
1772 static const struct seq_operations swaps_op = {
1773 	.start =	swap_start,
1774 	.next =		swap_next,
1775 	.stop =		swap_stop,
1776 	.show =		swap_show
1777 };
1778 
1779 static int swaps_open(struct inode *inode, struct file *file)
1780 {
1781 	struct seq_file *seq;
1782 	int ret;
1783 
1784 	ret = seq_open(file, &swaps_op);
1785 	if (ret)
1786 		return ret;
1787 
1788 	seq = file->private_data;
1789 	seq->poll_event = atomic_read(&proc_poll_event);
1790 	return 0;
1791 }
1792 
1793 static const struct file_operations proc_swaps_operations = {
1794 	.open		= swaps_open,
1795 	.read		= seq_read,
1796 	.llseek		= seq_lseek,
1797 	.release	= seq_release,
1798 	.poll		= swaps_poll,
1799 };
1800 
1801 static int __init procswaps_init(void)
1802 {
1803 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1804 	return 0;
1805 }
1806 __initcall(procswaps_init);
1807 #endif /* CONFIG_PROC_FS */
1808 
1809 #ifdef MAX_SWAPFILES_CHECK
1810 static int __init max_swapfiles_check(void)
1811 {
1812 	MAX_SWAPFILES_CHECK();
1813 	return 0;
1814 }
1815 late_initcall(max_swapfiles_check);
1816 #endif
1817 
1818 static struct swap_info_struct *alloc_swap_info(void)
1819 {
1820 	struct swap_info_struct *p;
1821 	unsigned int type;
1822 
1823 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1824 	if (!p)
1825 		return ERR_PTR(-ENOMEM);
1826 
1827 	spin_lock(&swap_lock);
1828 	for (type = 0; type < nr_swapfiles; type++) {
1829 		if (!(swap_info[type]->flags & SWP_USED))
1830 			break;
1831 	}
1832 	if (type >= MAX_SWAPFILES) {
1833 		spin_unlock(&swap_lock);
1834 		kfree(p);
1835 		return ERR_PTR(-EPERM);
1836 	}
1837 	if (type >= nr_swapfiles) {
1838 		p->type = type;
1839 		swap_info[type] = p;
1840 		/*
1841 		 * Write swap_info[type] before nr_swapfiles, in case a
1842 		 * racing procfs swap_start() or swap_next() is reading them.
1843 		 * (We never shrink nr_swapfiles, we never free this entry.)
1844 		 */
1845 		smp_wmb();
1846 		nr_swapfiles++;
1847 	} else {
1848 		kfree(p);
1849 		p = swap_info[type];
1850 		/*
1851 		 * Do not memset this entry: a racing procfs swap_next()
1852 		 * would be relying on p->type to remain valid.
1853 		 */
1854 	}
1855 	INIT_LIST_HEAD(&p->first_swap_extent.list);
1856 	p->flags = SWP_USED;
1857 	p->next = -1;
1858 	spin_unlock(&swap_lock);
1859 
1860 	return p;
1861 }
1862 
1863 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1864 {
1865 	int error;
1866 
1867 	if (S_ISBLK(inode->i_mode)) {
1868 		p->bdev = bdgrab(I_BDEV(inode));
1869 		error = blkdev_get(p->bdev,
1870 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1871 				   sys_swapon);
1872 		if (error < 0) {
1873 			p->bdev = NULL;
1874 			return -EINVAL;
1875 		}
1876 		p->old_block_size = block_size(p->bdev);
1877 		error = set_blocksize(p->bdev, PAGE_SIZE);
1878 		if (error < 0)
1879 			return error;
1880 		p->flags |= SWP_BLKDEV;
1881 	} else if (S_ISREG(inode->i_mode)) {
1882 		p->bdev = inode->i_sb->s_bdev;
1883 		mutex_lock(&inode->i_mutex);
1884 		if (IS_SWAPFILE(inode))
1885 			return -EBUSY;
1886 	} else
1887 		return -EINVAL;
1888 
1889 	return 0;
1890 }
1891 
1892 static unsigned long read_swap_header(struct swap_info_struct *p,
1893 					union swap_header *swap_header,
1894 					struct inode *inode)
1895 {
1896 	int i;
1897 	unsigned long maxpages;
1898 	unsigned long swapfilepages;
1899 
1900 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1901 		printk(KERN_ERR "Unable to find swap-space signature\n");
1902 		return 0;
1903 	}
1904 
1905 	/* swap partition endianess hack... */
1906 	if (swab32(swap_header->info.version) == 1) {
1907 		swab32s(&swap_header->info.version);
1908 		swab32s(&swap_header->info.last_page);
1909 		swab32s(&swap_header->info.nr_badpages);
1910 		for (i = 0; i < swap_header->info.nr_badpages; i++)
1911 			swab32s(&swap_header->info.badpages[i]);
1912 	}
1913 	/* Check the swap header's sub-version */
1914 	if (swap_header->info.version != 1) {
1915 		printk(KERN_WARNING
1916 		       "Unable to handle swap header version %d\n",
1917 		       swap_header->info.version);
1918 		return 0;
1919 	}
1920 
1921 	p->lowest_bit  = 1;
1922 	p->cluster_next = 1;
1923 	p->cluster_nr = 0;
1924 
1925 	/*
1926 	 * Find out how many pages are allowed for a single swap
1927 	 * device. There are three limiting factors: 1) the number
1928 	 * of bits for the swap offset in the swp_entry_t type, and
1929 	 * 2) the number of bits in the swap pte as defined by the
1930 	 * the different architectures, and 3) the number of free bits
1931 	 * in an exceptional radix_tree entry. In order to find the
1932 	 * largest possible bit mask, a swap entry with swap type 0
1933 	 * and swap offset ~0UL is created, encoded to a swap pte,
1934 	 * decoded to a swp_entry_t again, and finally the swap
1935 	 * offset is extracted. This will mask all the bits from
1936 	 * the initial ~0UL mask that can't be encoded in either
1937 	 * the swp_entry_t or the architecture definition of a
1938 	 * swap pte.  Then the same is done for a radix_tree entry.
1939 	 */
1940 	maxpages = swp_offset(pte_to_swp_entry(
1941 			swp_entry_to_pte(swp_entry(0, ~0UL))));
1942 	maxpages = swp_offset(radix_to_swp_entry(
1943 			swp_to_radix_entry(swp_entry(0, maxpages)))) + 1;
1944 
1945 	if (maxpages > swap_header->info.last_page) {
1946 		maxpages = swap_header->info.last_page + 1;
1947 		/* p->max is an unsigned int: don't overflow it */
1948 		if ((unsigned int)maxpages == 0)
1949 			maxpages = UINT_MAX;
1950 	}
1951 	p->highest_bit = maxpages - 1;
1952 
1953 	if (!maxpages)
1954 		return 0;
1955 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1956 	if (swapfilepages && maxpages > swapfilepages) {
1957 		printk(KERN_WARNING
1958 		       "Swap area shorter than signature indicates\n");
1959 		return 0;
1960 	}
1961 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1962 		return 0;
1963 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1964 		return 0;
1965 
1966 	return maxpages;
1967 }
1968 
1969 static int setup_swap_map_and_extents(struct swap_info_struct *p,
1970 					union swap_header *swap_header,
1971 					unsigned char *swap_map,
1972 					unsigned long maxpages,
1973 					sector_t *span)
1974 {
1975 	int i;
1976 	unsigned int nr_good_pages;
1977 	int nr_extents;
1978 
1979 	nr_good_pages = maxpages - 1;	/* omit header page */
1980 
1981 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
1982 		unsigned int page_nr = swap_header->info.badpages[i];
1983 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
1984 			return -EINVAL;
1985 		if (page_nr < maxpages) {
1986 			swap_map[page_nr] = SWAP_MAP_BAD;
1987 			nr_good_pages--;
1988 		}
1989 	}
1990 
1991 	if (nr_good_pages) {
1992 		swap_map[0] = SWAP_MAP_BAD;
1993 		p->max = maxpages;
1994 		p->pages = nr_good_pages;
1995 		nr_extents = setup_swap_extents(p, span);
1996 		if (nr_extents < 0)
1997 			return nr_extents;
1998 		nr_good_pages = p->pages;
1999 	}
2000 	if (!nr_good_pages) {
2001 		printk(KERN_WARNING "Empty swap-file\n");
2002 		return -EINVAL;
2003 	}
2004 
2005 	return nr_extents;
2006 }
2007 
2008 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2009 {
2010 	struct swap_info_struct *p;
2011 	char *name;
2012 	struct file *swap_file = NULL;
2013 	struct address_space *mapping;
2014 	int i;
2015 	int prio;
2016 	int error;
2017 	union swap_header *swap_header;
2018 	int nr_extents;
2019 	sector_t span;
2020 	unsigned long maxpages;
2021 	unsigned char *swap_map = NULL;
2022 	struct page *page = NULL;
2023 	struct inode *inode = NULL;
2024 
2025 	if (swap_flags & ~SWAP_FLAGS_VALID)
2026 		return -EINVAL;
2027 
2028 	if (!capable(CAP_SYS_ADMIN))
2029 		return -EPERM;
2030 
2031 	p = alloc_swap_info();
2032 	if (IS_ERR(p))
2033 		return PTR_ERR(p);
2034 
2035 	name = getname(specialfile);
2036 	if (IS_ERR(name)) {
2037 		error = PTR_ERR(name);
2038 		name = NULL;
2039 		goto bad_swap;
2040 	}
2041 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
2042 	if (IS_ERR(swap_file)) {
2043 		error = PTR_ERR(swap_file);
2044 		swap_file = NULL;
2045 		goto bad_swap;
2046 	}
2047 
2048 	p->swap_file = swap_file;
2049 	mapping = swap_file->f_mapping;
2050 
2051 	for (i = 0; i < nr_swapfiles; i++) {
2052 		struct swap_info_struct *q = swap_info[i];
2053 
2054 		if (q == p || !q->swap_file)
2055 			continue;
2056 		if (mapping == q->swap_file->f_mapping) {
2057 			error = -EBUSY;
2058 			goto bad_swap;
2059 		}
2060 	}
2061 
2062 	inode = mapping->host;
2063 	/* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2064 	error = claim_swapfile(p, inode);
2065 	if (unlikely(error))
2066 		goto bad_swap;
2067 
2068 	/*
2069 	 * Read the swap header.
2070 	 */
2071 	if (!mapping->a_ops->readpage) {
2072 		error = -EINVAL;
2073 		goto bad_swap;
2074 	}
2075 	page = read_mapping_page(mapping, 0, swap_file);
2076 	if (IS_ERR(page)) {
2077 		error = PTR_ERR(page);
2078 		goto bad_swap;
2079 	}
2080 	swap_header = kmap(page);
2081 
2082 	maxpages = read_swap_header(p, swap_header, inode);
2083 	if (unlikely(!maxpages)) {
2084 		error = -EINVAL;
2085 		goto bad_swap;
2086 	}
2087 
2088 	/* OK, set up the swap map and apply the bad block list */
2089 	swap_map = vzalloc(maxpages);
2090 	if (!swap_map) {
2091 		error = -ENOMEM;
2092 		goto bad_swap;
2093 	}
2094 
2095 	error = swap_cgroup_swapon(p->type, maxpages);
2096 	if (error)
2097 		goto bad_swap;
2098 
2099 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2100 		maxpages, &span);
2101 	if (unlikely(nr_extents < 0)) {
2102 		error = nr_extents;
2103 		goto bad_swap;
2104 	}
2105 
2106 	if (p->bdev) {
2107 		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2108 			p->flags |= SWP_SOLIDSTATE;
2109 			p->cluster_next = 1 + (random32() % p->highest_bit);
2110 		}
2111 		if ((swap_flags & SWAP_FLAG_DISCARD) && discard_swap(p) == 0)
2112 			p->flags |= SWP_DISCARDABLE;
2113 	}
2114 
2115 	mutex_lock(&swapon_mutex);
2116 	prio = -1;
2117 	if (swap_flags & SWAP_FLAG_PREFER)
2118 		prio =
2119 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2120 	enable_swap_info(p, prio, swap_map);
2121 
2122 	printk(KERN_INFO "Adding %uk swap on %s.  "
2123 			"Priority:%d extents:%d across:%lluk %s%s\n",
2124 		p->pages<<(PAGE_SHIFT-10), name, p->prio,
2125 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2126 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2127 		(p->flags & SWP_DISCARDABLE) ? "D" : "");
2128 
2129 	mutex_unlock(&swapon_mutex);
2130 	atomic_inc(&proc_poll_event);
2131 	wake_up_interruptible(&proc_poll_wait);
2132 
2133 	if (S_ISREG(inode->i_mode))
2134 		inode->i_flags |= S_SWAPFILE;
2135 	error = 0;
2136 	goto out;
2137 bad_swap:
2138 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2139 		set_blocksize(p->bdev, p->old_block_size);
2140 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2141 	}
2142 	destroy_swap_extents(p);
2143 	swap_cgroup_swapoff(p->type);
2144 	spin_lock(&swap_lock);
2145 	p->swap_file = NULL;
2146 	p->flags = 0;
2147 	spin_unlock(&swap_lock);
2148 	vfree(swap_map);
2149 	if (swap_file) {
2150 		if (inode && S_ISREG(inode->i_mode)) {
2151 			mutex_unlock(&inode->i_mutex);
2152 			inode = NULL;
2153 		}
2154 		filp_close(swap_file, NULL);
2155 	}
2156 out:
2157 	if (page && !IS_ERR(page)) {
2158 		kunmap(page);
2159 		page_cache_release(page);
2160 	}
2161 	if (name)
2162 		putname(name);
2163 	if (inode && S_ISREG(inode->i_mode))
2164 		mutex_unlock(&inode->i_mutex);
2165 	return error;
2166 }
2167 
2168 void si_swapinfo(struct sysinfo *val)
2169 {
2170 	unsigned int type;
2171 	unsigned long nr_to_be_unused = 0;
2172 
2173 	spin_lock(&swap_lock);
2174 	for (type = 0; type < nr_swapfiles; type++) {
2175 		struct swap_info_struct *si = swap_info[type];
2176 
2177 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2178 			nr_to_be_unused += si->inuse_pages;
2179 	}
2180 	val->freeswap = nr_swap_pages + nr_to_be_unused;
2181 	val->totalswap = total_swap_pages + nr_to_be_unused;
2182 	spin_unlock(&swap_lock);
2183 }
2184 
2185 /*
2186  * Verify that a swap entry is valid and increment its swap map count.
2187  *
2188  * Returns error code in following case.
2189  * - success -> 0
2190  * - swp_entry is invalid -> EINVAL
2191  * - swp_entry is migration entry -> EINVAL
2192  * - swap-cache reference is requested but there is already one. -> EEXIST
2193  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2194  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2195  */
2196 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2197 {
2198 	struct swap_info_struct *p;
2199 	unsigned long offset, type;
2200 	unsigned char count;
2201 	unsigned char has_cache;
2202 	int err = -EINVAL;
2203 
2204 	if (non_swap_entry(entry))
2205 		goto out;
2206 
2207 	type = swp_type(entry);
2208 	if (type >= nr_swapfiles)
2209 		goto bad_file;
2210 	p = swap_info[type];
2211 	offset = swp_offset(entry);
2212 
2213 	spin_lock(&swap_lock);
2214 	if (unlikely(offset >= p->max))
2215 		goto unlock_out;
2216 
2217 	count = p->swap_map[offset];
2218 	has_cache = count & SWAP_HAS_CACHE;
2219 	count &= ~SWAP_HAS_CACHE;
2220 	err = 0;
2221 
2222 	if (usage == SWAP_HAS_CACHE) {
2223 
2224 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2225 		if (!has_cache && count)
2226 			has_cache = SWAP_HAS_CACHE;
2227 		else if (has_cache)		/* someone else added cache */
2228 			err = -EEXIST;
2229 		else				/* no users remaining */
2230 			err = -ENOENT;
2231 
2232 	} else if (count || has_cache) {
2233 
2234 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2235 			count += usage;
2236 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2237 			err = -EINVAL;
2238 		else if (swap_count_continued(p, offset, count))
2239 			count = COUNT_CONTINUED;
2240 		else
2241 			err = -ENOMEM;
2242 	} else
2243 		err = -ENOENT;			/* unused swap entry */
2244 
2245 	p->swap_map[offset] = count | has_cache;
2246 
2247 unlock_out:
2248 	spin_unlock(&swap_lock);
2249 out:
2250 	return err;
2251 
2252 bad_file:
2253 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2254 	goto out;
2255 }
2256 
2257 /*
2258  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2259  * (in which case its reference count is never incremented).
2260  */
2261 void swap_shmem_alloc(swp_entry_t entry)
2262 {
2263 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2264 }
2265 
2266 /*
2267  * Increase reference count of swap entry by 1.
2268  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2269  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2270  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2271  * might occur if a page table entry has got corrupted.
2272  */
2273 int swap_duplicate(swp_entry_t entry)
2274 {
2275 	int err = 0;
2276 
2277 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2278 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2279 	return err;
2280 }
2281 
2282 /*
2283  * @entry: swap entry for which we allocate swap cache.
2284  *
2285  * Called when allocating swap cache for existing swap entry,
2286  * This can return error codes. Returns 0 at success.
2287  * -EBUSY means there is a swap cache.
2288  * Note: return code is different from swap_duplicate().
2289  */
2290 int swapcache_prepare(swp_entry_t entry)
2291 {
2292 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2293 }
2294 
2295 /*
2296  * add_swap_count_continuation - called when a swap count is duplicated
2297  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2298  * page of the original vmalloc'ed swap_map, to hold the continuation count
2299  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2300  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2301  *
2302  * These continuation pages are seldom referenced: the common paths all work
2303  * on the original swap_map, only referring to a continuation page when the
2304  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2305  *
2306  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2307  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2308  * can be called after dropping locks.
2309  */
2310 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2311 {
2312 	struct swap_info_struct *si;
2313 	struct page *head;
2314 	struct page *page;
2315 	struct page *list_page;
2316 	pgoff_t offset;
2317 	unsigned char count;
2318 
2319 	/*
2320 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2321 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2322 	 */
2323 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2324 
2325 	si = swap_info_get(entry);
2326 	if (!si) {
2327 		/*
2328 		 * An acceptable race has occurred since the failing
2329 		 * __swap_duplicate(): the swap entry has been freed,
2330 		 * perhaps even the whole swap_map cleared for swapoff.
2331 		 */
2332 		goto outer;
2333 	}
2334 
2335 	offset = swp_offset(entry);
2336 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2337 
2338 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2339 		/*
2340 		 * The higher the swap count, the more likely it is that tasks
2341 		 * will race to add swap count continuation: we need to avoid
2342 		 * over-provisioning.
2343 		 */
2344 		goto out;
2345 	}
2346 
2347 	if (!page) {
2348 		spin_unlock(&swap_lock);
2349 		return -ENOMEM;
2350 	}
2351 
2352 	/*
2353 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2354 	 * no architecture is using highmem pages for kernel pagetables: so it
2355 	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2356 	 */
2357 	head = vmalloc_to_page(si->swap_map + offset);
2358 	offset &= ~PAGE_MASK;
2359 
2360 	/*
2361 	 * Page allocation does not initialize the page's lru field,
2362 	 * but it does always reset its private field.
2363 	 */
2364 	if (!page_private(head)) {
2365 		BUG_ON(count & COUNT_CONTINUED);
2366 		INIT_LIST_HEAD(&head->lru);
2367 		set_page_private(head, SWP_CONTINUED);
2368 		si->flags |= SWP_CONTINUED;
2369 	}
2370 
2371 	list_for_each_entry(list_page, &head->lru, lru) {
2372 		unsigned char *map;
2373 
2374 		/*
2375 		 * If the previous map said no continuation, but we've found
2376 		 * a continuation page, free our allocation and use this one.
2377 		 */
2378 		if (!(count & COUNT_CONTINUED))
2379 			goto out;
2380 
2381 		map = kmap_atomic(list_page) + offset;
2382 		count = *map;
2383 		kunmap_atomic(map);
2384 
2385 		/*
2386 		 * If this continuation count now has some space in it,
2387 		 * free our allocation and use this one.
2388 		 */
2389 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2390 			goto out;
2391 	}
2392 
2393 	list_add_tail(&page->lru, &head->lru);
2394 	page = NULL;			/* now it's attached, don't free it */
2395 out:
2396 	spin_unlock(&swap_lock);
2397 outer:
2398 	if (page)
2399 		__free_page(page);
2400 	return 0;
2401 }
2402 
2403 /*
2404  * swap_count_continued - when the original swap_map count is incremented
2405  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2406  * into, carry if so, or else fail until a new continuation page is allocated;
2407  * when the original swap_map count is decremented from 0 with continuation,
2408  * borrow from the continuation and report whether it still holds more.
2409  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2410  */
2411 static bool swap_count_continued(struct swap_info_struct *si,
2412 				 pgoff_t offset, unsigned char count)
2413 {
2414 	struct page *head;
2415 	struct page *page;
2416 	unsigned char *map;
2417 
2418 	head = vmalloc_to_page(si->swap_map + offset);
2419 	if (page_private(head) != SWP_CONTINUED) {
2420 		BUG_ON(count & COUNT_CONTINUED);
2421 		return false;		/* need to add count continuation */
2422 	}
2423 
2424 	offset &= ~PAGE_MASK;
2425 	page = list_entry(head->lru.next, struct page, lru);
2426 	map = kmap_atomic(page) + offset;
2427 
2428 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2429 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2430 
2431 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2432 		/*
2433 		 * Think of how you add 1 to 999
2434 		 */
2435 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2436 			kunmap_atomic(map);
2437 			page = list_entry(page->lru.next, struct page, lru);
2438 			BUG_ON(page == head);
2439 			map = kmap_atomic(page) + offset;
2440 		}
2441 		if (*map == SWAP_CONT_MAX) {
2442 			kunmap_atomic(map);
2443 			page = list_entry(page->lru.next, struct page, lru);
2444 			if (page == head)
2445 				return false;	/* add count continuation */
2446 			map = kmap_atomic(page) + offset;
2447 init_map:		*map = 0;		/* we didn't zero the page */
2448 		}
2449 		*map += 1;
2450 		kunmap_atomic(map);
2451 		page = list_entry(page->lru.prev, struct page, lru);
2452 		while (page != head) {
2453 			map = kmap_atomic(page) + offset;
2454 			*map = COUNT_CONTINUED;
2455 			kunmap_atomic(map);
2456 			page = list_entry(page->lru.prev, struct page, lru);
2457 		}
2458 		return true;			/* incremented */
2459 
2460 	} else {				/* decrementing */
2461 		/*
2462 		 * Think of how you subtract 1 from 1000
2463 		 */
2464 		BUG_ON(count != COUNT_CONTINUED);
2465 		while (*map == COUNT_CONTINUED) {
2466 			kunmap_atomic(map);
2467 			page = list_entry(page->lru.next, struct page, lru);
2468 			BUG_ON(page == head);
2469 			map = kmap_atomic(page) + offset;
2470 		}
2471 		BUG_ON(*map == 0);
2472 		*map -= 1;
2473 		if (*map == 0)
2474 			count = 0;
2475 		kunmap_atomic(map);
2476 		page = list_entry(page->lru.prev, struct page, lru);
2477 		while (page != head) {
2478 			map = kmap_atomic(page) + offset;
2479 			*map = SWAP_CONT_MAX | count;
2480 			count = COUNT_CONTINUED;
2481 			kunmap_atomic(map);
2482 			page = list_entry(page->lru.prev, struct page, lru);
2483 		}
2484 		return count == COUNT_CONTINUED;
2485 	}
2486 }
2487 
2488 /*
2489  * free_swap_count_continuations - swapoff free all the continuation pages
2490  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2491  */
2492 static void free_swap_count_continuations(struct swap_info_struct *si)
2493 {
2494 	pgoff_t offset;
2495 
2496 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2497 		struct page *head;
2498 		head = vmalloc_to_page(si->swap_map + offset);
2499 		if (page_private(head)) {
2500 			struct list_head *this, *next;
2501 			list_for_each_safe(this, next, &head->lru) {
2502 				struct page *page;
2503 				page = list_entry(this, struct page, lru);
2504 				list_del(this);
2505 				__free_page(page);
2506 			}
2507 		}
2508 	}
2509 }
2510