1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shm.h> 18 #include <linux/blkdev.h> 19 #include <linux/writeback.h> 20 #include <linux/proc_fs.h> 21 #include <linux/seq_file.h> 22 #include <linux/init.h> 23 #include <linux/module.h> 24 #include <linux/rmap.h> 25 #include <linux/security.h> 26 #include <linux/backing-dev.h> 27 #include <linux/mutex.h> 28 #include <linux/capability.h> 29 #include <linux/syscalls.h> 30 #include <linux/memcontrol.h> 31 32 #include <asm/pgtable.h> 33 #include <asm/tlbflush.h> 34 #include <linux/swapops.h> 35 36 DEFINE_SPINLOCK(swap_lock); 37 unsigned int nr_swapfiles; 38 long total_swap_pages; 39 static int swap_overflow; 40 static int least_priority; 41 42 static const char Bad_file[] = "Bad swap file entry "; 43 static const char Unused_file[] = "Unused swap file entry "; 44 static const char Bad_offset[] = "Bad swap offset entry "; 45 static const char Unused_offset[] = "Unused swap offset entry "; 46 47 struct swap_list_t swap_list = {-1, -1}; 48 49 static struct swap_info_struct swap_info[MAX_SWAPFILES]; 50 51 static DEFINE_MUTEX(swapon_mutex); 52 53 /* 54 * We need this because the bdev->unplug_fn can sleep and we cannot 55 * hold swap_lock while calling the unplug_fn. And swap_lock 56 * cannot be turned into a mutex. 57 */ 58 static DECLARE_RWSEM(swap_unplug_sem); 59 60 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page) 61 { 62 swp_entry_t entry; 63 64 down_read(&swap_unplug_sem); 65 entry.val = page_private(page); 66 if (PageSwapCache(page)) { 67 struct block_device *bdev = swap_info[swp_type(entry)].bdev; 68 struct backing_dev_info *bdi; 69 70 /* 71 * If the page is removed from swapcache from under us (with a 72 * racy try_to_unuse/swapoff) we need an additional reference 73 * count to avoid reading garbage from page_private(page) above. 74 * If the WARN_ON triggers during a swapoff it maybe the race 75 * condition and it's harmless. However if it triggers without 76 * swapoff it signals a problem. 77 */ 78 WARN_ON(page_count(page) <= 1); 79 80 bdi = bdev->bd_inode->i_mapping->backing_dev_info; 81 blk_run_backing_dev(bdi, page); 82 } 83 up_read(&swap_unplug_sem); 84 } 85 86 #define SWAPFILE_CLUSTER 256 87 #define LATENCY_LIMIT 256 88 89 static inline unsigned long scan_swap_map(struct swap_info_struct *si) 90 { 91 unsigned long offset, last_in_cluster; 92 int latency_ration = LATENCY_LIMIT; 93 94 /* 95 * We try to cluster swap pages by allocating them sequentially 96 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 97 * way, however, we resort to first-free allocation, starting 98 * a new cluster. This prevents us from scattering swap pages 99 * all over the entire swap partition, so that we reduce 100 * overall disk seek times between swap pages. -- sct 101 * But we do now try to find an empty cluster. -Andrea 102 */ 103 104 si->flags += SWP_SCANNING; 105 if (unlikely(!si->cluster_nr)) { 106 si->cluster_nr = SWAPFILE_CLUSTER - 1; 107 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) 108 goto lowest; 109 spin_unlock(&swap_lock); 110 111 offset = si->lowest_bit; 112 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 113 114 /* Locate the first empty (unaligned) cluster */ 115 for (; last_in_cluster <= si->highest_bit; offset++) { 116 if (si->swap_map[offset]) 117 last_in_cluster = offset + SWAPFILE_CLUSTER; 118 else if (offset == last_in_cluster) { 119 spin_lock(&swap_lock); 120 si->cluster_next = offset-SWAPFILE_CLUSTER+1; 121 goto cluster; 122 } 123 if (unlikely(--latency_ration < 0)) { 124 cond_resched(); 125 latency_ration = LATENCY_LIMIT; 126 } 127 } 128 spin_lock(&swap_lock); 129 goto lowest; 130 } 131 132 si->cluster_nr--; 133 cluster: 134 offset = si->cluster_next; 135 if (offset > si->highest_bit) 136 lowest: offset = si->lowest_bit; 137 checks: if (!(si->flags & SWP_WRITEOK)) 138 goto no_page; 139 if (!si->highest_bit) 140 goto no_page; 141 if (!si->swap_map[offset]) { 142 if (offset == si->lowest_bit) 143 si->lowest_bit++; 144 if (offset == si->highest_bit) 145 si->highest_bit--; 146 si->inuse_pages++; 147 if (si->inuse_pages == si->pages) { 148 si->lowest_bit = si->max; 149 si->highest_bit = 0; 150 } 151 si->swap_map[offset] = 1; 152 si->cluster_next = offset + 1; 153 si->flags -= SWP_SCANNING; 154 return offset; 155 } 156 157 spin_unlock(&swap_lock); 158 while (++offset <= si->highest_bit) { 159 if (!si->swap_map[offset]) { 160 spin_lock(&swap_lock); 161 goto checks; 162 } 163 if (unlikely(--latency_ration < 0)) { 164 cond_resched(); 165 latency_ration = LATENCY_LIMIT; 166 } 167 } 168 spin_lock(&swap_lock); 169 goto lowest; 170 171 no_page: 172 si->flags -= SWP_SCANNING; 173 return 0; 174 } 175 176 swp_entry_t get_swap_page(void) 177 { 178 struct swap_info_struct *si; 179 pgoff_t offset; 180 int type, next; 181 int wrapped = 0; 182 183 spin_lock(&swap_lock); 184 if (nr_swap_pages <= 0) 185 goto noswap; 186 nr_swap_pages--; 187 188 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { 189 si = swap_info + type; 190 next = si->next; 191 if (next < 0 || 192 (!wrapped && si->prio != swap_info[next].prio)) { 193 next = swap_list.head; 194 wrapped++; 195 } 196 197 if (!si->highest_bit) 198 continue; 199 if (!(si->flags & SWP_WRITEOK)) 200 continue; 201 202 swap_list.next = next; 203 offset = scan_swap_map(si); 204 if (offset) { 205 spin_unlock(&swap_lock); 206 return swp_entry(type, offset); 207 } 208 next = swap_list.next; 209 } 210 211 nr_swap_pages++; 212 noswap: 213 spin_unlock(&swap_lock); 214 return (swp_entry_t) {0}; 215 } 216 217 swp_entry_t get_swap_page_of_type(int type) 218 { 219 struct swap_info_struct *si; 220 pgoff_t offset; 221 222 spin_lock(&swap_lock); 223 si = swap_info + type; 224 if (si->flags & SWP_WRITEOK) { 225 nr_swap_pages--; 226 offset = scan_swap_map(si); 227 if (offset) { 228 spin_unlock(&swap_lock); 229 return swp_entry(type, offset); 230 } 231 nr_swap_pages++; 232 } 233 spin_unlock(&swap_lock); 234 return (swp_entry_t) {0}; 235 } 236 237 static struct swap_info_struct * swap_info_get(swp_entry_t entry) 238 { 239 struct swap_info_struct * p; 240 unsigned long offset, type; 241 242 if (!entry.val) 243 goto out; 244 type = swp_type(entry); 245 if (type >= nr_swapfiles) 246 goto bad_nofile; 247 p = & swap_info[type]; 248 if (!(p->flags & SWP_USED)) 249 goto bad_device; 250 offset = swp_offset(entry); 251 if (offset >= p->max) 252 goto bad_offset; 253 if (!p->swap_map[offset]) 254 goto bad_free; 255 spin_lock(&swap_lock); 256 return p; 257 258 bad_free: 259 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); 260 goto out; 261 bad_offset: 262 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); 263 goto out; 264 bad_device: 265 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); 266 goto out; 267 bad_nofile: 268 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); 269 out: 270 return NULL; 271 } 272 273 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset) 274 { 275 int count = p->swap_map[offset]; 276 277 if (count < SWAP_MAP_MAX) { 278 count--; 279 p->swap_map[offset] = count; 280 if (!count) { 281 if (offset < p->lowest_bit) 282 p->lowest_bit = offset; 283 if (offset > p->highest_bit) 284 p->highest_bit = offset; 285 if (p->prio > swap_info[swap_list.next].prio) 286 swap_list.next = p - swap_info; 287 nr_swap_pages++; 288 p->inuse_pages--; 289 } 290 } 291 return count; 292 } 293 294 /* 295 * Caller has made sure that the swapdevice corresponding to entry 296 * is still around or has not been recycled. 297 */ 298 void swap_free(swp_entry_t entry) 299 { 300 struct swap_info_struct * p; 301 302 p = swap_info_get(entry); 303 if (p) { 304 swap_entry_free(p, swp_offset(entry)); 305 spin_unlock(&swap_lock); 306 } 307 } 308 309 /* 310 * How many references to page are currently swapped out? 311 */ 312 static inline int page_swapcount(struct page *page) 313 { 314 int count = 0; 315 struct swap_info_struct *p; 316 swp_entry_t entry; 317 318 entry.val = page_private(page); 319 p = swap_info_get(entry); 320 if (p) { 321 /* Subtract the 1 for the swap cache itself */ 322 count = p->swap_map[swp_offset(entry)] - 1; 323 spin_unlock(&swap_lock); 324 } 325 return count; 326 } 327 328 /* 329 * We can use this swap cache entry directly 330 * if there are no other references to it. 331 */ 332 int can_share_swap_page(struct page *page) 333 { 334 int count; 335 336 BUG_ON(!PageLocked(page)); 337 count = page_mapcount(page); 338 if (count <= 1 && PageSwapCache(page)) 339 count += page_swapcount(page); 340 return count == 1; 341 } 342 343 /* 344 * Work out if there are any other processes sharing this 345 * swap cache page. Free it if you can. Return success. 346 */ 347 int remove_exclusive_swap_page(struct page *page) 348 { 349 int retval; 350 struct swap_info_struct * p; 351 swp_entry_t entry; 352 353 BUG_ON(PagePrivate(page)); 354 BUG_ON(!PageLocked(page)); 355 356 if (!PageSwapCache(page)) 357 return 0; 358 if (PageWriteback(page)) 359 return 0; 360 if (page_count(page) != 2) /* 2: us + cache */ 361 return 0; 362 363 entry.val = page_private(page); 364 p = swap_info_get(entry); 365 if (!p) 366 return 0; 367 368 /* Is the only swap cache user the cache itself? */ 369 retval = 0; 370 if (p->swap_map[swp_offset(entry)] == 1) { 371 /* Recheck the page count with the swapcache lock held.. */ 372 write_lock_irq(&swapper_space.tree_lock); 373 if ((page_count(page) == 2) && !PageWriteback(page)) { 374 __delete_from_swap_cache(page); 375 SetPageDirty(page); 376 retval = 1; 377 } 378 write_unlock_irq(&swapper_space.tree_lock); 379 } 380 spin_unlock(&swap_lock); 381 382 if (retval) { 383 swap_free(entry); 384 page_cache_release(page); 385 } 386 387 return retval; 388 } 389 390 /* 391 * Free the swap entry like above, but also try to 392 * free the page cache entry if it is the last user. 393 */ 394 void free_swap_and_cache(swp_entry_t entry) 395 { 396 struct swap_info_struct * p; 397 struct page *page = NULL; 398 399 if (is_migration_entry(entry)) 400 return; 401 402 p = swap_info_get(entry); 403 if (p) { 404 if (swap_entry_free(p, swp_offset(entry)) == 1) { 405 page = find_get_page(&swapper_space, entry.val); 406 if (page && unlikely(TestSetPageLocked(page))) { 407 page_cache_release(page); 408 page = NULL; 409 } 410 } 411 spin_unlock(&swap_lock); 412 } 413 if (page) { 414 int one_user; 415 416 BUG_ON(PagePrivate(page)); 417 one_user = (page_count(page) == 2); 418 /* Only cache user (+us), or swap space full? Free it! */ 419 /* Also recheck PageSwapCache after page is locked (above) */ 420 if (PageSwapCache(page) && !PageWriteback(page) && 421 (one_user || vm_swap_full())) { 422 delete_from_swap_cache(page); 423 SetPageDirty(page); 424 } 425 unlock_page(page); 426 page_cache_release(page); 427 } 428 } 429 430 #ifdef CONFIG_HIBERNATION 431 /* 432 * Find the swap type that corresponds to given device (if any). 433 * 434 * @offset - number of the PAGE_SIZE-sized block of the device, starting 435 * from 0, in which the swap header is expected to be located. 436 * 437 * This is needed for the suspend to disk (aka swsusp). 438 */ 439 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 440 { 441 struct block_device *bdev = NULL; 442 int i; 443 444 if (device) 445 bdev = bdget(device); 446 447 spin_lock(&swap_lock); 448 for (i = 0; i < nr_swapfiles; i++) { 449 struct swap_info_struct *sis = swap_info + i; 450 451 if (!(sis->flags & SWP_WRITEOK)) 452 continue; 453 454 if (!bdev) { 455 if (bdev_p) 456 *bdev_p = sis->bdev; 457 458 spin_unlock(&swap_lock); 459 return i; 460 } 461 if (bdev == sis->bdev) { 462 struct swap_extent *se; 463 464 se = list_entry(sis->extent_list.next, 465 struct swap_extent, list); 466 if (se->start_block == offset) { 467 if (bdev_p) 468 *bdev_p = sis->bdev; 469 470 spin_unlock(&swap_lock); 471 bdput(bdev); 472 return i; 473 } 474 } 475 } 476 spin_unlock(&swap_lock); 477 if (bdev) 478 bdput(bdev); 479 480 return -ENODEV; 481 } 482 483 /* 484 * Return either the total number of swap pages of given type, or the number 485 * of free pages of that type (depending on @free) 486 * 487 * This is needed for software suspend 488 */ 489 unsigned int count_swap_pages(int type, int free) 490 { 491 unsigned int n = 0; 492 493 if (type < nr_swapfiles) { 494 spin_lock(&swap_lock); 495 if (swap_info[type].flags & SWP_WRITEOK) { 496 n = swap_info[type].pages; 497 if (free) 498 n -= swap_info[type].inuse_pages; 499 } 500 spin_unlock(&swap_lock); 501 } 502 return n; 503 } 504 #endif 505 506 /* 507 * No need to decide whether this PTE shares the swap entry with others, 508 * just let do_wp_page work it out if a write is requested later - to 509 * force COW, vm_page_prot omits write permission from any private vma. 510 */ 511 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 512 unsigned long addr, swp_entry_t entry, struct page *page) 513 { 514 spinlock_t *ptl; 515 pte_t *pte; 516 int ret = 1; 517 518 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 519 ret = -ENOMEM; 520 521 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 522 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) { 523 if (ret > 0) 524 mem_cgroup_uncharge_page(page); 525 ret = 0; 526 goto out; 527 } 528 529 inc_mm_counter(vma->vm_mm, anon_rss); 530 get_page(page); 531 set_pte_at(vma->vm_mm, addr, pte, 532 pte_mkold(mk_pte(page, vma->vm_page_prot))); 533 page_add_anon_rmap(page, vma, addr); 534 swap_free(entry); 535 /* 536 * Move the page to the active list so it is not 537 * immediately swapped out again after swapon. 538 */ 539 activate_page(page); 540 out: 541 pte_unmap_unlock(pte, ptl); 542 return ret; 543 } 544 545 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 546 unsigned long addr, unsigned long end, 547 swp_entry_t entry, struct page *page) 548 { 549 pte_t swp_pte = swp_entry_to_pte(entry); 550 pte_t *pte; 551 int ret = 0; 552 553 /* 554 * We don't actually need pte lock while scanning for swp_pte: since 555 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 556 * page table while we're scanning; though it could get zapped, and on 557 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 558 * of unmatched parts which look like swp_pte, so unuse_pte must 559 * recheck under pte lock. Scanning without pte lock lets it be 560 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 561 */ 562 pte = pte_offset_map(pmd, addr); 563 do { 564 /* 565 * swapoff spends a _lot_ of time in this loop! 566 * Test inline before going to call unuse_pte. 567 */ 568 if (unlikely(pte_same(*pte, swp_pte))) { 569 pte_unmap(pte); 570 ret = unuse_pte(vma, pmd, addr, entry, page); 571 if (ret) 572 goto out; 573 pte = pte_offset_map(pmd, addr); 574 } 575 } while (pte++, addr += PAGE_SIZE, addr != end); 576 pte_unmap(pte - 1); 577 out: 578 return ret; 579 } 580 581 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 582 unsigned long addr, unsigned long end, 583 swp_entry_t entry, struct page *page) 584 { 585 pmd_t *pmd; 586 unsigned long next; 587 int ret; 588 589 pmd = pmd_offset(pud, addr); 590 do { 591 next = pmd_addr_end(addr, end); 592 if (pmd_none_or_clear_bad(pmd)) 593 continue; 594 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 595 if (ret) 596 return ret; 597 } while (pmd++, addr = next, addr != end); 598 return 0; 599 } 600 601 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 602 unsigned long addr, unsigned long end, 603 swp_entry_t entry, struct page *page) 604 { 605 pud_t *pud; 606 unsigned long next; 607 int ret; 608 609 pud = pud_offset(pgd, addr); 610 do { 611 next = pud_addr_end(addr, end); 612 if (pud_none_or_clear_bad(pud)) 613 continue; 614 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 615 if (ret) 616 return ret; 617 } while (pud++, addr = next, addr != end); 618 return 0; 619 } 620 621 static int unuse_vma(struct vm_area_struct *vma, 622 swp_entry_t entry, struct page *page) 623 { 624 pgd_t *pgd; 625 unsigned long addr, end, next; 626 int ret; 627 628 if (page->mapping) { 629 addr = page_address_in_vma(page, vma); 630 if (addr == -EFAULT) 631 return 0; 632 else 633 end = addr + PAGE_SIZE; 634 } else { 635 addr = vma->vm_start; 636 end = vma->vm_end; 637 } 638 639 pgd = pgd_offset(vma->vm_mm, addr); 640 do { 641 next = pgd_addr_end(addr, end); 642 if (pgd_none_or_clear_bad(pgd)) 643 continue; 644 ret = unuse_pud_range(vma, pgd, addr, next, entry, page); 645 if (ret) 646 return ret; 647 } while (pgd++, addr = next, addr != end); 648 return 0; 649 } 650 651 static int unuse_mm(struct mm_struct *mm, 652 swp_entry_t entry, struct page *page) 653 { 654 struct vm_area_struct *vma; 655 int ret = 0; 656 657 if (!down_read_trylock(&mm->mmap_sem)) { 658 /* 659 * Activate page so shrink_cache is unlikely to unmap its 660 * ptes while lock is dropped, so swapoff can make progress. 661 */ 662 activate_page(page); 663 unlock_page(page); 664 down_read(&mm->mmap_sem); 665 lock_page(page); 666 } 667 for (vma = mm->mmap; vma; vma = vma->vm_next) { 668 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 669 break; 670 } 671 up_read(&mm->mmap_sem); 672 return (ret < 0)? ret: 0; 673 } 674 675 /* 676 * Scan swap_map from current position to next entry still in use. 677 * Recycle to start on reaching the end, returning 0 when empty. 678 */ 679 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 680 unsigned int prev) 681 { 682 unsigned int max = si->max; 683 unsigned int i = prev; 684 int count; 685 686 /* 687 * No need for swap_lock here: we're just looking 688 * for whether an entry is in use, not modifying it; false 689 * hits are okay, and sys_swapoff() has already prevented new 690 * allocations from this area (while holding swap_lock). 691 */ 692 for (;;) { 693 if (++i >= max) { 694 if (!prev) { 695 i = 0; 696 break; 697 } 698 /* 699 * No entries in use at top of swap_map, 700 * loop back to start and recheck there. 701 */ 702 max = prev + 1; 703 prev = 0; 704 i = 1; 705 } 706 count = si->swap_map[i]; 707 if (count && count != SWAP_MAP_BAD) 708 break; 709 } 710 return i; 711 } 712 713 /* 714 * We completely avoid races by reading each swap page in advance, 715 * and then search for the process using it. All the necessary 716 * page table adjustments can then be made atomically. 717 */ 718 static int try_to_unuse(unsigned int type) 719 { 720 struct swap_info_struct * si = &swap_info[type]; 721 struct mm_struct *start_mm; 722 unsigned short *swap_map; 723 unsigned short swcount; 724 struct page *page; 725 swp_entry_t entry; 726 unsigned int i = 0; 727 int retval = 0; 728 int reset_overflow = 0; 729 int shmem; 730 731 /* 732 * When searching mms for an entry, a good strategy is to 733 * start at the first mm we freed the previous entry from 734 * (though actually we don't notice whether we or coincidence 735 * freed the entry). Initialize this start_mm with a hold. 736 * 737 * A simpler strategy would be to start at the last mm we 738 * freed the previous entry from; but that would take less 739 * advantage of mmlist ordering, which clusters forked mms 740 * together, child after parent. If we race with dup_mmap(), we 741 * prefer to resolve parent before child, lest we miss entries 742 * duplicated after we scanned child: using last mm would invert 743 * that. Though it's only a serious concern when an overflowed 744 * swap count is reset from SWAP_MAP_MAX, preventing a rescan. 745 */ 746 start_mm = &init_mm; 747 atomic_inc(&init_mm.mm_users); 748 749 /* 750 * Keep on scanning until all entries have gone. Usually, 751 * one pass through swap_map is enough, but not necessarily: 752 * there are races when an instance of an entry might be missed. 753 */ 754 while ((i = find_next_to_unuse(si, i)) != 0) { 755 if (signal_pending(current)) { 756 retval = -EINTR; 757 break; 758 } 759 760 /* 761 * Get a page for the entry, using the existing swap 762 * cache page if there is one. Otherwise, get a clean 763 * page and read the swap into it. 764 */ 765 swap_map = &si->swap_map[i]; 766 entry = swp_entry(type, i); 767 page = read_swap_cache_async(entry, 768 GFP_HIGHUSER_MOVABLE, NULL, 0); 769 if (!page) { 770 /* 771 * Either swap_duplicate() failed because entry 772 * has been freed independently, and will not be 773 * reused since sys_swapoff() already disabled 774 * allocation from here, or alloc_page() failed. 775 */ 776 if (!*swap_map) 777 continue; 778 retval = -ENOMEM; 779 break; 780 } 781 782 /* 783 * Don't hold on to start_mm if it looks like exiting. 784 */ 785 if (atomic_read(&start_mm->mm_users) == 1) { 786 mmput(start_mm); 787 start_mm = &init_mm; 788 atomic_inc(&init_mm.mm_users); 789 } 790 791 /* 792 * Wait for and lock page. When do_swap_page races with 793 * try_to_unuse, do_swap_page can handle the fault much 794 * faster than try_to_unuse can locate the entry. This 795 * apparently redundant "wait_on_page_locked" lets try_to_unuse 796 * defer to do_swap_page in such a case - in some tests, 797 * do_swap_page and try_to_unuse repeatedly compete. 798 */ 799 wait_on_page_locked(page); 800 wait_on_page_writeback(page); 801 lock_page(page); 802 wait_on_page_writeback(page); 803 804 /* 805 * Remove all references to entry. 806 * Whenever we reach init_mm, there's no address space 807 * to search, but use it as a reminder to search shmem. 808 */ 809 shmem = 0; 810 swcount = *swap_map; 811 if (swcount > 1) { 812 if (start_mm == &init_mm) 813 shmem = shmem_unuse(entry, page); 814 else 815 retval = unuse_mm(start_mm, entry, page); 816 } 817 if (*swap_map > 1) { 818 int set_start_mm = (*swap_map >= swcount); 819 struct list_head *p = &start_mm->mmlist; 820 struct mm_struct *new_start_mm = start_mm; 821 struct mm_struct *prev_mm = start_mm; 822 struct mm_struct *mm; 823 824 atomic_inc(&new_start_mm->mm_users); 825 atomic_inc(&prev_mm->mm_users); 826 spin_lock(&mmlist_lock); 827 while (*swap_map > 1 && !retval && !shmem && 828 (p = p->next) != &start_mm->mmlist) { 829 mm = list_entry(p, struct mm_struct, mmlist); 830 if (!atomic_inc_not_zero(&mm->mm_users)) 831 continue; 832 spin_unlock(&mmlist_lock); 833 mmput(prev_mm); 834 prev_mm = mm; 835 836 cond_resched(); 837 838 swcount = *swap_map; 839 if (swcount <= 1) 840 ; 841 else if (mm == &init_mm) { 842 set_start_mm = 1; 843 shmem = shmem_unuse(entry, page); 844 } else 845 retval = unuse_mm(mm, entry, page); 846 if (set_start_mm && *swap_map < swcount) { 847 mmput(new_start_mm); 848 atomic_inc(&mm->mm_users); 849 new_start_mm = mm; 850 set_start_mm = 0; 851 } 852 spin_lock(&mmlist_lock); 853 } 854 spin_unlock(&mmlist_lock); 855 mmput(prev_mm); 856 mmput(start_mm); 857 start_mm = new_start_mm; 858 } 859 if (shmem) { 860 /* page has already been unlocked and released */ 861 if (shmem > 0) 862 continue; 863 retval = shmem; 864 break; 865 } 866 if (retval) { 867 unlock_page(page); 868 page_cache_release(page); 869 break; 870 } 871 872 /* 873 * How could swap count reach 0x7fff when the maximum 874 * pid is 0x7fff, and there's no way to repeat a swap 875 * page within an mm (except in shmem, where it's the 876 * shared object which takes the reference count)? 877 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4. 878 * 879 * If that's wrong, then we should worry more about 880 * exit_mmap() and do_munmap() cases described above: 881 * we might be resetting SWAP_MAP_MAX too early here. 882 * We know "Undead"s can happen, they're okay, so don't 883 * report them; but do report if we reset SWAP_MAP_MAX. 884 */ 885 if (*swap_map == SWAP_MAP_MAX) { 886 spin_lock(&swap_lock); 887 *swap_map = 1; 888 spin_unlock(&swap_lock); 889 reset_overflow = 1; 890 } 891 892 /* 893 * If a reference remains (rare), we would like to leave 894 * the page in the swap cache; but try_to_unmap could 895 * then re-duplicate the entry once we drop page lock, 896 * so we might loop indefinitely; also, that page could 897 * not be swapped out to other storage meanwhile. So: 898 * delete from cache even if there's another reference, 899 * after ensuring that the data has been saved to disk - 900 * since if the reference remains (rarer), it will be 901 * read from disk into another page. Splitting into two 902 * pages would be incorrect if swap supported "shared 903 * private" pages, but they are handled by tmpfs files. 904 */ 905 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) { 906 struct writeback_control wbc = { 907 .sync_mode = WB_SYNC_NONE, 908 }; 909 910 swap_writepage(page, &wbc); 911 lock_page(page); 912 wait_on_page_writeback(page); 913 } 914 if (PageSwapCache(page)) 915 delete_from_swap_cache(page); 916 917 /* 918 * So we could skip searching mms once swap count went 919 * to 1, we did not mark any present ptes as dirty: must 920 * mark page dirty so shrink_page_list will preserve it. 921 */ 922 SetPageDirty(page); 923 unlock_page(page); 924 page_cache_release(page); 925 926 /* 927 * Make sure that we aren't completely killing 928 * interactive performance. 929 */ 930 cond_resched(); 931 } 932 933 mmput(start_mm); 934 if (reset_overflow) { 935 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n"); 936 swap_overflow = 0; 937 } 938 return retval; 939 } 940 941 /* 942 * After a successful try_to_unuse, if no swap is now in use, we know 943 * we can empty the mmlist. swap_lock must be held on entry and exit. 944 * Note that mmlist_lock nests inside swap_lock, and an mm must be 945 * added to the mmlist just after page_duplicate - before would be racy. 946 */ 947 static void drain_mmlist(void) 948 { 949 struct list_head *p, *next; 950 unsigned int i; 951 952 for (i = 0; i < nr_swapfiles; i++) 953 if (swap_info[i].inuse_pages) 954 return; 955 spin_lock(&mmlist_lock); 956 list_for_each_safe(p, next, &init_mm.mmlist) 957 list_del_init(p); 958 spin_unlock(&mmlist_lock); 959 } 960 961 /* 962 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 963 * corresponds to page offset `offset'. 964 */ 965 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset) 966 { 967 struct swap_extent *se = sis->curr_swap_extent; 968 struct swap_extent *start_se = se; 969 970 for ( ; ; ) { 971 struct list_head *lh; 972 973 if (se->start_page <= offset && 974 offset < (se->start_page + se->nr_pages)) { 975 return se->start_block + (offset - se->start_page); 976 } 977 lh = se->list.next; 978 if (lh == &sis->extent_list) 979 lh = lh->next; 980 se = list_entry(lh, struct swap_extent, list); 981 sis->curr_swap_extent = se; 982 BUG_ON(se == start_se); /* It *must* be present */ 983 } 984 } 985 986 #ifdef CONFIG_HIBERNATION 987 /* 988 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 989 * corresponding to given index in swap_info (swap type). 990 */ 991 sector_t swapdev_block(int swap_type, pgoff_t offset) 992 { 993 struct swap_info_struct *sis; 994 995 if (swap_type >= nr_swapfiles) 996 return 0; 997 998 sis = swap_info + swap_type; 999 return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0; 1000 } 1001 #endif /* CONFIG_HIBERNATION */ 1002 1003 /* 1004 * Free all of a swapdev's extent information 1005 */ 1006 static void destroy_swap_extents(struct swap_info_struct *sis) 1007 { 1008 while (!list_empty(&sis->extent_list)) { 1009 struct swap_extent *se; 1010 1011 se = list_entry(sis->extent_list.next, 1012 struct swap_extent, list); 1013 list_del(&se->list); 1014 kfree(se); 1015 } 1016 } 1017 1018 /* 1019 * Add a block range (and the corresponding page range) into this swapdev's 1020 * extent list. The extent list is kept sorted in page order. 1021 * 1022 * This function rather assumes that it is called in ascending page order. 1023 */ 1024 static int 1025 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1026 unsigned long nr_pages, sector_t start_block) 1027 { 1028 struct swap_extent *se; 1029 struct swap_extent *new_se; 1030 struct list_head *lh; 1031 1032 lh = sis->extent_list.prev; /* The highest page extent */ 1033 if (lh != &sis->extent_list) { 1034 se = list_entry(lh, struct swap_extent, list); 1035 BUG_ON(se->start_page + se->nr_pages != start_page); 1036 if (se->start_block + se->nr_pages == start_block) { 1037 /* Merge it */ 1038 se->nr_pages += nr_pages; 1039 return 0; 1040 } 1041 } 1042 1043 /* 1044 * No merge. Insert a new extent, preserving ordering. 1045 */ 1046 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 1047 if (new_se == NULL) 1048 return -ENOMEM; 1049 new_se->start_page = start_page; 1050 new_se->nr_pages = nr_pages; 1051 new_se->start_block = start_block; 1052 1053 list_add_tail(&new_se->list, &sis->extent_list); 1054 return 1; 1055 } 1056 1057 /* 1058 * A `swap extent' is a simple thing which maps a contiguous range of pages 1059 * onto a contiguous range of disk blocks. An ordered list of swap extents 1060 * is built at swapon time and is then used at swap_writepage/swap_readpage 1061 * time for locating where on disk a page belongs. 1062 * 1063 * If the swapfile is an S_ISBLK block device, a single extent is installed. 1064 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 1065 * swap files identically. 1066 * 1067 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 1068 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1069 * swapfiles are handled *identically* after swapon time. 1070 * 1071 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1072 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1073 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1074 * requirements, they are simply tossed out - we will never use those blocks 1075 * for swapping. 1076 * 1077 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1078 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1079 * which will scribble on the fs. 1080 * 1081 * The amount of disk space which a single swap extent represents varies. 1082 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1083 * extents in the list. To avoid much list walking, we cache the previous 1084 * search location in `curr_swap_extent', and start new searches from there. 1085 * This is extremely effective. The average number of iterations in 1086 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1087 */ 1088 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1089 { 1090 struct inode *inode; 1091 unsigned blocks_per_page; 1092 unsigned long page_no; 1093 unsigned blkbits; 1094 sector_t probe_block; 1095 sector_t last_block; 1096 sector_t lowest_block = -1; 1097 sector_t highest_block = 0; 1098 int nr_extents = 0; 1099 int ret; 1100 1101 inode = sis->swap_file->f_mapping->host; 1102 if (S_ISBLK(inode->i_mode)) { 1103 ret = add_swap_extent(sis, 0, sis->max, 0); 1104 *span = sis->pages; 1105 goto done; 1106 } 1107 1108 blkbits = inode->i_blkbits; 1109 blocks_per_page = PAGE_SIZE >> blkbits; 1110 1111 /* 1112 * Map all the blocks into the extent list. This code doesn't try 1113 * to be very smart. 1114 */ 1115 probe_block = 0; 1116 page_no = 0; 1117 last_block = i_size_read(inode) >> blkbits; 1118 while ((probe_block + blocks_per_page) <= last_block && 1119 page_no < sis->max) { 1120 unsigned block_in_page; 1121 sector_t first_block; 1122 1123 first_block = bmap(inode, probe_block); 1124 if (first_block == 0) 1125 goto bad_bmap; 1126 1127 /* 1128 * It must be PAGE_SIZE aligned on-disk 1129 */ 1130 if (first_block & (blocks_per_page - 1)) { 1131 probe_block++; 1132 goto reprobe; 1133 } 1134 1135 for (block_in_page = 1; block_in_page < blocks_per_page; 1136 block_in_page++) { 1137 sector_t block; 1138 1139 block = bmap(inode, probe_block + block_in_page); 1140 if (block == 0) 1141 goto bad_bmap; 1142 if (block != first_block + block_in_page) { 1143 /* Discontiguity */ 1144 probe_block++; 1145 goto reprobe; 1146 } 1147 } 1148 1149 first_block >>= (PAGE_SHIFT - blkbits); 1150 if (page_no) { /* exclude the header page */ 1151 if (first_block < lowest_block) 1152 lowest_block = first_block; 1153 if (first_block > highest_block) 1154 highest_block = first_block; 1155 } 1156 1157 /* 1158 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 1159 */ 1160 ret = add_swap_extent(sis, page_no, 1, first_block); 1161 if (ret < 0) 1162 goto out; 1163 nr_extents += ret; 1164 page_no++; 1165 probe_block += blocks_per_page; 1166 reprobe: 1167 continue; 1168 } 1169 ret = nr_extents; 1170 *span = 1 + highest_block - lowest_block; 1171 if (page_no == 0) 1172 page_no = 1; /* force Empty message */ 1173 sis->max = page_no; 1174 sis->pages = page_no - 1; 1175 sis->highest_bit = page_no - 1; 1176 done: 1177 sis->curr_swap_extent = list_entry(sis->extent_list.prev, 1178 struct swap_extent, list); 1179 goto out; 1180 bad_bmap: 1181 printk(KERN_ERR "swapon: swapfile has holes\n"); 1182 ret = -EINVAL; 1183 out: 1184 return ret; 1185 } 1186 1187 #if 0 /* We don't need this yet */ 1188 #include <linux/backing-dev.h> 1189 int page_queue_congested(struct page *page) 1190 { 1191 struct backing_dev_info *bdi; 1192 1193 BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */ 1194 1195 if (PageSwapCache(page)) { 1196 swp_entry_t entry = { .val = page_private(page) }; 1197 struct swap_info_struct *sis; 1198 1199 sis = get_swap_info_struct(swp_type(entry)); 1200 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info; 1201 } else 1202 bdi = page->mapping->backing_dev_info; 1203 return bdi_write_congested(bdi); 1204 } 1205 #endif 1206 1207 asmlinkage long sys_swapoff(const char __user * specialfile) 1208 { 1209 struct swap_info_struct * p = NULL; 1210 unsigned short *swap_map; 1211 struct file *swap_file, *victim; 1212 struct address_space *mapping; 1213 struct inode *inode; 1214 char * pathname; 1215 int i, type, prev; 1216 int err; 1217 1218 if (!capable(CAP_SYS_ADMIN)) 1219 return -EPERM; 1220 1221 pathname = getname(specialfile); 1222 err = PTR_ERR(pathname); 1223 if (IS_ERR(pathname)) 1224 goto out; 1225 1226 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); 1227 putname(pathname); 1228 err = PTR_ERR(victim); 1229 if (IS_ERR(victim)) 1230 goto out; 1231 1232 mapping = victim->f_mapping; 1233 prev = -1; 1234 spin_lock(&swap_lock); 1235 for (type = swap_list.head; type >= 0; type = swap_info[type].next) { 1236 p = swap_info + type; 1237 if ((p->flags & SWP_ACTIVE) == SWP_ACTIVE) { 1238 if (p->swap_file->f_mapping == mapping) 1239 break; 1240 } 1241 prev = type; 1242 } 1243 if (type < 0) { 1244 err = -EINVAL; 1245 spin_unlock(&swap_lock); 1246 goto out_dput; 1247 } 1248 if (!security_vm_enough_memory(p->pages)) 1249 vm_unacct_memory(p->pages); 1250 else { 1251 err = -ENOMEM; 1252 spin_unlock(&swap_lock); 1253 goto out_dput; 1254 } 1255 if (prev < 0) { 1256 swap_list.head = p->next; 1257 } else { 1258 swap_info[prev].next = p->next; 1259 } 1260 if (type == swap_list.next) { 1261 /* just pick something that's safe... */ 1262 swap_list.next = swap_list.head; 1263 } 1264 if (p->prio < 0) { 1265 for (i = p->next; i >= 0; i = swap_info[i].next) 1266 swap_info[i].prio = p->prio--; 1267 least_priority++; 1268 } 1269 nr_swap_pages -= p->pages; 1270 total_swap_pages -= p->pages; 1271 p->flags &= ~SWP_WRITEOK; 1272 spin_unlock(&swap_lock); 1273 1274 current->flags |= PF_SWAPOFF; 1275 err = try_to_unuse(type); 1276 current->flags &= ~PF_SWAPOFF; 1277 1278 if (err) { 1279 /* re-insert swap space back into swap_list */ 1280 spin_lock(&swap_lock); 1281 if (p->prio < 0) 1282 p->prio = --least_priority; 1283 prev = -1; 1284 for (i = swap_list.head; i >= 0; i = swap_info[i].next) { 1285 if (p->prio >= swap_info[i].prio) 1286 break; 1287 prev = i; 1288 } 1289 p->next = i; 1290 if (prev < 0) 1291 swap_list.head = swap_list.next = p - swap_info; 1292 else 1293 swap_info[prev].next = p - swap_info; 1294 nr_swap_pages += p->pages; 1295 total_swap_pages += p->pages; 1296 p->flags |= SWP_WRITEOK; 1297 spin_unlock(&swap_lock); 1298 goto out_dput; 1299 } 1300 1301 /* wait for any unplug function to finish */ 1302 down_write(&swap_unplug_sem); 1303 up_write(&swap_unplug_sem); 1304 1305 destroy_swap_extents(p); 1306 mutex_lock(&swapon_mutex); 1307 spin_lock(&swap_lock); 1308 drain_mmlist(); 1309 1310 /* wait for anyone still in scan_swap_map */ 1311 p->highest_bit = 0; /* cuts scans short */ 1312 while (p->flags >= SWP_SCANNING) { 1313 spin_unlock(&swap_lock); 1314 schedule_timeout_uninterruptible(1); 1315 spin_lock(&swap_lock); 1316 } 1317 1318 swap_file = p->swap_file; 1319 p->swap_file = NULL; 1320 p->max = 0; 1321 swap_map = p->swap_map; 1322 p->swap_map = NULL; 1323 p->flags = 0; 1324 spin_unlock(&swap_lock); 1325 mutex_unlock(&swapon_mutex); 1326 vfree(swap_map); 1327 inode = mapping->host; 1328 if (S_ISBLK(inode->i_mode)) { 1329 struct block_device *bdev = I_BDEV(inode); 1330 set_blocksize(bdev, p->old_block_size); 1331 bd_release(bdev); 1332 } else { 1333 mutex_lock(&inode->i_mutex); 1334 inode->i_flags &= ~S_SWAPFILE; 1335 mutex_unlock(&inode->i_mutex); 1336 } 1337 filp_close(swap_file, NULL); 1338 err = 0; 1339 1340 out_dput: 1341 filp_close(victim, NULL); 1342 out: 1343 return err; 1344 } 1345 1346 #ifdef CONFIG_PROC_FS 1347 /* iterator */ 1348 static void *swap_start(struct seq_file *swap, loff_t *pos) 1349 { 1350 struct swap_info_struct *ptr = swap_info; 1351 int i; 1352 loff_t l = *pos; 1353 1354 mutex_lock(&swapon_mutex); 1355 1356 if (!l) 1357 return SEQ_START_TOKEN; 1358 1359 for (i = 0; i < nr_swapfiles; i++, ptr++) { 1360 if (!(ptr->flags & SWP_USED) || !ptr->swap_map) 1361 continue; 1362 if (!--l) 1363 return ptr; 1364 } 1365 1366 return NULL; 1367 } 1368 1369 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 1370 { 1371 struct swap_info_struct *ptr; 1372 struct swap_info_struct *endptr = swap_info + nr_swapfiles; 1373 1374 if (v == SEQ_START_TOKEN) 1375 ptr = swap_info; 1376 else { 1377 ptr = v; 1378 ptr++; 1379 } 1380 1381 for (; ptr < endptr; ptr++) { 1382 if (!(ptr->flags & SWP_USED) || !ptr->swap_map) 1383 continue; 1384 ++*pos; 1385 return ptr; 1386 } 1387 1388 return NULL; 1389 } 1390 1391 static void swap_stop(struct seq_file *swap, void *v) 1392 { 1393 mutex_unlock(&swapon_mutex); 1394 } 1395 1396 static int swap_show(struct seq_file *swap, void *v) 1397 { 1398 struct swap_info_struct *ptr = v; 1399 struct file *file; 1400 int len; 1401 1402 if (ptr == SEQ_START_TOKEN) { 1403 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 1404 return 0; 1405 } 1406 1407 file = ptr->swap_file; 1408 len = seq_path(swap, &file->f_path, " \t\n\\"); 1409 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 1410 len < 40 ? 40 - len : 1, " ", 1411 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ? 1412 "partition" : "file\t", 1413 ptr->pages << (PAGE_SHIFT - 10), 1414 ptr->inuse_pages << (PAGE_SHIFT - 10), 1415 ptr->prio); 1416 return 0; 1417 } 1418 1419 static const struct seq_operations swaps_op = { 1420 .start = swap_start, 1421 .next = swap_next, 1422 .stop = swap_stop, 1423 .show = swap_show 1424 }; 1425 1426 static int swaps_open(struct inode *inode, struct file *file) 1427 { 1428 return seq_open(file, &swaps_op); 1429 } 1430 1431 static const struct file_operations proc_swaps_operations = { 1432 .open = swaps_open, 1433 .read = seq_read, 1434 .llseek = seq_lseek, 1435 .release = seq_release, 1436 }; 1437 1438 static int __init procswaps_init(void) 1439 { 1440 proc_create("swaps", 0, NULL, &proc_swaps_operations); 1441 return 0; 1442 } 1443 __initcall(procswaps_init); 1444 #endif /* CONFIG_PROC_FS */ 1445 1446 /* 1447 * Written 01/25/92 by Simmule Turner, heavily changed by Linus. 1448 * 1449 * The swapon system call 1450 */ 1451 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags) 1452 { 1453 struct swap_info_struct * p; 1454 char *name = NULL; 1455 struct block_device *bdev = NULL; 1456 struct file *swap_file = NULL; 1457 struct address_space *mapping; 1458 unsigned int type; 1459 int i, prev; 1460 int error; 1461 union swap_header *swap_header = NULL; 1462 int swap_header_version; 1463 unsigned int nr_good_pages = 0; 1464 int nr_extents = 0; 1465 sector_t span; 1466 unsigned long maxpages = 1; 1467 int swapfilesize; 1468 unsigned short *swap_map = NULL; 1469 struct page *page = NULL; 1470 struct inode *inode = NULL; 1471 int did_down = 0; 1472 1473 if (!capable(CAP_SYS_ADMIN)) 1474 return -EPERM; 1475 spin_lock(&swap_lock); 1476 p = swap_info; 1477 for (type = 0 ; type < nr_swapfiles ; type++,p++) 1478 if (!(p->flags & SWP_USED)) 1479 break; 1480 error = -EPERM; 1481 if (type >= MAX_SWAPFILES) { 1482 spin_unlock(&swap_lock); 1483 goto out; 1484 } 1485 if (type >= nr_swapfiles) 1486 nr_swapfiles = type+1; 1487 memset(p, 0, sizeof(*p)); 1488 INIT_LIST_HEAD(&p->extent_list); 1489 p->flags = SWP_USED; 1490 p->next = -1; 1491 spin_unlock(&swap_lock); 1492 name = getname(specialfile); 1493 error = PTR_ERR(name); 1494 if (IS_ERR(name)) { 1495 name = NULL; 1496 goto bad_swap_2; 1497 } 1498 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); 1499 error = PTR_ERR(swap_file); 1500 if (IS_ERR(swap_file)) { 1501 swap_file = NULL; 1502 goto bad_swap_2; 1503 } 1504 1505 p->swap_file = swap_file; 1506 mapping = swap_file->f_mapping; 1507 inode = mapping->host; 1508 1509 error = -EBUSY; 1510 for (i = 0; i < nr_swapfiles; i++) { 1511 struct swap_info_struct *q = &swap_info[i]; 1512 1513 if (i == type || !q->swap_file) 1514 continue; 1515 if (mapping == q->swap_file->f_mapping) 1516 goto bad_swap; 1517 } 1518 1519 error = -EINVAL; 1520 if (S_ISBLK(inode->i_mode)) { 1521 bdev = I_BDEV(inode); 1522 error = bd_claim(bdev, sys_swapon); 1523 if (error < 0) { 1524 bdev = NULL; 1525 error = -EINVAL; 1526 goto bad_swap; 1527 } 1528 p->old_block_size = block_size(bdev); 1529 error = set_blocksize(bdev, PAGE_SIZE); 1530 if (error < 0) 1531 goto bad_swap; 1532 p->bdev = bdev; 1533 } else if (S_ISREG(inode->i_mode)) { 1534 p->bdev = inode->i_sb->s_bdev; 1535 mutex_lock(&inode->i_mutex); 1536 did_down = 1; 1537 if (IS_SWAPFILE(inode)) { 1538 error = -EBUSY; 1539 goto bad_swap; 1540 } 1541 } else { 1542 goto bad_swap; 1543 } 1544 1545 swapfilesize = i_size_read(inode) >> PAGE_SHIFT; 1546 1547 /* 1548 * Read the swap header. 1549 */ 1550 if (!mapping->a_ops->readpage) { 1551 error = -EINVAL; 1552 goto bad_swap; 1553 } 1554 page = read_mapping_page(mapping, 0, swap_file); 1555 if (IS_ERR(page)) { 1556 error = PTR_ERR(page); 1557 goto bad_swap; 1558 } 1559 kmap(page); 1560 swap_header = page_address(page); 1561 1562 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10)) 1563 swap_header_version = 1; 1564 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10)) 1565 swap_header_version = 2; 1566 else { 1567 printk(KERN_ERR "Unable to find swap-space signature\n"); 1568 error = -EINVAL; 1569 goto bad_swap; 1570 } 1571 1572 switch (swap_header_version) { 1573 case 1: 1574 printk(KERN_ERR "version 0 swap is no longer supported. " 1575 "Use mkswap -v1 %s\n", name); 1576 error = -EINVAL; 1577 goto bad_swap; 1578 case 2: 1579 /* swap partition endianess hack... */ 1580 if (swab32(swap_header->info.version) == 1) { 1581 swab32s(&swap_header->info.version); 1582 swab32s(&swap_header->info.last_page); 1583 swab32s(&swap_header->info.nr_badpages); 1584 for (i = 0; i < swap_header->info.nr_badpages; i++) 1585 swab32s(&swap_header->info.badpages[i]); 1586 } 1587 /* Check the swap header's sub-version and the size of 1588 the swap file and bad block lists */ 1589 if (swap_header->info.version != 1) { 1590 printk(KERN_WARNING 1591 "Unable to handle swap header version %d\n", 1592 swap_header->info.version); 1593 error = -EINVAL; 1594 goto bad_swap; 1595 } 1596 1597 p->lowest_bit = 1; 1598 p->cluster_next = 1; 1599 1600 /* 1601 * Find out how many pages are allowed for a single swap 1602 * device. There are two limiting factors: 1) the number of 1603 * bits for the swap offset in the swp_entry_t type and 1604 * 2) the number of bits in the a swap pte as defined by 1605 * the different architectures. In order to find the 1606 * largest possible bit mask a swap entry with swap type 0 1607 * and swap offset ~0UL is created, encoded to a swap pte, 1608 * decoded to a swp_entry_t again and finally the swap 1609 * offset is extracted. This will mask all the bits from 1610 * the initial ~0UL mask that can't be encoded in either 1611 * the swp_entry_t or the architecture definition of a 1612 * swap pte. 1613 */ 1614 maxpages = swp_offset(pte_to_swp_entry(swp_entry_to_pte(swp_entry(0,~0UL)))) - 1; 1615 if (maxpages > swap_header->info.last_page) 1616 maxpages = swap_header->info.last_page; 1617 p->highest_bit = maxpages - 1; 1618 1619 error = -EINVAL; 1620 if (!maxpages) 1621 goto bad_swap; 1622 if (swapfilesize && maxpages > swapfilesize) { 1623 printk(KERN_WARNING 1624 "Swap area shorter than signature indicates\n"); 1625 goto bad_swap; 1626 } 1627 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 1628 goto bad_swap; 1629 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 1630 goto bad_swap; 1631 1632 /* OK, set up the swap map and apply the bad block list */ 1633 swap_map = vmalloc(maxpages * sizeof(short)); 1634 if (!swap_map) { 1635 error = -ENOMEM; 1636 goto bad_swap; 1637 } 1638 1639 error = 0; 1640 memset(swap_map, 0, maxpages * sizeof(short)); 1641 for (i = 0; i < swap_header->info.nr_badpages; i++) { 1642 int page_nr = swap_header->info.badpages[i]; 1643 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) 1644 error = -EINVAL; 1645 else 1646 swap_map[page_nr] = SWAP_MAP_BAD; 1647 } 1648 nr_good_pages = swap_header->info.last_page - 1649 swap_header->info.nr_badpages - 1650 1 /* header page */; 1651 if (error) 1652 goto bad_swap; 1653 } 1654 1655 if (nr_good_pages) { 1656 swap_map[0] = SWAP_MAP_BAD; 1657 p->max = maxpages; 1658 p->pages = nr_good_pages; 1659 nr_extents = setup_swap_extents(p, &span); 1660 if (nr_extents < 0) { 1661 error = nr_extents; 1662 goto bad_swap; 1663 } 1664 nr_good_pages = p->pages; 1665 } 1666 if (!nr_good_pages) { 1667 printk(KERN_WARNING "Empty swap-file\n"); 1668 error = -EINVAL; 1669 goto bad_swap; 1670 } 1671 1672 mutex_lock(&swapon_mutex); 1673 spin_lock(&swap_lock); 1674 if (swap_flags & SWAP_FLAG_PREFER) 1675 p->prio = 1676 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 1677 else 1678 p->prio = --least_priority; 1679 p->swap_map = swap_map; 1680 p->flags = SWP_ACTIVE; 1681 nr_swap_pages += nr_good_pages; 1682 total_swap_pages += nr_good_pages; 1683 1684 printk(KERN_INFO "Adding %uk swap on %s. " 1685 "Priority:%d extents:%d across:%lluk\n", 1686 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio, 1687 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10)); 1688 1689 /* insert swap space into swap_list: */ 1690 prev = -1; 1691 for (i = swap_list.head; i >= 0; i = swap_info[i].next) { 1692 if (p->prio >= swap_info[i].prio) { 1693 break; 1694 } 1695 prev = i; 1696 } 1697 p->next = i; 1698 if (prev < 0) { 1699 swap_list.head = swap_list.next = p - swap_info; 1700 } else { 1701 swap_info[prev].next = p - swap_info; 1702 } 1703 spin_unlock(&swap_lock); 1704 mutex_unlock(&swapon_mutex); 1705 error = 0; 1706 goto out; 1707 bad_swap: 1708 if (bdev) { 1709 set_blocksize(bdev, p->old_block_size); 1710 bd_release(bdev); 1711 } 1712 destroy_swap_extents(p); 1713 bad_swap_2: 1714 spin_lock(&swap_lock); 1715 p->swap_file = NULL; 1716 p->flags = 0; 1717 spin_unlock(&swap_lock); 1718 vfree(swap_map); 1719 if (swap_file) 1720 filp_close(swap_file, NULL); 1721 out: 1722 if (page && !IS_ERR(page)) { 1723 kunmap(page); 1724 page_cache_release(page); 1725 } 1726 if (name) 1727 putname(name); 1728 if (did_down) { 1729 if (!error) 1730 inode->i_flags |= S_SWAPFILE; 1731 mutex_unlock(&inode->i_mutex); 1732 } 1733 return error; 1734 } 1735 1736 void si_swapinfo(struct sysinfo *val) 1737 { 1738 unsigned int i; 1739 unsigned long nr_to_be_unused = 0; 1740 1741 spin_lock(&swap_lock); 1742 for (i = 0; i < nr_swapfiles; i++) { 1743 if (!(swap_info[i].flags & SWP_USED) || 1744 (swap_info[i].flags & SWP_WRITEOK)) 1745 continue; 1746 nr_to_be_unused += swap_info[i].inuse_pages; 1747 } 1748 val->freeswap = nr_swap_pages + nr_to_be_unused; 1749 val->totalswap = total_swap_pages + nr_to_be_unused; 1750 spin_unlock(&swap_lock); 1751 } 1752 1753 /* 1754 * Verify that a swap entry is valid and increment its swap map count. 1755 * 1756 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as 1757 * "permanent", but will be reclaimed by the next swapoff. 1758 */ 1759 int swap_duplicate(swp_entry_t entry) 1760 { 1761 struct swap_info_struct * p; 1762 unsigned long offset, type; 1763 int result = 0; 1764 1765 if (is_migration_entry(entry)) 1766 return 1; 1767 1768 type = swp_type(entry); 1769 if (type >= nr_swapfiles) 1770 goto bad_file; 1771 p = type + swap_info; 1772 offset = swp_offset(entry); 1773 1774 spin_lock(&swap_lock); 1775 if (offset < p->max && p->swap_map[offset]) { 1776 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) { 1777 p->swap_map[offset]++; 1778 result = 1; 1779 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) { 1780 if (swap_overflow++ < 5) 1781 printk(KERN_WARNING "swap_dup: swap entry overflow\n"); 1782 p->swap_map[offset] = SWAP_MAP_MAX; 1783 result = 1; 1784 } 1785 } 1786 spin_unlock(&swap_lock); 1787 out: 1788 return result; 1789 1790 bad_file: 1791 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); 1792 goto out; 1793 } 1794 1795 struct swap_info_struct * 1796 get_swap_info_struct(unsigned type) 1797 { 1798 return &swap_info[type]; 1799 } 1800 1801 /* 1802 * swap_lock prevents swap_map being freed. Don't grab an extra 1803 * reference on the swaphandle, it doesn't matter if it becomes unused. 1804 */ 1805 int valid_swaphandles(swp_entry_t entry, unsigned long *offset) 1806 { 1807 struct swap_info_struct *si; 1808 int our_page_cluster = page_cluster; 1809 pgoff_t target, toff; 1810 pgoff_t base, end; 1811 int nr_pages = 0; 1812 1813 if (!our_page_cluster) /* no readahead */ 1814 return 0; 1815 1816 si = &swap_info[swp_type(entry)]; 1817 target = swp_offset(entry); 1818 base = (target >> our_page_cluster) << our_page_cluster; 1819 end = base + (1 << our_page_cluster); 1820 if (!base) /* first page is swap header */ 1821 base++; 1822 1823 spin_lock(&swap_lock); 1824 if (end > si->max) /* don't go beyond end of map */ 1825 end = si->max; 1826 1827 /* Count contiguous allocated slots above our target */ 1828 for (toff = target; ++toff < end; nr_pages++) { 1829 /* Don't read in free or bad pages */ 1830 if (!si->swap_map[toff]) 1831 break; 1832 if (si->swap_map[toff] == SWAP_MAP_BAD) 1833 break; 1834 } 1835 /* Count contiguous allocated slots below our target */ 1836 for (toff = target; --toff >= base; nr_pages++) { 1837 /* Don't read in free or bad pages */ 1838 if (!si->swap_map[toff]) 1839 break; 1840 if (si->swap_map[toff] == SWAP_MAP_BAD) 1841 break; 1842 } 1843 spin_unlock(&swap_lock); 1844 1845 /* 1846 * Indicate starting offset, and return number of pages to get: 1847 * if only 1, say 0, since there's then no readahead to be done. 1848 */ 1849 *offset = ++toff; 1850 return nr_pages? ++nr_pages: 0; 1851 } 1852