xref: /openbmc/linux/mm/swapfile.c (revision 50fc8d92)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46 
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 				 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51 
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64 
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69 
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75 
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90 
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92 
93 static DEFINE_MUTEX(swapon_mutex);
94 
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98 
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100 
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103 	if (type >= READ_ONCE(nr_swapfiles))
104 		return NULL;
105 
106 	smp_rmb();	/* Pairs with smp_wmb in alloc_swap_info. */
107 	return READ_ONCE(swap_info[type]);
108 }
109 
110 static inline unsigned char swap_count(unsigned char ent)
111 {
112 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
113 }
114 
115 /* Reclaim the swap entry anyway if possible */
116 #define TTRS_ANYWAY		0x1
117 /*
118  * Reclaim the swap entry if there are no more mappings of the
119  * corresponding page
120  */
121 #define TTRS_UNMAPPED		0x2
122 /* Reclaim the swap entry if swap is getting full*/
123 #define TTRS_FULL		0x4
124 
125 /* returns 1 if swap entry is freed */
126 static int __try_to_reclaim_swap(struct swap_info_struct *si,
127 				 unsigned long offset, unsigned long flags)
128 {
129 	swp_entry_t entry = swp_entry(si->type, offset);
130 	struct page *page;
131 	int ret = 0;
132 
133 	page = find_get_page(swap_address_space(entry), offset);
134 	if (!page)
135 		return 0;
136 	/*
137 	 * When this function is called from scan_swap_map_slots() and it's
138 	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139 	 * here. We have to use trylock for avoiding deadlock. This is a special
140 	 * case and you should use try_to_free_swap() with explicit lock_page()
141 	 * in usual operations.
142 	 */
143 	if (trylock_page(page)) {
144 		if ((flags & TTRS_ANYWAY) ||
145 		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147 			ret = try_to_free_swap(page);
148 		unlock_page(page);
149 	}
150 	put_page(page);
151 	return ret;
152 }
153 
154 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155 {
156 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
157 	return rb_entry(rb, struct swap_extent, rb_node);
158 }
159 
160 static inline struct swap_extent *next_se(struct swap_extent *se)
161 {
162 	struct rb_node *rb = rb_next(&se->rb_node);
163 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
164 }
165 
166 /*
167  * swapon tell device that all the old swap contents can be discarded,
168  * to allow the swap device to optimize its wear-levelling.
169  */
170 static int discard_swap(struct swap_info_struct *si)
171 {
172 	struct swap_extent *se;
173 	sector_t start_block;
174 	sector_t nr_blocks;
175 	int err = 0;
176 
177 	/* Do not discard the swap header page! */
178 	se = first_se(si);
179 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181 	if (nr_blocks) {
182 		err = blkdev_issue_discard(si->bdev, start_block,
183 				nr_blocks, GFP_KERNEL, 0);
184 		if (err)
185 			return err;
186 		cond_resched();
187 	}
188 
189 	for (se = next_se(se); se; se = next_se(se)) {
190 		start_block = se->start_block << (PAGE_SHIFT - 9);
191 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
192 
193 		err = blkdev_issue_discard(si->bdev, start_block,
194 				nr_blocks, GFP_KERNEL, 0);
195 		if (err)
196 			break;
197 
198 		cond_resched();
199 	}
200 	return err;		/* That will often be -EOPNOTSUPP */
201 }
202 
203 static struct swap_extent *
204 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205 {
206 	struct swap_extent *se;
207 	struct rb_node *rb;
208 
209 	rb = sis->swap_extent_root.rb_node;
210 	while (rb) {
211 		se = rb_entry(rb, struct swap_extent, rb_node);
212 		if (offset < se->start_page)
213 			rb = rb->rb_left;
214 		else if (offset >= se->start_page + se->nr_pages)
215 			rb = rb->rb_right;
216 		else
217 			return se;
218 	}
219 	/* It *must* be present */
220 	BUG();
221 }
222 
223 /*
224  * swap allocation tell device that a cluster of swap can now be discarded,
225  * to allow the swap device to optimize its wear-levelling.
226  */
227 static void discard_swap_cluster(struct swap_info_struct *si,
228 				 pgoff_t start_page, pgoff_t nr_pages)
229 {
230 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
231 
232 	while (nr_pages) {
233 		pgoff_t offset = start_page - se->start_page;
234 		sector_t start_block = se->start_block + offset;
235 		sector_t nr_blocks = se->nr_pages - offset;
236 
237 		if (nr_blocks > nr_pages)
238 			nr_blocks = nr_pages;
239 		start_page += nr_blocks;
240 		nr_pages -= nr_blocks;
241 
242 		start_block <<= PAGE_SHIFT - 9;
243 		nr_blocks <<= PAGE_SHIFT - 9;
244 		if (blkdev_issue_discard(si->bdev, start_block,
245 					nr_blocks, GFP_NOIO, 0))
246 			break;
247 
248 		se = next_se(se);
249 	}
250 }
251 
252 #ifdef CONFIG_THP_SWAP
253 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
254 
255 #define swap_entry_size(size)	(size)
256 #else
257 #define SWAPFILE_CLUSTER	256
258 
259 /*
260  * Define swap_entry_size() as constant to let compiler to optimize
261  * out some code if !CONFIG_THP_SWAP
262  */
263 #define swap_entry_size(size)	1
264 #endif
265 #define LATENCY_LIMIT		256
266 
267 static inline void cluster_set_flag(struct swap_cluster_info *info,
268 	unsigned int flag)
269 {
270 	info->flags = flag;
271 }
272 
273 static inline unsigned int cluster_count(struct swap_cluster_info *info)
274 {
275 	return info->data;
276 }
277 
278 static inline void cluster_set_count(struct swap_cluster_info *info,
279 				     unsigned int c)
280 {
281 	info->data = c;
282 }
283 
284 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
285 					 unsigned int c, unsigned int f)
286 {
287 	info->flags = f;
288 	info->data = c;
289 }
290 
291 static inline unsigned int cluster_next(struct swap_cluster_info *info)
292 {
293 	return info->data;
294 }
295 
296 static inline void cluster_set_next(struct swap_cluster_info *info,
297 				    unsigned int n)
298 {
299 	info->data = n;
300 }
301 
302 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
303 					 unsigned int n, unsigned int f)
304 {
305 	info->flags = f;
306 	info->data = n;
307 }
308 
309 static inline bool cluster_is_free(struct swap_cluster_info *info)
310 {
311 	return info->flags & CLUSTER_FLAG_FREE;
312 }
313 
314 static inline bool cluster_is_null(struct swap_cluster_info *info)
315 {
316 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
317 }
318 
319 static inline void cluster_set_null(struct swap_cluster_info *info)
320 {
321 	info->flags = CLUSTER_FLAG_NEXT_NULL;
322 	info->data = 0;
323 }
324 
325 static inline bool cluster_is_huge(struct swap_cluster_info *info)
326 {
327 	if (IS_ENABLED(CONFIG_THP_SWAP))
328 		return info->flags & CLUSTER_FLAG_HUGE;
329 	return false;
330 }
331 
332 static inline void cluster_clear_huge(struct swap_cluster_info *info)
333 {
334 	info->flags &= ~CLUSTER_FLAG_HUGE;
335 }
336 
337 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
338 						     unsigned long offset)
339 {
340 	struct swap_cluster_info *ci;
341 
342 	ci = si->cluster_info;
343 	if (ci) {
344 		ci += offset / SWAPFILE_CLUSTER;
345 		spin_lock(&ci->lock);
346 	}
347 	return ci;
348 }
349 
350 static inline void unlock_cluster(struct swap_cluster_info *ci)
351 {
352 	if (ci)
353 		spin_unlock(&ci->lock);
354 }
355 
356 /*
357  * Determine the locking method in use for this device.  Return
358  * swap_cluster_info if SSD-style cluster-based locking is in place.
359  */
360 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
361 		struct swap_info_struct *si, unsigned long offset)
362 {
363 	struct swap_cluster_info *ci;
364 
365 	/* Try to use fine-grained SSD-style locking if available: */
366 	ci = lock_cluster(si, offset);
367 	/* Otherwise, fall back to traditional, coarse locking: */
368 	if (!ci)
369 		spin_lock(&si->lock);
370 
371 	return ci;
372 }
373 
374 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
375 					       struct swap_cluster_info *ci)
376 {
377 	if (ci)
378 		unlock_cluster(ci);
379 	else
380 		spin_unlock(&si->lock);
381 }
382 
383 static inline bool cluster_list_empty(struct swap_cluster_list *list)
384 {
385 	return cluster_is_null(&list->head);
386 }
387 
388 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
389 {
390 	return cluster_next(&list->head);
391 }
392 
393 static void cluster_list_init(struct swap_cluster_list *list)
394 {
395 	cluster_set_null(&list->head);
396 	cluster_set_null(&list->tail);
397 }
398 
399 static void cluster_list_add_tail(struct swap_cluster_list *list,
400 				  struct swap_cluster_info *ci,
401 				  unsigned int idx)
402 {
403 	if (cluster_list_empty(list)) {
404 		cluster_set_next_flag(&list->head, idx, 0);
405 		cluster_set_next_flag(&list->tail, idx, 0);
406 	} else {
407 		struct swap_cluster_info *ci_tail;
408 		unsigned int tail = cluster_next(&list->tail);
409 
410 		/*
411 		 * Nested cluster lock, but both cluster locks are
412 		 * only acquired when we held swap_info_struct->lock
413 		 */
414 		ci_tail = ci + tail;
415 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
416 		cluster_set_next(ci_tail, idx);
417 		spin_unlock(&ci_tail->lock);
418 		cluster_set_next_flag(&list->tail, idx, 0);
419 	}
420 }
421 
422 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
423 					   struct swap_cluster_info *ci)
424 {
425 	unsigned int idx;
426 
427 	idx = cluster_next(&list->head);
428 	if (cluster_next(&list->tail) == idx) {
429 		cluster_set_null(&list->head);
430 		cluster_set_null(&list->tail);
431 	} else
432 		cluster_set_next_flag(&list->head,
433 				      cluster_next(&ci[idx]), 0);
434 
435 	return idx;
436 }
437 
438 /* Add a cluster to discard list and schedule it to do discard */
439 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
440 		unsigned int idx)
441 {
442 	/*
443 	 * If scan_swap_map() can't find a free cluster, it will check
444 	 * si->swap_map directly. To make sure the discarding cluster isn't
445 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
446 	 * will be cleared after discard
447 	 */
448 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
449 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
450 
451 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
452 
453 	schedule_work(&si->discard_work);
454 }
455 
456 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
457 {
458 	struct swap_cluster_info *ci = si->cluster_info;
459 
460 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
461 	cluster_list_add_tail(&si->free_clusters, ci, idx);
462 }
463 
464 /*
465  * Doing discard actually. After a cluster discard is finished, the cluster
466  * will be added to free cluster list. caller should hold si->lock.
467 */
468 static void swap_do_scheduled_discard(struct swap_info_struct *si)
469 {
470 	struct swap_cluster_info *info, *ci;
471 	unsigned int idx;
472 
473 	info = si->cluster_info;
474 
475 	while (!cluster_list_empty(&si->discard_clusters)) {
476 		idx = cluster_list_del_first(&si->discard_clusters, info);
477 		spin_unlock(&si->lock);
478 
479 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
480 				SWAPFILE_CLUSTER);
481 
482 		spin_lock(&si->lock);
483 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
484 		__free_cluster(si, idx);
485 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
486 				0, SWAPFILE_CLUSTER);
487 		unlock_cluster(ci);
488 	}
489 }
490 
491 static void swap_discard_work(struct work_struct *work)
492 {
493 	struct swap_info_struct *si;
494 
495 	si = container_of(work, struct swap_info_struct, discard_work);
496 
497 	spin_lock(&si->lock);
498 	swap_do_scheduled_discard(si);
499 	spin_unlock(&si->lock);
500 }
501 
502 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
503 {
504 	struct swap_cluster_info *ci = si->cluster_info;
505 
506 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
507 	cluster_list_del_first(&si->free_clusters, ci);
508 	cluster_set_count_flag(ci + idx, 0, 0);
509 }
510 
511 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
512 {
513 	struct swap_cluster_info *ci = si->cluster_info + idx;
514 
515 	VM_BUG_ON(cluster_count(ci) != 0);
516 	/*
517 	 * If the swap is discardable, prepare discard the cluster
518 	 * instead of free it immediately. The cluster will be freed
519 	 * after discard.
520 	 */
521 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
522 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
523 		swap_cluster_schedule_discard(si, idx);
524 		return;
525 	}
526 
527 	__free_cluster(si, idx);
528 }
529 
530 /*
531  * The cluster corresponding to page_nr will be used. The cluster will be
532  * removed from free cluster list and its usage counter will be increased.
533  */
534 static void inc_cluster_info_page(struct swap_info_struct *p,
535 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
536 {
537 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
538 
539 	if (!cluster_info)
540 		return;
541 	if (cluster_is_free(&cluster_info[idx]))
542 		alloc_cluster(p, idx);
543 
544 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
545 	cluster_set_count(&cluster_info[idx],
546 		cluster_count(&cluster_info[idx]) + 1);
547 }
548 
549 /*
550  * The cluster corresponding to page_nr decreases one usage. If the usage
551  * counter becomes 0, which means no page in the cluster is in using, we can
552  * optionally discard the cluster and add it to free cluster list.
553  */
554 static void dec_cluster_info_page(struct swap_info_struct *p,
555 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
556 {
557 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558 
559 	if (!cluster_info)
560 		return;
561 
562 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
563 	cluster_set_count(&cluster_info[idx],
564 		cluster_count(&cluster_info[idx]) - 1);
565 
566 	if (cluster_count(&cluster_info[idx]) == 0)
567 		free_cluster(p, idx);
568 }
569 
570 /*
571  * It's possible scan_swap_map() uses a free cluster in the middle of free
572  * cluster list. Avoiding such abuse to avoid list corruption.
573  */
574 static bool
575 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
576 	unsigned long offset)
577 {
578 	struct percpu_cluster *percpu_cluster;
579 	bool conflict;
580 
581 	offset /= SWAPFILE_CLUSTER;
582 	conflict = !cluster_list_empty(&si->free_clusters) &&
583 		offset != cluster_list_first(&si->free_clusters) &&
584 		cluster_is_free(&si->cluster_info[offset]);
585 
586 	if (!conflict)
587 		return false;
588 
589 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
590 	cluster_set_null(&percpu_cluster->index);
591 	return true;
592 }
593 
594 /*
595  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
596  * might involve allocating a new cluster for current CPU too.
597  */
598 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
599 	unsigned long *offset, unsigned long *scan_base)
600 {
601 	struct percpu_cluster *cluster;
602 	struct swap_cluster_info *ci;
603 	unsigned long tmp, max;
604 
605 new_cluster:
606 	cluster = this_cpu_ptr(si->percpu_cluster);
607 	if (cluster_is_null(&cluster->index)) {
608 		if (!cluster_list_empty(&si->free_clusters)) {
609 			cluster->index = si->free_clusters.head;
610 			cluster->next = cluster_next(&cluster->index) *
611 					SWAPFILE_CLUSTER;
612 		} else if (!cluster_list_empty(&si->discard_clusters)) {
613 			/*
614 			 * we don't have free cluster but have some clusters in
615 			 * discarding, do discard now and reclaim them, then
616 			 * reread cluster_next_cpu since we dropped si->lock
617 			 */
618 			swap_do_scheduled_discard(si);
619 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
620 			*offset = *scan_base;
621 			goto new_cluster;
622 		} else
623 			return false;
624 	}
625 
626 	/*
627 	 * Other CPUs can use our cluster if they can't find a free cluster,
628 	 * check if there is still free entry in the cluster
629 	 */
630 	tmp = cluster->next;
631 	max = min_t(unsigned long, si->max,
632 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
633 	if (tmp < max) {
634 		ci = lock_cluster(si, tmp);
635 		while (tmp < max) {
636 			if (!si->swap_map[tmp])
637 				break;
638 			tmp++;
639 		}
640 		unlock_cluster(ci);
641 	}
642 	if (tmp >= max) {
643 		cluster_set_null(&cluster->index);
644 		goto new_cluster;
645 	}
646 	cluster->next = tmp + 1;
647 	*offset = tmp;
648 	*scan_base = tmp;
649 	return true;
650 }
651 
652 static void __del_from_avail_list(struct swap_info_struct *p)
653 {
654 	int nid;
655 
656 	for_each_node(nid)
657 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
658 }
659 
660 static void del_from_avail_list(struct swap_info_struct *p)
661 {
662 	spin_lock(&swap_avail_lock);
663 	__del_from_avail_list(p);
664 	spin_unlock(&swap_avail_lock);
665 }
666 
667 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
668 			     unsigned int nr_entries)
669 {
670 	unsigned int end = offset + nr_entries - 1;
671 
672 	if (offset == si->lowest_bit)
673 		si->lowest_bit += nr_entries;
674 	if (end == si->highest_bit)
675 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
676 	si->inuse_pages += nr_entries;
677 	if (si->inuse_pages == si->pages) {
678 		si->lowest_bit = si->max;
679 		si->highest_bit = 0;
680 		del_from_avail_list(si);
681 	}
682 }
683 
684 static void add_to_avail_list(struct swap_info_struct *p)
685 {
686 	int nid;
687 
688 	spin_lock(&swap_avail_lock);
689 	for_each_node(nid) {
690 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
691 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
692 	}
693 	spin_unlock(&swap_avail_lock);
694 }
695 
696 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
697 			    unsigned int nr_entries)
698 {
699 	unsigned long begin = offset;
700 	unsigned long end = offset + nr_entries - 1;
701 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
702 
703 	if (offset < si->lowest_bit)
704 		si->lowest_bit = offset;
705 	if (end > si->highest_bit) {
706 		bool was_full = !si->highest_bit;
707 
708 		WRITE_ONCE(si->highest_bit, end);
709 		if (was_full && (si->flags & SWP_WRITEOK))
710 			add_to_avail_list(si);
711 	}
712 	atomic_long_add(nr_entries, &nr_swap_pages);
713 	si->inuse_pages -= nr_entries;
714 	if (si->flags & SWP_BLKDEV)
715 		swap_slot_free_notify =
716 			si->bdev->bd_disk->fops->swap_slot_free_notify;
717 	else
718 		swap_slot_free_notify = NULL;
719 	while (offset <= end) {
720 		arch_swap_invalidate_page(si->type, offset);
721 		frontswap_invalidate_page(si->type, offset);
722 		if (swap_slot_free_notify)
723 			swap_slot_free_notify(si->bdev, offset);
724 		offset++;
725 	}
726 	clear_shadow_from_swap_cache(si->type, begin, end);
727 }
728 
729 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
730 {
731 	unsigned long prev;
732 
733 	if (!(si->flags & SWP_SOLIDSTATE)) {
734 		si->cluster_next = next;
735 		return;
736 	}
737 
738 	prev = this_cpu_read(*si->cluster_next_cpu);
739 	/*
740 	 * Cross the swap address space size aligned trunk, choose
741 	 * another trunk randomly to avoid lock contention on swap
742 	 * address space if possible.
743 	 */
744 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
745 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
746 		/* No free swap slots available */
747 		if (si->highest_bit <= si->lowest_bit)
748 			return;
749 		next = si->lowest_bit +
750 			prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
751 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
752 		next = max_t(unsigned int, next, si->lowest_bit);
753 	}
754 	this_cpu_write(*si->cluster_next_cpu, next);
755 }
756 
757 static int scan_swap_map_slots(struct swap_info_struct *si,
758 			       unsigned char usage, int nr,
759 			       swp_entry_t slots[])
760 {
761 	struct swap_cluster_info *ci;
762 	unsigned long offset;
763 	unsigned long scan_base;
764 	unsigned long last_in_cluster = 0;
765 	int latency_ration = LATENCY_LIMIT;
766 	int n_ret = 0;
767 	bool scanned_many = false;
768 
769 	/*
770 	 * We try to cluster swap pages by allocating them sequentially
771 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
772 	 * way, however, we resort to first-free allocation, starting
773 	 * a new cluster.  This prevents us from scattering swap pages
774 	 * all over the entire swap partition, so that we reduce
775 	 * overall disk seek times between swap pages.  -- sct
776 	 * But we do now try to find an empty cluster.  -Andrea
777 	 * And we let swap pages go all over an SSD partition.  Hugh
778 	 */
779 
780 	si->flags += SWP_SCANNING;
781 	/*
782 	 * Use percpu scan base for SSD to reduce lock contention on
783 	 * cluster and swap cache.  For HDD, sequential access is more
784 	 * important.
785 	 */
786 	if (si->flags & SWP_SOLIDSTATE)
787 		scan_base = this_cpu_read(*si->cluster_next_cpu);
788 	else
789 		scan_base = si->cluster_next;
790 	offset = scan_base;
791 
792 	/* SSD algorithm */
793 	if (si->cluster_info) {
794 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
795 			goto scan;
796 	} else if (unlikely(!si->cluster_nr--)) {
797 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
798 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
799 			goto checks;
800 		}
801 
802 		spin_unlock(&si->lock);
803 
804 		/*
805 		 * If seek is expensive, start searching for new cluster from
806 		 * start of partition, to minimize the span of allocated swap.
807 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
808 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
809 		 */
810 		scan_base = offset = si->lowest_bit;
811 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
812 
813 		/* Locate the first empty (unaligned) cluster */
814 		for (; last_in_cluster <= si->highest_bit; offset++) {
815 			if (si->swap_map[offset])
816 				last_in_cluster = offset + SWAPFILE_CLUSTER;
817 			else if (offset == last_in_cluster) {
818 				spin_lock(&si->lock);
819 				offset -= SWAPFILE_CLUSTER - 1;
820 				si->cluster_next = offset;
821 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
822 				goto checks;
823 			}
824 			if (unlikely(--latency_ration < 0)) {
825 				cond_resched();
826 				latency_ration = LATENCY_LIMIT;
827 			}
828 		}
829 
830 		offset = scan_base;
831 		spin_lock(&si->lock);
832 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
833 	}
834 
835 checks:
836 	if (si->cluster_info) {
837 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
838 		/* take a break if we already got some slots */
839 			if (n_ret)
840 				goto done;
841 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
842 							&scan_base))
843 				goto scan;
844 		}
845 	}
846 	if (!(si->flags & SWP_WRITEOK))
847 		goto no_page;
848 	if (!si->highest_bit)
849 		goto no_page;
850 	if (offset > si->highest_bit)
851 		scan_base = offset = si->lowest_bit;
852 
853 	ci = lock_cluster(si, offset);
854 	/* reuse swap entry of cache-only swap if not busy. */
855 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
856 		int swap_was_freed;
857 		unlock_cluster(ci);
858 		spin_unlock(&si->lock);
859 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
860 		spin_lock(&si->lock);
861 		/* entry was freed successfully, try to use this again */
862 		if (swap_was_freed)
863 			goto checks;
864 		goto scan; /* check next one */
865 	}
866 
867 	if (si->swap_map[offset]) {
868 		unlock_cluster(ci);
869 		if (!n_ret)
870 			goto scan;
871 		else
872 			goto done;
873 	}
874 	WRITE_ONCE(si->swap_map[offset], usage);
875 	inc_cluster_info_page(si, si->cluster_info, offset);
876 	unlock_cluster(ci);
877 
878 	swap_range_alloc(si, offset, 1);
879 	slots[n_ret++] = swp_entry(si->type, offset);
880 
881 	/* got enough slots or reach max slots? */
882 	if ((n_ret == nr) || (offset >= si->highest_bit))
883 		goto done;
884 
885 	/* search for next available slot */
886 
887 	/* time to take a break? */
888 	if (unlikely(--latency_ration < 0)) {
889 		if (n_ret)
890 			goto done;
891 		spin_unlock(&si->lock);
892 		cond_resched();
893 		spin_lock(&si->lock);
894 		latency_ration = LATENCY_LIMIT;
895 	}
896 
897 	/* try to get more slots in cluster */
898 	if (si->cluster_info) {
899 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
900 			goto checks;
901 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
902 		/* non-ssd case, still more slots in cluster? */
903 		--si->cluster_nr;
904 		goto checks;
905 	}
906 
907 	/*
908 	 * Even if there's no free clusters available (fragmented),
909 	 * try to scan a little more quickly with lock held unless we
910 	 * have scanned too many slots already.
911 	 */
912 	if (!scanned_many) {
913 		unsigned long scan_limit;
914 
915 		if (offset < scan_base)
916 			scan_limit = scan_base;
917 		else
918 			scan_limit = si->highest_bit;
919 		for (; offset <= scan_limit && --latency_ration > 0;
920 		     offset++) {
921 			if (!si->swap_map[offset])
922 				goto checks;
923 		}
924 	}
925 
926 done:
927 	set_cluster_next(si, offset + 1);
928 	si->flags -= SWP_SCANNING;
929 	return n_ret;
930 
931 scan:
932 	spin_unlock(&si->lock);
933 	while (++offset <= READ_ONCE(si->highest_bit)) {
934 		if (data_race(!si->swap_map[offset])) {
935 			spin_lock(&si->lock);
936 			goto checks;
937 		}
938 		if (vm_swap_full() &&
939 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
940 			spin_lock(&si->lock);
941 			goto checks;
942 		}
943 		if (unlikely(--latency_ration < 0)) {
944 			cond_resched();
945 			latency_ration = LATENCY_LIMIT;
946 			scanned_many = true;
947 		}
948 	}
949 	offset = si->lowest_bit;
950 	while (offset < scan_base) {
951 		if (data_race(!si->swap_map[offset])) {
952 			spin_lock(&si->lock);
953 			goto checks;
954 		}
955 		if (vm_swap_full() &&
956 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
957 			spin_lock(&si->lock);
958 			goto checks;
959 		}
960 		if (unlikely(--latency_ration < 0)) {
961 			cond_resched();
962 			latency_ration = LATENCY_LIMIT;
963 			scanned_many = true;
964 		}
965 		offset++;
966 	}
967 	spin_lock(&si->lock);
968 
969 no_page:
970 	si->flags -= SWP_SCANNING;
971 	return n_ret;
972 }
973 
974 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
975 {
976 	unsigned long idx;
977 	struct swap_cluster_info *ci;
978 	unsigned long offset;
979 
980 	/*
981 	 * Should not even be attempting cluster allocations when huge
982 	 * page swap is disabled.  Warn and fail the allocation.
983 	 */
984 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
985 		VM_WARN_ON_ONCE(1);
986 		return 0;
987 	}
988 
989 	if (cluster_list_empty(&si->free_clusters))
990 		return 0;
991 
992 	idx = cluster_list_first(&si->free_clusters);
993 	offset = idx * SWAPFILE_CLUSTER;
994 	ci = lock_cluster(si, offset);
995 	alloc_cluster(si, idx);
996 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
997 
998 	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
999 	unlock_cluster(ci);
1000 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1001 	*slot = swp_entry(si->type, offset);
1002 
1003 	return 1;
1004 }
1005 
1006 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1007 {
1008 	unsigned long offset = idx * SWAPFILE_CLUSTER;
1009 	struct swap_cluster_info *ci;
1010 
1011 	ci = lock_cluster(si, offset);
1012 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1013 	cluster_set_count_flag(ci, 0, 0);
1014 	free_cluster(si, idx);
1015 	unlock_cluster(ci);
1016 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1017 }
1018 
1019 static unsigned long scan_swap_map(struct swap_info_struct *si,
1020 				   unsigned char usage)
1021 {
1022 	swp_entry_t entry;
1023 	int n_ret;
1024 
1025 	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1026 
1027 	if (n_ret)
1028 		return swp_offset(entry);
1029 	else
1030 		return 0;
1031 
1032 }
1033 
1034 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1035 {
1036 	unsigned long size = swap_entry_size(entry_size);
1037 	struct swap_info_struct *si, *next;
1038 	long avail_pgs;
1039 	int n_ret = 0;
1040 	int node;
1041 
1042 	/* Only single cluster request supported */
1043 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1044 
1045 	spin_lock(&swap_avail_lock);
1046 
1047 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1048 	if (avail_pgs <= 0) {
1049 		spin_unlock(&swap_avail_lock);
1050 		goto noswap;
1051 	}
1052 
1053 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1054 
1055 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1056 
1057 start_over:
1058 	node = numa_node_id();
1059 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1060 		/* requeue si to after same-priority siblings */
1061 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1062 		spin_unlock(&swap_avail_lock);
1063 		spin_lock(&si->lock);
1064 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1065 			spin_lock(&swap_avail_lock);
1066 			if (plist_node_empty(&si->avail_lists[node])) {
1067 				spin_unlock(&si->lock);
1068 				goto nextsi;
1069 			}
1070 			WARN(!si->highest_bit,
1071 			     "swap_info %d in list but !highest_bit\n",
1072 			     si->type);
1073 			WARN(!(si->flags & SWP_WRITEOK),
1074 			     "swap_info %d in list but !SWP_WRITEOK\n",
1075 			     si->type);
1076 			__del_from_avail_list(si);
1077 			spin_unlock(&si->lock);
1078 			goto nextsi;
1079 		}
1080 		if (size == SWAPFILE_CLUSTER) {
1081 			if (si->flags & SWP_BLKDEV)
1082 				n_ret = swap_alloc_cluster(si, swp_entries);
1083 		} else
1084 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1085 						    n_goal, swp_entries);
1086 		spin_unlock(&si->lock);
1087 		if (n_ret || size == SWAPFILE_CLUSTER)
1088 			goto check_out;
1089 		pr_debug("scan_swap_map of si %d failed to find offset\n",
1090 			si->type);
1091 
1092 		spin_lock(&swap_avail_lock);
1093 nextsi:
1094 		/*
1095 		 * if we got here, it's likely that si was almost full before,
1096 		 * and since scan_swap_map() can drop the si->lock, multiple
1097 		 * callers probably all tried to get a page from the same si
1098 		 * and it filled up before we could get one; or, the si filled
1099 		 * up between us dropping swap_avail_lock and taking si->lock.
1100 		 * Since we dropped the swap_avail_lock, the swap_avail_head
1101 		 * list may have been modified; so if next is still in the
1102 		 * swap_avail_head list then try it, otherwise start over
1103 		 * if we have not gotten any slots.
1104 		 */
1105 		if (plist_node_empty(&next->avail_lists[node]))
1106 			goto start_over;
1107 	}
1108 
1109 	spin_unlock(&swap_avail_lock);
1110 
1111 check_out:
1112 	if (n_ret < n_goal)
1113 		atomic_long_add((long)(n_goal - n_ret) * size,
1114 				&nr_swap_pages);
1115 noswap:
1116 	return n_ret;
1117 }
1118 
1119 /* The only caller of this function is now suspend routine */
1120 swp_entry_t get_swap_page_of_type(int type)
1121 {
1122 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1123 	pgoff_t offset;
1124 
1125 	if (!si)
1126 		goto fail;
1127 
1128 	spin_lock(&si->lock);
1129 	if (si->flags & SWP_WRITEOK) {
1130 		/* This is called for allocating swap entry, not cache */
1131 		offset = scan_swap_map(si, 1);
1132 		if (offset) {
1133 			atomic_long_dec(&nr_swap_pages);
1134 			spin_unlock(&si->lock);
1135 			return swp_entry(type, offset);
1136 		}
1137 	}
1138 	spin_unlock(&si->lock);
1139 fail:
1140 	return (swp_entry_t) {0};
1141 }
1142 
1143 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1144 {
1145 	struct swap_info_struct *p;
1146 	unsigned long offset;
1147 
1148 	if (!entry.val)
1149 		goto out;
1150 	p = swp_swap_info(entry);
1151 	if (!p)
1152 		goto bad_nofile;
1153 	if (data_race(!(p->flags & SWP_USED)))
1154 		goto bad_device;
1155 	offset = swp_offset(entry);
1156 	if (offset >= p->max)
1157 		goto bad_offset;
1158 	return p;
1159 
1160 bad_offset:
1161 	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1162 	goto out;
1163 bad_device:
1164 	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1165 	goto out;
1166 bad_nofile:
1167 	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1168 out:
1169 	return NULL;
1170 }
1171 
1172 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1173 {
1174 	struct swap_info_struct *p;
1175 
1176 	p = __swap_info_get(entry);
1177 	if (!p)
1178 		goto out;
1179 	if (data_race(!p->swap_map[swp_offset(entry)]))
1180 		goto bad_free;
1181 	return p;
1182 
1183 bad_free:
1184 	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1185 out:
1186 	return NULL;
1187 }
1188 
1189 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1190 {
1191 	struct swap_info_struct *p;
1192 
1193 	p = _swap_info_get(entry);
1194 	if (p)
1195 		spin_lock(&p->lock);
1196 	return p;
1197 }
1198 
1199 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1200 					struct swap_info_struct *q)
1201 {
1202 	struct swap_info_struct *p;
1203 
1204 	p = _swap_info_get(entry);
1205 
1206 	if (p != q) {
1207 		if (q != NULL)
1208 			spin_unlock(&q->lock);
1209 		if (p != NULL)
1210 			spin_lock(&p->lock);
1211 	}
1212 	return p;
1213 }
1214 
1215 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1216 					      unsigned long offset,
1217 					      unsigned char usage)
1218 {
1219 	unsigned char count;
1220 	unsigned char has_cache;
1221 
1222 	count = p->swap_map[offset];
1223 
1224 	has_cache = count & SWAP_HAS_CACHE;
1225 	count &= ~SWAP_HAS_CACHE;
1226 
1227 	if (usage == SWAP_HAS_CACHE) {
1228 		VM_BUG_ON(!has_cache);
1229 		has_cache = 0;
1230 	} else if (count == SWAP_MAP_SHMEM) {
1231 		/*
1232 		 * Or we could insist on shmem.c using a special
1233 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1234 		 */
1235 		count = 0;
1236 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1237 		if (count == COUNT_CONTINUED) {
1238 			if (swap_count_continued(p, offset, count))
1239 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1240 			else
1241 				count = SWAP_MAP_MAX;
1242 		} else
1243 			count--;
1244 	}
1245 
1246 	usage = count | has_cache;
1247 	if (usage)
1248 		WRITE_ONCE(p->swap_map[offset], usage);
1249 	else
1250 		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1251 
1252 	return usage;
1253 }
1254 
1255 /*
1256  * Check whether swap entry is valid in the swap device.  If so,
1257  * return pointer to swap_info_struct, and keep the swap entry valid
1258  * via preventing the swap device from being swapoff, until
1259  * put_swap_device() is called.  Otherwise return NULL.
1260  *
1261  * The entirety of the RCU read critical section must come before the
1262  * return from or after the call to synchronize_rcu() in
1263  * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1264  * true, the si->map, si->cluster_info, etc. must be valid in the
1265  * critical section.
1266  *
1267  * Notice that swapoff or swapoff+swapon can still happen before the
1268  * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1269  * in put_swap_device() if there isn't any other way to prevent
1270  * swapoff, such as page lock, page table lock, etc.  The caller must
1271  * be prepared for that.  For example, the following situation is
1272  * possible.
1273  *
1274  *   CPU1				CPU2
1275  *   do_swap_page()
1276  *     ...				swapoff+swapon
1277  *     __read_swap_cache_async()
1278  *       swapcache_prepare()
1279  *         __swap_duplicate()
1280  *           // check swap_map
1281  *     // verify PTE not changed
1282  *
1283  * In __swap_duplicate(), the swap_map need to be checked before
1284  * changing partly because the specified swap entry may be for another
1285  * swap device which has been swapoff.  And in do_swap_page(), after
1286  * the page is read from the swap device, the PTE is verified not
1287  * changed with the page table locked to check whether the swap device
1288  * has been swapoff or swapoff+swapon.
1289  */
1290 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1291 {
1292 	struct swap_info_struct *si;
1293 	unsigned long offset;
1294 
1295 	if (!entry.val)
1296 		goto out;
1297 	si = swp_swap_info(entry);
1298 	if (!si)
1299 		goto bad_nofile;
1300 
1301 	rcu_read_lock();
1302 	if (data_race(!(si->flags & SWP_VALID)))
1303 		goto unlock_out;
1304 	offset = swp_offset(entry);
1305 	if (offset >= si->max)
1306 		goto unlock_out;
1307 
1308 	return si;
1309 bad_nofile:
1310 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1311 out:
1312 	return NULL;
1313 unlock_out:
1314 	rcu_read_unlock();
1315 	return NULL;
1316 }
1317 
1318 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1319 				       swp_entry_t entry)
1320 {
1321 	struct swap_cluster_info *ci;
1322 	unsigned long offset = swp_offset(entry);
1323 	unsigned char usage;
1324 
1325 	ci = lock_cluster_or_swap_info(p, offset);
1326 	usage = __swap_entry_free_locked(p, offset, 1);
1327 	unlock_cluster_or_swap_info(p, ci);
1328 	if (!usage)
1329 		free_swap_slot(entry);
1330 
1331 	return usage;
1332 }
1333 
1334 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1335 {
1336 	struct swap_cluster_info *ci;
1337 	unsigned long offset = swp_offset(entry);
1338 	unsigned char count;
1339 
1340 	ci = lock_cluster(p, offset);
1341 	count = p->swap_map[offset];
1342 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1343 	p->swap_map[offset] = 0;
1344 	dec_cluster_info_page(p, p->cluster_info, offset);
1345 	unlock_cluster(ci);
1346 
1347 	mem_cgroup_uncharge_swap(entry, 1);
1348 	swap_range_free(p, offset, 1);
1349 }
1350 
1351 /*
1352  * Caller has made sure that the swap device corresponding to entry
1353  * is still around or has not been recycled.
1354  */
1355 void swap_free(swp_entry_t entry)
1356 {
1357 	struct swap_info_struct *p;
1358 
1359 	p = _swap_info_get(entry);
1360 	if (p)
1361 		__swap_entry_free(p, entry);
1362 }
1363 
1364 /*
1365  * Called after dropping swapcache to decrease refcnt to swap entries.
1366  */
1367 void put_swap_page(struct page *page, swp_entry_t entry)
1368 {
1369 	unsigned long offset = swp_offset(entry);
1370 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1371 	struct swap_cluster_info *ci;
1372 	struct swap_info_struct *si;
1373 	unsigned char *map;
1374 	unsigned int i, free_entries = 0;
1375 	unsigned char val;
1376 	int size = swap_entry_size(thp_nr_pages(page));
1377 
1378 	si = _swap_info_get(entry);
1379 	if (!si)
1380 		return;
1381 
1382 	ci = lock_cluster_or_swap_info(si, offset);
1383 	if (size == SWAPFILE_CLUSTER) {
1384 		VM_BUG_ON(!cluster_is_huge(ci));
1385 		map = si->swap_map + offset;
1386 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1387 			val = map[i];
1388 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1389 			if (val == SWAP_HAS_CACHE)
1390 				free_entries++;
1391 		}
1392 		cluster_clear_huge(ci);
1393 		if (free_entries == SWAPFILE_CLUSTER) {
1394 			unlock_cluster_or_swap_info(si, ci);
1395 			spin_lock(&si->lock);
1396 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1397 			swap_free_cluster(si, idx);
1398 			spin_unlock(&si->lock);
1399 			return;
1400 		}
1401 	}
1402 	for (i = 0; i < size; i++, entry.val++) {
1403 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1404 			unlock_cluster_or_swap_info(si, ci);
1405 			free_swap_slot(entry);
1406 			if (i == size - 1)
1407 				return;
1408 			lock_cluster_or_swap_info(si, offset);
1409 		}
1410 	}
1411 	unlock_cluster_or_swap_info(si, ci);
1412 }
1413 
1414 #ifdef CONFIG_THP_SWAP
1415 int split_swap_cluster(swp_entry_t entry)
1416 {
1417 	struct swap_info_struct *si;
1418 	struct swap_cluster_info *ci;
1419 	unsigned long offset = swp_offset(entry);
1420 
1421 	si = _swap_info_get(entry);
1422 	if (!si)
1423 		return -EBUSY;
1424 	ci = lock_cluster(si, offset);
1425 	cluster_clear_huge(ci);
1426 	unlock_cluster(ci);
1427 	return 0;
1428 }
1429 #endif
1430 
1431 static int swp_entry_cmp(const void *ent1, const void *ent2)
1432 {
1433 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1434 
1435 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1436 }
1437 
1438 void swapcache_free_entries(swp_entry_t *entries, int n)
1439 {
1440 	struct swap_info_struct *p, *prev;
1441 	int i;
1442 
1443 	if (n <= 0)
1444 		return;
1445 
1446 	prev = NULL;
1447 	p = NULL;
1448 
1449 	/*
1450 	 * Sort swap entries by swap device, so each lock is only taken once.
1451 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1452 	 * so low that it isn't necessary to optimize further.
1453 	 */
1454 	if (nr_swapfiles > 1)
1455 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1456 	for (i = 0; i < n; ++i) {
1457 		p = swap_info_get_cont(entries[i], prev);
1458 		if (p)
1459 			swap_entry_free(p, entries[i]);
1460 		prev = p;
1461 	}
1462 	if (p)
1463 		spin_unlock(&p->lock);
1464 }
1465 
1466 /*
1467  * How many references to page are currently swapped out?
1468  * This does not give an exact answer when swap count is continued,
1469  * but does include the high COUNT_CONTINUED flag to allow for that.
1470  */
1471 int page_swapcount(struct page *page)
1472 {
1473 	int count = 0;
1474 	struct swap_info_struct *p;
1475 	struct swap_cluster_info *ci;
1476 	swp_entry_t entry;
1477 	unsigned long offset;
1478 
1479 	entry.val = page_private(page);
1480 	p = _swap_info_get(entry);
1481 	if (p) {
1482 		offset = swp_offset(entry);
1483 		ci = lock_cluster_or_swap_info(p, offset);
1484 		count = swap_count(p->swap_map[offset]);
1485 		unlock_cluster_or_swap_info(p, ci);
1486 	}
1487 	return count;
1488 }
1489 
1490 int __swap_count(swp_entry_t entry)
1491 {
1492 	struct swap_info_struct *si;
1493 	pgoff_t offset = swp_offset(entry);
1494 	int count = 0;
1495 
1496 	si = get_swap_device(entry);
1497 	if (si) {
1498 		count = swap_count(si->swap_map[offset]);
1499 		put_swap_device(si);
1500 	}
1501 	return count;
1502 }
1503 
1504 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1505 {
1506 	int count = 0;
1507 	pgoff_t offset = swp_offset(entry);
1508 	struct swap_cluster_info *ci;
1509 
1510 	ci = lock_cluster_or_swap_info(si, offset);
1511 	count = swap_count(si->swap_map[offset]);
1512 	unlock_cluster_or_swap_info(si, ci);
1513 	return count;
1514 }
1515 
1516 /*
1517  * How many references to @entry are currently swapped out?
1518  * This does not give an exact answer when swap count is continued,
1519  * but does include the high COUNT_CONTINUED flag to allow for that.
1520  */
1521 int __swp_swapcount(swp_entry_t entry)
1522 {
1523 	int count = 0;
1524 	struct swap_info_struct *si;
1525 
1526 	si = get_swap_device(entry);
1527 	if (si) {
1528 		count = swap_swapcount(si, entry);
1529 		put_swap_device(si);
1530 	}
1531 	return count;
1532 }
1533 
1534 /*
1535  * How many references to @entry are currently swapped out?
1536  * This considers COUNT_CONTINUED so it returns exact answer.
1537  */
1538 int swp_swapcount(swp_entry_t entry)
1539 {
1540 	int count, tmp_count, n;
1541 	struct swap_info_struct *p;
1542 	struct swap_cluster_info *ci;
1543 	struct page *page;
1544 	pgoff_t offset;
1545 	unsigned char *map;
1546 
1547 	p = _swap_info_get(entry);
1548 	if (!p)
1549 		return 0;
1550 
1551 	offset = swp_offset(entry);
1552 
1553 	ci = lock_cluster_or_swap_info(p, offset);
1554 
1555 	count = swap_count(p->swap_map[offset]);
1556 	if (!(count & COUNT_CONTINUED))
1557 		goto out;
1558 
1559 	count &= ~COUNT_CONTINUED;
1560 	n = SWAP_MAP_MAX + 1;
1561 
1562 	page = vmalloc_to_page(p->swap_map + offset);
1563 	offset &= ~PAGE_MASK;
1564 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1565 
1566 	do {
1567 		page = list_next_entry(page, lru);
1568 		map = kmap_atomic(page);
1569 		tmp_count = map[offset];
1570 		kunmap_atomic(map);
1571 
1572 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1573 		n *= (SWAP_CONT_MAX + 1);
1574 	} while (tmp_count & COUNT_CONTINUED);
1575 out:
1576 	unlock_cluster_or_swap_info(p, ci);
1577 	return count;
1578 }
1579 
1580 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1581 					 swp_entry_t entry)
1582 {
1583 	struct swap_cluster_info *ci;
1584 	unsigned char *map = si->swap_map;
1585 	unsigned long roffset = swp_offset(entry);
1586 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1587 	int i;
1588 	bool ret = false;
1589 
1590 	ci = lock_cluster_or_swap_info(si, offset);
1591 	if (!ci || !cluster_is_huge(ci)) {
1592 		if (swap_count(map[roffset]))
1593 			ret = true;
1594 		goto unlock_out;
1595 	}
1596 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1597 		if (swap_count(map[offset + i])) {
1598 			ret = true;
1599 			break;
1600 		}
1601 	}
1602 unlock_out:
1603 	unlock_cluster_or_swap_info(si, ci);
1604 	return ret;
1605 }
1606 
1607 static bool page_swapped(struct page *page)
1608 {
1609 	swp_entry_t entry;
1610 	struct swap_info_struct *si;
1611 
1612 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1613 		return page_swapcount(page) != 0;
1614 
1615 	page = compound_head(page);
1616 	entry.val = page_private(page);
1617 	si = _swap_info_get(entry);
1618 	if (si)
1619 		return swap_page_trans_huge_swapped(si, entry);
1620 	return false;
1621 }
1622 
1623 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1624 					 int *total_swapcount)
1625 {
1626 	int i, map_swapcount, _total_mapcount, _total_swapcount;
1627 	unsigned long offset = 0;
1628 	struct swap_info_struct *si;
1629 	struct swap_cluster_info *ci = NULL;
1630 	unsigned char *map = NULL;
1631 	int mapcount, swapcount = 0;
1632 
1633 	/* hugetlbfs shouldn't call it */
1634 	VM_BUG_ON_PAGE(PageHuge(page), page);
1635 
1636 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1637 		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1638 		if (PageSwapCache(page))
1639 			swapcount = page_swapcount(page);
1640 		if (total_swapcount)
1641 			*total_swapcount = swapcount;
1642 		return mapcount + swapcount;
1643 	}
1644 
1645 	page = compound_head(page);
1646 
1647 	_total_mapcount = _total_swapcount = map_swapcount = 0;
1648 	if (PageSwapCache(page)) {
1649 		swp_entry_t entry;
1650 
1651 		entry.val = page_private(page);
1652 		si = _swap_info_get(entry);
1653 		if (si) {
1654 			map = si->swap_map;
1655 			offset = swp_offset(entry);
1656 		}
1657 	}
1658 	if (map)
1659 		ci = lock_cluster(si, offset);
1660 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1661 		mapcount = atomic_read(&page[i]._mapcount) + 1;
1662 		_total_mapcount += mapcount;
1663 		if (map) {
1664 			swapcount = swap_count(map[offset + i]);
1665 			_total_swapcount += swapcount;
1666 		}
1667 		map_swapcount = max(map_swapcount, mapcount + swapcount);
1668 	}
1669 	unlock_cluster(ci);
1670 	if (PageDoubleMap(page)) {
1671 		map_swapcount -= 1;
1672 		_total_mapcount -= HPAGE_PMD_NR;
1673 	}
1674 	mapcount = compound_mapcount(page);
1675 	map_swapcount += mapcount;
1676 	_total_mapcount += mapcount;
1677 	if (total_mapcount)
1678 		*total_mapcount = _total_mapcount;
1679 	if (total_swapcount)
1680 		*total_swapcount = _total_swapcount;
1681 
1682 	return map_swapcount;
1683 }
1684 
1685 /*
1686  * We can write to an anon page without COW if there are no other references
1687  * to it.  And as a side-effect, free up its swap: because the old content
1688  * on disk will never be read, and seeking back there to write new content
1689  * later would only waste time away from clustering.
1690  *
1691  * NOTE: total_map_swapcount should not be relied upon by the caller if
1692  * reuse_swap_page() returns false, but it may be always overwritten
1693  * (see the other implementation for CONFIG_SWAP=n).
1694  */
1695 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1696 {
1697 	int count, total_mapcount, total_swapcount;
1698 
1699 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1700 	if (unlikely(PageKsm(page)))
1701 		return false;
1702 	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1703 					      &total_swapcount);
1704 	if (total_map_swapcount)
1705 		*total_map_swapcount = total_mapcount + total_swapcount;
1706 	if (count == 1 && PageSwapCache(page) &&
1707 	    (likely(!PageTransCompound(page)) ||
1708 	     /* The remaining swap count will be freed soon */
1709 	     total_swapcount == page_swapcount(page))) {
1710 		if (!PageWriteback(page)) {
1711 			page = compound_head(page);
1712 			delete_from_swap_cache(page);
1713 			SetPageDirty(page);
1714 		} else {
1715 			swp_entry_t entry;
1716 			struct swap_info_struct *p;
1717 
1718 			entry.val = page_private(page);
1719 			p = swap_info_get(entry);
1720 			if (p->flags & SWP_STABLE_WRITES) {
1721 				spin_unlock(&p->lock);
1722 				return false;
1723 			}
1724 			spin_unlock(&p->lock);
1725 		}
1726 	}
1727 
1728 	return count <= 1;
1729 }
1730 
1731 /*
1732  * If swap is getting full, or if there are no more mappings of this page,
1733  * then try_to_free_swap is called to free its swap space.
1734  */
1735 int try_to_free_swap(struct page *page)
1736 {
1737 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1738 
1739 	if (!PageSwapCache(page))
1740 		return 0;
1741 	if (PageWriteback(page))
1742 		return 0;
1743 	if (page_swapped(page))
1744 		return 0;
1745 
1746 	/*
1747 	 * Once hibernation has begun to create its image of memory,
1748 	 * there's a danger that one of the calls to try_to_free_swap()
1749 	 * - most probably a call from __try_to_reclaim_swap() while
1750 	 * hibernation is allocating its own swap pages for the image,
1751 	 * but conceivably even a call from memory reclaim - will free
1752 	 * the swap from a page which has already been recorded in the
1753 	 * image as a clean swapcache page, and then reuse its swap for
1754 	 * another page of the image.  On waking from hibernation, the
1755 	 * original page might be freed under memory pressure, then
1756 	 * later read back in from swap, now with the wrong data.
1757 	 *
1758 	 * Hibernation suspends storage while it is writing the image
1759 	 * to disk so check that here.
1760 	 */
1761 	if (pm_suspended_storage())
1762 		return 0;
1763 
1764 	page = compound_head(page);
1765 	delete_from_swap_cache(page);
1766 	SetPageDirty(page);
1767 	return 1;
1768 }
1769 
1770 /*
1771  * Free the swap entry like above, but also try to
1772  * free the page cache entry if it is the last user.
1773  */
1774 int free_swap_and_cache(swp_entry_t entry)
1775 {
1776 	struct swap_info_struct *p;
1777 	unsigned char count;
1778 
1779 	if (non_swap_entry(entry))
1780 		return 1;
1781 
1782 	p = _swap_info_get(entry);
1783 	if (p) {
1784 		count = __swap_entry_free(p, entry);
1785 		if (count == SWAP_HAS_CACHE &&
1786 		    !swap_page_trans_huge_swapped(p, entry))
1787 			__try_to_reclaim_swap(p, swp_offset(entry),
1788 					      TTRS_UNMAPPED | TTRS_FULL);
1789 	}
1790 	return p != NULL;
1791 }
1792 
1793 #ifdef CONFIG_HIBERNATION
1794 /*
1795  * Find the swap type that corresponds to given device (if any).
1796  *
1797  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1798  * from 0, in which the swap header is expected to be located.
1799  *
1800  * This is needed for the suspend to disk (aka swsusp).
1801  */
1802 int swap_type_of(dev_t device, sector_t offset)
1803 {
1804 	int type;
1805 
1806 	if (!device)
1807 		return -1;
1808 
1809 	spin_lock(&swap_lock);
1810 	for (type = 0; type < nr_swapfiles; type++) {
1811 		struct swap_info_struct *sis = swap_info[type];
1812 
1813 		if (!(sis->flags & SWP_WRITEOK))
1814 			continue;
1815 
1816 		if (device == sis->bdev->bd_dev) {
1817 			struct swap_extent *se = first_se(sis);
1818 
1819 			if (se->start_block == offset) {
1820 				spin_unlock(&swap_lock);
1821 				return type;
1822 			}
1823 		}
1824 	}
1825 	spin_unlock(&swap_lock);
1826 	return -ENODEV;
1827 }
1828 
1829 int find_first_swap(dev_t *device)
1830 {
1831 	int type;
1832 
1833 	spin_lock(&swap_lock);
1834 	for (type = 0; type < nr_swapfiles; type++) {
1835 		struct swap_info_struct *sis = swap_info[type];
1836 
1837 		if (!(sis->flags & SWP_WRITEOK))
1838 			continue;
1839 		*device = sis->bdev->bd_dev;
1840 		spin_unlock(&swap_lock);
1841 		return type;
1842 	}
1843 	spin_unlock(&swap_lock);
1844 	return -ENODEV;
1845 }
1846 
1847 /*
1848  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1849  * corresponding to given index in swap_info (swap type).
1850  */
1851 sector_t swapdev_block(int type, pgoff_t offset)
1852 {
1853 	struct block_device *bdev;
1854 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1855 
1856 	if (!si || !(si->flags & SWP_WRITEOK))
1857 		return 0;
1858 	return map_swap_entry(swp_entry(type, offset), &bdev);
1859 }
1860 
1861 /*
1862  * Return either the total number of swap pages of given type, or the number
1863  * of free pages of that type (depending on @free)
1864  *
1865  * This is needed for software suspend
1866  */
1867 unsigned int count_swap_pages(int type, int free)
1868 {
1869 	unsigned int n = 0;
1870 
1871 	spin_lock(&swap_lock);
1872 	if ((unsigned int)type < nr_swapfiles) {
1873 		struct swap_info_struct *sis = swap_info[type];
1874 
1875 		spin_lock(&sis->lock);
1876 		if (sis->flags & SWP_WRITEOK) {
1877 			n = sis->pages;
1878 			if (free)
1879 				n -= sis->inuse_pages;
1880 		}
1881 		spin_unlock(&sis->lock);
1882 	}
1883 	spin_unlock(&swap_lock);
1884 	return n;
1885 }
1886 #endif /* CONFIG_HIBERNATION */
1887 
1888 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1889 {
1890 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1891 }
1892 
1893 /*
1894  * No need to decide whether this PTE shares the swap entry with others,
1895  * just let do_wp_page work it out if a write is requested later - to
1896  * force COW, vm_page_prot omits write permission from any private vma.
1897  */
1898 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1899 		unsigned long addr, swp_entry_t entry, struct page *page)
1900 {
1901 	struct page *swapcache;
1902 	spinlock_t *ptl;
1903 	pte_t *pte;
1904 	int ret = 1;
1905 
1906 	swapcache = page;
1907 	page = ksm_might_need_to_copy(page, vma, addr);
1908 	if (unlikely(!page))
1909 		return -ENOMEM;
1910 
1911 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1912 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1913 		ret = 0;
1914 		goto out;
1915 	}
1916 
1917 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1918 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1919 	get_page(page);
1920 	set_pte_at(vma->vm_mm, addr, pte,
1921 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1922 	if (page == swapcache) {
1923 		page_add_anon_rmap(page, vma, addr, false);
1924 	} else { /* ksm created a completely new copy */
1925 		page_add_new_anon_rmap(page, vma, addr, false);
1926 		lru_cache_add_inactive_or_unevictable(page, vma);
1927 	}
1928 	swap_free(entry);
1929 out:
1930 	pte_unmap_unlock(pte, ptl);
1931 	if (page != swapcache) {
1932 		unlock_page(page);
1933 		put_page(page);
1934 	}
1935 	return ret;
1936 }
1937 
1938 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1939 			unsigned long addr, unsigned long end,
1940 			unsigned int type, bool frontswap,
1941 			unsigned long *fs_pages_to_unuse)
1942 {
1943 	struct page *page;
1944 	swp_entry_t entry;
1945 	pte_t *pte;
1946 	struct swap_info_struct *si;
1947 	unsigned long offset;
1948 	int ret = 0;
1949 	volatile unsigned char *swap_map;
1950 
1951 	si = swap_info[type];
1952 	pte = pte_offset_map(pmd, addr);
1953 	do {
1954 		struct vm_fault vmf;
1955 
1956 		if (!is_swap_pte(*pte))
1957 			continue;
1958 
1959 		entry = pte_to_swp_entry(*pte);
1960 		if (swp_type(entry) != type)
1961 			continue;
1962 
1963 		offset = swp_offset(entry);
1964 		if (frontswap && !frontswap_test(si, offset))
1965 			continue;
1966 
1967 		pte_unmap(pte);
1968 		swap_map = &si->swap_map[offset];
1969 		page = lookup_swap_cache(entry, vma, addr);
1970 		if (!page) {
1971 			vmf.vma = vma;
1972 			vmf.address = addr;
1973 			vmf.pmd = pmd;
1974 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1975 						&vmf);
1976 		}
1977 		if (!page) {
1978 			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1979 				goto try_next;
1980 			return -ENOMEM;
1981 		}
1982 
1983 		lock_page(page);
1984 		wait_on_page_writeback(page);
1985 		ret = unuse_pte(vma, pmd, addr, entry, page);
1986 		if (ret < 0) {
1987 			unlock_page(page);
1988 			put_page(page);
1989 			goto out;
1990 		}
1991 
1992 		try_to_free_swap(page);
1993 		unlock_page(page);
1994 		put_page(page);
1995 
1996 		if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1997 			ret = FRONTSWAP_PAGES_UNUSED;
1998 			goto out;
1999 		}
2000 try_next:
2001 		pte = pte_offset_map(pmd, addr);
2002 	} while (pte++, addr += PAGE_SIZE, addr != end);
2003 	pte_unmap(pte - 1);
2004 
2005 	ret = 0;
2006 out:
2007 	return ret;
2008 }
2009 
2010 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2011 				unsigned long addr, unsigned long end,
2012 				unsigned int type, bool frontswap,
2013 				unsigned long *fs_pages_to_unuse)
2014 {
2015 	pmd_t *pmd;
2016 	unsigned long next;
2017 	int ret;
2018 
2019 	pmd = pmd_offset(pud, addr);
2020 	do {
2021 		cond_resched();
2022 		next = pmd_addr_end(addr, end);
2023 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2024 			continue;
2025 		ret = unuse_pte_range(vma, pmd, addr, next, type,
2026 				      frontswap, fs_pages_to_unuse);
2027 		if (ret)
2028 			return ret;
2029 	} while (pmd++, addr = next, addr != end);
2030 	return 0;
2031 }
2032 
2033 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2034 				unsigned long addr, unsigned long end,
2035 				unsigned int type, bool frontswap,
2036 				unsigned long *fs_pages_to_unuse)
2037 {
2038 	pud_t *pud;
2039 	unsigned long next;
2040 	int ret;
2041 
2042 	pud = pud_offset(p4d, addr);
2043 	do {
2044 		next = pud_addr_end(addr, end);
2045 		if (pud_none_or_clear_bad(pud))
2046 			continue;
2047 		ret = unuse_pmd_range(vma, pud, addr, next, type,
2048 				      frontswap, fs_pages_to_unuse);
2049 		if (ret)
2050 			return ret;
2051 	} while (pud++, addr = next, addr != end);
2052 	return 0;
2053 }
2054 
2055 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2056 				unsigned long addr, unsigned long end,
2057 				unsigned int type, bool frontswap,
2058 				unsigned long *fs_pages_to_unuse)
2059 {
2060 	p4d_t *p4d;
2061 	unsigned long next;
2062 	int ret;
2063 
2064 	p4d = p4d_offset(pgd, addr);
2065 	do {
2066 		next = p4d_addr_end(addr, end);
2067 		if (p4d_none_or_clear_bad(p4d))
2068 			continue;
2069 		ret = unuse_pud_range(vma, p4d, addr, next, type,
2070 				      frontswap, fs_pages_to_unuse);
2071 		if (ret)
2072 			return ret;
2073 	} while (p4d++, addr = next, addr != end);
2074 	return 0;
2075 }
2076 
2077 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2078 		     bool frontswap, unsigned long *fs_pages_to_unuse)
2079 {
2080 	pgd_t *pgd;
2081 	unsigned long addr, end, next;
2082 	int ret;
2083 
2084 	addr = vma->vm_start;
2085 	end = vma->vm_end;
2086 
2087 	pgd = pgd_offset(vma->vm_mm, addr);
2088 	do {
2089 		next = pgd_addr_end(addr, end);
2090 		if (pgd_none_or_clear_bad(pgd))
2091 			continue;
2092 		ret = unuse_p4d_range(vma, pgd, addr, next, type,
2093 				      frontswap, fs_pages_to_unuse);
2094 		if (ret)
2095 			return ret;
2096 	} while (pgd++, addr = next, addr != end);
2097 	return 0;
2098 }
2099 
2100 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2101 		    bool frontswap, unsigned long *fs_pages_to_unuse)
2102 {
2103 	struct vm_area_struct *vma;
2104 	int ret = 0;
2105 
2106 	mmap_read_lock(mm);
2107 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2108 		if (vma->anon_vma) {
2109 			ret = unuse_vma(vma, type, frontswap,
2110 					fs_pages_to_unuse);
2111 			if (ret)
2112 				break;
2113 		}
2114 		cond_resched();
2115 	}
2116 	mmap_read_unlock(mm);
2117 	return ret;
2118 }
2119 
2120 /*
2121  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2122  * from current position to next entry still in use. Return 0
2123  * if there are no inuse entries after prev till end of the map.
2124  */
2125 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2126 					unsigned int prev, bool frontswap)
2127 {
2128 	unsigned int i;
2129 	unsigned char count;
2130 
2131 	/*
2132 	 * No need for swap_lock here: we're just looking
2133 	 * for whether an entry is in use, not modifying it; false
2134 	 * hits are okay, and sys_swapoff() has already prevented new
2135 	 * allocations from this area (while holding swap_lock).
2136 	 */
2137 	for (i = prev + 1; i < si->max; i++) {
2138 		count = READ_ONCE(si->swap_map[i]);
2139 		if (count && swap_count(count) != SWAP_MAP_BAD)
2140 			if (!frontswap || frontswap_test(si, i))
2141 				break;
2142 		if ((i % LATENCY_LIMIT) == 0)
2143 			cond_resched();
2144 	}
2145 
2146 	if (i == si->max)
2147 		i = 0;
2148 
2149 	return i;
2150 }
2151 
2152 /*
2153  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2154  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2155  */
2156 int try_to_unuse(unsigned int type, bool frontswap,
2157 		 unsigned long pages_to_unuse)
2158 {
2159 	struct mm_struct *prev_mm;
2160 	struct mm_struct *mm;
2161 	struct list_head *p;
2162 	int retval = 0;
2163 	struct swap_info_struct *si = swap_info[type];
2164 	struct page *page;
2165 	swp_entry_t entry;
2166 	unsigned int i;
2167 
2168 	if (!READ_ONCE(si->inuse_pages))
2169 		return 0;
2170 
2171 	if (!frontswap)
2172 		pages_to_unuse = 0;
2173 
2174 retry:
2175 	retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2176 	if (retval)
2177 		goto out;
2178 
2179 	prev_mm = &init_mm;
2180 	mmget(prev_mm);
2181 
2182 	spin_lock(&mmlist_lock);
2183 	p = &init_mm.mmlist;
2184 	while (READ_ONCE(si->inuse_pages) &&
2185 	       !signal_pending(current) &&
2186 	       (p = p->next) != &init_mm.mmlist) {
2187 
2188 		mm = list_entry(p, struct mm_struct, mmlist);
2189 		if (!mmget_not_zero(mm))
2190 			continue;
2191 		spin_unlock(&mmlist_lock);
2192 		mmput(prev_mm);
2193 		prev_mm = mm;
2194 		retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2195 
2196 		if (retval) {
2197 			mmput(prev_mm);
2198 			goto out;
2199 		}
2200 
2201 		/*
2202 		 * Make sure that we aren't completely killing
2203 		 * interactive performance.
2204 		 */
2205 		cond_resched();
2206 		spin_lock(&mmlist_lock);
2207 	}
2208 	spin_unlock(&mmlist_lock);
2209 
2210 	mmput(prev_mm);
2211 
2212 	i = 0;
2213 	while (READ_ONCE(si->inuse_pages) &&
2214 	       !signal_pending(current) &&
2215 	       (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2216 
2217 		entry = swp_entry(type, i);
2218 		page = find_get_page(swap_address_space(entry), i);
2219 		if (!page)
2220 			continue;
2221 
2222 		/*
2223 		 * It is conceivable that a racing task removed this page from
2224 		 * swap cache just before we acquired the page lock. The page
2225 		 * might even be back in swap cache on another swap area. But
2226 		 * that is okay, try_to_free_swap() only removes stale pages.
2227 		 */
2228 		lock_page(page);
2229 		wait_on_page_writeback(page);
2230 		try_to_free_swap(page);
2231 		unlock_page(page);
2232 		put_page(page);
2233 
2234 		/*
2235 		 * For frontswap, we just need to unuse pages_to_unuse, if
2236 		 * it was specified. Need not check frontswap again here as
2237 		 * we already zeroed out pages_to_unuse if not frontswap.
2238 		 */
2239 		if (pages_to_unuse && --pages_to_unuse == 0)
2240 			goto out;
2241 	}
2242 
2243 	/*
2244 	 * Lets check again to see if there are still swap entries in the map.
2245 	 * If yes, we would need to do retry the unuse logic again.
2246 	 * Under global memory pressure, swap entries can be reinserted back
2247 	 * into process space after the mmlist loop above passes over them.
2248 	 *
2249 	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2250 	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2251 	 * at its own independent pace; and even shmem_writepage() could have
2252 	 * been preempted after get_swap_page(), temporarily hiding that swap.
2253 	 * It's easy and robust (though cpu-intensive) just to keep retrying.
2254 	 */
2255 	if (READ_ONCE(si->inuse_pages)) {
2256 		if (!signal_pending(current))
2257 			goto retry;
2258 		retval = -EINTR;
2259 	}
2260 out:
2261 	return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2262 }
2263 
2264 /*
2265  * After a successful try_to_unuse, if no swap is now in use, we know
2266  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2267  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2268  * added to the mmlist just after page_duplicate - before would be racy.
2269  */
2270 static void drain_mmlist(void)
2271 {
2272 	struct list_head *p, *next;
2273 	unsigned int type;
2274 
2275 	for (type = 0; type < nr_swapfiles; type++)
2276 		if (swap_info[type]->inuse_pages)
2277 			return;
2278 	spin_lock(&mmlist_lock);
2279 	list_for_each_safe(p, next, &init_mm.mmlist)
2280 		list_del_init(p);
2281 	spin_unlock(&mmlist_lock);
2282 }
2283 
2284 /*
2285  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2286  * corresponds to page offset for the specified swap entry.
2287  * Note that the type of this function is sector_t, but it returns page offset
2288  * into the bdev, not sector offset.
2289  */
2290 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2291 {
2292 	struct swap_info_struct *sis;
2293 	struct swap_extent *se;
2294 	pgoff_t offset;
2295 
2296 	sis = swp_swap_info(entry);
2297 	*bdev = sis->bdev;
2298 
2299 	offset = swp_offset(entry);
2300 	se = offset_to_swap_extent(sis, offset);
2301 	return se->start_block + (offset - se->start_page);
2302 }
2303 
2304 /*
2305  * Returns the page offset into bdev for the specified page's swap entry.
2306  */
2307 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2308 {
2309 	swp_entry_t entry;
2310 	entry.val = page_private(page);
2311 	return map_swap_entry(entry, bdev);
2312 }
2313 
2314 /*
2315  * Free all of a swapdev's extent information
2316  */
2317 static void destroy_swap_extents(struct swap_info_struct *sis)
2318 {
2319 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2320 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2321 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2322 
2323 		rb_erase(rb, &sis->swap_extent_root);
2324 		kfree(se);
2325 	}
2326 
2327 	if (sis->flags & SWP_ACTIVATED) {
2328 		struct file *swap_file = sis->swap_file;
2329 		struct address_space *mapping = swap_file->f_mapping;
2330 
2331 		sis->flags &= ~SWP_ACTIVATED;
2332 		if (mapping->a_ops->swap_deactivate)
2333 			mapping->a_ops->swap_deactivate(swap_file);
2334 	}
2335 }
2336 
2337 /*
2338  * Add a block range (and the corresponding page range) into this swapdev's
2339  * extent tree.
2340  *
2341  * This function rather assumes that it is called in ascending page order.
2342  */
2343 int
2344 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2345 		unsigned long nr_pages, sector_t start_block)
2346 {
2347 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2348 	struct swap_extent *se;
2349 	struct swap_extent *new_se;
2350 
2351 	/*
2352 	 * place the new node at the right most since the
2353 	 * function is called in ascending page order.
2354 	 */
2355 	while (*link) {
2356 		parent = *link;
2357 		link = &parent->rb_right;
2358 	}
2359 
2360 	if (parent) {
2361 		se = rb_entry(parent, struct swap_extent, rb_node);
2362 		BUG_ON(se->start_page + se->nr_pages != start_page);
2363 		if (se->start_block + se->nr_pages == start_block) {
2364 			/* Merge it */
2365 			se->nr_pages += nr_pages;
2366 			return 0;
2367 		}
2368 	}
2369 
2370 	/* No merge, insert a new extent. */
2371 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2372 	if (new_se == NULL)
2373 		return -ENOMEM;
2374 	new_se->start_page = start_page;
2375 	new_se->nr_pages = nr_pages;
2376 	new_se->start_block = start_block;
2377 
2378 	rb_link_node(&new_se->rb_node, parent, link);
2379 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2380 	return 1;
2381 }
2382 EXPORT_SYMBOL_GPL(add_swap_extent);
2383 
2384 /*
2385  * A `swap extent' is a simple thing which maps a contiguous range of pages
2386  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2387  * is built at swapon time and is then used at swap_writepage/swap_readpage
2388  * time for locating where on disk a page belongs.
2389  *
2390  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2391  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2392  * swap files identically.
2393  *
2394  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2395  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2396  * swapfiles are handled *identically* after swapon time.
2397  *
2398  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2399  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2400  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2401  * requirements, they are simply tossed out - we will never use those blocks
2402  * for swapping.
2403  *
2404  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2405  * prevents users from writing to the swap device, which will corrupt memory.
2406  *
2407  * The amount of disk space which a single swap extent represents varies.
2408  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2409  * extents in the list.  To avoid much list walking, we cache the previous
2410  * search location in `curr_swap_extent', and start new searches from there.
2411  * This is extremely effective.  The average number of iterations in
2412  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2413  */
2414 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2415 {
2416 	struct file *swap_file = sis->swap_file;
2417 	struct address_space *mapping = swap_file->f_mapping;
2418 	struct inode *inode = mapping->host;
2419 	int ret;
2420 
2421 	if (S_ISBLK(inode->i_mode)) {
2422 		ret = add_swap_extent(sis, 0, sis->max, 0);
2423 		*span = sis->pages;
2424 		return ret;
2425 	}
2426 
2427 	if (mapping->a_ops->swap_activate) {
2428 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2429 		if (ret >= 0)
2430 			sis->flags |= SWP_ACTIVATED;
2431 		if (!ret) {
2432 			sis->flags |= SWP_FS_OPS;
2433 			ret = add_swap_extent(sis, 0, sis->max, 0);
2434 			*span = sis->pages;
2435 		}
2436 		return ret;
2437 	}
2438 
2439 	return generic_swapfile_activate(sis, swap_file, span);
2440 }
2441 
2442 static int swap_node(struct swap_info_struct *p)
2443 {
2444 	struct block_device *bdev;
2445 
2446 	if (p->bdev)
2447 		bdev = p->bdev;
2448 	else
2449 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2450 
2451 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2452 }
2453 
2454 static void setup_swap_info(struct swap_info_struct *p, int prio,
2455 			    unsigned char *swap_map,
2456 			    struct swap_cluster_info *cluster_info)
2457 {
2458 	int i;
2459 
2460 	if (prio >= 0)
2461 		p->prio = prio;
2462 	else
2463 		p->prio = --least_priority;
2464 	/*
2465 	 * the plist prio is negated because plist ordering is
2466 	 * low-to-high, while swap ordering is high-to-low
2467 	 */
2468 	p->list.prio = -p->prio;
2469 	for_each_node(i) {
2470 		if (p->prio >= 0)
2471 			p->avail_lists[i].prio = -p->prio;
2472 		else {
2473 			if (swap_node(p) == i)
2474 				p->avail_lists[i].prio = 1;
2475 			else
2476 				p->avail_lists[i].prio = -p->prio;
2477 		}
2478 	}
2479 	p->swap_map = swap_map;
2480 	p->cluster_info = cluster_info;
2481 }
2482 
2483 static void _enable_swap_info(struct swap_info_struct *p)
2484 {
2485 	p->flags |= SWP_WRITEOK | SWP_VALID;
2486 	atomic_long_add(p->pages, &nr_swap_pages);
2487 	total_swap_pages += p->pages;
2488 
2489 	assert_spin_locked(&swap_lock);
2490 	/*
2491 	 * both lists are plists, and thus priority ordered.
2492 	 * swap_active_head needs to be priority ordered for swapoff(),
2493 	 * which on removal of any swap_info_struct with an auto-assigned
2494 	 * (i.e. negative) priority increments the auto-assigned priority
2495 	 * of any lower-priority swap_info_structs.
2496 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2497 	 * which allocates swap pages from the highest available priority
2498 	 * swap_info_struct.
2499 	 */
2500 	plist_add(&p->list, &swap_active_head);
2501 	add_to_avail_list(p);
2502 }
2503 
2504 static void enable_swap_info(struct swap_info_struct *p, int prio,
2505 				unsigned char *swap_map,
2506 				struct swap_cluster_info *cluster_info,
2507 				unsigned long *frontswap_map)
2508 {
2509 	frontswap_init(p->type, frontswap_map);
2510 	spin_lock(&swap_lock);
2511 	spin_lock(&p->lock);
2512 	setup_swap_info(p, prio, swap_map, cluster_info);
2513 	spin_unlock(&p->lock);
2514 	spin_unlock(&swap_lock);
2515 	/*
2516 	 * Guarantee swap_map, cluster_info, etc. fields are valid
2517 	 * between get/put_swap_device() if SWP_VALID bit is set
2518 	 */
2519 	synchronize_rcu();
2520 	spin_lock(&swap_lock);
2521 	spin_lock(&p->lock);
2522 	_enable_swap_info(p);
2523 	spin_unlock(&p->lock);
2524 	spin_unlock(&swap_lock);
2525 }
2526 
2527 static void reinsert_swap_info(struct swap_info_struct *p)
2528 {
2529 	spin_lock(&swap_lock);
2530 	spin_lock(&p->lock);
2531 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2532 	_enable_swap_info(p);
2533 	spin_unlock(&p->lock);
2534 	spin_unlock(&swap_lock);
2535 }
2536 
2537 bool has_usable_swap(void)
2538 {
2539 	bool ret = true;
2540 
2541 	spin_lock(&swap_lock);
2542 	if (plist_head_empty(&swap_active_head))
2543 		ret = false;
2544 	spin_unlock(&swap_lock);
2545 	return ret;
2546 }
2547 
2548 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2549 {
2550 	struct swap_info_struct *p = NULL;
2551 	unsigned char *swap_map;
2552 	struct swap_cluster_info *cluster_info;
2553 	unsigned long *frontswap_map;
2554 	struct file *swap_file, *victim;
2555 	struct address_space *mapping;
2556 	struct inode *inode;
2557 	struct filename *pathname;
2558 	int err, found = 0;
2559 	unsigned int old_block_size;
2560 
2561 	if (!capable(CAP_SYS_ADMIN))
2562 		return -EPERM;
2563 
2564 	BUG_ON(!current->mm);
2565 
2566 	pathname = getname(specialfile);
2567 	if (IS_ERR(pathname))
2568 		return PTR_ERR(pathname);
2569 
2570 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2571 	err = PTR_ERR(victim);
2572 	if (IS_ERR(victim))
2573 		goto out;
2574 
2575 	mapping = victim->f_mapping;
2576 	spin_lock(&swap_lock);
2577 	plist_for_each_entry(p, &swap_active_head, list) {
2578 		if (p->flags & SWP_WRITEOK) {
2579 			if (p->swap_file->f_mapping == mapping) {
2580 				found = 1;
2581 				break;
2582 			}
2583 		}
2584 	}
2585 	if (!found) {
2586 		err = -EINVAL;
2587 		spin_unlock(&swap_lock);
2588 		goto out_dput;
2589 	}
2590 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2591 		vm_unacct_memory(p->pages);
2592 	else {
2593 		err = -ENOMEM;
2594 		spin_unlock(&swap_lock);
2595 		goto out_dput;
2596 	}
2597 	del_from_avail_list(p);
2598 	spin_lock(&p->lock);
2599 	if (p->prio < 0) {
2600 		struct swap_info_struct *si = p;
2601 		int nid;
2602 
2603 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2604 			si->prio++;
2605 			si->list.prio--;
2606 			for_each_node(nid) {
2607 				if (si->avail_lists[nid].prio != 1)
2608 					si->avail_lists[nid].prio--;
2609 			}
2610 		}
2611 		least_priority++;
2612 	}
2613 	plist_del(&p->list, &swap_active_head);
2614 	atomic_long_sub(p->pages, &nr_swap_pages);
2615 	total_swap_pages -= p->pages;
2616 	p->flags &= ~SWP_WRITEOK;
2617 	spin_unlock(&p->lock);
2618 	spin_unlock(&swap_lock);
2619 
2620 	disable_swap_slots_cache_lock();
2621 
2622 	set_current_oom_origin();
2623 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2624 	clear_current_oom_origin();
2625 
2626 	if (err) {
2627 		/* re-insert swap space back into swap_list */
2628 		reinsert_swap_info(p);
2629 		reenable_swap_slots_cache_unlock();
2630 		goto out_dput;
2631 	}
2632 
2633 	reenable_swap_slots_cache_unlock();
2634 
2635 	spin_lock(&swap_lock);
2636 	spin_lock(&p->lock);
2637 	p->flags &= ~SWP_VALID;		/* mark swap device as invalid */
2638 	spin_unlock(&p->lock);
2639 	spin_unlock(&swap_lock);
2640 	/*
2641 	 * wait for swap operations protected by get/put_swap_device()
2642 	 * to complete
2643 	 */
2644 	synchronize_rcu();
2645 
2646 	flush_work(&p->discard_work);
2647 
2648 	destroy_swap_extents(p);
2649 	if (p->flags & SWP_CONTINUED)
2650 		free_swap_count_continuations(p);
2651 
2652 	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2653 		atomic_dec(&nr_rotate_swap);
2654 
2655 	mutex_lock(&swapon_mutex);
2656 	spin_lock(&swap_lock);
2657 	spin_lock(&p->lock);
2658 	drain_mmlist();
2659 
2660 	/* wait for anyone still in scan_swap_map */
2661 	p->highest_bit = 0;		/* cuts scans short */
2662 	while (p->flags >= SWP_SCANNING) {
2663 		spin_unlock(&p->lock);
2664 		spin_unlock(&swap_lock);
2665 		schedule_timeout_uninterruptible(1);
2666 		spin_lock(&swap_lock);
2667 		spin_lock(&p->lock);
2668 	}
2669 
2670 	swap_file = p->swap_file;
2671 	old_block_size = p->old_block_size;
2672 	p->swap_file = NULL;
2673 	p->max = 0;
2674 	swap_map = p->swap_map;
2675 	p->swap_map = NULL;
2676 	cluster_info = p->cluster_info;
2677 	p->cluster_info = NULL;
2678 	frontswap_map = frontswap_map_get(p);
2679 	spin_unlock(&p->lock);
2680 	spin_unlock(&swap_lock);
2681 	arch_swap_invalidate_area(p->type);
2682 	frontswap_invalidate_area(p->type);
2683 	frontswap_map_set(p, NULL);
2684 	mutex_unlock(&swapon_mutex);
2685 	free_percpu(p->percpu_cluster);
2686 	p->percpu_cluster = NULL;
2687 	free_percpu(p->cluster_next_cpu);
2688 	p->cluster_next_cpu = NULL;
2689 	vfree(swap_map);
2690 	kvfree(cluster_info);
2691 	kvfree(frontswap_map);
2692 	/* Destroy swap account information */
2693 	swap_cgroup_swapoff(p->type);
2694 	exit_swap_address_space(p->type);
2695 
2696 	inode = mapping->host;
2697 	if (S_ISBLK(inode->i_mode)) {
2698 		struct block_device *bdev = I_BDEV(inode);
2699 
2700 		set_blocksize(bdev, old_block_size);
2701 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2702 	}
2703 
2704 	inode_lock(inode);
2705 	inode->i_flags &= ~S_SWAPFILE;
2706 	inode_unlock(inode);
2707 	filp_close(swap_file, NULL);
2708 
2709 	/*
2710 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2711 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2712 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2713 	 */
2714 	spin_lock(&swap_lock);
2715 	p->flags = 0;
2716 	spin_unlock(&swap_lock);
2717 
2718 	err = 0;
2719 	atomic_inc(&proc_poll_event);
2720 	wake_up_interruptible(&proc_poll_wait);
2721 
2722 out_dput:
2723 	filp_close(victim, NULL);
2724 out:
2725 	putname(pathname);
2726 	return err;
2727 }
2728 
2729 #ifdef CONFIG_PROC_FS
2730 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2731 {
2732 	struct seq_file *seq = file->private_data;
2733 
2734 	poll_wait(file, &proc_poll_wait, wait);
2735 
2736 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2737 		seq->poll_event = atomic_read(&proc_poll_event);
2738 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2739 	}
2740 
2741 	return EPOLLIN | EPOLLRDNORM;
2742 }
2743 
2744 /* iterator */
2745 static void *swap_start(struct seq_file *swap, loff_t *pos)
2746 {
2747 	struct swap_info_struct *si;
2748 	int type;
2749 	loff_t l = *pos;
2750 
2751 	mutex_lock(&swapon_mutex);
2752 
2753 	if (!l)
2754 		return SEQ_START_TOKEN;
2755 
2756 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2757 		if (!(si->flags & SWP_USED) || !si->swap_map)
2758 			continue;
2759 		if (!--l)
2760 			return si;
2761 	}
2762 
2763 	return NULL;
2764 }
2765 
2766 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2767 {
2768 	struct swap_info_struct *si = v;
2769 	int type;
2770 
2771 	if (v == SEQ_START_TOKEN)
2772 		type = 0;
2773 	else
2774 		type = si->type + 1;
2775 
2776 	++(*pos);
2777 	for (; (si = swap_type_to_swap_info(type)); type++) {
2778 		if (!(si->flags & SWP_USED) || !si->swap_map)
2779 			continue;
2780 		return si;
2781 	}
2782 
2783 	return NULL;
2784 }
2785 
2786 static void swap_stop(struct seq_file *swap, void *v)
2787 {
2788 	mutex_unlock(&swapon_mutex);
2789 }
2790 
2791 static int swap_show(struct seq_file *swap, void *v)
2792 {
2793 	struct swap_info_struct *si = v;
2794 	struct file *file;
2795 	int len;
2796 	unsigned int bytes, inuse;
2797 
2798 	if (si == SEQ_START_TOKEN) {
2799 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2800 		return 0;
2801 	}
2802 
2803 	bytes = si->pages << (PAGE_SHIFT - 10);
2804 	inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2805 
2806 	file = si->swap_file;
2807 	len = seq_file_path(swap, file, " \t\n\\");
2808 	seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2809 			len < 40 ? 40 - len : 1, " ",
2810 			S_ISBLK(file_inode(file)->i_mode) ?
2811 				"partition" : "file\t",
2812 			bytes, bytes < 10000000 ? "\t" : "",
2813 			inuse, inuse < 10000000 ? "\t" : "",
2814 			si->prio);
2815 	return 0;
2816 }
2817 
2818 static const struct seq_operations swaps_op = {
2819 	.start =	swap_start,
2820 	.next =		swap_next,
2821 	.stop =		swap_stop,
2822 	.show =		swap_show
2823 };
2824 
2825 static int swaps_open(struct inode *inode, struct file *file)
2826 {
2827 	struct seq_file *seq;
2828 	int ret;
2829 
2830 	ret = seq_open(file, &swaps_op);
2831 	if (ret)
2832 		return ret;
2833 
2834 	seq = file->private_data;
2835 	seq->poll_event = atomic_read(&proc_poll_event);
2836 	return 0;
2837 }
2838 
2839 static const struct proc_ops swaps_proc_ops = {
2840 	.proc_flags	= PROC_ENTRY_PERMANENT,
2841 	.proc_open	= swaps_open,
2842 	.proc_read	= seq_read,
2843 	.proc_lseek	= seq_lseek,
2844 	.proc_release	= seq_release,
2845 	.proc_poll	= swaps_poll,
2846 };
2847 
2848 static int __init procswaps_init(void)
2849 {
2850 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2851 	return 0;
2852 }
2853 __initcall(procswaps_init);
2854 #endif /* CONFIG_PROC_FS */
2855 
2856 #ifdef MAX_SWAPFILES_CHECK
2857 static int __init max_swapfiles_check(void)
2858 {
2859 	MAX_SWAPFILES_CHECK();
2860 	return 0;
2861 }
2862 late_initcall(max_swapfiles_check);
2863 #endif
2864 
2865 static struct swap_info_struct *alloc_swap_info(void)
2866 {
2867 	struct swap_info_struct *p;
2868 	struct swap_info_struct *defer = NULL;
2869 	unsigned int type;
2870 	int i;
2871 
2872 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2873 	if (!p)
2874 		return ERR_PTR(-ENOMEM);
2875 
2876 	spin_lock(&swap_lock);
2877 	for (type = 0; type < nr_swapfiles; type++) {
2878 		if (!(swap_info[type]->flags & SWP_USED))
2879 			break;
2880 	}
2881 	if (type >= MAX_SWAPFILES) {
2882 		spin_unlock(&swap_lock);
2883 		kvfree(p);
2884 		return ERR_PTR(-EPERM);
2885 	}
2886 	if (type >= nr_swapfiles) {
2887 		p->type = type;
2888 		WRITE_ONCE(swap_info[type], p);
2889 		/*
2890 		 * Write swap_info[type] before nr_swapfiles, in case a
2891 		 * racing procfs swap_start() or swap_next() is reading them.
2892 		 * (We never shrink nr_swapfiles, we never free this entry.)
2893 		 */
2894 		smp_wmb();
2895 		WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2896 	} else {
2897 		defer = p;
2898 		p = swap_info[type];
2899 		/*
2900 		 * Do not memset this entry: a racing procfs swap_next()
2901 		 * would be relying on p->type to remain valid.
2902 		 */
2903 	}
2904 	p->swap_extent_root = RB_ROOT;
2905 	plist_node_init(&p->list, 0);
2906 	for_each_node(i)
2907 		plist_node_init(&p->avail_lists[i], 0);
2908 	p->flags = SWP_USED;
2909 	spin_unlock(&swap_lock);
2910 	kvfree(defer);
2911 	spin_lock_init(&p->lock);
2912 	spin_lock_init(&p->cont_lock);
2913 
2914 	return p;
2915 }
2916 
2917 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2918 {
2919 	int error;
2920 
2921 	if (S_ISBLK(inode->i_mode)) {
2922 		p->bdev = blkdev_get_by_dev(inode->i_rdev,
2923 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2924 		if (IS_ERR(p->bdev)) {
2925 			error = PTR_ERR(p->bdev);
2926 			p->bdev = NULL;
2927 			return error;
2928 		}
2929 		p->old_block_size = block_size(p->bdev);
2930 		error = set_blocksize(p->bdev, PAGE_SIZE);
2931 		if (error < 0)
2932 			return error;
2933 		/*
2934 		 * Zoned block devices contain zones that have a sequential
2935 		 * write only restriction.  Hence zoned block devices are not
2936 		 * suitable for swapping.  Disallow them here.
2937 		 */
2938 		if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2939 			return -EINVAL;
2940 		p->flags |= SWP_BLKDEV;
2941 	} else if (S_ISREG(inode->i_mode)) {
2942 		p->bdev = inode->i_sb->s_bdev;
2943 	}
2944 
2945 	return 0;
2946 }
2947 
2948 
2949 /*
2950  * Find out how many pages are allowed for a single swap device. There
2951  * are two limiting factors:
2952  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2953  * 2) the number of bits in the swap pte, as defined by the different
2954  * architectures.
2955  *
2956  * In order to find the largest possible bit mask, a swap entry with
2957  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2958  * decoded to a swp_entry_t again, and finally the swap offset is
2959  * extracted.
2960  *
2961  * This will mask all the bits from the initial ~0UL mask that can't
2962  * be encoded in either the swp_entry_t or the architecture definition
2963  * of a swap pte.
2964  */
2965 unsigned long generic_max_swapfile_size(void)
2966 {
2967 	return swp_offset(pte_to_swp_entry(
2968 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2969 }
2970 
2971 /* Can be overridden by an architecture for additional checks. */
2972 __weak unsigned long max_swapfile_size(void)
2973 {
2974 	return generic_max_swapfile_size();
2975 }
2976 
2977 static unsigned long read_swap_header(struct swap_info_struct *p,
2978 					union swap_header *swap_header,
2979 					struct inode *inode)
2980 {
2981 	int i;
2982 	unsigned long maxpages;
2983 	unsigned long swapfilepages;
2984 	unsigned long last_page;
2985 
2986 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2987 		pr_err("Unable to find swap-space signature\n");
2988 		return 0;
2989 	}
2990 
2991 	/* swap partition endianess hack... */
2992 	if (swab32(swap_header->info.version) == 1) {
2993 		swab32s(&swap_header->info.version);
2994 		swab32s(&swap_header->info.last_page);
2995 		swab32s(&swap_header->info.nr_badpages);
2996 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2997 			return 0;
2998 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2999 			swab32s(&swap_header->info.badpages[i]);
3000 	}
3001 	/* Check the swap header's sub-version */
3002 	if (swap_header->info.version != 1) {
3003 		pr_warn("Unable to handle swap header version %d\n",
3004 			swap_header->info.version);
3005 		return 0;
3006 	}
3007 
3008 	p->lowest_bit  = 1;
3009 	p->cluster_next = 1;
3010 	p->cluster_nr = 0;
3011 
3012 	maxpages = max_swapfile_size();
3013 	last_page = swap_header->info.last_page;
3014 	if (!last_page) {
3015 		pr_warn("Empty swap-file\n");
3016 		return 0;
3017 	}
3018 	if (last_page > maxpages) {
3019 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3020 			maxpages << (PAGE_SHIFT - 10),
3021 			last_page << (PAGE_SHIFT - 10));
3022 	}
3023 	if (maxpages > last_page) {
3024 		maxpages = last_page + 1;
3025 		/* p->max is an unsigned int: don't overflow it */
3026 		if ((unsigned int)maxpages == 0)
3027 			maxpages = UINT_MAX;
3028 	}
3029 	p->highest_bit = maxpages - 1;
3030 
3031 	if (!maxpages)
3032 		return 0;
3033 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3034 	if (swapfilepages && maxpages > swapfilepages) {
3035 		pr_warn("Swap area shorter than signature indicates\n");
3036 		return 0;
3037 	}
3038 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3039 		return 0;
3040 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3041 		return 0;
3042 
3043 	return maxpages;
3044 }
3045 
3046 #define SWAP_CLUSTER_INFO_COLS						\
3047 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3048 #define SWAP_CLUSTER_SPACE_COLS						\
3049 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3050 #define SWAP_CLUSTER_COLS						\
3051 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3052 
3053 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3054 					union swap_header *swap_header,
3055 					unsigned char *swap_map,
3056 					struct swap_cluster_info *cluster_info,
3057 					unsigned long maxpages,
3058 					sector_t *span)
3059 {
3060 	unsigned int j, k;
3061 	unsigned int nr_good_pages;
3062 	int nr_extents;
3063 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3064 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3065 	unsigned long i, idx;
3066 
3067 	nr_good_pages = maxpages - 1;	/* omit header page */
3068 
3069 	cluster_list_init(&p->free_clusters);
3070 	cluster_list_init(&p->discard_clusters);
3071 
3072 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3073 		unsigned int page_nr = swap_header->info.badpages[i];
3074 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3075 			return -EINVAL;
3076 		if (page_nr < maxpages) {
3077 			swap_map[page_nr] = SWAP_MAP_BAD;
3078 			nr_good_pages--;
3079 			/*
3080 			 * Haven't marked the cluster free yet, no list
3081 			 * operation involved
3082 			 */
3083 			inc_cluster_info_page(p, cluster_info, page_nr);
3084 		}
3085 	}
3086 
3087 	/* Haven't marked the cluster free yet, no list operation involved */
3088 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3089 		inc_cluster_info_page(p, cluster_info, i);
3090 
3091 	if (nr_good_pages) {
3092 		swap_map[0] = SWAP_MAP_BAD;
3093 		/*
3094 		 * Not mark the cluster free yet, no list
3095 		 * operation involved
3096 		 */
3097 		inc_cluster_info_page(p, cluster_info, 0);
3098 		p->max = maxpages;
3099 		p->pages = nr_good_pages;
3100 		nr_extents = setup_swap_extents(p, span);
3101 		if (nr_extents < 0)
3102 			return nr_extents;
3103 		nr_good_pages = p->pages;
3104 	}
3105 	if (!nr_good_pages) {
3106 		pr_warn("Empty swap-file\n");
3107 		return -EINVAL;
3108 	}
3109 
3110 	if (!cluster_info)
3111 		return nr_extents;
3112 
3113 
3114 	/*
3115 	 * Reduce false cache line sharing between cluster_info and
3116 	 * sharing same address space.
3117 	 */
3118 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3119 		j = (k + col) % SWAP_CLUSTER_COLS;
3120 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3121 			idx = i * SWAP_CLUSTER_COLS + j;
3122 			if (idx >= nr_clusters)
3123 				continue;
3124 			if (cluster_count(&cluster_info[idx]))
3125 				continue;
3126 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3127 			cluster_list_add_tail(&p->free_clusters, cluster_info,
3128 					      idx);
3129 		}
3130 	}
3131 	return nr_extents;
3132 }
3133 
3134 /*
3135  * Helper to sys_swapon determining if a given swap
3136  * backing device queue supports DISCARD operations.
3137  */
3138 static bool swap_discardable(struct swap_info_struct *si)
3139 {
3140 	struct request_queue *q = bdev_get_queue(si->bdev);
3141 
3142 	if (!q || !blk_queue_discard(q))
3143 		return false;
3144 
3145 	return true;
3146 }
3147 
3148 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3149 {
3150 	struct swap_info_struct *p;
3151 	struct filename *name;
3152 	struct file *swap_file = NULL;
3153 	struct address_space *mapping;
3154 	int prio;
3155 	int error;
3156 	union swap_header *swap_header;
3157 	int nr_extents;
3158 	sector_t span;
3159 	unsigned long maxpages;
3160 	unsigned char *swap_map = NULL;
3161 	struct swap_cluster_info *cluster_info = NULL;
3162 	unsigned long *frontswap_map = NULL;
3163 	struct page *page = NULL;
3164 	struct inode *inode = NULL;
3165 	bool inced_nr_rotate_swap = false;
3166 
3167 	if (swap_flags & ~SWAP_FLAGS_VALID)
3168 		return -EINVAL;
3169 
3170 	if (!capable(CAP_SYS_ADMIN))
3171 		return -EPERM;
3172 
3173 	if (!swap_avail_heads)
3174 		return -ENOMEM;
3175 
3176 	p = alloc_swap_info();
3177 	if (IS_ERR(p))
3178 		return PTR_ERR(p);
3179 
3180 	INIT_WORK(&p->discard_work, swap_discard_work);
3181 
3182 	name = getname(specialfile);
3183 	if (IS_ERR(name)) {
3184 		error = PTR_ERR(name);
3185 		name = NULL;
3186 		goto bad_swap;
3187 	}
3188 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3189 	if (IS_ERR(swap_file)) {
3190 		error = PTR_ERR(swap_file);
3191 		swap_file = NULL;
3192 		goto bad_swap;
3193 	}
3194 
3195 	p->swap_file = swap_file;
3196 	mapping = swap_file->f_mapping;
3197 	inode = mapping->host;
3198 
3199 	error = claim_swapfile(p, inode);
3200 	if (unlikely(error))
3201 		goto bad_swap;
3202 
3203 	inode_lock(inode);
3204 	if (IS_SWAPFILE(inode)) {
3205 		error = -EBUSY;
3206 		goto bad_swap_unlock_inode;
3207 	}
3208 
3209 	/*
3210 	 * Read the swap header.
3211 	 */
3212 	if (!mapping->a_ops->readpage) {
3213 		error = -EINVAL;
3214 		goto bad_swap_unlock_inode;
3215 	}
3216 	page = read_mapping_page(mapping, 0, swap_file);
3217 	if (IS_ERR(page)) {
3218 		error = PTR_ERR(page);
3219 		goto bad_swap_unlock_inode;
3220 	}
3221 	swap_header = kmap(page);
3222 
3223 	maxpages = read_swap_header(p, swap_header, inode);
3224 	if (unlikely(!maxpages)) {
3225 		error = -EINVAL;
3226 		goto bad_swap_unlock_inode;
3227 	}
3228 
3229 	/* OK, set up the swap map and apply the bad block list */
3230 	swap_map = vzalloc(maxpages);
3231 	if (!swap_map) {
3232 		error = -ENOMEM;
3233 		goto bad_swap_unlock_inode;
3234 	}
3235 
3236 	if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3237 		p->flags |= SWP_STABLE_WRITES;
3238 
3239 	if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3240 		p->flags |= SWP_SYNCHRONOUS_IO;
3241 
3242 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3243 		int cpu;
3244 		unsigned long ci, nr_cluster;
3245 
3246 		p->flags |= SWP_SOLIDSTATE;
3247 		p->cluster_next_cpu = alloc_percpu(unsigned int);
3248 		if (!p->cluster_next_cpu) {
3249 			error = -ENOMEM;
3250 			goto bad_swap_unlock_inode;
3251 		}
3252 		/*
3253 		 * select a random position to start with to help wear leveling
3254 		 * SSD
3255 		 */
3256 		for_each_possible_cpu(cpu) {
3257 			per_cpu(*p->cluster_next_cpu, cpu) =
3258 				1 + prandom_u32_max(p->highest_bit);
3259 		}
3260 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3261 
3262 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3263 					GFP_KERNEL);
3264 		if (!cluster_info) {
3265 			error = -ENOMEM;
3266 			goto bad_swap_unlock_inode;
3267 		}
3268 
3269 		for (ci = 0; ci < nr_cluster; ci++)
3270 			spin_lock_init(&((cluster_info + ci)->lock));
3271 
3272 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3273 		if (!p->percpu_cluster) {
3274 			error = -ENOMEM;
3275 			goto bad_swap_unlock_inode;
3276 		}
3277 		for_each_possible_cpu(cpu) {
3278 			struct percpu_cluster *cluster;
3279 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3280 			cluster_set_null(&cluster->index);
3281 		}
3282 	} else {
3283 		atomic_inc(&nr_rotate_swap);
3284 		inced_nr_rotate_swap = true;
3285 	}
3286 
3287 	error = swap_cgroup_swapon(p->type, maxpages);
3288 	if (error)
3289 		goto bad_swap_unlock_inode;
3290 
3291 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3292 		cluster_info, maxpages, &span);
3293 	if (unlikely(nr_extents < 0)) {
3294 		error = nr_extents;
3295 		goto bad_swap_unlock_inode;
3296 	}
3297 	/* frontswap enabled? set up bit-per-page map for frontswap */
3298 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3299 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3300 					 sizeof(long),
3301 					 GFP_KERNEL);
3302 
3303 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3304 		/*
3305 		 * When discard is enabled for swap with no particular
3306 		 * policy flagged, we set all swap discard flags here in
3307 		 * order to sustain backward compatibility with older
3308 		 * swapon(8) releases.
3309 		 */
3310 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3311 			     SWP_PAGE_DISCARD);
3312 
3313 		/*
3314 		 * By flagging sys_swapon, a sysadmin can tell us to
3315 		 * either do single-time area discards only, or to just
3316 		 * perform discards for released swap page-clusters.
3317 		 * Now it's time to adjust the p->flags accordingly.
3318 		 */
3319 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3320 			p->flags &= ~SWP_PAGE_DISCARD;
3321 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3322 			p->flags &= ~SWP_AREA_DISCARD;
3323 
3324 		/* issue a swapon-time discard if it's still required */
3325 		if (p->flags & SWP_AREA_DISCARD) {
3326 			int err = discard_swap(p);
3327 			if (unlikely(err))
3328 				pr_err("swapon: discard_swap(%p): %d\n",
3329 					p, err);
3330 		}
3331 	}
3332 
3333 	error = init_swap_address_space(p->type, maxpages);
3334 	if (error)
3335 		goto bad_swap_unlock_inode;
3336 
3337 	/*
3338 	 * Flush any pending IO and dirty mappings before we start using this
3339 	 * swap device.
3340 	 */
3341 	inode->i_flags |= S_SWAPFILE;
3342 	error = inode_drain_writes(inode);
3343 	if (error) {
3344 		inode->i_flags &= ~S_SWAPFILE;
3345 		goto free_swap_address_space;
3346 	}
3347 
3348 	mutex_lock(&swapon_mutex);
3349 	prio = -1;
3350 	if (swap_flags & SWAP_FLAG_PREFER)
3351 		prio =
3352 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3353 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3354 
3355 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3356 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3357 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3358 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3359 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3360 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3361 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3362 		(frontswap_map) ? "FS" : "");
3363 
3364 	mutex_unlock(&swapon_mutex);
3365 	atomic_inc(&proc_poll_event);
3366 	wake_up_interruptible(&proc_poll_wait);
3367 
3368 	error = 0;
3369 	goto out;
3370 free_swap_address_space:
3371 	exit_swap_address_space(p->type);
3372 bad_swap_unlock_inode:
3373 	inode_unlock(inode);
3374 bad_swap:
3375 	free_percpu(p->percpu_cluster);
3376 	p->percpu_cluster = NULL;
3377 	free_percpu(p->cluster_next_cpu);
3378 	p->cluster_next_cpu = NULL;
3379 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3380 		set_blocksize(p->bdev, p->old_block_size);
3381 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3382 	}
3383 	inode = NULL;
3384 	destroy_swap_extents(p);
3385 	swap_cgroup_swapoff(p->type);
3386 	spin_lock(&swap_lock);
3387 	p->swap_file = NULL;
3388 	p->flags = 0;
3389 	spin_unlock(&swap_lock);
3390 	vfree(swap_map);
3391 	kvfree(cluster_info);
3392 	kvfree(frontswap_map);
3393 	if (inced_nr_rotate_swap)
3394 		atomic_dec(&nr_rotate_swap);
3395 	if (swap_file)
3396 		filp_close(swap_file, NULL);
3397 out:
3398 	if (page && !IS_ERR(page)) {
3399 		kunmap(page);
3400 		put_page(page);
3401 	}
3402 	if (name)
3403 		putname(name);
3404 	if (inode)
3405 		inode_unlock(inode);
3406 	if (!error)
3407 		enable_swap_slots_cache();
3408 	return error;
3409 }
3410 
3411 void si_swapinfo(struct sysinfo *val)
3412 {
3413 	unsigned int type;
3414 	unsigned long nr_to_be_unused = 0;
3415 
3416 	spin_lock(&swap_lock);
3417 	for (type = 0; type < nr_swapfiles; type++) {
3418 		struct swap_info_struct *si = swap_info[type];
3419 
3420 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3421 			nr_to_be_unused += si->inuse_pages;
3422 	}
3423 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3424 	val->totalswap = total_swap_pages + nr_to_be_unused;
3425 	spin_unlock(&swap_lock);
3426 }
3427 
3428 /*
3429  * Verify that a swap entry is valid and increment its swap map count.
3430  *
3431  * Returns error code in following case.
3432  * - success -> 0
3433  * - swp_entry is invalid -> EINVAL
3434  * - swp_entry is migration entry -> EINVAL
3435  * - swap-cache reference is requested but there is already one. -> EEXIST
3436  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3437  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3438  */
3439 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3440 {
3441 	struct swap_info_struct *p;
3442 	struct swap_cluster_info *ci;
3443 	unsigned long offset;
3444 	unsigned char count;
3445 	unsigned char has_cache;
3446 	int err;
3447 
3448 	p = get_swap_device(entry);
3449 	if (!p)
3450 		return -EINVAL;
3451 
3452 	offset = swp_offset(entry);
3453 	ci = lock_cluster_or_swap_info(p, offset);
3454 
3455 	count = p->swap_map[offset];
3456 
3457 	/*
3458 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3459 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3460 	 */
3461 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3462 		err = -ENOENT;
3463 		goto unlock_out;
3464 	}
3465 
3466 	has_cache = count & SWAP_HAS_CACHE;
3467 	count &= ~SWAP_HAS_CACHE;
3468 	err = 0;
3469 
3470 	if (usage == SWAP_HAS_CACHE) {
3471 
3472 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3473 		if (!has_cache && count)
3474 			has_cache = SWAP_HAS_CACHE;
3475 		else if (has_cache)		/* someone else added cache */
3476 			err = -EEXIST;
3477 		else				/* no users remaining */
3478 			err = -ENOENT;
3479 
3480 	} else if (count || has_cache) {
3481 
3482 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3483 			count += usage;
3484 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3485 			err = -EINVAL;
3486 		else if (swap_count_continued(p, offset, count))
3487 			count = COUNT_CONTINUED;
3488 		else
3489 			err = -ENOMEM;
3490 	} else
3491 		err = -ENOENT;			/* unused swap entry */
3492 
3493 	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3494 
3495 unlock_out:
3496 	unlock_cluster_or_swap_info(p, ci);
3497 	if (p)
3498 		put_swap_device(p);
3499 	return err;
3500 }
3501 
3502 /*
3503  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3504  * (in which case its reference count is never incremented).
3505  */
3506 void swap_shmem_alloc(swp_entry_t entry)
3507 {
3508 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3509 }
3510 
3511 /*
3512  * Increase reference count of swap entry by 1.
3513  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3514  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3515  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3516  * might occur if a page table entry has got corrupted.
3517  */
3518 int swap_duplicate(swp_entry_t entry)
3519 {
3520 	int err = 0;
3521 
3522 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3523 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3524 	return err;
3525 }
3526 
3527 /*
3528  * @entry: swap entry for which we allocate swap cache.
3529  *
3530  * Called when allocating swap cache for existing swap entry,
3531  * This can return error codes. Returns 0 at success.
3532  * -EEXIST means there is a swap cache.
3533  * Note: return code is different from swap_duplicate().
3534  */
3535 int swapcache_prepare(swp_entry_t entry)
3536 {
3537 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3538 }
3539 
3540 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3541 {
3542 	return swap_type_to_swap_info(swp_type(entry));
3543 }
3544 
3545 struct swap_info_struct *page_swap_info(struct page *page)
3546 {
3547 	swp_entry_t entry = { .val = page_private(page) };
3548 	return swp_swap_info(entry);
3549 }
3550 
3551 /*
3552  * out-of-line __page_file_ methods to avoid include hell.
3553  */
3554 struct address_space *__page_file_mapping(struct page *page)
3555 {
3556 	return page_swap_info(page)->swap_file->f_mapping;
3557 }
3558 EXPORT_SYMBOL_GPL(__page_file_mapping);
3559 
3560 pgoff_t __page_file_index(struct page *page)
3561 {
3562 	swp_entry_t swap = { .val = page_private(page) };
3563 	return swp_offset(swap);
3564 }
3565 EXPORT_SYMBOL_GPL(__page_file_index);
3566 
3567 /*
3568  * add_swap_count_continuation - called when a swap count is duplicated
3569  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3570  * page of the original vmalloc'ed swap_map, to hold the continuation count
3571  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3572  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3573  *
3574  * These continuation pages are seldom referenced: the common paths all work
3575  * on the original swap_map, only referring to a continuation page when the
3576  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3577  *
3578  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3579  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3580  * can be called after dropping locks.
3581  */
3582 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3583 {
3584 	struct swap_info_struct *si;
3585 	struct swap_cluster_info *ci;
3586 	struct page *head;
3587 	struct page *page;
3588 	struct page *list_page;
3589 	pgoff_t offset;
3590 	unsigned char count;
3591 	int ret = 0;
3592 
3593 	/*
3594 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3595 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3596 	 */
3597 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3598 
3599 	si = get_swap_device(entry);
3600 	if (!si) {
3601 		/*
3602 		 * An acceptable race has occurred since the failing
3603 		 * __swap_duplicate(): the swap device may be swapoff
3604 		 */
3605 		goto outer;
3606 	}
3607 	spin_lock(&si->lock);
3608 
3609 	offset = swp_offset(entry);
3610 
3611 	ci = lock_cluster(si, offset);
3612 
3613 	count = swap_count(si->swap_map[offset]);
3614 
3615 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3616 		/*
3617 		 * The higher the swap count, the more likely it is that tasks
3618 		 * will race to add swap count continuation: we need to avoid
3619 		 * over-provisioning.
3620 		 */
3621 		goto out;
3622 	}
3623 
3624 	if (!page) {
3625 		ret = -ENOMEM;
3626 		goto out;
3627 	}
3628 
3629 	/*
3630 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3631 	 * no architecture is using highmem pages for kernel page tables: so it
3632 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3633 	 */
3634 	head = vmalloc_to_page(si->swap_map + offset);
3635 	offset &= ~PAGE_MASK;
3636 
3637 	spin_lock(&si->cont_lock);
3638 	/*
3639 	 * Page allocation does not initialize the page's lru field,
3640 	 * but it does always reset its private field.
3641 	 */
3642 	if (!page_private(head)) {
3643 		BUG_ON(count & COUNT_CONTINUED);
3644 		INIT_LIST_HEAD(&head->lru);
3645 		set_page_private(head, SWP_CONTINUED);
3646 		si->flags |= SWP_CONTINUED;
3647 	}
3648 
3649 	list_for_each_entry(list_page, &head->lru, lru) {
3650 		unsigned char *map;
3651 
3652 		/*
3653 		 * If the previous map said no continuation, but we've found
3654 		 * a continuation page, free our allocation and use this one.
3655 		 */
3656 		if (!(count & COUNT_CONTINUED))
3657 			goto out_unlock_cont;
3658 
3659 		map = kmap_atomic(list_page) + offset;
3660 		count = *map;
3661 		kunmap_atomic(map);
3662 
3663 		/*
3664 		 * If this continuation count now has some space in it,
3665 		 * free our allocation and use this one.
3666 		 */
3667 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3668 			goto out_unlock_cont;
3669 	}
3670 
3671 	list_add_tail(&page->lru, &head->lru);
3672 	page = NULL;			/* now it's attached, don't free it */
3673 out_unlock_cont:
3674 	spin_unlock(&si->cont_lock);
3675 out:
3676 	unlock_cluster(ci);
3677 	spin_unlock(&si->lock);
3678 	put_swap_device(si);
3679 outer:
3680 	if (page)
3681 		__free_page(page);
3682 	return ret;
3683 }
3684 
3685 /*
3686  * swap_count_continued - when the original swap_map count is incremented
3687  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3688  * into, carry if so, or else fail until a new continuation page is allocated;
3689  * when the original swap_map count is decremented from 0 with continuation,
3690  * borrow from the continuation and report whether it still holds more.
3691  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3692  * lock.
3693  */
3694 static bool swap_count_continued(struct swap_info_struct *si,
3695 				 pgoff_t offset, unsigned char count)
3696 {
3697 	struct page *head;
3698 	struct page *page;
3699 	unsigned char *map;
3700 	bool ret;
3701 
3702 	head = vmalloc_to_page(si->swap_map + offset);
3703 	if (page_private(head) != SWP_CONTINUED) {
3704 		BUG_ON(count & COUNT_CONTINUED);
3705 		return false;		/* need to add count continuation */
3706 	}
3707 
3708 	spin_lock(&si->cont_lock);
3709 	offset &= ~PAGE_MASK;
3710 	page = list_next_entry(head, lru);
3711 	map = kmap_atomic(page) + offset;
3712 
3713 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3714 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3715 
3716 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3717 		/*
3718 		 * Think of how you add 1 to 999
3719 		 */
3720 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3721 			kunmap_atomic(map);
3722 			page = list_next_entry(page, lru);
3723 			BUG_ON(page == head);
3724 			map = kmap_atomic(page) + offset;
3725 		}
3726 		if (*map == SWAP_CONT_MAX) {
3727 			kunmap_atomic(map);
3728 			page = list_next_entry(page, lru);
3729 			if (page == head) {
3730 				ret = false;	/* add count continuation */
3731 				goto out;
3732 			}
3733 			map = kmap_atomic(page) + offset;
3734 init_map:		*map = 0;		/* we didn't zero the page */
3735 		}
3736 		*map += 1;
3737 		kunmap_atomic(map);
3738 		while ((page = list_prev_entry(page, lru)) != head) {
3739 			map = kmap_atomic(page) + offset;
3740 			*map = COUNT_CONTINUED;
3741 			kunmap_atomic(map);
3742 		}
3743 		ret = true;			/* incremented */
3744 
3745 	} else {				/* decrementing */
3746 		/*
3747 		 * Think of how you subtract 1 from 1000
3748 		 */
3749 		BUG_ON(count != COUNT_CONTINUED);
3750 		while (*map == COUNT_CONTINUED) {
3751 			kunmap_atomic(map);
3752 			page = list_next_entry(page, lru);
3753 			BUG_ON(page == head);
3754 			map = kmap_atomic(page) + offset;
3755 		}
3756 		BUG_ON(*map == 0);
3757 		*map -= 1;
3758 		if (*map == 0)
3759 			count = 0;
3760 		kunmap_atomic(map);
3761 		while ((page = list_prev_entry(page, lru)) != head) {
3762 			map = kmap_atomic(page) + offset;
3763 			*map = SWAP_CONT_MAX | count;
3764 			count = COUNT_CONTINUED;
3765 			kunmap_atomic(map);
3766 		}
3767 		ret = count == COUNT_CONTINUED;
3768 	}
3769 out:
3770 	spin_unlock(&si->cont_lock);
3771 	return ret;
3772 }
3773 
3774 /*
3775  * free_swap_count_continuations - swapoff free all the continuation pages
3776  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3777  */
3778 static void free_swap_count_continuations(struct swap_info_struct *si)
3779 {
3780 	pgoff_t offset;
3781 
3782 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3783 		struct page *head;
3784 		head = vmalloc_to_page(si->swap_map + offset);
3785 		if (page_private(head)) {
3786 			struct page *page, *next;
3787 
3788 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3789 				list_del(&page->lru);
3790 				__free_page(page);
3791 			}
3792 		}
3793 	}
3794 }
3795 
3796 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3797 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3798 {
3799 	struct swap_info_struct *si, *next;
3800 	int nid = page_to_nid(page);
3801 
3802 	if (!(gfp_mask & __GFP_IO))
3803 		return;
3804 
3805 	if (!blk_cgroup_congested())
3806 		return;
3807 
3808 	/*
3809 	 * We've already scheduled a throttle, avoid taking the global swap
3810 	 * lock.
3811 	 */
3812 	if (current->throttle_queue)
3813 		return;
3814 
3815 	spin_lock(&swap_avail_lock);
3816 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3817 				  avail_lists[nid]) {
3818 		if (si->bdev) {
3819 			blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3820 			break;
3821 		}
3822 	}
3823 	spin_unlock(&swap_avail_lock);
3824 }
3825 #endif
3826 
3827 static int __init swapfile_init(void)
3828 {
3829 	int nid;
3830 
3831 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3832 					 GFP_KERNEL);
3833 	if (!swap_avail_heads) {
3834 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3835 		return -ENOMEM;
3836 	}
3837 
3838 	for_each_node(nid)
3839 		plist_head_init(&swap_avail_heads[nid]);
3840 
3841 	return 0;
3842 }
3843 subsys_initcall(swapfile_init);
3844