1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shmem_fs.h> 18 #include <linux/blkdev.h> 19 #include <linux/random.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/security.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mutex.h> 29 #include <linux/capability.h> 30 #include <linux/syscalls.h> 31 #include <linux/memcontrol.h> 32 #include <linux/poll.h> 33 #include <linux/oom.h> 34 35 #include <asm/pgtable.h> 36 #include <asm/tlbflush.h> 37 #include <linux/swapops.h> 38 #include <linux/page_cgroup.h> 39 40 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 41 unsigned char); 42 static void free_swap_count_continuations(struct swap_info_struct *); 43 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 44 45 static DEFINE_SPINLOCK(swap_lock); 46 static unsigned int nr_swapfiles; 47 long nr_swap_pages; 48 long total_swap_pages; 49 static int least_priority; 50 51 static const char Bad_file[] = "Bad swap file entry "; 52 static const char Unused_file[] = "Unused swap file entry "; 53 static const char Bad_offset[] = "Bad swap offset entry "; 54 static const char Unused_offset[] = "Unused swap offset entry "; 55 56 static struct swap_list_t swap_list = {-1, -1}; 57 58 static struct swap_info_struct *swap_info[MAX_SWAPFILES]; 59 60 static DEFINE_MUTEX(swapon_mutex); 61 62 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 63 /* Activity counter to indicate that a swapon or swapoff has occurred */ 64 static atomic_t proc_poll_event = ATOMIC_INIT(0); 65 66 static inline unsigned char swap_count(unsigned char ent) 67 { 68 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ 69 } 70 71 /* returns 1 if swap entry is freed */ 72 static int 73 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) 74 { 75 swp_entry_t entry = swp_entry(si->type, offset); 76 struct page *page; 77 int ret = 0; 78 79 page = find_get_page(&swapper_space, entry.val); 80 if (!page) 81 return 0; 82 /* 83 * This function is called from scan_swap_map() and it's called 84 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. 85 * We have to use trylock for avoiding deadlock. This is a special 86 * case and you should use try_to_free_swap() with explicit lock_page() 87 * in usual operations. 88 */ 89 if (trylock_page(page)) { 90 ret = try_to_free_swap(page); 91 unlock_page(page); 92 } 93 page_cache_release(page); 94 return ret; 95 } 96 97 /* 98 * swapon tell device that all the old swap contents can be discarded, 99 * to allow the swap device to optimize its wear-levelling. 100 */ 101 static int discard_swap(struct swap_info_struct *si) 102 { 103 struct swap_extent *se; 104 sector_t start_block; 105 sector_t nr_blocks; 106 int err = 0; 107 108 /* Do not discard the swap header page! */ 109 se = &si->first_swap_extent; 110 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 111 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 112 if (nr_blocks) { 113 err = blkdev_issue_discard(si->bdev, start_block, 114 nr_blocks, GFP_KERNEL, 0); 115 if (err) 116 return err; 117 cond_resched(); 118 } 119 120 list_for_each_entry(se, &si->first_swap_extent.list, list) { 121 start_block = se->start_block << (PAGE_SHIFT - 9); 122 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 123 124 err = blkdev_issue_discard(si->bdev, start_block, 125 nr_blocks, GFP_KERNEL, 0); 126 if (err) 127 break; 128 129 cond_resched(); 130 } 131 return err; /* That will often be -EOPNOTSUPP */ 132 } 133 134 /* 135 * swap allocation tell device that a cluster of swap can now be discarded, 136 * to allow the swap device to optimize its wear-levelling. 137 */ 138 static void discard_swap_cluster(struct swap_info_struct *si, 139 pgoff_t start_page, pgoff_t nr_pages) 140 { 141 struct swap_extent *se = si->curr_swap_extent; 142 int found_extent = 0; 143 144 while (nr_pages) { 145 struct list_head *lh; 146 147 if (se->start_page <= start_page && 148 start_page < se->start_page + se->nr_pages) { 149 pgoff_t offset = start_page - se->start_page; 150 sector_t start_block = se->start_block + offset; 151 sector_t nr_blocks = se->nr_pages - offset; 152 153 if (nr_blocks > nr_pages) 154 nr_blocks = nr_pages; 155 start_page += nr_blocks; 156 nr_pages -= nr_blocks; 157 158 if (!found_extent++) 159 si->curr_swap_extent = se; 160 161 start_block <<= PAGE_SHIFT - 9; 162 nr_blocks <<= PAGE_SHIFT - 9; 163 if (blkdev_issue_discard(si->bdev, start_block, 164 nr_blocks, GFP_NOIO, 0)) 165 break; 166 } 167 168 lh = se->list.next; 169 se = list_entry(lh, struct swap_extent, list); 170 } 171 } 172 173 static int wait_for_discard(void *word) 174 { 175 schedule(); 176 return 0; 177 } 178 179 #define SWAPFILE_CLUSTER 256 180 #define LATENCY_LIMIT 256 181 182 static unsigned long scan_swap_map(struct swap_info_struct *si, 183 unsigned char usage) 184 { 185 unsigned long offset; 186 unsigned long scan_base; 187 unsigned long last_in_cluster = 0; 188 int latency_ration = LATENCY_LIMIT; 189 int found_free_cluster = 0; 190 191 /* 192 * We try to cluster swap pages by allocating them sequentially 193 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 194 * way, however, we resort to first-free allocation, starting 195 * a new cluster. This prevents us from scattering swap pages 196 * all over the entire swap partition, so that we reduce 197 * overall disk seek times between swap pages. -- sct 198 * But we do now try to find an empty cluster. -Andrea 199 * And we let swap pages go all over an SSD partition. Hugh 200 */ 201 202 si->flags += SWP_SCANNING; 203 scan_base = offset = si->cluster_next; 204 205 if (unlikely(!si->cluster_nr--)) { 206 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 207 si->cluster_nr = SWAPFILE_CLUSTER - 1; 208 goto checks; 209 } 210 if (si->flags & SWP_DISCARDABLE) { 211 /* 212 * Start range check on racing allocations, in case 213 * they overlap the cluster we eventually decide on 214 * (we scan without swap_lock to allow preemption). 215 * It's hardly conceivable that cluster_nr could be 216 * wrapped during our scan, but don't depend on it. 217 */ 218 if (si->lowest_alloc) 219 goto checks; 220 si->lowest_alloc = si->max; 221 si->highest_alloc = 0; 222 } 223 spin_unlock(&swap_lock); 224 225 /* 226 * If seek is expensive, start searching for new cluster from 227 * start of partition, to minimize the span of allocated swap. 228 * But if seek is cheap, search from our current position, so 229 * that swap is allocated from all over the partition: if the 230 * Flash Translation Layer only remaps within limited zones, 231 * we don't want to wear out the first zone too quickly. 232 */ 233 if (!(si->flags & SWP_SOLIDSTATE)) 234 scan_base = offset = si->lowest_bit; 235 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 236 237 /* Locate the first empty (unaligned) cluster */ 238 for (; last_in_cluster <= si->highest_bit; offset++) { 239 if (si->swap_map[offset]) 240 last_in_cluster = offset + SWAPFILE_CLUSTER; 241 else if (offset == last_in_cluster) { 242 spin_lock(&swap_lock); 243 offset -= SWAPFILE_CLUSTER - 1; 244 si->cluster_next = offset; 245 si->cluster_nr = SWAPFILE_CLUSTER - 1; 246 found_free_cluster = 1; 247 goto checks; 248 } 249 if (unlikely(--latency_ration < 0)) { 250 cond_resched(); 251 latency_ration = LATENCY_LIMIT; 252 } 253 } 254 255 offset = si->lowest_bit; 256 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 257 258 /* Locate the first empty (unaligned) cluster */ 259 for (; last_in_cluster < scan_base; offset++) { 260 if (si->swap_map[offset]) 261 last_in_cluster = offset + SWAPFILE_CLUSTER; 262 else if (offset == last_in_cluster) { 263 spin_lock(&swap_lock); 264 offset -= SWAPFILE_CLUSTER - 1; 265 si->cluster_next = offset; 266 si->cluster_nr = SWAPFILE_CLUSTER - 1; 267 found_free_cluster = 1; 268 goto checks; 269 } 270 if (unlikely(--latency_ration < 0)) { 271 cond_resched(); 272 latency_ration = LATENCY_LIMIT; 273 } 274 } 275 276 offset = scan_base; 277 spin_lock(&swap_lock); 278 si->cluster_nr = SWAPFILE_CLUSTER - 1; 279 si->lowest_alloc = 0; 280 } 281 282 checks: 283 if (!(si->flags & SWP_WRITEOK)) 284 goto no_page; 285 if (!si->highest_bit) 286 goto no_page; 287 if (offset > si->highest_bit) 288 scan_base = offset = si->lowest_bit; 289 290 /* reuse swap entry of cache-only swap if not busy. */ 291 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 292 int swap_was_freed; 293 spin_unlock(&swap_lock); 294 swap_was_freed = __try_to_reclaim_swap(si, offset); 295 spin_lock(&swap_lock); 296 /* entry was freed successfully, try to use this again */ 297 if (swap_was_freed) 298 goto checks; 299 goto scan; /* check next one */ 300 } 301 302 if (si->swap_map[offset]) 303 goto scan; 304 305 if (offset == si->lowest_bit) 306 si->lowest_bit++; 307 if (offset == si->highest_bit) 308 si->highest_bit--; 309 si->inuse_pages++; 310 if (si->inuse_pages == si->pages) { 311 si->lowest_bit = si->max; 312 si->highest_bit = 0; 313 } 314 si->swap_map[offset] = usage; 315 si->cluster_next = offset + 1; 316 si->flags -= SWP_SCANNING; 317 318 if (si->lowest_alloc) { 319 /* 320 * Only set when SWP_DISCARDABLE, and there's a scan 321 * for a free cluster in progress or just completed. 322 */ 323 if (found_free_cluster) { 324 /* 325 * To optimize wear-levelling, discard the 326 * old data of the cluster, taking care not to 327 * discard any of its pages that have already 328 * been allocated by racing tasks (offset has 329 * already stepped over any at the beginning). 330 */ 331 if (offset < si->highest_alloc && 332 si->lowest_alloc <= last_in_cluster) 333 last_in_cluster = si->lowest_alloc - 1; 334 si->flags |= SWP_DISCARDING; 335 spin_unlock(&swap_lock); 336 337 if (offset < last_in_cluster) 338 discard_swap_cluster(si, offset, 339 last_in_cluster - offset + 1); 340 341 spin_lock(&swap_lock); 342 si->lowest_alloc = 0; 343 si->flags &= ~SWP_DISCARDING; 344 345 smp_mb(); /* wake_up_bit advises this */ 346 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING)); 347 348 } else if (si->flags & SWP_DISCARDING) { 349 /* 350 * Delay using pages allocated by racing tasks 351 * until the whole discard has been issued. We 352 * could defer that delay until swap_writepage, 353 * but it's easier to keep this self-contained. 354 */ 355 spin_unlock(&swap_lock); 356 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING), 357 wait_for_discard, TASK_UNINTERRUPTIBLE); 358 spin_lock(&swap_lock); 359 } else { 360 /* 361 * Note pages allocated by racing tasks while 362 * scan for a free cluster is in progress, so 363 * that its final discard can exclude them. 364 */ 365 if (offset < si->lowest_alloc) 366 si->lowest_alloc = offset; 367 if (offset > si->highest_alloc) 368 si->highest_alloc = offset; 369 } 370 } 371 return offset; 372 373 scan: 374 spin_unlock(&swap_lock); 375 while (++offset <= si->highest_bit) { 376 if (!si->swap_map[offset]) { 377 spin_lock(&swap_lock); 378 goto checks; 379 } 380 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 381 spin_lock(&swap_lock); 382 goto checks; 383 } 384 if (unlikely(--latency_ration < 0)) { 385 cond_resched(); 386 latency_ration = LATENCY_LIMIT; 387 } 388 } 389 offset = si->lowest_bit; 390 while (++offset < scan_base) { 391 if (!si->swap_map[offset]) { 392 spin_lock(&swap_lock); 393 goto checks; 394 } 395 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 396 spin_lock(&swap_lock); 397 goto checks; 398 } 399 if (unlikely(--latency_ration < 0)) { 400 cond_resched(); 401 latency_ration = LATENCY_LIMIT; 402 } 403 } 404 spin_lock(&swap_lock); 405 406 no_page: 407 si->flags -= SWP_SCANNING; 408 return 0; 409 } 410 411 swp_entry_t get_swap_page(void) 412 { 413 struct swap_info_struct *si; 414 pgoff_t offset; 415 int type, next; 416 int wrapped = 0; 417 418 spin_lock(&swap_lock); 419 if (nr_swap_pages <= 0) 420 goto noswap; 421 nr_swap_pages--; 422 423 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { 424 si = swap_info[type]; 425 next = si->next; 426 if (next < 0 || 427 (!wrapped && si->prio != swap_info[next]->prio)) { 428 next = swap_list.head; 429 wrapped++; 430 } 431 432 if (!si->highest_bit) 433 continue; 434 if (!(si->flags & SWP_WRITEOK)) 435 continue; 436 437 swap_list.next = next; 438 /* This is called for allocating swap entry for cache */ 439 offset = scan_swap_map(si, SWAP_HAS_CACHE); 440 if (offset) { 441 spin_unlock(&swap_lock); 442 return swp_entry(type, offset); 443 } 444 next = swap_list.next; 445 } 446 447 nr_swap_pages++; 448 noswap: 449 spin_unlock(&swap_lock); 450 return (swp_entry_t) {0}; 451 } 452 453 /* The only caller of this function is now susupend routine */ 454 swp_entry_t get_swap_page_of_type(int type) 455 { 456 struct swap_info_struct *si; 457 pgoff_t offset; 458 459 spin_lock(&swap_lock); 460 si = swap_info[type]; 461 if (si && (si->flags & SWP_WRITEOK)) { 462 nr_swap_pages--; 463 /* This is called for allocating swap entry, not cache */ 464 offset = scan_swap_map(si, 1); 465 if (offset) { 466 spin_unlock(&swap_lock); 467 return swp_entry(type, offset); 468 } 469 nr_swap_pages++; 470 } 471 spin_unlock(&swap_lock); 472 return (swp_entry_t) {0}; 473 } 474 475 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 476 { 477 struct swap_info_struct *p; 478 unsigned long offset, type; 479 480 if (!entry.val) 481 goto out; 482 type = swp_type(entry); 483 if (type >= nr_swapfiles) 484 goto bad_nofile; 485 p = swap_info[type]; 486 if (!(p->flags & SWP_USED)) 487 goto bad_device; 488 offset = swp_offset(entry); 489 if (offset >= p->max) 490 goto bad_offset; 491 if (!p->swap_map[offset]) 492 goto bad_free; 493 spin_lock(&swap_lock); 494 return p; 495 496 bad_free: 497 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); 498 goto out; 499 bad_offset: 500 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); 501 goto out; 502 bad_device: 503 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); 504 goto out; 505 bad_nofile: 506 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); 507 out: 508 return NULL; 509 } 510 511 static unsigned char swap_entry_free(struct swap_info_struct *p, 512 swp_entry_t entry, unsigned char usage) 513 { 514 unsigned long offset = swp_offset(entry); 515 unsigned char count; 516 unsigned char has_cache; 517 518 count = p->swap_map[offset]; 519 has_cache = count & SWAP_HAS_CACHE; 520 count &= ~SWAP_HAS_CACHE; 521 522 if (usage == SWAP_HAS_CACHE) { 523 VM_BUG_ON(!has_cache); 524 has_cache = 0; 525 } else if (count == SWAP_MAP_SHMEM) { 526 /* 527 * Or we could insist on shmem.c using a special 528 * swap_shmem_free() and free_shmem_swap_and_cache()... 529 */ 530 count = 0; 531 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 532 if (count == COUNT_CONTINUED) { 533 if (swap_count_continued(p, offset, count)) 534 count = SWAP_MAP_MAX | COUNT_CONTINUED; 535 else 536 count = SWAP_MAP_MAX; 537 } else 538 count--; 539 } 540 541 if (!count) 542 mem_cgroup_uncharge_swap(entry); 543 544 usage = count | has_cache; 545 p->swap_map[offset] = usage; 546 547 /* free if no reference */ 548 if (!usage) { 549 struct gendisk *disk = p->bdev->bd_disk; 550 if (offset < p->lowest_bit) 551 p->lowest_bit = offset; 552 if (offset > p->highest_bit) 553 p->highest_bit = offset; 554 if (swap_list.next >= 0 && 555 p->prio > swap_info[swap_list.next]->prio) 556 swap_list.next = p->type; 557 nr_swap_pages++; 558 p->inuse_pages--; 559 if ((p->flags & SWP_BLKDEV) && 560 disk->fops->swap_slot_free_notify) 561 disk->fops->swap_slot_free_notify(p->bdev, offset); 562 } 563 564 return usage; 565 } 566 567 /* 568 * Caller has made sure that the swapdevice corresponding to entry 569 * is still around or has not been recycled. 570 */ 571 void swap_free(swp_entry_t entry) 572 { 573 struct swap_info_struct *p; 574 575 p = swap_info_get(entry); 576 if (p) { 577 swap_entry_free(p, entry, 1); 578 spin_unlock(&swap_lock); 579 } 580 } 581 582 /* 583 * Called after dropping swapcache to decrease refcnt to swap entries. 584 */ 585 void swapcache_free(swp_entry_t entry, struct page *page) 586 { 587 struct swap_info_struct *p; 588 unsigned char count; 589 590 p = swap_info_get(entry); 591 if (p) { 592 count = swap_entry_free(p, entry, SWAP_HAS_CACHE); 593 if (page) 594 mem_cgroup_uncharge_swapcache(page, entry, count != 0); 595 spin_unlock(&swap_lock); 596 } 597 } 598 599 /* 600 * How many references to page are currently swapped out? 601 * This does not give an exact answer when swap count is continued, 602 * but does include the high COUNT_CONTINUED flag to allow for that. 603 */ 604 static inline int page_swapcount(struct page *page) 605 { 606 int count = 0; 607 struct swap_info_struct *p; 608 swp_entry_t entry; 609 610 entry.val = page_private(page); 611 p = swap_info_get(entry); 612 if (p) { 613 count = swap_count(p->swap_map[swp_offset(entry)]); 614 spin_unlock(&swap_lock); 615 } 616 return count; 617 } 618 619 /* 620 * We can write to an anon page without COW if there are no other references 621 * to it. And as a side-effect, free up its swap: because the old content 622 * on disk will never be read, and seeking back there to write new content 623 * later would only waste time away from clustering. 624 */ 625 int reuse_swap_page(struct page *page) 626 { 627 int count; 628 629 VM_BUG_ON(!PageLocked(page)); 630 if (unlikely(PageKsm(page))) 631 return 0; 632 count = page_mapcount(page); 633 if (count <= 1 && PageSwapCache(page)) { 634 count += page_swapcount(page); 635 if (count == 1 && !PageWriteback(page)) { 636 delete_from_swap_cache(page); 637 SetPageDirty(page); 638 } 639 } 640 return count <= 1; 641 } 642 643 /* 644 * If swap is getting full, or if there are no more mappings of this page, 645 * then try_to_free_swap is called to free its swap space. 646 */ 647 int try_to_free_swap(struct page *page) 648 { 649 VM_BUG_ON(!PageLocked(page)); 650 651 if (!PageSwapCache(page)) 652 return 0; 653 if (PageWriteback(page)) 654 return 0; 655 if (page_swapcount(page)) 656 return 0; 657 658 /* 659 * Once hibernation has begun to create its image of memory, 660 * there's a danger that one of the calls to try_to_free_swap() 661 * - most probably a call from __try_to_reclaim_swap() while 662 * hibernation is allocating its own swap pages for the image, 663 * but conceivably even a call from memory reclaim - will free 664 * the swap from a page which has already been recorded in the 665 * image as a clean swapcache page, and then reuse its swap for 666 * another page of the image. On waking from hibernation, the 667 * original page might be freed under memory pressure, then 668 * later read back in from swap, now with the wrong data. 669 * 670 * Hibration suspends storage while it is writing the image 671 * to disk so check that here. 672 */ 673 if (pm_suspended_storage()) 674 return 0; 675 676 delete_from_swap_cache(page); 677 SetPageDirty(page); 678 return 1; 679 } 680 681 /* 682 * Free the swap entry like above, but also try to 683 * free the page cache entry if it is the last user. 684 */ 685 int free_swap_and_cache(swp_entry_t entry) 686 { 687 struct swap_info_struct *p; 688 struct page *page = NULL; 689 690 if (non_swap_entry(entry)) 691 return 1; 692 693 p = swap_info_get(entry); 694 if (p) { 695 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) { 696 page = find_get_page(&swapper_space, entry.val); 697 if (page && !trylock_page(page)) { 698 page_cache_release(page); 699 page = NULL; 700 } 701 } 702 spin_unlock(&swap_lock); 703 } 704 if (page) { 705 /* 706 * Not mapped elsewhere, or swap space full? Free it! 707 * Also recheck PageSwapCache now page is locked (above). 708 */ 709 if (PageSwapCache(page) && !PageWriteback(page) && 710 (!page_mapped(page) || vm_swap_full())) { 711 delete_from_swap_cache(page); 712 SetPageDirty(page); 713 } 714 unlock_page(page); 715 page_cache_release(page); 716 } 717 return p != NULL; 718 } 719 720 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 721 /** 722 * mem_cgroup_count_swap_user - count the user of a swap entry 723 * @ent: the swap entry to be checked 724 * @pagep: the pointer for the swap cache page of the entry to be stored 725 * 726 * Returns the number of the user of the swap entry. The number is valid only 727 * for swaps of anonymous pages. 728 * If the entry is found on swap cache, the page is stored to pagep with 729 * refcount of it being incremented. 730 */ 731 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep) 732 { 733 struct page *page; 734 struct swap_info_struct *p; 735 int count = 0; 736 737 page = find_get_page(&swapper_space, ent.val); 738 if (page) 739 count += page_mapcount(page); 740 p = swap_info_get(ent); 741 if (p) { 742 count += swap_count(p->swap_map[swp_offset(ent)]); 743 spin_unlock(&swap_lock); 744 } 745 746 *pagep = page; 747 return count; 748 } 749 #endif 750 751 #ifdef CONFIG_HIBERNATION 752 /* 753 * Find the swap type that corresponds to given device (if any). 754 * 755 * @offset - number of the PAGE_SIZE-sized block of the device, starting 756 * from 0, in which the swap header is expected to be located. 757 * 758 * This is needed for the suspend to disk (aka swsusp). 759 */ 760 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 761 { 762 struct block_device *bdev = NULL; 763 int type; 764 765 if (device) 766 bdev = bdget(device); 767 768 spin_lock(&swap_lock); 769 for (type = 0; type < nr_swapfiles; type++) { 770 struct swap_info_struct *sis = swap_info[type]; 771 772 if (!(sis->flags & SWP_WRITEOK)) 773 continue; 774 775 if (!bdev) { 776 if (bdev_p) 777 *bdev_p = bdgrab(sis->bdev); 778 779 spin_unlock(&swap_lock); 780 return type; 781 } 782 if (bdev == sis->bdev) { 783 struct swap_extent *se = &sis->first_swap_extent; 784 785 if (se->start_block == offset) { 786 if (bdev_p) 787 *bdev_p = bdgrab(sis->bdev); 788 789 spin_unlock(&swap_lock); 790 bdput(bdev); 791 return type; 792 } 793 } 794 } 795 spin_unlock(&swap_lock); 796 if (bdev) 797 bdput(bdev); 798 799 return -ENODEV; 800 } 801 802 /* 803 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 804 * corresponding to given index in swap_info (swap type). 805 */ 806 sector_t swapdev_block(int type, pgoff_t offset) 807 { 808 struct block_device *bdev; 809 810 if ((unsigned int)type >= nr_swapfiles) 811 return 0; 812 if (!(swap_info[type]->flags & SWP_WRITEOK)) 813 return 0; 814 return map_swap_entry(swp_entry(type, offset), &bdev); 815 } 816 817 /* 818 * Return either the total number of swap pages of given type, or the number 819 * of free pages of that type (depending on @free) 820 * 821 * This is needed for software suspend 822 */ 823 unsigned int count_swap_pages(int type, int free) 824 { 825 unsigned int n = 0; 826 827 spin_lock(&swap_lock); 828 if ((unsigned int)type < nr_swapfiles) { 829 struct swap_info_struct *sis = swap_info[type]; 830 831 if (sis->flags & SWP_WRITEOK) { 832 n = sis->pages; 833 if (free) 834 n -= sis->inuse_pages; 835 } 836 } 837 spin_unlock(&swap_lock); 838 return n; 839 } 840 #endif /* CONFIG_HIBERNATION */ 841 842 /* 843 * No need to decide whether this PTE shares the swap entry with others, 844 * just let do_wp_page work it out if a write is requested later - to 845 * force COW, vm_page_prot omits write permission from any private vma. 846 */ 847 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 848 unsigned long addr, swp_entry_t entry, struct page *page) 849 { 850 struct mem_cgroup *memcg; 851 spinlock_t *ptl; 852 pte_t *pte; 853 int ret = 1; 854 855 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, 856 GFP_KERNEL, &memcg)) { 857 ret = -ENOMEM; 858 goto out_nolock; 859 } 860 861 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 862 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) { 863 if (ret > 0) 864 mem_cgroup_cancel_charge_swapin(memcg); 865 ret = 0; 866 goto out; 867 } 868 869 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 870 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 871 get_page(page); 872 set_pte_at(vma->vm_mm, addr, pte, 873 pte_mkold(mk_pte(page, vma->vm_page_prot))); 874 page_add_anon_rmap(page, vma, addr); 875 mem_cgroup_commit_charge_swapin(page, memcg); 876 swap_free(entry); 877 /* 878 * Move the page to the active list so it is not 879 * immediately swapped out again after swapon. 880 */ 881 activate_page(page); 882 out: 883 pte_unmap_unlock(pte, ptl); 884 out_nolock: 885 return ret; 886 } 887 888 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 889 unsigned long addr, unsigned long end, 890 swp_entry_t entry, struct page *page) 891 { 892 pte_t swp_pte = swp_entry_to_pte(entry); 893 pte_t *pte; 894 int ret = 0; 895 896 /* 897 * We don't actually need pte lock while scanning for swp_pte: since 898 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 899 * page table while we're scanning; though it could get zapped, and on 900 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 901 * of unmatched parts which look like swp_pte, so unuse_pte must 902 * recheck under pte lock. Scanning without pte lock lets it be 903 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 904 */ 905 pte = pte_offset_map(pmd, addr); 906 do { 907 /* 908 * swapoff spends a _lot_ of time in this loop! 909 * Test inline before going to call unuse_pte. 910 */ 911 if (unlikely(pte_same(*pte, swp_pte))) { 912 pte_unmap(pte); 913 ret = unuse_pte(vma, pmd, addr, entry, page); 914 if (ret) 915 goto out; 916 pte = pte_offset_map(pmd, addr); 917 } 918 } while (pte++, addr += PAGE_SIZE, addr != end); 919 pte_unmap(pte - 1); 920 out: 921 return ret; 922 } 923 924 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 925 unsigned long addr, unsigned long end, 926 swp_entry_t entry, struct page *page) 927 { 928 pmd_t *pmd; 929 unsigned long next; 930 int ret; 931 932 pmd = pmd_offset(pud, addr); 933 do { 934 next = pmd_addr_end(addr, end); 935 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 936 continue; 937 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 938 if (ret) 939 return ret; 940 } while (pmd++, addr = next, addr != end); 941 return 0; 942 } 943 944 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 945 unsigned long addr, unsigned long end, 946 swp_entry_t entry, struct page *page) 947 { 948 pud_t *pud; 949 unsigned long next; 950 int ret; 951 952 pud = pud_offset(pgd, addr); 953 do { 954 next = pud_addr_end(addr, end); 955 if (pud_none_or_clear_bad(pud)) 956 continue; 957 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 958 if (ret) 959 return ret; 960 } while (pud++, addr = next, addr != end); 961 return 0; 962 } 963 964 static int unuse_vma(struct vm_area_struct *vma, 965 swp_entry_t entry, struct page *page) 966 { 967 pgd_t *pgd; 968 unsigned long addr, end, next; 969 int ret; 970 971 if (page_anon_vma(page)) { 972 addr = page_address_in_vma(page, vma); 973 if (addr == -EFAULT) 974 return 0; 975 else 976 end = addr + PAGE_SIZE; 977 } else { 978 addr = vma->vm_start; 979 end = vma->vm_end; 980 } 981 982 pgd = pgd_offset(vma->vm_mm, addr); 983 do { 984 next = pgd_addr_end(addr, end); 985 if (pgd_none_or_clear_bad(pgd)) 986 continue; 987 ret = unuse_pud_range(vma, pgd, addr, next, entry, page); 988 if (ret) 989 return ret; 990 } while (pgd++, addr = next, addr != end); 991 return 0; 992 } 993 994 static int unuse_mm(struct mm_struct *mm, 995 swp_entry_t entry, struct page *page) 996 { 997 struct vm_area_struct *vma; 998 int ret = 0; 999 1000 if (!down_read_trylock(&mm->mmap_sem)) { 1001 /* 1002 * Activate page so shrink_inactive_list is unlikely to unmap 1003 * its ptes while lock is dropped, so swapoff can make progress. 1004 */ 1005 activate_page(page); 1006 unlock_page(page); 1007 down_read(&mm->mmap_sem); 1008 lock_page(page); 1009 } 1010 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1011 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 1012 break; 1013 } 1014 up_read(&mm->mmap_sem); 1015 return (ret < 0)? ret: 0; 1016 } 1017 1018 /* 1019 * Scan swap_map from current position to next entry still in use. 1020 * Recycle to start on reaching the end, returning 0 when empty. 1021 */ 1022 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1023 unsigned int prev) 1024 { 1025 unsigned int max = si->max; 1026 unsigned int i = prev; 1027 unsigned char count; 1028 1029 /* 1030 * No need for swap_lock here: we're just looking 1031 * for whether an entry is in use, not modifying it; false 1032 * hits are okay, and sys_swapoff() has already prevented new 1033 * allocations from this area (while holding swap_lock). 1034 */ 1035 for (;;) { 1036 if (++i >= max) { 1037 if (!prev) { 1038 i = 0; 1039 break; 1040 } 1041 /* 1042 * No entries in use at top of swap_map, 1043 * loop back to start and recheck there. 1044 */ 1045 max = prev + 1; 1046 prev = 0; 1047 i = 1; 1048 } 1049 count = si->swap_map[i]; 1050 if (count && swap_count(count) != SWAP_MAP_BAD) 1051 break; 1052 } 1053 return i; 1054 } 1055 1056 /* 1057 * We completely avoid races by reading each swap page in advance, 1058 * and then search for the process using it. All the necessary 1059 * page table adjustments can then be made atomically. 1060 */ 1061 static int try_to_unuse(unsigned int type) 1062 { 1063 struct swap_info_struct *si = swap_info[type]; 1064 struct mm_struct *start_mm; 1065 unsigned char *swap_map; 1066 unsigned char swcount; 1067 struct page *page; 1068 swp_entry_t entry; 1069 unsigned int i = 0; 1070 int retval = 0; 1071 1072 /* 1073 * When searching mms for an entry, a good strategy is to 1074 * start at the first mm we freed the previous entry from 1075 * (though actually we don't notice whether we or coincidence 1076 * freed the entry). Initialize this start_mm with a hold. 1077 * 1078 * A simpler strategy would be to start at the last mm we 1079 * freed the previous entry from; but that would take less 1080 * advantage of mmlist ordering, which clusters forked mms 1081 * together, child after parent. If we race with dup_mmap(), we 1082 * prefer to resolve parent before child, lest we miss entries 1083 * duplicated after we scanned child: using last mm would invert 1084 * that. 1085 */ 1086 start_mm = &init_mm; 1087 atomic_inc(&init_mm.mm_users); 1088 1089 /* 1090 * Keep on scanning until all entries have gone. Usually, 1091 * one pass through swap_map is enough, but not necessarily: 1092 * there are races when an instance of an entry might be missed. 1093 */ 1094 while ((i = find_next_to_unuse(si, i)) != 0) { 1095 if (signal_pending(current)) { 1096 retval = -EINTR; 1097 break; 1098 } 1099 1100 /* 1101 * Get a page for the entry, using the existing swap 1102 * cache page if there is one. Otherwise, get a clean 1103 * page and read the swap into it. 1104 */ 1105 swap_map = &si->swap_map[i]; 1106 entry = swp_entry(type, i); 1107 page = read_swap_cache_async(entry, 1108 GFP_HIGHUSER_MOVABLE, NULL, 0); 1109 if (!page) { 1110 /* 1111 * Either swap_duplicate() failed because entry 1112 * has been freed independently, and will not be 1113 * reused since sys_swapoff() already disabled 1114 * allocation from here, or alloc_page() failed. 1115 */ 1116 if (!*swap_map) 1117 continue; 1118 retval = -ENOMEM; 1119 break; 1120 } 1121 1122 /* 1123 * Don't hold on to start_mm if it looks like exiting. 1124 */ 1125 if (atomic_read(&start_mm->mm_users) == 1) { 1126 mmput(start_mm); 1127 start_mm = &init_mm; 1128 atomic_inc(&init_mm.mm_users); 1129 } 1130 1131 /* 1132 * Wait for and lock page. When do_swap_page races with 1133 * try_to_unuse, do_swap_page can handle the fault much 1134 * faster than try_to_unuse can locate the entry. This 1135 * apparently redundant "wait_on_page_locked" lets try_to_unuse 1136 * defer to do_swap_page in such a case - in some tests, 1137 * do_swap_page and try_to_unuse repeatedly compete. 1138 */ 1139 wait_on_page_locked(page); 1140 wait_on_page_writeback(page); 1141 lock_page(page); 1142 wait_on_page_writeback(page); 1143 1144 /* 1145 * Remove all references to entry. 1146 */ 1147 swcount = *swap_map; 1148 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 1149 retval = shmem_unuse(entry, page); 1150 /* page has already been unlocked and released */ 1151 if (retval < 0) 1152 break; 1153 continue; 1154 } 1155 if (swap_count(swcount) && start_mm != &init_mm) 1156 retval = unuse_mm(start_mm, entry, page); 1157 1158 if (swap_count(*swap_map)) { 1159 int set_start_mm = (*swap_map >= swcount); 1160 struct list_head *p = &start_mm->mmlist; 1161 struct mm_struct *new_start_mm = start_mm; 1162 struct mm_struct *prev_mm = start_mm; 1163 struct mm_struct *mm; 1164 1165 atomic_inc(&new_start_mm->mm_users); 1166 atomic_inc(&prev_mm->mm_users); 1167 spin_lock(&mmlist_lock); 1168 while (swap_count(*swap_map) && !retval && 1169 (p = p->next) != &start_mm->mmlist) { 1170 mm = list_entry(p, struct mm_struct, mmlist); 1171 if (!atomic_inc_not_zero(&mm->mm_users)) 1172 continue; 1173 spin_unlock(&mmlist_lock); 1174 mmput(prev_mm); 1175 prev_mm = mm; 1176 1177 cond_resched(); 1178 1179 swcount = *swap_map; 1180 if (!swap_count(swcount)) /* any usage ? */ 1181 ; 1182 else if (mm == &init_mm) 1183 set_start_mm = 1; 1184 else 1185 retval = unuse_mm(mm, entry, page); 1186 1187 if (set_start_mm && *swap_map < swcount) { 1188 mmput(new_start_mm); 1189 atomic_inc(&mm->mm_users); 1190 new_start_mm = mm; 1191 set_start_mm = 0; 1192 } 1193 spin_lock(&mmlist_lock); 1194 } 1195 spin_unlock(&mmlist_lock); 1196 mmput(prev_mm); 1197 mmput(start_mm); 1198 start_mm = new_start_mm; 1199 } 1200 if (retval) { 1201 unlock_page(page); 1202 page_cache_release(page); 1203 break; 1204 } 1205 1206 /* 1207 * If a reference remains (rare), we would like to leave 1208 * the page in the swap cache; but try_to_unmap could 1209 * then re-duplicate the entry once we drop page lock, 1210 * so we might loop indefinitely; also, that page could 1211 * not be swapped out to other storage meanwhile. So: 1212 * delete from cache even if there's another reference, 1213 * after ensuring that the data has been saved to disk - 1214 * since if the reference remains (rarer), it will be 1215 * read from disk into another page. Splitting into two 1216 * pages would be incorrect if swap supported "shared 1217 * private" pages, but they are handled by tmpfs files. 1218 * 1219 * Given how unuse_vma() targets one particular offset 1220 * in an anon_vma, once the anon_vma has been determined, 1221 * this splitting happens to be just what is needed to 1222 * handle where KSM pages have been swapped out: re-reading 1223 * is unnecessarily slow, but we can fix that later on. 1224 */ 1225 if (swap_count(*swap_map) && 1226 PageDirty(page) && PageSwapCache(page)) { 1227 struct writeback_control wbc = { 1228 .sync_mode = WB_SYNC_NONE, 1229 }; 1230 1231 swap_writepage(page, &wbc); 1232 lock_page(page); 1233 wait_on_page_writeback(page); 1234 } 1235 1236 /* 1237 * It is conceivable that a racing task removed this page from 1238 * swap cache just before we acquired the page lock at the top, 1239 * or while we dropped it in unuse_mm(). The page might even 1240 * be back in swap cache on another swap area: that we must not 1241 * delete, since it may not have been written out to swap yet. 1242 */ 1243 if (PageSwapCache(page) && 1244 likely(page_private(page) == entry.val)) 1245 delete_from_swap_cache(page); 1246 1247 /* 1248 * So we could skip searching mms once swap count went 1249 * to 1, we did not mark any present ptes as dirty: must 1250 * mark page dirty so shrink_page_list will preserve it. 1251 */ 1252 SetPageDirty(page); 1253 unlock_page(page); 1254 page_cache_release(page); 1255 1256 /* 1257 * Make sure that we aren't completely killing 1258 * interactive performance. 1259 */ 1260 cond_resched(); 1261 } 1262 1263 mmput(start_mm); 1264 return retval; 1265 } 1266 1267 /* 1268 * After a successful try_to_unuse, if no swap is now in use, we know 1269 * we can empty the mmlist. swap_lock must be held on entry and exit. 1270 * Note that mmlist_lock nests inside swap_lock, and an mm must be 1271 * added to the mmlist just after page_duplicate - before would be racy. 1272 */ 1273 static void drain_mmlist(void) 1274 { 1275 struct list_head *p, *next; 1276 unsigned int type; 1277 1278 for (type = 0; type < nr_swapfiles; type++) 1279 if (swap_info[type]->inuse_pages) 1280 return; 1281 spin_lock(&mmlist_lock); 1282 list_for_each_safe(p, next, &init_mm.mmlist) 1283 list_del_init(p); 1284 spin_unlock(&mmlist_lock); 1285 } 1286 1287 /* 1288 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 1289 * corresponds to page offset for the specified swap entry. 1290 * Note that the type of this function is sector_t, but it returns page offset 1291 * into the bdev, not sector offset. 1292 */ 1293 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 1294 { 1295 struct swap_info_struct *sis; 1296 struct swap_extent *start_se; 1297 struct swap_extent *se; 1298 pgoff_t offset; 1299 1300 sis = swap_info[swp_type(entry)]; 1301 *bdev = sis->bdev; 1302 1303 offset = swp_offset(entry); 1304 start_se = sis->curr_swap_extent; 1305 se = start_se; 1306 1307 for ( ; ; ) { 1308 struct list_head *lh; 1309 1310 if (se->start_page <= offset && 1311 offset < (se->start_page + se->nr_pages)) { 1312 return se->start_block + (offset - se->start_page); 1313 } 1314 lh = se->list.next; 1315 se = list_entry(lh, struct swap_extent, list); 1316 sis->curr_swap_extent = se; 1317 BUG_ON(se == start_se); /* It *must* be present */ 1318 } 1319 } 1320 1321 /* 1322 * Returns the page offset into bdev for the specified page's swap entry. 1323 */ 1324 sector_t map_swap_page(struct page *page, struct block_device **bdev) 1325 { 1326 swp_entry_t entry; 1327 entry.val = page_private(page); 1328 return map_swap_entry(entry, bdev); 1329 } 1330 1331 /* 1332 * Free all of a swapdev's extent information 1333 */ 1334 static void destroy_swap_extents(struct swap_info_struct *sis) 1335 { 1336 while (!list_empty(&sis->first_swap_extent.list)) { 1337 struct swap_extent *se; 1338 1339 se = list_entry(sis->first_swap_extent.list.next, 1340 struct swap_extent, list); 1341 list_del(&se->list); 1342 kfree(se); 1343 } 1344 } 1345 1346 /* 1347 * Add a block range (and the corresponding page range) into this swapdev's 1348 * extent list. The extent list is kept sorted in page order. 1349 * 1350 * This function rather assumes that it is called in ascending page order. 1351 */ 1352 static int 1353 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1354 unsigned long nr_pages, sector_t start_block) 1355 { 1356 struct swap_extent *se; 1357 struct swap_extent *new_se; 1358 struct list_head *lh; 1359 1360 if (start_page == 0) { 1361 se = &sis->first_swap_extent; 1362 sis->curr_swap_extent = se; 1363 se->start_page = 0; 1364 se->nr_pages = nr_pages; 1365 se->start_block = start_block; 1366 return 1; 1367 } else { 1368 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 1369 se = list_entry(lh, struct swap_extent, list); 1370 BUG_ON(se->start_page + se->nr_pages != start_page); 1371 if (se->start_block + se->nr_pages == start_block) { 1372 /* Merge it */ 1373 se->nr_pages += nr_pages; 1374 return 0; 1375 } 1376 } 1377 1378 /* 1379 * No merge. Insert a new extent, preserving ordering. 1380 */ 1381 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 1382 if (new_se == NULL) 1383 return -ENOMEM; 1384 new_se->start_page = start_page; 1385 new_se->nr_pages = nr_pages; 1386 new_se->start_block = start_block; 1387 1388 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 1389 return 1; 1390 } 1391 1392 /* 1393 * A `swap extent' is a simple thing which maps a contiguous range of pages 1394 * onto a contiguous range of disk blocks. An ordered list of swap extents 1395 * is built at swapon time and is then used at swap_writepage/swap_readpage 1396 * time for locating where on disk a page belongs. 1397 * 1398 * If the swapfile is an S_ISBLK block device, a single extent is installed. 1399 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 1400 * swap files identically. 1401 * 1402 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 1403 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1404 * swapfiles are handled *identically* after swapon time. 1405 * 1406 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1407 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1408 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1409 * requirements, they are simply tossed out - we will never use those blocks 1410 * for swapping. 1411 * 1412 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1413 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1414 * which will scribble on the fs. 1415 * 1416 * The amount of disk space which a single swap extent represents varies. 1417 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1418 * extents in the list. To avoid much list walking, we cache the previous 1419 * search location in `curr_swap_extent', and start new searches from there. 1420 * This is extremely effective. The average number of iterations in 1421 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1422 */ 1423 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1424 { 1425 struct inode *inode; 1426 unsigned blocks_per_page; 1427 unsigned long page_no; 1428 unsigned blkbits; 1429 sector_t probe_block; 1430 sector_t last_block; 1431 sector_t lowest_block = -1; 1432 sector_t highest_block = 0; 1433 int nr_extents = 0; 1434 int ret; 1435 1436 inode = sis->swap_file->f_mapping->host; 1437 if (S_ISBLK(inode->i_mode)) { 1438 ret = add_swap_extent(sis, 0, sis->max, 0); 1439 *span = sis->pages; 1440 goto out; 1441 } 1442 1443 blkbits = inode->i_blkbits; 1444 blocks_per_page = PAGE_SIZE >> blkbits; 1445 1446 /* 1447 * Map all the blocks into the extent list. This code doesn't try 1448 * to be very smart. 1449 */ 1450 probe_block = 0; 1451 page_no = 0; 1452 last_block = i_size_read(inode) >> blkbits; 1453 while ((probe_block + blocks_per_page) <= last_block && 1454 page_no < sis->max) { 1455 unsigned block_in_page; 1456 sector_t first_block; 1457 1458 first_block = bmap(inode, probe_block); 1459 if (first_block == 0) 1460 goto bad_bmap; 1461 1462 /* 1463 * It must be PAGE_SIZE aligned on-disk 1464 */ 1465 if (first_block & (blocks_per_page - 1)) { 1466 probe_block++; 1467 goto reprobe; 1468 } 1469 1470 for (block_in_page = 1; block_in_page < blocks_per_page; 1471 block_in_page++) { 1472 sector_t block; 1473 1474 block = bmap(inode, probe_block + block_in_page); 1475 if (block == 0) 1476 goto bad_bmap; 1477 if (block != first_block + block_in_page) { 1478 /* Discontiguity */ 1479 probe_block++; 1480 goto reprobe; 1481 } 1482 } 1483 1484 first_block >>= (PAGE_SHIFT - blkbits); 1485 if (page_no) { /* exclude the header page */ 1486 if (first_block < lowest_block) 1487 lowest_block = first_block; 1488 if (first_block > highest_block) 1489 highest_block = first_block; 1490 } 1491 1492 /* 1493 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 1494 */ 1495 ret = add_swap_extent(sis, page_no, 1, first_block); 1496 if (ret < 0) 1497 goto out; 1498 nr_extents += ret; 1499 page_no++; 1500 probe_block += blocks_per_page; 1501 reprobe: 1502 continue; 1503 } 1504 ret = nr_extents; 1505 *span = 1 + highest_block - lowest_block; 1506 if (page_no == 0) 1507 page_no = 1; /* force Empty message */ 1508 sis->max = page_no; 1509 sis->pages = page_no - 1; 1510 sis->highest_bit = page_no - 1; 1511 out: 1512 return ret; 1513 bad_bmap: 1514 printk(KERN_ERR "swapon: swapfile has holes\n"); 1515 ret = -EINVAL; 1516 goto out; 1517 } 1518 1519 static void enable_swap_info(struct swap_info_struct *p, int prio, 1520 unsigned char *swap_map) 1521 { 1522 int i, prev; 1523 1524 spin_lock(&swap_lock); 1525 if (prio >= 0) 1526 p->prio = prio; 1527 else 1528 p->prio = --least_priority; 1529 p->swap_map = swap_map; 1530 p->flags |= SWP_WRITEOK; 1531 nr_swap_pages += p->pages; 1532 total_swap_pages += p->pages; 1533 1534 /* insert swap space into swap_list: */ 1535 prev = -1; 1536 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) { 1537 if (p->prio >= swap_info[i]->prio) 1538 break; 1539 prev = i; 1540 } 1541 p->next = i; 1542 if (prev < 0) 1543 swap_list.head = swap_list.next = p->type; 1544 else 1545 swap_info[prev]->next = p->type; 1546 spin_unlock(&swap_lock); 1547 } 1548 1549 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 1550 { 1551 struct swap_info_struct *p = NULL; 1552 unsigned char *swap_map; 1553 struct file *swap_file, *victim; 1554 struct address_space *mapping; 1555 struct inode *inode; 1556 char *pathname; 1557 int oom_score_adj; 1558 int i, type, prev; 1559 int err; 1560 1561 if (!capable(CAP_SYS_ADMIN)) 1562 return -EPERM; 1563 1564 BUG_ON(!current->mm); 1565 1566 pathname = getname(specialfile); 1567 err = PTR_ERR(pathname); 1568 if (IS_ERR(pathname)) 1569 goto out; 1570 1571 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); 1572 putname(pathname); 1573 err = PTR_ERR(victim); 1574 if (IS_ERR(victim)) 1575 goto out; 1576 1577 mapping = victim->f_mapping; 1578 prev = -1; 1579 spin_lock(&swap_lock); 1580 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) { 1581 p = swap_info[type]; 1582 if (p->flags & SWP_WRITEOK) { 1583 if (p->swap_file->f_mapping == mapping) 1584 break; 1585 } 1586 prev = type; 1587 } 1588 if (type < 0) { 1589 err = -EINVAL; 1590 spin_unlock(&swap_lock); 1591 goto out_dput; 1592 } 1593 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 1594 vm_unacct_memory(p->pages); 1595 else { 1596 err = -ENOMEM; 1597 spin_unlock(&swap_lock); 1598 goto out_dput; 1599 } 1600 if (prev < 0) 1601 swap_list.head = p->next; 1602 else 1603 swap_info[prev]->next = p->next; 1604 if (type == swap_list.next) { 1605 /* just pick something that's safe... */ 1606 swap_list.next = swap_list.head; 1607 } 1608 if (p->prio < 0) { 1609 for (i = p->next; i >= 0; i = swap_info[i]->next) 1610 swap_info[i]->prio = p->prio--; 1611 least_priority++; 1612 } 1613 nr_swap_pages -= p->pages; 1614 total_swap_pages -= p->pages; 1615 p->flags &= ~SWP_WRITEOK; 1616 spin_unlock(&swap_lock); 1617 1618 oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX); 1619 err = try_to_unuse(type); 1620 compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj); 1621 1622 if (err) { 1623 /* 1624 * reading p->prio and p->swap_map outside the lock is 1625 * safe here because only sys_swapon and sys_swapoff 1626 * change them, and there can be no other sys_swapon or 1627 * sys_swapoff for this swap_info_struct at this point. 1628 */ 1629 /* re-insert swap space back into swap_list */ 1630 enable_swap_info(p, p->prio, p->swap_map); 1631 goto out_dput; 1632 } 1633 1634 destroy_swap_extents(p); 1635 if (p->flags & SWP_CONTINUED) 1636 free_swap_count_continuations(p); 1637 1638 mutex_lock(&swapon_mutex); 1639 spin_lock(&swap_lock); 1640 drain_mmlist(); 1641 1642 /* wait for anyone still in scan_swap_map */ 1643 p->highest_bit = 0; /* cuts scans short */ 1644 while (p->flags >= SWP_SCANNING) { 1645 spin_unlock(&swap_lock); 1646 schedule_timeout_uninterruptible(1); 1647 spin_lock(&swap_lock); 1648 } 1649 1650 swap_file = p->swap_file; 1651 p->swap_file = NULL; 1652 p->max = 0; 1653 swap_map = p->swap_map; 1654 p->swap_map = NULL; 1655 p->flags = 0; 1656 spin_unlock(&swap_lock); 1657 mutex_unlock(&swapon_mutex); 1658 vfree(swap_map); 1659 /* Destroy swap account informatin */ 1660 swap_cgroup_swapoff(type); 1661 1662 inode = mapping->host; 1663 if (S_ISBLK(inode->i_mode)) { 1664 struct block_device *bdev = I_BDEV(inode); 1665 set_blocksize(bdev, p->old_block_size); 1666 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 1667 } else { 1668 mutex_lock(&inode->i_mutex); 1669 inode->i_flags &= ~S_SWAPFILE; 1670 mutex_unlock(&inode->i_mutex); 1671 } 1672 filp_close(swap_file, NULL); 1673 err = 0; 1674 atomic_inc(&proc_poll_event); 1675 wake_up_interruptible(&proc_poll_wait); 1676 1677 out_dput: 1678 filp_close(victim, NULL); 1679 out: 1680 return err; 1681 } 1682 1683 #ifdef CONFIG_PROC_FS 1684 static unsigned swaps_poll(struct file *file, poll_table *wait) 1685 { 1686 struct seq_file *seq = file->private_data; 1687 1688 poll_wait(file, &proc_poll_wait, wait); 1689 1690 if (seq->poll_event != atomic_read(&proc_poll_event)) { 1691 seq->poll_event = atomic_read(&proc_poll_event); 1692 return POLLIN | POLLRDNORM | POLLERR | POLLPRI; 1693 } 1694 1695 return POLLIN | POLLRDNORM; 1696 } 1697 1698 /* iterator */ 1699 static void *swap_start(struct seq_file *swap, loff_t *pos) 1700 { 1701 struct swap_info_struct *si; 1702 int type; 1703 loff_t l = *pos; 1704 1705 mutex_lock(&swapon_mutex); 1706 1707 if (!l) 1708 return SEQ_START_TOKEN; 1709 1710 for (type = 0; type < nr_swapfiles; type++) { 1711 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 1712 si = swap_info[type]; 1713 if (!(si->flags & SWP_USED) || !si->swap_map) 1714 continue; 1715 if (!--l) 1716 return si; 1717 } 1718 1719 return NULL; 1720 } 1721 1722 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 1723 { 1724 struct swap_info_struct *si = v; 1725 int type; 1726 1727 if (v == SEQ_START_TOKEN) 1728 type = 0; 1729 else 1730 type = si->type + 1; 1731 1732 for (; type < nr_swapfiles; type++) { 1733 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 1734 si = swap_info[type]; 1735 if (!(si->flags & SWP_USED) || !si->swap_map) 1736 continue; 1737 ++*pos; 1738 return si; 1739 } 1740 1741 return NULL; 1742 } 1743 1744 static void swap_stop(struct seq_file *swap, void *v) 1745 { 1746 mutex_unlock(&swapon_mutex); 1747 } 1748 1749 static int swap_show(struct seq_file *swap, void *v) 1750 { 1751 struct swap_info_struct *si = v; 1752 struct file *file; 1753 int len; 1754 1755 if (si == SEQ_START_TOKEN) { 1756 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 1757 return 0; 1758 } 1759 1760 file = si->swap_file; 1761 len = seq_path(swap, &file->f_path, " \t\n\\"); 1762 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 1763 len < 40 ? 40 - len : 1, " ", 1764 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ? 1765 "partition" : "file\t", 1766 si->pages << (PAGE_SHIFT - 10), 1767 si->inuse_pages << (PAGE_SHIFT - 10), 1768 si->prio); 1769 return 0; 1770 } 1771 1772 static const struct seq_operations swaps_op = { 1773 .start = swap_start, 1774 .next = swap_next, 1775 .stop = swap_stop, 1776 .show = swap_show 1777 }; 1778 1779 static int swaps_open(struct inode *inode, struct file *file) 1780 { 1781 struct seq_file *seq; 1782 int ret; 1783 1784 ret = seq_open(file, &swaps_op); 1785 if (ret) 1786 return ret; 1787 1788 seq = file->private_data; 1789 seq->poll_event = atomic_read(&proc_poll_event); 1790 return 0; 1791 } 1792 1793 static const struct file_operations proc_swaps_operations = { 1794 .open = swaps_open, 1795 .read = seq_read, 1796 .llseek = seq_lseek, 1797 .release = seq_release, 1798 .poll = swaps_poll, 1799 }; 1800 1801 static int __init procswaps_init(void) 1802 { 1803 proc_create("swaps", 0, NULL, &proc_swaps_operations); 1804 return 0; 1805 } 1806 __initcall(procswaps_init); 1807 #endif /* CONFIG_PROC_FS */ 1808 1809 #ifdef MAX_SWAPFILES_CHECK 1810 static int __init max_swapfiles_check(void) 1811 { 1812 MAX_SWAPFILES_CHECK(); 1813 return 0; 1814 } 1815 late_initcall(max_swapfiles_check); 1816 #endif 1817 1818 static struct swap_info_struct *alloc_swap_info(void) 1819 { 1820 struct swap_info_struct *p; 1821 unsigned int type; 1822 1823 p = kzalloc(sizeof(*p), GFP_KERNEL); 1824 if (!p) 1825 return ERR_PTR(-ENOMEM); 1826 1827 spin_lock(&swap_lock); 1828 for (type = 0; type < nr_swapfiles; type++) { 1829 if (!(swap_info[type]->flags & SWP_USED)) 1830 break; 1831 } 1832 if (type >= MAX_SWAPFILES) { 1833 spin_unlock(&swap_lock); 1834 kfree(p); 1835 return ERR_PTR(-EPERM); 1836 } 1837 if (type >= nr_swapfiles) { 1838 p->type = type; 1839 swap_info[type] = p; 1840 /* 1841 * Write swap_info[type] before nr_swapfiles, in case a 1842 * racing procfs swap_start() or swap_next() is reading them. 1843 * (We never shrink nr_swapfiles, we never free this entry.) 1844 */ 1845 smp_wmb(); 1846 nr_swapfiles++; 1847 } else { 1848 kfree(p); 1849 p = swap_info[type]; 1850 /* 1851 * Do not memset this entry: a racing procfs swap_next() 1852 * would be relying on p->type to remain valid. 1853 */ 1854 } 1855 INIT_LIST_HEAD(&p->first_swap_extent.list); 1856 p->flags = SWP_USED; 1857 p->next = -1; 1858 spin_unlock(&swap_lock); 1859 1860 return p; 1861 } 1862 1863 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 1864 { 1865 int error; 1866 1867 if (S_ISBLK(inode->i_mode)) { 1868 p->bdev = bdgrab(I_BDEV(inode)); 1869 error = blkdev_get(p->bdev, 1870 FMODE_READ | FMODE_WRITE | FMODE_EXCL, 1871 sys_swapon); 1872 if (error < 0) { 1873 p->bdev = NULL; 1874 return -EINVAL; 1875 } 1876 p->old_block_size = block_size(p->bdev); 1877 error = set_blocksize(p->bdev, PAGE_SIZE); 1878 if (error < 0) 1879 return error; 1880 p->flags |= SWP_BLKDEV; 1881 } else if (S_ISREG(inode->i_mode)) { 1882 p->bdev = inode->i_sb->s_bdev; 1883 mutex_lock(&inode->i_mutex); 1884 if (IS_SWAPFILE(inode)) 1885 return -EBUSY; 1886 } else 1887 return -EINVAL; 1888 1889 return 0; 1890 } 1891 1892 static unsigned long read_swap_header(struct swap_info_struct *p, 1893 union swap_header *swap_header, 1894 struct inode *inode) 1895 { 1896 int i; 1897 unsigned long maxpages; 1898 unsigned long swapfilepages; 1899 1900 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 1901 printk(KERN_ERR "Unable to find swap-space signature\n"); 1902 return 0; 1903 } 1904 1905 /* swap partition endianess hack... */ 1906 if (swab32(swap_header->info.version) == 1) { 1907 swab32s(&swap_header->info.version); 1908 swab32s(&swap_header->info.last_page); 1909 swab32s(&swap_header->info.nr_badpages); 1910 for (i = 0; i < swap_header->info.nr_badpages; i++) 1911 swab32s(&swap_header->info.badpages[i]); 1912 } 1913 /* Check the swap header's sub-version */ 1914 if (swap_header->info.version != 1) { 1915 printk(KERN_WARNING 1916 "Unable to handle swap header version %d\n", 1917 swap_header->info.version); 1918 return 0; 1919 } 1920 1921 p->lowest_bit = 1; 1922 p->cluster_next = 1; 1923 p->cluster_nr = 0; 1924 1925 /* 1926 * Find out how many pages are allowed for a single swap 1927 * device. There are three limiting factors: 1) the number 1928 * of bits for the swap offset in the swp_entry_t type, and 1929 * 2) the number of bits in the swap pte as defined by the 1930 * the different architectures, and 3) the number of free bits 1931 * in an exceptional radix_tree entry. In order to find the 1932 * largest possible bit mask, a swap entry with swap type 0 1933 * and swap offset ~0UL is created, encoded to a swap pte, 1934 * decoded to a swp_entry_t again, and finally the swap 1935 * offset is extracted. This will mask all the bits from 1936 * the initial ~0UL mask that can't be encoded in either 1937 * the swp_entry_t or the architecture definition of a 1938 * swap pte. Then the same is done for a radix_tree entry. 1939 */ 1940 maxpages = swp_offset(pte_to_swp_entry( 1941 swp_entry_to_pte(swp_entry(0, ~0UL)))); 1942 maxpages = swp_offset(radix_to_swp_entry( 1943 swp_to_radix_entry(swp_entry(0, maxpages)))) + 1; 1944 1945 if (maxpages > swap_header->info.last_page) { 1946 maxpages = swap_header->info.last_page + 1; 1947 /* p->max is an unsigned int: don't overflow it */ 1948 if ((unsigned int)maxpages == 0) 1949 maxpages = UINT_MAX; 1950 } 1951 p->highest_bit = maxpages - 1; 1952 1953 if (!maxpages) 1954 return 0; 1955 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 1956 if (swapfilepages && maxpages > swapfilepages) { 1957 printk(KERN_WARNING 1958 "Swap area shorter than signature indicates\n"); 1959 return 0; 1960 } 1961 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 1962 return 0; 1963 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 1964 return 0; 1965 1966 return maxpages; 1967 } 1968 1969 static int setup_swap_map_and_extents(struct swap_info_struct *p, 1970 union swap_header *swap_header, 1971 unsigned char *swap_map, 1972 unsigned long maxpages, 1973 sector_t *span) 1974 { 1975 int i; 1976 unsigned int nr_good_pages; 1977 int nr_extents; 1978 1979 nr_good_pages = maxpages - 1; /* omit header page */ 1980 1981 for (i = 0; i < swap_header->info.nr_badpages; i++) { 1982 unsigned int page_nr = swap_header->info.badpages[i]; 1983 if (page_nr == 0 || page_nr > swap_header->info.last_page) 1984 return -EINVAL; 1985 if (page_nr < maxpages) { 1986 swap_map[page_nr] = SWAP_MAP_BAD; 1987 nr_good_pages--; 1988 } 1989 } 1990 1991 if (nr_good_pages) { 1992 swap_map[0] = SWAP_MAP_BAD; 1993 p->max = maxpages; 1994 p->pages = nr_good_pages; 1995 nr_extents = setup_swap_extents(p, span); 1996 if (nr_extents < 0) 1997 return nr_extents; 1998 nr_good_pages = p->pages; 1999 } 2000 if (!nr_good_pages) { 2001 printk(KERN_WARNING "Empty swap-file\n"); 2002 return -EINVAL; 2003 } 2004 2005 return nr_extents; 2006 } 2007 2008 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2009 { 2010 struct swap_info_struct *p; 2011 char *name; 2012 struct file *swap_file = NULL; 2013 struct address_space *mapping; 2014 int i; 2015 int prio; 2016 int error; 2017 union swap_header *swap_header; 2018 int nr_extents; 2019 sector_t span; 2020 unsigned long maxpages; 2021 unsigned char *swap_map = NULL; 2022 struct page *page = NULL; 2023 struct inode *inode = NULL; 2024 2025 if (swap_flags & ~SWAP_FLAGS_VALID) 2026 return -EINVAL; 2027 2028 if (!capable(CAP_SYS_ADMIN)) 2029 return -EPERM; 2030 2031 p = alloc_swap_info(); 2032 if (IS_ERR(p)) 2033 return PTR_ERR(p); 2034 2035 name = getname(specialfile); 2036 if (IS_ERR(name)) { 2037 error = PTR_ERR(name); 2038 name = NULL; 2039 goto bad_swap; 2040 } 2041 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); 2042 if (IS_ERR(swap_file)) { 2043 error = PTR_ERR(swap_file); 2044 swap_file = NULL; 2045 goto bad_swap; 2046 } 2047 2048 p->swap_file = swap_file; 2049 mapping = swap_file->f_mapping; 2050 2051 for (i = 0; i < nr_swapfiles; i++) { 2052 struct swap_info_struct *q = swap_info[i]; 2053 2054 if (q == p || !q->swap_file) 2055 continue; 2056 if (mapping == q->swap_file->f_mapping) { 2057 error = -EBUSY; 2058 goto bad_swap; 2059 } 2060 } 2061 2062 inode = mapping->host; 2063 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */ 2064 error = claim_swapfile(p, inode); 2065 if (unlikely(error)) 2066 goto bad_swap; 2067 2068 /* 2069 * Read the swap header. 2070 */ 2071 if (!mapping->a_ops->readpage) { 2072 error = -EINVAL; 2073 goto bad_swap; 2074 } 2075 page = read_mapping_page(mapping, 0, swap_file); 2076 if (IS_ERR(page)) { 2077 error = PTR_ERR(page); 2078 goto bad_swap; 2079 } 2080 swap_header = kmap(page); 2081 2082 maxpages = read_swap_header(p, swap_header, inode); 2083 if (unlikely(!maxpages)) { 2084 error = -EINVAL; 2085 goto bad_swap; 2086 } 2087 2088 /* OK, set up the swap map and apply the bad block list */ 2089 swap_map = vzalloc(maxpages); 2090 if (!swap_map) { 2091 error = -ENOMEM; 2092 goto bad_swap; 2093 } 2094 2095 error = swap_cgroup_swapon(p->type, maxpages); 2096 if (error) 2097 goto bad_swap; 2098 2099 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 2100 maxpages, &span); 2101 if (unlikely(nr_extents < 0)) { 2102 error = nr_extents; 2103 goto bad_swap; 2104 } 2105 2106 if (p->bdev) { 2107 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) { 2108 p->flags |= SWP_SOLIDSTATE; 2109 p->cluster_next = 1 + (random32() % p->highest_bit); 2110 } 2111 if ((swap_flags & SWAP_FLAG_DISCARD) && discard_swap(p) == 0) 2112 p->flags |= SWP_DISCARDABLE; 2113 } 2114 2115 mutex_lock(&swapon_mutex); 2116 prio = -1; 2117 if (swap_flags & SWAP_FLAG_PREFER) 2118 prio = 2119 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 2120 enable_swap_info(p, prio, swap_map); 2121 2122 printk(KERN_INFO "Adding %uk swap on %s. " 2123 "Priority:%d extents:%d across:%lluk %s%s\n", 2124 p->pages<<(PAGE_SHIFT-10), name, p->prio, 2125 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 2126 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 2127 (p->flags & SWP_DISCARDABLE) ? "D" : ""); 2128 2129 mutex_unlock(&swapon_mutex); 2130 atomic_inc(&proc_poll_event); 2131 wake_up_interruptible(&proc_poll_wait); 2132 2133 if (S_ISREG(inode->i_mode)) 2134 inode->i_flags |= S_SWAPFILE; 2135 error = 0; 2136 goto out; 2137 bad_swap: 2138 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 2139 set_blocksize(p->bdev, p->old_block_size); 2140 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2141 } 2142 destroy_swap_extents(p); 2143 swap_cgroup_swapoff(p->type); 2144 spin_lock(&swap_lock); 2145 p->swap_file = NULL; 2146 p->flags = 0; 2147 spin_unlock(&swap_lock); 2148 vfree(swap_map); 2149 if (swap_file) { 2150 if (inode && S_ISREG(inode->i_mode)) { 2151 mutex_unlock(&inode->i_mutex); 2152 inode = NULL; 2153 } 2154 filp_close(swap_file, NULL); 2155 } 2156 out: 2157 if (page && !IS_ERR(page)) { 2158 kunmap(page); 2159 page_cache_release(page); 2160 } 2161 if (name) 2162 putname(name); 2163 if (inode && S_ISREG(inode->i_mode)) 2164 mutex_unlock(&inode->i_mutex); 2165 return error; 2166 } 2167 2168 void si_swapinfo(struct sysinfo *val) 2169 { 2170 unsigned int type; 2171 unsigned long nr_to_be_unused = 0; 2172 2173 spin_lock(&swap_lock); 2174 for (type = 0; type < nr_swapfiles; type++) { 2175 struct swap_info_struct *si = swap_info[type]; 2176 2177 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 2178 nr_to_be_unused += si->inuse_pages; 2179 } 2180 val->freeswap = nr_swap_pages + nr_to_be_unused; 2181 val->totalswap = total_swap_pages + nr_to_be_unused; 2182 spin_unlock(&swap_lock); 2183 } 2184 2185 /* 2186 * Verify that a swap entry is valid and increment its swap map count. 2187 * 2188 * Returns error code in following case. 2189 * - success -> 0 2190 * - swp_entry is invalid -> EINVAL 2191 * - swp_entry is migration entry -> EINVAL 2192 * - swap-cache reference is requested but there is already one. -> EEXIST 2193 * - swap-cache reference is requested but the entry is not used. -> ENOENT 2194 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 2195 */ 2196 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 2197 { 2198 struct swap_info_struct *p; 2199 unsigned long offset, type; 2200 unsigned char count; 2201 unsigned char has_cache; 2202 int err = -EINVAL; 2203 2204 if (non_swap_entry(entry)) 2205 goto out; 2206 2207 type = swp_type(entry); 2208 if (type >= nr_swapfiles) 2209 goto bad_file; 2210 p = swap_info[type]; 2211 offset = swp_offset(entry); 2212 2213 spin_lock(&swap_lock); 2214 if (unlikely(offset >= p->max)) 2215 goto unlock_out; 2216 2217 count = p->swap_map[offset]; 2218 has_cache = count & SWAP_HAS_CACHE; 2219 count &= ~SWAP_HAS_CACHE; 2220 err = 0; 2221 2222 if (usage == SWAP_HAS_CACHE) { 2223 2224 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 2225 if (!has_cache && count) 2226 has_cache = SWAP_HAS_CACHE; 2227 else if (has_cache) /* someone else added cache */ 2228 err = -EEXIST; 2229 else /* no users remaining */ 2230 err = -ENOENT; 2231 2232 } else if (count || has_cache) { 2233 2234 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 2235 count += usage; 2236 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 2237 err = -EINVAL; 2238 else if (swap_count_continued(p, offset, count)) 2239 count = COUNT_CONTINUED; 2240 else 2241 err = -ENOMEM; 2242 } else 2243 err = -ENOENT; /* unused swap entry */ 2244 2245 p->swap_map[offset] = count | has_cache; 2246 2247 unlock_out: 2248 spin_unlock(&swap_lock); 2249 out: 2250 return err; 2251 2252 bad_file: 2253 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); 2254 goto out; 2255 } 2256 2257 /* 2258 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 2259 * (in which case its reference count is never incremented). 2260 */ 2261 void swap_shmem_alloc(swp_entry_t entry) 2262 { 2263 __swap_duplicate(entry, SWAP_MAP_SHMEM); 2264 } 2265 2266 /* 2267 * Increase reference count of swap entry by 1. 2268 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 2269 * but could not be atomically allocated. Returns 0, just as if it succeeded, 2270 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 2271 * might occur if a page table entry has got corrupted. 2272 */ 2273 int swap_duplicate(swp_entry_t entry) 2274 { 2275 int err = 0; 2276 2277 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 2278 err = add_swap_count_continuation(entry, GFP_ATOMIC); 2279 return err; 2280 } 2281 2282 /* 2283 * @entry: swap entry for which we allocate swap cache. 2284 * 2285 * Called when allocating swap cache for existing swap entry, 2286 * This can return error codes. Returns 0 at success. 2287 * -EBUSY means there is a swap cache. 2288 * Note: return code is different from swap_duplicate(). 2289 */ 2290 int swapcache_prepare(swp_entry_t entry) 2291 { 2292 return __swap_duplicate(entry, SWAP_HAS_CACHE); 2293 } 2294 2295 /* 2296 * add_swap_count_continuation - called when a swap count is duplicated 2297 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 2298 * page of the original vmalloc'ed swap_map, to hold the continuation count 2299 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 2300 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 2301 * 2302 * These continuation pages are seldom referenced: the common paths all work 2303 * on the original swap_map, only referring to a continuation page when the 2304 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 2305 * 2306 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 2307 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 2308 * can be called after dropping locks. 2309 */ 2310 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 2311 { 2312 struct swap_info_struct *si; 2313 struct page *head; 2314 struct page *page; 2315 struct page *list_page; 2316 pgoff_t offset; 2317 unsigned char count; 2318 2319 /* 2320 * When debugging, it's easier to use __GFP_ZERO here; but it's better 2321 * for latency not to zero a page while GFP_ATOMIC and holding locks. 2322 */ 2323 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 2324 2325 si = swap_info_get(entry); 2326 if (!si) { 2327 /* 2328 * An acceptable race has occurred since the failing 2329 * __swap_duplicate(): the swap entry has been freed, 2330 * perhaps even the whole swap_map cleared for swapoff. 2331 */ 2332 goto outer; 2333 } 2334 2335 offset = swp_offset(entry); 2336 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 2337 2338 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 2339 /* 2340 * The higher the swap count, the more likely it is that tasks 2341 * will race to add swap count continuation: we need to avoid 2342 * over-provisioning. 2343 */ 2344 goto out; 2345 } 2346 2347 if (!page) { 2348 spin_unlock(&swap_lock); 2349 return -ENOMEM; 2350 } 2351 2352 /* 2353 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 2354 * no architecture is using highmem pages for kernel pagetables: so it 2355 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps. 2356 */ 2357 head = vmalloc_to_page(si->swap_map + offset); 2358 offset &= ~PAGE_MASK; 2359 2360 /* 2361 * Page allocation does not initialize the page's lru field, 2362 * but it does always reset its private field. 2363 */ 2364 if (!page_private(head)) { 2365 BUG_ON(count & COUNT_CONTINUED); 2366 INIT_LIST_HEAD(&head->lru); 2367 set_page_private(head, SWP_CONTINUED); 2368 si->flags |= SWP_CONTINUED; 2369 } 2370 2371 list_for_each_entry(list_page, &head->lru, lru) { 2372 unsigned char *map; 2373 2374 /* 2375 * If the previous map said no continuation, but we've found 2376 * a continuation page, free our allocation and use this one. 2377 */ 2378 if (!(count & COUNT_CONTINUED)) 2379 goto out; 2380 2381 map = kmap_atomic(list_page) + offset; 2382 count = *map; 2383 kunmap_atomic(map); 2384 2385 /* 2386 * If this continuation count now has some space in it, 2387 * free our allocation and use this one. 2388 */ 2389 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 2390 goto out; 2391 } 2392 2393 list_add_tail(&page->lru, &head->lru); 2394 page = NULL; /* now it's attached, don't free it */ 2395 out: 2396 spin_unlock(&swap_lock); 2397 outer: 2398 if (page) 2399 __free_page(page); 2400 return 0; 2401 } 2402 2403 /* 2404 * swap_count_continued - when the original swap_map count is incremented 2405 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 2406 * into, carry if so, or else fail until a new continuation page is allocated; 2407 * when the original swap_map count is decremented from 0 with continuation, 2408 * borrow from the continuation and report whether it still holds more. 2409 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock. 2410 */ 2411 static bool swap_count_continued(struct swap_info_struct *si, 2412 pgoff_t offset, unsigned char count) 2413 { 2414 struct page *head; 2415 struct page *page; 2416 unsigned char *map; 2417 2418 head = vmalloc_to_page(si->swap_map + offset); 2419 if (page_private(head) != SWP_CONTINUED) { 2420 BUG_ON(count & COUNT_CONTINUED); 2421 return false; /* need to add count continuation */ 2422 } 2423 2424 offset &= ~PAGE_MASK; 2425 page = list_entry(head->lru.next, struct page, lru); 2426 map = kmap_atomic(page) + offset; 2427 2428 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 2429 goto init_map; /* jump over SWAP_CONT_MAX checks */ 2430 2431 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 2432 /* 2433 * Think of how you add 1 to 999 2434 */ 2435 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 2436 kunmap_atomic(map); 2437 page = list_entry(page->lru.next, struct page, lru); 2438 BUG_ON(page == head); 2439 map = kmap_atomic(page) + offset; 2440 } 2441 if (*map == SWAP_CONT_MAX) { 2442 kunmap_atomic(map); 2443 page = list_entry(page->lru.next, struct page, lru); 2444 if (page == head) 2445 return false; /* add count continuation */ 2446 map = kmap_atomic(page) + offset; 2447 init_map: *map = 0; /* we didn't zero the page */ 2448 } 2449 *map += 1; 2450 kunmap_atomic(map); 2451 page = list_entry(page->lru.prev, struct page, lru); 2452 while (page != head) { 2453 map = kmap_atomic(page) + offset; 2454 *map = COUNT_CONTINUED; 2455 kunmap_atomic(map); 2456 page = list_entry(page->lru.prev, struct page, lru); 2457 } 2458 return true; /* incremented */ 2459 2460 } else { /* decrementing */ 2461 /* 2462 * Think of how you subtract 1 from 1000 2463 */ 2464 BUG_ON(count != COUNT_CONTINUED); 2465 while (*map == COUNT_CONTINUED) { 2466 kunmap_atomic(map); 2467 page = list_entry(page->lru.next, struct page, lru); 2468 BUG_ON(page == head); 2469 map = kmap_atomic(page) + offset; 2470 } 2471 BUG_ON(*map == 0); 2472 *map -= 1; 2473 if (*map == 0) 2474 count = 0; 2475 kunmap_atomic(map); 2476 page = list_entry(page->lru.prev, struct page, lru); 2477 while (page != head) { 2478 map = kmap_atomic(page) + offset; 2479 *map = SWAP_CONT_MAX | count; 2480 count = COUNT_CONTINUED; 2481 kunmap_atomic(map); 2482 page = list_entry(page->lru.prev, struct page, lru); 2483 } 2484 return count == COUNT_CONTINUED; 2485 } 2486 } 2487 2488 /* 2489 * free_swap_count_continuations - swapoff free all the continuation pages 2490 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 2491 */ 2492 static void free_swap_count_continuations(struct swap_info_struct *si) 2493 { 2494 pgoff_t offset; 2495 2496 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 2497 struct page *head; 2498 head = vmalloc_to_page(si->swap_map + offset); 2499 if (page_private(head)) { 2500 struct list_head *this, *next; 2501 list_for_each_safe(this, next, &head->lru) { 2502 struct page *page; 2503 page = list_entry(this, struct page, lru); 2504 list_del(this); 2505 __free_page(page); 2506 } 2507 } 2508 } 2509 } 2510