xref: /openbmc/linux/mm/swapfile.c (revision 6391503b)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37 
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
42 
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 				 unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47 
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
54 
55 static const char Bad_file[] = "Bad swap file entry ";
56 static const char Unused_file[] = "Unused swap file entry ";
57 static const char Bad_offset[] = "Bad swap offset entry ";
58 static const char Unused_offset[] = "Unused swap offset entry ";
59 
60 /*
61  * all active swap_info_structs
62  * protected with swap_lock, and ordered by priority.
63  */
64 PLIST_HEAD(swap_active_head);
65 
66 /*
67  * all available (active, not full) swap_info_structs
68  * protected with swap_avail_lock, ordered by priority.
69  * This is used by get_swap_page() instead of swap_active_head
70  * because swap_active_head includes all swap_info_structs,
71  * but get_swap_page() doesn't need to look at full ones.
72  * This uses its own lock instead of swap_lock because when a
73  * swap_info_struct changes between not-full/full, it needs to
74  * add/remove itself to/from this list, but the swap_info_struct->lock
75  * is held and the locking order requires swap_lock to be taken
76  * before any swap_info_struct->lock.
77  */
78 static PLIST_HEAD(swap_avail_head);
79 static DEFINE_SPINLOCK(swap_avail_lock);
80 
81 struct swap_info_struct *swap_info[MAX_SWAPFILES];
82 
83 static DEFINE_MUTEX(swapon_mutex);
84 
85 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
86 /* Activity counter to indicate that a swapon or swapoff has occurred */
87 static atomic_t proc_poll_event = ATOMIC_INIT(0);
88 
89 static inline unsigned char swap_count(unsigned char ent)
90 {
91 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
92 }
93 
94 /* returns 1 if swap entry is freed */
95 static int
96 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
97 {
98 	swp_entry_t entry = swp_entry(si->type, offset);
99 	struct page *page;
100 	int ret = 0;
101 
102 	page = find_get_page(swap_address_space(entry), entry.val);
103 	if (!page)
104 		return 0;
105 	/*
106 	 * This function is called from scan_swap_map() and it's called
107 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
108 	 * We have to use trylock for avoiding deadlock. This is a special
109 	 * case and you should use try_to_free_swap() with explicit lock_page()
110 	 * in usual operations.
111 	 */
112 	if (trylock_page(page)) {
113 		ret = try_to_free_swap(page);
114 		unlock_page(page);
115 	}
116 	page_cache_release(page);
117 	return ret;
118 }
119 
120 /*
121  * swapon tell device that all the old swap contents can be discarded,
122  * to allow the swap device to optimize its wear-levelling.
123  */
124 static int discard_swap(struct swap_info_struct *si)
125 {
126 	struct swap_extent *se;
127 	sector_t start_block;
128 	sector_t nr_blocks;
129 	int err = 0;
130 
131 	/* Do not discard the swap header page! */
132 	se = &si->first_swap_extent;
133 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
134 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
135 	if (nr_blocks) {
136 		err = blkdev_issue_discard(si->bdev, start_block,
137 				nr_blocks, GFP_KERNEL, 0);
138 		if (err)
139 			return err;
140 		cond_resched();
141 	}
142 
143 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
144 		start_block = se->start_block << (PAGE_SHIFT - 9);
145 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
146 
147 		err = blkdev_issue_discard(si->bdev, start_block,
148 				nr_blocks, GFP_KERNEL, 0);
149 		if (err)
150 			break;
151 
152 		cond_resched();
153 	}
154 	return err;		/* That will often be -EOPNOTSUPP */
155 }
156 
157 /*
158  * swap allocation tell device that a cluster of swap can now be discarded,
159  * to allow the swap device to optimize its wear-levelling.
160  */
161 static void discard_swap_cluster(struct swap_info_struct *si,
162 				 pgoff_t start_page, pgoff_t nr_pages)
163 {
164 	struct swap_extent *se = si->curr_swap_extent;
165 	int found_extent = 0;
166 
167 	while (nr_pages) {
168 		if (se->start_page <= start_page &&
169 		    start_page < se->start_page + se->nr_pages) {
170 			pgoff_t offset = start_page - se->start_page;
171 			sector_t start_block = se->start_block + offset;
172 			sector_t nr_blocks = se->nr_pages - offset;
173 
174 			if (nr_blocks > nr_pages)
175 				nr_blocks = nr_pages;
176 			start_page += nr_blocks;
177 			nr_pages -= nr_blocks;
178 
179 			if (!found_extent++)
180 				si->curr_swap_extent = se;
181 
182 			start_block <<= PAGE_SHIFT - 9;
183 			nr_blocks <<= PAGE_SHIFT - 9;
184 			if (blkdev_issue_discard(si->bdev, start_block,
185 				    nr_blocks, GFP_NOIO, 0))
186 				break;
187 		}
188 
189 		se = list_next_entry(se, list);
190 	}
191 }
192 
193 #define SWAPFILE_CLUSTER	256
194 #define LATENCY_LIMIT		256
195 
196 static inline void cluster_set_flag(struct swap_cluster_info *info,
197 	unsigned int flag)
198 {
199 	info->flags = flag;
200 }
201 
202 static inline unsigned int cluster_count(struct swap_cluster_info *info)
203 {
204 	return info->data;
205 }
206 
207 static inline void cluster_set_count(struct swap_cluster_info *info,
208 				     unsigned int c)
209 {
210 	info->data = c;
211 }
212 
213 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
214 					 unsigned int c, unsigned int f)
215 {
216 	info->flags = f;
217 	info->data = c;
218 }
219 
220 static inline unsigned int cluster_next(struct swap_cluster_info *info)
221 {
222 	return info->data;
223 }
224 
225 static inline void cluster_set_next(struct swap_cluster_info *info,
226 				    unsigned int n)
227 {
228 	info->data = n;
229 }
230 
231 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
232 					 unsigned int n, unsigned int f)
233 {
234 	info->flags = f;
235 	info->data = n;
236 }
237 
238 static inline bool cluster_is_free(struct swap_cluster_info *info)
239 {
240 	return info->flags & CLUSTER_FLAG_FREE;
241 }
242 
243 static inline bool cluster_is_null(struct swap_cluster_info *info)
244 {
245 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
246 }
247 
248 static inline void cluster_set_null(struct swap_cluster_info *info)
249 {
250 	info->flags = CLUSTER_FLAG_NEXT_NULL;
251 	info->data = 0;
252 }
253 
254 /* Add a cluster to discard list and schedule it to do discard */
255 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
256 		unsigned int idx)
257 {
258 	/*
259 	 * If scan_swap_map() can't find a free cluster, it will check
260 	 * si->swap_map directly. To make sure the discarding cluster isn't
261 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
262 	 * will be cleared after discard
263 	 */
264 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
265 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
266 
267 	if (cluster_is_null(&si->discard_cluster_head)) {
268 		cluster_set_next_flag(&si->discard_cluster_head,
269 						idx, 0);
270 		cluster_set_next_flag(&si->discard_cluster_tail,
271 						idx, 0);
272 	} else {
273 		unsigned int tail = cluster_next(&si->discard_cluster_tail);
274 		cluster_set_next(&si->cluster_info[tail], idx);
275 		cluster_set_next_flag(&si->discard_cluster_tail,
276 						idx, 0);
277 	}
278 
279 	schedule_work(&si->discard_work);
280 }
281 
282 /*
283  * Doing discard actually. After a cluster discard is finished, the cluster
284  * will be added to free cluster list. caller should hold si->lock.
285 */
286 static void swap_do_scheduled_discard(struct swap_info_struct *si)
287 {
288 	struct swap_cluster_info *info;
289 	unsigned int idx;
290 
291 	info = si->cluster_info;
292 
293 	while (!cluster_is_null(&si->discard_cluster_head)) {
294 		idx = cluster_next(&si->discard_cluster_head);
295 
296 		cluster_set_next_flag(&si->discard_cluster_head,
297 						cluster_next(&info[idx]), 0);
298 		if (cluster_next(&si->discard_cluster_tail) == idx) {
299 			cluster_set_null(&si->discard_cluster_head);
300 			cluster_set_null(&si->discard_cluster_tail);
301 		}
302 		spin_unlock(&si->lock);
303 
304 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
305 				SWAPFILE_CLUSTER);
306 
307 		spin_lock(&si->lock);
308 		cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
309 		if (cluster_is_null(&si->free_cluster_head)) {
310 			cluster_set_next_flag(&si->free_cluster_head,
311 						idx, 0);
312 			cluster_set_next_flag(&si->free_cluster_tail,
313 						idx, 0);
314 		} else {
315 			unsigned int tail;
316 
317 			tail = cluster_next(&si->free_cluster_tail);
318 			cluster_set_next(&info[tail], idx);
319 			cluster_set_next_flag(&si->free_cluster_tail,
320 						idx, 0);
321 		}
322 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
323 				0, SWAPFILE_CLUSTER);
324 	}
325 }
326 
327 static void swap_discard_work(struct work_struct *work)
328 {
329 	struct swap_info_struct *si;
330 
331 	si = container_of(work, struct swap_info_struct, discard_work);
332 
333 	spin_lock(&si->lock);
334 	swap_do_scheduled_discard(si);
335 	spin_unlock(&si->lock);
336 }
337 
338 /*
339  * The cluster corresponding to page_nr will be used. The cluster will be
340  * removed from free cluster list and its usage counter will be increased.
341  */
342 static void inc_cluster_info_page(struct swap_info_struct *p,
343 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
344 {
345 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
346 
347 	if (!cluster_info)
348 		return;
349 	if (cluster_is_free(&cluster_info[idx])) {
350 		VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
351 		cluster_set_next_flag(&p->free_cluster_head,
352 			cluster_next(&cluster_info[idx]), 0);
353 		if (cluster_next(&p->free_cluster_tail) == idx) {
354 			cluster_set_null(&p->free_cluster_tail);
355 			cluster_set_null(&p->free_cluster_head);
356 		}
357 		cluster_set_count_flag(&cluster_info[idx], 0, 0);
358 	}
359 
360 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
361 	cluster_set_count(&cluster_info[idx],
362 		cluster_count(&cluster_info[idx]) + 1);
363 }
364 
365 /*
366  * The cluster corresponding to page_nr decreases one usage. If the usage
367  * counter becomes 0, which means no page in the cluster is in using, we can
368  * optionally discard the cluster and add it to free cluster list.
369  */
370 static void dec_cluster_info_page(struct swap_info_struct *p,
371 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
372 {
373 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
374 
375 	if (!cluster_info)
376 		return;
377 
378 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
379 	cluster_set_count(&cluster_info[idx],
380 		cluster_count(&cluster_info[idx]) - 1);
381 
382 	if (cluster_count(&cluster_info[idx]) == 0) {
383 		/*
384 		 * If the swap is discardable, prepare discard the cluster
385 		 * instead of free it immediately. The cluster will be freed
386 		 * after discard.
387 		 */
388 		if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
389 				 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
390 			swap_cluster_schedule_discard(p, idx);
391 			return;
392 		}
393 
394 		cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
395 		if (cluster_is_null(&p->free_cluster_head)) {
396 			cluster_set_next_flag(&p->free_cluster_head, idx, 0);
397 			cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
398 		} else {
399 			unsigned int tail = cluster_next(&p->free_cluster_tail);
400 			cluster_set_next(&cluster_info[tail], idx);
401 			cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
402 		}
403 	}
404 }
405 
406 /*
407  * It's possible scan_swap_map() uses a free cluster in the middle of free
408  * cluster list. Avoiding such abuse to avoid list corruption.
409  */
410 static bool
411 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
412 	unsigned long offset)
413 {
414 	struct percpu_cluster *percpu_cluster;
415 	bool conflict;
416 
417 	offset /= SWAPFILE_CLUSTER;
418 	conflict = !cluster_is_null(&si->free_cluster_head) &&
419 		offset != cluster_next(&si->free_cluster_head) &&
420 		cluster_is_free(&si->cluster_info[offset]);
421 
422 	if (!conflict)
423 		return false;
424 
425 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
426 	cluster_set_null(&percpu_cluster->index);
427 	return true;
428 }
429 
430 /*
431  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
432  * might involve allocating a new cluster for current CPU too.
433  */
434 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
435 	unsigned long *offset, unsigned long *scan_base)
436 {
437 	struct percpu_cluster *cluster;
438 	bool found_free;
439 	unsigned long tmp;
440 
441 new_cluster:
442 	cluster = this_cpu_ptr(si->percpu_cluster);
443 	if (cluster_is_null(&cluster->index)) {
444 		if (!cluster_is_null(&si->free_cluster_head)) {
445 			cluster->index = si->free_cluster_head;
446 			cluster->next = cluster_next(&cluster->index) *
447 					SWAPFILE_CLUSTER;
448 		} else if (!cluster_is_null(&si->discard_cluster_head)) {
449 			/*
450 			 * we don't have free cluster but have some clusters in
451 			 * discarding, do discard now and reclaim them
452 			 */
453 			swap_do_scheduled_discard(si);
454 			*scan_base = *offset = si->cluster_next;
455 			goto new_cluster;
456 		} else
457 			return;
458 	}
459 
460 	found_free = false;
461 
462 	/*
463 	 * Other CPUs can use our cluster if they can't find a free cluster,
464 	 * check if there is still free entry in the cluster
465 	 */
466 	tmp = cluster->next;
467 	while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
468 	       SWAPFILE_CLUSTER) {
469 		if (!si->swap_map[tmp]) {
470 			found_free = true;
471 			break;
472 		}
473 		tmp++;
474 	}
475 	if (!found_free) {
476 		cluster_set_null(&cluster->index);
477 		goto new_cluster;
478 	}
479 	cluster->next = tmp + 1;
480 	*offset = tmp;
481 	*scan_base = tmp;
482 }
483 
484 static unsigned long scan_swap_map(struct swap_info_struct *si,
485 				   unsigned char usage)
486 {
487 	unsigned long offset;
488 	unsigned long scan_base;
489 	unsigned long last_in_cluster = 0;
490 	int latency_ration = LATENCY_LIMIT;
491 
492 	/*
493 	 * We try to cluster swap pages by allocating them sequentially
494 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
495 	 * way, however, we resort to first-free allocation, starting
496 	 * a new cluster.  This prevents us from scattering swap pages
497 	 * all over the entire swap partition, so that we reduce
498 	 * overall disk seek times between swap pages.  -- sct
499 	 * But we do now try to find an empty cluster.  -Andrea
500 	 * And we let swap pages go all over an SSD partition.  Hugh
501 	 */
502 
503 	si->flags += SWP_SCANNING;
504 	scan_base = offset = si->cluster_next;
505 
506 	/* SSD algorithm */
507 	if (si->cluster_info) {
508 		scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
509 		goto checks;
510 	}
511 
512 	if (unlikely(!si->cluster_nr--)) {
513 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
514 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
515 			goto checks;
516 		}
517 
518 		spin_unlock(&si->lock);
519 
520 		/*
521 		 * If seek is expensive, start searching for new cluster from
522 		 * start of partition, to minimize the span of allocated swap.
523 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
524 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
525 		 */
526 		scan_base = offset = si->lowest_bit;
527 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
528 
529 		/* Locate the first empty (unaligned) cluster */
530 		for (; last_in_cluster <= si->highest_bit; offset++) {
531 			if (si->swap_map[offset])
532 				last_in_cluster = offset + SWAPFILE_CLUSTER;
533 			else if (offset == last_in_cluster) {
534 				spin_lock(&si->lock);
535 				offset -= SWAPFILE_CLUSTER - 1;
536 				si->cluster_next = offset;
537 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
538 				goto checks;
539 			}
540 			if (unlikely(--latency_ration < 0)) {
541 				cond_resched();
542 				latency_ration = LATENCY_LIMIT;
543 			}
544 		}
545 
546 		offset = scan_base;
547 		spin_lock(&si->lock);
548 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
549 	}
550 
551 checks:
552 	if (si->cluster_info) {
553 		while (scan_swap_map_ssd_cluster_conflict(si, offset))
554 			scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
555 	}
556 	if (!(si->flags & SWP_WRITEOK))
557 		goto no_page;
558 	if (!si->highest_bit)
559 		goto no_page;
560 	if (offset > si->highest_bit)
561 		scan_base = offset = si->lowest_bit;
562 
563 	/* reuse swap entry of cache-only swap if not busy. */
564 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
565 		int swap_was_freed;
566 		spin_unlock(&si->lock);
567 		swap_was_freed = __try_to_reclaim_swap(si, offset);
568 		spin_lock(&si->lock);
569 		/* entry was freed successfully, try to use this again */
570 		if (swap_was_freed)
571 			goto checks;
572 		goto scan; /* check next one */
573 	}
574 
575 	if (si->swap_map[offset])
576 		goto scan;
577 
578 	if (offset == si->lowest_bit)
579 		si->lowest_bit++;
580 	if (offset == si->highest_bit)
581 		si->highest_bit--;
582 	si->inuse_pages++;
583 	if (si->inuse_pages == si->pages) {
584 		si->lowest_bit = si->max;
585 		si->highest_bit = 0;
586 		spin_lock(&swap_avail_lock);
587 		plist_del(&si->avail_list, &swap_avail_head);
588 		spin_unlock(&swap_avail_lock);
589 	}
590 	si->swap_map[offset] = usage;
591 	inc_cluster_info_page(si, si->cluster_info, offset);
592 	si->cluster_next = offset + 1;
593 	si->flags -= SWP_SCANNING;
594 
595 	return offset;
596 
597 scan:
598 	spin_unlock(&si->lock);
599 	while (++offset <= si->highest_bit) {
600 		if (!si->swap_map[offset]) {
601 			spin_lock(&si->lock);
602 			goto checks;
603 		}
604 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
605 			spin_lock(&si->lock);
606 			goto checks;
607 		}
608 		if (unlikely(--latency_ration < 0)) {
609 			cond_resched();
610 			latency_ration = LATENCY_LIMIT;
611 		}
612 	}
613 	offset = si->lowest_bit;
614 	while (offset < scan_base) {
615 		if (!si->swap_map[offset]) {
616 			spin_lock(&si->lock);
617 			goto checks;
618 		}
619 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
620 			spin_lock(&si->lock);
621 			goto checks;
622 		}
623 		if (unlikely(--latency_ration < 0)) {
624 			cond_resched();
625 			latency_ration = LATENCY_LIMIT;
626 		}
627 		offset++;
628 	}
629 	spin_lock(&si->lock);
630 
631 no_page:
632 	si->flags -= SWP_SCANNING;
633 	return 0;
634 }
635 
636 swp_entry_t get_swap_page(void)
637 {
638 	struct swap_info_struct *si, *next;
639 	pgoff_t offset;
640 
641 	if (atomic_long_read(&nr_swap_pages) <= 0)
642 		goto noswap;
643 	atomic_long_dec(&nr_swap_pages);
644 
645 	spin_lock(&swap_avail_lock);
646 
647 start_over:
648 	plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
649 		/* requeue si to after same-priority siblings */
650 		plist_requeue(&si->avail_list, &swap_avail_head);
651 		spin_unlock(&swap_avail_lock);
652 		spin_lock(&si->lock);
653 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
654 			spin_lock(&swap_avail_lock);
655 			if (plist_node_empty(&si->avail_list)) {
656 				spin_unlock(&si->lock);
657 				goto nextsi;
658 			}
659 			WARN(!si->highest_bit,
660 			     "swap_info %d in list but !highest_bit\n",
661 			     si->type);
662 			WARN(!(si->flags & SWP_WRITEOK),
663 			     "swap_info %d in list but !SWP_WRITEOK\n",
664 			     si->type);
665 			plist_del(&si->avail_list, &swap_avail_head);
666 			spin_unlock(&si->lock);
667 			goto nextsi;
668 		}
669 
670 		/* This is called for allocating swap entry for cache */
671 		offset = scan_swap_map(si, SWAP_HAS_CACHE);
672 		spin_unlock(&si->lock);
673 		if (offset)
674 			return swp_entry(si->type, offset);
675 		pr_debug("scan_swap_map of si %d failed to find offset\n",
676 		       si->type);
677 		spin_lock(&swap_avail_lock);
678 nextsi:
679 		/*
680 		 * if we got here, it's likely that si was almost full before,
681 		 * and since scan_swap_map() can drop the si->lock, multiple
682 		 * callers probably all tried to get a page from the same si
683 		 * and it filled up before we could get one; or, the si filled
684 		 * up between us dropping swap_avail_lock and taking si->lock.
685 		 * Since we dropped the swap_avail_lock, the swap_avail_head
686 		 * list may have been modified; so if next is still in the
687 		 * swap_avail_head list then try it, otherwise start over.
688 		 */
689 		if (plist_node_empty(&next->avail_list))
690 			goto start_over;
691 	}
692 
693 	spin_unlock(&swap_avail_lock);
694 
695 	atomic_long_inc(&nr_swap_pages);
696 noswap:
697 	return (swp_entry_t) {0};
698 }
699 
700 /* The only caller of this function is now suspend routine */
701 swp_entry_t get_swap_page_of_type(int type)
702 {
703 	struct swap_info_struct *si;
704 	pgoff_t offset;
705 
706 	si = swap_info[type];
707 	spin_lock(&si->lock);
708 	if (si && (si->flags & SWP_WRITEOK)) {
709 		atomic_long_dec(&nr_swap_pages);
710 		/* This is called for allocating swap entry, not cache */
711 		offset = scan_swap_map(si, 1);
712 		if (offset) {
713 			spin_unlock(&si->lock);
714 			return swp_entry(type, offset);
715 		}
716 		atomic_long_inc(&nr_swap_pages);
717 	}
718 	spin_unlock(&si->lock);
719 	return (swp_entry_t) {0};
720 }
721 
722 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
723 {
724 	struct swap_info_struct *p;
725 	unsigned long offset, type;
726 
727 	if (!entry.val)
728 		goto out;
729 	type = swp_type(entry);
730 	if (type >= nr_swapfiles)
731 		goto bad_nofile;
732 	p = swap_info[type];
733 	if (!(p->flags & SWP_USED))
734 		goto bad_device;
735 	offset = swp_offset(entry);
736 	if (offset >= p->max)
737 		goto bad_offset;
738 	if (!p->swap_map[offset])
739 		goto bad_free;
740 	spin_lock(&p->lock);
741 	return p;
742 
743 bad_free:
744 	pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
745 	goto out;
746 bad_offset:
747 	pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
748 	goto out;
749 bad_device:
750 	pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
751 	goto out;
752 bad_nofile:
753 	pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
754 out:
755 	return NULL;
756 }
757 
758 static unsigned char swap_entry_free(struct swap_info_struct *p,
759 				     swp_entry_t entry, unsigned char usage)
760 {
761 	unsigned long offset = swp_offset(entry);
762 	unsigned char count;
763 	unsigned char has_cache;
764 
765 	count = p->swap_map[offset];
766 	has_cache = count & SWAP_HAS_CACHE;
767 	count &= ~SWAP_HAS_CACHE;
768 
769 	if (usage == SWAP_HAS_CACHE) {
770 		VM_BUG_ON(!has_cache);
771 		has_cache = 0;
772 	} else if (count == SWAP_MAP_SHMEM) {
773 		/*
774 		 * Or we could insist on shmem.c using a special
775 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
776 		 */
777 		count = 0;
778 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
779 		if (count == COUNT_CONTINUED) {
780 			if (swap_count_continued(p, offset, count))
781 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
782 			else
783 				count = SWAP_MAP_MAX;
784 		} else
785 			count--;
786 	}
787 
788 	usage = count | has_cache;
789 	p->swap_map[offset] = usage;
790 
791 	/* free if no reference */
792 	if (!usage) {
793 		mem_cgroup_uncharge_swap(entry);
794 		dec_cluster_info_page(p, p->cluster_info, offset);
795 		if (offset < p->lowest_bit)
796 			p->lowest_bit = offset;
797 		if (offset > p->highest_bit) {
798 			bool was_full = !p->highest_bit;
799 			p->highest_bit = offset;
800 			if (was_full && (p->flags & SWP_WRITEOK)) {
801 				spin_lock(&swap_avail_lock);
802 				WARN_ON(!plist_node_empty(&p->avail_list));
803 				if (plist_node_empty(&p->avail_list))
804 					plist_add(&p->avail_list,
805 						  &swap_avail_head);
806 				spin_unlock(&swap_avail_lock);
807 			}
808 		}
809 		atomic_long_inc(&nr_swap_pages);
810 		p->inuse_pages--;
811 		frontswap_invalidate_page(p->type, offset);
812 		if (p->flags & SWP_BLKDEV) {
813 			struct gendisk *disk = p->bdev->bd_disk;
814 			if (disk->fops->swap_slot_free_notify)
815 				disk->fops->swap_slot_free_notify(p->bdev,
816 								  offset);
817 		}
818 	}
819 
820 	return usage;
821 }
822 
823 /*
824  * Caller has made sure that the swap device corresponding to entry
825  * is still around or has not been recycled.
826  */
827 void swap_free(swp_entry_t entry)
828 {
829 	struct swap_info_struct *p;
830 
831 	p = swap_info_get(entry);
832 	if (p) {
833 		swap_entry_free(p, entry, 1);
834 		spin_unlock(&p->lock);
835 	}
836 }
837 
838 /*
839  * Called after dropping swapcache to decrease refcnt to swap entries.
840  */
841 void swapcache_free(swp_entry_t entry)
842 {
843 	struct swap_info_struct *p;
844 
845 	p = swap_info_get(entry);
846 	if (p) {
847 		swap_entry_free(p, entry, SWAP_HAS_CACHE);
848 		spin_unlock(&p->lock);
849 	}
850 }
851 
852 /*
853  * How many references to page are currently swapped out?
854  * This does not give an exact answer when swap count is continued,
855  * but does include the high COUNT_CONTINUED flag to allow for that.
856  */
857 int page_swapcount(struct page *page)
858 {
859 	int count = 0;
860 	struct swap_info_struct *p;
861 	swp_entry_t entry;
862 
863 	entry.val = page_private(page);
864 	p = swap_info_get(entry);
865 	if (p) {
866 		count = swap_count(p->swap_map[swp_offset(entry)]);
867 		spin_unlock(&p->lock);
868 	}
869 	return count;
870 }
871 
872 /*
873  * How many references to @entry are currently swapped out?
874  * This considers COUNT_CONTINUED so it returns exact answer.
875  */
876 int swp_swapcount(swp_entry_t entry)
877 {
878 	int count, tmp_count, n;
879 	struct swap_info_struct *p;
880 	struct page *page;
881 	pgoff_t offset;
882 	unsigned char *map;
883 
884 	p = swap_info_get(entry);
885 	if (!p)
886 		return 0;
887 
888 	count = swap_count(p->swap_map[swp_offset(entry)]);
889 	if (!(count & COUNT_CONTINUED))
890 		goto out;
891 
892 	count &= ~COUNT_CONTINUED;
893 	n = SWAP_MAP_MAX + 1;
894 
895 	offset = swp_offset(entry);
896 	page = vmalloc_to_page(p->swap_map + offset);
897 	offset &= ~PAGE_MASK;
898 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
899 
900 	do {
901 		page = list_next_entry(page, lru);
902 		map = kmap_atomic(page);
903 		tmp_count = map[offset];
904 		kunmap_atomic(map);
905 
906 		count += (tmp_count & ~COUNT_CONTINUED) * n;
907 		n *= (SWAP_CONT_MAX + 1);
908 	} while (tmp_count & COUNT_CONTINUED);
909 out:
910 	spin_unlock(&p->lock);
911 	return count;
912 }
913 
914 /*
915  * We can write to an anon page without COW if there are no other references
916  * to it.  And as a side-effect, free up its swap: because the old content
917  * on disk will never be read, and seeking back there to write new content
918  * later would only waste time away from clustering.
919  */
920 int reuse_swap_page(struct page *page)
921 {
922 	int count;
923 
924 	VM_BUG_ON_PAGE(!PageLocked(page), page);
925 	if (unlikely(PageKsm(page)))
926 		return 0;
927 	/* The page is part of THP and cannot be reused */
928 	if (PageTransCompound(page))
929 		return 0;
930 	count = page_mapcount(page);
931 	if (count <= 1 && PageSwapCache(page)) {
932 		count += page_swapcount(page);
933 		if (count == 1 && !PageWriteback(page)) {
934 			delete_from_swap_cache(page);
935 			SetPageDirty(page);
936 		}
937 	}
938 	return count <= 1;
939 }
940 
941 /*
942  * If swap is getting full, or if there are no more mappings of this page,
943  * then try_to_free_swap is called to free its swap space.
944  */
945 int try_to_free_swap(struct page *page)
946 {
947 	VM_BUG_ON_PAGE(!PageLocked(page), page);
948 
949 	if (!PageSwapCache(page))
950 		return 0;
951 	if (PageWriteback(page))
952 		return 0;
953 	if (page_swapcount(page))
954 		return 0;
955 
956 	/*
957 	 * Once hibernation has begun to create its image of memory,
958 	 * there's a danger that one of the calls to try_to_free_swap()
959 	 * - most probably a call from __try_to_reclaim_swap() while
960 	 * hibernation is allocating its own swap pages for the image,
961 	 * but conceivably even a call from memory reclaim - will free
962 	 * the swap from a page which has already been recorded in the
963 	 * image as a clean swapcache page, and then reuse its swap for
964 	 * another page of the image.  On waking from hibernation, the
965 	 * original page might be freed under memory pressure, then
966 	 * later read back in from swap, now with the wrong data.
967 	 *
968 	 * Hibernation suspends storage while it is writing the image
969 	 * to disk so check that here.
970 	 */
971 	if (pm_suspended_storage())
972 		return 0;
973 
974 	delete_from_swap_cache(page);
975 	SetPageDirty(page);
976 	return 1;
977 }
978 
979 /*
980  * Free the swap entry like above, but also try to
981  * free the page cache entry if it is the last user.
982  */
983 int free_swap_and_cache(swp_entry_t entry)
984 {
985 	struct swap_info_struct *p;
986 	struct page *page = NULL;
987 
988 	if (non_swap_entry(entry))
989 		return 1;
990 
991 	p = swap_info_get(entry);
992 	if (p) {
993 		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
994 			page = find_get_page(swap_address_space(entry),
995 						entry.val);
996 			if (page && !trylock_page(page)) {
997 				page_cache_release(page);
998 				page = NULL;
999 			}
1000 		}
1001 		spin_unlock(&p->lock);
1002 	}
1003 	if (page) {
1004 		/*
1005 		 * Not mapped elsewhere, or swap space full? Free it!
1006 		 * Also recheck PageSwapCache now page is locked (above).
1007 		 */
1008 		if (PageSwapCache(page) && !PageWriteback(page) &&
1009 		    (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1010 			delete_from_swap_cache(page);
1011 			SetPageDirty(page);
1012 		}
1013 		unlock_page(page);
1014 		page_cache_release(page);
1015 	}
1016 	return p != NULL;
1017 }
1018 
1019 #ifdef CONFIG_HIBERNATION
1020 /*
1021  * Find the swap type that corresponds to given device (if any).
1022  *
1023  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1024  * from 0, in which the swap header is expected to be located.
1025  *
1026  * This is needed for the suspend to disk (aka swsusp).
1027  */
1028 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1029 {
1030 	struct block_device *bdev = NULL;
1031 	int type;
1032 
1033 	if (device)
1034 		bdev = bdget(device);
1035 
1036 	spin_lock(&swap_lock);
1037 	for (type = 0; type < nr_swapfiles; type++) {
1038 		struct swap_info_struct *sis = swap_info[type];
1039 
1040 		if (!(sis->flags & SWP_WRITEOK))
1041 			continue;
1042 
1043 		if (!bdev) {
1044 			if (bdev_p)
1045 				*bdev_p = bdgrab(sis->bdev);
1046 
1047 			spin_unlock(&swap_lock);
1048 			return type;
1049 		}
1050 		if (bdev == sis->bdev) {
1051 			struct swap_extent *se = &sis->first_swap_extent;
1052 
1053 			if (se->start_block == offset) {
1054 				if (bdev_p)
1055 					*bdev_p = bdgrab(sis->bdev);
1056 
1057 				spin_unlock(&swap_lock);
1058 				bdput(bdev);
1059 				return type;
1060 			}
1061 		}
1062 	}
1063 	spin_unlock(&swap_lock);
1064 	if (bdev)
1065 		bdput(bdev);
1066 
1067 	return -ENODEV;
1068 }
1069 
1070 /*
1071  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1072  * corresponding to given index in swap_info (swap type).
1073  */
1074 sector_t swapdev_block(int type, pgoff_t offset)
1075 {
1076 	struct block_device *bdev;
1077 
1078 	if ((unsigned int)type >= nr_swapfiles)
1079 		return 0;
1080 	if (!(swap_info[type]->flags & SWP_WRITEOK))
1081 		return 0;
1082 	return map_swap_entry(swp_entry(type, offset), &bdev);
1083 }
1084 
1085 /*
1086  * Return either the total number of swap pages of given type, or the number
1087  * of free pages of that type (depending on @free)
1088  *
1089  * This is needed for software suspend
1090  */
1091 unsigned int count_swap_pages(int type, int free)
1092 {
1093 	unsigned int n = 0;
1094 
1095 	spin_lock(&swap_lock);
1096 	if ((unsigned int)type < nr_swapfiles) {
1097 		struct swap_info_struct *sis = swap_info[type];
1098 
1099 		spin_lock(&sis->lock);
1100 		if (sis->flags & SWP_WRITEOK) {
1101 			n = sis->pages;
1102 			if (free)
1103 				n -= sis->inuse_pages;
1104 		}
1105 		spin_unlock(&sis->lock);
1106 	}
1107 	spin_unlock(&swap_lock);
1108 	return n;
1109 }
1110 #endif /* CONFIG_HIBERNATION */
1111 
1112 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1113 {
1114 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1115 }
1116 
1117 /*
1118  * No need to decide whether this PTE shares the swap entry with others,
1119  * just let do_wp_page work it out if a write is requested later - to
1120  * force COW, vm_page_prot omits write permission from any private vma.
1121  */
1122 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1123 		unsigned long addr, swp_entry_t entry, struct page *page)
1124 {
1125 	struct page *swapcache;
1126 	struct mem_cgroup *memcg;
1127 	spinlock_t *ptl;
1128 	pte_t *pte;
1129 	int ret = 1;
1130 
1131 	swapcache = page;
1132 	page = ksm_might_need_to_copy(page, vma, addr);
1133 	if (unlikely(!page))
1134 		return -ENOMEM;
1135 
1136 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1137 				&memcg, false)) {
1138 		ret = -ENOMEM;
1139 		goto out_nolock;
1140 	}
1141 
1142 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1143 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1144 		mem_cgroup_cancel_charge(page, memcg, false);
1145 		ret = 0;
1146 		goto out;
1147 	}
1148 
1149 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1150 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1151 	get_page(page);
1152 	set_pte_at(vma->vm_mm, addr, pte,
1153 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1154 	if (page == swapcache) {
1155 		page_add_anon_rmap(page, vma, addr, false);
1156 		mem_cgroup_commit_charge(page, memcg, true, false);
1157 	} else { /* ksm created a completely new copy */
1158 		page_add_new_anon_rmap(page, vma, addr, false);
1159 		mem_cgroup_commit_charge(page, memcg, false, false);
1160 		lru_cache_add_active_or_unevictable(page, vma);
1161 	}
1162 	swap_free(entry);
1163 	/*
1164 	 * Move the page to the active list so it is not
1165 	 * immediately swapped out again after swapon.
1166 	 */
1167 	activate_page(page);
1168 out:
1169 	pte_unmap_unlock(pte, ptl);
1170 out_nolock:
1171 	if (page != swapcache) {
1172 		unlock_page(page);
1173 		put_page(page);
1174 	}
1175 	return ret;
1176 }
1177 
1178 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1179 				unsigned long addr, unsigned long end,
1180 				swp_entry_t entry, struct page *page)
1181 {
1182 	pte_t swp_pte = swp_entry_to_pte(entry);
1183 	pte_t *pte;
1184 	int ret = 0;
1185 
1186 	/*
1187 	 * We don't actually need pte lock while scanning for swp_pte: since
1188 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1189 	 * page table while we're scanning; though it could get zapped, and on
1190 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1191 	 * of unmatched parts which look like swp_pte, so unuse_pte must
1192 	 * recheck under pte lock.  Scanning without pte lock lets it be
1193 	 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1194 	 */
1195 	pte = pte_offset_map(pmd, addr);
1196 	do {
1197 		/*
1198 		 * swapoff spends a _lot_ of time in this loop!
1199 		 * Test inline before going to call unuse_pte.
1200 		 */
1201 		if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1202 			pte_unmap(pte);
1203 			ret = unuse_pte(vma, pmd, addr, entry, page);
1204 			if (ret)
1205 				goto out;
1206 			pte = pte_offset_map(pmd, addr);
1207 		}
1208 	} while (pte++, addr += PAGE_SIZE, addr != end);
1209 	pte_unmap(pte - 1);
1210 out:
1211 	return ret;
1212 }
1213 
1214 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1215 				unsigned long addr, unsigned long end,
1216 				swp_entry_t entry, struct page *page)
1217 {
1218 	pmd_t *pmd;
1219 	unsigned long next;
1220 	int ret;
1221 
1222 	pmd = pmd_offset(pud, addr);
1223 	do {
1224 		next = pmd_addr_end(addr, end);
1225 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1226 			continue;
1227 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1228 		if (ret)
1229 			return ret;
1230 	} while (pmd++, addr = next, addr != end);
1231 	return 0;
1232 }
1233 
1234 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1235 				unsigned long addr, unsigned long end,
1236 				swp_entry_t entry, struct page *page)
1237 {
1238 	pud_t *pud;
1239 	unsigned long next;
1240 	int ret;
1241 
1242 	pud = pud_offset(pgd, addr);
1243 	do {
1244 		next = pud_addr_end(addr, end);
1245 		if (pud_none_or_clear_bad(pud))
1246 			continue;
1247 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1248 		if (ret)
1249 			return ret;
1250 	} while (pud++, addr = next, addr != end);
1251 	return 0;
1252 }
1253 
1254 static int unuse_vma(struct vm_area_struct *vma,
1255 				swp_entry_t entry, struct page *page)
1256 {
1257 	pgd_t *pgd;
1258 	unsigned long addr, end, next;
1259 	int ret;
1260 
1261 	if (page_anon_vma(page)) {
1262 		addr = page_address_in_vma(page, vma);
1263 		if (addr == -EFAULT)
1264 			return 0;
1265 		else
1266 			end = addr + PAGE_SIZE;
1267 	} else {
1268 		addr = vma->vm_start;
1269 		end = vma->vm_end;
1270 	}
1271 
1272 	pgd = pgd_offset(vma->vm_mm, addr);
1273 	do {
1274 		next = pgd_addr_end(addr, end);
1275 		if (pgd_none_or_clear_bad(pgd))
1276 			continue;
1277 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1278 		if (ret)
1279 			return ret;
1280 	} while (pgd++, addr = next, addr != end);
1281 	return 0;
1282 }
1283 
1284 static int unuse_mm(struct mm_struct *mm,
1285 				swp_entry_t entry, struct page *page)
1286 {
1287 	struct vm_area_struct *vma;
1288 	int ret = 0;
1289 
1290 	if (!down_read_trylock(&mm->mmap_sem)) {
1291 		/*
1292 		 * Activate page so shrink_inactive_list is unlikely to unmap
1293 		 * its ptes while lock is dropped, so swapoff can make progress.
1294 		 */
1295 		activate_page(page);
1296 		unlock_page(page);
1297 		down_read(&mm->mmap_sem);
1298 		lock_page(page);
1299 	}
1300 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1301 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1302 			break;
1303 	}
1304 	up_read(&mm->mmap_sem);
1305 	return (ret < 0)? ret: 0;
1306 }
1307 
1308 /*
1309  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1310  * from current position to next entry still in use.
1311  * Recycle to start on reaching the end, returning 0 when empty.
1312  */
1313 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1314 					unsigned int prev, bool frontswap)
1315 {
1316 	unsigned int max = si->max;
1317 	unsigned int i = prev;
1318 	unsigned char count;
1319 
1320 	/*
1321 	 * No need for swap_lock here: we're just looking
1322 	 * for whether an entry is in use, not modifying it; false
1323 	 * hits are okay, and sys_swapoff() has already prevented new
1324 	 * allocations from this area (while holding swap_lock).
1325 	 */
1326 	for (;;) {
1327 		if (++i >= max) {
1328 			if (!prev) {
1329 				i = 0;
1330 				break;
1331 			}
1332 			/*
1333 			 * No entries in use at top of swap_map,
1334 			 * loop back to start and recheck there.
1335 			 */
1336 			max = prev + 1;
1337 			prev = 0;
1338 			i = 1;
1339 		}
1340 		if (frontswap) {
1341 			if (frontswap_test(si, i))
1342 				break;
1343 			else
1344 				continue;
1345 		}
1346 		count = READ_ONCE(si->swap_map[i]);
1347 		if (count && swap_count(count) != SWAP_MAP_BAD)
1348 			break;
1349 	}
1350 	return i;
1351 }
1352 
1353 /*
1354  * We completely avoid races by reading each swap page in advance,
1355  * and then search for the process using it.  All the necessary
1356  * page table adjustments can then be made atomically.
1357  *
1358  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1359  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1360  */
1361 int try_to_unuse(unsigned int type, bool frontswap,
1362 		 unsigned long pages_to_unuse)
1363 {
1364 	struct swap_info_struct *si = swap_info[type];
1365 	struct mm_struct *start_mm;
1366 	volatile unsigned char *swap_map; /* swap_map is accessed without
1367 					   * locking. Mark it as volatile
1368 					   * to prevent compiler doing
1369 					   * something odd.
1370 					   */
1371 	unsigned char swcount;
1372 	struct page *page;
1373 	swp_entry_t entry;
1374 	unsigned int i = 0;
1375 	int retval = 0;
1376 
1377 	/*
1378 	 * When searching mms for an entry, a good strategy is to
1379 	 * start at the first mm we freed the previous entry from
1380 	 * (though actually we don't notice whether we or coincidence
1381 	 * freed the entry).  Initialize this start_mm with a hold.
1382 	 *
1383 	 * A simpler strategy would be to start at the last mm we
1384 	 * freed the previous entry from; but that would take less
1385 	 * advantage of mmlist ordering, which clusters forked mms
1386 	 * together, child after parent.  If we race with dup_mmap(), we
1387 	 * prefer to resolve parent before child, lest we miss entries
1388 	 * duplicated after we scanned child: using last mm would invert
1389 	 * that.
1390 	 */
1391 	start_mm = &init_mm;
1392 	atomic_inc(&init_mm.mm_users);
1393 
1394 	/*
1395 	 * Keep on scanning until all entries have gone.  Usually,
1396 	 * one pass through swap_map is enough, but not necessarily:
1397 	 * there are races when an instance of an entry might be missed.
1398 	 */
1399 	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1400 		if (signal_pending(current)) {
1401 			retval = -EINTR;
1402 			break;
1403 		}
1404 
1405 		/*
1406 		 * Get a page for the entry, using the existing swap
1407 		 * cache page if there is one.  Otherwise, get a clean
1408 		 * page and read the swap into it.
1409 		 */
1410 		swap_map = &si->swap_map[i];
1411 		entry = swp_entry(type, i);
1412 		page = read_swap_cache_async(entry,
1413 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1414 		if (!page) {
1415 			/*
1416 			 * Either swap_duplicate() failed because entry
1417 			 * has been freed independently, and will not be
1418 			 * reused since sys_swapoff() already disabled
1419 			 * allocation from here, or alloc_page() failed.
1420 			 */
1421 			swcount = *swap_map;
1422 			/*
1423 			 * We don't hold lock here, so the swap entry could be
1424 			 * SWAP_MAP_BAD (when the cluster is discarding).
1425 			 * Instead of fail out, We can just skip the swap
1426 			 * entry because swapoff will wait for discarding
1427 			 * finish anyway.
1428 			 */
1429 			if (!swcount || swcount == SWAP_MAP_BAD)
1430 				continue;
1431 			retval = -ENOMEM;
1432 			break;
1433 		}
1434 
1435 		/*
1436 		 * Don't hold on to start_mm if it looks like exiting.
1437 		 */
1438 		if (atomic_read(&start_mm->mm_users) == 1) {
1439 			mmput(start_mm);
1440 			start_mm = &init_mm;
1441 			atomic_inc(&init_mm.mm_users);
1442 		}
1443 
1444 		/*
1445 		 * Wait for and lock page.  When do_swap_page races with
1446 		 * try_to_unuse, do_swap_page can handle the fault much
1447 		 * faster than try_to_unuse can locate the entry.  This
1448 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1449 		 * defer to do_swap_page in such a case - in some tests,
1450 		 * do_swap_page and try_to_unuse repeatedly compete.
1451 		 */
1452 		wait_on_page_locked(page);
1453 		wait_on_page_writeback(page);
1454 		lock_page(page);
1455 		wait_on_page_writeback(page);
1456 
1457 		/*
1458 		 * Remove all references to entry.
1459 		 */
1460 		swcount = *swap_map;
1461 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1462 			retval = shmem_unuse(entry, page);
1463 			/* page has already been unlocked and released */
1464 			if (retval < 0)
1465 				break;
1466 			continue;
1467 		}
1468 		if (swap_count(swcount) && start_mm != &init_mm)
1469 			retval = unuse_mm(start_mm, entry, page);
1470 
1471 		if (swap_count(*swap_map)) {
1472 			int set_start_mm = (*swap_map >= swcount);
1473 			struct list_head *p = &start_mm->mmlist;
1474 			struct mm_struct *new_start_mm = start_mm;
1475 			struct mm_struct *prev_mm = start_mm;
1476 			struct mm_struct *mm;
1477 
1478 			atomic_inc(&new_start_mm->mm_users);
1479 			atomic_inc(&prev_mm->mm_users);
1480 			spin_lock(&mmlist_lock);
1481 			while (swap_count(*swap_map) && !retval &&
1482 					(p = p->next) != &start_mm->mmlist) {
1483 				mm = list_entry(p, struct mm_struct, mmlist);
1484 				if (!atomic_inc_not_zero(&mm->mm_users))
1485 					continue;
1486 				spin_unlock(&mmlist_lock);
1487 				mmput(prev_mm);
1488 				prev_mm = mm;
1489 
1490 				cond_resched();
1491 
1492 				swcount = *swap_map;
1493 				if (!swap_count(swcount)) /* any usage ? */
1494 					;
1495 				else if (mm == &init_mm)
1496 					set_start_mm = 1;
1497 				else
1498 					retval = unuse_mm(mm, entry, page);
1499 
1500 				if (set_start_mm && *swap_map < swcount) {
1501 					mmput(new_start_mm);
1502 					atomic_inc(&mm->mm_users);
1503 					new_start_mm = mm;
1504 					set_start_mm = 0;
1505 				}
1506 				spin_lock(&mmlist_lock);
1507 			}
1508 			spin_unlock(&mmlist_lock);
1509 			mmput(prev_mm);
1510 			mmput(start_mm);
1511 			start_mm = new_start_mm;
1512 		}
1513 		if (retval) {
1514 			unlock_page(page);
1515 			page_cache_release(page);
1516 			break;
1517 		}
1518 
1519 		/*
1520 		 * If a reference remains (rare), we would like to leave
1521 		 * the page in the swap cache; but try_to_unmap could
1522 		 * then re-duplicate the entry once we drop page lock,
1523 		 * so we might loop indefinitely; also, that page could
1524 		 * not be swapped out to other storage meanwhile.  So:
1525 		 * delete from cache even if there's another reference,
1526 		 * after ensuring that the data has been saved to disk -
1527 		 * since if the reference remains (rarer), it will be
1528 		 * read from disk into another page.  Splitting into two
1529 		 * pages would be incorrect if swap supported "shared
1530 		 * private" pages, but they are handled by tmpfs files.
1531 		 *
1532 		 * Given how unuse_vma() targets one particular offset
1533 		 * in an anon_vma, once the anon_vma has been determined,
1534 		 * this splitting happens to be just what is needed to
1535 		 * handle where KSM pages have been swapped out: re-reading
1536 		 * is unnecessarily slow, but we can fix that later on.
1537 		 */
1538 		if (swap_count(*swap_map) &&
1539 		     PageDirty(page) && PageSwapCache(page)) {
1540 			struct writeback_control wbc = {
1541 				.sync_mode = WB_SYNC_NONE,
1542 			};
1543 
1544 			swap_writepage(page, &wbc);
1545 			lock_page(page);
1546 			wait_on_page_writeback(page);
1547 		}
1548 
1549 		/*
1550 		 * It is conceivable that a racing task removed this page from
1551 		 * swap cache just before we acquired the page lock at the top,
1552 		 * or while we dropped it in unuse_mm().  The page might even
1553 		 * be back in swap cache on another swap area: that we must not
1554 		 * delete, since it may not have been written out to swap yet.
1555 		 */
1556 		if (PageSwapCache(page) &&
1557 		    likely(page_private(page) == entry.val))
1558 			delete_from_swap_cache(page);
1559 
1560 		/*
1561 		 * So we could skip searching mms once swap count went
1562 		 * to 1, we did not mark any present ptes as dirty: must
1563 		 * mark page dirty so shrink_page_list will preserve it.
1564 		 */
1565 		SetPageDirty(page);
1566 		unlock_page(page);
1567 		page_cache_release(page);
1568 
1569 		/*
1570 		 * Make sure that we aren't completely killing
1571 		 * interactive performance.
1572 		 */
1573 		cond_resched();
1574 		if (frontswap && pages_to_unuse > 0) {
1575 			if (!--pages_to_unuse)
1576 				break;
1577 		}
1578 	}
1579 
1580 	mmput(start_mm);
1581 	return retval;
1582 }
1583 
1584 /*
1585  * After a successful try_to_unuse, if no swap is now in use, we know
1586  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1587  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1588  * added to the mmlist just after page_duplicate - before would be racy.
1589  */
1590 static void drain_mmlist(void)
1591 {
1592 	struct list_head *p, *next;
1593 	unsigned int type;
1594 
1595 	for (type = 0; type < nr_swapfiles; type++)
1596 		if (swap_info[type]->inuse_pages)
1597 			return;
1598 	spin_lock(&mmlist_lock);
1599 	list_for_each_safe(p, next, &init_mm.mmlist)
1600 		list_del_init(p);
1601 	spin_unlock(&mmlist_lock);
1602 }
1603 
1604 /*
1605  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1606  * corresponds to page offset for the specified swap entry.
1607  * Note that the type of this function is sector_t, but it returns page offset
1608  * into the bdev, not sector offset.
1609  */
1610 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1611 {
1612 	struct swap_info_struct *sis;
1613 	struct swap_extent *start_se;
1614 	struct swap_extent *se;
1615 	pgoff_t offset;
1616 
1617 	sis = swap_info[swp_type(entry)];
1618 	*bdev = sis->bdev;
1619 
1620 	offset = swp_offset(entry);
1621 	start_se = sis->curr_swap_extent;
1622 	se = start_se;
1623 
1624 	for ( ; ; ) {
1625 		if (se->start_page <= offset &&
1626 				offset < (se->start_page + se->nr_pages)) {
1627 			return se->start_block + (offset - se->start_page);
1628 		}
1629 		se = list_next_entry(se, list);
1630 		sis->curr_swap_extent = se;
1631 		BUG_ON(se == start_se);		/* It *must* be present */
1632 	}
1633 }
1634 
1635 /*
1636  * Returns the page offset into bdev for the specified page's swap entry.
1637  */
1638 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1639 {
1640 	swp_entry_t entry;
1641 	entry.val = page_private(page);
1642 	return map_swap_entry(entry, bdev);
1643 }
1644 
1645 /*
1646  * Free all of a swapdev's extent information
1647  */
1648 static void destroy_swap_extents(struct swap_info_struct *sis)
1649 {
1650 	while (!list_empty(&sis->first_swap_extent.list)) {
1651 		struct swap_extent *se;
1652 
1653 		se = list_first_entry(&sis->first_swap_extent.list,
1654 				struct swap_extent, list);
1655 		list_del(&se->list);
1656 		kfree(se);
1657 	}
1658 
1659 	if (sis->flags & SWP_FILE) {
1660 		struct file *swap_file = sis->swap_file;
1661 		struct address_space *mapping = swap_file->f_mapping;
1662 
1663 		sis->flags &= ~SWP_FILE;
1664 		mapping->a_ops->swap_deactivate(swap_file);
1665 	}
1666 }
1667 
1668 /*
1669  * Add a block range (and the corresponding page range) into this swapdev's
1670  * extent list.  The extent list is kept sorted in page order.
1671  *
1672  * This function rather assumes that it is called in ascending page order.
1673  */
1674 int
1675 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1676 		unsigned long nr_pages, sector_t start_block)
1677 {
1678 	struct swap_extent *se;
1679 	struct swap_extent *new_se;
1680 	struct list_head *lh;
1681 
1682 	if (start_page == 0) {
1683 		se = &sis->first_swap_extent;
1684 		sis->curr_swap_extent = se;
1685 		se->start_page = 0;
1686 		se->nr_pages = nr_pages;
1687 		se->start_block = start_block;
1688 		return 1;
1689 	} else {
1690 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1691 		se = list_entry(lh, struct swap_extent, list);
1692 		BUG_ON(se->start_page + se->nr_pages != start_page);
1693 		if (se->start_block + se->nr_pages == start_block) {
1694 			/* Merge it */
1695 			se->nr_pages += nr_pages;
1696 			return 0;
1697 		}
1698 	}
1699 
1700 	/*
1701 	 * No merge.  Insert a new extent, preserving ordering.
1702 	 */
1703 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1704 	if (new_se == NULL)
1705 		return -ENOMEM;
1706 	new_se->start_page = start_page;
1707 	new_se->nr_pages = nr_pages;
1708 	new_se->start_block = start_block;
1709 
1710 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1711 	return 1;
1712 }
1713 
1714 /*
1715  * A `swap extent' is a simple thing which maps a contiguous range of pages
1716  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1717  * is built at swapon time and is then used at swap_writepage/swap_readpage
1718  * time for locating where on disk a page belongs.
1719  *
1720  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1721  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1722  * swap files identically.
1723  *
1724  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1725  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1726  * swapfiles are handled *identically* after swapon time.
1727  *
1728  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1729  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1730  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1731  * requirements, they are simply tossed out - we will never use those blocks
1732  * for swapping.
1733  *
1734  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1735  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1736  * which will scribble on the fs.
1737  *
1738  * The amount of disk space which a single swap extent represents varies.
1739  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1740  * extents in the list.  To avoid much list walking, we cache the previous
1741  * search location in `curr_swap_extent', and start new searches from there.
1742  * This is extremely effective.  The average number of iterations in
1743  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1744  */
1745 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1746 {
1747 	struct file *swap_file = sis->swap_file;
1748 	struct address_space *mapping = swap_file->f_mapping;
1749 	struct inode *inode = mapping->host;
1750 	int ret;
1751 
1752 	if (S_ISBLK(inode->i_mode)) {
1753 		ret = add_swap_extent(sis, 0, sis->max, 0);
1754 		*span = sis->pages;
1755 		return ret;
1756 	}
1757 
1758 	if (mapping->a_ops->swap_activate) {
1759 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1760 		if (!ret) {
1761 			sis->flags |= SWP_FILE;
1762 			ret = add_swap_extent(sis, 0, sis->max, 0);
1763 			*span = sis->pages;
1764 		}
1765 		return ret;
1766 	}
1767 
1768 	return generic_swapfile_activate(sis, swap_file, span);
1769 }
1770 
1771 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1772 				unsigned char *swap_map,
1773 				struct swap_cluster_info *cluster_info)
1774 {
1775 	if (prio >= 0)
1776 		p->prio = prio;
1777 	else
1778 		p->prio = --least_priority;
1779 	/*
1780 	 * the plist prio is negated because plist ordering is
1781 	 * low-to-high, while swap ordering is high-to-low
1782 	 */
1783 	p->list.prio = -p->prio;
1784 	p->avail_list.prio = -p->prio;
1785 	p->swap_map = swap_map;
1786 	p->cluster_info = cluster_info;
1787 	p->flags |= SWP_WRITEOK;
1788 	atomic_long_add(p->pages, &nr_swap_pages);
1789 	total_swap_pages += p->pages;
1790 
1791 	assert_spin_locked(&swap_lock);
1792 	/*
1793 	 * both lists are plists, and thus priority ordered.
1794 	 * swap_active_head needs to be priority ordered for swapoff(),
1795 	 * which on removal of any swap_info_struct with an auto-assigned
1796 	 * (i.e. negative) priority increments the auto-assigned priority
1797 	 * of any lower-priority swap_info_structs.
1798 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
1799 	 * which allocates swap pages from the highest available priority
1800 	 * swap_info_struct.
1801 	 */
1802 	plist_add(&p->list, &swap_active_head);
1803 	spin_lock(&swap_avail_lock);
1804 	plist_add(&p->avail_list, &swap_avail_head);
1805 	spin_unlock(&swap_avail_lock);
1806 }
1807 
1808 static void enable_swap_info(struct swap_info_struct *p, int prio,
1809 				unsigned char *swap_map,
1810 				struct swap_cluster_info *cluster_info,
1811 				unsigned long *frontswap_map)
1812 {
1813 	frontswap_init(p->type, frontswap_map);
1814 	spin_lock(&swap_lock);
1815 	spin_lock(&p->lock);
1816 	 _enable_swap_info(p, prio, swap_map, cluster_info);
1817 	spin_unlock(&p->lock);
1818 	spin_unlock(&swap_lock);
1819 }
1820 
1821 static void reinsert_swap_info(struct swap_info_struct *p)
1822 {
1823 	spin_lock(&swap_lock);
1824 	spin_lock(&p->lock);
1825 	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1826 	spin_unlock(&p->lock);
1827 	spin_unlock(&swap_lock);
1828 }
1829 
1830 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1831 {
1832 	struct swap_info_struct *p = NULL;
1833 	unsigned char *swap_map;
1834 	struct swap_cluster_info *cluster_info;
1835 	unsigned long *frontswap_map;
1836 	struct file *swap_file, *victim;
1837 	struct address_space *mapping;
1838 	struct inode *inode;
1839 	struct filename *pathname;
1840 	int err, found = 0;
1841 	unsigned int old_block_size;
1842 
1843 	if (!capable(CAP_SYS_ADMIN))
1844 		return -EPERM;
1845 
1846 	BUG_ON(!current->mm);
1847 
1848 	pathname = getname(specialfile);
1849 	if (IS_ERR(pathname))
1850 		return PTR_ERR(pathname);
1851 
1852 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1853 	err = PTR_ERR(victim);
1854 	if (IS_ERR(victim))
1855 		goto out;
1856 
1857 	mapping = victim->f_mapping;
1858 	spin_lock(&swap_lock);
1859 	plist_for_each_entry(p, &swap_active_head, list) {
1860 		if (p->flags & SWP_WRITEOK) {
1861 			if (p->swap_file->f_mapping == mapping) {
1862 				found = 1;
1863 				break;
1864 			}
1865 		}
1866 	}
1867 	if (!found) {
1868 		err = -EINVAL;
1869 		spin_unlock(&swap_lock);
1870 		goto out_dput;
1871 	}
1872 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
1873 		vm_unacct_memory(p->pages);
1874 	else {
1875 		err = -ENOMEM;
1876 		spin_unlock(&swap_lock);
1877 		goto out_dput;
1878 	}
1879 	spin_lock(&swap_avail_lock);
1880 	plist_del(&p->avail_list, &swap_avail_head);
1881 	spin_unlock(&swap_avail_lock);
1882 	spin_lock(&p->lock);
1883 	if (p->prio < 0) {
1884 		struct swap_info_struct *si = p;
1885 
1886 		plist_for_each_entry_continue(si, &swap_active_head, list) {
1887 			si->prio++;
1888 			si->list.prio--;
1889 			si->avail_list.prio--;
1890 		}
1891 		least_priority++;
1892 	}
1893 	plist_del(&p->list, &swap_active_head);
1894 	atomic_long_sub(p->pages, &nr_swap_pages);
1895 	total_swap_pages -= p->pages;
1896 	p->flags &= ~SWP_WRITEOK;
1897 	spin_unlock(&p->lock);
1898 	spin_unlock(&swap_lock);
1899 
1900 	set_current_oom_origin();
1901 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1902 	clear_current_oom_origin();
1903 
1904 	if (err) {
1905 		/* re-insert swap space back into swap_list */
1906 		reinsert_swap_info(p);
1907 		goto out_dput;
1908 	}
1909 
1910 	flush_work(&p->discard_work);
1911 
1912 	destroy_swap_extents(p);
1913 	if (p->flags & SWP_CONTINUED)
1914 		free_swap_count_continuations(p);
1915 
1916 	mutex_lock(&swapon_mutex);
1917 	spin_lock(&swap_lock);
1918 	spin_lock(&p->lock);
1919 	drain_mmlist();
1920 
1921 	/* wait for anyone still in scan_swap_map */
1922 	p->highest_bit = 0;		/* cuts scans short */
1923 	while (p->flags >= SWP_SCANNING) {
1924 		spin_unlock(&p->lock);
1925 		spin_unlock(&swap_lock);
1926 		schedule_timeout_uninterruptible(1);
1927 		spin_lock(&swap_lock);
1928 		spin_lock(&p->lock);
1929 	}
1930 
1931 	swap_file = p->swap_file;
1932 	old_block_size = p->old_block_size;
1933 	p->swap_file = NULL;
1934 	p->max = 0;
1935 	swap_map = p->swap_map;
1936 	p->swap_map = NULL;
1937 	cluster_info = p->cluster_info;
1938 	p->cluster_info = NULL;
1939 	frontswap_map = frontswap_map_get(p);
1940 	spin_unlock(&p->lock);
1941 	spin_unlock(&swap_lock);
1942 	frontswap_invalidate_area(p->type);
1943 	frontswap_map_set(p, NULL);
1944 	mutex_unlock(&swapon_mutex);
1945 	free_percpu(p->percpu_cluster);
1946 	p->percpu_cluster = NULL;
1947 	vfree(swap_map);
1948 	vfree(cluster_info);
1949 	vfree(frontswap_map);
1950 	/* Destroy swap account information */
1951 	swap_cgroup_swapoff(p->type);
1952 
1953 	inode = mapping->host;
1954 	if (S_ISBLK(inode->i_mode)) {
1955 		struct block_device *bdev = I_BDEV(inode);
1956 		set_blocksize(bdev, old_block_size);
1957 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1958 	} else {
1959 		inode_lock(inode);
1960 		inode->i_flags &= ~S_SWAPFILE;
1961 		inode_unlock(inode);
1962 	}
1963 	filp_close(swap_file, NULL);
1964 
1965 	/*
1966 	 * Clear the SWP_USED flag after all resources are freed so that swapon
1967 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
1968 	 * not hold p->lock after we cleared its SWP_WRITEOK.
1969 	 */
1970 	spin_lock(&swap_lock);
1971 	p->flags = 0;
1972 	spin_unlock(&swap_lock);
1973 
1974 	err = 0;
1975 	atomic_inc(&proc_poll_event);
1976 	wake_up_interruptible(&proc_poll_wait);
1977 
1978 out_dput:
1979 	filp_close(victim, NULL);
1980 out:
1981 	putname(pathname);
1982 	return err;
1983 }
1984 
1985 #ifdef CONFIG_PROC_FS
1986 static unsigned swaps_poll(struct file *file, poll_table *wait)
1987 {
1988 	struct seq_file *seq = file->private_data;
1989 
1990 	poll_wait(file, &proc_poll_wait, wait);
1991 
1992 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
1993 		seq->poll_event = atomic_read(&proc_poll_event);
1994 		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1995 	}
1996 
1997 	return POLLIN | POLLRDNORM;
1998 }
1999 
2000 /* iterator */
2001 static void *swap_start(struct seq_file *swap, loff_t *pos)
2002 {
2003 	struct swap_info_struct *si;
2004 	int type;
2005 	loff_t l = *pos;
2006 
2007 	mutex_lock(&swapon_mutex);
2008 
2009 	if (!l)
2010 		return SEQ_START_TOKEN;
2011 
2012 	for (type = 0; type < nr_swapfiles; type++) {
2013 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2014 		si = swap_info[type];
2015 		if (!(si->flags & SWP_USED) || !si->swap_map)
2016 			continue;
2017 		if (!--l)
2018 			return si;
2019 	}
2020 
2021 	return NULL;
2022 }
2023 
2024 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2025 {
2026 	struct swap_info_struct *si = v;
2027 	int type;
2028 
2029 	if (v == SEQ_START_TOKEN)
2030 		type = 0;
2031 	else
2032 		type = si->type + 1;
2033 
2034 	for (; type < nr_swapfiles; type++) {
2035 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2036 		si = swap_info[type];
2037 		if (!(si->flags & SWP_USED) || !si->swap_map)
2038 			continue;
2039 		++*pos;
2040 		return si;
2041 	}
2042 
2043 	return NULL;
2044 }
2045 
2046 static void swap_stop(struct seq_file *swap, void *v)
2047 {
2048 	mutex_unlock(&swapon_mutex);
2049 }
2050 
2051 static int swap_show(struct seq_file *swap, void *v)
2052 {
2053 	struct swap_info_struct *si = v;
2054 	struct file *file;
2055 	int len;
2056 
2057 	if (si == SEQ_START_TOKEN) {
2058 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2059 		return 0;
2060 	}
2061 
2062 	file = si->swap_file;
2063 	len = seq_file_path(swap, file, " \t\n\\");
2064 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2065 			len < 40 ? 40 - len : 1, " ",
2066 			S_ISBLK(file_inode(file)->i_mode) ?
2067 				"partition" : "file\t",
2068 			si->pages << (PAGE_SHIFT - 10),
2069 			si->inuse_pages << (PAGE_SHIFT - 10),
2070 			si->prio);
2071 	return 0;
2072 }
2073 
2074 static const struct seq_operations swaps_op = {
2075 	.start =	swap_start,
2076 	.next =		swap_next,
2077 	.stop =		swap_stop,
2078 	.show =		swap_show
2079 };
2080 
2081 static int swaps_open(struct inode *inode, struct file *file)
2082 {
2083 	struct seq_file *seq;
2084 	int ret;
2085 
2086 	ret = seq_open(file, &swaps_op);
2087 	if (ret)
2088 		return ret;
2089 
2090 	seq = file->private_data;
2091 	seq->poll_event = atomic_read(&proc_poll_event);
2092 	return 0;
2093 }
2094 
2095 static const struct file_operations proc_swaps_operations = {
2096 	.open		= swaps_open,
2097 	.read		= seq_read,
2098 	.llseek		= seq_lseek,
2099 	.release	= seq_release,
2100 	.poll		= swaps_poll,
2101 };
2102 
2103 static int __init procswaps_init(void)
2104 {
2105 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2106 	return 0;
2107 }
2108 __initcall(procswaps_init);
2109 #endif /* CONFIG_PROC_FS */
2110 
2111 #ifdef MAX_SWAPFILES_CHECK
2112 static int __init max_swapfiles_check(void)
2113 {
2114 	MAX_SWAPFILES_CHECK();
2115 	return 0;
2116 }
2117 late_initcall(max_swapfiles_check);
2118 #endif
2119 
2120 static struct swap_info_struct *alloc_swap_info(void)
2121 {
2122 	struct swap_info_struct *p;
2123 	unsigned int type;
2124 
2125 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2126 	if (!p)
2127 		return ERR_PTR(-ENOMEM);
2128 
2129 	spin_lock(&swap_lock);
2130 	for (type = 0; type < nr_swapfiles; type++) {
2131 		if (!(swap_info[type]->flags & SWP_USED))
2132 			break;
2133 	}
2134 	if (type >= MAX_SWAPFILES) {
2135 		spin_unlock(&swap_lock);
2136 		kfree(p);
2137 		return ERR_PTR(-EPERM);
2138 	}
2139 	if (type >= nr_swapfiles) {
2140 		p->type = type;
2141 		swap_info[type] = p;
2142 		/*
2143 		 * Write swap_info[type] before nr_swapfiles, in case a
2144 		 * racing procfs swap_start() or swap_next() is reading them.
2145 		 * (We never shrink nr_swapfiles, we never free this entry.)
2146 		 */
2147 		smp_wmb();
2148 		nr_swapfiles++;
2149 	} else {
2150 		kfree(p);
2151 		p = swap_info[type];
2152 		/*
2153 		 * Do not memset this entry: a racing procfs swap_next()
2154 		 * would be relying on p->type to remain valid.
2155 		 */
2156 	}
2157 	INIT_LIST_HEAD(&p->first_swap_extent.list);
2158 	plist_node_init(&p->list, 0);
2159 	plist_node_init(&p->avail_list, 0);
2160 	p->flags = SWP_USED;
2161 	spin_unlock(&swap_lock);
2162 	spin_lock_init(&p->lock);
2163 
2164 	return p;
2165 }
2166 
2167 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2168 {
2169 	int error;
2170 
2171 	if (S_ISBLK(inode->i_mode)) {
2172 		p->bdev = bdgrab(I_BDEV(inode));
2173 		error = blkdev_get(p->bdev,
2174 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2175 		if (error < 0) {
2176 			p->bdev = NULL;
2177 			return error;
2178 		}
2179 		p->old_block_size = block_size(p->bdev);
2180 		error = set_blocksize(p->bdev, PAGE_SIZE);
2181 		if (error < 0)
2182 			return error;
2183 		p->flags |= SWP_BLKDEV;
2184 	} else if (S_ISREG(inode->i_mode)) {
2185 		p->bdev = inode->i_sb->s_bdev;
2186 		inode_lock(inode);
2187 		if (IS_SWAPFILE(inode))
2188 			return -EBUSY;
2189 	} else
2190 		return -EINVAL;
2191 
2192 	return 0;
2193 }
2194 
2195 static unsigned long read_swap_header(struct swap_info_struct *p,
2196 					union swap_header *swap_header,
2197 					struct inode *inode)
2198 {
2199 	int i;
2200 	unsigned long maxpages;
2201 	unsigned long swapfilepages;
2202 	unsigned long last_page;
2203 
2204 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2205 		pr_err("Unable to find swap-space signature\n");
2206 		return 0;
2207 	}
2208 
2209 	/* swap partition endianess hack... */
2210 	if (swab32(swap_header->info.version) == 1) {
2211 		swab32s(&swap_header->info.version);
2212 		swab32s(&swap_header->info.last_page);
2213 		swab32s(&swap_header->info.nr_badpages);
2214 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2215 			swab32s(&swap_header->info.badpages[i]);
2216 	}
2217 	/* Check the swap header's sub-version */
2218 	if (swap_header->info.version != 1) {
2219 		pr_warn("Unable to handle swap header version %d\n",
2220 			swap_header->info.version);
2221 		return 0;
2222 	}
2223 
2224 	p->lowest_bit  = 1;
2225 	p->cluster_next = 1;
2226 	p->cluster_nr = 0;
2227 
2228 	/*
2229 	 * Find out how many pages are allowed for a single swap
2230 	 * device. There are two limiting factors: 1) the number
2231 	 * of bits for the swap offset in the swp_entry_t type, and
2232 	 * 2) the number of bits in the swap pte as defined by the
2233 	 * different architectures. In order to find the
2234 	 * largest possible bit mask, a swap entry with swap type 0
2235 	 * and swap offset ~0UL is created, encoded to a swap pte,
2236 	 * decoded to a swp_entry_t again, and finally the swap
2237 	 * offset is extracted. This will mask all the bits from
2238 	 * the initial ~0UL mask that can't be encoded in either
2239 	 * the swp_entry_t or the architecture definition of a
2240 	 * swap pte.
2241 	 */
2242 	maxpages = swp_offset(pte_to_swp_entry(
2243 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2244 	last_page = swap_header->info.last_page;
2245 	if (last_page > maxpages) {
2246 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2247 			maxpages << (PAGE_SHIFT - 10),
2248 			last_page << (PAGE_SHIFT - 10));
2249 	}
2250 	if (maxpages > last_page) {
2251 		maxpages = last_page + 1;
2252 		/* p->max is an unsigned int: don't overflow it */
2253 		if ((unsigned int)maxpages == 0)
2254 			maxpages = UINT_MAX;
2255 	}
2256 	p->highest_bit = maxpages - 1;
2257 
2258 	if (!maxpages)
2259 		return 0;
2260 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2261 	if (swapfilepages && maxpages > swapfilepages) {
2262 		pr_warn("Swap area shorter than signature indicates\n");
2263 		return 0;
2264 	}
2265 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2266 		return 0;
2267 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2268 		return 0;
2269 
2270 	return maxpages;
2271 }
2272 
2273 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2274 					union swap_header *swap_header,
2275 					unsigned char *swap_map,
2276 					struct swap_cluster_info *cluster_info,
2277 					unsigned long maxpages,
2278 					sector_t *span)
2279 {
2280 	int i;
2281 	unsigned int nr_good_pages;
2282 	int nr_extents;
2283 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2284 	unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2285 
2286 	nr_good_pages = maxpages - 1;	/* omit header page */
2287 
2288 	cluster_set_null(&p->free_cluster_head);
2289 	cluster_set_null(&p->free_cluster_tail);
2290 	cluster_set_null(&p->discard_cluster_head);
2291 	cluster_set_null(&p->discard_cluster_tail);
2292 
2293 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2294 		unsigned int page_nr = swap_header->info.badpages[i];
2295 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2296 			return -EINVAL;
2297 		if (page_nr < maxpages) {
2298 			swap_map[page_nr] = SWAP_MAP_BAD;
2299 			nr_good_pages--;
2300 			/*
2301 			 * Haven't marked the cluster free yet, no list
2302 			 * operation involved
2303 			 */
2304 			inc_cluster_info_page(p, cluster_info, page_nr);
2305 		}
2306 	}
2307 
2308 	/* Haven't marked the cluster free yet, no list operation involved */
2309 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2310 		inc_cluster_info_page(p, cluster_info, i);
2311 
2312 	if (nr_good_pages) {
2313 		swap_map[0] = SWAP_MAP_BAD;
2314 		/*
2315 		 * Not mark the cluster free yet, no list
2316 		 * operation involved
2317 		 */
2318 		inc_cluster_info_page(p, cluster_info, 0);
2319 		p->max = maxpages;
2320 		p->pages = nr_good_pages;
2321 		nr_extents = setup_swap_extents(p, span);
2322 		if (nr_extents < 0)
2323 			return nr_extents;
2324 		nr_good_pages = p->pages;
2325 	}
2326 	if (!nr_good_pages) {
2327 		pr_warn("Empty swap-file\n");
2328 		return -EINVAL;
2329 	}
2330 
2331 	if (!cluster_info)
2332 		return nr_extents;
2333 
2334 	for (i = 0; i < nr_clusters; i++) {
2335 		if (!cluster_count(&cluster_info[idx])) {
2336 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2337 			if (cluster_is_null(&p->free_cluster_head)) {
2338 				cluster_set_next_flag(&p->free_cluster_head,
2339 								idx, 0);
2340 				cluster_set_next_flag(&p->free_cluster_tail,
2341 								idx, 0);
2342 			} else {
2343 				unsigned int tail;
2344 
2345 				tail = cluster_next(&p->free_cluster_tail);
2346 				cluster_set_next(&cluster_info[tail], idx);
2347 				cluster_set_next_flag(&p->free_cluster_tail,
2348 								idx, 0);
2349 			}
2350 		}
2351 		idx++;
2352 		if (idx == nr_clusters)
2353 			idx = 0;
2354 	}
2355 	return nr_extents;
2356 }
2357 
2358 /*
2359  * Helper to sys_swapon determining if a given swap
2360  * backing device queue supports DISCARD operations.
2361  */
2362 static bool swap_discardable(struct swap_info_struct *si)
2363 {
2364 	struct request_queue *q = bdev_get_queue(si->bdev);
2365 
2366 	if (!q || !blk_queue_discard(q))
2367 		return false;
2368 
2369 	return true;
2370 }
2371 
2372 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2373 {
2374 	struct swap_info_struct *p;
2375 	struct filename *name;
2376 	struct file *swap_file = NULL;
2377 	struct address_space *mapping;
2378 	int prio;
2379 	int error;
2380 	union swap_header *swap_header;
2381 	int nr_extents;
2382 	sector_t span;
2383 	unsigned long maxpages;
2384 	unsigned char *swap_map = NULL;
2385 	struct swap_cluster_info *cluster_info = NULL;
2386 	unsigned long *frontswap_map = NULL;
2387 	struct page *page = NULL;
2388 	struct inode *inode = NULL;
2389 
2390 	if (swap_flags & ~SWAP_FLAGS_VALID)
2391 		return -EINVAL;
2392 
2393 	if (!capable(CAP_SYS_ADMIN))
2394 		return -EPERM;
2395 
2396 	p = alloc_swap_info();
2397 	if (IS_ERR(p))
2398 		return PTR_ERR(p);
2399 
2400 	INIT_WORK(&p->discard_work, swap_discard_work);
2401 
2402 	name = getname(specialfile);
2403 	if (IS_ERR(name)) {
2404 		error = PTR_ERR(name);
2405 		name = NULL;
2406 		goto bad_swap;
2407 	}
2408 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2409 	if (IS_ERR(swap_file)) {
2410 		error = PTR_ERR(swap_file);
2411 		swap_file = NULL;
2412 		goto bad_swap;
2413 	}
2414 
2415 	p->swap_file = swap_file;
2416 	mapping = swap_file->f_mapping;
2417 	inode = mapping->host;
2418 
2419 	/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2420 	error = claim_swapfile(p, inode);
2421 	if (unlikely(error))
2422 		goto bad_swap;
2423 
2424 	/*
2425 	 * Read the swap header.
2426 	 */
2427 	if (!mapping->a_ops->readpage) {
2428 		error = -EINVAL;
2429 		goto bad_swap;
2430 	}
2431 	page = read_mapping_page(mapping, 0, swap_file);
2432 	if (IS_ERR(page)) {
2433 		error = PTR_ERR(page);
2434 		goto bad_swap;
2435 	}
2436 	swap_header = kmap(page);
2437 
2438 	maxpages = read_swap_header(p, swap_header, inode);
2439 	if (unlikely(!maxpages)) {
2440 		error = -EINVAL;
2441 		goto bad_swap;
2442 	}
2443 
2444 	/* OK, set up the swap map and apply the bad block list */
2445 	swap_map = vzalloc(maxpages);
2446 	if (!swap_map) {
2447 		error = -ENOMEM;
2448 		goto bad_swap;
2449 	}
2450 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2451 		int cpu;
2452 
2453 		p->flags |= SWP_SOLIDSTATE;
2454 		/*
2455 		 * select a random position to start with to help wear leveling
2456 		 * SSD
2457 		 */
2458 		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2459 
2460 		cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2461 			SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2462 		if (!cluster_info) {
2463 			error = -ENOMEM;
2464 			goto bad_swap;
2465 		}
2466 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2467 		if (!p->percpu_cluster) {
2468 			error = -ENOMEM;
2469 			goto bad_swap;
2470 		}
2471 		for_each_possible_cpu(cpu) {
2472 			struct percpu_cluster *cluster;
2473 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2474 			cluster_set_null(&cluster->index);
2475 		}
2476 	}
2477 
2478 	error = swap_cgroup_swapon(p->type, maxpages);
2479 	if (error)
2480 		goto bad_swap;
2481 
2482 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2483 		cluster_info, maxpages, &span);
2484 	if (unlikely(nr_extents < 0)) {
2485 		error = nr_extents;
2486 		goto bad_swap;
2487 	}
2488 	/* frontswap enabled? set up bit-per-page map for frontswap */
2489 	if (frontswap_enabled)
2490 		frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2491 
2492 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2493 		/*
2494 		 * When discard is enabled for swap with no particular
2495 		 * policy flagged, we set all swap discard flags here in
2496 		 * order to sustain backward compatibility with older
2497 		 * swapon(8) releases.
2498 		 */
2499 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2500 			     SWP_PAGE_DISCARD);
2501 
2502 		/*
2503 		 * By flagging sys_swapon, a sysadmin can tell us to
2504 		 * either do single-time area discards only, or to just
2505 		 * perform discards for released swap page-clusters.
2506 		 * Now it's time to adjust the p->flags accordingly.
2507 		 */
2508 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2509 			p->flags &= ~SWP_PAGE_DISCARD;
2510 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2511 			p->flags &= ~SWP_AREA_DISCARD;
2512 
2513 		/* issue a swapon-time discard if it's still required */
2514 		if (p->flags & SWP_AREA_DISCARD) {
2515 			int err = discard_swap(p);
2516 			if (unlikely(err))
2517 				pr_err("swapon: discard_swap(%p): %d\n",
2518 					p, err);
2519 		}
2520 	}
2521 
2522 	mutex_lock(&swapon_mutex);
2523 	prio = -1;
2524 	if (swap_flags & SWAP_FLAG_PREFER)
2525 		prio =
2526 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2527 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2528 
2529 	pr_info("Adding %uk swap on %s.  "
2530 			"Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2531 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2532 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2533 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2534 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
2535 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
2536 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2537 		(frontswap_map) ? "FS" : "");
2538 
2539 	mutex_unlock(&swapon_mutex);
2540 	atomic_inc(&proc_poll_event);
2541 	wake_up_interruptible(&proc_poll_wait);
2542 
2543 	if (S_ISREG(inode->i_mode))
2544 		inode->i_flags |= S_SWAPFILE;
2545 	error = 0;
2546 	goto out;
2547 bad_swap:
2548 	free_percpu(p->percpu_cluster);
2549 	p->percpu_cluster = NULL;
2550 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2551 		set_blocksize(p->bdev, p->old_block_size);
2552 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2553 	}
2554 	destroy_swap_extents(p);
2555 	swap_cgroup_swapoff(p->type);
2556 	spin_lock(&swap_lock);
2557 	p->swap_file = NULL;
2558 	p->flags = 0;
2559 	spin_unlock(&swap_lock);
2560 	vfree(swap_map);
2561 	vfree(cluster_info);
2562 	if (swap_file) {
2563 		if (inode && S_ISREG(inode->i_mode)) {
2564 			inode_unlock(inode);
2565 			inode = NULL;
2566 		}
2567 		filp_close(swap_file, NULL);
2568 	}
2569 out:
2570 	if (page && !IS_ERR(page)) {
2571 		kunmap(page);
2572 		page_cache_release(page);
2573 	}
2574 	if (name)
2575 		putname(name);
2576 	if (inode && S_ISREG(inode->i_mode))
2577 		inode_unlock(inode);
2578 	return error;
2579 }
2580 
2581 void si_swapinfo(struct sysinfo *val)
2582 {
2583 	unsigned int type;
2584 	unsigned long nr_to_be_unused = 0;
2585 
2586 	spin_lock(&swap_lock);
2587 	for (type = 0; type < nr_swapfiles; type++) {
2588 		struct swap_info_struct *si = swap_info[type];
2589 
2590 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2591 			nr_to_be_unused += si->inuse_pages;
2592 	}
2593 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2594 	val->totalswap = total_swap_pages + nr_to_be_unused;
2595 	spin_unlock(&swap_lock);
2596 }
2597 
2598 /*
2599  * Verify that a swap entry is valid and increment its swap map count.
2600  *
2601  * Returns error code in following case.
2602  * - success -> 0
2603  * - swp_entry is invalid -> EINVAL
2604  * - swp_entry is migration entry -> EINVAL
2605  * - swap-cache reference is requested but there is already one. -> EEXIST
2606  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2607  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2608  */
2609 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2610 {
2611 	struct swap_info_struct *p;
2612 	unsigned long offset, type;
2613 	unsigned char count;
2614 	unsigned char has_cache;
2615 	int err = -EINVAL;
2616 
2617 	if (non_swap_entry(entry))
2618 		goto out;
2619 
2620 	type = swp_type(entry);
2621 	if (type >= nr_swapfiles)
2622 		goto bad_file;
2623 	p = swap_info[type];
2624 	offset = swp_offset(entry);
2625 
2626 	spin_lock(&p->lock);
2627 	if (unlikely(offset >= p->max))
2628 		goto unlock_out;
2629 
2630 	count = p->swap_map[offset];
2631 
2632 	/*
2633 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
2634 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2635 	 */
2636 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2637 		err = -ENOENT;
2638 		goto unlock_out;
2639 	}
2640 
2641 	has_cache = count & SWAP_HAS_CACHE;
2642 	count &= ~SWAP_HAS_CACHE;
2643 	err = 0;
2644 
2645 	if (usage == SWAP_HAS_CACHE) {
2646 
2647 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2648 		if (!has_cache && count)
2649 			has_cache = SWAP_HAS_CACHE;
2650 		else if (has_cache)		/* someone else added cache */
2651 			err = -EEXIST;
2652 		else				/* no users remaining */
2653 			err = -ENOENT;
2654 
2655 	} else if (count || has_cache) {
2656 
2657 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2658 			count += usage;
2659 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2660 			err = -EINVAL;
2661 		else if (swap_count_continued(p, offset, count))
2662 			count = COUNT_CONTINUED;
2663 		else
2664 			err = -ENOMEM;
2665 	} else
2666 		err = -ENOENT;			/* unused swap entry */
2667 
2668 	p->swap_map[offset] = count | has_cache;
2669 
2670 unlock_out:
2671 	spin_unlock(&p->lock);
2672 out:
2673 	return err;
2674 
2675 bad_file:
2676 	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2677 	goto out;
2678 }
2679 
2680 /*
2681  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2682  * (in which case its reference count is never incremented).
2683  */
2684 void swap_shmem_alloc(swp_entry_t entry)
2685 {
2686 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2687 }
2688 
2689 /*
2690  * Increase reference count of swap entry by 1.
2691  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2692  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2693  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2694  * might occur if a page table entry has got corrupted.
2695  */
2696 int swap_duplicate(swp_entry_t entry)
2697 {
2698 	int err = 0;
2699 
2700 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2701 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2702 	return err;
2703 }
2704 
2705 /*
2706  * @entry: swap entry for which we allocate swap cache.
2707  *
2708  * Called when allocating swap cache for existing swap entry,
2709  * This can return error codes. Returns 0 at success.
2710  * -EBUSY means there is a swap cache.
2711  * Note: return code is different from swap_duplicate().
2712  */
2713 int swapcache_prepare(swp_entry_t entry)
2714 {
2715 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2716 }
2717 
2718 struct swap_info_struct *page_swap_info(struct page *page)
2719 {
2720 	swp_entry_t swap = { .val = page_private(page) };
2721 	BUG_ON(!PageSwapCache(page));
2722 	return swap_info[swp_type(swap)];
2723 }
2724 
2725 /*
2726  * out-of-line __page_file_ methods to avoid include hell.
2727  */
2728 struct address_space *__page_file_mapping(struct page *page)
2729 {
2730 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2731 	return page_swap_info(page)->swap_file->f_mapping;
2732 }
2733 EXPORT_SYMBOL_GPL(__page_file_mapping);
2734 
2735 pgoff_t __page_file_index(struct page *page)
2736 {
2737 	swp_entry_t swap = { .val = page_private(page) };
2738 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2739 	return swp_offset(swap);
2740 }
2741 EXPORT_SYMBOL_GPL(__page_file_index);
2742 
2743 /*
2744  * add_swap_count_continuation - called when a swap count is duplicated
2745  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2746  * page of the original vmalloc'ed swap_map, to hold the continuation count
2747  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2748  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2749  *
2750  * These continuation pages are seldom referenced: the common paths all work
2751  * on the original swap_map, only referring to a continuation page when the
2752  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2753  *
2754  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2755  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2756  * can be called after dropping locks.
2757  */
2758 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2759 {
2760 	struct swap_info_struct *si;
2761 	struct page *head;
2762 	struct page *page;
2763 	struct page *list_page;
2764 	pgoff_t offset;
2765 	unsigned char count;
2766 
2767 	/*
2768 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2769 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2770 	 */
2771 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2772 
2773 	si = swap_info_get(entry);
2774 	if (!si) {
2775 		/*
2776 		 * An acceptable race has occurred since the failing
2777 		 * __swap_duplicate(): the swap entry has been freed,
2778 		 * perhaps even the whole swap_map cleared for swapoff.
2779 		 */
2780 		goto outer;
2781 	}
2782 
2783 	offset = swp_offset(entry);
2784 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2785 
2786 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2787 		/*
2788 		 * The higher the swap count, the more likely it is that tasks
2789 		 * will race to add swap count continuation: we need to avoid
2790 		 * over-provisioning.
2791 		 */
2792 		goto out;
2793 	}
2794 
2795 	if (!page) {
2796 		spin_unlock(&si->lock);
2797 		return -ENOMEM;
2798 	}
2799 
2800 	/*
2801 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2802 	 * no architecture is using highmem pages for kernel page tables: so it
2803 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2804 	 */
2805 	head = vmalloc_to_page(si->swap_map + offset);
2806 	offset &= ~PAGE_MASK;
2807 
2808 	/*
2809 	 * Page allocation does not initialize the page's lru field,
2810 	 * but it does always reset its private field.
2811 	 */
2812 	if (!page_private(head)) {
2813 		BUG_ON(count & COUNT_CONTINUED);
2814 		INIT_LIST_HEAD(&head->lru);
2815 		set_page_private(head, SWP_CONTINUED);
2816 		si->flags |= SWP_CONTINUED;
2817 	}
2818 
2819 	list_for_each_entry(list_page, &head->lru, lru) {
2820 		unsigned char *map;
2821 
2822 		/*
2823 		 * If the previous map said no continuation, but we've found
2824 		 * a continuation page, free our allocation and use this one.
2825 		 */
2826 		if (!(count & COUNT_CONTINUED))
2827 			goto out;
2828 
2829 		map = kmap_atomic(list_page) + offset;
2830 		count = *map;
2831 		kunmap_atomic(map);
2832 
2833 		/*
2834 		 * If this continuation count now has some space in it,
2835 		 * free our allocation and use this one.
2836 		 */
2837 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2838 			goto out;
2839 	}
2840 
2841 	list_add_tail(&page->lru, &head->lru);
2842 	page = NULL;			/* now it's attached, don't free it */
2843 out:
2844 	spin_unlock(&si->lock);
2845 outer:
2846 	if (page)
2847 		__free_page(page);
2848 	return 0;
2849 }
2850 
2851 /*
2852  * swap_count_continued - when the original swap_map count is incremented
2853  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2854  * into, carry if so, or else fail until a new continuation page is allocated;
2855  * when the original swap_map count is decremented from 0 with continuation,
2856  * borrow from the continuation and report whether it still holds more.
2857  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2858  */
2859 static bool swap_count_continued(struct swap_info_struct *si,
2860 				 pgoff_t offset, unsigned char count)
2861 {
2862 	struct page *head;
2863 	struct page *page;
2864 	unsigned char *map;
2865 
2866 	head = vmalloc_to_page(si->swap_map + offset);
2867 	if (page_private(head) != SWP_CONTINUED) {
2868 		BUG_ON(count & COUNT_CONTINUED);
2869 		return false;		/* need to add count continuation */
2870 	}
2871 
2872 	offset &= ~PAGE_MASK;
2873 	page = list_entry(head->lru.next, struct page, lru);
2874 	map = kmap_atomic(page) + offset;
2875 
2876 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2877 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2878 
2879 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2880 		/*
2881 		 * Think of how you add 1 to 999
2882 		 */
2883 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2884 			kunmap_atomic(map);
2885 			page = list_entry(page->lru.next, struct page, lru);
2886 			BUG_ON(page == head);
2887 			map = kmap_atomic(page) + offset;
2888 		}
2889 		if (*map == SWAP_CONT_MAX) {
2890 			kunmap_atomic(map);
2891 			page = list_entry(page->lru.next, struct page, lru);
2892 			if (page == head)
2893 				return false;	/* add count continuation */
2894 			map = kmap_atomic(page) + offset;
2895 init_map:		*map = 0;		/* we didn't zero the page */
2896 		}
2897 		*map += 1;
2898 		kunmap_atomic(map);
2899 		page = list_entry(page->lru.prev, struct page, lru);
2900 		while (page != head) {
2901 			map = kmap_atomic(page) + offset;
2902 			*map = COUNT_CONTINUED;
2903 			kunmap_atomic(map);
2904 			page = list_entry(page->lru.prev, struct page, lru);
2905 		}
2906 		return true;			/* incremented */
2907 
2908 	} else {				/* decrementing */
2909 		/*
2910 		 * Think of how you subtract 1 from 1000
2911 		 */
2912 		BUG_ON(count != COUNT_CONTINUED);
2913 		while (*map == COUNT_CONTINUED) {
2914 			kunmap_atomic(map);
2915 			page = list_entry(page->lru.next, struct page, lru);
2916 			BUG_ON(page == head);
2917 			map = kmap_atomic(page) + offset;
2918 		}
2919 		BUG_ON(*map == 0);
2920 		*map -= 1;
2921 		if (*map == 0)
2922 			count = 0;
2923 		kunmap_atomic(map);
2924 		page = list_entry(page->lru.prev, struct page, lru);
2925 		while (page != head) {
2926 			map = kmap_atomic(page) + offset;
2927 			*map = SWAP_CONT_MAX | count;
2928 			count = COUNT_CONTINUED;
2929 			kunmap_atomic(map);
2930 			page = list_entry(page->lru.prev, struct page, lru);
2931 		}
2932 		return count == COUNT_CONTINUED;
2933 	}
2934 }
2935 
2936 /*
2937  * free_swap_count_continuations - swapoff free all the continuation pages
2938  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2939  */
2940 static void free_swap_count_continuations(struct swap_info_struct *si)
2941 {
2942 	pgoff_t offset;
2943 
2944 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2945 		struct page *head;
2946 		head = vmalloc_to_page(si->swap_map + offset);
2947 		if (page_private(head)) {
2948 			struct page *page, *next;
2949 
2950 			list_for_each_entry_safe(page, next, &head->lru, lru) {
2951 				list_del(&page->lru);
2952 				__free_page(page);
2953 			}
2954 		}
2955 	}
2956 }
2957