1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/mm.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/task.h> 12 #include <linux/hugetlb.h> 13 #include <linux/mman.h> 14 #include <linux/slab.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/swap.h> 17 #include <linux/vmalloc.h> 18 #include <linux/pagemap.h> 19 #include <linux/namei.h> 20 #include <linux/shmem_fs.h> 21 #include <linux/blk-cgroup.h> 22 #include <linux/random.h> 23 #include <linux/writeback.h> 24 #include <linux/proc_fs.h> 25 #include <linux/seq_file.h> 26 #include <linux/init.h> 27 #include <linux/ksm.h> 28 #include <linux/rmap.h> 29 #include <linux/security.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mutex.h> 32 #include <linux/capability.h> 33 #include <linux/syscalls.h> 34 #include <linux/memcontrol.h> 35 #include <linux/poll.h> 36 #include <linux/oom.h> 37 #include <linux/frontswap.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/swap_slots.h> 41 #include <linux/sort.h> 42 #include <linux/completion.h> 43 44 #include <asm/tlbflush.h> 45 #include <linux/swapops.h> 46 #include <linux/swap_cgroup.h> 47 48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 49 unsigned char); 50 static void free_swap_count_continuations(struct swap_info_struct *); 51 52 static DEFINE_SPINLOCK(swap_lock); 53 static unsigned int nr_swapfiles; 54 atomic_long_t nr_swap_pages; 55 /* 56 * Some modules use swappable objects and may try to swap them out under 57 * memory pressure (via the shrinker). Before doing so, they may wish to 58 * check to see if any swap space is available. 59 */ 60 EXPORT_SYMBOL_GPL(nr_swap_pages); 61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 62 long total_swap_pages; 63 static int least_priority = -1; 64 65 static const char Bad_file[] = "Bad swap file entry "; 66 static const char Unused_file[] = "Unused swap file entry "; 67 static const char Bad_offset[] = "Bad swap offset entry "; 68 static const char Unused_offset[] = "Unused swap offset entry "; 69 70 /* 71 * all active swap_info_structs 72 * protected with swap_lock, and ordered by priority. 73 */ 74 static PLIST_HEAD(swap_active_head); 75 76 /* 77 * all available (active, not full) swap_info_structs 78 * protected with swap_avail_lock, ordered by priority. 79 * This is used by get_swap_page() instead of swap_active_head 80 * because swap_active_head includes all swap_info_structs, 81 * but get_swap_page() doesn't need to look at full ones. 82 * This uses its own lock instead of swap_lock because when a 83 * swap_info_struct changes between not-full/full, it needs to 84 * add/remove itself to/from this list, but the swap_info_struct->lock 85 * is held and the locking order requires swap_lock to be taken 86 * before any swap_info_struct->lock. 87 */ 88 static struct plist_head *swap_avail_heads; 89 static DEFINE_SPINLOCK(swap_avail_lock); 90 91 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 92 93 static DEFINE_MUTEX(swapon_mutex); 94 95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 96 /* Activity counter to indicate that a swapon or swapoff has occurred */ 97 static atomic_t proc_poll_event = ATOMIC_INIT(0); 98 99 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 100 101 static struct swap_info_struct *swap_type_to_swap_info(int type) 102 { 103 if (type >= MAX_SWAPFILES) 104 return NULL; 105 106 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 107 } 108 109 static inline unsigned char swap_count(unsigned char ent) 110 { 111 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 112 } 113 114 /* Reclaim the swap entry anyway if possible */ 115 #define TTRS_ANYWAY 0x1 116 /* 117 * Reclaim the swap entry if there are no more mappings of the 118 * corresponding page 119 */ 120 #define TTRS_UNMAPPED 0x2 121 /* Reclaim the swap entry if swap is getting full*/ 122 #define TTRS_FULL 0x4 123 124 /* returns 1 if swap entry is freed */ 125 static int __try_to_reclaim_swap(struct swap_info_struct *si, 126 unsigned long offset, unsigned long flags) 127 { 128 swp_entry_t entry = swp_entry(si->type, offset); 129 struct page *page; 130 int ret = 0; 131 132 page = find_get_page(swap_address_space(entry), offset); 133 if (!page) 134 return 0; 135 /* 136 * When this function is called from scan_swap_map_slots() and it's 137 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page, 138 * here. We have to use trylock for avoiding deadlock. This is a special 139 * case and you should use try_to_free_swap() with explicit lock_page() 140 * in usual operations. 141 */ 142 if (trylock_page(page)) { 143 if ((flags & TTRS_ANYWAY) || 144 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) || 145 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page))) 146 ret = try_to_free_swap(page); 147 unlock_page(page); 148 } 149 put_page(page); 150 return ret; 151 } 152 153 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 154 { 155 struct rb_node *rb = rb_first(&sis->swap_extent_root); 156 return rb_entry(rb, struct swap_extent, rb_node); 157 } 158 159 static inline struct swap_extent *next_se(struct swap_extent *se) 160 { 161 struct rb_node *rb = rb_next(&se->rb_node); 162 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 163 } 164 165 /* 166 * swapon tell device that all the old swap contents can be discarded, 167 * to allow the swap device to optimize its wear-levelling. 168 */ 169 static int discard_swap(struct swap_info_struct *si) 170 { 171 struct swap_extent *se; 172 sector_t start_block; 173 sector_t nr_blocks; 174 int err = 0; 175 176 /* Do not discard the swap header page! */ 177 se = first_se(si); 178 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 179 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 180 if (nr_blocks) { 181 err = blkdev_issue_discard(si->bdev, start_block, 182 nr_blocks, GFP_KERNEL, 0); 183 if (err) 184 return err; 185 cond_resched(); 186 } 187 188 for (se = next_se(se); se; se = next_se(se)) { 189 start_block = se->start_block << (PAGE_SHIFT - 9); 190 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 191 192 err = blkdev_issue_discard(si->bdev, start_block, 193 nr_blocks, GFP_KERNEL, 0); 194 if (err) 195 break; 196 197 cond_resched(); 198 } 199 return err; /* That will often be -EOPNOTSUPP */ 200 } 201 202 static struct swap_extent * 203 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 204 { 205 struct swap_extent *se; 206 struct rb_node *rb; 207 208 rb = sis->swap_extent_root.rb_node; 209 while (rb) { 210 se = rb_entry(rb, struct swap_extent, rb_node); 211 if (offset < se->start_page) 212 rb = rb->rb_left; 213 else if (offset >= se->start_page + se->nr_pages) 214 rb = rb->rb_right; 215 else 216 return se; 217 } 218 /* It *must* be present */ 219 BUG(); 220 } 221 222 sector_t swap_page_sector(struct page *page) 223 { 224 struct swap_info_struct *sis = page_swap_info(page); 225 struct swap_extent *se; 226 sector_t sector; 227 pgoff_t offset; 228 229 offset = __page_file_index(page); 230 se = offset_to_swap_extent(sis, offset); 231 sector = se->start_block + (offset - se->start_page); 232 return sector << (PAGE_SHIFT - 9); 233 } 234 235 /* 236 * swap allocation tell device that a cluster of swap can now be discarded, 237 * to allow the swap device to optimize its wear-levelling. 238 */ 239 static void discard_swap_cluster(struct swap_info_struct *si, 240 pgoff_t start_page, pgoff_t nr_pages) 241 { 242 struct swap_extent *se = offset_to_swap_extent(si, start_page); 243 244 while (nr_pages) { 245 pgoff_t offset = start_page - se->start_page; 246 sector_t start_block = se->start_block + offset; 247 sector_t nr_blocks = se->nr_pages - offset; 248 249 if (nr_blocks > nr_pages) 250 nr_blocks = nr_pages; 251 start_page += nr_blocks; 252 nr_pages -= nr_blocks; 253 254 start_block <<= PAGE_SHIFT - 9; 255 nr_blocks <<= PAGE_SHIFT - 9; 256 if (blkdev_issue_discard(si->bdev, start_block, 257 nr_blocks, GFP_NOIO, 0)) 258 break; 259 260 se = next_se(se); 261 } 262 } 263 264 #ifdef CONFIG_THP_SWAP 265 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 266 267 #define swap_entry_size(size) (size) 268 #else 269 #define SWAPFILE_CLUSTER 256 270 271 /* 272 * Define swap_entry_size() as constant to let compiler to optimize 273 * out some code if !CONFIG_THP_SWAP 274 */ 275 #define swap_entry_size(size) 1 276 #endif 277 #define LATENCY_LIMIT 256 278 279 static inline void cluster_set_flag(struct swap_cluster_info *info, 280 unsigned int flag) 281 { 282 info->flags = flag; 283 } 284 285 static inline unsigned int cluster_count(struct swap_cluster_info *info) 286 { 287 return info->data; 288 } 289 290 static inline void cluster_set_count(struct swap_cluster_info *info, 291 unsigned int c) 292 { 293 info->data = c; 294 } 295 296 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 297 unsigned int c, unsigned int f) 298 { 299 info->flags = f; 300 info->data = c; 301 } 302 303 static inline unsigned int cluster_next(struct swap_cluster_info *info) 304 { 305 return info->data; 306 } 307 308 static inline void cluster_set_next(struct swap_cluster_info *info, 309 unsigned int n) 310 { 311 info->data = n; 312 } 313 314 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 315 unsigned int n, unsigned int f) 316 { 317 info->flags = f; 318 info->data = n; 319 } 320 321 static inline bool cluster_is_free(struct swap_cluster_info *info) 322 { 323 return info->flags & CLUSTER_FLAG_FREE; 324 } 325 326 static inline bool cluster_is_null(struct swap_cluster_info *info) 327 { 328 return info->flags & CLUSTER_FLAG_NEXT_NULL; 329 } 330 331 static inline void cluster_set_null(struct swap_cluster_info *info) 332 { 333 info->flags = CLUSTER_FLAG_NEXT_NULL; 334 info->data = 0; 335 } 336 337 static inline bool cluster_is_huge(struct swap_cluster_info *info) 338 { 339 if (IS_ENABLED(CONFIG_THP_SWAP)) 340 return info->flags & CLUSTER_FLAG_HUGE; 341 return false; 342 } 343 344 static inline void cluster_clear_huge(struct swap_cluster_info *info) 345 { 346 info->flags &= ~CLUSTER_FLAG_HUGE; 347 } 348 349 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 350 unsigned long offset) 351 { 352 struct swap_cluster_info *ci; 353 354 ci = si->cluster_info; 355 if (ci) { 356 ci += offset / SWAPFILE_CLUSTER; 357 spin_lock(&ci->lock); 358 } 359 return ci; 360 } 361 362 static inline void unlock_cluster(struct swap_cluster_info *ci) 363 { 364 if (ci) 365 spin_unlock(&ci->lock); 366 } 367 368 /* 369 * Determine the locking method in use for this device. Return 370 * swap_cluster_info if SSD-style cluster-based locking is in place. 371 */ 372 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 373 struct swap_info_struct *si, unsigned long offset) 374 { 375 struct swap_cluster_info *ci; 376 377 /* Try to use fine-grained SSD-style locking if available: */ 378 ci = lock_cluster(si, offset); 379 /* Otherwise, fall back to traditional, coarse locking: */ 380 if (!ci) 381 spin_lock(&si->lock); 382 383 return ci; 384 } 385 386 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 387 struct swap_cluster_info *ci) 388 { 389 if (ci) 390 unlock_cluster(ci); 391 else 392 spin_unlock(&si->lock); 393 } 394 395 static inline bool cluster_list_empty(struct swap_cluster_list *list) 396 { 397 return cluster_is_null(&list->head); 398 } 399 400 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 401 { 402 return cluster_next(&list->head); 403 } 404 405 static void cluster_list_init(struct swap_cluster_list *list) 406 { 407 cluster_set_null(&list->head); 408 cluster_set_null(&list->tail); 409 } 410 411 static void cluster_list_add_tail(struct swap_cluster_list *list, 412 struct swap_cluster_info *ci, 413 unsigned int idx) 414 { 415 if (cluster_list_empty(list)) { 416 cluster_set_next_flag(&list->head, idx, 0); 417 cluster_set_next_flag(&list->tail, idx, 0); 418 } else { 419 struct swap_cluster_info *ci_tail; 420 unsigned int tail = cluster_next(&list->tail); 421 422 /* 423 * Nested cluster lock, but both cluster locks are 424 * only acquired when we held swap_info_struct->lock 425 */ 426 ci_tail = ci + tail; 427 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 428 cluster_set_next(ci_tail, idx); 429 spin_unlock(&ci_tail->lock); 430 cluster_set_next_flag(&list->tail, idx, 0); 431 } 432 } 433 434 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 435 struct swap_cluster_info *ci) 436 { 437 unsigned int idx; 438 439 idx = cluster_next(&list->head); 440 if (cluster_next(&list->tail) == idx) { 441 cluster_set_null(&list->head); 442 cluster_set_null(&list->tail); 443 } else 444 cluster_set_next_flag(&list->head, 445 cluster_next(&ci[idx]), 0); 446 447 return idx; 448 } 449 450 /* Add a cluster to discard list and schedule it to do discard */ 451 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 452 unsigned int idx) 453 { 454 /* 455 * If scan_swap_map_slots() can't find a free cluster, it will check 456 * si->swap_map directly. To make sure the discarding cluster isn't 457 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied). 458 * It will be cleared after discard 459 */ 460 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 461 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 462 463 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 464 465 schedule_work(&si->discard_work); 466 } 467 468 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 469 { 470 struct swap_cluster_info *ci = si->cluster_info; 471 472 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 473 cluster_list_add_tail(&si->free_clusters, ci, idx); 474 } 475 476 /* 477 * Doing discard actually. After a cluster discard is finished, the cluster 478 * will be added to free cluster list. caller should hold si->lock. 479 */ 480 static void swap_do_scheduled_discard(struct swap_info_struct *si) 481 { 482 struct swap_cluster_info *info, *ci; 483 unsigned int idx; 484 485 info = si->cluster_info; 486 487 while (!cluster_list_empty(&si->discard_clusters)) { 488 idx = cluster_list_del_first(&si->discard_clusters, info); 489 spin_unlock(&si->lock); 490 491 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 492 SWAPFILE_CLUSTER); 493 494 spin_lock(&si->lock); 495 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 496 __free_cluster(si, idx); 497 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 498 0, SWAPFILE_CLUSTER); 499 unlock_cluster(ci); 500 } 501 } 502 503 static void swap_discard_work(struct work_struct *work) 504 { 505 struct swap_info_struct *si; 506 507 si = container_of(work, struct swap_info_struct, discard_work); 508 509 spin_lock(&si->lock); 510 swap_do_scheduled_discard(si); 511 spin_unlock(&si->lock); 512 } 513 514 static void swap_users_ref_free(struct percpu_ref *ref) 515 { 516 struct swap_info_struct *si; 517 518 si = container_of(ref, struct swap_info_struct, users); 519 complete(&si->comp); 520 } 521 522 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 523 { 524 struct swap_cluster_info *ci = si->cluster_info; 525 526 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 527 cluster_list_del_first(&si->free_clusters, ci); 528 cluster_set_count_flag(ci + idx, 0, 0); 529 } 530 531 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 532 { 533 struct swap_cluster_info *ci = si->cluster_info + idx; 534 535 VM_BUG_ON(cluster_count(ci) != 0); 536 /* 537 * If the swap is discardable, prepare discard the cluster 538 * instead of free it immediately. The cluster will be freed 539 * after discard. 540 */ 541 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 542 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 543 swap_cluster_schedule_discard(si, idx); 544 return; 545 } 546 547 __free_cluster(si, idx); 548 } 549 550 /* 551 * The cluster corresponding to page_nr will be used. The cluster will be 552 * removed from free cluster list and its usage counter will be increased. 553 */ 554 static void inc_cluster_info_page(struct swap_info_struct *p, 555 struct swap_cluster_info *cluster_info, unsigned long page_nr) 556 { 557 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 558 559 if (!cluster_info) 560 return; 561 if (cluster_is_free(&cluster_info[idx])) 562 alloc_cluster(p, idx); 563 564 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 565 cluster_set_count(&cluster_info[idx], 566 cluster_count(&cluster_info[idx]) + 1); 567 } 568 569 /* 570 * The cluster corresponding to page_nr decreases one usage. If the usage 571 * counter becomes 0, which means no page in the cluster is in using, we can 572 * optionally discard the cluster and add it to free cluster list. 573 */ 574 static void dec_cluster_info_page(struct swap_info_struct *p, 575 struct swap_cluster_info *cluster_info, unsigned long page_nr) 576 { 577 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 578 579 if (!cluster_info) 580 return; 581 582 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 583 cluster_set_count(&cluster_info[idx], 584 cluster_count(&cluster_info[idx]) - 1); 585 586 if (cluster_count(&cluster_info[idx]) == 0) 587 free_cluster(p, idx); 588 } 589 590 /* 591 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free 592 * cluster list. Avoiding such abuse to avoid list corruption. 593 */ 594 static bool 595 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 596 unsigned long offset) 597 { 598 struct percpu_cluster *percpu_cluster; 599 bool conflict; 600 601 offset /= SWAPFILE_CLUSTER; 602 conflict = !cluster_list_empty(&si->free_clusters) && 603 offset != cluster_list_first(&si->free_clusters) && 604 cluster_is_free(&si->cluster_info[offset]); 605 606 if (!conflict) 607 return false; 608 609 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 610 cluster_set_null(&percpu_cluster->index); 611 return true; 612 } 613 614 /* 615 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 616 * might involve allocating a new cluster for current CPU too. 617 */ 618 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 619 unsigned long *offset, unsigned long *scan_base) 620 { 621 struct percpu_cluster *cluster; 622 struct swap_cluster_info *ci; 623 unsigned long tmp, max; 624 625 new_cluster: 626 cluster = this_cpu_ptr(si->percpu_cluster); 627 if (cluster_is_null(&cluster->index)) { 628 if (!cluster_list_empty(&si->free_clusters)) { 629 cluster->index = si->free_clusters.head; 630 cluster->next = cluster_next(&cluster->index) * 631 SWAPFILE_CLUSTER; 632 } else if (!cluster_list_empty(&si->discard_clusters)) { 633 /* 634 * we don't have free cluster but have some clusters in 635 * discarding, do discard now and reclaim them, then 636 * reread cluster_next_cpu since we dropped si->lock 637 */ 638 swap_do_scheduled_discard(si); 639 *scan_base = this_cpu_read(*si->cluster_next_cpu); 640 *offset = *scan_base; 641 goto new_cluster; 642 } else 643 return false; 644 } 645 646 /* 647 * Other CPUs can use our cluster if they can't find a free cluster, 648 * check if there is still free entry in the cluster 649 */ 650 tmp = cluster->next; 651 max = min_t(unsigned long, si->max, 652 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 653 if (tmp < max) { 654 ci = lock_cluster(si, tmp); 655 while (tmp < max) { 656 if (!si->swap_map[tmp]) 657 break; 658 tmp++; 659 } 660 unlock_cluster(ci); 661 } 662 if (tmp >= max) { 663 cluster_set_null(&cluster->index); 664 goto new_cluster; 665 } 666 cluster->next = tmp + 1; 667 *offset = tmp; 668 *scan_base = tmp; 669 return true; 670 } 671 672 static void __del_from_avail_list(struct swap_info_struct *p) 673 { 674 int nid; 675 676 for_each_node(nid) 677 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 678 } 679 680 static void del_from_avail_list(struct swap_info_struct *p) 681 { 682 spin_lock(&swap_avail_lock); 683 __del_from_avail_list(p); 684 spin_unlock(&swap_avail_lock); 685 } 686 687 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 688 unsigned int nr_entries) 689 { 690 unsigned int end = offset + nr_entries - 1; 691 692 if (offset == si->lowest_bit) 693 si->lowest_bit += nr_entries; 694 if (end == si->highest_bit) 695 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries); 696 si->inuse_pages += nr_entries; 697 if (si->inuse_pages == si->pages) { 698 si->lowest_bit = si->max; 699 si->highest_bit = 0; 700 del_from_avail_list(si); 701 } 702 } 703 704 static void add_to_avail_list(struct swap_info_struct *p) 705 { 706 int nid; 707 708 spin_lock(&swap_avail_lock); 709 for_each_node(nid) { 710 WARN_ON(!plist_node_empty(&p->avail_lists[nid])); 711 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 712 } 713 spin_unlock(&swap_avail_lock); 714 } 715 716 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 717 unsigned int nr_entries) 718 { 719 unsigned long begin = offset; 720 unsigned long end = offset + nr_entries - 1; 721 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 722 723 if (offset < si->lowest_bit) 724 si->lowest_bit = offset; 725 if (end > si->highest_bit) { 726 bool was_full = !si->highest_bit; 727 728 WRITE_ONCE(si->highest_bit, end); 729 if (was_full && (si->flags & SWP_WRITEOK)) 730 add_to_avail_list(si); 731 } 732 atomic_long_add(nr_entries, &nr_swap_pages); 733 si->inuse_pages -= nr_entries; 734 if (si->flags & SWP_BLKDEV) 735 swap_slot_free_notify = 736 si->bdev->bd_disk->fops->swap_slot_free_notify; 737 else 738 swap_slot_free_notify = NULL; 739 while (offset <= end) { 740 arch_swap_invalidate_page(si->type, offset); 741 frontswap_invalidate_page(si->type, offset); 742 if (swap_slot_free_notify) 743 swap_slot_free_notify(si->bdev, offset); 744 offset++; 745 } 746 clear_shadow_from_swap_cache(si->type, begin, end); 747 } 748 749 static void set_cluster_next(struct swap_info_struct *si, unsigned long next) 750 { 751 unsigned long prev; 752 753 if (!(si->flags & SWP_SOLIDSTATE)) { 754 si->cluster_next = next; 755 return; 756 } 757 758 prev = this_cpu_read(*si->cluster_next_cpu); 759 /* 760 * Cross the swap address space size aligned trunk, choose 761 * another trunk randomly to avoid lock contention on swap 762 * address space if possible. 763 */ 764 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) != 765 (next >> SWAP_ADDRESS_SPACE_SHIFT)) { 766 /* No free swap slots available */ 767 if (si->highest_bit <= si->lowest_bit) 768 return; 769 next = si->lowest_bit + 770 prandom_u32_max(si->highest_bit - si->lowest_bit + 1); 771 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES); 772 next = max_t(unsigned int, next, si->lowest_bit); 773 } 774 this_cpu_write(*si->cluster_next_cpu, next); 775 } 776 777 static int scan_swap_map_slots(struct swap_info_struct *si, 778 unsigned char usage, int nr, 779 swp_entry_t slots[]) 780 { 781 struct swap_cluster_info *ci; 782 unsigned long offset; 783 unsigned long scan_base; 784 unsigned long last_in_cluster = 0; 785 int latency_ration = LATENCY_LIMIT; 786 int n_ret = 0; 787 bool scanned_many = false; 788 789 /* 790 * We try to cluster swap pages by allocating them sequentially 791 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 792 * way, however, we resort to first-free allocation, starting 793 * a new cluster. This prevents us from scattering swap pages 794 * all over the entire swap partition, so that we reduce 795 * overall disk seek times between swap pages. -- sct 796 * But we do now try to find an empty cluster. -Andrea 797 * And we let swap pages go all over an SSD partition. Hugh 798 */ 799 800 si->flags += SWP_SCANNING; 801 /* 802 * Use percpu scan base for SSD to reduce lock contention on 803 * cluster and swap cache. For HDD, sequential access is more 804 * important. 805 */ 806 if (si->flags & SWP_SOLIDSTATE) 807 scan_base = this_cpu_read(*si->cluster_next_cpu); 808 else 809 scan_base = si->cluster_next; 810 offset = scan_base; 811 812 /* SSD algorithm */ 813 if (si->cluster_info) { 814 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 815 goto scan; 816 } else if (unlikely(!si->cluster_nr--)) { 817 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 818 si->cluster_nr = SWAPFILE_CLUSTER - 1; 819 goto checks; 820 } 821 822 spin_unlock(&si->lock); 823 824 /* 825 * If seek is expensive, start searching for new cluster from 826 * start of partition, to minimize the span of allocated swap. 827 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 828 * case, just handled by scan_swap_map_try_ssd_cluster() above. 829 */ 830 scan_base = offset = si->lowest_bit; 831 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 832 833 /* Locate the first empty (unaligned) cluster */ 834 for (; last_in_cluster <= si->highest_bit; offset++) { 835 if (si->swap_map[offset]) 836 last_in_cluster = offset + SWAPFILE_CLUSTER; 837 else if (offset == last_in_cluster) { 838 spin_lock(&si->lock); 839 offset -= SWAPFILE_CLUSTER - 1; 840 si->cluster_next = offset; 841 si->cluster_nr = SWAPFILE_CLUSTER - 1; 842 goto checks; 843 } 844 if (unlikely(--latency_ration < 0)) { 845 cond_resched(); 846 latency_ration = LATENCY_LIMIT; 847 } 848 } 849 850 offset = scan_base; 851 spin_lock(&si->lock); 852 si->cluster_nr = SWAPFILE_CLUSTER - 1; 853 } 854 855 checks: 856 if (si->cluster_info) { 857 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 858 /* take a break if we already got some slots */ 859 if (n_ret) 860 goto done; 861 if (!scan_swap_map_try_ssd_cluster(si, &offset, 862 &scan_base)) 863 goto scan; 864 } 865 } 866 if (!(si->flags & SWP_WRITEOK)) 867 goto no_page; 868 if (!si->highest_bit) 869 goto no_page; 870 if (offset > si->highest_bit) 871 scan_base = offset = si->lowest_bit; 872 873 ci = lock_cluster(si, offset); 874 /* reuse swap entry of cache-only swap if not busy. */ 875 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 876 int swap_was_freed; 877 unlock_cluster(ci); 878 spin_unlock(&si->lock); 879 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 880 spin_lock(&si->lock); 881 /* entry was freed successfully, try to use this again */ 882 if (swap_was_freed) 883 goto checks; 884 goto scan; /* check next one */ 885 } 886 887 if (si->swap_map[offset]) { 888 unlock_cluster(ci); 889 if (!n_ret) 890 goto scan; 891 else 892 goto done; 893 } 894 WRITE_ONCE(si->swap_map[offset], usage); 895 inc_cluster_info_page(si, si->cluster_info, offset); 896 unlock_cluster(ci); 897 898 swap_range_alloc(si, offset, 1); 899 slots[n_ret++] = swp_entry(si->type, offset); 900 901 /* got enough slots or reach max slots? */ 902 if ((n_ret == nr) || (offset >= si->highest_bit)) 903 goto done; 904 905 /* search for next available slot */ 906 907 /* time to take a break? */ 908 if (unlikely(--latency_ration < 0)) { 909 if (n_ret) 910 goto done; 911 spin_unlock(&si->lock); 912 cond_resched(); 913 spin_lock(&si->lock); 914 latency_ration = LATENCY_LIMIT; 915 } 916 917 /* try to get more slots in cluster */ 918 if (si->cluster_info) { 919 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 920 goto checks; 921 } else if (si->cluster_nr && !si->swap_map[++offset]) { 922 /* non-ssd case, still more slots in cluster? */ 923 --si->cluster_nr; 924 goto checks; 925 } 926 927 /* 928 * Even if there's no free clusters available (fragmented), 929 * try to scan a little more quickly with lock held unless we 930 * have scanned too many slots already. 931 */ 932 if (!scanned_many) { 933 unsigned long scan_limit; 934 935 if (offset < scan_base) 936 scan_limit = scan_base; 937 else 938 scan_limit = si->highest_bit; 939 for (; offset <= scan_limit && --latency_ration > 0; 940 offset++) { 941 if (!si->swap_map[offset]) 942 goto checks; 943 } 944 } 945 946 done: 947 set_cluster_next(si, offset + 1); 948 si->flags -= SWP_SCANNING; 949 return n_ret; 950 951 scan: 952 spin_unlock(&si->lock); 953 while (++offset <= READ_ONCE(si->highest_bit)) { 954 if (data_race(!si->swap_map[offset])) { 955 spin_lock(&si->lock); 956 goto checks; 957 } 958 if (vm_swap_full() && 959 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 960 spin_lock(&si->lock); 961 goto checks; 962 } 963 if (unlikely(--latency_ration < 0)) { 964 cond_resched(); 965 latency_ration = LATENCY_LIMIT; 966 scanned_many = true; 967 } 968 } 969 offset = si->lowest_bit; 970 while (offset < scan_base) { 971 if (data_race(!si->swap_map[offset])) { 972 spin_lock(&si->lock); 973 goto checks; 974 } 975 if (vm_swap_full() && 976 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 977 spin_lock(&si->lock); 978 goto checks; 979 } 980 if (unlikely(--latency_ration < 0)) { 981 cond_resched(); 982 latency_ration = LATENCY_LIMIT; 983 scanned_many = true; 984 } 985 offset++; 986 } 987 spin_lock(&si->lock); 988 989 no_page: 990 si->flags -= SWP_SCANNING; 991 return n_ret; 992 } 993 994 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 995 { 996 unsigned long idx; 997 struct swap_cluster_info *ci; 998 unsigned long offset; 999 1000 /* 1001 * Should not even be attempting cluster allocations when huge 1002 * page swap is disabled. Warn and fail the allocation. 1003 */ 1004 if (!IS_ENABLED(CONFIG_THP_SWAP)) { 1005 VM_WARN_ON_ONCE(1); 1006 return 0; 1007 } 1008 1009 if (cluster_list_empty(&si->free_clusters)) 1010 return 0; 1011 1012 idx = cluster_list_first(&si->free_clusters); 1013 offset = idx * SWAPFILE_CLUSTER; 1014 ci = lock_cluster(si, offset); 1015 alloc_cluster(si, idx); 1016 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 1017 1018 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER); 1019 unlock_cluster(ci); 1020 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 1021 *slot = swp_entry(si->type, offset); 1022 1023 return 1; 1024 } 1025 1026 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 1027 { 1028 unsigned long offset = idx * SWAPFILE_CLUSTER; 1029 struct swap_cluster_info *ci; 1030 1031 ci = lock_cluster(si, offset); 1032 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 1033 cluster_set_count_flag(ci, 0, 0); 1034 free_cluster(si, idx); 1035 unlock_cluster(ci); 1036 swap_range_free(si, offset, SWAPFILE_CLUSTER); 1037 } 1038 1039 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) 1040 { 1041 unsigned long size = swap_entry_size(entry_size); 1042 struct swap_info_struct *si, *next; 1043 long avail_pgs; 1044 int n_ret = 0; 1045 int node; 1046 1047 /* Only single cluster request supported */ 1048 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); 1049 1050 spin_lock(&swap_avail_lock); 1051 1052 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 1053 if (avail_pgs <= 0) { 1054 spin_unlock(&swap_avail_lock); 1055 goto noswap; 1056 } 1057 1058 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); 1059 1060 atomic_long_sub(n_goal * size, &nr_swap_pages); 1061 1062 start_over: 1063 node = numa_node_id(); 1064 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1065 /* requeue si to after same-priority siblings */ 1066 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1067 spin_unlock(&swap_avail_lock); 1068 spin_lock(&si->lock); 1069 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 1070 spin_lock(&swap_avail_lock); 1071 if (plist_node_empty(&si->avail_lists[node])) { 1072 spin_unlock(&si->lock); 1073 goto nextsi; 1074 } 1075 WARN(!si->highest_bit, 1076 "swap_info %d in list but !highest_bit\n", 1077 si->type); 1078 WARN(!(si->flags & SWP_WRITEOK), 1079 "swap_info %d in list but !SWP_WRITEOK\n", 1080 si->type); 1081 __del_from_avail_list(si); 1082 spin_unlock(&si->lock); 1083 goto nextsi; 1084 } 1085 if (size == SWAPFILE_CLUSTER) { 1086 if (si->flags & SWP_BLKDEV) 1087 n_ret = swap_alloc_cluster(si, swp_entries); 1088 } else 1089 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1090 n_goal, swp_entries); 1091 spin_unlock(&si->lock); 1092 if (n_ret || size == SWAPFILE_CLUSTER) 1093 goto check_out; 1094 pr_debug("scan_swap_map of si %d failed to find offset\n", 1095 si->type); 1096 1097 spin_lock(&swap_avail_lock); 1098 nextsi: 1099 /* 1100 * if we got here, it's likely that si was almost full before, 1101 * and since scan_swap_map_slots() can drop the si->lock, 1102 * multiple callers probably all tried to get a page from the 1103 * same si and it filled up before we could get one; or, the si 1104 * filled up between us dropping swap_avail_lock and taking 1105 * si->lock. Since we dropped the swap_avail_lock, the 1106 * swap_avail_head list may have been modified; so if next is 1107 * still in the swap_avail_head list then try it, otherwise 1108 * start over if we have not gotten any slots. 1109 */ 1110 if (plist_node_empty(&next->avail_lists[node])) 1111 goto start_over; 1112 } 1113 1114 spin_unlock(&swap_avail_lock); 1115 1116 check_out: 1117 if (n_ret < n_goal) 1118 atomic_long_add((long)(n_goal - n_ret) * size, 1119 &nr_swap_pages); 1120 noswap: 1121 return n_ret; 1122 } 1123 1124 static struct swap_info_struct *__swap_info_get(swp_entry_t entry) 1125 { 1126 struct swap_info_struct *p; 1127 unsigned long offset; 1128 1129 if (!entry.val) 1130 goto out; 1131 p = swp_swap_info(entry); 1132 if (!p) 1133 goto bad_nofile; 1134 if (data_race(!(p->flags & SWP_USED))) 1135 goto bad_device; 1136 offset = swp_offset(entry); 1137 if (offset >= p->max) 1138 goto bad_offset; 1139 return p; 1140 1141 bad_offset: 1142 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1143 goto out; 1144 bad_device: 1145 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1146 goto out; 1147 bad_nofile: 1148 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1149 out: 1150 return NULL; 1151 } 1152 1153 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1154 { 1155 struct swap_info_struct *p; 1156 1157 p = __swap_info_get(entry); 1158 if (!p) 1159 goto out; 1160 if (data_race(!p->swap_map[swp_offset(entry)])) 1161 goto bad_free; 1162 return p; 1163 1164 bad_free: 1165 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1166 out: 1167 return NULL; 1168 } 1169 1170 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 1171 { 1172 struct swap_info_struct *p; 1173 1174 p = _swap_info_get(entry); 1175 if (p) 1176 spin_lock(&p->lock); 1177 return p; 1178 } 1179 1180 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1181 struct swap_info_struct *q) 1182 { 1183 struct swap_info_struct *p; 1184 1185 p = _swap_info_get(entry); 1186 1187 if (p != q) { 1188 if (q != NULL) 1189 spin_unlock(&q->lock); 1190 if (p != NULL) 1191 spin_lock(&p->lock); 1192 } 1193 return p; 1194 } 1195 1196 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1197 unsigned long offset, 1198 unsigned char usage) 1199 { 1200 unsigned char count; 1201 unsigned char has_cache; 1202 1203 count = p->swap_map[offset]; 1204 1205 has_cache = count & SWAP_HAS_CACHE; 1206 count &= ~SWAP_HAS_CACHE; 1207 1208 if (usage == SWAP_HAS_CACHE) { 1209 VM_BUG_ON(!has_cache); 1210 has_cache = 0; 1211 } else if (count == SWAP_MAP_SHMEM) { 1212 /* 1213 * Or we could insist on shmem.c using a special 1214 * swap_shmem_free() and free_shmem_swap_and_cache()... 1215 */ 1216 count = 0; 1217 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1218 if (count == COUNT_CONTINUED) { 1219 if (swap_count_continued(p, offset, count)) 1220 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1221 else 1222 count = SWAP_MAP_MAX; 1223 } else 1224 count--; 1225 } 1226 1227 usage = count | has_cache; 1228 if (usage) 1229 WRITE_ONCE(p->swap_map[offset], usage); 1230 else 1231 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE); 1232 1233 return usage; 1234 } 1235 1236 /* 1237 * Check whether swap entry is valid in the swap device. If so, 1238 * return pointer to swap_info_struct, and keep the swap entry valid 1239 * via preventing the swap device from being swapoff, until 1240 * put_swap_device() is called. Otherwise return NULL. 1241 * 1242 * Notice that swapoff or swapoff+swapon can still happen before the 1243 * percpu_ref_tryget_live() in get_swap_device() or after the 1244 * percpu_ref_put() in put_swap_device() if there isn't any other way 1245 * to prevent swapoff, such as page lock, page table lock, etc. The 1246 * caller must be prepared for that. For example, the following 1247 * situation is possible. 1248 * 1249 * CPU1 CPU2 1250 * do_swap_page() 1251 * ... swapoff+swapon 1252 * __read_swap_cache_async() 1253 * swapcache_prepare() 1254 * __swap_duplicate() 1255 * // check swap_map 1256 * // verify PTE not changed 1257 * 1258 * In __swap_duplicate(), the swap_map need to be checked before 1259 * changing partly because the specified swap entry may be for another 1260 * swap device which has been swapoff. And in do_swap_page(), after 1261 * the page is read from the swap device, the PTE is verified not 1262 * changed with the page table locked to check whether the swap device 1263 * has been swapoff or swapoff+swapon. 1264 */ 1265 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1266 { 1267 struct swap_info_struct *si; 1268 unsigned long offset; 1269 1270 if (!entry.val) 1271 goto out; 1272 si = swp_swap_info(entry); 1273 if (!si) 1274 goto bad_nofile; 1275 if (!percpu_ref_tryget_live(&si->users)) 1276 goto out; 1277 /* 1278 * Guarantee the si->users are checked before accessing other 1279 * fields of swap_info_struct. 1280 * 1281 * Paired with the spin_unlock() after setup_swap_info() in 1282 * enable_swap_info(). 1283 */ 1284 smp_rmb(); 1285 offset = swp_offset(entry); 1286 if (offset >= si->max) 1287 goto put_out; 1288 1289 return si; 1290 bad_nofile: 1291 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1292 out: 1293 return NULL; 1294 put_out: 1295 percpu_ref_put(&si->users); 1296 return NULL; 1297 } 1298 1299 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1300 swp_entry_t entry) 1301 { 1302 struct swap_cluster_info *ci; 1303 unsigned long offset = swp_offset(entry); 1304 unsigned char usage; 1305 1306 ci = lock_cluster_or_swap_info(p, offset); 1307 usage = __swap_entry_free_locked(p, offset, 1); 1308 unlock_cluster_or_swap_info(p, ci); 1309 if (!usage) 1310 free_swap_slot(entry); 1311 1312 return usage; 1313 } 1314 1315 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1316 { 1317 struct swap_cluster_info *ci; 1318 unsigned long offset = swp_offset(entry); 1319 unsigned char count; 1320 1321 ci = lock_cluster(p, offset); 1322 count = p->swap_map[offset]; 1323 VM_BUG_ON(count != SWAP_HAS_CACHE); 1324 p->swap_map[offset] = 0; 1325 dec_cluster_info_page(p, p->cluster_info, offset); 1326 unlock_cluster(ci); 1327 1328 mem_cgroup_uncharge_swap(entry, 1); 1329 swap_range_free(p, offset, 1); 1330 } 1331 1332 /* 1333 * Caller has made sure that the swap device corresponding to entry 1334 * is still around or has not been recycled. 1335 */ 1336 void swap_free(swp_entry_t entry) 1337 { 1338 struct swap_info_struct *p; 1339 1340 p = _swap_info_get(entry); 1341 if (p) 1342 __swap_entry_free(p, entry); 1343 } 1344 1345 /* 1346 * Called after dropping swapcache to decrease refcnt to swap entries. 1347 */ 1348 void put_swap_page(struct page *page, swp_entry_t entry) 1349 { 1350 unsigned long offset = swp_offset(entry); 1351 unsigned long idx = offset / SWAPFILE_CLUSTER; 1352 struct swap_cluster_info *ci; 1353 struct swap_info_struct *si; 1354 unsigned char *map; 1355 unsigned int i, free_entries = 0; 1356 unsigned char val; 1357 int size = swap_entry_size(thp_nr_pages(page)); 1358 1359 si = _swap_info_get(entry); 1360 if (!si) 1361 return; 1362 1363 ci = lock_cluster_or_swap_info(si, offset); 1364 if (size == SWAPFILE_CLUSTER) { 1365 VM_BUG_ON(!cluster_is_huge(ci)); 1366 map = si->swap_map + offset; 1367 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1368 val = map[i]; 1369 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1370 if (val == SWAP_HAS_CACHE) 1371 free_entries++; 1372 } 1373 cluster_clear_huge(ci); 1374 if (free_entries == SWAPFILE_CLUSTER) { 1375 unlock_cluster_or_swap_info(si, ci); 1376 spin_lock(&si->lock); 1377 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1378 swap_free_cluster(si, idx); 1379 spin_unlock(&si->lock); 1380 return; 1381 } 1382 } 1383 for (i = 0; i < size; i++, entry.val++) { 1384 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1385 unlock_cluster_or_swap_info(si, ci); 1386 free_swap_slot(entry); 1387 if (i == size - 1) 1388 return; 1389 lock_cluster_or_swap_info(si, offset); 1390 } 1391 } 1392 unlock_cluster_or_swap_info(si, ci); 1393 } 1394 1395 #ifdef CONFIG_THP_SWAP 1396 int split_swap_cluster(swp_entry_t entry) 1397 { 1398 struct swap_info_struct *si; 1399 struct swap_cluster_info *ci; 1400 unsigned long offset = swp_offset(entry); 1401 1402 si = _swap_info_get(entry); 1403 if (!si) 1404 return -EBUSY; 1405 ci = lock_cluster(si, offset); 1406 cluster_clear_huge(ci); 1407 unlock_cluster(ci); 1408 return 0; 1409 } 1410 #endif 1411 1412 static int swp_entry_cmp(const void *ent1, const void *ent2) 1413 { 1414 const swp_entry_t *e1 = ent1, *e2 = ent2; 1415 1416 return (int)swp_type(*e1) - (int)swp_type(*e2); 1417 } 1418 1419 void swapcache_free_entries(swp_entry_t *entries, int n) 1420 { 1421 struct swap_info_struct *p, *prev; 1422 int i; 1423 1424 if (n <= 0) 1425 return; 1426 1427 prev = NULL; 1428 p = NULL; 1429 1430 /* 1431 * Sort swap entries by swap device, so each lock is only taken once. 1432 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1433 * so low that it isn't necessary to optimize further. 1434 */ 1435 if (nr_swapfiles > 1) 1436 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1437 for (i = 0; i < n; ++i) { 1438 p = swap_info_get_cont(entries[i], prev); 1439 if (p) 1440 swap_entry_free(p, entries[i]); 1441 prev = p; 1442 } 1443 if (p) 1444 spin_unlock(&p->lock); 1445 } 1446 1447 /* 1448 * How many references to page are currently swapped out? 1449 * This does not give an exact answer when swap count is continued, 1450 * but does include the high COUNT_CONTINUED flag to allow for that. 1451 */ 1452 int page_swapcount(struct page *page) 1453 { 1454 int count = 0; 1455 struct swap_info_struct *p; 1456 struct swap_cluster_info *ci; 1457 swp_entry_t entry; 1458 unsigned long offset; 1459 1460 entry.val = page_private(page); 1461 p = _swap_info_get(entry); 1462 if (p) { 1463 offset = swp_offset(entry); 1464 ci = lock_cluster_or_swap_info(p, offset); 1465 count = swap_count(p->swap_map[offset]); 1466 unlock_cluster_or_swap_info(p, ci); 1467 } 1468 return count; 1469 } 1470 1471 int __swap_count(swp_entry_t entry) 1472 { 1473 struct swap_info_struct *si; 1474 pgoff_t offset = swp_offset(entry); 1475 int count = 0; 1476 1477 si = get_swap_device(entry); 1478 if (si) { 1479 count = swap_count(si->swap_map[offset]); 1480 put_swap_device(si); 1481 } 1482 return count; 1483 } 1484 1485 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1486 { 1487 int count = 0; 1488 pgoff_t offset = swp_offset(entry); 1489 struct swap_cluster_info *ci; 1490 1491 ci = lock_cluster_or_swap_info(si, offset); 1492 count = swap_count(si->swap_map[offset]); 1493 unlock_cluster_or_swap_info(si, ci); 1494 return count; 1495 } 1496 1497 /* 1498 * How many references to @entry are currently swapped out? 1499 * This does not give an exact answer when swap count is continued, 1500 * but does include the high COUNT_CONTINUED flag to allow for that. 1501 */ 1502 int __swp_swapcount(swp_entry_t entry) 1503 { 1504 int count = 0; 1505 struct swap_info_struct *si; 1506 1507 si = get_swap_device(entry); 1508 if (si) { 1509 count = swap_swapcount(si, entry); 1510 put_swap_device(si); 1511 } 1512 return count; 1513 } 1514 1515 /* 1516 * How many references to @entry are currently swapped out? 1517 * This considers COUNT_CONTINUED so it returns exact answer. 1518 */ 1519 int swp_swapcount(swp_entry_t entry) 1520 { 1521 int count, tmp_count, n; 1522 struct swap_info_struct *p; 1523 struct swap_cluster_info *ci; 1524 struct page *page; 1525 pgoff_t offset; 1526 unsigned char *map; 1527 1528 p = _swap_info_get(entry); 1529 if (!p) 1530 return 0; 1531 1532 offset = swp_offset(entry); 1533 1534 ci = lock_cluster_or_swap_info(p, offset); 1535 1536 count = swap_count(p->swap_map[offset]); 1537 if (!(count & COUNT_CONTINUED)) 1538 goto out; 1539 1540 count &= ~COUNT_CONTINUED; 1541 n = SWAP_MAP_MAX + 1; 1542 1543 page = vmalloc_to_page(p->swap_map + offset); 1544 offset &= ~PAGE_MASK; 1545 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1546 1547 do { 1548 page = list_next_entry(page, lru); 1549 map = kmap_atomic(page); 1550 tmp_count = map[offset]; 1551 kunmap_atomic(map); 1552 1553 count += (tmp_count & ~COUNT_CONTINUED) * n; 1554 n *= (SWAP_CONT_MAX + 1); 1555 } while (tmp_count & COUNT_CONTINUED); 1556 out: 1557 unlock_cluster_or_swap_info(p, ci); 1558 return count; 1559 } 1560 1561 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1562 swp_entry_t entry) 1563 { 1564 struct swap_cluster_info *ci; 1565 unsigned char *map = si->swap_map; 1566 unsigned long roffset = swp_offset(entry); 1567 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1568 int i; 1569 bool ret = false; 1570 1571 ci = lock_cluster_or_swap_info(si, offset); 1572 if (!ci || !cluster_is_huge(ci)) { 1573 if (swap_count(map[roffset])) 1574 ret = true; 1575 goto unlock_out; 1576 } 1577 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1578 if (swap_count(map[offset + i])) { 1579 ret = true; 1580 break; 1581 } 1582 } 1583 unlock_out: 1584 unlock_cluster_or_swap_info(si, ci); 1585 return ret; 1586 } 1587 1588 static bool page_swapped(struct page *page) 1589 { 1590 swp_entry_t entry; 1591 struct swap_info_struct *si; 1592 1593 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) 1594 return page_swapcount(page) != 0; 1595 1596 page = compound_head(page); 1597 entry.val = page_private(page); 1598 si = _swap_info_get(entry); 1599 if (si) 1600 return swap_page_trans_huge_swapped(si, entry); 1601 return false; 1602 } 1603 1604 static int page_trans_huge_map_swapcount(struct page *page, 1605 int *total_swapcount) 1606 { 1607 int i, map_swapcount, _total_swapcount; 1608 unsigned long offset = 0; 1609 struct swap_info_struct *si; 1610 struct swap_cluster_info *ci = NULL; 1611 unsigned char *map = NULL; 1612 int swapcount = 0; 1613 1614 /* hugetlbfs shouldn't call it */ 1615 VM_BUG_ON_PAGE(PageHuge(page), page); 1616 1617 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) { 1618 if (PageSwapCache(page)) 1619 swapcount = page_swapcount(page); 1620 if (total_swapcount) 1621 *total_swapcount = swapcount; 1622 return swapcount + page_trans_huge_mapcount(page); 1623 } 1624 1625 page = compound_head(page); 1626 1627 _total_swapcount = map_swapcount = 0; 1628 if (PageSwapCache(page)) { 1629 swp_entry_t entry; 1630 1631 entry.val = page_private(page); 1632 si = _swap_info_get(entry); 1633 if (si) { 1634 map = si->swap_map; 1635 offset = swp_offset(entry); 1636 } 1637 } 1638 if (map) 1639 ci = lock_cluster(si, offset); 1640 for (i = 0; i < HPAGE_PMD_NR; i++) { 1641 int mapcount = atomic_read(&page[i]._mapcount) + 1; 1642 if (map) { 1643 swapcount = swap_count(map[offset + i]); 1644 _total_swapcount += swapcount; 1645 } 1646 map_swapcount = max(map_swapcount, mapcount + swapcount); 1647 } 1648 unlock_cluster(ci); 1649 1650 if (PageDoubleMap(page)) 1651 map_swapcount -= 1; 1652 1653 if (total_swapcount) 1654 *total_swapcount = _total_swapcount; 1655 1656 return map_swapcount + compound_mapcount(page); 1657 } 1658 1659 /* 1660 * We can write to an anon page without COW if there are no other references 1661 * to it. And as a side-effect, free up its swap: because the old content 1662 * on disk will never be read, and seeking back there to write new content 1663 * later would only waste time away from clustering. 1664 */ 1665 bool reuse_swap_page(struct page *page) 1666 { 1667 int count, total_swapcount; 1668 1669 VM_BUG_ON_PAGE(!PageLocked(page), page); 1670 if (unlikely(PageKsm(page))) 1671 return false; 1672 count = page_trans_huge_map_swapcount(page, &total_swapcount); 1673 if (count == 1 && PageSwapCache(page) && 1674 (likely(!PageTransCompound(page)) || 1675 /* The remaining swap count will be freed soon */ 1676 total_swapcount == page_swapcount(page))) { 1677 if (!PageWriteback(page)) { 1678 page = compound_head(page); 1679 delete_from_swap_cache(page); 1680 SetPageDirty(page); 1681 } else { 1682 swp_entry_t entry; 1683 struct swap_info_struct *p; 1684 1685 entry.val = page_private(page); 1686 p = swap_info_get(entry); 1687 if (p->flags & SWP_STABLE_WRITES) { 1688 spin_unlock(&p->lock); 1689 return false; 1690 } 1691 spin_unlock(&p->lock); 1692 } 1693 } 1694 1695 return count <= 1; 1696 } 1697 1698 /* 1699 * If swap is getting full, or if there are no more mappings of this page, 1700 * then try_to_free_swap is called to free its swap space. 1701 */ 1702 int try_to_free_swap(struct page *page) 1703 { 1704 VM_BUG_ON_PAGE(!PageLocked(page), page); 1705 1706 if (!PageSwapCache(page)) 1707 return 0; 1708 if (PageWriteback(page)) 1709 return 0; 1710 if (page_swapped(page)) 1711 return 0; 1712 1713 /* 1714 * Once hibernation has begun to create its image of memory, 1715 * there's a danger that one of the calls to try_to_free_swap() 1716 * - most probably a call from __try_to_reclaim_swap() while 1717 * hibernation is allocating its own swap pages for the image, 1718 * but conceivably even a call from memory reclaim - will free 1719 * the swap from a page which has already been recorded in the 1720 * image as a clean swapcache page, and then reuse its swap for 1721 * another page of the image. On waking from hibernation, the 1722 * original page might be freed under memory pressure, then 1723 * later read back in from swap, now with the wrong data. 1724 * 1725 * Hibernation suspends storage while it is writing the image 1726 * to disk so check that here. 1727 */ 1728 if (pm_suspended_storage()) 1729 return 0; 1730 1731 page = compound_head(page); 1732 delete_from_swap_cache(page); 1733 SetPageDirty(page); 1734 return 1; 1735 } 1736 1737 /* 1738 * Free the swap entry like above, but also try to 1739 * free the page cache entry if it is the last user. 1740 */ 1741 int free_swap_and_cache(swp_entry_t entry) 1742 { 1743 struct swap_info_struct *p; 1744 unsigned char count; 1745 1746 if (non_swap_entry(entry)) 1747 return 1; 1748 1749 p = _swap_info_get(entry); 1750 if (p) { 1751 count = __swap_entry_free(p, entry); 1752 if (count == SWAP_HAS_CACHE && 1753 !swap_page_trans_huge_swapped(p, entry)) 1754 __try_to_reclaim_swap(p, swp_offset(entry), 1755 TTRS_UNMAPPED | TTRS_FULL); 1756 } 1757 return p != NULL; 1758 } 1759 1760 #ifdef CONFIG_HIBERNATION 1761 1762 swp_entry_t get_swap_page_of_type(int type) 1763 { 1764 struct swap_info_struct *si = swap_type_to_swap_info(type); 1765 swp_entry_t entry = {0}; 1766 1767 if (!si) 1768 goto fail; 1769 1770 /* This is called for allocating swap entry, not cache */ 1771 spin_lock(&si->lock); 1772 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry)) 1773 atomic_long_dec(&nr_swap_pages); 1774 spin_unlock(&si->lock); 1775 fail: 1776 return entry; 1777 } 1778 1779 /* 1780 * Find the swap type that corresponds to given device (if any). 1781 * 1782 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1783 * from 0, in which the swap header is expected to be located. 1784 * 1785 * This is needed for the suspend to disk (aka swsusp). 1786 */ 1787 int swap_type_of(dev_t device, sector_t offset) 1788 { 1789 int type; 1790 1791 if (!device) 1792 return -1; 1793 1794 spin_lock(&swap_lock); 1795 for (type = 0; type < nr_swapfiles; type++) { 1796 struct swap_info_struct *sis = swap_info[type]; 1797 1798 if (!(sis->flags & SWP_WRITEOK)) 1799 continue; 1800 1801 if (device == sis->bdev->bd_dev) { 1802 struct swap_extent *se = first_se(sis); 1803 1804 if (se->start_block == offset) { 1805 spin_unlock(&swap_lock); 1806 return type; 1807 } 1808 } 1809 } 1810 spin_unlock(&swap_lock); 1811 return -ENODEV; 1812 } 1813 1814 int find_first_swap(dev_t *device) 1815 { 1816 int type; 1817 1818 spin_lock(&swap_lock); 1819 for (type = 0; type < nr_swapfiles; type++) { 1820 struct swap_info_struct *sis = swap_info[type]; 1821 1822 if (!(sis->flags & SWP_WRITEOK)) 1823 continue; 1824 *device = sis->bdev->bd_dev; 1825 spin_unlock(&swap_lock); 1826 return type; 1827 } 1828 spin_unlock(&swap_lock); 1829 return -ENODEV; 1830 } 1831 1832 /* 1833 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1834 * corresponding to given index in swap_info (swap type). 1835 */ 1836 sector_t swapdev_block(int type, pgoff_t offset) 1837 { 1838 struct swap_info_struct *si = swap_type_to_swap_info(type); 1839 struct swap_extent *se; 1840 1841 if (!si || !(si->flags & SWP_WRITEOK)) 1842 return 0; 1843 se = offset_to_swap_extent(si, offset); 1844 return se->start_block + (offset - se->start_page); 1845 } 1846 1847 /* 1848 * Return either the total number of swap pages of given type, or the number 1849 * of free pages of that type (depending on @free) 1850 * 1851 * This is needed for software suspend 1852 */ 1853 unsigned int count_swap_pages(int type, int free) 1854 { 1855 unsigned int n = 0; 1856 1857 spin_lock(&swap_lock); 1858 if ((unsigned int)type < nr_swapfiles) { 1859 struct swap_info_struct *sis = swap_info[type]; 1860 1861 spin_lock(&sis->lock); 1862 if (sis->flags & SWP_WRITEOK) { 1863 n = sis->pages; 1864 if (free) 1865 n -= sis->inuse_pages; 1866 } 1867 spin_unlock(&sis->lock); 1868 } 1869 spin_unlock(&swap_lock); 1870 return n; 1871 } 1872 #endif /* CONFIG_HIBERNATION */ 1873 1874 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1875 { 1876 return pte_same(pte_swp_clear_flags(pte), swp_pte); 1877 } 1878 1879 /* 1880 * No need to decide whether this PTE shares the swap entry with others, 1881 * just let do_wp_page work it out if a write is requested later - to 1882 * force COW, vm_page_prot omits write permission from any private vma. 1883 */ 1884 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1885 unsigned long addr, swp_entry_t entry, struct page *page) 1886 { 1887 struct page *swapcache; 1888 spinlock_t *ptl; 1889 pte_t *pte; 1890 int ret = 1; 1891 1892 swapcache = page; 1893 page = ksm_might_need_to_copy(page, vma, addr); 1894 if (unlikely(!page)) 1895 return -ENOMEM; 1896 1897 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1898 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1899 ret = 0; 1900 goto out; 1901 } 1902 1903 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1904 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1905 get_page(page); 1906 if (page == swapcache) { 1907 page_add_anon_rmap(page, vma, addr, false); 1908 } else { /* ksm created a completely new copy */ 1909 page_add_new_anon_rmap(page, vma, addr, false); 1910 lru_cache_add_inactive_or_unevictable(page, vma); 1911 } 1912 set_pte_at(vma->vm_mm, addr, pte, 1913 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1914 swap_free(entry); 1915 out: 1916 pte_unmap_unlock(pte, ptl); 1917 if (page != swapcache) { 1918 unlock_page(page); 1919 put_page(page); 1920 } 1921 return ret; 1922 } 1923 1924 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1925 unsigned long addr, unsigned long end, 1926 unsigned int type) 1927 { 1928 struct page *page; 1929 swp_entry_t entry; 1930 pte_t *pte; 1931 struct swap_info_struct *si; 1932 unsigned long offset; 1933 int ret = 0; 1934 volatile unsigned char *swap_map; 1935 1936 si = swap_info[type]; 1937 pte = pte_offset_map(pmd, addr); 1938 do { 1939 if (!is_swap_pte(*pte)) 1940 continue; 1941 1942 entry = pte_to_swp_entry(*pte); 1943 if (swp_type(entry) != type) 1944 continue; 1945 1946 offset = swp_offset(entry); 1947 pte_unmap(pte); 1948 swap_map = &si->swap_map[offset]; 1949 page = lookup_swap_cache(entry, vma, addr); 1950 if (!page) { 1951 struct vm_fault vmf = { 1952 .vma = vma, 1953 .address = addr, 1954 .pmd = pmd, 1955 }; 1956 1957 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 1958 &vmf); 1959 } 1960 if (!page) { 1961 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD) 1962 goto try_next; 1963 return -ENOMEM; 1964 } 1965 1966 lock_page(page); 1967 wait_on_page_writeback(page); 1968 ret = unuse_pte(vma, pmd, addr, entry, page); 1969 if (ret < 0) { 1970 unlock_page(page); 1971 put_page(page); 1972 goto out; 1973 } 1974 1975 try_to_free_swap(page); 1976 unlock_page(page); 1977 put_page(page); 1978 try_next: 1979 pte = pte_offset_map(pmd, addr); 1980 } while (pte++, addr += PAGE_SIZE, addr != end); 1981 pte_unmap(pte - 1); 1982 1983 ret = 0; 1984 out: 1985 return ret; 1986 } 1987 1988 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1989 unsigned long addr, unsigned long end, 1990 unsigned int type) 1991 { 1992 pmd_t *pmd; 1993 unsigned long next; 1994 int ret; 1995 1996 pmd = pmd_offset(pud, addr); 1997 do { 1998 cond_resched(); 1999 next = pmd_addr_end(addr, end); 2000 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 2001 continue; 2002 ret = unuse_pte_range(vma, pmd, addr, next, type); 2003 if (ret) 2004 return ret; 2005 } while (pmd++, addr = next, addr != end); 2006 return 0; 2007 } 2008 2009 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 2010 unsigned long addr, unsigned long end, 2011 unsigned int type) 2012 { 2013 pud_t *pud; 2014 unsigned long next; 2015 int ret; 2016 2017 pud = pud_offset(p4d, addr); 2018 do { 2019 next = pud_addr_end(addr, end); 2020 if (pud_none_or_clear_bad(pud)) 2021 continue; 2022 ret = unuse_pmd_range(vma, pud, addr, next, type); 2023 if (ret) 2024 return ret; 2025 } while (pud++, addr = next, addr != end); 2026 return 0; 2027 } 2028 2029 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 2030 unsigned long addr, unsigned long end, 2031 unsigned int type) 2032 { 2033 p4d_t *p4d; 2034 unsigned long next; 2035 int ret; 2036 2037 p4d = p4d_offset(pgd, addr); 2038 do { 2039 next = p4d_addr_end(addr, end); 2040 if (p4d_none_or_clear_bad(p4d)) 2041 continue; 2042 ret = unuse_pud_range(vma, p4d, addr, next, type); 2043 if (ret) 2044 return ret; 2045 } while (p4d++, addr = next, addr != end); 2046 return 0; 2047 } 2048 2049 static int unuse_vma(struct vm_area_struct *vma, unsigned int type) 2050 { 2051 pgd_t *pgd; 2052 unsigned long addr, end, next; 2053 int ret; 2054 2055 addr = vma->vm_start; 2056 end = vma->vm_end; 2057 2058 pgd = pgd_offset(vma->vm_mm, addr); 2059 do { 2060 next = pgd_addr_end(addr, end); 2061 if (pgd_none_or_clear_bad(pgd)) 2062 continue; 2063 ret = unuse_p4d_range(vma, pgd, addr, next, type); 2064 if (ret) 2065 return ret; 2066 } while (pgd++, addr = next, addr != end); 2067 return 0; 2068 } 2069 2070 static int unuse_mm(struct mm_struct *mm, unsigned int type) 2071 { 2072 struct vm_area_struct *vma; 2073 int ret = 0; 2074 2075 mmap_read_lock(mm); 2076 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2077 if (vma->anon_vma) { 2078 ret = unuse_vma(vma, type); 2079 if (ret) 2080 break; 2081 } 2082 cond_resched(); 2083 } 2084 mmap_read_unlock(mm); 2085 return ret; 2086 } 2087 2088 /* 2089 * Scan swap_map (or frontswap_map if frontswap parameter is true) 2090 * from current position to next entry still in use. Return 0 2091 * if there are no inuse entries after prev till end of the map. 2092 */ 2093 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2094 unsigned int prev) 2095 { 2096 unsigned int i; 2097 unsigned char count; 2098 2099 /* 2100 * No need for swap_lock here: we're just looking 2101 * for whether an entry is in use, not modifying it; false 2102 * hits are okay, and sys_swapoff() has already prevented new 2103 * allocations from this area (while holding swap_lock). 2104 */ 2105 for (i = prev + 1; i < si->max; i++) { 2106 count = READ_ONCE(si->swap_map[i]); 2107 if (count && swap_count(count) != SWAP_MAP_BAD) 2108 break; 2109 if ((i % LATENCY_LIMIT) == 0) 2110 cond_resched(); 2111 } 2112 2113 if (i == si->max) 2114 i = 0; 2115 2116 return i; 2117 } 2118 2119 static int try_to_unuse(unsigned int type) 2120 { 2121 struct mm_struct *prev_mm; 2122 struct mm_struct *mm; 2123 struct list_head *p; 2124 int retval = 0; 2125 struct swap_info_struct *si = swap_info[type]; 2126 struct page *page; 2127 swp_entry_t entry; 2128 unsigned int i; 2129 2130 if (!READ_ONCE(si->inuse_pages)) 2131 return 0; 2132 2133 retry: 2134 retval = shmem_unuse(type); 2135 if (retval) 2136 return retval; 2137 2138 prev_mm = &init_mm; 2139 mmget(prev_mm); 2140 2141 spin_lock(&mmlist_lock); 2142 p = &init_mm.mmlist; 2143 while (READ_ONCE(si->inuse_pages) && 2144 !signal_pending(current) && 2145 (p = p->next) != &init_mm.mmlist) { 2146 2147 mm = list_entry(p, struct mm_struct, mmlist); 2148 if (!mmget_not_zero(mm)) 2149 continue; 2150 spin_unlock(&mmlist_lock); 2151 mmput(prev_mm); 2152 prev_mm = mm; 2153 retval = unuse_mm(mm, type); 2154 if (retval) { 2155 mmput(prev_mm); 2156 return retval; 2157 } 2158 2159 /* 2160 * Make sure that we aren't completely killing 2161 * interactive performance. 2162 */ 2163 cond_resched(); 2164 spin_lock(&mmlist_lock); 2165 } 2166 spin_unlock(&mmlist_lock); 2167 2168 mmput(prev_mm); 2169 2170 i = 0; 2171 while (READ_ONCE(si->inuse_pages) && 2172 !signal_pending(current) && 2173 (i = find_next_to_unuse(si, i)) != 0) { 2174 2175 entry = swp_entry(type, i); 2176 page = find_get_page(swap_address_space(entry), i); 2177 if (!page) 2178 continue; 2179 2180 /* 2181 * It is conceivable that a racing task removed this page from 2182 * swap cache just before we acquired the page lock. The page 2183 * might even be back in swap cache on another swap area. But 2184 * that is okay, try_to_free_swap() only removes stale pages. 2185 */ 2186 lock_page(page); 2187 wait_on_page_writeback(page); 2188 try_to_free_swap(page); 2189 unlock_page(page); 2190 put_page(page); 2191 } 2192 2193 /* 2194 * Lets check again to see if there are still swap entries in the map. 2195 * If yes, we would need to do retry the unuse logic again. 2196 * Under global memory pressure, swap entries can be reinserted back 2197 * into process space after the mmlist loop above passes over them. 2198 * 2199 * Limit the number of retries? No: when mmget_not_zero() above fails, 2200 * that mm is likely to be freeing swap from exit_mmap(), which proceeds 2201 * at its own independent pace; and even shmem_writepage() could have 2202 * been preempted after get_swap_page(), temporarily hiding that swap. 2203 * It's easy and robust (though cpu-intensive) just to keep retrying. 2204 */ 2205 if (READ_ONCE(si->inuse_pages)) { 2206 if (!signal_pending(current)) 2207 goto retry; 2208 return -EINTR; 2209 } 2210 2211 return 0; 2212 } 2213 2214 /* 2215 * After a successful try_to_unuse, if no swap is now in use, we know 2216 * we can empty the mmlist. swap_lock must be held on entry and exit. 2217 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2218 * added to the mmlist just after page_duplicate - before would be racy. 2219 */ 2220 static void drain_mmlist(void) 2221 { 2222 struct list_head *p, *next; 2223 unsigned int type; 2224 2225 for (type = 0; type < nr_swapfiles; type++) 2226 if (swap_info[type]->inuse_pages) 2227 return; 2228 spin_lock(&mmlist_lock); 2229 list_for_each_safe(p, next, &init_mm.mmlist) 2230 list_del_init(p); 2231 spin_unlock(&mmlist_lock); 2232 } 2233 2234 /* 2235 * Free all of a swapdev's extent information 2236 */ 2237 static void destroy_swap_extents(struct swap_info_struct *sis) 2238 { 2239 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2240 struct rb_node *rb = sis->swap_extent_root.rb_node; 2241 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2242 2243 rb_erase(rb, &sis->swap_extent_root); 2244 kfree(se); 2245 } 2246 2247 if (sis->flags & SWP_ACTIVATED) { 2248 struct file *swap_file = sis->swap_file; 2249 struct address_space *mapping = swap_file->f_mapping; 2250 2251 sis->flags &= ~SWP_ACTIVATED; 2252 if (mapping->a_ops->swap_deactivate) 2253 mapping->a_ops->swap_deactivate(swap_file); 2254 } 2255 } 2256 2257 /* 2258 * Add a block range (and the corresponding page range) into this swapdev's 2259 * extent tree. 2260 * 2261 * This function rather assumes that it is called in ascending page order. 2262 */ 2263 int 2264 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2265 unsigned long nr_pages, sector_t start_block) 2266 { 2267 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2268 struct swap_extent *se; 2269 struct swap_extent *new_se; 2270 2271 /* 2272 * place the new node at the right most since the 2273 * function is called in ascending page order. 2274 */ 2275 while (*link) { 2276 parent = *link; 2277 link = &parent->rb_right; 2278 } 2279 2280 if (parent) { 2281 se = rb_entry(parent, struct swap_extent, rb_node); 2282 BUG_ON(se->start_page + se->nr_pages != start_page); 2283 if (se->start_block + se->nr_pages == start_block) { 2284 /* Merge it */ 2285 se->nr_pages += nr_pages; 2286 return 0; 2287 } 2288 } 2289 2290 /* No merge, insert a new extent. */ 2291 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2292 if (new_se == NULL) 2293 return -ENOMEM; 2294 new_se->start_page = start_page; 2295 new_se->nr_pages = nr_pages; 2296 new_se->start_block = start_block; 2297 2298 rb_link_node(&new_se->rb_node, parent, link); 2299 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2300 return 1; 2301 } 2302 EXPORT_SYMBOL_GPL(add_swap_extent); 2303 2304 /* 2305 * A `swap extent' is a simple thing which maps a contiguous range of pages 2306 * onto a contiguous range of disk blocks. An ordered list of swap extents 2307 * is built at swapon time and is then used at swap_writepage/swap_readpage 2308 * time for locating where on disk a page belongs. 2309 * 2310 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2311 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2312 * swap files identically. 2313 * 2314 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2315 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2316 * swapfiles are handled *identically* after swapon time. 2317 * 2318 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2319 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 2320 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 2321 * requirements, they are simply tossed out - we will never use those blocks 2322 * for swapping. 2323 * 2324 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2325 * prevents users from writing to the swap device, which will corrupt memory. 2326 * 2327 * The amount of disk space which a single swap extent represents varies. 2328 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2329 * extents in the list. To avoid much list walking, we cache the previous 2330 * search location in `curr_swap_extent', and start new searches from there. 2331 * This is extremely effective. The average number of iterations in 2332 * map_swap_page() has been measured at about 0.3 per page. - akpm. 2333 */ 2334 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2335 { 2336 struct file *swap_file = sis->swap_file; 2337 struct address_space *mapping = swap_file->f_mapping; 2338 struct inode *inode = mapping->host; 2339 int ret; 2340 2341 if (S_ISBLK(inode->i_mode)) { 2342 ret = add_swap_extent(sis, 0, sis->max, 0); 2343 *span = sis->pages; 2344 return ret; 2345 } 2346 2347 if (mapping->a_ops->swap_activate) { 2348 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2349 if (ret >= 0) 2350 sis->flags |= SWP_ACTIVATED; 2351 if (!ret) { 2352 sis->flags |= SWP_FS_OPS; 2353 ret = add_swap_extent(sis, 0, sis->max, 0); 2354 *span = sis->pages; 2355 } 2356 return ret; 2357 } 2358 2359 return generic_swapfile_activate(sis, swap_file, span); 2360 } 2361 2362 static int swap_node(struct swap_info_struct *p) 2363 { 2364 struct block_device *bdev; 2365 2366 if (p->bdev) 2367 bdev = p->bdev; 2368 else 2369 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2370 2371 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2372 } 2373 2374 static void setup_swap_info(struct swap_info_struct *p, int prio, 2375 unsigned char *swap_map, 2376 struct swap_cluster_info *cluster_info) 2377 { 2378 int i; 2379 2380 if (prio >= 0) 2381 p->prio = prio; 2382 else 2383 p->prio = --least_priority; 2384 /* 2385 * the plist prio is negated because plist ordering is 2386 * low-to-high, while swap ordering is high-to-low 2387 */ 2388 p->list.prio = -p->prio; 2389 for_each_node(i) { 2390 if (p->prio >= 0) 2391 p->avail_lists[i].prio = -p->prio; 2392 else { 2393 if (swap_node(p) == i) 2394 p->avail_lists[i].prio = 1; 2395 else 2396 p->avail_lists[i].prio = -p->prio; 2397 } 2398 } 2399 p->swap_map = swap_map; 2400 p->cluster_info = cluster_info; 2401 } 2402 2403 static void _enable_swap_info(struct swap_info_struct *p) 2404 { 2405 p->flags |= SWP_WRITEOK; 2406 atomic_long_add(p->pages, &nr_swap_pages); 2407 total_swap_pages += p->pages; 2408 2409 assert_spin_locked(&swap_lock); 2410 /* 2411 * both lists are plists, and thus priority ordered. 2412 * swap_active_head needs to be priority ordered for swapoff(), 2413 * which on removal of any swap_info_struct with an auto-assigned 2414 * (i.e. negative) priority increments the auto-assigned priority 2415 * of any lower-priority swap_info_structs. 2416 * swap_avail_head needs to be priority ordered for get_swap_page(), 2417 * which allocates swap pages from the highest available priority 2418 * swap_info_struct. 2419 */ 2420 plist_add(&p->list, &swap_active_head); 2421 add_to_avail_list(p); 2422 } 2423 2424 static void enable_swap_info(struct swap_info_struct *p, int prio, 2425 unsigned char *swap_map, 2426 struct swap_cluster_info *cluster_info, 2427 unsigned long *frontswap_map) 2428 { 2429 if (IS_ENABLED(CONFIG_FRONTSWAP)) 2430 frontswap_init(p->type, frontswap_map); 2431 spin_lock(&swap_lock); 2432 spin_lock(&p->lock); 2433 setup_swap_info(p, prio, swap_map, cluster_info); 2434 spin_unlock(&p->lock); 2435 spin_unlock(&swap_lock); 2436 /* 2437 * Finished initializing swap device, now it's safe to reference it. 2438 */ 2439 percpu_ref_resurrect(&p->users); 2440 spin_lock(&swap_lock); 2441 spin_lock(&p->lock); 2442 _enable_swap_info(p); 2443 spin_unlock(&p->lock); 2444 spin_unlock(&swap_lock); 2445 } 2446 2447 static void reinsert_swap_info(struct swap_info_struct *p) 2448 { 2449 spin_lock(&swap_lock); 2450 spin_lock(&p->lock); 2451 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2452 _enable_swap_info(p); 2453 spin_unlock(&p->lock); 2454 spin_unlock(&swap_lock); 2455 } 2456 2457 bool has_usable_swap(void) 2458 { 2459 bool ret = true; 2460 2461 spin_lock(&swap_lock); 2462 if (plist_head_empty(&swap_active_head)) 2463 ret = false; 2464 spin_unlock(&swap_lock); 2465 return ret; 2466 } 2467 2468 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2469 { 2470 struct swap_info_struct *p = NULL; 2471 unsigned char *swap_map; 2472 struct swap_cluster_info *cluster_info; 2473 unsigned long *frontswap_map; 2474 struct file *swap_file, *victim; 2475 struct address_space *mapping; 2476 struct inode *inode; 2477 struct filename *pathname; 2478 int err, found = 0; 2479 unsigned int old_block_size; 2480 2481 if (!capable(CAP_SYS_ADMIN)) 2482 return -EPERM; 2483 2484 BUG_ON(!current->mm); 2485 2486 pathname = getname(specialfile); 2487 if (IS_ERR(pathname)) 2488 return PTR_ERR(pathname); 2489 2490 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2491 err = PTR_ERR(victim); 2492 if (IS_ERR(victim)) 2493 goto out; 2494 2495 mapping = victim->f_mapping; 2496 spin_lock(&swap_lock); 2497 plist_for_each_entry(p, &swap_active_head, list) { 2498 if (p->flags & SWP_WRITEOK) { 2499 if (p->swap_file->f_mapping == mapping) { 2500 found = 1; 2501 break; 2502 } 2503 } 2504 } 2505 if (!found) { 2506 err = -EINVAL; 2507 spin_unlock(&swap_lock); 2508 goto out_dput; 2509 } 2510 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2511 vm_unacct_memory(p->pages); 2512 else { 2513 err = -ENOMEM; 2514 spin_unlock(&swap_lock); 2515 goto out_dput; 2516 } 2517 del_from_avail_list(p); 2518 spin_lock(&p->lock); 2519 if (p->prio < 0) { 2520 struct swap_info_struct *si = p; 2521 int nid; 2522 2523 plist_for_each_entry_continue(si, &swap_active_head, list) { 2524 si->prio++; 2525 si->list.prio--; 2526 for_each_node(nid) { 2527 if (si->avail_lists[nid].prio != 1) 2528 si->avail_lists[nid].prio--; 2529 } 2530 } 2531 least_priority++; 2532 } 2533 plist_del(&p->list, &swap_active_head); 2534 atomic_long_sub(p->pages, &nr_swap_pages); 2535 total_swap_pages -= p->pages; 2536 p->flags &= ~SWP_WRITEOK; 2537 spin_unlock(&p->lock); 2538 spin_unlock(&swap_lock); 2539 2540 disable_swap_slots_cache_lock(); 2541 2542 set_current_oom_origin(); 2543 err = try_to_unuse(p->type); 2544 clear_current_oom_origin(); 2545 2546 if (err) { 2547 /* re-insert swap space back into swap_list */ 2548 reinsert_swap_info(p); 2549 reenable_swap_slots_cache_unlock(); 2550 goto out_dput; 2551 } 2552 2553 reenable_swap_slots_cache_unlock(); 2554 2555 /* 2556 * Wait for swap operations protected by get/put_swap_device() 2557 * to complete. 2558 * 2559 * We need synchronize_rcu() here to protect the accessing to 2560 * the swap cache data structure. 2561 */ 2562 percpu_ref_kill(&p->users); 2563 synchronize_rcu(); 2564 wait_for_completion(&p->comp); 2565 2566 flush_work(&p->discard_work); 2567 2568 destroy_swap_extents(p); 2569 if (p->flags & SWP_CONTINUED) 2570 free_swap_count_continuations(p); 2571 2572 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev))) 2573 atomic_dec(&nr_rotate_swap); 2574 2575 mutex_lock(&swapon_mutex); 2576 spin_lock(&swap_lock); 2577 spin_lock(&p->lock); 2578 drain_mmlist(); 2579 2580 /* wait for anyone still in scan_swap_map_slots */ 2581 p->highest_bit = 0; /* cuts scans short */ 2582 while (p->flags >= SWP_SCANNING) { 2583 spin_unlock(&p->lock); 2584 spin_unlock(&swap_lock); 2585 schedule_timeout_uninterruptible(1); 2586 spin_lock(&swap_lock); 2587 spin_lock(&p->lock); 2588 } 2589 2590 swap_file = p->swap_file; 2591 old_block_size = p->old_block_size; 2592 p->swap_file = NULL; 2593 p->max = 0; 2594 swap_map = p->swap_map; 2595 p->swap_map = NULL; 2596 cluster_info = p->cluster_info; 2597 p->cluster_info = NULL; 2598 frontswap_map = frontswap_map_get(p); 2599 spin_unlock(&p->lock); 2600 spin_unlock(&swap_lock); 2601 arch_swap_invalidate_area(p->type); 2602 frontswap_invalidate_area(p->type); 2603 frontswap_map_set(p, NULL); 2604 mutex_unlock(&swapon_mutex); 2605 free_percpu(p->percpu_cluster); 2606 p->percpu_cluster = NULL; 2607 free_percpu(p->cluster_next_cpu); 2608 p->cluster_next_cpu = NULL; 2609 vfree(swap_map); 2610 kvfree(cluster_info); 2611 kvfree(frontswap_map); 2612 /* Destroy swap account information */ 2613 swap_cgroup_swapoff(p->type); 2614 exit_swap_address_space(p->type); 2615 2616 inode = mapping->host; 2617 if (S_ISBLK(inode->i_mode)) { 2618 struct block_device *bdev = I_BDEV(inode); 2619 2620 set_blocksize(bdev, old_block_size); 2621 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2622 } 2623 2624 inode_lock(inode); 2625 inode->i_flags &= ~S_SWAPFILE; 2626 inode_unlock(inode); 2627 filp_close(swap_file, NULL); 2628 2629 /* 2630 * Clear the SWP_USED flag after all resources are freed so that swapon 2631 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2632 * not hold p->lock after we cleared its SWP_WRITEOK. 2633 */ 2634 spin_lock(&swap_lock); 2635 p->flags = 0; 2636 spin_unlock(&swap_lock); 2637 2638 err = 0; 2639 atomic_inc(&proc_poll_event); 2640 wake_up_interruptible(&proc_poll_wait); 2641 2642 out_dput: 2643 filp_close(victim, NULL); 2644 out: 2645 putname(pathname); 2646 return err; 2647 } 2648 2649 #ifdef CONFIG_PROC_FS 2650 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2651 { 2652 struct seq_file *seq = file->private_data; 2653 2654 poll_wait(file, &proc_poll_wait, wait); 2655 2656 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2657 seq->poll_event = atomic_read(&proc_poll_event); 2658 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2659 } 2660 2661 return EPOLLIN | EPOLLRDNORM; 2662 } 2663 2664 /* iterator */ 2665 static void *swap_start(struct seq_file *swap, loff_t *pos) 2666 { 2667 struct swap_info_struct *si; 2668 int type; 2669 loff_t l = *pos; 2670 2671 mutex_lock(&swapon_mutex); 2672 2673 if (!l) 2674 return SEQ_START_TOKEN; 2675 2676 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2677 if (!(si->flags & SWP_USED) || !si->swap_map) 2678 continue; 2679 if (!--l) 2680 return si; 2681 } 2682 2683 return NULL; 2684 } 2685 2686 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2687 { 2688 struct swap_info_struct *si = v; 2689 int type; 2690 2691 if (v == SEQ_START_TOKEN) 2692 type = 0; 2693 else 2694 type = si->type + 1; 2695 2696 ++(*pos); 2697 for (; (si = swap_type_to_swap_info(type)); type++) { 2698 if (!(si->flags & SWP_USED) || !si->swap_map) 2699 continue; 2700 return si; 2701 } 2702 2703 return NULL; 2704 } 2705 2706 static void swap_stop(struct seq_file *swap, void *v) 2707 { 2708 mutex_unlock(&swapon_mutex); 2709 } 2710 2711 static int swap_show(struct seq_file *swap, void *v) 2712 { 2713 struct swap_info_struct *si = v; 2714 struct file *file; 2715 int len; 2716 unsigned long bytes, inuse; 2717 2718 if (si == SEQ_START_TOKEN) { 2719 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2720 return 0; 2721 } 2722 2723 bytes = si->pages << (PAGE_SHIFT - 10); 2724 inuse = si->inuse_pages << (PAGE_SHIFT - 10); 2725 2726 file = si->swap_file; 2727 len = seq_file_path(swap, file, " \t\n\\"); 2728 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", 2729 len < 40 ? 40 - len : 1, " ", 2730 S_ISBLK(file_inode(file)->i_mode) ? 2731 "partition" : "file\t", 2732 bytes, bytes < 10000000 ? "\t" : "", 2733 inuse, inuse < 10000000 ? "\t" : "", 2734 si->prio); 2735 return 0; 2736 } 2737 2738 static const struct seq_operations swaps_op = { 2739 .start = swap_start, 2740 .next = swap_next, 2741 .stop = swap_stop, 2742 .show = swap_show 2743 }; 2744 2745 static int swaps_open(struct inode *inode, struct file *file) 2746 { 2747 struct seq_file *seq; 2748 int ret; 2749 2750 ret = seq_open(file, &swaps_op); 2751 if (ret) 2752 return ret; 2753 2754 seq = file->private_data; 2755 seq->poll_event = atomic_read(&proc_poll_event); 2756 return 0; 2757 } 2758 2759 static const struct proc_ops swaps_proc_ops = { 2760 .proc_flags = PROC_ENTRY_PERMANENT, 2761 .proc_open = swaps_open, 2762 .proc_read = seq_read, 2763 .proc_lseek = seq_lseek, 2764 .proc_release = seq_release, 2765 .proc_poll = swaps_poll, 2766 }; 2767 2768 static int __init procswaps_init(void) 2769 { 2770 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2771 return 0; 2772 } 2773 __initcall(procswaps_init); 2774 #endif /* CONFIG_PROC_FS */ 2775 2776 #ifdef MAX_SWAPFILES_CHECK 2777 static int __init max_swapfiles_check(void) 2778 { 2779 MAX_SWAPFILES_CHECK(); 2780 return 0; 2781 } 2782 late_initcall(max_swapfiles_check); 2783 #endif 2784 2785 static struct swap_info_struct *alloc_swap_info(void) 2786 { 2787 struct swap_info_struct *p; 2788 struct swap_info_struct *defer = NULL; 2789 unsigned int type; 2790 int i; 2791 2792 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2793 if (!p) 2794 return ERR_PTR(-ENOMEM); 2795 2796 if (percpu_ref_init(&p->users, swap_users_ref_free, 2797 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 2798 kvfree(p); 2799 return ERR_PTR(-ENOMEM); 2800 } 2801 2802 spin_lock(&swap_lock); 2803 for (type = 0; type < nr_swapfiles; type++) { 2804 if (!(swap_info[type]->flags & SWP_USED)) 2805 break; 2806 } 2807 if (type >= MAX_SWAPFILES) { 2808 spin_unlock(&swap_lock); 2809 percpu_ref_exit(&p->users); 2810 kvfree(p); 2811 return ERR_PTR(-EPERM); 2812 } 2813 if (type >= nr_swapfiles) { 2814 p->type = type; 2815 /* 2816 * Publish the swap_info_struct after initializing it. 2817 * Note that kvzalloc() above zeroes all its fields. 2818 */ 2819 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 2820 nr_swapfiles++; 2821 } else { 2822 defer = p; 2823 p = swap_info[type]; 2824 /* 2825 * Do not memset this entry: a racing procfs swap_next() 2826 * would be relying on p->type to remain valid. 2827 */ 2828 } 2829 p->swap_extent_root = RB_ROOT; 2830 plist_node_init(&p->list, 0); 2831 for_each_node(i) 2832 plist_node_init(&p->avail_lists[i], 0); 2833 p->flags = SWP_USED; 2834 spin_unlock(&swap_lock); 2835 if (defer) { 2836 percpu_ref_exit(&defer->users); 2837 kvfree(defer); 2838 } 2839 spin_lock_init(&p->lock); 2840 spin_lock_init(&p->cont_lock); 2841 init_completion(&p->comp); 2842 2843 return p; 2844 } 2845 2846 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2847 { 2848 int error; 2849 2850 if (S_ISBLK(inode->i_mode)) { 2851 p->bdev = blkdev_get_by_dev(inode->i_rdev, 2852 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2853 if (IS_ERR(p->bdev)) { 2854 error = PTR_ERR(p->bdev); 2855 p->bdev = NULL; 2856 return error; 2857 } 2858 p->old_block_size = block_size(p->bdev); 2859 error = set_blocksize(p->bdev, PAGE_SIZE); 2860 if (error < 0) 2861 return error; 2862 /* 2863 * Zoned block devices contain zones that have a sequential 2864 * write only restriction. Hence zoned block devices are not 2865 * suitable for swapping. Disallow them here. 2866 */ 2867 if (blk_queue_is_zoned(p->bdev->bd_disk->queue)) 2868 return -EINVAL; 2869 p->flags |= SWP_BLKDEV; 2870 } else if (S_ISREG(inode->i_mode)) { 2871 p->bdev = inode->i_sb->s_bdev; 2872 } 2873 2874 return 0; 2875 } 2876 2877 2878 /* 2879 * Find out how many pages are allowed for a single swap device. There 2880 * are two limiting factors: 2881 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2882 * 2) the number of bits in the swap pte, as defined by the different 2883 * architectures. 2884 * 2885 * In order to find the largest possible bit mask, a swap entry with 2886 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2887 * decoded to a swp_entry_t again, and finally the swap offset is 2888 * extracted. 2889 * 2890 * This will mask all the bits from the initial ~0UL mask that can't 2891 * be encoded in either the swp_entry_t or the architecture definition 2892 * of a swap pte. 2893 */ 2894 unsigned long generic_max_swapfile_size(void) 2895 { 2896 return swp_offset(pte_to_swp_entry( 2897 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2898 } 2899 2900 /* Can be overridden by an architecture for additional checks. */ 2901 __weak unsigned long max_swapfile_size(void) 2902 { 2903 return generic_max_swapfile_size(); 2904 } 2905 2906 static unsigned long read_swap_header(struct swap_info_struct *p, 2907 union swap_header *swap_header, 2908 struct inode *inode) 2909 { 2910 int i; 2911 unsigned long maxpages; 2912 unsigned long swapfilepages; 2913 unsigned long last_page; 2914 2915 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2916 pr_err("Unable to find swap-space signature\n"); 2917 return 0; 2918 } 2919 2920 /* swap partition endianness hack... */ 2921 if (swab32(swap_header->info.version) == 1) { 2922 swab32s(&swap_header->info.version); 2923 swab32s(&swap_header->info.last_page); 2924 swab32s(&swap_header->info.nr_badpages); 2925 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2926 return 0; 2927 for (i = 0; i < swap_header->info.nr_badpages; i++) 2928 swab32s(&swap_header->info.badpages[i]); 2929 } 2930 /* Check the swap header's sub-version */ 2931 if (swap_header->info.version != 1) { 2932 pr_warn("Unable to handle swap header version %d\n", 2933 swap_header->info.version); 2934 return 0; 2935 } 2936 2937 p->lowest_bit = 1; 2938 p->cluster_next = 1; 2939 p->cluster_nr = 0; 2940 2941 maxpages = max_swapfile_size(); 2942 last_page = swap_header->info.last_page; 2943 if (!last_page) { 2944 pr_warn("Empty swap-file\n"); 2945 return 0; 2946 } 2947 if (last_page > maxpages) { 2948 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2949 maxpages << (PAGE_SHIFT - 10), 2950 last_page << (PAGE_SHIFT - 10)); 2951 } 2952 if (maxpages > last_page) { 2953 maxpages = last_page + 1; 2954 /* p->max is an unsigned int: don't overflow it */ 2955 if ((unsigned int)maxpages == 0) 2956 maxpages = UINT_MAX; 2957 } 2958 p->highest_bit = maxpages - 1; 2959 2960 if (!maxpages) 2961 return 0; 2962 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2963 if (swapfilepages && maxpages > swapfilepages) { 2964 pr_warn("Swap area shorter than signature indicates\n"); 2965 return 0; 2966 } 2967 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2968 return 0; 2969 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2970 return 0; 2971 2972 return maxpages; 2973 } 2974 2975 #define SWAP_CLUSTER_INFO_COLS \ 2976 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 2977 #define SWAP_CLUSTER_SPACE_COLS \ 2978 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 2979 #define SWAP_CLUSTER_COLS \ 2980 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 2981 2982 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2983 union swap_header *swap_header, 2984 unsigned char *swap_map, 2985 struct swap_cluster_info *cluster_info, 2986 unsigned long maxpages, 2987 sector_t *span) 2988 { 2989 unsigned int j, k; 2990 unsigned int nr_good_pages; 2991 int nr_extents; 2992 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2993 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 2994 unsigned long i, idx; 2995 2996 nr_good_pages = maxpages - 1; /* omit header page */ 2997 2998 cluster_list_init(&p->free_clusters); 2999 cluster_list_init(&p->discard_clusters); 3000 3001 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3002 unsigned int page_nr = swap_header->info.badpages[i]; 3003 if (page_nr == 0 || page_nr > swap_header->info.last_page) 3004 return -EINVAL; 3005 if (page_nr < maxpages) { 3006 swap_map[page_nr] = SWAP_MAP_BAD; 3007 nr_good_pages--; 3008 /* 3009 * Haven't marked the cluster free yet, no list 3010 * operation involved 3011 */ 3012 inc_cluster_info_page(p, cluster_info, page_nr); 3013 } 3014 } 3015 3016 /* Haven't marked the cluster free yet, no list operation involved */ 3017 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 3018 inc_cluster_info_page(p, cluster_info, i); 3019 3020 if (nr_good_pages) { 3021 swap_map[0] = SWAP_MAP_BAD; 3022 /* 3023 * Not mark the cluster free yet, no list 3024 * operation involved 3025 */ 3026 inc_cluster_info_page(p, cluster_info, 0); 3027 p->max = maxpages; 3028 p->pages = nr_good_pages; 3029 nr_extents = setup_swap_extents(p, span); 3030 if (nr_extents < 0) 3031 return nr_extents; 3032 nr_good_pages = p->pages; 3033 } 3034 if (!nr_good_pages) { 3035 pr_warn("Empty swap-file\n"); 3036 return -EINVAL; 3037 } 3038 3039 if (!cluster_info) 3040 return nr_extents; 3041 3042 3043 /* 3044 * Reduce false cache line sharing between cluster_info and 3045 * sharing same address space. 3046 */ 3047 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 3048 j = (k + col) % SWAP_CLUSTER_COLS; 3049 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 3050 idx = i * SWAP_CLUSTER_COLS + j; 3051 if (idx >= nr_clusters) 3052 continue; 3053 if (cluster_count(&cluster_info[idx])) 3054 continue; 3055 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 3056 cluster_list_add_tail(&p->free_clusters, cluster_info, 3057 idx); 3058 } 3059 } 3060 return nr_extents; 3061 } 3062 3063 /* 3064 * Helper to sys_swapon determining if a given swap 3065 * backing device queue supports DISCARD operations. 3066 */ 3067 static bool swap_discardable(struct swap_info_struct *si) 3068 { 3069 struct request_queue *q = bdev_get_queue(si->bdev); 3070 3071 if (!blk_queue_discard(q)) 3072 return false; 3073 3074 return true; 3075 } 3076 3077 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 3078 { 3079 struct swap_info_struct *p; 3080 struct filename *name; 3081 struct file *swap_file = NULL; 3082 struct address_space *mapping; 3083 struct dentry *dentry; 3084 int prio; 3085 int error; 3086 union swap_header *swap_header; 3087 int nr_extents; 3088 sector_t span; 3089 unsigned long maxpages; 3090 unsigned char *swap_map = NULL; 3091 struct swap_cluster_info *cluster_info = NULL; 3092 unsigned long *frontswap_map = NULL; 3093 struct page *page = NULL; 3094 struct inode *inode = NULL; 3095 bool inced_nr_rotate_swap = false; 3096 3097 if (swap_flags & ~SWAP_FLAGS_VALID) 3098 return -EINVAL; 3099 3100 if (!capable(CAP_SYS_ADMIN)) 3101 return -EPERM; 3102 3103 if (!swap_avail_heads) 3104 return -ENOMEM; 3105 3106 p = alloc_swap_info(); 3107 if (IS_ERR(p)) 3108 return PTR_ERR(p); 3109 3110 INIT_WORK(&p->discard_work, swap_discard_work); 3111 3112 name = getname(specialfile); 3113 if (IS_ERR(name)) { 3114 error = PTR_ERR(name); 3115 name = NULL; 3116 goto bad_swap; 3117 } 3118 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3119 if (IS_ERR(swap_file)) { 3120 error = PTR_ERR(swap_file); 3121 swap_file = NULL; 3122 goto bad_swap; 3123 } 3124 3125 p->swap_file = swap_file; 3126 mapping = swap_file->f_mapping; 3127 dentry = swap_file->f_path.dentry; 3128 inode = mapping->host; 3129 3130 error = claim_swapfile(p, inode); 3131 if (unlikely(error)) 3132 goto bad_swap; 3133 3134 inode_lock(inode); 3135 if (d_unlinked(dentry) || cant_mount(dentry)) { 3136 error = -ENOENT; 3137 goto bad_swap_unlock_inode; 3138 } 3139 if (IS_SWAPFILE(inode)) { 3140 error = -EBUSY; 3141 goto bad_swap_unlock_inode; 3142 } 3143 3144 /* 3145 * Read the swap header. 3146 */ 3147 if (!mapping->a_ops->readpage) { 3148 error = -EINVAL; 3149 goto bad_swap_unlock_inode; 3150 } 3151 page = read_mapping_page(mapping, 0, swap_file); 3152 if (IS_ERR(page)) { 3153 error = PTR_ERR(page); 3154 goto bad_swap_unlock_inode; 3155 } 3156 swap_header = kmap(page); 3157 3158 maxpages = read_swap_header(p, swap_header, inode); 3159 if (unlikely(!maxpages)) { 3160 error = -EINVAL; 3161 goto bad_swap_unlock_inode; 3162 } 3163 3164 /* OK, set up the swap map and apply the bad block list */ 3165 swap_map = vzalloc(maxpages); 3166 if (!swap_map) { 3167 error = -ENOMEM; 3168 goto bad_swap_unlock_inode; 3169 } 3170 3171 if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue)) 3172 p->flags |= SWP_STABLE_WRITES; 3173 3174 if (p->bdev && p->bdev->bd_disk->fops->rw_page) 3175 p->flags |= SWP_SYNCHRONOUS_IO; 3176 3177 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 3178 int cpu; 3179 unsigned long ci, nr_cluster; 3180 3181 p->flags |= SWP_SOLIDSTATE; 3182 p->cluster_next_cpu = alloc_percpu(unsigned int); 3183 if (!p->cluster_next_cpu) { 3184 error = -ENOMEM; 3185 goto bad_swap_unlock_inode; 3186 } 3187 /* 3188 * select a random position to start with to help wear leveling 3189 * SSD 3190 */ 3191 for_each_possible_cpu(cpu) { 3192 per_cpu(*p->cluster_next_cpu, cpu) = 3193 1 + prandom_u32_max(p->highest_bit); 3194 } 3195 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3196 3197 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3198 GFP_KERNEL); 3199 if (!cluster_info) { 3200 error = -ENOMEM; 3201 goto bad_swap_unlock_inode; 3202 } 3203 3204 for (ci = 0; ci < nr_cluster; ci++) 3205 spin_lock_init(&((cluster_info + ci)->lock)); 3206 3207 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3208 if (!p->percpu_cluster) { 3209 error = -ENOMEM; 3210 goto bad_swap_unlock_inode; 3211 } 3212 for_each_possible_cpu(cpu) { 3213 struct percpu_cluster *cluster; 3214 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3215 cluster_set_null(&cluster->index); 3216 } 3217 } else { 3218 atomic_inc(&nr_rotate_swap); 3219 inced_nr_rotate_swap = true; 3220 } 3221 3222 error = swap_cgroup_swapon(p->type, maxpages); 3223 if (error) 3224 goto bad_swap_unlock_inode; 3225 3226 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3227 cluster_info, maxpages, &span); 3228 if (unlikely(nr_extents < 0)) { 3229 error = nr_extents; 3230 goto bad_swap_unlock_inode; 3231 } 3232 /* frontswap enabled? set up bit-per-page map for frontswap */ 3233 if (IS_ENABLED(CONFIG_FRONTSWAP)) 3234 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages), 3235 sizeof(long), 3236 GFP_KERNEL); 3237 3238 if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 3239 /* 3240 * When discard is enabled for swap with no particular 3241 * policy flagged, we set all swap discard flags here in 3242 * order to sustain backward compatibility with older 3243 * swapon(8) releases. 3244 */ 3245 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3246 SWP_PAGE_DISCARD); 3247 3248 /* 3249 * By flagging sys_swapon, a sysadmin can tell us to 3250 * either do single-time area discards only, or to just 3251 * perform discards for released swap page-clusters. 3252 * Now it's time to adjust the p->flags accordingly. 3253 */ 3254 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3255 p->flags &= ~SWP_PAGE_DISCARD; 3256 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3257 p->flags &= ~SWP_AREA_DISCARD; 3258 3259 /* issue a swapon-time discard if it's still required */ 3260 if (p->flags & SWP_AREA_DISCARD) { 3261 int err = discard_swap(p); 3262 if (unlikely(err)) 3263 pr_err("swapon: discard_swap(%p): %d\n", 3264 p, err); 3265 } 3266 } 3267 3268 error = init_swap_address_space(p->type, maxpages); 3269 if (error) 3270 goto bad_swap_unlock_inode; 3271 3272 /* 3273 * Flush any pending IO and dirty mappings before we start using this 3274 * swap device. 3275 */ 3276 inode->i_flags |= S_SWAPFILE; 3277 error = inode_drain_writes(inode); 3278 if (error) { 3279 inode->i_flags &= ~S_SWAPFILE; 3280 goto free_swap_address_space; 3281 } 3282 3283 mutex_lock(&swapon_mutex); 3284 prio = -1; 3285 if (swap_flags & SWAP_FLAG_PREFER) 3286 prio = 3287 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3288 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 3289 3290 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 3291 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 3292 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 3293 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3294 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3295 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3296 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 3297 (frontswap_map) ? "FS" : ""); 3298 3299 mutex_unlock(&swapon_mutex); 3300 atomic_inc(&proc_poll_event); 3301 wake_up_interruptible(&proc_poll_wait); 3302 3303 error = 0; 3304 goto out; 3305 free_swap_address_space: 3306 exit_swap_address_space(p->type); 3307 bad_swap_unlock_inode: 3308 inode_unlock(inode); 3309 bad_swap: 3310 free_percpu(p->percpu_cluster); 3311 p->percpu_cluster = NULL; 3312 free_percpu(p->cluster_next_cpu); 3313 p->cluster_next_cpu = NULL; 3314 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 3315 set_blocksize(p->bdev, p->old_block_size); 3316 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 3317 } 3318 inode = NULL; 3319 destroy_swap_extents(p); 3320 swap_cgroup_swapoff(p->type); 3321 spin_lock(&swap_lock); 3322 p->swap_file = NULL; 3323 p->flags = 0; 3324 spin_unlock(&swap_lock); 3325 vfree(swap_map); 3326 kvfree(cluster_info); 3327 kvfree(frontswap_map); 3328 if (inced_nr_rotate_swap) 3329 atomic_dec(&nr_rotate_swap); 3330 if (swap_file) 3331 filp_close(swap_file, NULL); 3332 out: 3333 if (page && !IS_ERR(page)) { 3334 kunmap(page); 3335 put_page(page); 3336 } 3337 if (name) 3338 putname(name); 3339 if (inode) 3340 inode_unlock(inode); 3341 if (!error) 3342 enable_swap_slots_cache(); 3343 return error; 3344 } 3345 3346 void si_swapinfo(struct sysinfo *val) 3347 { 3348 unsigned int type; 3349 unsigned long nr_to_be_unused = 0; 3350 3351 spin_lock(&swap_lock); 3352 for (type = 0; type < nr_swapfiles; type++) { 3353 struct swap_info_struct *si = swap_info[type]; 3354 3355 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3356 nr_to_be_unused += si->inuse_pages; 3357 } 3358 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3359 val->totalswap = total_swap_pages + nr_to_be_unused; 3360 spin_unlock(&swap_lock); 3361 } 3362 3363 /* 3364 * Verify that a swap entry is valid and increment its swap map count. 3365 * 3366 * Returns error code in following case. 3367 * - success -> 0 3368 * - swp_entry is invalid -> EINVAL 3369 * - swp_entry is migration entry -> EINVAL 3370 * - swap-cache reference is requested but there is already one. -> EEXIST 3371 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3372 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3373 */ 3374 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3375 { 3376 struct swap_info_struct *p; 3377 struct swap_cluster_info *ci; 3378 unsigned long offset; 3379 unsigned char count; 3380 unsigned char has_cache; 3381 int err; 3382 3383 p = get_swap_device(entry); 3384 if (!p) 3385 return -EINVAL; 3386 3387 offset = swp_offset(entry); 3388 ci = lock_cluster_or_swap_info(p, offset); 3389 3390 count = p->swap_map[offset]; 3391 3392 /* 3393 * swapin_readahead() doesn't check if a swap entry is valid, so the 3394 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3395 */ 3396 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3397 err = -ENOENT; 3398 goto unlock_out; 3399 } 3400 3401 has_cache = count & SWAP_HAS_CACHE; 3402 count &= ~SWAP_HAS_CACHE; 3403 err = 0; 3404 3405 if (usage == SWAP_HAS_CACHE) { 3406 3407 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3408 if (!has_cache && count) 3409 has_cache = SWAP_HAS_CACHE; 3410 else if (has_cache) /* someone else added cache */ 3411 err = -EEXIST; 3412 else /* no users remaining */ 3413 err = -ENOENT; 3414 3415 } else if (count || has_cache) { 3416 3417 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3418 count += usage; 3419 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3420 err = -EINVAL; 3421 else if (swap_count_continued(p, offset, count)) 3422 count = COUNT_CONTINUED; 3423 else 3424 err = -ENOMEM; 3425 } else 3426 err = -ENOENT; /* unused swap entry */ 3427 3428 WRITE_ONCE(p->swap_map[offset], count | has_cache); 3429 3430 unlock_out: 3431 unlock_cluster_or_swap_info(p, ci); 3432 if (p) 3433 put_swap_device(p); 3434 return err; 3435 } 3436 3437 /* 3438 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3439 * (in which case its reference count is never incremented). 3440 */ 3441 void swap_shmem_alloc(swp_entry_t entry) 3442 { 3443 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3444 } 3445 3446 /* 3447 * Increase reference count of swap entry by 1. 3448 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3449 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3450 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3451 * might occur if a page table entry has got corrupted. 3452 */ 3453 int swap_duplicate(swp_entry_t entry) 3454 { 3455 int err = 0; 3456 3457 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3458 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3459 return err; 3460 } 3461 3462 /* 3463 * @entry: swap entry for which we allocate swap cache. 3464 * 3465 * Called when allocating swap cache for existing swap entry, 3466 * This can return error codes. Returns 0 at success. 3467 * -EEXIST means there is a swap cache. 3468 * Note: return code is different from swap_duplicate(). 3469 */ 3470 int swapcache_prepare(swp_entry_t entry) 3471 { 3472 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3473 } 3474 3475 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3476 { 3477 return swap_type_to_swap_info(swp_type(entry)); 3478 } 3479 3480 struct swap_info_struct *page_swap_info(struct page *page) 3481 { 3482 swp_entry_t entry = { .val = page_private(page) }; 3483 return swp_swap_info(entry); 3484 } 3485 3486 /* 3487 * out-of-line methods to avoid include hell. 3488 */ 3489 struct address_space *swapcache_mapping(struct folio *folio) 3490 { 3491 return page_swap_info(&folio->page)->swap_file->f_mapping; 3492 } 3493 EXPORT_SYMBOL_GPL(swapcache_mapping); 3494 3495 pgoff_t __page_file_index(struct page *page) 3496 { 3497 swp_entry_t swap = { .val = page_private(page) }; 3498 return swp_offset(swap); 3499 } 3500 EXPORT_SYMBOL_GPL(__page_file_index); 3501 3502 /* 3503 * add_swap_count_continuation - called when a swap count is duplicated 3504 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3505 * page of the original vmalloc'ed swap_map, to hold the continuation count 3506 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3507 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3508 * 3509 * These continuation pages are seldom referenced: the common paths all work 3510 * on the original swap_map, only referring to a continuation page when the 3511 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3512 * 3513 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3514 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3515 * can be called after dropping locks. 3516 */ 3517 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3518 { 3519 struct swap_info_struct *si; 3520 struct swap_cluster_info *ci; 3521 struct page *head; 3522 struct page *page; 3523 struct page *list_page; 3524 pgoff_t offset; 3525 unsigned char count; 3526 int ret = 0; 3527 3528 /* 3529 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3530 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3531 */ 3532 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3533 3534 si = get_swap_device(entry); 3535 if (!si) { 3536 /* 3537 * An acceptable race has occurred since the failing 3538 * __swap_duplicate(): the swap device may be swapoff 3539 */ 3540 goto outer; 3541 } 3542 spin_lock(&si->lock); 3543 3544 offset = swp_offset(entry); 3545 3546 ci = lock_cluster(si, offset); 3547 3548 count = swap_count(si->swap_map[offset]); 3549 3550 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3551 /* 3552 * The higher the swap count, the more likely it is that tasks 3553 * will race to add swap count continuation: we need to avoid 3554 * over-provisioning. 3555 */ 3556 goto out; 3557 } 3558 3559 if (!page) { 3560 ret = -ENOMEM; 3561 goto out; 3562 } 3563 3564 /* 3565 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 3566 * no architecture is using highmem pages for kernel page tables: so it 3567 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 3568 */ 3569 head = vmalloc_to_page(si->swap_map + offset); 3570 offset &= ~PAGE_MASK; 3571 3572 spin_lock(&si->cont_lock); 3573 /* 3574 * Page allocation does not initialize the page's lru field, 3575 * but it does always reset its private field. 3576 */ 3577 if (!page_private(head)) { 3578 BUG_ON(count & COUNT_CONTINUED); 3579 INIT_LIST_HEAD(&head->lru); 3580 set_page_private(head, SWP_CONTINUED); 3581 si->flags |= SWP_CONTINUED; 3582 } 3583 3584 list_for_each_entry(list_page, &head->lru, lru) { 3585 unsigned char *map; 3586 3587 /* 3588 * If the previous map said no continuation, but we've found 3589 * a continuation page, free our allocation and use this one. 3590 */ 3591 if (!(count & COUNT_CONTINUED)) 3592 goto out_unlock_cont; 3593 3594 map = kmap_atomic(list_page) + offset; 3595 count = *map; 3596 kunmap_atomic(map); 3597 3598 /* 3599 * If this continuation count now has some space in it, 3600 * free our allocation and use this one. 3601 */ 3602 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3603 goto out_unlock_cont; 3604 } 3605 3606 list_add_tail(&page->lru, &head->lru); 3607 page = NULL; /* now it's attached, don't free it */ 3608 out_unlock_cont: 3609 spin_unlock(&si->cont_lock); 3610 out: 3611 unlock_cluster(ci); 3612 spin_unlock(&si->lock); 3613 put_swap_device(si); 3614 outer: 3615 if (page) 3616 __free_page(page); 3617 return ret; 3618 } 3619 3620 /* 3621 * swap_count_continued - when the original swap_map count is incremented 3622 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3623 * into, carry if so, or else fail until a new continuation page is allocated; 3624 * when the original swap_map count is decremented from 0 with continuation, 3625 * borrow from the continuation and report whether it still holds more. 3626 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3627 * lock. 3628 */ 3629 static bool swap_count_continued(struct swap_info_struct *si, 3630 pgoff_t offset, unsigned char count) 3631 { 3632 struct page *head; 3633 struct page *page; 3634 unsigned char *map; 3635 bool ret; 3636 3637 head = vmalloc_to_page(si->swap_map + offset); 3638 if (page_private(head) != SWP_CONTINUED) { 3639 BUG_ON(count & COUNT_CONTINUED); 3640 return false; /* need to add count continuation */ 3641 } 3642 3643 spin_lock(&si->cont_lock); 3644 offset &= ~PAGE_MASK; 3645 page = list_next_entry(head, lru); 3646 map = kmap_atomic(page) + offset; 3647 3648 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3649 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3650 3651 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3652 /* 3653 * Think of how you add 1 to 999 3654 */ 3655 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3656 kunmap_atomic(map); 3657 page = list_next_entry(page, lru); 3658 BUG_ON(page == head); 3659 map = kmap_atomic(page) + offset; 3660 } 3661 if (*map == SWAP_CONT_MAX) { 3662 kunmap_atomic(map); 3663 page = list_next_entry(page, lru); 3664 if (page == head) { 3665 ret = false; /* add count continuation */ 3666 goto out; 3667 } 3668 map = kmap_atomic(page) + offset; 3669 init_map: *map = 0; /* we didn't zero the page */ 3670 } 3671 *map += 1; 3672 kunmap_atomic(map); 3673 while ((page = list_prev_entry(page, lru)) != head) { 3674 map = kmap_atomic(page) + offset; 3675 *map = COUNT_CONTINUED; 3676 kunmap_atomic(map); 3677 } 3678 ret = true; /* incremented */ 3679 3680 } else { /* decrementing */ 3681 /* 3682 * Think of how you subtract 1 from 1000 3683 */ 3684 BUG_ON(count != COUNT_CONTINUED); 3685 while (*map == COUNT_CONTINUED) { 3686 kunmap_atomic(map); 3687 page = list_next_entry(page, lru); 3688 BUG_ON(page == head); 3689 map = kmap_atomic(page) + offset; 3690 } 3691 BUG_ON(*map == 0); 3692 *map -= 1; 3693 if (*map == 0) 3694 count = 0; 3695 kunmap_atomic(map); 3696 while ((page = list_prev_entry(page, lru)) != head) { 3697 map = kmap_atomic(page) + offset; 3698 *map = SWAP_CONT_MAX | count; 3699 count = COUNT_CONTINUED; 3700 kunmap_atomic(map); 3701 } 3702 ret = count == COUNT_CONTINUED; 3703 } 3704 out: 3705 spin_unlock(&si->cont_lock); 3706 return ret; 3707 } 3708 3709 /* 3710 * free_swap_count_continuations - swapoff free all the continuation pages 3711 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3712 */ 3713 static void free_swap_count_continuations(struct swap_info_struct *si) 3714 { 3715 pgoff_t offset; 3716 3717 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3718 struct page *head; 3719 head = vmalloc_to_page(si->swap_map + offset); 3720 if (page_private(head)) { 3721 struct page *page, *next; 3722 3723 list_for_each_entry_safe(page, next, &head->lru, lru) { 3724 list_del(&page->lru); 3725 __free_page(page); 3726 } 3727 } 3728 } 3729 } 3730 3731 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3732 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask) 3733 { 3734 struct swap_info_struct *si, *next; 3735 int nid = page_to_nid(page); 3736 3737 if (!(gfp_mask & __GFP_IO)) 3738 return; 3739 3740 if (!blk_cgroup_congested()) 3741 return; 3742 3743 /* 3744 * We've already scheduled a throttle, avoid taking the global swap 3745 * lock. 3746 */ 3747 if (current->throttle_queue) 3748 return; 3749 3750 spin_lock(&swap_avail_lock); 3751 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3752 avail_lists[nid]) { 3753 if (si->bdev) { 3754 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true); 3755 break; 3756 } 3757 } 3758 spin_unlock(&swap_avail_lock); 3759 } 3760 #endif 3761 3762 static int __init swapfile_init(void) 3763 { 3764 int nid; 3765 3766 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3767 GFP_KERNEL); 3768 if (!swap_avail_heads) { 3769 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3770 return -ENOMEM; 3771 } 3772 3773 for_each_node(nid) 3774 plist_head_init(&swap_avail_heads[nid]); 3775 3776 return 0; 3777 } 3778 subsys_initcall(swapfile_init); 3779