1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/sched/mm.h> 10 #include <linux/sched/task.h> 11 #include <linux/hugetlb.h> 12 #include <linux/mman.h> 13 #include <linux/slab.h> 14 #include <linux/kernel_stat.h> 15 #include <linux/swap.h> 16 #include <linux/vmalloc.h> 17 #include <linux/pagemap.h> 18 #include <linux/namei.h> 19 #include <linux/shmem_fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/random.h> 22 #include <linux/writeback.h> 23 #include <linux/proc_fs.h> 24 #include <linux/seq_file.h> 25 #include <linux/init.h> 26 #include <linux/ksm.h> 27 #include <linux/rmap.h> 28 #include <linux/security.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mutex.h> 31 #include <linux/capability.h> 32 #include <linux/syscalls.h> 33 #include <linux/memcontrol.h> 34 #include <linux/poll.h> 35 #include <linux/oom.h> 36 #include <linux/frontswap.h> 37 #include <linux/swapfile.h> 38 #include <linux/export.h> 39 #include <linux/swap_slots.h> 40 41 #include <asm/pgtable.h> 42 #include <asm/tlbflush.h> 43 #include <linux/swapops.h> 44 #include <linux/swap_cgroup.h> 45 46 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 47 unsigned char); 48 static void free_swap_count_continuations(struct swap_info_struct *); 49 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 50 51 DEFINE_SPINLOCK(swap_lock); 52 static unsigned int nr_swapfiles; 53 atomic_long_t nr_swap_pages; 54 /* 55 * Some modules use swappable objects and may try to swap them out under 56 * memory pressure (via the shrinker). Before doing so, they may wish to 57 * check to see if any swap space is available. 58 */ 59 EXPORT_SYMBOL_GPL(nr_swap_pages); 60 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 61 long total_swap_pages; 62 static int least_priority; 63 64 static const char Bad_file[] = "Bad swap file entry "; 65 static const char Unused_file[] = "Unused swap file entry "; 66 static const char Bad_offset[] = "Bad swap offset entry "; 67 static const char Unused_offset[] = "Unused swap offset entry "; 68 69 /* 70 * all active swap_info_structs 71 * protected with swap_lock, and ordered by priority. 72 */ 73 PLIST_HEAD(swap_active_head); 74 75 /* 76 * all available (active, not full) swap_info_structs 77 * protected with swap_avail_lock, ordered by priority. 78 * This is used by get_swap_page() instead of swap_active_head 79 * because swap_active_head includes all swap_info_structs, 80 * but get_swap_page() doesn't need to look at full ones. 81 * This uses its own lock instead of swap_lock because when a 82 * swap_info_struct changes between not-full/full, it needs to 83 * add/remove itself to/from this list, but the swap_info_struct->lock 84 * is held and the locking order requires swap_lock to be taken 85 * before any swap_info_struct->lock. 86 */ 87 static PLIST_HEAD(swap_avail_head); 88 static DEFINE_SPINLOCK(swap_avail_lock); 89 90 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 91 92 static DEFINE_MUTEX(swapon_mutex); 93 94 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 95 /* Activity counter to indicate that a swapon or swapoff has occurred */ 96 static atomic_t proc_poll_event = ATOMIC_INIT(0); 97 98 static inline unsigned char swap_count(unsigned char ent) 99 { 100 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ 101 } 102 103 /* returns 1 if swap entry is freed */ 104 static int 105 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) 106 { 107 swp_entry_t entry = swp_entry(si->type, offset); 108 struct page *page; 109 int ret = 0; 110 111 page = find_get_page(swap_address_space(entry), swp_offset(entry)); 112 if (!page) 113 return 0; 114 /* 115 * This function is called from scan_swap_map() and it's called 116 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. 117 * We have to use trylock for avoiding deadlock. This is a special 118 * case and you should use try_to_free_swap() with explicit lock_page() 119 * in usual operations. 120 */ 121 if (trylock_page(page)) { 122 ret = try_to_free_swap(page); 123 unlock_page(page); 124 } 125 put_page(page); 126 return ret; 127 } 128 129 /* 130 * swapon tell device that all the old swap contents can be discarded, 131 * to allow the swap device to optimize its wear-levelling. 132 */ 133 static int discard_swap(struct swap_info_struct *si) 134 { 135 struct swap_extent *se; 136 sector_t start_block; 137 sector_t nr_blocks; 138 int err = 0; 139 140 /* Do not discard the swap header page! */ 141 se = &si->first_swap_extent; 142 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 143 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 144 if (nr_blocks) { 145 err = blkdev_issue_discard(si->bdev, start_block, 146 nr_blocks, GFP_KERNEL, 0); 147 if (err) 148 return err; 149 cond_resched(); 150 } 151 152 list_for_each_entry(se, &si->first_swap_extent.list, list) { 153 start_block = se->start_block << (PAGE_SHIFT - 9); 154 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 155 156 err = blkdev_issue_discard(si->bdev, start_block, 157 nr_blocks, GFP_KERNEL, 0); 158 if (err) 159 break; 160 161 cond_resched(); 162 } 163 return err; /* That will often be -EOPNOTSUPP */ 164 } 165 166 /* 167 * swap allocation tell device that a cluster of swap can now be discarded, 168 * to allow the swap device to optimize its wear-levelling. 169 */ 170 static void discard_swap_cluster(struct swap_info_struct *si, 171 pgoff_t start_page, pgoff_t nr_pages) 172 { 173 struct swap_extent *se = si->curr_swap_extent; 174 int found_extent = 0; 175 176 while (nr_pages) { 177 if (se->start_page <= start_page && 178 start_page < se->start_page + se->nr_pages) { 179 pgoff_t offset = start_page - se->start_page; 180 sector_t start_block = se->start_block + offset; 181 sector_t nr_blocks = se->nr_pages - offset; 182 183 if (nr_blocks > nr_pages) 184 nr_blocks = nr_pages; 185 start_page += nr_blocks; 186 nr_pages -= nr_blocks; 187 188 if (!found_extent++) 189 si->curr_swap_extent = se; 190 191 start_block <<= PAGE_SHIFT - 9; 192 nr_blocks <<= PAGE_SHIFT - 9; 193 if (blkdev_issue_discard(si->bdev, start_block, 194 nr_blocks, GFP_NOIO, 0)) 195 break; 196 } 197 198 se = list_next_entry(se, list); 199 } 200 } 201 202 #define SWAPFILE_CLUSTER 256 203 #define LATENCY_LIMIT 256 204 205 static inline void cluster_set_flag(struct swap_cluster_info *info, 206 unsigned int flag) 207 { 208 info->flags = flag; 209 } 210 211 static inline unsigned int cluster_count(struct swap_cluster_info *info) 212 { 213 return info->data; 214 } 215 216 static inline void cluster_set_count(struct swap_cluster_info *info, 217 unsigned int c) 218 { 219 info->data = c; 220 } 221 222 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 223 unsigned int c, unsigned int f) 224 { 225 info->flags = f; 226 info->data = c; 227 } 228 229 static inline unsigned int cluster_next(struct swap_cluster_info *info) 230 { 231 return info->data; 232 } 233 234 static inline void cluster_set_next(struct swap_cluster_info *info, 235 unsigned int n) 236 { 237 info->data = n; 238 } 239 240 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 241 unsigned int n, unsigned int f) 242 { 243 info->flags = f; 244 info->data = n; 245 } 246 247 static inline bool cluster_is_free(struct swap_cluster_info *info) 248 { 249 return info->flags & CLUSTER_FLAG_FREE; 250 } 251 252 static inline bool cluster_is_null(struct swap_cluster_info *info) 253 { 254 return info->flags & CLUSTER_FLAG_NEXT_NULL; 255 } 256 257 static inline void cluster_set_null(struct swap_cluster_info *info) 258 { 259 info->flags = CLUSTER_FLAG_NEXT_NULL; 260 info->data = 0; 261 } 262 263 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 264 unsigned long offset) 265 { 266 struct swap_cluster_info *ci; 267 268 ci = si->cluster_info; 269 if (ci) { 270 ci += offset / SWAPFILE_CLUSTER; 271 spin_lock(&ci->lock); 272 } 273 return ci; 274 } 275 276 static inline void unlock_cluster(struct swap_cluster_info *ci) 277 { 278 if (ci) 279 spin_unlock(&ci->lock); 280 } 281 282 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 283 struct swap_info_struct *si, 284 unsigned long offset) 285 { 286 struct swap_cluster_info *ci; 287 288 ci = lock_cluster(si, offset); 289 if (!ci) 290 spin_lock(&si->lock); 291 292 return ci; 293 } 294 295 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 296 struct swap_cluster_info *ci) 297 { 298 if (ci) 299 unlock_cluster(ci); 300 else 301 spin_unlock(&si->lock); 302 } 303 304 static inline bool cluster_list_empty(struct swap_cluster_list *list) 305 { 306 return cluster_is_null(&list->head); 307 } 308 309 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 310 { 311 return cluster_next(&list->head); 312 } 313 314 static void cluster_list_init(struct swap_cluster_list *list) 315 { 316 cluster_set_null(&list->head); 317 cluster_set_null(&list->tail); 318 } 319 320 static void cluster_list_add_tail(struct swap_cluster_list *list, 321 struct swap_cluster_info *ci, 322 unsigned int idx) 323 { 324 if (cluster_list_empty(list)) { 325 cluster_set_next_flag(&list->head, idx, 0); 326 cluster_set_next_flag(&list->tail, idx, 0); 327 } else { 328 struct swap_cluster_info *ci_tail; 329 unsigned int tail = cluster_next(&list->tail); 330 331 /* 332 * Nested cluster lock, but both cluster locks are 333 * only acquired when we held swap_info_struct->lock 334 */ 335 ci_tail = ci + tail; 336 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 337 cluster_set_next(ci_tail, idx); 338 unlock_cluster(ci_tail); 339 cluster_set_next_flag(&list->tail, idx, 0); 340 } 341 } 342 343 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 344 struct swap_cluster_info *ci) 345 { 346 unsigned int idx; 347 348 idx = cluster_next(&list->head); 349 if (cluster_next(&list->tail) == idx) { 350 cluster_set_null(&list->head); 351 cluster_set_null(&list->tail); 352 } else 353 cluster_set_next_flag(&list->head, 354 cluster_next(&ci[idx]), 0); 355 356 return idx; 357 } 358 359 /* Add a cluster to discard list and schedule it to do discard */ 360 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 361 unsigned int idx) 362 { 363 /* 364 * If scan_swap_map() can't find a free cluster, it will check 365 * si->swap_map directly. To make sure the discarding cluster isn't 366 * taken by scan_swap_map(), mark the swap entries bad (occupied). It 367 * will be cleared after discard 368 */ 369 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 370 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 371 372 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 373 374 schedule_work(&si->discard_work); 375 } 376 377 /* 378 * Doing discard actually. After a cluster discard is finished, the cluster 379 * will be added to free cluster list. caller should hold si->lock. 380 */ 381 static void swap_do_scheduled_discard(struct swap_info_struct *si) 382 { 383 struct swap_cluster_info *info, *ci; 384 unsigned int idx; 385 386 info = si->cluster_info; 387 388 while (!cluster_list_empty(&si->discard_clusters)) { 389 idx = cluster_list_del_first(&si->discard_clusters, info); 390 spin_unlock(&si->lock); 391 392 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 393 SWAPFILE_CLUSTER); 394 395 spin_lock(&si->lock); 396 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 397 cluster_set_flag(ci, CLUSTER_FLAG_FREE); 398 unlock_cluster(ci); 399 cluster_list_add_tail(&si->free_clusters, info, idx); 400 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 401 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 402 0, SWAPFILE_CLUSTER); 403 unlock_cluster(ci); 404 } 405 } 406 407 static void swap_discard_work(struct work_struct *work) 408 { 409 struct swap_info_struct *si; 410 411 si = container_of(work, struct swap_info_struct, discard_work); 412 413 spin_lock(&si->lock); 414 swap_do_scheduled_discard(si); 415 spin_unlock(&si->lock); 416 } 417 418 /* 419 * The cluster corresponding to page_nr will be used. The cluster will be 420 * removed from free cluster list and its usage counter will be increased. 421 */ 422 static void inc_cluster_info_page(struct swap_info_struct *p, 423 struct swap_cluster_info *cluster_info, unsigned long page_nr) 424 { 425 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 426 427 if (!cluster_info) 428 return; 429 if (cluster_is_free(&cluster_info[idx])) { 430 VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx); 431 cluster_list_del_first(&p->free_clusters, cluster_info); 432 cluster_set_count_flag(&cluster_info[idx], 0, 0); 433 } 434 435 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 436 cluster_set_count(&cluster_info[idx], 437 cluster_count(&cluster_info[idx]) + 1); 438 } 439 440 /* 441 * The cluster corresponding to page_nr decreases one usage. If the usage 442 * counter becomes 0, which means no page in the cluster is in using, we can 443 * optionally discard the cluster and add it to free cluster list. 444 */ 445 static void dec_cluster_info_page(struct swap_info_struct *p, 446 struct swap_cluster_info *cluster_info, unsigned long page_nr) 447 { 448 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 449 450 if (!cluster_info) 451 return; 452 453 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 454 cluster_set_count(&cluster_info[idx], 455 cluster_count(&cluster_info[idx]) - 1); 456 457 if (cluster_count(&cluster_info[idx]) == 0) { 458 /* 459 * If the swap is discardable, prepare discard the cluster 460 * instead of free it immediately. The cluster will be freed 461 * after discard. 462 */ 463 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 464 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 465 swap_cluster_schedule_discard(p, idx); 466 return; 467 } 468 469 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 470 cluster_list_add_tail(&p->free_clusters, cluster_info, idx); 471 } 472 } 473 474 /* 475 * It's possible scan_swap_map() uses a free cluster in the middle of free 476 * cluster list. Avoiding such abuse to avoid list corruption. 477 */ 478 static bool 479 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 480 unsigned long offset) 481 { 482 struct percpu_cluster *percpu_cluster; 483 bool conflict; 484 485 offset /= SWAPFILE_CLUSTER; 486 conflict = !cluster_list_empty(&si->free_clusters) && 487 offset != cluster_list_first(&si->free_clusters) && 488 cluster_is_free(&si->cluster_info[offset]); 489 490 if (!conflict) 491 return false; 492 493 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 494 cluster_set_null(&percpu_cluster->index); 495 return true; 496 } 497 498 /* 499 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 500 * might involve allocating a new cluster for current CPU too. 501 */ 502 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 503 unsigned long *offset, unsigned long *scan_base) 504 { 505 struct percpu_cluster *cluster; 506 struct swap_cluster_info *ci; 507 bool found_free; 508 unsigned long tmp, max; 509 510 new_cluster: 511 cluster = this_cpu_ptr(si->percpu_cluster); 512 if (cluster_is_null(&cluster->index)) { 513 if (!cluster_list_empty(&si->free_clusters)) { 514 cluster->index = si->free_clusters.head; 515 cluster->next = cluster_next(&cluster->index) * 516 SWAPFILE_CLUSTER; 517 } else if (!cluster_list_empty(&si->discard_clusters)) { 518 /* 519 * we don't have free cluster but have some clusters in 520 * discarding, do discard now and reclaim them 521 */ 522 swap_do_scheduled_discard(si); 523 *scan_base = *offset = si->cluster_next; 524 goto new_cluster; 525 } else 526 return false; 527 } 528 529 found_free = false; 530 531 /* 532 * Other CPUs can use our cluster if they can't find a free cluster, 533 * check if there is still free entry in the cluster 534 */ 535 tmp = cluster->next; 536 max = min_t(unsigned long, si->max, 537 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 538 if (tmp >= max) { 539 cluster_set_null(&cluster->index); 540 goto new_cluster; 541 } 542 ci = lock_cluster(si, tmp); 543 while (tmp < max) { 544 if (!si->swap_map[tmp]) { 545 found_free = true; 546 break; 547 } 548 tmp++; 549 } 550 unlock_cluster(ci); 551 if (!found_free) { 552 cluster_set_null(&cluster->index); 553 goto new_cluster; 554 } 555 cluster->next = tmp + 1; 556 *offset = tmp; 557 *scan_base = tmp; 558 return found_free; 559 } 560 561 static int scan_swap_map_slots(struct swap_info_struct *si, 562 unsigned char usage, int nr, 563 swp_entry_t slots[]) 564 { 565 struct swap_cluster_info *ci; 566 unsigned long offset; 567 unsigned long scan_base; 568 unsigned long last_in_cluster = 0; 569 int latency_ration = LATENCY_LIMIT; 570 int n_ret = 0; 571 572 if (nr > SWAP_BATCH) 573 nr = SWAP_BATCH; 574 575 /* 576 * We try to cluster swap pages by allocating them sequentially 577 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 578 * way, however, we resort to first-free allocation, starting 579 * a new cluster. This prevents us from scattering swap pages 580 * all over the entire swap partition, so that we reduce 581 * overall disk seek times between swap pages. -- sct 582 * But we do now try to find an empty cluster. -Andrea 583 * And we let swap pages go all over an SSD partition. Hugh 584 */ 585 586 si->flags += SWP_SCANNING; 587 scan_base = offset = si->cluster_next; 588 589 /* SSD algorithm */ 590 if (si->cluster_info) { 591 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 592 goto checks; 593 else 594 goto scan; 595 } 596 597 if (unlikely(!si->cluster_nr--)) { 598 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 599 si->cluster_nr = SWAPFILE_CLUSTER - 1; 600 goto checks; 601 } 602 603 spin_unlock(&si->lock); 604 605 /* 606 * If seek is expensive, start searching for new cluster from 607 * start of partition, to minimize the span of allocated swap. 608 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 609 * case, just handled by scan_swap_map_try_ssd_cluster() above. 610 */ 611 scan_base = offset = si->lowest_bit; 612 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 613 614 /* Locate the first empty (unaligned) cluster */ 615 for (; last_in_cluster <= si->highest_bit; offset++) { 616 if (si->swap_map[offset]) 617 last_in_cluster = offset + SWAPFILE_CLUSTER; 618 else if (offset == last_in_cluster) { 619 spin_lock(&si->lock); 620 offset -= SWAPFILE_CLUSTER - 1; 621 si->cluster_next = offset; 622 si->cluster_nr = SWAPFILE_CLUSTER - 1; 623 goto checks; 624 } 625 if (unlikely(--latency_ration < 0)) { 626 cond_resched(); 627 latency_ration = LATENCY_LIMIT; 628 } 629 } 630 631 offset = scan_base; 632 spin_lock(&si->lock); 633 si->cluster_nr = SWAPFILE_CLUSTER - 1; 634 } 635 636 checks: 637 if (si->cluster_info) { 638 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 639 /* take a break if we already got some slots */ 640 if (n_ret) 641 goto done; 642 if (!scan_swap_map_try_ssd_cluster(si, &offset, 643 &scan_base)) 644 goto scan; 645 } 646 } 647 if (!(si->flags & SWP_WRITEOK)) 648 goto no_page; 649 if (!si->highest_bit) 650 goto no_page; 651 if (offset > si->highest_bit) 652 scan_base = offset = si->lowest_bit; 653 654 ci = lock_cluster(si, offset); 655 /* reuse swap entry of cache-only swap if not busy. */ 656 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 657 int swap_was_freed; 658 unlock_cluster(ci); 659 spin_unlock(&si->lock); 660 swap_was_freed = __try_to_reclaim_swap(si, offset); 661 spin_lock(&si->lock); 662 /* entry was freed successfully, try to use this again */ 663 if (swap_was_freed) 664 goto checks; 665 goto scan; /* check next one */ 666 } 667 668 if (si->swap_map[offset]) { 669 unlock_cluster(ci); 670 if (!n_ret) 671 goto scan; 672 else 673 goto done; 674 } 675 676 if (offset == si->lowest_bit) 677 si->lowest_bit++; 678 if (offset == si->highest_bit) 679 si->highest_bit--; 680 si->inuse_pages++; 681 if (si->inuse_pages == si->pages) { 682 si->lowest_bit = si->max; 683 si->highest_bit = 0; 684 spin_lock(&swap_avail_lock); 685 plist_del(&si->avail_list, &swap_avail_head); 686 spin_unlock(&swap_avail_lock); 687 } 688 si->swap_map[offset] = usage; 689 inc_cluster_info_page(si, si->cluster_info, offset); 690 unlock_cluster(ci); 691 si->cluster_next = offset + 1; 692 slots[n_ret++] = swp_entry(si->type, offset); 693 694 /* got enough slots or reach max slots? */ 695 if ((n_ret == nr) || (offset >= si->highest_bit)) 696 goto done; 697 698 /* search for next available slot */ 699 700 /* time to take a break? */ 701 if (unlikely(--latency_ration < 0)) { 702 if (n_ret) 703 goto done; 704 spin_unlock(&si->lock); 705 cond_resched(); 706 spin_lock(&si->lock); 707 latency_ration = LATENCY_LIMIT; 708 } 709 710 /* try to get more slots in cluster */ 711 if (si->cluster_info) { 712 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 713 goto checks; 714 else 715 goto done; 716 } 717 /* non-ssd case */ 718 ++offset; 719 720 /* non-ssd case, still more slots in cluster? */ 721 if (si->cluster_nr && !si->swap_map[offset]) { 722 --si->cluster_nr; 723 goto checks; 724 } 725 726 done: 727 si->flags -= SWP_SCANNING; 728 return n_ret; 729 730 scan: 731 spin_unlock(&si->lock); 732 while (++offset <= si->highest_bit) { 733 if (!si->swap_map[offset]) { 734 spin_lock(&si->lock); 735 goto checks; 736 } 737 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 738 spin_lock(&si->lock); 739 goto checks; 740 } 741 if (unlikely(--latency_ration < 0)) { 742 cond_resched(); 743 latency_ration = LATENCY_LIMIT; 744 } 745 } 746 offset = si->lowest_bit; 747 while (offset < scan_base) { 748 if (!si->swap_map[offset]) { 749 spin_lock(&si->lock); 750 goto checks; 751 } 752 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 753 spin_lock(&si->lock); 754 goto checks; 755 } 756 if (unlikely(--latency_ration < 0)) { 757 cond_resched(); 758 latency_ration = LATENCY_LIMIT; 759 } 760 offset++; 761 } 762 spin_lock(&si->lock); 763 764 no_page: 765 si->flags -= SWP_SCANNING; 766 return n_ret; 767 } 768 769 static unsigned long scan_swap_map(struct swap_info_struct *si, 770 unsigned char usage) 771 { 772 swp_entry_t entry; 773 int n_ret; 774 775 n_ret = scan_swap_map_slots(si, usage, 1, &entry); 776 777 if (n_ret) 778 return swp_offset(entry); 779 else 780 return 0; 781 782 } 783 784 int get_swap_pages(int n_goal, swp_entry_t swp_entries[]) 785 { 786 struct swap_info_struct *si, *next; 787 long avail_pgs; 788 int n_ret = 0; 789 790 avail_pgs = atomic_long_read(&nr_swap_pages); 791 if (avail_pgs <= 0) 792 goto noswap; 793 794 if (n_goal > SWAP_BATCH) 795 n_goal = SWAP_BATCH; 796 797 if (n_goal > avail_pgs) 798 n_goal = avail_pgs; 799 800 atomic_long_sub(n_goal, &nr_swap_pages); 801 802 spin_lock(&swap_avail_lock); 803 804 start_over: 805 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) { 806 /* requeue si to after same-priority siblings */ 807 plist_requeue(&si->avail_list, &swap_avail_head); 808 spin_unlock(&swap_avail_lock); 809 spin_lock(&si->lock); 810 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 811 spin_lock(&swap_avail_lock); 812 if (plist_node_empty(&si->avail_list)) { 813 spin_unlock(&si->lock); 814 goto nextsi; 815 } 816 WARN(!si->highest_bit, 817 "swap_info %d in list but !highest_bit\n", 818 si->type); 819 WARN(!(si->flags & SWP_WRITEOK), 820 "swap_info %d in list but !SWP_WRITEOK\n", 821 si->type); 822 plist_del(&si->avail_list, &swap_avail_head); 823 spin_unlock(&si->lock); 824 goto nextsi; 825 } 826 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 827 n_goal, swp_entries); 828 spin_unlock(&si->lock); 829 if (n_ret) 830 goto check_out; 831 pr_debug("scan_swap_map of si %d failed to find offset\n", 832 si->type); 833 834 spin_lock(&swap_avail_lock); 835 nextsi: 836 /* 837 * if we got here, it's likely that si was almost full before, 838 * and since scan_swap_map() can drop the si->lock, multiple 839 * callers probably all tried to get a page from the same si 840 * and it filled up before we could get one; or, the si filled 841 * up between us dropping swap_avail_lock and taking si->lock. 842 * Since we dropped the swap_avail_lock, the swap_avail_head 843 * list may have been modified; so if next is still in the 844 * swap_avail_head list then try it, otherwise start over 845 * if we have not gotten any slots. 846 */ 847 if (plist_node_empty(&next->avail_list)) 848 goto start_over; 849 } 850 851 spin_unlock(&swap_avail_lock); 852 853 check_out: 854 if (n_ret < n_goal) 855 atomic_long_add((long) (n_goal-n_ret), &nr_swap_pages); 856 noswap: 857 return n_ret; 858 } 859 860 /* The only caller of this function is now suspend routine */ 861 swp_entry_t get_swap_page_of_type(int type) 862 { 863 struct swap_info_struct *si; 864 pgoff_t offset; 865 866 si = swap_info[type]; 867 spin_lock(&si->lock); 868 if (si && (si->flags & SWP_WRITEOK)) { 869 atomic_long_dec(&nr_swap_pages); 870 /* This is called for allocating swap entry, not cache */ 871 offset = scan_swap_map(si, 1); 872 if (offset) { 873 spin_unlock(&si->lock); 874 return swp_entry(type, offset); 875 } 876 atomic_long_inc(&nr_swap_pages); 877 } 878 spin_unlock(&si->lock); 879 return (swp_entry_t) {0}; 880 } 881 882 static struct swap_info_struct *__swap_info_get(swp_entry_t entry) 883 { 884 struct swap_info_struct *p; 885 unsigned long offset, type; 886 887 if (!entry.val) 888 goto out; 889 type = swp_type(entry); 890 if (type >= nr_swapfiles) 891 goto bad_nofile; 892 p = swap_info[type]; 893 if (!(p->flags & SWP_USED)) 894 goto bad_device; 895 offset = swp_offset(entry); 896 if (offset >= p->max) 897 goto bad_offset; 898 return p; 899 900 bad_offset: 901 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val); 902 goto out; 903 bad_device: 904 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val); 905 goto out; 906 bad_nofile: 907 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val); 908 out: 909 return NULL; 910 } 911 912 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 913 { 914 struct swap_info_struct *p; 915 916 p = __swap_info_get(entry); 917 if (!p) 918 goto out; 919 if (!p->swap_map[swp_offset(entry)]) 920 goto bad_free; 921 return p; 922 923 bad_free: 924 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val); 925 goto out; 926 out: 927 return NULL; 928 } 929 930 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 931 { 932 struct swap_info_struct *p; 933 934 p = _swap_info_get(entry); 935 if (p) 936 spin_lock(&p->lock); 937 return p; 938 } 939 940 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 941 struct swap_info_struct *q) 942 { 943 struct swap_info_struct *p; 944 945 p = _swap_info_get(entry); 946 947 if (p != q) { 948 if (q != NULL) 949 spin_unlock(&q->lock); 950 if (p != NULL) 951 spin_lock(&p->lock); 952 } 953 return p; 954 } 955 956 static unsigned char __swap_entry_free(struct swap_info_struct *p, 957 swp_entry_t entry, unsigned char usage) 958 { 959 struct swap_cluster_info *ci; 960 unsigned long offset = swp_offset(entry); 961 unsigned char count; 962 unsigned char has_cache; 963 964 ci = lock_cluster_or_swap_info(p, offset); 965 966 count = p->swap_map[offset]; 967 968 has_cache = count & SWAP_HAS_CACHE; 969 count &= ~SWAP_HAS_CACHE; 970 971 if (usage == SWAP_HAS_CACHE) { 972 VM_BUG_ON(!has_cache); 973 has_cache = 0; 974 } else if (count == SWAP_MAP_SHMEM) { 975 /* 976 * Or we could insist on shmem.c using a special 977 * swap_shmem_free() and free_shmem_swap_and_cache()... 978 */ 979 count = 0; 980 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 981 if (count == COUNT_CONTINUED) { 982 if (swap_count_continued(p, offset, count)) 983 count = SWAP_MAP_MAX | COUNT_CONTINUED; 984 else 985 count = SWAP_MAP_MAX; 986 } else 987 count--; 988 } 989 990 usage = count | has_cache; 991 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE; 992 993 unlock_cluster_or_swap_info(p, ci); 994 995 return usage; 996 } 997 998 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 999 { 1000 struct swap_cluster_info *ci; 1001 unsigned long offset = swp_offset(entry); 1002 unsigned char count; 1003 1004 ci = lock_cluster(p, offset); 1005 count = p->swap_map[offset]; 1006 VM_BUG_ON(count != SWAP_HAS_CACHE); 1007 p->swap_map[offset] = 0; 1008 dec_cluster_info_page(p, p->cluster_info, offset); 1009 unlock_cluster(ci); 1010 1011 mem_cgroup_uncharge_swap(entry); 1012 if (offset < p->lowest_bit) 1013 p->lowest_bit = offset; 1014 if (offset > p->highest_bit) { 1015 bool was_full = !p->highest_bit; 1016 1017 p->highest_bit = offset; 1018 if (was_full && (p->flags & SWP_WRITEOK)) { 1019 spin_lock(&swap_avail_lock); 1020 WARN_ON(!plist_node_empty(&p->avail_list)); 1021 if (plist_node_empty(&p->avail_list)) 1022 plist_add(&p->avail_list, 1023 &swap_avail_head); 1024 spin_unlock(&swap_avail_lock); 1025 } 1026 } 1027 atomic_long_inc(&nr_swap_pages); 1028 p->inuse_pages--; 1029 frontswap_invalidate_page(p->type, offset); 1030 if (p->flags & SWP_BLKDEV) { 1031 struct gendisk *disk = p->bdev->bd_disk; 1032 1033 if (disk->fops->swap_slot_free_notify) 1034 disk->fops->swap_slot_free_notify(p->bdev, 1035 offset); 1036 } 1037 } 1038 1039 /* 1040 * Caller has made sure that the swap device corresponding to entry 1041 * is still around or has not been recycled. 1042 */ 1043 void swap_free(swp_entry_t entry) 1044 { 1045 struct swap_info_struct *p; 1046 1047 p = _swap_info_get(entry); 1048 if (p) { 1049 if (!__swap_entry_free(p, entry, 1)) 1050 free_swap_slot(entry); 1051 } 1052 } 1053 1054 /* 1055 * Called after dropping swapcache to decrease refcnt to swap entries. 1056 */ 1057 void swapcache_free(swp_entry_t entry) 1058 { 1059 struct swap_info_struct *p; 1060 1061 p = _swap_info_get(entry); 1062 if (p) { 1063 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE)) 1064 free_swap_slot(entry); 1065 } 1066 } 1067 1068 void swapcache_free_entries(swp_entry_t *entries, int n) 1069 { 1070 struct swap_info_struct *p, *prev; 1071 int i; 1072 1073 if (n <= 0) 1074 return; 1075 1076 prev = NULL; 1077 p = NULL; 1078 for (i = 0; i < n; ++i) { 1079 p = swap_info_get_cont(entries[i], prev); 1080 if (p) 1081 swap_entry_free(p, entries[i]); 1082 else 1083 break; 1084 prev = p; 1085 } 1086 if (p) 1087 spin_unlock(&p->lock); 1088 } 1089 1090 /* 1091 * How many references to page are currently swapped out? 1092 * This does not give an exact answer when swap count is continued, 1093 * but does include the high COUNT_CONTINUED flag to allow for that. 1094 */ 1095 int page_swapcount(struct page *page) 1096 { 1097 int count = 0; 1098 struct swap_info_struct *p; 1099 struct swap_cluster_info *ci; 1100 swp_entry_t entry; 1101 unsigned long offset; 1102 1103 entry.val = page_private(page); 1104 p = _swap_info_get(entry); 1105 if (p) { 1106 offset = swp_offset(entry); 1107 ci = lock_cluster_or_swap_info(p, offset); 1108 count = swap_count(p->swap_map[offset]); 1109 unlock_cluster_or_swap_info(p, ci); 1110 } 1111 return count; 1112 } 1113 1114 /* 1115 * How many references to @entry are currently swapped out? 1116 * This does not give an exact answer when swap count is continued, 1117 * but does include the high COUNT_CONTINUED flag to allow for that. 1118 */ 1119 int __swp_swapcount(swp_entry_t entry) 1120 { 1121 int count = 0; 1122 pgoff_t offset; 1123 struct swap_info_struct *si; 1124 struct swap_cluster_info *ci; 1125 1126 si = __swap_info_get(entry); 1127 if (si) { 1128 offset = swp_offset(entry); 1129 ci = lock_cluster_or_swap_info(si, offset); 1130 count = swap_count(si->swap_map[offset]); 1131 unlock_cluster_or_swap_info(si, ci); 1132 } 1133 return count; 1134 } 1135 1136 /* 1137 * How many references to @entry are currently swapped out? 1138 * This considers COUNT_CONTINUED so it returns exact answer. 1139 */ 1140 int swp_swapcount(swp_entry_t entry) 1141 { 1142 int count, tmp_count, n; 1143 struct swap_info_struct *p; 1144 struct swap_cluster_info *ci; 1145 struct page *page; 1146 pgoff_t offset; 1147 unsigned char *map; 1148 1149 p = _swap_info_get(entry); 1150 if (!p) 1151 return 0; 1152 1153 offset = swp_offset(entry); 1154 1155 ci = lock_cluster_or_swap_info(p, offset); 1156 1157 count = swap_count(p->swap_map[offset]); 1158 if (!(count & COUNT_CONTINUED)) 1159 goto out; 1160 1161 count &= ~COUNT_CONTINUED; 1162 n = SWAP_MAP_MAX + 1; 1163 1164 page = vmalloc_to_page(p->swap_map + offset); 1165 offset &= ~PAGE_MASK; 1166 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1167 1168 do { 1169 page = list_next_entry(page, lru); 1170 map = kmap_atomic(page); 1171 tmp_count = map[offset]; 1172 kunmap_atomic(map); 1173 1174 count += (tmp_count & ~COUNT_CONTINUED) * n; 1175 n *= (SWAP_CONT_MAX + 1); 1176 } while (tmp_count & COUNT_CONTINUED); 1177 out: 1178 unlock_cluster_or_swap_info(p, ci); 1179 return count; 1180 } 1181 1182 /* 1183 * We can write to an anon page without COW if there are no other references 1184 * to it. And as a side-effect, free up its swap: because the old content 1185 * on disk will never be read, and seeking back there to write new content 1186 * later would only waste time away from clustering. 1187 * 1188 * NOTE: total_mapcount should not be relied upon by the caller if 1189 * reuse_swap_page() returns false, but it may be always overwritten 1190 * (see the other implementation for CONFIG_SWAP=n). 1191 */ 1192 bool reuse_swap_page(struct page *page, int *total_mapcount) 1193 { 1194 int count; 1195 1196 VM_BUG_ON_PAGE(!PageLocked(page), page); 1197 if (unlikely(PageKsm(page))) 1198 return false; 1199 count = page_trans_huge_mapcount(page, total_mapcount); 1200 if (count <= 1 && PageSwapCache(page)) { 1201 count += page_swapcount(page); 1202 if (count != 1) 1203 goto out; 1204 if (!PageWriteback(page)) { 1205 delete_from_swap_cache(page); 1206 SetPageDirty(page); 1207 } else { 1208 swp_entry_t entry; 1209 struct swap_info_struct *p; 1210 1211 entry.val = page_private(page); 1212 p = swap_info_get(entry); 1213 if (p->flags & SWP_STABLE_WRITES) { 1214 spin_unlock(&p->lock); 1215 return false; 1216 } 1217 spin_unlock(&p->lock); 1218 } 1219 } 1220 out: 1221 return count <= 1; 1222 } 1223 1224 /* 1225 * If swap is getting full, or if there are no more mappings of this page, 1226 * then try_to_free_swap is called to free its swap space. 1227 */ 1228 int try_to_free_swap(struct page *page) 1229 { 1230 VM_BUG_ON_PAGE(!PageLocked(page), page); 1231 1232 if (!PageSwapCache(page)) 1233 return 0; 1234 if (PageWriteback(page)) 1235 return 0; 1236 if (page_swapcount(page)) 1237 return 0; 1238 1239 /* 1240 * Once hibernation has begun to create its image of memory, 1241 * there's a danger that one of the calls to try_to_free_swap() 1242 * - most probably a call from __try_to_reclaim_swap() while 1243 * hibernation is allocating its own swap pages for the image, 1244 * but conceivably even a call from memory reclaim - will free 1245 * the swap from a page which has already been recorded in the 1246 * image as a clean swapcache page, and then reuse its swap for 1247 * another page of the image. On waking from hibernation, the 1248 * original page might be freed under memory pressure, then 1249 * later read back in from swap, now with the wrong data. 1250 * 1251 * Hibernation suspends storage while it is writing the image 1252 * to disk so check that here. 1253 */ 1254 if (pm_suspended_storage()) 1255 return 0; 1256 1257 delete_from_swap_cache(page); 1258 SetPageDirty(page); 1259 return 1; 1260 } 1261 1262 /* 1263 * Free the swap entry like above, but also try to 1264 * free the page cache entry if it is the last user. 1265 */ 1266 int free_swap_and_cache(swp_entry_t entry) 1267 { 1268 struct swap_info_struct *p; 1269 struct page *page = NULL; 1270 unsigned char count; 1271 1272 if (non_swap_entry(entry)) 1273 return 1; 1274 1275 p = _swap_info_get(entry); 1276 if (p) { 1277 count = __swap_entry_free(p, entry, 1); 1278 if (count == SWAP_HAS_CACHE) { 1279 page = find_get_page(swap_address_space(entry), 1280 swp_offset(entry)); 1281 if (page && !trylock_page(page)) { 1282 put_page(page); 1283 page = NULL; 1284 } 1285 } else if (!count) 1286 free_swap_slot(entry); 1287 } 1288 if (page) { 1289 /* 1290 * Not mapped elsewhere, or swap space full? Free it! 1291 * Also recheck PageSwapCache now page is locked (above). 1292 */ 1293 if (PageSwapCache(page) && !PageWriteback(page) && 1294 (!page_mapped(page) || mem_cgroup_swap_full(page))) { 1295 delete_from_swap_cache(page); 1296 SetPageDirty(page); 1297 } 1298 unlock_page(page); 1299 put_page(page); 1300 } 1301 return p != NULL; 1302 } 1303 1304 #ifdef CONFIG_HIBERNATION 1305 /* 1306 * Find the swap type that corresponds to given device (if any). 1307 * 1308 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1309 * from 0, in which the swap header is expected to be located. 1310 * 1311 * This is needed for the suspend to disk (aka swsusp). 1312 */ 1313 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 1314 { 1315 struct block_device *bdev = NULL; 1316 int type; 1317 1318 if (device) 1319 bdev = bdget(device); 1320 1321 spin_lock(&swap_lock); 1322 for (type = 0; type < nr_swapfiles; type++) { 1323 struct swap_info_struct *sis = swap_info[type]; 1324 1325 if (!(sis->flags & SWP_WRITEOK)) 1326 continue; 1327 1328 if (!bdev) { 1329 if (bdev_p) 1330 *bdev_p = bdgrab(sis->bdev); 1331 1332 spin_unlock(&swap_lock); 1333 return type; 1334 } 1335 if (bdev == sis->bdev) { 1336 struct swap_extent *se = &sis->first_swap_extent; 1337 1338 if (se->start_block == offset) { 1339 if (bdev_p) 1340 *bdev_p = bdgrab(sis->bdev); 1341 1342 spin_unlock(&swap_lock); 1343 bdput(bdev); 1344 return type; 1345 } 1346 } 1347 } 1348 spin_unlock(&swap_lock); 1349 if (bdev) 1350 bdput(bdev); 1351 1352 return -ENODEV; 1353 } 1354 1355 /* 1356 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1357 * corresponding to given index in swap_info (swap type). 1358 */ 1359 sector_t swapdev_block(int type, pgoff_t offset) 1360 { 1361 struct block_device *bdev; 1362 1363 if ((unsigned int)type >= nr_swapfiles) 1364 return 0; 1365 if (!(swap_info[type]->flags & SWP_WRITEOK)) 1366 return 0; 1367 return map_swap_entry(swp_entry(type, offset), &bdev); 1368 } 1369 1370 /* 1371 * Return either the total number of swap pages of given type, or the number 1372 * of free pages of that type (depending on @free) 1373 * 1374 * This is needed for software suspend 1375 */ 1376 unsigned int count_swap_pages(int type, int free) 1377 { 1378 unsigned int n = 0; 1379 1380 spin_lock(&swap_lock); 1381 if ((unsigned int)type < nr_swapfiles) { 1382 struct swap_info_struct *sis = swap_info[type]; 1383 1384 spin_lock(&sis->lock); 1385 if (sis->flags & SWP_WRITEOK) { 1386 n = sis->pages; 1387 if (free) 1388 n -= sis->inuse_pages; 1389 } 1390 spin_unlock(&sis->lock); 1391 } 1392 spin_unlock(&swap_lock); 1393 return n; 1394 } 1395 #endif /* CONFIG_HIBERNATION */ 1396 1397 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1398 { 1399 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte); 1400 } 1401 1402 /* 1403 * No need to decide whether this PTE shares the swap entry with others, 1404 * just let do_wp_page work it out if a write is requested later - to 1405 * force COW, vm_page_prot omits write permission from any private vma. 1406 */ 1407 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1408 unsigned long addr, swp_entry_t entry, struct page *page) 1409 { 1410 struct page *swapcache; 1411 struct mem_cgroup *memcg; 1412 spinlock_t *ptl; 1413 pte_t *pte; 1414 int ret = 1; 1415 1416 swapcache = page; 1417 page = ksm_might_need_to_copy(page, vma, addr); 1418 if (unlikely(!page)) 1419 return -ENOMEM; 1420 1421 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, 1422 &memcg, false)) { 1423 ret = -ENOMEM; 1424 goto out_nolock; 1425 } 1426 1427 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1428 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1429 mem_cgroup_cancel_charge(page, memcg, false); 1430 ret = 0; 1431 goto out; 1432 } 1433 1434 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1435 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1436 get_page(page); 1437 set_pte_at(vma->vm_mm, addr, pte, 1438 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1439 if (page == swapcache) { 1440 page_add_anon_rmap(page, vma, addr, false); 1441 mem_cgroup_commit_charge(page, memcg, true, false); 1442 } else { /* ksm created a completely new copy */ 1443 page_add_new_anon_rmap(page, vma, addr, false); 1444 mem_cgroup_commit_charge(page, memcg, false, false); 1445 lru_cache_add_active_or_unevictable(page, vma); 1446 } 1447 swap_free(entry); 1448 /* 1449 * Move the page to the active list so it is not 1450 * immediately swapped out again after swapon. 1451 */ 1452 activate_page(page); 1453 out: 1454 pte_unmap_unlock(pte, ptl); 1455 out_nolock: 1456 if (page != swapcache) { 1457 unlock_page(page); 1458 put_page(page); 1459 } 1460 return ret; 1461 } 1462 1463 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1464 unsigned long addr, unsigned long end, 1465 swp_entry_t entry, struct page *page) 1466 { 1467 pte_t swp_pte = swp_entry_to_pte(entry); 1468 pte_t *pte; 1469 int ret = 0; 1470 1471 /* 1472 * We don't actually need pte lock while scanning for swp_pte: since 1473 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 1474 * page table while we're scanning; though it could get zapped, and on 1475 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 1476 * of unmatched parts which look like swp_pte, so unuse_pte must 1477 * recheck under pte lock. Scanning without pte lock lets it be 1478 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 1479 */ 1480 pte = pte_offset_map(pmd, addr); 1481 do { 1482 /* 1483 * swapoff spends a _lot_ of time in this loop! 1484 * Test inline before going to call unuse_pte. 1485 */ 1486 if (unlikely(pte_same_as_swp(*pte, swp_pte))) { 1487 pte_unmap(pte); 1488 ret = unuse_pte(vma, pmd, addr, entry, page); 1489 if (ret) 1490 goto out; 1491 pte = pte_offset_map(pmd, addr); 1492 } 1493 } while (pte++, addr += PAGE_SIZE, addr != end); 1494 pte_unmap(pte - 1); 1495 out: 1496 return ret; 1497 } 1498 1499 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1500 unsigned long addr, unsigned long end, 1501 swp_entry_t entry, struct page *page) 1502 { 1503 pmd_t *pmd; 1504 unsigned long next; 1505 int ret; 1506 1507 pmd = pmd_offset(pud, addr); 1508 do { 1509 cond_resched(); 1510 next = pmd_addr_end(addr, end); 1511 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1512 continue; 1513 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 1514 if (ret) 1515 return ret; 1516 } while (pmd++, addr = next, addr != end); 1517 return 0; 1518 } 1519 1520 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 1521 unsigned long addr, unsigned long end, 1522 swp_entry_t entry, struct page *page) 1523 { 1524 pud_t *pud; 1525 unsigned long next; 1526 int ret; 1527 1528 pud = pud_offset(p4d, addr); 1529 do { 1530 next = pud_addr_end(addr, end); 1531 if (pud_none_or_clear_bad(pud)) 1532 continue; 1533 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 1534 if (ret) 1535 return ret; 1536 } while (pud++, addr = next, addr != end); 1537 return 0; 1538 } 1539 1540 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 1541 unsigned long addr, unsigned long end, 1542 swp_entry_t entry, struct page *page) 1543 { 1544 p4d_t *p4d; 1545 unsigned long next; 1546 int ret; 1547 1548 p4d = p4d_offset(pgd, addr); 1549 do { 1550 next = p4d_addr_end(addr, end); 1551 if (p4d_none_or_clear_bad(p4d)) 1552 continue; 1553 ret = unuse_pud_range(vma, p4d, addr, next, entry, page); 1554 if (ret) 1555 return ret; 1556 } while (p4d++, addr = next, addr != end); 1557 return 0; 1558 } 1559 1560 static int unuse_vma(struct vm_area_struct *vma, 1561 swp_entry_t entry, struct page *page) 1562 { 1563 pgd_t *pgd; 1564 unsigned long addr, end, next; 1565 int ret; 1566 1567 if (page_anon_vma(page)) { 1568 addr = page_address_in_vma(page, vma); 1569 if (addr == -EFAULT) 1570 return 0; 1571 else 1572 end = addr + PAGE_SIZE; 1573 } else { 1574 addr = vma->vm_start; 1575 end = vma->vm_end; 1576 } 1577 1578 pgd = pgd_offset(vma->vm_mm, addr); 1579 do { 1580 next = pgd_addr_end(addr, end); 1581 if (pgd_none_or_clear_bad(pgd)) 1582 continue; 1583 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page); 1584 if (ret) 1585 return ret; 1586 } while (pgd++, addr = next, addr != end); 1587 return 0; 1588 } 1589 1590 static int unuse_mm(struct mm_struct *mm, 1591 swp_entry_t entry, struct page *page) 1592 { 1593 struct vm_area_struct *vma; 1594 int ret = 0; 1595 1596 if (!down_read_trylock(&mm->mmap_sem)) { 1597 /* 1598 * Activate page so shrink_inactive_list is unlikely to unmap 1599 * its ptes while lock is dropped, so swapoff can make progress. 1600 */ 1601 activate_page(page); 1602 unlock_page(page); 1603 down_read(&mm->mmap_sem); 1604 lock_page(page); 1605 } 1606 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1607 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 1608 break; 1609 cond_resched(); 1610 } 1611 up_read(&mm->mmap_sem); 1612 return (ret < 0)? ret: 0; 1613 } 1614 1615 /* 1616 * Scan swap_map (or frontswap_map if frontswap parameter is true) 1617 * from current position to next entry still in use. 1618 * Recycle to start on reaching the end, returning 0 when empty. 1619 */ 1620 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1621 unsigned int prev, bool frontswap) 1622 { 1623 unsigned int max = si->max; 1624 unsigned int i = prev; 1625 unsigned char count; 1626 1627 /* 1628 * No need for swap_lock here: we're just looking 1629 * for whether an entry is in use, not modifying it; false 1630 * hits are okay, and sys_swapoff() has already prevented new 1631 * allocations from this area (while holding swap_lock). 1632 */ 1633 for (;;) { 1634 if (++i >= max) { 1635 if (!prev) { 1636 i = 0; 1637 break; 1638 } 1639 /* 1640 * No entries in use at top of swap_map, 1641 * loop back to start and recheck there. 1642 */ 1643 max = prev + 1; 1644 prev = 0; 1645 i = 1; 1646 } 1647 count = READ_ONCE(si->swap_map[i]); 1648 if (count && swap_count(count) != SWAP_MAP_BAD) 1649 if (!frontswap || frontswap_test(si, i)) 1650 break; 1651 if ((i % LATENCY_LIMIT) == 0) 1652 cond_resched(); 1653 } 1654 return i; 1655 } 1656 1657 /* 1658 * We completely avoid races by reading each swap page in advance, 1659 * and then search for the process using it. All the necessary 1660 * page table adjustments can then be made atomically. 1661 * 1662 * if the boolean frontswap is true, only unuse pages_to_unuse pages; 1663 * pages_to_unuse==0 means all pages; ignored if frontswap is false 1664 */ 1665 int try_to_unuse(unsigned int type, bool frontswap, 1666 unsigned long pages_to_unuse) 1667 { 1668 struct swap_info_struct *si = swap_info[type]; 1669 struct mm_struct *start_mm; 1670 volatile unsigned char *swap_map; /* swap_map is accessed without 1671 * locking. Mark it as volatile 1672 * to prevent compiler doing 1673 * something odd. 1674 */ 1675 unsigned char swcount; 1676 struct page *page; 1677 swp_entry_t entry; 1678 unsigned int i = 0; 1679 int retval = 0; 1680 1681 /* 1682 * When searching mms for an entry, a good strategy is to 1683 * start at the first mm we freed the previous entry from 1684 * (though actually we don't notice whether we or coincidence 1685 * freed the entry). Initialize this start_mm with a hold. 1686 * 1687 * A simpler strategy would be to start at the last mm we 1688 * freed the previous entry from; but that would take less 1689 * advantage of mmlist ordering, which clusters forked mms 1690 * together, child after parent. If we race with dup_mmap(), we 1691 * prefer to resolve parent before child, lest we miss entries 1692 * duplicated after we scanned child: using last mm would invert 1693 * that. 1694 */ 1695 start_mm = &init_mm; 1696 mmget(&init_mm); 1697 1698 /* 1699 * Keep on scanning until all entries have gone. Usually, 1700 * one pass through swap_map is enough, but not necessarily: 1701 * there are races when an instance of an entry might be missed. 1702 */ 1703 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) { 1704 if (signal_pending(current)) { 1705 retval = -EINTR; 1706 break; 1707 } 1708 1709 /* 1710 * Get a page for the entry, using the existing swap 1711 * cache page if there is one. Otherwise, get a clean 1712 * page and read the swap into it. 1713 */ 1714 swap_map = &si->swap_map[i]; 1715 entry = swp_entry(type, i); 1716 page = read_swap_cache_async(entry, 1717 GFP_HIGHUSER_MOVABLE, NULL, 0); 1718 if (!page) { 1719 /* 1720 * Either swap_duplicate() failed because entry 1721 * has been freed independently, and will not be 1722 * reused since sys_swapoff() already disabled 1723 * allocation from here, or alloc_page() failed. 1724 */ 1725 swcount = *swap_map; 1726 /* 1727 * We don't hold lock here, so the swap entry could be 1728 * SWAP_MAP_BAD (when the cluster is discarding). 1729 * Instead of fail out, We can just skip the swap 1730 * entry because swapoff will wait for discarding 1731 * finish anyway. 1732 */ 1733 if (!swcount || swcount == SWAP_MAP_BAD) 1734 continue; 1735 retval = -ENOMEM; 1736 break; 1737 } 1738 1739 /* 1740 * Don't hold on to start_mm if it looks like exiting. 1741 */ 1742 if (atomic_read(&start_mm->mm_users) == 1) { 1743 mmput(start_mm); 1744 start_mm = &init_mm; 1745 mmget(&init_mm); 1746 } 1747 1748 /* 1749 * Wait for and lock page. When do_swap_page races with 1750 * try_to_unuse, do_swap_page can handle the fault much 1751 * faster than try_to_unuse can locate the entry. This 1752 * apparently redundant "wait_on_page_locked" lets try_to_unuse 1753 * defer to do_swap_page in such a case - in some tests, 1754 * do_swap_page and try_to_unuse repeatedly compete. 1755 */ 1756 wait_on_page_locked(page); 1757 wait_on_page_writeback(page); 1758 lock_page(page); 1759 wait_on_page_writeback(page); 1760 1761 /* 1762 * Remove all references to entry. 1763 */ 1764 swcount = *swap_map; 1765 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 1766 retval = shmem_unuse(entry, page); 1767 /* page has already been unlocked and released */ 1768 if (retval < 0) 1769 break; 1770 continue; 1771 } 1772 if (swap_count(swcount) && start_mm != &init_mm) 1773 retval = unuse_mm(start_mm, entry, page); 1774 1775 if (swap_count(*swap_map)) { 1776 int set_start_mm = (*swap_map >= swcount); 1777 struct list_head *p = &start_mm->mmlist; 1778 struct mm_struct *new_start_mm = start_mm; 1779 struct mm_struct *prev_mm = start_mm; 1780 struct mm_struct *mm; 1781 1782 mmget(new_start_mm); 1783 mmget(prev_mm); 1784 spin_lock(&mmlist_lock); 1785 while (swap_count(*swap_map) && !retval && 1786 (p = p->next) != &start_mm->mmlist) { 1787 mm = list_entry(p, struct mm_struct, mmlist); 1788 if (!mmget_not_zero(mm)) 1789 continue; 1790 spin_unlock(&mmlist_lock); 1791 mmput(prev_mm); 1792 prev_mm = mm; 1793 1794 cond_resched(); 1795 1796 swcount = *swap_map; 1797 if (!swap_count(swcount)) /* any usage ? */ 1798 ; 1799 else if (mm == &init_mm) 1800 set_start_mm = 1; 1801 else 1802 retval = unuse_mm(mm, entry, page); 1803 1804 if (set_start_mm && *swap_map < swcount) { 1805 mmput(new_start_mm); 1806 mmget(mm); 1807 new_start_mm = mm; 1808 set_start_mm = 0; 1809 } 1810 spin_lock(&mmlist_lock); 1811 } 1812 spin_unlock(&mmlist_lock); 1813 mmput(prev_mm); 1814 mmput(start_mm); 1815 start_mm = new_start_mm; 1816 } 1817 if (retval) { 1818 unlock_page(page); 1819 put_page(page); 1820 break; 1821 } 1822 1823 /* 1824 * If a reference remains (rare), we would like to leave 1825 * the page in the swap cache; but try_to_unmap could 1826 * then re-duplicate the entry once we drop page lock, 1827 * so we might loop indefinitely; also, that page could 1828 * not be swapped out to other storage meanwhile. So: 1829 * delete from cache even if there's another reference, 1830 * after ensuring that the data has been saved to disk - 1831 * since if the reference remains (rarer), it will be 1832 * read from disk into another page. Splitting into two 1833 * pages would be incorrect if swap supported "shared 1834 * private" pages, but they are handled by tmpfs files. 1835 * 1836 * Given how unuse_vma() targets one particular offset 1837 * in an anon_vma, once the anon_vma has been determined, 1838 * this splitting happens to be just what is needed to 1839 * handle where KSM pages have been swapped out: re-reading 1840 * is unnecessarily slow, but we can fix that later on. 1841 */ 1842 if (swap_count(*swap_map) && 1843 PageDirty(page) && PageSwapCache(page)) { 1844 struct writeback_control wbc = { 1845 .sync_mode = WB_SYNC_NONE, 1846 }; 1847 1848 swap_writepage(page, &wbc); 1849 lock_page(page); 1850 wait_on_page_writeback(page); 1851 } 1852 1853 /* 1854 * It is conceivable that a racing task removed this page from 1855 * swap cache just before we acquired the page lock at the top, 1856 * or while we dropped it in unuse_mm(). The page might even 1857 * be back in swap cache on another swap area: that we must not 1858 * delete, since it may not have been written out to swap yet. 1859 */ 1860 if (PageSwapCache(page) && 1861 likely(page_private(page) == entry.val)) 1862 delete_from_swap_cache(page); 1863 1864 /* 1865 * So we could skip searching mms once swap count went 1866 * to 1, we did not mark any present ptes as dirty: must 1867 * mark page dirty so shrink_page_list will preserve it. 1868 */ 1869 SetPageDirty(page); 1870 unlock_page(page); 1871 put_page(page); 1872 1873 /* 1874 * Make sure that we aren't completely killing 1875 * interactive performance. 1876 */ 1877 cond_resched(); 1878 if (frontswap && pages_to_unuse > 0) { 1879 if (!--pages_to_unuse) 1880 break; 1881 } 1882 } 1883 1884 mmput(start_mm); 1885 return retval; 1886 } 1887 1888 /* 1889 * After a successful try_to_unuse, if no swap is now in use, we know 1890 * we can empty the mmlist. swap_lock must be held on entry and exit. 1891 * Note that mmlist_lock nests inside swap_lock, and an mm must be 1892 * added to the mmlist just after page_duplicate - before would be racy. 1893 */ 1894 static void drain_mmlist(void) 1895 { 1896 struct list_head *p, *next; 1897 unsigned int type; 1898 1899 for (type = 0; type < nr_swapfiles; type++) 1900 if (swap_info[type]->inuse_pages) 1901 return; 1902 spin_lock(&mmlist_lock); 1903 list_for_each_safe(p, next, &init_mm.mmlist) 1904 list_del_init(p); 1905 spin_unlock(&mmlist_lock); 1906 } 1907 1908 /* 1909 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 1910 * corresponds to page offset for the specified swap entry. 1911 * Note that the type of this function is sector_t, but it returns page offset 1912 * into the bdev, not sector offset. 1913 */ 1914 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 1915 { 1916 struct swap_info_struct *sis; 1917 struct swap_extent *start_se; 1918 struct swap_extent *se; 1919 pgoff_t offset; 1920 1921 sis = swap_info[swp_type(entry)]; 1922 *bdev = sis->bdev; 1923 1924 offset = swp_offset(entry); 1925 start_se = sis->curr_swap_extent; 1926 se = start_se; 1927 1928 for ( ; ; ) { 1929 if (se->start_page <= offset && 1930 offset < (se->start_page + se->nr_pages)) { 1931 return se->start_block + (offset - se->start_page); 1932 } 1933 se = list_next_entry(se, list); 1934 sis->curr_swap_extent = se; 1935 BUG_ON(se == start_se); /* It *must* be present */ 1936 } 1937 } 1938 1939 /* 1940 * Returns the page offset into bdev for the specified page's swap entry. 1941 */ 1942 sector_t map_swap_page(struct page *page, struct block_device **bdev) 1943 { 1944 swp_entry_t entry; 1945 entry.val = page_private(page); 1946 return map_swap_entry(entry, bdev); 1947 } 1948 1949 /* 1950 * Free all of a swapdev's extent information 1951 */ 1952 static void destroy_swap_extents(struct swap_info_struct *sis) 1953 { 1954 while (!list_empty(&sis->first_swap_extent.list)) { 1955 struct swap_extent *se; 1956 1957 se = list_first_entry(&sis->first_swap_extent.list, 1958 struct swap_extent, list); 1959 list_del(&se->list); 1960 kfree(se); 1961 } 1962 1963 if (sis->flags & SWP_FILE) { 1964 struct file *swap_file = sis->swap_file; 1965 struct address_space *mapping = swap_file->f_mapping; 1966 1967 sis->flags &= ~SWP_FILE; 1968 mapping->a_ops->swap_deactivate(swap_file); 1969 } 1970 } 1971 1972 /* 1973 * Add a block range (and the corresponding page range) into this swapdev's 1974 * extent list. The extent list is kept sorted in page order. 1975 * 1976 * This function rather assumes that it is called in ascending page order. 1977 */ 1978 int 1979 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1980 unsigned long nr_pages, sector_t start_block) 1981 { 1982 struct swap_extent *se; 1983 struct swap_extent *new_se; 1984 struct list_head *lh; 1985 1986 if (start_page == 0) { 1987 se = &sis->first_swap_extent; 1988 sis->curr_swap_extent = se; 1989 se->start_page = 0; 1990 se->nr_pages = nr_pages; 1991 se->start_block = start_block; 1992 return 1; 1993 } else { 1994 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 1995 se = list_entry(lh, struct swap_extent, list); 1996 BUG_ON(se->start_page + se->nr_pages != start_page); 1997 if (se->start_block + se->nr_pages == start_block) { 1998 /* Merge it */ 1999 se->nr_pages += nr_pages; 2000 return 0; 2001 } 2002 } 2003 2004 /* 2005 * No merge. Insert a new extent, preserving ordering. 2006 */ 2007 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2008 if (new_se == NULL) 2009 return -ENOMEM; 2010 new_se->start_page = start_page; 2011 new_se->nr_pages = nr_pages; 2012 new_se->start_block = start_block; 2013 2014 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 2015 return 1; 2016 } 2017 2018 /* 2019 * A `swap extent' is a simple thing which maps a contiguous range of pages 2020 * onto a contiguous range of disk blocks. An ordered list of swap extents 2021 * is built at swapon time and is then used at swap_writepage/swap_readpage 2022 * time for locating where on disk a page belongs. 2023 * 2024 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2025 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2026 * swap files identically. 2027 * 2028 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2029 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2030 * swapfiles are handled *identically* after swapon time. 2031 * 2032 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2033 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 2034 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 2035 * requirements, they are simply tossed out - we will never use those blocks 2036 * for swapping. 2037 * 2038 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 2039 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 2040 * which will scribble on the fs. 2041 * 2042 * The amount of disk space which a single swap extent represents varies. 2043 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2044 * extents in the list. To avoid much list walking, we cache the previous 2045 * search location in `curr_swap_extent', and start new searches from there. 2046 * This is extremely effective. The average number of iterations in 2047 * map_swap_page() has been measured at about 0.3 per page. - akpm. 2048 */ 2049 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2050 { 2051 struct file *swap_file = sis->swap_file; 2052 struct address_space *mapping = swap_file->f_mapping; 2053 struct inode *inode = mapping->host; 2054 int ret; 2055 2056 if (S_ISBLK(inode->i_mode)) { 2057 ret = add_swap_extent(sis, 0, sis->max, 0); 2058 *span = sis->pages; 2059 return ret; 2060 } 2061 2062 if (mapping->a_ops->swap_activate) { 2063 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2064 if (!ret) { 2065 sis->flags |= SWP_FILE; 2066 ret = add_swap_extent(sis, 0, sis->max, 0); 2067 *span = sis->pages; 2068 } 2069 return ret; 2070 } 2071 2072 return generic_swapfile_activate(sis, swap_file, span); 2073 } 2074 2075 static void _enable_swap_info(struct swap_info_struct *p, int prio, 2076 unsigned char *swap_map, 2077 struct swap_cluster_info *cluster_info) 2078 { 2079 if (prio >= 0) 2080 p->prio = prio; 2081 else 2082 p->prio = --least_priority; 2083 /* 2084 * the plist prio is negated because plist ordering is 2085 * low-to-high, while swap ordering is high-to-low 2086 */ 2087 p->list.prio = -p->prio; 2088 p->avail_list.prio = -p->prio; 2089 p->swap_map = swap_map; 2090 p->cluster_info = cluster_info; 2091 p->flags |= SWP_WRITEOK; 2092 atomic_long_add(p->pages, &nr_swap_pages); 2093 total_swap_pages += p->pages; 2094 2095 assert_spin_locked(&swap_lock); 2096 /* 2097 * both lists are plists, and thus priority ordered. 2098 * swap_active_head needs to be priority ordered for swapoff(), 2099 * which on removal of any swap_info_struct with an auto-assigned 2100 * (i.e. negative) priority increments the auto-assigned priority 2101 * of any lower-priority swap_info_structs. 2102 * swap_avail_head needs to be priority ordered for get_swap_page(), 2103 * which allocates swap pages from the highest available priority 2104 * swap_info_struct. 2105 */ 2106 plist_add(&p->list, &swap_active_head); 2107 spin_lock(&swap_avail_lock); 2108 plist_add(&p->avail_list, &swap_avail_head); 2109 spin_unlock(&swap_avail_lock); 2110 } 2111 2112 static void enable_swap_info(struct swap_info_struct *p, int prio, 2113 unsigned char *swap_map, 2114 struct swap_cluster_info *cluster_info, 2115 unsigned long *frontswap_map) 2116 { 2117 frontswap_init(p->type, frontswap_map); 2118 spin_lock(&swap_lock); 2119 spin_lock(&p->lock); 2120 _enable_swap_info(p, prio, swap_map, cluster_info); 2121 spin_unlock(&p->lock); 2122 spin_unlock(&swap_lock); 2123 } 2124 2125 static void reinsert_swap_info(struct swap_info_struct *p) 2126 { 2127 spin_lock(&swap_lock); 2128 spin_lock(&p->lock); 2129 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2130 spin_unlock(&p->lock); 2131 spin_unlock(&swap_lock); 2132 } 2133 2134 bool has_usable_swap(void) 2135 { 2136 bool ret = true; 2137 2138 spin_lock(&swap_lock); 2139 if (plist_head_empty(&swap_active_head)) 2140 ret = false; 2141 spin_unlock(&swap_lock); 2142 return ret; 2143 } 2144 2145 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2146 { 2147 struct swap_info_struct *p = NULL; 2148 unsigned char *swap_map; 2149 struct swap_cluster_info *cluster_info; 2150 unsigned long *frontswap_map; 2151 struct file *swap_file, *victim; 2152 struct address_space *mapping; 2153 struct inode *inode; 2154 struct filename *pathname; 2155 int err, found = 0; 2156 unsigned int old_block_size; 2157 2158 if (!capable(CAP_SYS_ADMIN)) 2159 return -EPERM; 2160 2161 BUG_ON(!current->mm); 2162 2163 pathname = getname(specialfile); 2164 if (IS_ERR(pathname)) 2165 return PTR_ERR(pathname); 2166 2167 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2168 err = PTR_ERR(victim); 2169 if (IS_ERR(victim)) 2170 goto out; 2171 2172 mapping = victim->f_mapping; 2173 spin_lock(&swap_lock); 2174 plist_for_each_entry(p, &swap_active_head, list) { 2175 if (p->flags & SWP_WRITEOK) { 2176 if (p->swap_file->f_mapping == mapping) { 2177 found = 1; 2178 break; 2179 } 2180 } 2181 } 2182 if (!found) { 2183 err = -EINVAL; 2184 spin_unlock(&swap_lock); 2185 goto out_dput; 2186 } 2187 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2188 vm_unacct_memory(p->pages); 2189 else { 2190 err = -ENOMEM; 2191 spin_unlock(&swap_lock); 2192 goto out_dput; 2193 } 2194 spin_lock(&swap_avail_lock); 2195 plist_del(&p->avail_list, &swap_avail_head); 2196 spin_unlock(&swap_avail_lock); 2197 spin_lock(&p->lock); 2198 if (p->prio < 0) { 2199 struct swap_info_struct *si = p; 2200 2201 plist_for_each_entry_continue(si, &swap_active_head, list) { 2202 si->prio++; 2203 si->list.prio--; 2204 si->avail_list.prio--; 2205 } 2206 least_priority++; 2207 } 2208 plist_del(&p->list, &swap_active_head); 2209 atomic_long_sub(p->pages, &nr_swap_pages); 2210 total_swap_pages -= p->pages; 2211 p->flags &= ~SWP_WRITEOK; 2212 spin_unlock(&p->lock); 2213 spin_unlock(&swap_lock); 2214 2215 disable_swap_slots_cache_lock(); 2216 2217 set_current_oom_origin(); 2218 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ 2219 clear_current_oom_origin(); 2220 2221 if (err) { 2222 /* re-insert swap space back into swap_list */ 2223 reinsert_swap_info(p); 2224 reenable_swap_slots_cache_unlock(); 2225 goto out_dput; 2226 } 2227 2228 reenable_swap_slots_cache_unlock(); 2229 2230 flush_work(&p->discard_work); 2231 2232 destroy_swap_extents(p); 2233 if (p->flags & SWP_CONTINUED) 2234 free_swap_count_continuations(p); 2235 2236 mutex_lock(&swapon_mutex); 2237 spin_lock(&swap_lock); 2238 spin_lock(&p->lock); 2239 drain_mmlist(); 2240 2241 /* wait for anyone still in scan_swap_map */ 2242 p->highest_bit = 0; /* cuts scans short */ 2243 while (p->flags >= SWP_SCANNING) { 2244 spin_unlock(&p->lock); 2245 spin_unlock(&swap_lock); 2246 schedule_timeout_uninterruptible(1); 2247 spin_lock(&swap_lock); 2248 spin_lock(&p->lock); 2249 } 2250 2251 swap_file = p->swap_file; 2252 old_block_size = p->old_block_size; 2253 p->swap_file = NULL; 2254 p->max = 0; 2255 swap_map = p->swap_map; 2256 p->swap_map = NULL; 2257 cluster_info = p->cluster_info; 2258 p->cluster_info = NULL; 2259 frontswap_map = frontswap_map_get(p); 2260 spin_unlock(&p->lock); 2261 spin_unlock(&swap_lock); 2262 frontswap_invalidate_area(p->type); 2263 frontswap_map_set(p, NULL); 2264 mutex_unlock(&swapon_mutex); 2265 free_percpu(p->percpu_cluster); 2266 p->percpu_cluster = NULL; 2267 vfree(swap_map); 2268 vfree(cluster_info); 2269 vfree(frontswap_map); 2270 /* Destroy swap account information */ 2271 swap_cgroup_swapoff(p->type); 2272 exit_swap_address_space(p->type); 2273 2274 inode = mapping->host; 2275 if (S_ISBLK(inode->i_mode)) { 2276 struct block_device *bdev = I_BDEV(inode); 2277 set_blocksize(bdev, old_block_size); 2278 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2279 } else { 2280 inode_lock(inode); 2281 inode->i_flags &= ~S_SWAPFILE; 2282 inode_unlock(inode); 2283 } 2284 filp_close(swap_file, NULL); 2285 2286 /* 2287 * Clear the SWP_USED flag after all resources are freed so that swapon 2288 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2289 * not hold p->lock after we cleared its SWP_WRITEOK. 2290 */ 2291 spin_lock(&swap_lock); 2292 p->flags = 0; 2293 spin_unlock(&swap_lock); 2294 2295 err = 0; 2296 atomic_inc(&proc_poll_event); 2297 wake_up_interruptible(&proc_poll_wait); 2298 2299 out_dput: 2300 filp_close(victim, NULL); 2301 out: 2302 putname(pathname); 2303 return err; 2304 } 2305 2306 #ifdef CONFIG_PROC_FS 2307 static unsigned swaps_poll(struct file *file, poll_table *wait) 2308 { 2309 struct seq_file *seq = file->private_data; 2310 2311 poll_wait(file, &proc_poll_wait, wait); 2312 2313 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2314 seq->poll_event = atomic_read(&proc_poll_event); 2315 return POLLIN | POLLRDNORM | POLLERR | POLLPRI; 2316 } 2317 2318 return POLLIN | POLLRDNORM; 2319 } 2320 2321 /* iterator */ 2322 static void *swap_start(struct seq_file *swap, loff_t *pos) 2323 { 2324 struct swap_info_struct *si; 2325 int type; 2326 loff_t l = *pos; 2327 2328 mutex_lock(&swapon_mutex); 2329 2330 if (!l) 2331 return SEQ_START_TOKEN; 2332 2333 for (type = 0; type < nr_swapfiles; type++) { 2334 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2335 si = swap_info[type]; 2336 if (!(si->flags & SWP_USED) || !si->swap_map) 2337 continue; 2338 if (!--l) 2339 return si; 2340 } 2341 2342 return NULL; 2343 } 2344 2345 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2346 { 2347 struct swap_info_struct *si = v; 2348 int type; 2349 2350 if (v == SEQ_START_TOKEN) 2351 type = 0; 2352 else 2353 type = si->type + 1; 2354 2355 for (; type < nr_swapfiles; type++) { 2356 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2357 si = swap_info[type]; 2358 if (!(si->flags & SWP_USED) || !si->swap_map) 2359 continue; 2360 ++*pos; 2361 return si; 2362 } 2363 2364 return NULL; 2365 } 2366 2367 static void swap_stop(struct seq_file *swap, void *v) 2368 { 2369 mutex_unlock(&swapon_mutex); 2370 } 2371 2372 static int swap_show(struct seq_file *swap, void *v) 2373 { 2374 struct swap_info_struct *si = v; 2375 struct file *file; 2376 int len; 2377 2378 if (si == SEQ_START_TOKEN) { 2379 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 2380 return 0; 2381 } 2382 2383 file = si->swap_file; 2384 len = seq_file_path(swap, file, " \t\n\\"); 2385 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 2386 len < 40 ? 40 - len : 1, " ", 2387 S_ISBLK(file_inode(file)->i_mode) ? 2388 "partition" : "file\t", 2389 si->pages << (PAGE_SHIFT - 10), 2390 si->inuse_pages << (PAGE_SHIFT - 10), 2391 si->prio); 2392 return 0; 2393 } 2394 2395 static const struct seq_operations swaps_op = { 2396 .start = swap_start, 2397 .next = swap_next, 2398 .stop = swap_stop, 2399 .show = swap_show 2400 }; 2401 2402 static int swaps_open(struct inode *inode, struct file *file) 2403 { 2404 struct seq_file *seq; 2405 int ret; 2406 2407 ret = seq_open(file, &swaps_op); 2408 if (ret) 2409 return ret; 2410 2411 seq = file->private_data; 2412 seq->poll_event = atomic_read(&proc_poll_event); 2413 return 0; 2414 } 2415 2416 static const struct file_operations proc_swaps_operations = { 2417 .open = swaps_open, 2418 .read = seq_read, 2419 .llseek = seq_lseek, 2420 .release = seq_release, 2421 .poll = swaps_poll, 2422 }; 2423 2424 static int __init procswaps_init(void) 2425 { 2426 proc_create("swaps", 0, NULL, &proc_swaps_operations); 2427 return 0; 2428 } 2429 __initcall(procswaps_init); 2430 #endif /* CONFIG_PROC_FS */ 2431 2432 #ifdef MAX_SWAPFILES_CHECK 2433 static int __init max_swapfiles_check(void) 2434 { 2435 MAX_SWAPFILES_CHECK(); 2436 return 0; 2437 } 2438 late_initcall(max_swapfiles_check); 2439 #endif 2440 2441 static struct swap_info_struct *alloc_swap_info(void) 2442 { 2443 struct swap_info_struct *p; 2444 unsigned int type; 2445 2446 p = kzalloc(sizeof(*p), GFP_KERNEL); 2447 if (!p) 2448 return ERR_PTR(-ENOMEM); 2449 2450 spin_lock(&swap_lock); 2451 for (type = 0; type < nr_swapfiles; type++) { 2452 if (!(swap_info[type]->flags & SWP_USED)) 2453 break; 2454 } 2455 if (type >= MAX_SWAPFILES) { 2456 spin_unlock(&swap_lock); 2457 kfree(p); 2458 return ERR_PTR(-EPERM); 2459 } 2460 if (type >= nr_swapfiles) { 2461 p->type = type; 2462 swap_info[type] = p; 2463 /* 2464 * Write swap_info[type] before nr_swapfiles, in case a 2465 * racing procfs swap_start() or swap_next() is reading them. 2466 * (We never shrink nr_swapfiles, we never free this entry.) 2467 */ 2468 smp_wmb(); 2469 nr_swapfiles++; 2470 } else { 2471 kfree(p); 2472 p = swap_info[type]; 2473 /* 2474 * Do not memset this entry: a racing procfs swap_next() 2475 * would be relying on p->type to remain valid. 2476 */ 2477 } 2478 INIT_LIST_HEAD(&p->first_swap_extent.list); 2479 plist_node_init(&p->list, 0); 2480 plist_node_init(&p->avail_list, 0); 2481 p->flags = SWP_USED; 2482 spin_unlock(&swap_lock); 2483 spin_lock_init(&p->lock); 2484 2485 return p; 2486 } 2487 2488 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2489 { 2490 int error; 2491 2492 if (S_ISBLK(inode->i_mode)) { 2493 p->bdev = bdgrab(I_BDEV(inode)); 2494 error = blkdev_get(p->bdev, 2495 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2496 if (error < 0) { 2497 p->bdev = NULL; 2498 return error; 2499 } 2500 p->old_block_size = block_size(p->bdev); 2501 error = set_blocksize(p->bdev, PAGE_SIZE); 2502 if (error < 0) 2503 return error; 2504 p->flags |= SWP_BLKDEV; 2505 } else if (S_ISREG(inode->i_mode)) { 2506 p->bdev = inode->i_sb->s_bdev; 2507 inode_lock(inode); 2508 if (IS_SWAPFILE(inode)) 2509 return -EBUSY; 2510 } else 2511 return -EINVAL; 2512 2513 return 0; 2514 } 2515 2516 static unsigned long read_swap_header(struct swap_info_struct *p, 2517 union swap_header *swap_header, 2518 struct inode *inode) 2519 { 2520 int i; 2521 unsigned long maxpages; 2522 unsigned long swapfilepages; 2523 unsigned long last_page; 2524 2525 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2526 pr_err("Unable to find swap-space signature\n"); 2527 return 0; 2528 } 2529 2530 /* swap partition endianess hack... */ 2531 if (swab32(swap_header->info.version) == 1) { 2532 swab32s(&swap_header->info.version); 2533 swab32s(&swap_header->info.last_page); 2534 swab32s(&swap_header->info.nr_badpages); 2535 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2536 return 0; 2537 for (i = 0; i < swap_header->info.nr_badpages; i++) 2538 swab32s(&swap_header->info.badpages[i]); 2539 } 2540 /* Check the swap header's sub-version */ 2541 if (swap_header->info.version != 1) { 2542 pr_warn("Unable to handle swap header version %d\n", 2543 swap_header->info.version); 2544 return 0; 2545 } 2546 2547 p->lowest_bit = 1; 2548 p->cluster_next = 1; 2549 p->cluster_nr = 0; 2550 2551 /* 2552 * Find out how many pages are allowed for a single swap 2553 * device. There are two limiting factors: 1) the number 2554 * of bits for the swap offset in the swp_entry_t type, and 2555 * 2) the number of bits in the swap pte as defined by the 2556 * different architectures. In order to find the 2557 * largest possible bit mask, a swap entry with swap type 0 2558 * and swap offset ~0UL is created, encoded to a swap pte, 2559 * decoded to a swp_entry_t again, and finally the swap 2560 * offset is extracted. This will mask all the bits from 2561 * the initial ~0UL mask that can't be encoded in either 2562 * the swp_entry_t or the architecture definition of a 2563 * swap pte. 2564 */ 2565 maxpages = swp_offset(pte_to_swp_entry( 2566 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2567 last_page = swap_header->info.last_page; 2568 if (last_page > maxpages) { 2569 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2570 maxpages << (PAGE_SHIFT - 10), 2571 last_page << (PAGE_SHIFT - 10)); 2572 } 2573 if (maxpages > last_page) { 2574 maxpages = last_page + 1; 2575 /* p->max is an unsigned int: don't overflow it */ 2576 if ((unsigned int)maxpages == 0) 2577 maxpages = UINT_MAX; 2578 } 2579 p->highest_bit = maxpages - 1; 2580 2581 if (!maxpages) 2582 return 0; 2583 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2584 if (swapfilepages && maxpages > swapfilepages) { 2585 pr_warn("Swap area shorter than signature indicates\n"); 2586 return 0; 2587 } 2588 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2589 return 0; 2590 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2591 return 0; 2592 2593 return maxpages; 2594 } 2595 2596 #define SWAP_CLUSTER_INFO_COLS \ 2597 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 2598 #define SWAP_CLUSTER_SPACE_COLS \ 2599 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 2600 #define SWAP_CLUSTER_COLS \ 2601 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 2602 2603 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2604 union swap_header *swap_header, 2605 unsigned char *swap_map, 2606 struct swap_cluster_info *cluster_info, 2607 unsigned long maxpages, 2608 sector_t *span) 2609 { 2610 unsigned int j, k; 2611 unsigned int nr_good_pages; 2612 int nr_extents; 2613 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2614 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 2615 unsigned long i, idx; 2616 2617 nr_good_pages = maxpages - 1; /* omit header page */ 2618 2619 cluster_list_init(&p->free_clusters); 2620 cluster_list_init(&p->discard_clusters); 2621 2622 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2623 unsigned int page_nr = swap_header->info.badpages[i]; 2624 if (page_nr == 0 || page_nr > swap_header->info.last_page) 2625 return -EINVAL; 2626 if (page_nr < maxpages) { 2627 swap_map[page_nr] = SWAP_MAP_BAD; 2628 nr_good_pages--; 2629 /* 2630 * Haven't marked the cluster free yet, no list 2631 * operation involved 2632 */ 2633 inc_cluster_info_page(p, cluster_info, page_nr); 2634 } 2635 } 2636 2637 /* Haven't marked the cluster free yet, no list operation involved */ 2638 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 2639 inc_cluster_info_page(p, cluster_info, i); 2640 2641 if (nr_good_pages) { 2642 swap_map[0] = SWAP_MAP_BAD; 2643 /* 2644 * Not mark the cluster free yet, no list 2645 * operation involved 2646 */ 2647 inc_cluster_info_page(p, cluster_info, 0); 2648 p->max = maxpages; 2649 p->pages = nr_good_pages; 2650 nr_extents = setup_swap_extents(p, span); 2651 if (nr_extents < 0) 2652 return nr_extents; 2653 nr_good_pages = p->pages; 2654 } 2655 if (!nr_good_pages) { 2656 pr_warn("Empty swap-file\n"); 2657 return -EINVAL; 2658 } 2659 2660 if (!cluster_info) 2661 return nr_extents; 2662 2663 2664 /* 2665 * Reduce false cache line sharing between cluster_info and 2666 * sharing same address space. 2667 */ 2668 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 2669 j = (k + col) % SWAP_CLUSTER_COLS; 2670 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 2671 idx = i * SWAP_CLUSTER_COLS + j; 2672 if (idx >= nr_clusters) 2673 continue; 2674 if (cluster_count(&cluster_info[idx])) 2675 continue; 2676 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 2677 cluster_list_add_tail(&p->free_clusters, cluster_info, 2678 idx); 2679 } 2680 } 2681 return nr_extents; 2682 } 2683 2684 /* 2685 * Helper to sys_swapon determining if a given swap 2686 * backing device queue supports DISCARD operations. 2687 */ 2688 static bool swap_discardable(struct swap_info_struct *si) 2689 { 2690 struct request_queue *q = bdev_get_queue(si->bdev); 2691 2692 if (!q || !blk_queue_discard(q)) 2693 return false; 2694 2695 return true; 2696 } 2697 2698 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2699 { 2700 struct swap_info_struct *p; 2701 struct filename *name; 2702 struct file *swap_file = NULL; 2703 struct address_space *mapping; 2704 int prio; 2705 int error; 2706 union swap_header *swap_header; 2707 int nr_extents; 2708 sector_t span; 2709 unsigned long maxpages; 2710 unsigned char *swap_map = NULL; 2711 struct swap_cluster_info *cluster_info = NULL; 2712 unsigned long *frontswap_map = NULL; 2713 struct page *page = NULL; 2714 struct inode *inode = NULL; 2715 2716 if (swap_flags & ~SWAP_FLAGS_VALID) 2717 return -EINVAL; 2718 2719 if (!capable(CAP_SYS_ADMIN)) 2720 return -EPERM; 2721 2722 p = alloc_swap_info(); 2723 if (IS_ERR(p)) 2724 return PTR_ERR(p); 2725 2726 INIT_WORK(&p->discard_work, swap_discard_work); 2727 2728 name = getname(specialfile); 2729 if (IS_ERR(name)) { 2730 error = PTR_ERR(name); 2731 name = NULL; 2732 goto bad_swap; 2733 } 2734 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 2735 if (IS_ERR(swap_file)) { 2736 error = PTR_ERR(swap_file); 2737 swap_file = NULL; 2738 goto bad_swap; 2739 } 2740 2741 p->swap_file = swap_file; 2742 mapping = swap_file->f_mapping; 2743 inode = mapping->host; 2744 2745 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */ 2746 error = claim_swapfile(p, inode); 2747 if (unlikely(error)) 2748 goto bad_swap; 2749 2750 /* 2751 * Read the swap header. 2752 */ 2753 if (!mapping->a_ops->readpage) { 2754 error = -EINVAL; 2755 goto bad_swap; 2756 } 2757 page = read_mapping_page(mapping, 0, swap_file); 2758 if (IS_ERR(page)) { 2759 error = PTR_ERR(page); 2760 goto bad_swap; 2761 } 2762 swap_header = kmap(page); 2763 2764 maxpages = read_swap_header(p, swap_header, inode); 2765 if (unlikely(!maxpages)) { 2766 error = -EINVAL; 2767 goto bad_swap; 2768 } 2769 2770 /* OK, set up the swap map and apply the bad block list */ 2771 swap_map = vzalloc(maxpages); 2772 if (!swap_map) { 2773 error = -ENOMEM; 2774 goto bad_swap; 2775 } 2776 2777 if (bdi_cap_stable_pages_required(inode_to_bdi(inode))) 2778 p->flags |= SWP_STABLE_WRITES; 2779 2780 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 2781 int cpu; 2782 unsigned long ci, nr_cluster; 2783 2784 p->flags |= SWP_SOLIDSTATE; 2785 /* 2786 * select a random position to start with to help wear leveling 2787 * SSD 2788 */ 2789 p->cluster_next = 1 + (prandom_u32() % p->highest_bit); 2790 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2791 2792 cluster_info = vzalloc(nr_cluster * sizeof(*cluster_info)); 2793 if (!cluster_info) { 2794 error = -ENOMEM; 2795 goto bad_swap; 2796 } 2797 2798 for (ci = 0; ci < nr_cluster; ci++) 2799 spin_lock_init(&((cluster_info + ci)->lock)); 2800 2801 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 2802 if (!p->percpu_cluster) { 2803 error = -ENOMEM; 2804 goto bad_swap; 2805 } 2806 for_each_possible_cpu(cpu) { 2807 struct percpu_cluster *cluster; 2808 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 2809 cluster_set_null(&cluster->index); 2810 } 2811 } 2812 2813 error = swap_cgroup_swapon(p->type, maxpages); 2814 if (error) 2815 goto bad_swap; 2816 2817 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 2818 cluster_info, maxpages, &span); 2819 if (unlikely(nr_extents < 0)) { 2820 error = nr_extents; 2821 goto bad_swap; 2822 } 2823 /* frontswap enabled? set up bit-per-page map for frontswap */ 2824 if (IS_ENABLED(CONFIG_FRONTSWAP)) 2825 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long)); 2826 2827 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 2828 /* 2829 * When discard is enabled for swap with no particular 2830 * policy flagged, we set all swap discard flags here in 2831 * order to sustain backward compatibility with older 2832 * swapon(8) releases. 2833 */ 2834 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 2835 SWP_PAGE_DISCARD); 2836 2837 /* 2838 * By flagging sys_swapon, a sysadmin can tell us to 2839 * either do single-time area discards only, or to just 2840 * perform discards for released swap page-clusters. 2841 * Now it's time to adjust the p->flags accordingly. 2842 */ 2843 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 2844 p->flags &= ~SWP_PAGE_DISCARD; 2845 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 2846 p->flags &= ~SWP_AREA_DISCARD; 2847 2848 /* issue a swapon-time discard if it's still required */ 2849 if (p->flags & SWP_AREA_DISCARD) { 2850 int err = discard_swap(p); 2851 if (unlikely(err)) 2852 pr_err("swapon: discard_swap(%p): %d\n", 2853 p, err); 2854 } 2855 } 2856 2857 error = init_swap_address_space(p->type, maxpages); 2858 if (error) 2859 goto bad_swap; 2860 2861 mutex_lock(&swapon_mutex); 2862 prio = -1; 2863 if (swap_flags & SWAP_FLAG_PREFER) 2864 prio = 2865 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 2866 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 2867 2868 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 2869 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 2870 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 2871 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 2872 (p->flags & SWP_DISCARDABLE) ? "D" : "", 2873 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 2874 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 2875 (frontswap_map) ? "FS" : ""); 2876 2877 mutex_unlock(&swapon_mutex); 2878 atomic_inc(&proc_poll_event); 2879 wake_up_interruptible(&proc_poll_wait); 2880 2881 if (S_ISREG(inode->i_mode)) 2882 inode->i_flags |= S_SWAPFILE; 2883 error = 0; 2884 goto out; 2885 bad_swap: 2886 free_percpu(p->percpu_cluster); 2887 p->percpu_cluster = NULL; 2888 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 2889 set_blocksize(p->bdev, p->old_block_size); 2890 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2891 } 2892 destroy_swap_extents(p); 2893 swap_cgroup_swapoff(p->type); 2894 spin_lock(&swap_lock); 2895 p->swap_file = NULL; 2896 p->flags = 0; 2897 spin_unlock(&swap_lock); 2898 vfree(swap_map); 2899 vfree(cluster_info); 2900 if (swap_file) { 2901 if (inode && S_ISREG(inode->i_mode)) { 2902 inode_unlock(inode); 2903 inode = NULL; 2904 } 2905 filp_close(swap_file, NULL); 2906 } 2907 out: 2908 if (page && !IS_ERR(page)) { 2909 kunmap(page); 2910 put_page(page); 2911 } 2912 if (name) 2913 putname(name); 2914 if (inode && S_ISREG(inode->i_mode)) 2915 inode_unlock(inode); 2916 if (!error) 2917 enable_swap_slots_cache(); 2918 return error; 2919 } 2920 2921 void si_swapinfo(struct sysinfo *val) 2922 { 2923 unsigned int type; 2924 unsigned long nr_to_be_unused = 0; 2925 2926 spin_lock(&swap_lock); 2927 for (type = 0; type < nr_swapfiles; type++) { 2928 struct swap_info_struct *si = swap_info[type]; 2929 2930 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 2931 nr_to_be_unused += si->inuse_pages; 2932 } 2933 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 2934 val->totalswap = total_swap_pages + nr_to_be_unused; 2935 spin_unlock(&swap_lock); 2936 } 2937 2938 /* 2939 * Verify that a swap entry is valid and increment its swap map count. 2940 * 2941 * Returns error code in following case. 2942 * - success -> 0 2943 * - swp_entry is invalid -> EINVAL 2944 * - swp_entry is migration entry -> EINVAL 2945 * - swap-cache reference is requested but there is already one. -> EEXIST 2946 * - swap-cache reference is requested but the entry is not used. -> ENOENT 2947 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 2948 */ 2949 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 2950 { 2951 struct swap_info_struct *p; 2952 struct swap_cluster_info *ci; 2953 unsigned long offset, type; 2954 unsigned char count; 2955 unsigned char has_cache; 2956 int err = -EINVAL; 2957 2958 if (non_swap_entry(entry)) 2959 goto out; 2960 2961 type = swp_type(entry); 2962 if (type >= nr_swapfiles) 2963 goto bad_file; 2964 p = swap_info[type]; 2965 offset = swp_offset(entry); 2966 if (unlikely(offset >= p->max)) 2967 goto out; 2968 2969 ci = lock_cluster_or_swap_info(p, offset); 2970 2971 count = p->swap_map[offset]; 2972 2973 /* 2974 * swapin_readahead() doesn't check if a swap entry is valid, so the 2975 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 2976 */ 2977 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 2978 err = -ENOENT; 2979 goto unlock_out; 2980 } 2981 2982 has_cache = count & SWAP_HAS_CACHE; 2983 count &= ~SWAP_HAS_CACHE; 2984 err = 0; 2985 2986 if (usage == SWAP_HAS_CACHE) { 2987 2988 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 2989 if (!has_cache && count) 2990 has_cache = SWAP_HAS_CACHE; 2991 else if (has_cache) /* someone else added cache */ 2992 err = -EEXIST; 2993 else /* no users remaining */ 2994 err = -ENOENT; 2995 2996 } else if (count || has_cache) { 2997 2998 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 2999 count += usage; 3000 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3001 err = -EINVAL; 3002 else if (swap_count_continued(p, offset, count)) 3003 count = COUNT_CONTINUED; 3004 else 3005 err = -ENOMEM; 3006 } else 3007 err = -ENOENT; /* unused swap entry */ 3008 3009 p->swap_map[offset] = count | has_cache; 3010 3011 unlock_out: 3012 unlock_cluster_or_swap_info(p, ci); 3013 out: 3014 return err; 3015 3016 bad_file: 3017 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val); 3018 goto out; 3019 } 3020 3021 /* 3022 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3023 * (in which case its reference count is never incremented). 3024 */ 3025 void swap_shmem_alloc(swp_entry_t entry) 3026 { 3027 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3028 } 3029 3030 /* 3031 * Increase reference count of swap entry by 1. 3032 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3033 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3034 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3035 * might occur if a page table entry has got corrupted. 3036 */ 3037 int swap_duplicate(swp_entry_t entry) 3038 { 3039 int err = 0; 3040 3041 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3042 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3043 return err; 3044 } 3045 3046 /* 3047 * @entry: swap entry for which we allocate swap cache. 3048 * 3049 * Called when allocating swap cache for existing swap entry, 3050 * This can return error codes. Returns 0 at success. 3051 * -EBUSY means there is a swap cache. 3052 * Note: return code is different from swap_duplicate(). 3053 */ 3054 int swapcache_prepare(swp_entry_t entry) 3055 { 3056 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3057 } 3058 3059 struct swap_info_struct *page_swap_info(struct page *page) 3060 { 3061 swp_entry_t swap = { .val = page_private(page) }; 3062 return swap_info[swp_type(swap)]; 3063 } 3064 3065 /* 3066 * out-of-line __page_file_ methods to avoid include hell. 3067 */ 3068 struct address_space *__page_file_mapping(struct page *page) 3069 { 3070 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 3071 return page_swap_info(page)->swap_file->f_mapping; 3072 } 3073 EXPORT_SYMBOL_GPL(__page_file_mapping); 3074 3075 pgoff_t __page_file_index(struct page *page) 3076 { 3077 swp_entry_t swap = { .val = page_private(page) }; 3078 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 3079 return swp_offset(swap); 3080 } 3081 EXPORT_SYMBOL_GPL(__page_file_index); 3082 3083 /* 3084 * add_swap_count_continuation - called when a swap count is duplicated 3085 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3086 * page of the original vmalloc'ed swap_map, to hold the continuation count 3087 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3088 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3089 * 3090 * These continuation pages are seldom referenced: the common paths all work 3091 * on the original swap_map, only referring to a continuation page when the 3092 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3093 * 3094 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3095 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3096 * can be called after dropping locks. 3097 */ 3098 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3099 { 3100 struct swap_info_struct *si; 3101 struct swap_cluster_info *ci; 3102 struct page *head; 3103 struct page *page; 3104 struct page *list_page; 3105 pgoff_t offset; 3106 unsigned char count; 3107 3108 /* 3109 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3110 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3111 */ 3112 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3113 3114 si = swap_info_get(entry); 3115 if (!si) { 3116 /* 3117 * An acceptable race has occurred since the failing 3118 * __swap_duplicate(): the swap entry has been freed, 3119 * perhaps even the whole swap_map cleared for swapoff. 3120 */ 3121 goto outer; 3122 } 3123 3124 offset = swp_offset(entry); 3125 3126 ci = lock_cluster(si, offset); 3127 3128 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 3129 3130 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3131 /* 3132 * The higher the swap count, the more likely it is that tasks 3133 * will race to add swap count continuation: we need to avoid 3134 * over-provisioning. 3135 */ 3136 goto out; 3137 } 3138 3139 if (!page) { 3140 unlock_cluster(ci); 3141 spin_unlock(&si->lock); 3142 return -ENOMEM; 3143 } 3144 3145 /* 3146 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 3147 * no architecture is using highmem pages for kernel page tables: so it 3148 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 3149 */ 3150 head = vmalloc_to_page(si->swap_map + offset); 3151 offset &= ~PAGE_MASK; 3152 3153 /* 3154 * Page allocation does not initialize the page's lru field, 3155 * but it does always reset its private field. 3156 */ 3157 if (!page_private(head)) { 3158 BUG_ON(count & COUNT_CONTINUED); 3159 INIT_LIST_HEAD(&head->lru); 3160 set_page_private(head, SWP_CONTINUED); 3161 si->flags |= SWP_CONTINUED; 3162 } 3163 3164 list_for_each_entry(list_page, &head->lru, lru) { 3165 unsigned char *map; 3166 3167 /* 3168 * If the previous map said no continuation, but we've found 3169 * a continuation page, free our allocation and use this one. 3170 */ 3171 if (!(count & COUNT_CONTINUED)) 3172 goto out; 3173 3174 map = kmap_atomic(list_page) + offset; 3175 count = *map; 3176 kunmap_atomic(map); 3177 3178 /* 3179 * If this continuation count now has some space in it, 3180 * free our allocation and use this one. 3181 */ 3182 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3183 goto out; 3184 } 3185 3186 list_add_tail(&page->lru, &head->lru); 3187 page = NULL; /* now it's attached, don't free it */ 3188 out: 3189 unlock_cluster(ci); 3190 spin_unlock(&si->lock); 3191 outer: 3192 if (page) 3193 __free_page(page); 3194 return 0; 3195 } 3196 3197 /* 3198 * swap_count_continued - when the original swap_map count is incremented 3199 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3200 * into, carry if so, or else fail until a new continuation page is allocated; 3201 * when the original swap_map count is decremented from 0 with continuation, 3202 * borrow from the continuation and report whether it still holds more. 3203 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3204 * lock. 3205 */ 3206 static bool swap_count_continued(struct swap_info_struct *si, 3207 pgoff_t offset, unsigned char count) 3208 { 3209 struct page *head; 3210 struct page *page; 3211 unsigned char *map; 3212 3213 head = vmalloc_to_page(si->swap_map + offset); 3214 if (page_private(head) != SWP_CONTINUED) { 3215 BUG_ON(count & COUNT_CONTINUED); 3216 return false; /* need to add count continuation */ 3217 } 3218 3219 offset &= ~PAGE_MASK; 3220 page = list_entry(head->lru.next, struct page, lru); 3221 map = kmap_atomic(page) + offset; 3222 3223 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3224 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3225 3226 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3227 /* 3228 * Think of how you add 1 to 999 3229 */ 3230 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3231 kunmap_atomic(map); 3232 page = list_entry(page->lru.next, struct page, lru); 3233 BUG_ON(page == head); 3234 map = kmap_atomic(page) + offset; 3235 } 3236 if (*map == SWAP_CONT_MAX) { 3237 kunmap_atomic(map); 3238 page = list_entry(page->lru.next, struct page, lru); 3239 if (page == head) 3240 return false; /* add count continuation */ 3241 map = kmap_atomic(page) + offset; 3242 init_map: *map = 0; /* we didn't zero the page */ 3243 } 3244 *map += 1; 3245 kunmap_atomic(map); 3246 page = list_entry(page->lru.prev, struct page, lru); 3247 while (page != head) { 3248 map = kmap_atomic(page) + offset; 3249 *map = COUNT_CONTINUED; 3250 kunmap_atomic(map); 3251 page = list_entry(page->lru.prev, struct page, lru); 3252 } 3253 return true; /* incremented */ 3254 3255 } else { /* decrementing */ 3256 /* 3257 * Think of how you subtract 1 from 1000 3258 */ 3259 BUG_ON(count != COUNT_CONTINUED); 3260 while (*map == COUNT_CONTINUED) { 3261 kunmap_atomic(map); 3262 page = list_entry(page->lru.next, struct page, lru); 3263 BUG_ON(page == head); 3264 map = kmap_atomic(page) + offset; 3265 } 3266 BUG_ON(*map == 0); 3267 *map -= 1; 3268 if (*map == 0) 3269 count = 0; 3270 kunmap_atomic(map); 3271 page = list_entry(page->lru.prev, struct page, lru); 3272 while (page != head) { 3273 map = kmap_atomic(page) + offset; 3274 *map = SWAP_CONT_MAX | count; 3275 count = COUNT_CONTINUED; 3276 kunmap_atomic(map); 3277 page = list_entry(page->lru.prev, struct page, lru); 3278 } 3279 return count == COUNT_CONTINUED; 3280 } 3281 } 3282 3283 /* 3284 * free_swap_count_continuations - swapoff free all the continuation pages 3285 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3286 */ 3287 static void free_swap_count_continuations(struct swap_info_struct *si) 3288 { 3289 pgoff_t offset; 3290 3291 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3292 struct page *head; 3293 head = vmalloc_to_page(si->swap_map + offset); 3294 if (page_private(head)) { 3295 struct page *page, *next; 3296 3297 list_for_each_entry_safe(page, next, &head->lru, lru) { 3298 list_del(&page->lru); 3299 __free_page(page); 3300 } 3301 } 3302 } 3303 } 3304