xref: /openbmc/linux/mm/swapfile.c (revision 565d76cb)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
33 #include <linux/poll.h>
34 
35 #include <asm/pgtable.h>
36 #include <asm/tlbflush.h>
37 #include <linux/swapops.h>
38 #include <linux/page_cgroup.h>
39 
40 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
41 				 unsigned char);
42 static void free_swap_count_continuations(struct swap_info_struct *);
43 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
44 
45 static DEFINE_SPINLOCK(swap_lock);
46 static unsigned int nr_swapfiles;
47 long nr_swap_pages;
48 long total_swap_pages;
49 static int least_priority;
50 
51 static const char Bad_file[] = "Bad swap file entry ";
52 static const char Unused_file[] = "Unused swap file entry ";
53 static const char Bad_offset[] = "Bad swap offset entry ";
54 static const char Unused_offset[] = "Unused swap offset entry ";
55 
56 static struct swap_list_t swap_list = {-1, -1};
57 
58 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
59 
60 static DEFINE_MUTEX(swapon_mutex);
61 
62 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
63 /* Activity counter to indicate that a swapon or swapoff has occurred */
64 static atomic_t proc_poll_event = ATOMIC_INIT(0);
65 
66 static inline unsigned char swap_count(unsigned char ent)
67 {
68 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
69 }
70 
71 /* returns 1 if swap entry is freed */
72 static int
73 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
74 {
75 	swp_entry_t entry = swp_entry(si->type, offset);
76 	struct page *page;
77 	int ret = 0;
78 
79 	page = find_get_page(&swapper_space, entry.val);
80 	if (!page)
81 		return 0;
82 	/*
83 	 * This function is called from scan_swap_map() and it's called
84 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
85 	 * We have to use trylock for avoiding deadlock. This is a special
86 	 * case and you should use try_to_free_swap() with explicit lock_page()
87 	 * in usual operations.
88 	 */
89 	if (trylock_page(page)) {
90 		ret = try_to_free_swap(page);
91 		unlock_page(page);
92 	}
93 	page_cache_release(page);
94 	return ret;
95 }
96 
97 /*
98  * We need this because the bdev->unplug_fn can sleep and we cannot
99  * hold swap_lock while calling the unplug_fn. And swap_lock
100  * cannot be turned into a mutex.
101  */
102 static DECLARE_RWSEM(swap_unplug_sem);
103 
104 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
105 {
106 	swp_entry_t entry;
107 
108 	down_read(&swap_unplug_sem);
109 	entry.val = page_private(page);
110 	if (PageSwapCache(page)) {
111 		struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
112 		struct backing_dev_info *bdi;
113 
114 		/*
115 		 * If the page is removed from swapcache from under us (with a
116 		 * racy try_to_unuse/swapoff) we need an additional reference
117 		 * count to avoid reading garbage from page_private(page) above.
118 		 * If the WARN_ON triggers during a swapoff it maybe the race
119 		 * condition and it's harmless. However if it triggers without
120 		 * swapoff it signals a problem.
121 		 */
122 		WARN_ON(page_count(page) <= 1);
123 
124 		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
125 		blk_run_backing_dev(bdi, page);
126 	}
127 	up_read(&swap_unplug_sem);
128 }
129 
130 /*
131  * swapon tell device that all the old swap contents can be discarded,
132  * to allow the swap device to optimize its wear-levelling.
133  */
134 static int discard_swap(struct swap_info_struct *si)
135 {
136 	struct swap_extent *se;
137 	sector_t start_block;
138 	sector_t nr_blocks;
139 	int err = 0;
140 
141 	/* Do not discard the swap header page! */
142 	se = &si->first_swap_extent;
143 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
144 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
145 	if (nr_blocks) {
146 		err = blkdev_issue_discard(si->bdev, start_block,
147 				nr_blocks, GFP_KERNEL, 0);
148 		if (err)
149 			return err;
150 		cond_resched();
151 	}
152 
153 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
154 		start_block = se->start_block << (PAGE_SHIFT - 9);
155 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
156 
157 		err = blkdev_issue_discard(si->bdev, start_block,
158 				nr_blocks, GFP_KERNEL, 0);
159 		if (err)
160 			break;
161 
162 		cond_resched();
163 	}
164 	return err;		/* That will often be -EOPNOTSUPP */
165 }
166 
167 /*
168  * swap allocation tell device that a cluster of swap can now be discarded,
169  * to allow the swap device to optimize its wear-levelling.
170  */
171 static void discard_swap_cluster(struct swap_info_struct *si,
172 				 pgoff_t start_page, pgoff_t nr_pages)
173 {
174 	struct swap_extent *se = si->curr_swap_extent;
175 	int found_extent = 0;
176 
177 	while (nr_pages) {
178 		struct list_head *lh;
179 
180 		if (se->start_page <= start_page &&
181 		    start_page < se->start_page + se->nr_pages) {
182 			pgoff_t offset = start_page - se->start_page;
183 			sector_t start_block = se->start_block + offset;
184 			sector_t nr_blocks = se->nr_pages - offset;
185 
186 			if (nr_blocks > nr_pages)
187 				nr_blocks = nr_pages;
188 			start_page += nr_blocks;
189 			nr_pages -= nr_blocks;
190 
191 			if (!found_extent++)
192 				si->curr_swap_extent = se;
193 
194 			start_block <<= PAGE_SHIFT - 9;
195 			nr_blocks <<= PAGE_SHIFT - 9;
196 			if (blkdev_issue_discard(si->bdev, start_block,
197 				    nr_blocks, GFP_NOIO, 0))
198 				break;
199 		}
200 
201 		lh = se->list.next;
202 		se = list_entry(lh, struct swap_extent, list);
203 	}
204 }
205 
206 static int wait_for_discard(void *word)
207 {
208 	schedule();
209 	return 0;
210 }
211 
212 #define SWAPFILE_CLUSTER	256
213 #define LATENCY_LIMIT		256
214 
215 static unsigned long scan_swap_map(struct swap_info_struct *si,
216 				   unsigned char usage)
217 {
218 	unsigned long offset;
219 	unsigned long scan_base;
220 	unsigned long last_in_cluster = 0;
221 	int latency_ration = LATENCY_LIMIT;
222 	int found_free_cluster = 0;
223 
224 	/*
225 	 * We try to cluster swap pages by allocating them sequentially
226 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
227 	 * way, however, we resort to first-free allocation, starting
228 	 * a new cluster.  This prevents us from scattering swap pages
229 	 * all over the entire swap partition, so that we reduce
230 	 * overall disk seek times between swap pages.  -- sct
231 	 * But we do now try to find an empty cluster.  -Andrea
232 	 * And we let swap pages go all over an SSD partition.  Hugh
233 	 */
234 
235 	si->flags += SWP_SCANNING;
236 	scan_base = offset = si->cluster_next;
237 
238 	if (unlikely(!si->cluster_nr--)) {
239 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
240 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
241 			goto checks;
242 		}
243 		if (si->flags & SWP_DISCARDABLE) {
244 			/*
245 			 * Start range check on racing allocations, in case
246 			 * they overlap the cluster we eventually decide on
247 			 * (we scan without swap_lock to allow preemption).
248 			 * It's hardly conceivable that cluster_nr could be
249 			 * wrapped during our scan, but don't depend on it.
250 			 */
251 			if (si->lowest_alloc)
252 				goto checks;
253 			si->lowest_alloc = si->max;
254 			si->highest_alloc = 0;
255 		}
256 		spin_unlock(&swap_lock);
257 
258 		/*
259 		 * If seek is expensive, start searching for new cluster from
260 		 * start of partition, to minimize the span of allocated swap.
261 		 * But if seek is cheap, search from our current position, so
262 		 * that swap is allocated from all over the partition: if the
263 		 * Flash Translation Layer only remaps within limited zones,
264 		 * we don't want to wear out the first zone too quickly.
265 		 */
266 		if (!(si->flags & SWP_SOLIDSTATE))
267 			scan_base = offset = si->lowest_bit;
268 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
269 
270 		/* Locate the first empty (unaligned) cluster */
271 		for (; last_in_cluster <= si->highest_bit; offset++) {
272 			if (si->swap_map[offset])
273 				last_in_cluster = offset + SWAPFILE_CLUSTER;
274 			else if (offset == last_in_cluster) {
275 				spin_lock(&swap_lock);
276 				offset -= SWAPFILE_CLUSTER - 1;
277 				si->cluster_next = offset;
278 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
279 				found_free_cluster = 1;
280 				goto checks;
281 			}
282 			if (unlikely(--latency_ration < 0)) {
283 				cond_resched();
284 				latency_ration = LATENCY_LIMIT;
285 			}
286 		}
287 
288 		offset = si->lowest_bit;
289 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
290 
291 		/* Locate the first empty (unaligned) cluster */
292 		for (; last_in_cluster < scan_base; offset++) {
293 			if (si->swap_map[offset])
294 				last_in_cluster = offset + SWAPFILE_CLUSTER;
295 			else if (offset == last_in_cluster) {
296 				spin_lock(&swap_lock);
297 				offset -= SWAPFILE_CLUSTER - 1;
298 				si->cluster_next = offset;
299 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
300 				found_free_cluster = 1;
301 				goto checks;
302 			}
303 			if (unlikely(--latency_ration < 0)) {
304 				cond_resched();
305 				latency_ration = LATENCY_LIMIT;
306 			}
307 		}
308 
309 		offset = scan_base;
310 		spin_lock(&swap_lock);
311 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
312 		si->lowest_alloc = 0;
313 	}
314 
315 checks:
316 	if (!(si->flags & SWP_WRITEOK))
317 		goto no_page;
318 	if (!si->highest_bit)
319 		goto no_page;
320 	if (offset > si->highest_bit)
321 		scan_base = offset = si->lowest_bit;
322 
323 	/* reuse swap entry of cache-only swap if not busy. */
324 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
325 		int swap_was_freed;
326 		spin_unlock(&swap_lock);
327 		swap_was_freed = __try_to_reclaim_swap(si, offset);
328 		spin_lock(&swap_lock);
329 		/* entry was freed successfully, try to use this again */
330 		if (swap_was_freed)
331 			goto checks;
332 		goto scan; /* check next one */
333 	}
334 
335 	if (si->swap_map[offset])
336 		goto scan;
337 
338 	if (offset == si->lowest_bit)
339 		si->lowest_bit++;
340 	if (offset == si->highest_bit)
341 		si->highest_bit--;
342 	si->inuse_pages++;
343 	if (si->inuse_pages == si->pages) {
344 		si->lowest_bit = si->max;
345 		si->highest_bit = 0;
346 	}
347 	si->swap_map[offset] = usage;
348 	si->cluster_next = offset + 1;
349 	si->flags -= SWP_SCANNING;
350 
351 	if (si->lowest_alloc) {
352 		/*
353 		 * Only set when SWP_DISCARDABLE, and there's a scan
354 		 * for a free cluster in progress or just completed.
355 		 */
356 		if (found_free_cluster) {
357 			/*
358 			 * To optimize wear-levelling, discard the
359 			 * old data of the cluster, taking care not to
360 			 * discard any of its pages that have already
361 			 * been allocated by racing tasks (offset has
362 			 * already stepped over any at the beginning).
363 			 */
364 			if (offset < si->highest_alloc &&
365 			    si->lowest_alloc <= last_in_cluster)
366 				last_in_cluster = si->lowest_alloc - 1;
367 			si->flags |= SWP_DISCARDING;
368 			spin_unlock(&swap_lock);
369 
370 			if (offset < last_in_cluster)
371 				discard_swap_cluster(si, offset,
372 					last_in_cluster - offset + 1);
373 
374 			spin_lock(&swap_lock);
375 			si->lowest_alloc = 0;
376 			si->flags &= ~SWP_DISCARDING;
377 
378 			smp_mb();	/* wake_up_bit advises this */
379 			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
380 
381 		} else if (si->flags & SWP_DISCARDING) {
382 			/*
383 			 * Delay using pages allocated by racing tasks
384 			 * until the whole discard has been issued. We
385 			 * could defer that delay until swap_writepage,
386 			 * but it's easier to keep this self-contained.
387 			 */
388 			spin_unlock(&swap_lock);
389 			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
390 				wait_for_discard, TASK_UNINTERRUPTIBLE);
391 			spin_lock(&swap_lock);
392 		} else {
393 			/*
394 			 * Note pages allocated by racing tasks while
395 			 * scan for a free cluster is in progress, so
396 			 * that its final discard can exclude them.
397 			 */
398 			if (offset < si->lowest_alloc)
399 				si->lowest_alloc = offset;
400 			if (offset > si->highest_alloc)
401 				si->highest_alloc = offset;
402 		}
403 	}
404 	return offset;
405 
406 scan:
407 	spin_unlock(&swap_lock);
408 	while (++offset <= si->highest_bit) {
409 		if (!si->swap_map[offset]) {
410 			spin_lock(&swap_lock);
411 			goto checks;
412 		}
413 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
414 			spin_lock(&swap_lock);
415 			goto checks;
416 		}
417 		if (unlikely(--latency_ration < 0)) {
418 			cond_resched();
419 			latency_ration = LATENCY_LIMIT;
420 		}
421 	}
422 	offset = si->lowest_bit;
423 	while (++offset < scan_base) {
424 		if (!si->swap_map[offset]) {
425 			spin_lock(&swap_lock);
426 			goto checks;
427 		}
428 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
429 			spin_lock(&swap_lock);
430 			goto checks;
431 		}
432 		if (unlikely(--latency_ration < 0)) {
433 			cond_resched();
434 			latency_ration = LATENCY_LIMIT;
435 		}
436 	}
437 	spin_lock(&swap_lock);
438 
439 no_page:
440 	si->flags -= SWP_SCANNING;
441 	return 0;
442 }
443 
444 swp_entry_t get_swap_page(void)
445 {
446 	struct swap_info_struct *si;
447 	pgoff_t offset;
448 	int type, next;
449 	int wrapped = 0;
450 
451 	spin_lock(&swap_lock);
452 	if (nr_swap_pages <= 0)
453 		goto noswap;
454 	nr_swap_pages--;
455 
456 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
457 		si = swap_info[type];
458 		next = si->next;
459 		if (next < 0 ||
460 		    (!wrapped && si->prio != swap_info[next]->prio)) {
461 			next = swap_list.head;
462 			wrapped++;
463 		}
464 
465 		if (!si->highest_bit)
466 			continue;
467 		if (!(si->flags & SWP_WRITEOK))
468 			continue;
469 
470 		swap_list.next = next;
471 		/* This is called for allocating swap entry for cache */
472 		offset = scan_swap_map(si, SWAP_HAS_CACHE);
473 		if (offset) {
474 			spin_unlock(&swap_lock);
475 			return swp_entry(type, offset);
476 		}
477 		next = swap_list.next;
478 	}
479 
480 	nr_swap_pages++;
481 noswap:
482 	spin_unlock(&swap_lock);
483 	return (swp_entry_t) {0};
484 }
485 
486 /* The only caller of this function is now susupend routine */
487 swp_entry_t get_swap_page_of_type(int type)
488 {
489 	struct swap_info_struct *si;
490 	pgoff_t offset;
491 
492 	spin_lock(&swap_lock);
493 	si = swap_info[type];
494 	if (si && (si->flags & SWP_WRITEOK)) {
495 		nr_swap_pages--;
496 		/* This is called for allocating swap entry, not cache */
497 		offset = scan_swap_map(si, 1);
498 		if (offset) {
499 			spin_unlock(&swap_lock);
500 			return swp_entry(type, offset);
501 		}
502 		nr_swap_pages++;
503 	}
504 	spin_unlock(&swap_lock);
505 	return (swp_entry_t) {0};
506 }
507 
508 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
509 {
510 	struct swap_info_struct *p;
511 	unsigned long offset, type;
512 
513 	if (!entry.val)
514 		goto out;
515 	type = swp_type(entry);
516 	if (type >= nr_swapfiles)
517 		goto bad_nofile;
518 	p = swap_info[type];
519 	if (!(p->flags & SWP_USED))
520 		goto bad_device;
521 	offset = swp_offset(entry);
522 	if (offset >= p->max)
523 		goto bad_offset;
524 	if (!p->swap_map[offset])
525 		goto bad_free;
526 	spin_lock(&swap_lock);
527 	return p;
528 
529 bad_free:
530 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
531 	goto out;
532 bad_offset:
533 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
534 	goto out;
535 bad_device:
536 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
537 	goto out;
538 bad_nofile:
539 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
540 out:
541 	return NULL;
542 }
543 
544 static unsigned char swap_entry_free(struct swap_info_struct *p,
545 				     swp_entry_t entry, unsigned char usage)
546 {
547 	unsigned long offset = swp_offset(entry);
548 	unsigned char count;
549 	unsigned char has_cache;
550 
551 	count = p->swap_map[offset];
552 	has_cache = count & SWAP_HAS_CACHE;
553 	count &= ~SWAP_HAS_CACHE;
554 
555 	if (usage == SWAP_HAS_CACHE) {
556 		VM_BUG_ON(!has_cache);
557 		has_cache = 0;
558 	} else if (count == SWAP_MAP_SHMEM) {
559 		/*
560 		 * Or we could insist on shmem.c using a special
561 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
562 		 */
563 		count = 0;
564 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
565 		if (count == COUNT_CONTINUED) {
566 			if (swap_count_continued(p, offset, count))
567 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
568 			else
569 				count = SWAP_MAP_MAX;
570 		} else
571 			count--;
572 	}
573 
574 	if (!count)
575 		mem_cgroup_uncharge_swap(entry);
576 
577 	usage = count | has_cache;
578 	p->swap_map[offset] = usage;
579 
580 	/* free if no reference */
581 	if (!usage) {
582 		struct gendisk *disk = p->bdev->bd_disk;
583 		if (offset < p->lowest_bit)
584 			p->lowest_bit = offset;
585 		if (offset > p->highest_bit)
586 			p->highest_bit = offset;
587 		if (swap_list.next >= 0 &&
588 		    p->prio > swap_info[swap_list.next]->prio)
589 			swap_list.next = p->type;
590 		nr_swap_pages++;
591 		p->inuse_pages--;
592 		if ((p->flags & SWP_BLKDEV) &&
593 				disk->fops->swap_slot_free_notify)
594 			disk->fops->swap_slot_free_notify(p->bdev, offset);
595 	}
596 
597 	return usage;
598 }
599 
600 /*
601  * Caller has made sure that the swapdevice corresponding to entry
602  * is still around or has not been recycled.
603  */
604 void swap_free(swp_entry_t entry)
605 {
606 	struct swap_info_struct *p;
607 
608 	p = swap_info_get(entry);
609 	if (p) {
610 		swap_entry_free(p, entry, 1);
611 		spin_unlock(&swap_lock);
612 	}
613 }
614 
615 /*
616  * Called after dropping swapcache to decrease refcnt to swap entries.
617  */
618 void swapcache_free(swp_entry_t entry, struct page *page)
619 {
620 	struct swap_info_struct *p;
621 	unsigned char count;
622 
623 	p = swap_info_get(entry);
624 	if (p) {
625 		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
626 		if (page)
627 			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
628 		spin_unlock(&swap_lock);
629 	}
630 }
631 
632 /*
633  * How many references to page are currently swapped out?
634  * This does not give an exact answer when swap count is continued,
635  * but does include the high COUNT_CONTINUED flag to allow for that.
636  */
637 static inline int page_swapcount(struct page *page)
638 {
639 	int count = 0;
640 	struct swap_info_struct *p;
641 	swp_entry_t entry;
642 
643 	entry.val = page_private(page);
644 	p = swap_info_get(entry);
645 	if (p) {
646 		count = swap_count(p->swap_map[swp_offset(entry)]);
647 		spin_unlock(&swap_lock);
648 	}
649 	return count;
650 }
651 
652 /*
653  * We can write to an anon page without COW if there are no other references
654  * to it.  And as a side-effect, free up its swap: because the old content
655  * on disk will never be read, and seeking back there to write new content
656  * later would only waste time away from clustering.
657  */
658 int reuse_swap_page(struct page *page)
659 {
660 	int count;
661 
662 	VM_BUG_ON(!PageLocked(page));
663 	if (unlikely(PageKsm(page)))
664 		return 0;
665 	count = page_mapcount(page);
666 	if (count <= 1 && PageSwapCache(page)) {
667 		count += page_swapcount(page);
668 		if (count == 1 && !PageWriteback(page)) {
669 			delete_from_swap_cache(page);
670 			SetPageDirty(page);
671 		}
672 	}
673 	return count <= 1;
674 }
675 
676 /*
677  * If swap is getting full, or if there are no more mappings of this page,
678  * then try_to_free_swap is called to free its swap space.
679  */
680 int try_to_free_swap(struct page *page)
681 {
682 	VM_BUG_ON(!PageLocked(page));
683 
684 	if (!PageSwapCache(page))
685 		return 0;
686 	if (PageWriteback(page))
687 		return 0;
688 	if (page_swapcount(page))
689 		return 0;
690 
691 	/*
692 	 * Once hibernation has begun to create its image of memory,
693 	 * there's a danger that one of the calls to try_to_free_swap()
694 	 * - most probably a call from __try_to_reclaim_swap() while
695 	 * hibernation is allocating its own swap pages for the image,
696 	 * but conceivably even a call from memory reclaim - will free
697 	 * the swap from a page which has already been recorded in the
698 	 * image as a clean swapcache page, and then reuse its swap for
699 	 * another page of the image.  On waking from hibernation, the
700 	 * original page might be freed under memory pressure, then
701 	 * later read back in from swap, now with the wrong data.
702 	 *
703 	 * Hibernation clears bits from gfp_allowed_mask to prevent
704 	 * memory reclaim from writing to disk, so check that here.
705 	 */
706 	if (!(gfp_allowed_mask & __GFP_IO))
707 		return 0;
708 
709 	delete_from_swap_cache(page);
710 	SetPageDirty(page);
711 	return 1;
712 }
713 
714 /*
715  * Free the swap entry like above, but also try to
716  * free the page cache entry if it is the last user.
717  */
718 int free_swap_and_cache(swp_entry_t entry)
719 {
720 	struct swap_info_struct *p;
721 	struct page *page = NULL;
722 
723 	if (non_swap_entry(entry))
724 		return 1;
725 
726 	p = swap_info_get(entry);
727 	if (p) {
728 		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
729 			page = find_get_page(&swapper_space, entry.val);
730 			if (page && !trylock_page(page)) {
731 				page_cache_release(page);
732 				page = NULL;
733 			}
734 		}
735 		spin_unlock(&swap_lock);
736 	}
737 	if (page) {
738 		/*
739 		 * Not mapped elsewhere, or swap space full? Free it!
740 		 * Also recheck PageSwapCache now page is locked (above).
741 		 */
742 		if (PageSwapCache(page) && !PageWriteback(page) &&
743 				(!page_mapped(page) || vm_swap_full())) {
744 			delete_from_swap_cache(page);
745 			SetPageDirty(page);
746 		}
747 		unlock_page(page);
748 		page_cache_release(page);
749 	}
750 	return p != NULL;
751 }
752 
753 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
754 /**
755  * mem_cgroup_count_swap_user - count the user of a swap entry
756  * @ent: the swap entry to be checked
757  * @pagep: the pointer for the swap cache page of the entry to be stored
758  *
759  * Returns the number of the user of the swap entry. The number is valid only
760  * for swaps of anonymous pages.
761  * If the entry is found on swap cache, the page is stored to pagep with
762  * refcount of it being incremented.
763  */
764 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
765 {
766 	struct page *page;
767 	struct swap_info_struct *p;
768 	int count = 0;
769 
770 	page = find_get_page(&swapper_space, ent.val);
771 	if (page)
772 		count += page_mapcount(page);
773 	p = swap_info_get(ent);
774 	if (p) {
775 		count += swap_count(p->swap_map[swp_offset(ent)]);
776 		spin_unlock(&swap_lock);
777 	}
778 
779 	*pagep = page;
780 	return count;
781 }
782 #endif
783 
784 #ifdef CONFIG_HIBERNATION
785 /*
786  * Find the swap type that corresponds to given device (if any).
787  *
788  * @offset - number of the PAGE_SIZE-sized block of the device, starting
789  * from 0, in which the swap header is expected to be located.
790  *
791  * This is needed for the suspend to disk (aka swsusp).
792  */
793 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
794 {
795 	struct block_device *bdev = NULL;
796 	int type;
797 
798 	if (device)
799 		bdev = bdget(device);
800 
801 	spin_lock(&swap_lock);
802 	for (type = 0; type < nr_swapfiles; type++) {
803 		struct swap_info_struct *sis = swap_info[type];
804 
805 		if (!(sis->flags & SWP_WRITEOK))
806 			continue;
807 
808 		if (!bdev) {
809 			if (bdev_p)
810 				*bdev_p = bdgrab(sis->bdev);
811 
812 			spin_unlock(&swap_lock);
813 			return type;
814 		}
815 		if (bdev == sis->bdev) {
816 			struct swap_extent *se = &sis->first_swap_extent;
817 
818 			if (se->start_block == offset) {
819 				if (bdev_p)
820 					*bdev_p = bdgrab(sis->bdev);
821 
822 				spin_unlock(&swap_lock);
823 				bdput(bdev);
824 				return type;
825 			}
826 		}
827 	}
828 	spin_unlock(&swap_lock);
829 	if (bdev)
830 		bdput(bdev);
831 
832 	return -ENODEV;
833 }
834 
835 /*
836  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
837  * corresponding to given index in swap_info (swap type).
838  */
839 sector_t swapdev_block(int type, pgoff_t offset)
840 {
841 	struct block_device *bdev;
842 
843 	if ((unsigned int)type >= nr_swapfiles)
844 		return 0;
845 	if (!(swap_info[type]->flags & SWP_WRITEOK))
846 		return 0;
847 	return map_swap_entry(swp_entry(type, offset), &bdev);
848 }
849 
850 /*
851  * Return either the total number of swap pages of given type, or the number
852  * of free pages of that type (depending on @free)
853  *
854  * This is needed for software suspend
855  */
856 unsigned int count_swap_pages(int type, int free)
857 {
858 	unsigned int n = 0;
859 
860 	spin_lock(&swap_lock);
861 	if ((unsigned int)type < nr_swapfiles) {
862 		struct swap_info_struct *sis = swap_info[type];
863 
864 		if (sis->flags & SWP_WRITEOK) {
865 			n = sis->pages;
866 			if (free)
867 				n -= sis->inuse_pages;
868 		}
869 	}
870 	spin_unlock(&swap_lock);
871 	return n;
872 }
873 #endif /* CONFIG_HIBERNATION */
874 
875 /*
876  * No need to decide whether this PTE shares the swap entry with others,
877  * just let do_wp_page work it out if a write is requested later - to
878  * force COW, vm_page_prot omits write permission from any private vma.
879  */
880 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
881 		unsigned long addr, swp_entry_t entry, struct page *page)
882 {
883 	struct mem_cgroup *ptr = NULL;
884 	spinlock_t *ptl;
885 	pte_t *pte;
886 	int ret = 1;
887 
888 	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
889 		ret = -ENOMEM;
890 		goto out_nolock;
891 	}
892 
893 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
894 	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
895 		if (ret > 0)
896 			mem_cgroup_cancel_charge_swapin(ptr);
897 		ret = 0;
898 		goto out;
899 	}
900 
901 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
902 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
903 	get_page(page);
904 	set_pte_at(vma->vm_mm, addr, pte,
905 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
906 	page_add_anon_rmap(page, vma, addr);
907 	mem_cgroup_commit_charge_swapin(page, ptr);
908 	swap_free(entry);
909 	/*
910 	 * Move the page to the active list so it is not
911 	 * immediately swapped out again after swapon.
912 	 */
913 	activate_page(page);
914 out:
915 	pte_unmap_unlock(pte, ptl);
916 out_nolock:
917 	return ret;
918 }
919 
920 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
921 				unsigned long addr, unsigned long end,
922 				swp_entry_t entry, struct page *page)
923 {
924 	pte_t swp_pte = swp_entry_to_pte(entry);
925 	pte_t *pte;
926 	int ret = 0;
927 
928 	/*
929 	 * We don't actually need pte lock while scanning for swp_pte: since
930 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
931 	 * page table while we're scanning; though it could get zapped, and on
932 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
933 	 * of unmatched parts which look like swp_pte, so unuse_pte must
934 	 * recheck under pte lock.  Scanning without pte lock lets it be
935 	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
936 	 */
937 	pte = pte_offset_map(pmd, addr);
938 	do {
939 		/*
940 		 * swapoff spends a _lot_ of time in this loop!
941 		 * Test inline before going to call unuse_pte.
942 		 */
943 		if (unlikely(pte_same(*pte, swp_pte))) {
944 			pte_unmap(pte);
945 			ret = unuse_pte(vma, pmd, addr, entry, page);
946 			if (ret)
947 				goto out;
948 			pte = pte_offset_map(pmd, addr);
949 		}
950 	} while (pte++, addr += PAGE_SIZE, addr != end);
951 	pte_unmap(pte - 1);
952 out:
953 	return ret;
954 }
955 
956 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
957 				unsigned long addr, unsigned long end,
958 				swp_entry_t entry, struct page *page)
959 {
960 	pmd_t *pmd;
961 	unsigned long next;
962 	int ret;
963 
964 	pmd = pmd_offset(pud, addr);
965 	do {
966 		next = pmd_addr_end(addr, end);
967 		if (unlikely(pmd_trans_huge(*pmd)))
968 			continue;
969 		if (pmd_none_or_clear_bad(pmd))
970 			continue;
971 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
972 		if (ret)
973 			return ret;
974 	} while (pmd++, addr = next, addr != end);
975 	return 0;
976 }
977 
978 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
979 				unsigned long addr, unsigned long end,
980 				swp_entry_t entry, struct page *page)
981 {
982 	pud_t *pud;
983 	unsigned long next;
984 	int ret;
985 
986 	pud = pud_offset(pgd, addr);
987 	do {
988 		next = pud_addr_end(addr, end);
989 		if (pud_none_or_clear_bad(pud))
990 			continue;
991 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
992 		if (ret)
993 			return ret;
994 	} while (pud++, addr = next, addr != end);
995 	return 0;
996 }
997 
998 static int unuse_vma(struct vm_area_struct *vma,
999 				swp_entry_t entry, struct page *page)
1000 {
1001 	pgd_t *pgd;
1002 	unsigned long addr, end, next;
1003 	int ret;
1004 
1005 	if (page_anon_vma(page)) {
1006 		addr = page_address_in_vma(page, vma);
1007 		if (addr == -EFAULT)
1008 			return 0;
1009 		else
1010 			end = addr + PAGE_SIZE;
1011 	} else {
1012 		addr = vma->vm_start;
1013 		end = vma->vm_end;
1014 	}
1015 
1016 	pgd = pgd_offset(vma->vm_mm, addr);
1017 	do {
1018 		next = pgd_addr_end(addr, end);
1019 		if (pgd_none_or_clear_bad(pgd))
1020 			continue;
1021 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1022 		if (ret)
1023 			return ret;
1024 	} while (pgd++, addr = next, addr != end);
1025 	return 0;
1026 }
1027 
1028 static int unuse_mm(struct mm_struct *mm,
1029 				swp_entry_t entry, struct page *page)
1030 {
1031 	struct vm_area_struct *vma;
1032 	int ret = 0;
1033 
1034 	if (!down_read_trylock(&mm->mmap_sem)) {
1035 		/*
1036 		 * Activate page so shrink_inactive_list is unlikely to unmap
1037 		 * its ptes while lock is dropped, so swapoff can make progress.
1038 		 */
1039 		activate_page(page);
1040 		unlock_page(page);
1041 		down_read(&mm->mmap_sem);
1042 		lock_page(page);
1043 	}
1044 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1045 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1046 			break;
1047 	}
1048 	up_read(&mm->mmap_sem);
1049 	return (ret < 0)? ret: 0;
1050 }
1051 
1052 /*
1053  * Scan swap_map from current position to next entry still in use.
1054  * Recycle to start on reaching the end, returning 0 when empty.
1055  */
1056 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1057 					unsigned int prev)
1058 {
1059 	unsigned int max = si->max;
1060 	unsigned int i = prev;
1061 	unsigned char count;
1062 
1063 	/*
1064 	 * No need for swap_lock here: we're just looking
1065 	 * for whether an entry is in use, not modifying it; false
1066 	 * hits are okay, and sys_swapoff() has already prevented new
1067 	 * allocations from this area (while holding swap_lock).
1068 	 */
1069 	for (;;) {
1070 		if (++i >= max) {
1071 			if (!prev) {
1072 				i = 0;
1073 				break;
1074 			}
1075 			/*
1076 			 * No entries in use at top of swap_map,
1077 			 * loop back to start and recheck there.
1078 			 */
1079 			max = prev + 1;
1080 			prev = 0;
1081 			i = 1;
1082 		}
1083 		count = si->swap_map[i];
1084 		if (count && swap_count(count) != SWAP_MAP_BAD)
1085 			break;
1086 	}
1087 	return i;
1088 }
1089 
1090 /*
1091  * We completely avoid races by reading each swap page in advance,
1092  * and then search for the process using it.  All the necessary
1093  * page table adjustments can then be made atomically.
1094  */
1095 static int try_to_unuse(unsigned int type)
1096 {
1097 	struct swap_info_struct *si = swap_info[type];
1098 	struct mm_struct *start_mm;
1099 	unsigned char *swap_map;
1100 	unsigned char swcount;
1101 	struct page *page;
1102 	swp_entry_t entry;
1103 	unsigned int i = 0;
1104 	int retval = 0;
1105 
1106 	/*
1107 	 * When searching mms for an entry, a good strategy is to
1108 	 * start at the first mm we freed the previous entry from
1109 	 * (though actually we don't notice whether we or coincidence
1110 	 * freed the entry).  Initialize this start_mm with a hold.
1111 	 *
1112 	 * A simpler strategy would be to start at the last mm we
1113 	 * freed the previous entry from; but that would take less
1114 	 * advantage of mmlist ordering, which clusters forked mms
1115 	 * together, child after parent.  If we race with dup_mmap(), we
1116 	 * prefer to resolve parent before child, lest we miss entries
1117 	 * duplicated after we scanned child: using last mm would invert
1118 	 * that.
1119 	 */
1120 	start_mm = &init_mm;
1121 	atomic_inc(&init_mm.mm_users);
1122 
1123 	/*
1124 	 * Keep on scanning until all entries have gone.  Usually,
1125 	 * one pass through swap_map is enough, but not necessarily:
1126 	 * there are races when an instance of an entry might be missed.
1127 	 */
1128 	while ((i = find_next_to_unuse(si, i)) != 0) {
1129 		if (signal_pending(current)) {
1130 			retval = -EINTR;
1131 			break;
1132 		}
1133 
1134 		/*
1135 		 * Get a page for the entry, using the existing swap
1136 		 * cache page if there is one.  Otherwise, get a clean
1137 		 * page and read the swap into it.
1138 		 */
1139 		swap_map = &si->swap_map[i];
1140 		entry = swp_entry(type, i);
1141 		page = read_swap_cache_async(entry,
1142 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1143 		if (!page) {
1144 			/*
1145 			 * Either swap_duplicate() failed because entry
1146 			 * has been freed independently, and will not be
1147 			 * reused since sys_swapoff() already disabled
1148 			 * allocation from here, or alloc_page() failed.
1149 			 */
1150 			if (!*swap_map)
1151 				continue;
1152 			retval = -ENOMEM;
1153 			break;
1154 		}
1155 
1156 		/*
1157 		 * Don't hold on to start_mm if it looks like exiting.
1158 		 */
1159 		if (atomic_read(&start_mm->mm_users) == 1) {
1160 			mmput(start_mm);
1161 			start_mm = &init_mm;
1162 			atomic_inc(&init_mm.mm_users);
1163 		}
1164 
1165 		/*
1166 		 * Wait for and lock page.  When do_swap_page races with
1167 		 * try_to_unuse, do_swap_page can handle the fault much
1168 		 * faster than try_to_unuse can locate the entry.  This
1169 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1170 		 * defer to do_swap_page in such a case - in some tests,
1171 		 * do_swap_page and try_to_unuse repeatedly compete.
1172 		 */
1173 		wait_on_page_locked(page);
1174 		wait_on_page_writeback(page);
1175 		lock_page(page);
1176 		wait_on_page_writeback(page);
1177 
1178 		/*
1179 		 * Remove all references to entry.
1180 		 */
1181 		swcount = *swap_map;
1182 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1183 			retval = shmem_unuse(entry, page);
1184 			/* page has already been unlocked and released */
1185 			if (retval < 0)
1186 				break;
1187 			continue;
1188 		}
1189 		if (swap_count(swcount) && start_mm != &init_mm)
1190 			retval = unuse_mm(start_mm, entry, page);
1191 
1192 		if (swap_count(*swap_map)) {
1193 			int set_start_mm = (*swap_map >= swcount);
1194 			struct list_head *p = &start_mm->mmlist;
1195 			struct mm_struct *new_start_mm = start_mm;
1196 			struct mm_struct *prev_mm = start_mm;
1197 			struct mm_struct *mm;
1198 
1199 			atomic_inc(&new_start_mm->mm_users);
1200 			atomic_inc(&prev_mm->mm_users);
1201 			spin_lock(&mmlist_lock);
1202 			while (swap_count(*swap_map) && !retval &&
1203 					(p = p->next) != &start_mm->mmlist) {
1204 				mm = list_entry(p, struct mm_struct, mmlist);
1205 				if (!atomic_inc_not_zero(&mm->mm_users))
1206 					continue;
1207 				spin_unlock(&mmlist_lock);
1208 				mmput(prev_mm);
1209 				prev_mm = mm;
1210 
1211 				cond_resched();
1212 
1213 				swcount = *swap_map;
1214 				if (!swap_count(swcount)) /* any usage ? */
1215 					;
1216 				else if (mm == &init_mm)
1217 					set_start_mm = 1;
1218 				else
1219 					retval = unuse_mm(mm, entry, page);
1220 
1221 				if (set_start_mm && *swap_map < swcount) {
1222 					mmput(new_start_mm);
1223 					atomic_inc(&mm->mm_users);
1224 					new_start_mm = mm;
1225 					set_start_mm = 0;
1226 				}
1227 				spin_lock(&mmlist_lock);
1228 			}
1229 			spin_unlock(&mmlist_lock);
1230 			mmput(prev_mm);
1231 			mmput(start_mm);
1232 			start_mm = new_start_mm;
1233 		}
1234 		if (retval) {
1235 			unlock_page(page);
1236 			page_cache_release(page);
1237 			break;
1238 		}
1239 
1240 		/*
1241 		 * If a reference remains (rare), we would like to leave
1242 		 * the page in the swap cache; but try_to_unmap could
1243 		 * then re-duplicate the entry once we drop page lock,
1244 		 * so we might loop indefinitely; also, that page could
1245 		 * not be swapped out to other storage meanwhile.  So:
1246 		 * delete from cache even if there's another reference,
1247 		 * after ensuring that the data has been saved to disk -
1248 		 * since if the reference remains (rarer), it will be
1249 		 * read from disk into another page.  Splitting into two
1250 		 * pages would be incorrect if swap supported "shared
1251 		 * private" pages, but they are handled by tmpfs files.
1252 		 *
1253 		 * Given how unuse_vma() targets one particular offset
1254 		 * in an anon_vma, once the anon_vma has been determined,
1255 		 * this splitting happens to be just what is needed to
1256 		 * handle where KSM pages have been swapped out: re-reading
1257 		 * is unnecessarily slow, but we can fix that later on.
1258 		 */
1259 		if (swap_count(*swap_map) &&
1260 		     PageDirty(page) && PageSwapCache(page)) {
1261 			struct writeback_control wbc = {
1262 				.sync_mode = WB_SYNC_NONE,
1263 			};
1264 
1265 			swap_writepage(page, &wbc);
1266 			lock_page(page);
1267 			wait_on_page_writeback(page);
1268 		}
1269 
1270 		/*
1271 		 * It is conceivable that a racing task removed this page from
1272 		 * swap cache just before we acquired the page lock at the top,
1273 		 * or while we dropped it in unuse_mm().  The page might even
1274 		 * be back in swap cache on another swap area: that we must not
1275 		 * delete, since it may not have been written out to swap yet.
1276 		 */
1277 		if (PageSwapCache(page) &&
1278 		    likely(page_private(page) == entry.val))
1279 			delete_from_swap_cache(page);
1280 
1281 		/*
1282 		 * So we could skip searching mms once swap count went
1283 		 * to 1, we did not mark any present ptes as dirty: must
1284 		 * mark page dirty so shrink_page_list will preserve it.
1285 		 */
1286 		SetPageDirty(page);
1287 		unlock_page(page);
1288 		page_cache_release(page);
1289 
1290 		/*
1291 		 * Make sure that we aren't completely killing
1292 		 * interactive performance.
1293 		 */
1294 		cond_resched();
1295 	}
1296 
1297 	mmput(start_mm);
1298 	return retval;
1299 }
1300 
1301 /*
1302  * After a successful try_to_unuse, if no swap is now in use, we know
1303  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1304  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1305  * added to the mmlist just after page_duplicate - before would be racy.
1306  */
1307 static void drain_mmlist(void)
1308 {
1309 	struct list_head *p, *next;
1310 	unsigned int type;
1311 
1312 	for (type = 0; type < nr_swapfiles; type++)
1313 		if (swap_info[type]->inuse_pages)
1314 			return;
1315 	spin_lock(&mmlist_lock);
1316 	list_for_each_safe(p, next, &init_mm.mmlist)
1317 		list_del_init(p);
1318 	spin_unlock(&mmlist_lock);
1319 }
1320 
1321 /*
1322  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1323  * corresponds to page offset for the specified swap entry.
1324  * Note that the type of this function is sector_t, but it returns page offset
1325  * into the bdev, not sector offset.
1326  */
1327 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1328 {
1329 	struct swap_info_struct *sis;
1330 	struct swap_extent *start_se;
1331 	struct swap_extent *se;
1332 	pgoff_t offset;
1333 
1334 	sis = swap_info[swp_type(entry)];
1335 	*bdev = sis->bdev;
1336 
1337 	offset = swp_offset(entry);
1338 	start_se = sis->curr_swap_extent;
1339 	se = start_se;
1340 
1341 	for ( ; ; ) {
1342 		struct list_head *lh;
1343 
1344 		if (se->start_page <= offset &&
1345 				offset < (se->start_page + se->nr_pages)) {
1346 			return se->start_block + (offset - se->start_page);
1347 		}
1348 		lh = se->list.next;
1349 		se = list_entry(lh, struct swap_extent, list);
1350 		sis->curr_swap_extent = se;
1351 		BUG_ON(se == start_se);		/* It *must* be present */
1352 	}
1353 }
1354 
1355 /*
1356  * Returns the page offset into bdev for the specified page's swap entry.
1357  */
1358 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1359 {
1360 	swp_entry_t entry;
1361 	entry.val = page_private(page);
1362 	return map_swap_entry(entry, bdev);
1363 }
1364 
1365 /*
1366  * Free all of a swapdev's extent information
1367  */
1368 static void destroy_swap_extents(struct swap_info_struct *sis)
1369 {
1370 	while (!list_empty(&sis->first_swap_extent.list)) {
1371 		struct swap_extent *se;
1372 
1373 		se = list_entry(sis->first_swap_extent.list.next,
1374 				struct swap_extent, list);
1375 		list_del(&se->list);
1376 		kfree(se);
1377 	}
1378 }
1379 
1380 /*
1381  * Add a block range (and the corresponding page range) into this swapdev's
1382  * extent list.  The extent list is kept sorted in page order.
1383  *
1384  * This function rather assumes that it is called in ascending page order.
1385  */
1386 static int
1387 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1388 		unsigned long nr_pages, sector_t start_block)
1389 {
1390 	struct swap_extent *se;
1391 	struct swap_extent *new_se;
1392 	struct list_head *lh;
1393 
1394 	if (start_page == 0) {
1395 		se = &sis->first_swap_extent;
1396 		sis->curr_swap_extent = se;
1397 		se->start_page = 0;
1398 		se->nr_pages = nr_pages;
1399 		se->start_block = start_block;
1400 		return 1;
1401 	} else {
1402 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1403 		se = list_entry(lh, struct swap_extent, list);
1404 		BUG_ON(se->start_page + se->nr_pages != start_page);
1405 		if (se->start_block + se->nr_pages == start_block) {
1406 			/* Merge it */
1407 			se->nr_pages += nr_pages;
1408 			return 0;
1409 		}
1410 	}
1411 
1412 	/*
1413 	 * No merge.  Insert a new extent, preserving ordering.
1414 	 */
1415 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1416 	if (new_se == NULL)
1417 		return -ENOMEM;
1418 	new_se->start_page = start_page;
1419 	new_se->nr_pages = nr_pages;
1420 	new_se->start_block = start_block;
1421 
1422 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1423 	return 1;
1424 }
1425 
1426 /*
1427  * A `swap extent' is a simple thing which maps a contiguous range of pages
1428  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1429  * is built at swapon time and is then used at swap_writepage/swap_readpage
1430  * time for locating where on disk a page belongs.
1431  *
1432  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1433  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1434  * swap files identically.
1435  *
1436  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1437  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1438  * swapfiles are handled *identically* after swapon time.
1439  *
1440  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1441  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1442  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1443  * requirements, they are simply tossed out - we will never use those blocks
1444  * for swapping.
1445  *
1446  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1447  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1448  * which will scribble on the fs.
1449  *
1450  * The amount of disk space which a single swap extent represents varies.
1451  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1452  * extents in the list.  To avoid much list walking, we cache the previous
1453  * search location in `curr_swap_extent', and start new searches from there.
1454  * This is extremely effective.  The average number of iterations in
1455  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1456  */
1457 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1458 {
1459 	struct inode *inode;
1460 	unsigned blocks_per_page;
1461 	unsigned long page_no;
1462 	unsigned blkbits;
1463 	sector_t probe_block;
1464 	sector_t last_block;
1465 	sector_t lowest_block = -1;
1466 	sector_t highest_block = 0;
1467 	int nr_extents = 0;
1468 	int ret;
1469 
1470 	inode = sis->swap_file->f_mapping->host;
1471 	if (S_ISBLK(inode->i_mode)) {
1472 		ret = add_swap_extent(sis, 0, sis->max, 0);
1473 		*span = sis->pages;
1474 		goto out;
1475 	}
1476 
1477 	blkbits = inode->i_blkbits;
1478 	blocks_per_page = PAGE_SIZE >> blkbits;
1479 
1480 	/*
1481 	 * Map all the blocks into the extent list.  This code doesn't try
1482 	 * to be very smart.
1483 	 */
1484 	probe_block = 0;
1485 	page_no = 0;
1486 	last_block = i_size_read(inode) >> blkbits;
1487 	while ((probe_block + blocks_per_page) <= last_block &&
1488 			page_no < sis->max) {
1489 		unsigned block_in_page;
1490 		sector_t first_block;
1491 
1492 		first_block = bmap(inode, probe_block);
1493 		if (first_block == 0)
1494 			goto bad_bmap;
1495 
1496 		/*
1497 		 * It must be PAGE_SIZE aligned on-disk
1498 		 */
1499 		if (first_block & (blocks_per_page - 1)) {
1500 			probe_block++;
1501 			goto reprobe;
1502 		}
1503 
1504 		for (block_in_page = 1; block_in_page < blocks_per_page;
1505 					block_in_page++) {
1506 			sector_t block;
1507 
1508 			block = bmap(inode, probe_block + block_in_page);
1509 			if (block == 0)
1510 				goto bad_bmap;
1511 			if (block != first_block + block_in_page) {
1512 				/* Discontiguity */
1513 				probe_block++;
1514 				goto reprobe;
1515 			}
1516 		}
1517 
1518 		first_block >>= (PAGE_SHIFT - blkbits);
1519 		if (page_no) {	/* exclude the header page */
1520 			if (first_block < lowest_block)
1521 				lowest_block = first_block;
1522 			if (first_block > highest_block)
1523 				highest_block = first_block;
1524 		}
1525 
1526 		/*
1527 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1528 		 */
1529 		ret = add_swap_extent(sis, page_no, 1, first_block);
1530 		if (ret < 0)
1531 			goto out;
1532 		nr_extents += ret;
1533 		page_no++;
1534 		probe_block += blocks_per_page;
1535 reprobe:
1536 		continue;
1537 	}
1538 	ret = nr_extents;
1539 	*span = 1 + highest_block - lowest_block;
1540 	if (page_no == 0)
1541 		page_no = 1;	/* force Empty message */
1542 	sis->max = page_no;
1543 	sis->pages = page_no - 1;
1544 	sis->highest_bit = page_no - 1;
1545 out:
1546 	return ret;
1547 bad_bmap:
1548 	printk(KERN_ERR "swapon: swapfile has holes\n");
1549 	ret = -EINVAL;
1550 	goto out;
1551 }
1552 
1553 static void enable_swap_info(struct swap_info_struct *p, int prio,
1554 				unsigned char *swap_map)
1555 {
1556 	int i, prev;
1557 
1558 	spin_lock(&swap_lock);
1559 	if (prio >= 0)
1560 		p->prio = prio;
1561 	else
1562 		p->prio = --least_priority;
1563 	p->swap_map = swap_map;
1564 	p->flags |= SWP_WRITEOK;
1565 	nr_swap_pages += p->pages;
1566 	total_swap_pages += p->pages;
1567 
1568 	/* insert swap space into swap_list: */
1569 	prev = -1;
1570 	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1571 		if (p->prio >= swap_info[i]->prio)
1572 			break;
1573 		prev = i;
1574 	}
1575 	p->next = i;
1576 	if (prev < 0)
1577 		swap_list.head = swap_list.next = p->type;
1578 	else
1579 		swap_info[prev]->next = p->type;
1580 	spin_unlock(&swap_lock);
1581 }
1582 
1583 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1584 {
1585 	struct swap_info_struct *p = NULL;
1586 	unsigned char *swap_map;
1587 	struct file *swap_file, *victim;
1588 	struct address_space *mapping;
1589 	struct inode *inode;
1590 	char *pathname;
1591 	int i, type, prev;
1592 	int err;
1593 
1594 	if (!capable(CAP_SYS_ADMIN))
1595 		return -EPERM;
1596 
1597 	pathname = getname(specialfile);
1598 	err = PTR_ERR(pathname);
1599 	if (IS_ERR(pathname))
1600 		goto out;
1601 
1602 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1603 	putname(pathname);
1604 	err = PTR_ERR(victim);
1605 	if (IS_ERR(victim))
1606 		goto out;
1607 
1608 	mapping = victim->f_mapping;
1609 	prev = -1;
1610 	spin_lock(&swap_lock);
1611 	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1612 		p = swap_info[type];
1613 		if (p->flags & SWP_WRITEOK) {
1614 			if (p->swap_file->f_mapping == mapping)
1615 				break;
1616 		}
1617 		prev = type;
1618 	}
1619 	if (type < 0) {
1620 		err = -EINVAL;
1621 		spin_unlock(&swap_lock);
1622 		goto out_dput;
1623 	}
1624 	if (!security_vm_enough_memory(p->pages))
1625 		vm_unacct_memory(p->pages);
1626 	else {
1627 		err = -ENOMEM;
1628 		spin_unlock(&swap_lock);
1629 		goto out_dput;
1630 	}
1631 	if (prev < 0)
1632 		swap_list.head = p->next;
1633 	else
1634 		swap_info[prev]->next = p->next;
1635 	if (type == swap_list.next) {
1636 		/* just pick something that's safe... */
1637 		swap_list.next = swap_list.head;
1638 	}
1639 	if (p->prio < 0) {
1640 		for (i = p->next; i >= 0; i = swap_info[i]->next)
1641 			swap_info[i]->prio = p->prio--;
1642 		least_priority++;
1643 	}
1644 	nr_swap_pages -= p->pages;
1645 	total_swap_pages -= p->pages;
1646 	p->flags &= ~SWP_WRITEOK;
1647 	spin_unlock(&swap_lock);
1648 
1649 	current->flags |= PF_OOM_ORIGIN;
1650 	err = try_to_unuse(type);
1651 	current->flags &= ~PF_OOM_ORIGIN;
1652 
1653 	if (err) {
1654 		/*
1655 		 * reading p->prio and p->swap_map outside the lock is
1656 		 * safe here because only sys_swapon and sys_swapoff
1657 		 * change them, and there can be no other sys_swapon or
1658 		 * sys_swapoff for this swap_info_struct at this point.
1659 		 */
1660 		/* re-insert swap space back into swap_list */
1661 		enable_swap_info(p, p->prio, p->swap_map);
1662 		goto out_dput;
1663 	}
1664 
1665 	/* wait for any unplug function to finish */
1666 	down_write(&swap_unplug_sem);
1667 	up_write(&swap_unplug_sem);
1668 
1669 	destroy_swap_extents(p);
1670 	if (p->flags & SWP_CONTINUED)
1671 		free_swap_count_continuations(p);
1672 
1673 	mutex_lock(&swapon_mutex);
1674 	spin_lock(&swap_lock);
1675 	drain_mmlist();
1676 
1677 	/* wait for anyone still in scan_swap_map */
1678 	p->highest_bit = 0;		/* cuts scans short */
1679 	while (p->flags >= SWP_SCANNING) {
1680 		spin_unlock(&swap_lock);
1681 		schedule_timeout_uninterruptible(1);
1682 		spin_lock(&swap_lock);
1683 	}
1684 
1685 	swap_file = p->swap_file;
1686 	p->swap_file = NULL;
1687 	p->max = 0;
1688 	swap_map = p->swap_map;
1689 	p->swap_map = NULL;
1690 	p->flags = 0;
1691 	spin_unlock(&swap_lock);
1692 	mutex_unlock(&swapon_mutex);
1693 	vfree(swap_map);
1694 	/* Destroy swap account informatin */
1695 	swap_cgroup_swapoff(type);
1696 
1697 	inode = mapping->host;
1698 	if (S_ISBLK(inode->i_mode)) {
1699 		struct block_device *bdev = I_BDEV(inode);
1700 		set_blocksize(bdev, p->old_block_size);
1701 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1702 	} else {
1703 		mutex_lock(&inode->i_mutex);
1704 		inode->i_flags &= ~S_SWAPFILE;
1705 		mutex_unlock(&inode->i_mutex);
1706 	}
1707 	filp_close(swap_file, NULL);
1708 	err = 0;
1709 	atomic_inc(&proc_poll_event);
1710 	wake_up_interruptible(&proc_poll_wait);
1711 
1712 out_dput:
1713 	filp_close(victim, NULL);
1714 out:
1715 	return err;
1716 }
1717 
1718 #ifdef CONFIG_PROC_FS
1719 struct proc_swaps {
1720 	struct seq_file seq;
1721 	int event;
1722 };
1723 
1724 static unsigned swaps_poll(struct file *file, poll_table *wait)
1725 {
1726 	struct proc_swaps *s = file->private_data;
1727 
1728 	poll_wait(file, &proc_poll_wait, wait);
1729 
1730 	if (s->event != atomic_read(&proc_poll_event)) {
1731 		s->event = atomic_read(&proc_poll_event);
1732 		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1733 	}
1734 
1735 	return POLLIN | POLLRDNORM;
1736 }
1737 
1738 /* iterator */
1739 static void *swap_start(struct seq_file *swap, loff_t *pos)
1740 {
1741 	struct swap_info_struct *si;
1742 	int type;
1743 	loff_t l = *pos;
1744 
1745 	mutex_lock(&swapon_mutex);
1746 
1747 	if (!l)
1748 		return SEQ_START_TOKEN;
1749 
1750 	for (type = 0; type < nr_swapfiles; type++) {
1751 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1752 		si = swap_info[type];
1753 		if (!(si->flags & SWP_USED) || !si->swap_map)
1754 			continue;
1755 		if (!--l)
1756 			return si;
1757 	}
1758 
1759 	return NULL;
1760 }
1761 
1762 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1763 {
1764 	struct swap_info_struct *si = v;
1765 	int type;
1766 
1767 	if (v == SEQ_START_TOKEN)
1768 		type = 0;
1769 	else
1770 		type = si->type + 1;
1771 
1772 	for (; type < nr_swapfiles; type++) {
1773 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1774 		si = swap_info[type];
1775 		if (!(si->flags & SWP_USED) || !si->swap_map)
1776 			continue;
1777 		++*pos;
1778 		return si;
1779 	}
1780 
1781 	return NULL;
1782 }
1783 
1784 static void swap_stop(struct seq_file *swap, void *v)
1785 {
1786 	mutex_unlock(&swapon_mutex);
1787 }
1788 
1789 static int swap_show(struct seq_file *swap, void *v)
1790 {
1791 	struct swap_info_struct *si = v;
1792 	struct file *file;
1793 	int len;
1794 
1795 	if (si == SEQ_START_TOKEN) {
1796 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1797 		return 0;
1798 	}
1799 
1800 	file = si->swap_file;
1801 	len = seq_path(swap, &file->f_path, " \t\n\\");
1802 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1803 			len < 40 ? 40 - len : 1, " ",
1804 			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1805 				"partition" : "file\t",
1806 			si->pages << (PAGE_SHIFT - 10),
1807 			si->inuse_pages << (PAGE_SHIFT - 10),
1808 			si->prio);
1809 	return 0;
1810 }
1811 
1812 static const struct seq_operations swaps_op = {
1813 	.start =	swap_start,
1814 	.next =		swap_next,
1815 	.stop =		swap_stop,
1816 	.show =		swap_show
1817 };
1818 
1819 static int swaps_open(struct inode *inode, struct file *file)
1820 {
1821 	struct proc_swaps *s;
1822 	int ret;
1823 
1824 	s = kmalloc(sizeof(struct proc_swaps), GFP_KERNEL);
1825 	if (!s)
1826 		return -ENOMEM;
1827 
1828 	file->private_data = s;
1829 
1830 	ret = seq_open(file, &swaps_op);
1831 	if (ret) {
1832 		kfree(s);
1833 		return ret;
1834 	}
1835 
1836 	s->seq.private = s;
1837 	s->event = atomic_read(&proc_poll_event);
1838 	return ret;
1839 }
1840 
1841 static const struct file_operations proc_swaps_operations = {
1842 	.open		= swaps_open,
1843 	.read		= seq_read,
1844 	.llseek		= seq_lseek,
1845 	.release	= seq_release,
1846 	.poll		= swaps_poll,
1847 };
1848 
1849 static int __init procswaps_init(void)
1850 {
1851 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1852 	return 0;
1853 }
1854 __initcall(procswaps_init);
1855 #endif /* CONFIG_PROC_FS */
1856 
1857 #ifdef MAX_SWAPFILES_CHECK
1858 static int __init max_swapfiles_check(void)
1859 {
1860 	MAX_SWAPFILES_CHECK();
1861 	return 0;
1862 }
1863 late_initcall(max_swapfiles_check);
1864 #endif
1865 
1866 static struct swap_info_struct *alloc_swap_info(void)
1867 {
1868 	struct swap_info_struct *p;
1869 	unsigned int type;
1870 
1871 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1872 	if (!p)
1873 		return ERR_PTR(-ENOMEM);
1874 
1875 	spin_lock(&swap_lock);
1876 	for (type = 0; type < nr_swapfiles; type++) {
1877 		if (!(swap_info[type]->flags & SWP_USED))
1878 			break;
1879 	}
1880 	if (type >= MAX_SWAPFILES) {
1881 		spin_unlock(&swap_lock);
1882 		kfree(p);
1883 		return ERR_PTR(-EPERM);
1884 	}
1885 	if (type >= nr_swapfiles) {
1886 		p->type = type;
1887 		swap_info[type] = p;
1888 		/*
1889 		 * Write swap_info[type] before nr_swapfiles, in case a
1890 		 * racing procfs swap_start() or swap_next() is reading them.
1891 		 * (We never shrink nr_swapfiles, we never free this entry.)
1892 		 */
1893 		smp_wmb();
1894 		nr_swapfiles++;
1895 	} else {
1896 		kfree(p);
1897 		p = swap_info[type];
1898 		/*
1899 		 * Do not memset this entry: a racing procfs swap_next()
1900 		 * would be relying on p->type to remain valid.
1901 		 */
1902 	}
1903 	INIT_LIST_HEAD(&p->first_swap_extent.list);
1904 	p->flags = SWP_USED;
1905 	p->next = -1;
1906 	spin_unlock(&swap_lock);
1907 
1908 	return p;
1909 }
1910 
1911 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1912 {
1913 	int error;
1914 
1915 	if (S_ISBLK(inode->i_mode)) {
1916 		p->bdev = bdgrab(I_BDEV(inode));
1917 		error = blkdev_get(p->bdev,
1918 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1919 				   sys_swapon);
1920 		if (error < 0) {
1921 			p->bdev = NULL;
1922 			return -EINVAL;
1923 		}
1924 		p->old_block_size = block_size(p->bdev);
1925 		error = set_blocksize(p->bdev, PAGE_SIZE);
1926 		if (error < 0)
1927 			return error;
1928 		p->flags |= SWP_BLKDEV;
1929 	} else if (S_ISREG(inode->i_mode)) {
1930 		p->bdev = inode->i_sb->s_bdev;
1931 		mutex_lock(&inode->i_mutex);
1932 		if (IS_SWAPFILE(inode))
1933 			return -EBUSY;
1934 	} else
1935 		return -EINVAL;
1936 
1937 	return 0;
1938 }
1939 
1940 static unsigned long read_swap_header(struct swap_info_struct *p,
1941 					union swap_header *swap_header,
1942 					struct inode *inode)
1943 {
1944 	int i;
1945 	unsigned long maxpages;
1946 	unsigned long swapfilepages;
1947 
1948 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1949 		printk(KERN_ERR "Unable to find swap-space signature\n");
1950 		return 0;
1951 	}
1952 
1953 	/* swap partition endianess hack... */
1954 	if (swab32(swap_header->info.version) == 1) {
1955 		swab32s(&swap_header->info.version);
1956 		swab32s(&swap_header->info.last_page);
1957 		swab32s(&swap_header->info.nr_badpages);
1958 		for (i = 0; i < swap_header->info.nr_badpages; i++)
1959 			swab32s(&swap_header->info.badpages[i]);
1960 	}
1961 	/* Check the swap header's sub-version */
1962 	if (swap_header->info.version != 1) {
1963 		printk(KERN_WARNING
1964 		       "Unable to handle swap header version %d\n",
1965 		       swap_header->info.version);
1966 		return 0;
1967 	}
1968 
1969 	p->lowest_bit  = 1;
1970 	p->cluster_next = 1;
1971 	p->cluster_nr = 0;
1972 
1973 	/*
1974 	 * Find out how many pages are allowed for a single swap
1975 	 * device. There are two limiting factors: 1) the number of
1976 	 * bits for the swap offset in the swp_entry_t type and
1977 	 * 2) the number of bits in the a swap pte as defined by
1978 	 * the different architectures. In order to find the
1979 	 * largest possible bit mask a swap entry with swap type 0
1980 	 * and swap offset ~0UL is created, encoded to a swap pte,
1981 	 * decoded to a swp_entry_t again and finally the swap
1982 	 * offset is extracted. This will mask all the bits from
1983 	 * the initial ~0UL mask that can't be encoded in either
1984 	 * the swp_entry_t or the architecture definition of a
1985 	 * swap pte.
1986 	 */
1987 	maxpages = swp_offset(pte_to_swp_entry(
1988 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1989 	if (maxpages > swap_header->info.last_page) {
1990 		maxpages = swap_header->info.last_page + 1;
1991 		/* p->max is an unsigned int: don't overflow it */
1992 		if ((unsigned int)maxpages == 0)
1993 			maxpages = UINT_MAX;
1994 	}
1995 	p->highest_bit = maxpages - 1;
1996 
1997 	if (!maxpages)
1998 		return 0;
1999 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2000 	if (swapfilepages && maxpages > swapfilepages) {
2001 		printk(KERN_WARNING
2002 		       "Swap area shorter than signature indicates\n");
2003 		return 0;
2004 	}
2005 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2006 		return 0;
2007 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2008 		return 0;
2009 
2010 	return maxpages;
2011 }
2012 
2013 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2014 					union swap_header *swap_header,
2015 					unsigned char *swap_map,
2016 					unsigned long maxpages,
2017 					sector_t *span)
2018 {
2019 	int i;
2020 	unsigned int nr_good_pages;
2021 	int nr_extents;
2022 
2023 	nr_good_pages = maxpages - 1;	/* omit header page */
2024 
2025 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2026 		unsigned int page_nr = swap_header->info.badpages[i];
2027 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2028 			return -EINVAL;
2029 		if (page_nr < maxpages) {
2030 			swap_map[page_nr] = SWAP_MAP_BAD;
2031 			nr_good_pages--;
2032 		}
2033 	}
2034 
2035 	if (nr_good_pages) {
2036 		swap_map[0] = SWAP_MAP_BAD;
2037 		p->max = maxpages;
2038 		p->pages = nr_good_pages;
2039 		nr_extents = setup_swap_extents(p, span);
2040 		if (nr_extents < 0)
2041 			return nr_extents;
2042 		nr_good_pages = p->pages;
2043 	}
2044 	if (!nr_good_pages) {
2045 		printk(KERN_WARNING "Empty swap-file\n");
2046 		return -EINVAL;
2047 	}
2048 
2049 	return nr_extents;
2050 }
2051 
2052 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2053 {
2054 	struct swap_info_struct *p;
2055 	char *name;
2056 	struct file *swap_file = NULL;
2057 	struct address_space *mapping;
2058 	int i;
2059 	int prio;
2060 	int error;
2061 	union swap_header *swap_header;
2062 	int nr_extents;
2063 	sector_t span;
2064 	unsigned long maxpages;
2065 	unsigned char *swap_map = NULL;
2066 	struct page *page = NULL;
2067 	struct inode *inode = NULL;
2068 
2069 	if (!capable(CAP_SYS_ADMIN))
2070 		return -EPERM;
2071 
2072 	p = alloc_swap_info();
2073 	if (IS_ERR(p))
2074 		return PTR_ERR(p);
2075 
2076 	name = getname(specialfile);
2077 	if (IS_ERR(name)) {
2078 		error = PTR_ERR(name);
2079 		name = NULL;
2080 		goto bad_swap;
2081 	}
2082 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
2083 	if (IS_ERR(swap_file)) {
2084 		error = PTR_ERR(swap_file);
2085 		swap_file = NULL;
2086 		goto bad_swap;
2087 	}
2088 
2089 	p->swap_file = swap_file;
2090 	mapping = swap_file->f_mapping;
2091 	inode = mapping->host;
2092 
2093 	for (i = 0; i < nr_swapfiles; i++) {
2094 		struct swap_info_struct *q = swap_info[i];
2095 
2096 		if (q == p || !q->swap_file)
2097 			continue;
2098 		if (mapping == q->swap_file->f_mapping) {
2099 			error = -EBUSY;
2100 			goto bad_swap;
2101 		}
2102 	}
2103 
2104 	error = claim_swapfile(p, inode);
2105 	if (unlikely(error))
2106 		goto bad_swap;
2107 
2108 	/*
2109 	 * Read the swap header.
2110 	 */
2111 	if (!mapping->a_ops->readpage) {
2112 		error = -EINVAL;
2113 		goto bad_swap;
2114 	}
2115 	page = read_mapping_page(mapping, 0, swap_file);
2116 	if (IS_ERR(page)) {
2117 		error = PTR_ERR(page);
2118 		goto bad_swap;
2119 	}
2120 	swap_header = kmap(page);
2121 
2122 	maxpages = read_swap_header(p, swap_header, inode);
2123 	if (unlikely(!maxpages)) {
2124 		error = -EINVAL;
2125 		goto bad_swap;
2126 	}
2127 
2128 	/* OK, set up the swap map and apply the bad block list */
2129 	swap_map = vzalloc(maxpages);
2130 	if (!swap_map) {
2131 		error = -ENOMEM;
2132 		goto bad_swap;
2133 	}
2134 
2135 	error = swap_cgroup_swapon(p->type, maxpages);
2136 	if (error)
2137 		goto bad_swap;
2138 
2139 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2140 		maxpages, &span);
2141 	if (unlikely(nr_extents < 0)) {
2142 		error = nr_extents;
2143 		goto bad_swap;
2144 	}
2145 
2146 	if (p->bdev) {
2147 		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2148 			p->flags |= SWP_SOLIDSTATE;
2149 			p->cluster_next = 1 + (random32() % p->highest_bit);
2150 		}
2151 		if (discard_swap(p) == 0 && (swap_flags & SWAP_FLAG_DISCARD))
2152 			p->flags |= SWP_DISCARDABLE;
2153 	}
2154 
2155 	mutex_lock(&swapon_mutex);
2156 	prio = -1;
2157 	if (swap_flags & SWAP_FLAG_PREFER)
2158 		prio =
2159 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2160 	enable_swap_info(p, prio, swap_map);
2161 
2162 	printk(KERN_INFO "Adding %uk swap on %s.  "
2163 			"Priority:%d extents:%d across:%lluk %s%s\n",
2164 		p->pages<<(PAGE_SHIFT-10), name, p->prio,
2165 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2166 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2167 		(p->flags & SWP_DISCARDABLE) ? "D" : "");
2168 
2169 	mutex_unlock(&swapon_mutex);
2170 	atomic_inc(&proc_poll_event);
2171 	wake_up_interruptible(&proc_poll_wait);
2172 
2173 	if (S_ISREG(inode->i_mode))
2174 		inode->i_flags |= S_SWAPFILE;
2175 	error = 0;
2176 	goto out;
2177 bad_swap:
2178 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2179 		set_blocksize(p->bdev, p->old_block_size);
2180 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2181 	}
2182 	destroy_swap_extents(p);
2183 	swap_cgroup_swapoff(p->type);
2184 	spin_lock(&swap_lock);
2185 	p->swap_file = NULL;
2186 	p->flags = 0;
2187 	spin_unlock(&swap_lock);
2188 	vfree(swap_map);
2189 	if (swap_file) {
2190 		if (inode && S_ISREG(inode->i_mode))
2191 			mutex_unlock(&inode->i_mutex);
2192 		filp_close(swap_file, NULL);
2193 	}
2194 out:
2195 	if (page && !IS_ERR(page)) {
2196 		kunmap(page);
2197 		page_cache_release(page);
2198 	}
2199 	if (name)
2200 		putname(name);
2201 	if (inode && S_ISREG(inode->i_mode))
2202 		mutex_unlock(&inode->i_mutex);
2203 	return error;
2204 }
2205 
2206 void si_swapinfo(struct sysinfo *val)
2207 {
2208 	unsigned int type;
2209 	unsigned long nr_to_be_unused = 0;
2210 
2211 	spin_lock(&swap_lock);
2212 	for (type = 0; type < nr_swapfiles; type++) {
2213 		struct swap_info_struct *si = swap_info[type];
2214 
2215 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2216 			nr_to_be_unused += si->inuse_pages;
2217 	}
2218 	val->freeswap = nr_swap_pages + nr_to_be_unused;
2219 	val->totalswap = total_swap_pages + nr_to_be_unused;
2220 	spin_unlock(&swap_lock);
2221 }
2222 
2223 /*
2224  * Verify that a swap entry is valid and increment its swap map count.
2225  *
2226  * Returns error code in following case.
2227  * - success -> 0
2228  * - swp_entry is invalid -> EINVAL
2229  * - swp_entry is migration entry -> EINVAL
2230  * - swap-cache reference is requested but there is already one. -> EEXIST
2231  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2232  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2233  */
2234 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2235 {
2236 	struct swap_info_struct *p;
2237 	unsigned long offset, type;
2238 	unsigned char count;
2239 	unsigned char has_cache;
2240 	int err = -EINVAL;
2241 
2242 	if (non_swap_entry(entry))
2243 		goto out;
2244 
2245 	type = swp_type(entry);
2246 	if (type >= nr_swapfiles)
2247 		goto bad_file;
2248 	p = swap_info[type];
2249 	offset = swp_offset(entry);
2250 
2251 	spin_lock(&swap_lock);
2252 	if (unlikely(offset >= p->max))
2253 		goto unlock_out;
2254 
2255 	count = p->swap_map[offset];
2256 	has_cache = count & SWAP_HAS_CACHE;
2257 	count &= ~SWAP_HAS_CACHE;
2258 	err = 0;
2259 
2260 	if (usage == SWAP_HAS_CACHE) {
2261 
2262 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2263 		if (!has_cache && count)
2264 			has_cache = SWAP_HAS_CACHE;
2265 		else if (has_cache)		/* someone else added cache */
2266 			err = -EEXIST;
2267 		else				/* no users remaining */
2268 			err = -ENOENT;
2269 
2270 	} else if (count || has_cache) {
2271 
2272 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2273 			count += usage;
2274 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2275 			err = -EINVAL;
2276 		else if (swap_count_continued(p, offset, count))
2277 			count = COUNT_CONTINUED;
2278 		else
2279 			err = -ENOMEM;
2280 	} else
2281 		err = -ENOENT;			/* unused swap entry */
2282 
2283 	p->swap_map[offset] = count | has_cache;
2284 
2285 unlock_out:
2286 	spin_unlock(&swap_lock);
2287 out:
2288 	return err;
2289 
2290 bad_file:
2291 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2292 	goto out;
2293 }
2294 
2295 /*
2296  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2297  * (in which case its reference count is never incremented).
2298  */
2299 void swap_shmem_alloc(swp_entry_t entry)
2300 {
2301 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2302 }
2303 
2304 /*
2305  * Increase reference count of swap entry by 1.
2306  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2307  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2308  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2309  * might occur if a page table entry has got corrupted.
2310  */
2311 int swap_duplicate(swp_entry_t entry)
2312 {
2313 	int err = 0;
2314 
2315 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2316 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2317 	return err;
2318 }
2319 
2320 /*
2321  * @entry: swap entry for which we allocate swap cache.
2322  *
2323  * Called when allocating swap cache for existing swap entry,
2324  * This can return error codes. Returns 0 at success.
2325  * -EBUSY means there is a swap cache.
2326  * Note: return code is different from swap_duplicate().
2327  */
2328 int swapcache_prepare(swp_entry_t entry)
2329 {
2330 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2331 }
2332 
2333 /*
2334  * swap_lock prevents swap_map being freed. Don't grab an extra
2335  * reference on the swaphandle, it doesn't matter if it becomes unused.
2336  */
2337 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2338 {
2339 	struct swap_info_struct *si;
2340 	int our_page_cluster = page_cluster;
2341 	pgoff_t target, toff;
2342 	pgoff_t base, end;
2343 	int nr_pages = 0;
2344 
2345 	if (!our_page_cluster)	/* no readahead */
2346 		return 0;
2347 
2348 	si = swap_info[swp_type(entry)];
2349 	target = swp_offset(entry);
2350 	base = (target >> our_page_cluster) << our_page_cluster;
2351 	end = base + (1 << our_page_cluster);
2352 	if (!base)		/* first page is swap header */
2353 		base++;
2354 
2355 	spin_lock(&swap_lock);
2356 	if (end > si->max)	/* don't go beyond end of map */
2357 		end = si->max;
2358 
2359 	/* Count contiguous allocated slots above our target */
2360 	for (toff = target; ++toff < end; nr_pages++) {
2361 		/* Don't read in free or bad pages */
2362 		if (!si->swap_map[toff])
2363 			break;
2364 		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2365 			break;
2366 	}
2367 	/* Count contiguous allocated slots below our target */
2368 	for (toff = target; --toff >= base; nr_pages++) {
2369 		/* Don't read in free or bad pages */
2370 		if (!si->swap_map[toff])
2371 			break;
2372 		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2373 			break;
2374 	}
2375 	spin_unlock(&swap_lock);
2376 
2377 	/*
2378 	 * Indicate starting offset, and return number of pages to get:
2379 	 * if only 1, say 0, since there's then no readahead to be done.
2380 	 */
2381 	*offset = ++toff;
2382 	return nr_pages? ++nr_pages: 0;
2383 }
2384 
2385 /*
2386  * add_swap_count_continuation - called when a swap count is duplicated
2387  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2388  * page of the original vmalloc'ed swap_map, to hold the continuation count
2389  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2390  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2391  *
2392  * These continuation pages are seldom referenced: the common paths all work
2393  * on the original swap_map, only referring to a continuation page when the
2394  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2395  *
2396  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2397  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2398  * can be called after dropping locks.
2399  */
2400 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2401 {
2402 	struct swap_info_struct *si;
2403 	struct page *head;
2404 	struct page *page;
2405 	struct page *list_page;
2406 	pgoff_t offset;
2407 	unsigned char count;
2408 
2409 	/*
2410 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2411 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2412 	 */
2413 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2414 
2415 	si = swap_info_get(entry);
2416 	if (!si) {
2417 		/*
2418 		 * An acceptable race has occurred since the failing
2419 		 * __swap_duplicate(): the swap entry has been freed,
2420 		 * perhaps even the whole swap_map cleared for swapoff.
2421 		 */
2422 		goto outer;
2423 	}
2424 
2425 	offset = swp_offset(entry);
2426 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2427 
2428 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2429 		/*
2430 		 * The higher the swap count, the more likely it is that tasks
2431 		 * will race to add swap count continuation: we need to avoid
2432 		 * over-provisioning.
2433 		 */
2434 		goto out;
2435 	}
2436 
2437 	if (!page) {
2438 		spin_unlock(&swap_lock);
2439 		return -ENOMEM;
2440 	}
2441 
2442 	/*
2443 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2444 	 * no architecture is using highmem pages for kernel pagetables: so it
2445 	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2446 	 */
2447 	head = vmalloc_to_page(si->swap_map + offset);
2448 	offset &= ~PAGE_MASK;
2449 
2450 	/*
2451 	 * Page allocation does not initialize the page's lru field,
2452 	 * but it does always reset its private field.
2453 	 */
2454 	if (!page_private(head)) {
2455 		BUG_ON(count & COUNT_CONTINUED);
2456 		INIT_LIST_HEAD(&head->lru);
2457 		set_page_private(head, SWP_CONTINUED);
2458 		si->flags |= SWP_CONTINUED;
2459 	}
2460 
2461 	list_for_each_entry(list_page, &head->lru, lru) {
2462 		unsigned char *map;
2463 
2464 		/*
2465 		 * If the previous map said no continuation, but we've found
2466 		 * a continuation page, free our allocation and use this one.
2467 		 */
2468 		if (!(count & COUNT_CONTINUED))
2469 			goto out;
2470 
2471 		map = kmap_atomic(list_page, KM_USER0) + offset;
2472 		count = *map;
2473 		kunmap_atomic(map, KM_USER0);
2474 
2475 		/*
2476 		 * If this continuation count now has some space in it,
2477 		 * free our allocation and use this one.
2478 		 */
2479 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2480 			goto out;
2481 	}
2482 
2483 	list_add_tail(&page->lru, &head->lru);
2484 	page = NULL;			/* now it's attached, don't free it */
2485 out:
2486 	spin_unlock(&swap_lock);
2487 outer:
2488 	if (page)
2489 		__free_page(page);
2490 	return 0;
2491 }
2492 
2493 /*
2494  * swap_count_continued - when the original swap_map count is incremented
2495  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2496  * into, carry if so, or else fail until a new continuation page is allocated;
2497  * when the original swap_map count is decremented from 0 with continuation,
2498  * borrow from the continuation and report whether it still holds more.
2499  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2500  */
2501 static bool swap_count_continued(struct swap_info_struct *si,
2502 				 pgoff_t offset, unsigned char count)
2503 {
2504 	struct page *head;
2505 	struct page *page;
2506 	unsigned char *map;
2507 
2508 	head = vmalloc_to_page(si->swap_map + offset);
2509 	if (page_private(head) != SWP_CONTINUED) {
2510 		BUG_ON(count & COUNT_CONTINUED);
2511 		return false;		/* need to add count continuation */
2512 	}
2513 
2514 	offset &= ~PAGE_MASK;
2515 	page = list_entry(head->lru.next, struct page, lru);
2516 	map = kmap_atomic(page, KM_USER0) + offset;
2517 
2518 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2519 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2520 
2521 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2522 		/*
2523 		 * Think of how you add 1 to 999
2524 		 */
2525 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2526 			kunmap_atomic(map, KM_USER0);
2527 			page = list_entry(page->lru.next, struct page, lru);
2528 			BUG_ON(page == head);
2529 			map = kmap_atomic(page, KM_USER0) + offset;
2530 		}
2531 		if (*map == SWAP_CONT_MAX) {
2532 			kunmap_atomic(map, KM_USER0);
2533 			page = list_entry(page->lru.next, struct page, lru);
2534 			if (page == head)
2535 				return false;	/* add count continuation */
2536 			map = kmap_atomic(page, KM_USER0) + offset;
2537 init_map:		*map = 0;		/* we didn't zero the page */
2538 		}
2539 		*map += 1;
2540 		kunmap_atomic(map, KM_USER0);
2541 		page = list_entry(page->lru.prev, struct page, lru);
2542 		while (page != head) {
2543 			map = kmap_atomic(page, KM_USER0) + offset;
2544 			*map = COUNT_CONTINUED;
2545 			kunmap_atomic(map, KM_USER0);
2546 			page = list_entry(page->lru.prev, struct page, lru);
2547 		}
2548 		return true;			/* incremented */
2549 
2550 	} else {				/* decrementing */
2551 		/*
2552 		 * Think of how you subtract 1 from 1000
2553 		 */
2554 		BUG_ON(count != COUNT_CONTINUED);
2555 		while (*map == COUNT_CONTINUED) {
2556 			kunmap_atomic(map, KM_USER0);
2557 			page = list_entry(page->lru.next, struct page, lru);
2558 			BUG_ON(page == head);
2559 			map = kmap_atomic(page, KM_USER0) + offset;
2560 		}
2561 		BUG_ON(*map == 0);
2562 		*map -= 1;
2563 		if (*map == 0)
2564 			count = 0;
2565 		kunmap_atomic(map, KM_USER0);
2566 		page = list_entry(page->lru.prev, struct page, lru);
2567 		while (page != head) {
2568 			map = kmap_atomic(page, KM_USER0) + offset;
2569 			*map = SWAP_CONT_MAX | count;
2570 			count = COUNT_CONTINUED;
2571 			kunmap_atomic(map, KM_USER0);
2572 			page = list_entry(page->lru.prev, struct page, lru);
2573 		}
2574 		return count == COUNT_CONTINUED;
2575 	}
2576 }
2577 
2578 /*
2579  * free_swap_count_continuations - swapoff free all the continuation pages
2580  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2581  */
2582 static void free_swap_count_continuations(struct swap_info_struct *si)
2583 {
2584 	pgoff_t offset;
2585 
2586 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2587 		struct page *head;
2588 		head = vmalloc_to_page(si->swap_map + offset);
2589 		if (page_private(head)) {
2590 			struct list_head *this, *next;
2591 			list_for_each_safe(this, next, &head->lru) {
2592 				struct page *page;
2593 				page = list_entry(this, struct page, lru);
2594 				list_del(this);
2595 				__free_page(page);
2596 			}
2597 		}
2598 	}
2599 }
2600