xref: /openbmc/linux/mm/swapfile.c (revision 4e1a33b1)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37 #include <linux/swap_slots.h>
38 
39 #include <asm/pgtable.h>
40 #include <asm/tlbflush.h>
41 #include <linux/swapops.h>
42 #include <linux/swap_cgroup.h>
43 
44 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
45 				 unsigned char);
46 static void free_swap_count_continuations(struct swap_info_struct *);
47 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
48 
49 DEFINE_SPINLOCK(swap_lock);
50 static unsigned int nr_swapfiles;
51 atomic_long_t nr_swap_pages;
52 /*
53  * Some modules use swappable objects and may try to swap them out under
54  * memory pressure (via the shrinker). Before doing so, they may wish to
55  * check to see if any swap space is available.
56  */
57 EXPORT_SYMBOL_GPL(nr_swap_pages);
58 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
59 long total_swap_pages;
60 static int least_priority;
61 
62 static const char Bad_file[] = "Bad swap file entry ";
63 static const char Unused_file[] = "Unused swap file entry ";
64 static const char Bad_offset[] = "Bad swap offset entry ";
65 static const char Unused_offset[] = "Unused swap offset entry ";
66 
67 /*
68  * all active swap_info_structs
69  * protected with swap_lock, and ordered by priority.
70  */
71 PLIST_HEAD(swap_active_head);
72 
73 /*
74  * all available (active, not full) swap_info_structs
75  * protected with swap_avail_lock, ordered by priority.
76  * This is used by get_swap_page() instead of swap_active_head
77  * because swap_active_head includes all swap_info_structs,
78  * but get_swap_page() doesn't need to look at full ones.
79  * This uses its own lock instead of swap_lock because when a
80  * swap_info_struct changes between not-full/full, it needs to
81  * add/remove itself to/from this list, but the swap_info_struct->lock
82  * is held and the locking order requires swap_lock to be taken
83  * before any swap_info_struct->lock.
84  */
85 static PLIST_HEAD(swap_avail_head);
86 static DEFINE_SPINLOCK(swap_avail_lock);
87 
88 struct swap_info_struct *swap_info[MAX_SWAPFILES];
89 
90 static DEFINE_MUTEX(swapon_mutex);
91 
92 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
93 /* Activity counter to indicate that a swapon or swapoff has occurred */
94 static atomic_t proc_poll_event = ATOMIC_INIT(0);
95 
96 static inline unsigned char swap_count(unsigned char ent)
97 {
98 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
99 }
100 
101 /* returns 1 if swap entry is freed */
102 static int
103 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
104 {
105 	swp_entry_t entry = swp_entry(si->type, offset);
106 	struct page *page;
107 	int ret = 0;
108 
109 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
110 	if (!page)
111 		return 0;
112 	/*
113 	 * This function is called from scan_swap_map() and it's called
114 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
115 	 * We have to use trylock for avoiding deadlock. This is a special
116 	 * case and you should use try_to_free_swap() with explicit lock_page()
117 	 * in usual operations.
118 	 */
119 	if (trylock_page(page)) {
120 		ret = try_to_free_swap(page);
121 		unlock_page(page);
122 	}
123 	put_page(page);
124 	return ret;
125 }
126 
127 /*
128  * swapon tell device that all the old swap contents can be discarded,
129  * to allow the swap device to optimize its wear-levelling.
130  */
131 static int discard_swap(struct swap_info_struct *si)
132 {
133 	struct swap_extent *se;
134 	sector_t start_block;
135 	sector_t nr_blocks;
136 	int err = 0;
137 
138 	/* Do not discard the swap header page! */
139 	se = &si->first_swap_extent;
140 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
141 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
142 	if (nr_blocks) {
143 		err = blkdev_issue_discard(si->bdev, start_block,
144 				nr_blocks, GFP_KERNEL, 0);
145 		if (err)
146 			return err;
147 		cond_resched();
148 	}
149 
150 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
151 		start_block = se->start_block << (PAGE_SHIFT - 9);
152 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
153 
154 		err = blkdev_issue_discard(si->bdev, start_block,
155 				nr_blocks, GFP_KERNEL, 0);
156 		if (err)
157 			break;
158 
159 		cond_resched();
160 	}
161 	return err;		/* That will often be -EOPNOTSUPP */
162 }
163 
164 /*
165  * swap allocation tell device that a cluster of swap can now be discarded,
166  * to allow the swap device to optimize its wear-levelling.
167  */
168 static void discard_swap_cluster(struct swap_info_struct *si,
169 				 pgoff_t start_page, pgoff_t nr_pages)
170 {
171 	struct swap_extent *se = si->curr_swap_extent;
172 	int found_extent = 0;
173 
174 	while (nr_pages) {
175 		if (se->start_page <= start_page &&
176 		    start_page < se->start_page + se->nr_pages) {
177 			pgoff_t offset = start_page - se->start_page;
178 			sector_t start_block = se->start_block + offset;
179 			sector_t nr_blocks = se->nr_pages - offset;
180 
181 			if (nr_blocks > nr_pages)
182 				nr_blocks = nr_pages;
183 			start_page += nr_blocks;
184 			nr_pages -= nr_blocks;
185 
186 			if (!found_extent++)
187 				si->curr_swap_extent = se;
188 
189 			start_block <<= PAGE_SHIFT - 9;
190 			nr_blocks <<= PAGE_SHIFT - 9;
191 			if (blkdev_issue_discard(si->bdev, start_block,
192 				    nr_blocks, GFP_NOIO, 0))
193 				break;
194 		}
195 
196 		se = list_next_entry(se, list);
197 	}
198 }
199 
200 #define SWAPFILE_CLUSTER	256
201 #define LATENCY_LIMIT		256
202 
203 static inline void cluster_set_flag(struct swap_cluster_info *info,
204 	unsigned int flag)
205 {
206 	info->flags = flag;
207 }
208 
209 static inline unsigned int cluster_count(struct swap_cluster_info *info)
210 {
211 	return info->data;
212 }
213 
214 static inline void cluster_set_count(struct swap_cluster_info *info,
215 				     unsigned int c)
216 {
217 	info->data = c;
218 }
219 
220 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
221 					 unsigned int c, unsigned int f)
222 {
223 	info->flags = f;
224 	info->data = c;
225 }
226 
227 static inline unsigned int cluster_next(struct swap_cluster_info *info)
228 {
229 	return info->data;
230 }
231 
232 static inline void cluster_set_next(struct swap_cluster_info *info,
233 				    unsigned int n)
234 {
235 	info->data = n;
236 }
237 
238 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
239 					 unsigned int n, unsigned int f)
240 {
241 	info->flags = f;
242 	info->data = n;
243 }
244 
245 static inline bool cluster_is_free(struct swap_cluster_info *info)
246 {
247 	return info->flags & CLUSTER_FLAG_FREE;
248 }
249 
250 static inline bool cluster_is_null(struct swap_cluster_info *info)
251 {
252 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
253 }
254 
255 static inline void cluster_set_null(struct swap_cluster_info *info)
256 {
257 	info->flags = CLUSTER_FLAG_NEXT_NULL;
258 	info->data = 0;
259 }
260 
261 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
262 						     unsigned long offset)
263 {
264 	struct swap_cluster_info *ci;
265 
266 	ci = si->cluster_info;
267 	if (ci) {
268 		ci += offset / SWAPFILE_CLUSTER;
269 		spin_lock(&ci->lock);
270 	}
271 	return ci;
272 }
273 
274 static inline void unlock_cluster(struct swap_cluster_info *ci)
275 {
276 	if (ci)
277 		spin_unlock(&ci->lock);
278 }
279 
280 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
281 	struct swap_info_struct *si,
282 	unsigned long offset)
283 {
284 	struct swap_cluster_info *ci;
285 
286 	ci = lock_cluster(si, offset);
287 	if (!ci)
288 		spin_lock(&si->lock);
289 
290 	return ci;
291 }
292 
293 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
294 					       struct swap_cluster_info *ci)
295 {
296 	if (ci)
297 		unlock_cluster(ci);
298 	else
299 		spin_unlock(&si->lock);
300 }
301 
302 static inline bool cluster_list_empty(struct swap_cluster_list *list)
303 {
304 	return cluster_is_null(&list->head);
305 }
306 
307 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
308 {
309 	return cluster_next(&list->head);
310 }
311 
312 static void cluster_list_init(struct swap_cluster_list *list)
313 {
314 	cluster_set_null(&list->head);
315 	cluster_set_null(&list->tail);
316 }
317 
318 static void cluster_list_add_tail(struct swap_cluster_list *list,
319 				  struct swap_cluster_info *ci,
320 				  unsigned int idx)
321 {
322 	if (cluster_list_empty(list)) {
323 		cluster_set_next_flag(&list->head, idx, 0);
324 		cluster_set_next_flag(&list->tail, idx, 0);
325 	} else {
326 		struct swap_cluster_info *ci_tail;
327 		unsigned int tail = cluster_next(&list->tail);
328 
329 		/*
330 		 * Nested cluster lock, but both cluster locks are
331 		 * only acquired when we held swap_info_struct->lock
332 		 */
333 		ci_tail = ci + tail;
334 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
335 		cluster_set_next(ci_tail, idx);
336 		unlock_cluster(ci_tail);
337 		cluster_set_next_flag(&list->tail, idx, 0);
338 	}
339 }
340 
341 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
342 					   struct swap_cluster_info *ci)
343 {
344 	unsigned int idx;
345 
346 	idx = cluster_next(&list->head);
347 	if (cluster_next(&list->tail) == idx) {
348 		cluster_set_null(&list->head);
349 		cluster_set_null(&list->tail);
350 	} else
351 		cluster_set_next_flag(&list->head,
352 				      cluster_next(&ci[idx]), 0);
353 
354 	return idx;
355 }
356 
357 /* Add a cluster to discard list and schedule it to do discard */
358 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
359 		unsigned int idx)
360 {
361 	/*
362 	 * If scan_swap_map() can't find a free cluster, it will check
363 	 * si->swap_map directly. To make sure the discarding cluster isn't
364 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
365 	 * will be cleared after discard
366 	 */
367 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
368 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
369 
370 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
371 
372 	schedule_work(&si->discard_work);
373 }
374 
375 /*
376  * Doing discard actually. After a cluster discard is finished, the cluster
377  * will be added to free cluster list. caller should hold si->lock.
378 */
379 static void swap_do_scheduled_discard(struct swap_info_struct *si)
380 {
381 	struct swap_cluster_info *info, *ci;
382 	unsigned int idx;
383 
384 	info = si->cluster_info;
385 
386 	while (!cluster_list_empty(&si->discard_clusters)) {
387 		idx = cluster_list_del_first(&si->discard_clusters, info);
388 		spin_unlock(&si->lock);
389 
390 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
391 				SWAPFILE_CLUSTER);
392 
393 		spin_lock(&si->lock);
394 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
395 		cluster_set_flag(ci, CLUSTER_FLAG_FREE);
396 		unlock_cluster(ci);
397 		cluster_list_add_tail(&si->free_clusters, info, idx);
398 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
399 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
400 				0, SWAPFILE_CLUSTER);
401 		unlock_cluster(ci);
402 	}
403 }
404 
405 static void swap_discard_work(struct work_struct *work)
406 {
407 	struct swap_info_struct *si;
408 
409 	si = container_of(work, struct swap_info_struct, discard_work);
410 
411 	spin_lock(&si->lock);
412 	swap_do_scheduled_discard(si);
413 	spin_unlock(&si->lock);
414 }
415 
416 /*
417  * The cluster corresponding to page_nr will be used. The cluster will be
418  * removed from free cluster list and its usage counter will be increased.
419  */
420 static void inc_cluster_info_page(struct swap_info_struct *p,
421 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
422 {
423 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
424 
425 	if (!cluster_info)
426 		return;
427 	if (cluster_is_free(&cluster_info[idx])) {
428 		VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
429 		cluster_list_del_first(&p->free_clusters, cluster_info);
430 		cluster_set_count_flag(&cluster_info[idx], 0, 0);
431 	}
432 
433 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
434 	cluster_set_count(&cluster_info[idx],
435 		cluster_count(&cluster_info[idx]) + 1);
436 }
437 
438 /*
439  * The cluster corresponding to page_nr decreases one usage. If the usage
440  * counter becomes 0, which means no page in the cluster is in using, we can
441  * optionally discard the cluster and add it to free cluster list.
442  */
443 static void dec_cluster_info_page(struct swap_info_struct *p,
444 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
445 {
446 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
447 
448 	if (!cluster_info)
449 		return;
450 
451 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
452 	cluster_set_count(&cluster_info[idx],
453 		cluster_count(&cluster_info[idx]) - 1);
454 
455 	if (cluster_count(&cluster_info[idx]) == 0) {
456 		/*
457 		 * If the swap is discardable, prepare discard the cluster
458 		 * instead of free it immediately. The cluster will be freed
459 		 * after discard.
460 		 */
461 		if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
462 				 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
463 			swap_cluster_schedule_discard(p, idx);
464 			return;
465 		}
466 
467 		cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
468 		cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
469 	}
470 }
471 
472 /*
473  * It's possible scan_swap_map() uses a free cluster in the middle of free
474  * cluster list. Avoiding such abuse to avoid list corruption.
475  */
476 static bool
477 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
478 	unsigned long offset)
479 {
480 	struct percpu_cluster *percpu_cluster;
481 	bool conflict;
482 
483 	offset /= SWAPFILE_CLUSTER;
484 	conflict = !cluster_list_empty(&si->free_clusters) &&
485 		offset != cluster_list_first(&si->free_clusters) &&
486 		cluster_is_free(&si->cluster_info[offset]);
487 
488 	if (!conflict)
489 		return false;
490 
491 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
492 	cluster_set_null(&percpu_cluster->index);
493 	return true;
494 }
495 
496 /*
497  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
498  * might involve allocating a new cluster for current CPU too.
499  */
500 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
501 	unsigned long *offset, unsigned long *scan_base)
502 {
503 	struct percpu_cluster *cluster;
504 	struct swap_cluster_info *ci;
505 	bool found_free;
506 	unsigned long tmp, max;
507 
508 new_cluster:
509 	cluster = this_cpu_ptr(si->percpu_cluster);
510 	if (cluster_is_null(&cluster->index)) {
511 		if (!cluster_list_empty(&si->free_clusters)) {
512 			cluster->index = si->free_clusters.head;
513 			cluster->next = cluster_next(&cluster->index) *
514 					SWAPFILE_CLUSTER;
515 		} else if (!cluster_list_empty(&si->discard_clusters)) {
516 			/*
517 			 * we don't have free cluster but have some clusters in
518 			 * discarding, do discard now and reclaim them
519 			 */
520 			swap_do_scheduled_discard(si);
521 			*scan_base = *offset = si->cluster_next;
522 			goto new_cluster;
523 		} else
524 			return false;
525 	}
526 
527 	found_free = false;
528 
529 	/*
530 	 * Other CPUs can use our cluster if they can't find a free cluster,
531 	 * check if there is still free entry in the cluster
532 	 */
533 	tmp = cluster->next;
534 	max = min_t(unsigned long, si->max,
535 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
536 	if (tmp >= max) {
537 		cluster_set_null(&cluster->index);
538 		goto new_cluster;
539 	}
540 	ci = lock_cluster(si, tmp);
541 	while (tmp < max) {
542 		if (!si->swap_map[tmp]) {
543 			found_free = true;
544 			break;
545 		}
546 		tmp++;
547 	}
548 	unlock_cluster(ci);
549 	if (!found_free) {
550 		cluster_set_null(&cluster->index);
551 		goto new_cluster;
552 	}
553 	cluster->next = tmp + 1;
554 	*offset = tmp;
555 	*scan_base = tmp;
556 	return found_free;
557 }
558 
559 static int scan_swap_map_slots(struct swap_info_struct *si,
560 			       unsigned char usage, int nr,
561 			       swp_entry_t slots[])
562 {
563 	struct swap_cluster_info *ci;
564 	unsigned long offset;
565 	unsigned long scan_base;
566 	unsigned long last_in_cluster = 0;
567 	int latency_ration = LATENCY_LIMIT;
568 	int n_ret = 0;
569 
570 	if (nr > SWAP_BATCH)
571 		nr = SWAP_BATCH;
572 
573 	/*
574 	 * We try to cluster swap pages by allocating them sequentially
575 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
576 	 * way, however, we resort to first-free allocation, starting
577 	 * a new cluster.  This prevents us from scattering swap pages
578 	 * all over the entire swap partition, so that we reduce
579 	 * overall disk seek times between swap pages.  -- sct
580 	 * But we do now try to find an empty cluster.  -Andrea
581 	 * And we let swap pages go all over an SSD partition.  Hugh
582 	 */
583 
584 	si->flags += SWP_SCANNING;
585 	scan_base = offset = si->cluster_next;
586 
587 	/* SSD algorithm */
588 	if (si->cluster_info) {
589 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
590 			goto checks;
591 		else
592 			goto scan;
593 	}
594 
595 	if (unlikely(!si->cluster_nr--)) {
596 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
597 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
598 			goto checks;
599 		}
600 
601 		spin_unlock(&si->lock);
602 
603 		/*
604 		 * If seek is expensive, start searching for new cluster from
605 		 * start of partition, to minimize the span of allocated swap.
606 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
607 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
608 		 */
609 		scan_base = offset = si->lowest_bit;
610 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
611 
612 		/* Locate the first empty (unaligned) cluster */
613 		for (; last_in_cluster <= si->highest_bit; offset++) {
614 			if (si->swap_map[offset])
615 				last_in_cluster = offset + SWAPFILE_CLUSTER;
616 			else if (offset == last_in_cluster) {
617 				spin_lock(&si->lock);
618 				offset -= SWAPFILE_CLUSTER - 1;
619 				si->cluster_next = offset;
620 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
621 				goto checks;
622 			}
623 			if (unlikely(--latency_ration < 0)) {
624 				cond_resched();
625 				latency_ration = LATENCY_LIMIT;
626 			}
627 		}
628 
629 		offset = scan_base;
630 		spin_lock(&si->lock);
631 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
632 	}
633 
634 checks:
635 	if (si->cluster_info) {
636 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
637 		/* take a break if we already got some slots */
638 			if (n_ret)
639 				goto done;
640 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
641 							&scan_base))
642 				goto scan;
643 		}
644 	}
645 	if (!(si->flags & SWP_WRITEOK))
646 		goto no_page;
647 	if (!si->highest_bit)
648 		goto no_page;
649 	if (offset > si->highest_bit)
650 		scan_base = offset = si->lowest_bit;
651 
652 	ci = lock_cluster(si, offset);
653 	/* reuse swap entry of cache-only swap if not busy. */
654 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
655 		int swap_was_freed;
656 		unlock_cluster(ci);
657 		spin_unlock(&si->lock);
658 		swap_was_freed = __try_to_reclaim_swap(si, offset);
659 		spin_lock(&si->lock);
660 		/* entry was freed successfully, try to use this again */
661 		if (swap_was_freed)
662 			goto checks;
663 		goto scan; /* check next one */
664 	}
665 
666 	if (si->swap_map[offset]) {
667 		unlock_cluster(ci);
668 		if (!n_ret)
669 			goto scan;
670 		else
671 			goto done;
672 	}
673 
674 	if (offset == si->lowest_bit)
675 		si->lowest_bit++;
676 	if (offset == si->highest_bit)
677 		si->highest_bit--;
678 	si->inuse_pages++;
679 	if (si->inuse_pages == si->pages) {
680 		si->lowest_bit = si->max;
681 		si->highest_bit = 0;
682 		spin_lock(&swap_avail_lock);
683 		plist_del(&si->avail_list, &swap_avail_head);
684 		spin_unlock(&swap_avail_lock);
685 	}
686 	si->swap_map[offset] = usage;
687 	inc_cluster_info_page(si, si->cluster_info, offset);
688 	unlock_cluster(ci);
689 	si->cluster_next = offset + 1;
690 	slots[n_ret++] = swp_entry(si->type, offset);
691 
692 	/* got enough slots or reach max slots? */
693 	if ((n_ret == nr) || (offset >= si->highest_bit))
694 		goto done;
695 
696 	/* search for next available slot */
697 
698 	/* time to take a break? */
699 	if (unlikely(--latency_ration < 0)) {
700 		if (n_ret)
701 			goto done;
702 		spin_unlock(&si->lock);
703 		cond_resched();
704 		spin_lock(&si->lock);
705 		latency_ration = LATENCY_LIMIT;
706 	}
707 
708 	/* try to get more slots in cluster */
709 	if (si->cluster_info) {
710 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
711 			goto checks;
712 		else
713 			goto done;
714 	}
715 	/* non-ssd case */
716 	++offset;
717 
718 	/* non-ssd case, still more slots in cluster? */
719 	if (si->cluster_nr && !si->swap_map[offset]) {
720 		--si->cluster_nr;
721 		goto checks;
722 	}
723 
724 done:
725 	si->flags -= SWP_SCANNING;
726 	return n_ret;
727 
728 scan:
729 	spin_unlock(&si->lock);
730 	while (++offset <= si->highest_bit) {
731 		if (!si->swap_map[offset]) {
732 			spin_lock(&si->lock);
733 			goto checks;
734 		}
735 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
736 			spin_lock(&si->lock);
737 			goto checks;
738 		}
739 		if (unlikely(--latency_ration < 0)) {
740 			cond_resched();
741 			latency_ration = LATENCY_LIMIT;
742 		}
743 	}
744 	offset = si->lowest_bit;
745 	while (offset < scan_base) {
746 		if (!si->swap_map[offset]) {
747 			spin_lock(&si->lock);
748 			goto checks;
749 		}
750 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
751 			spin_lock(&si->lock);
752 			goto checks;
753 		}
754 		if (unlikely(--latency_ration < 0)) {
755 			cond_resched();
756 			latency_ration = LATENCY_LIMIT;
757 		}
758 		offset++;
759 	}
760 	spin_lock(&si->lock);
761 
762 no_page:
763 	si->flags -= SWP_SCANNING;
764 	return n_ret;
765 }
766 
767 static unsigned long scan_swap_map(struct swap_info_struct *si,
768 				   unsigned char usage)
769 {
770 	swp_entry_t entry;
771 	int n_ret;
772 
773 	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
774 
775 	if (n_ret)
776 		return swp_offset(entry);
777 	else
778 		return 0;
779 
780 }
781 
782 int get_swap_pages(int n_goal, swp_entry_t swp_entries[])
783 {
784 	struct swap_info_struct *si, *next;
785 	long avail_pgs;
786 	int n_ret = 0;
787 
788 	avail_pgs = atomic_long_read(&nr_swap_pages);
789 	if (avail_pgs <= 0)
790 		goto noswap;
791 
792 	if (n_goal > SWAP_BATCH)
793 		n_goal = SWAP_BATCH;
794 
795 	if (n_goal > avail_pgs)
796 		n_goal = avail_pgs;
797 
798 	atomic_long_sub(n_goal, &nr_swap_pages);
799 
800 	spin_lock(&swap_avail_lock);
801 
802 start_over:
803 	plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
804 		/* requeue si to after same-priority siblings */
805 		plist_requeue(&si->avail_list, &swap_avail_head);
806 		spin_unlock(&swap_avail_lock);
807 		spin_lock(&si->lock);
808 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
809 			spin_lock(&swap_avail_lock);
810 			if (plist_node_empty(&si->avail_list)) {
811 				spin_unlock(&si->lock);
812 				goto nextsi;
813 			}
814 			WARN(!si->highest_bit,
815 			     "swap_info %d in list but !highest_bit\n",
816 			     si->type);
817 			WARN(!(si->flags & SWP_WRITEOK),
818 			     "swap_info %d in list but !SWP_WRITEOK\n",
819 			     si->type);
820 			plist_del(&si->avail_list, &swap_avail_head);
821 			spin_unlock(&si->lock);
822 			goto nextsi;
823 		}
824 		n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
825 					    n_goal, swp_entries);
826 		spin_unlock(&si->lock);
827 		if (n_ret)
828 			goto check_out;
829 		pr_debug("scan_swap_map of si %d failed to find offset\n",
830 			si->type);
831 
832 		spin_lock(&swap_avail_lock);
833 nextsi:
834 		/*
835 		 * if we got here, it's likely that si was almost full before,
836 		 * and since scan_swap_map() can drop the si->lock, multiple
837 		 * callers probably all tried to get a page from the same si
838 		 * and it filled up before we could get one; or, the si filled
839 		 * up between us dropping swap_avail_lock and taking si->lock.
840 		 * Since we dropped the swap_avail_lock, the swap_avail_head
841 		 * list may have been modified; so if next is still in the
842 		 * swap_avail_head list then try it, otherwise start over
843 		 * if we have not gotten any slots.
844 		 */
845 		if (plist_node_empty(&next->avail_list))
846 			goto start_over;
847 	}
848 
849 	spin_unlock(&swap_avail_lock);
850 
851 check_out:
852 	if (n_ret < n_goal)
853 		atomic_long_add((long) (n_goal-n_ret), &nr_swap_pages);
854 noswap:
855 	return n_ret;
856 }
857 
858 /* The only caller of this function is now suspend routine */
859 swp_entry_t get_swap_page_of_type(int type)
860 {
861 	struct swap_info_struct *si;
862 	pgoff_t offset;
863 
864 	si = swap_info[type];
865 	spin_lock(&si->lock);
866 	if (si && (si->flags & SWP_WRITEOK)) {
867 		atomic_long_dec(&nr_swap_pages);
868 		/* This is called for allocating swap entry, not cache */
869 		offset = scan_swap_map(si, 1);
870 		if (offset) {
871 			spin_unlock(&si->lock);
872 			return swp_entry(type, offset);
873 		}
874 		atomic_long_inc(&nr_swap_pages);
875 	}
876 	spin_unlock(&si->lock);
877 	return (swp_entry_t) {0};
878 }
879 
880 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
881 {
882 	struct swap_info_struct *p;
883 	unsigned long offset, type;
884 
885 	if (!entry.val)
886 		goto out;
887 	type = swp_type(entry);
888 	if (type >= nr_swapfiles)
889 		goto bad_nofile;
890 	p = swap_info[type];
891 	if (!(p->flags & SWP_USED))
892 		goto bad_device;
893 	offset = swp_offset(entry);
894 	if (offset >= p->max)
895 		goto bad_offset;
896 	return p;
897 
898 bad_offset:
899 	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
900 	goto out;
901 bad_device:
902 	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
903 	goto out;
904 bad_nofile:
905 	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
906 out:
907 	return NULL;
908 }
909 
910 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
911 {
912 	struct swap_info_struct *p;
913 
914 	p = __swap_info_get(entry);
915 	if (!p)
916 		goto out;
917 	if (!p->swap_map[swp_offset(entry)])
918 		goto bad_free;
919 	return p;
920 
921 bad_free:
922 	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
923 	goto out;
924 out:
925 	return NULL;
926 }
927 
928 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
929 {
930 	struct swap_info_struct *p;
931 
932 	p = _swap_info_get(entry);
933 	if (p)
934 		spin_lock(&p->lock);
935 	return p;
936 }
937 
938 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
939 					struct swap_info_struct *q)
940 {
941 	struct swap_info_struct *p;
942 
943 	p = _swap_info_get(entry);
944 
945 	if (p != q) {
946 		if (q != NULL)
947 			spin_unlock(&q->lock);
948 		if (p != NULL)
949 			spin_lock(&p->lock);
950 	}
951 	return p;
952 }
953 
954 static unsigned char __swap_entry_free(struct swap_info_struct *p,
955 				       swp_entry_t entry, unsigned char usage)
956 {
957 	struct swap_cluster_info *ci;
958 	unsigned long offset = swp_offset(entry);
959 	unsigned char count;
960 	unsigned char has_cache;
961 
962 	ci = lock_cluster_or_swap_info(p, offset);
963 
964 	count = p->swap_map[offset];
965 
966 	has_cache = count & SWAP_HAS_CACHE;
967 	count &= ~SWAP_HAS_CACHE;
968 
969 	if (usage == SWAP_HAS_CACHE) {
970 		VM_BUG_ON(!has_cache);
971 		has_cache = 0;
972 	} else if (count == SWAP_MAP_SHMEM) {
973 		/*
974 		 * Or we could insist on shmem.c using a special
975 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
976 		 */
977 		count = 0;
978 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
979 		if (count == COUNT_CONTINUED) {
980 			if (swap_count_continued(p, offset, count))
981 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
982 			else
983 				count = SWAP_MAP_MAX;
984 		} else
985 			count--;
986 	}
987 
988 	usage = count | has_cache;
989 	p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
990 
991 	unlock_cluster_or_swap_info(p, ci);
992 
993 	return usage;
994 }
995 
996 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
997 {
998 	struct swap_cluster_info *ci;
999 	unsigned long offset = swp_offset(entry);
1000 	unsigned char count;
1001 
1002 	ci = lock_cluster(p, offset);
1003 	count = p->swap_map[offset];
1004 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1005 	p->swap_map[offset] = 0;
1006 	dec_cluster_info_page(p, p->cluster_info, offset);
1007 	unlock_cluster(ci);
1008 
1009 	mem_cgroup_uncharge_swap(entry);
1010 	if (offset < p->lowest_bit)
1011 		p->lowest_bit = offset;
1012 	if (offset > p->highest_bit) {
1013 		bool was_full = !p->highest_bit;
1014 
1015 		p->highest_bit = offset;
1016 		if (was_full && (p->flags & SWP_WRITEOK)) {
1017 			spin_lock(&swap_avail_lock);
1018 			WARN_ON(!plist_node_empty(&p->avail_list));
1019 			if (plist_node_empty(&p->avail_list))
1020 				plist_add(&p->avail_list,
1021 					  &swap_avail_head);
1022 			spin_unlock(&swap_avail_lock);
1023 		}
1024 	}
1025 	atomic_long_inc(&nr_swap_pages);
1026 	p->inuse_pages--;
1027 	frontswap_invalidate_page(p->type, offset);
1028 	if (p->flags & SWP_BLKDEV) {
1029 		struct gendisk *disk = p->bdev->bd_disk;
1030 
1031 		if (disk->fops->swap_slot_free_notify)
1032 			disk->fops->swap_slot_free_notify(p->bdev,
1033 							  offset);
1034 	}
1035 }
1036 
1037 /*
1038  * Caller has made sure that the swap device corresponding to entry
1039  * is still around or has not been recycled.
1040  */
1041 void swap_free(swp_entry_t entry)
1042 {
1043 	struct swap_info_struct *p;
1044 
1045 	p = _swap_info_get(entry);
1046 	if (p) {
1047 		if (!__swap_entry_free(p, entry, 1))
1048 			free_swap_slot(entry);
1049 	}
1050 }
1051 
1052 /*
1053  * Called after dropping swapcache to decrease refcnt to swap entries.
1054  */
1055 void swapcache_free(swp_entry_t entry)
1056 {
1057 	struct swap_info_struct *p;
1058 
1059 	p = _swap_info_get(entry);
1060 	if (p) {
1061 		if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1062 			free_swap_slot(entry);
1063 	}
1064 }
1065 
1066 void swapcache_free_entries(swp_entry_t *entries, int n)
1067 {
1068 	struct swap_info_struct *p, *prev;
1069 	int i;
1070 
1071 	if (n <= 0)
1072 		return;
1073 
1074 	prev = NULL;
1075 	p = NULL;
1076 	for (i = 0; i < n; ++i) {
1077 		p = swap_info_get_cont(entries[i], prev);
1078 		if (p)
1079 			swap_entry_free(p, entries[i]);
1080 		else
1081 			break;
1082 		prev = p;
1083 	}
1084 	if (p)
1085 		spin_unlock(&p->lock);
1086 }
1087 
1088 /*
1089  * How many references to page are currently swapped out?
1090  * This does not give an exact answer when swap count is continued,
1091  * but does include the high COUNT_CONTINUED flag to allow for that.
1092  */
1093 int page_swapcount(struct page *page)
1094 {
1095 	int count = 0;
1096 	struct swap_info_struct *p;
1097 	struct swap_cluster_info *ci;
1098 	swp_entry_t entry;
1099 	unsigned long offset;
1100 
1101 	entry.val = page_private(page);
1102 	p = _swap_info_get(entry);
1103 	if (p) {
1104 		offset = swp_offset(entry);
1105 		ci = lock_cluster_or_swap_info(p, offset);
1106 		count = swap_count(p->swap_map[offset]);
1107 		unlock_cluster_or_swap_info(p, ci);
1108 	}
1109 	return count;
1110 }
1111 
1112 /*
1113  * How many references to @entry are currently swapped out?
1114  * This does not give an exact answer when swap count is continued,
1115  * but does include the high COUNT_CONTINUED flag to allow for that.
1116  */
1117 int __swp_swapcount(swp_entry_t entry)
1118 {
1119 	int count = 0;
1120 	pgoff_t offset;
1121 	struct swap_info_struct *si;
1122 	struct swap_cluster_info *ci;
1123 
1124 	si = __swap_info_get(entry);
1125 	if (si) {
1126 		offset = swp_offset(entry);
1127 		ci = lock_cluster_or_swap_info(si, offset);
1128 		count = swap_count(si->swap_map[offset]);
1129 		unlock_cluster_or_swap_info(si, ci);
1130 	}
1131 	return count;
1132 }
1133 
1134 /*
1135  * How many references to @entry are currently swapped out?
1136  * This considers COUNT_CONTINUED so it returns exact answer.
1137  */
1138 int swp_swapcount(swp_entry_t entry)
1139 {
1140 	int count, tmp_count, n;
1141 	struct swap_info_struct *p;
1142 	struct swap_cluster_info *ci;
1143 	struct page *page;
1144 	pgoff_t offset;
1145 	unsigned char *map;
1146 
1147 	p = _swap_info_get(entry);
1148 	if (!p)
1149 		return 0;
1150 
1151 	offset = swp_offset(entry);
1152 
1153 	ci = lock_cluster_or_swap_info(p, offset);
1154 
1155 	count = swap_count(p->swap_map[offset]);
1156 	if (!(count & COUNT_CONTINUED))
1157 		goto out;
1158 
1159 	count &= ~COUNT_CONTINUED;
1160 	n = SWAP_MAP_MAX + 1;
1161 
1162 	page = vmalloc_to_page(p->swap_map + offset);
1163 	offset &= ~PAGE_MASK;
1164 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1165 
1166 	do {
1167 		page = list_next_entry(page, lru);
1168 		map = kmap_atomic(page);
1169 		tmp_count = map[offset];
1170 		kunmap_atomic(map);
1171 
1172 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1173 		n *= (SWAP_CONT_MAX + 1);
1174 	} while (tmp_count & COUNT_CONTINUED);
1175 out:
1176 	unlock_cluster_or_swap_info(p, ci);
1177 	return count;
1178 }
1179 
1180 /*
1181  * We can write to an anon page without COW if there are no other references
1182  * to it.  And as a side-effect, free up its swap: because the old content
1183  * on disk will never be read, and seeking back there to write new content
1184  * later would only waste time away from clustering.
1185  *
1186  * NOTE: total_mapcount should not be relied upon by the caller if
1187  * reuse_swap_page() returns false, but it may be always overwritten
1188  * (see the other implementation for CONFIG_SWAP=n).
1189  */
1190 bool reuse_swap_page(struct page *page, int *total_mapcount)
1191 {
1192 	int count;
1193 
1194 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1195 	if (unlikely(PageKsm(page)))
1196 		return false;
1197 	count = page_trans_huge_mapcount(page, total_mapcount);
1198 	if (count <= 1 && PageSwapCache(page)) {
1199 		count += page_swapcount(page);
1200 		if (count != 1)
1201 			goto out;
1202 		if (!PageWriteback(page)) {
1203 			delete_from_swap_cache(page);
1204 			SetPageDirty(page);
1205 		} else {
1206 			swp_entry_t entry;
1207 			struct swap_info_struct *p;
1208 
1209 			entry.val = page_private(page);
1210 			p = swap_info_get(entry);
1211 			if (p->flags & SWP_STABLE_WRITES) {
1212 				spin_unlock(&p->lock);
1213 				return false;
1214 			}
1215 			spin_unlock(&p->lock);
1216 		}
1217 	}
1218 out:
1219 	return count <= 1;
1220 }
1221 
1222 /*
1223  * If swap is getting full, or if there are no more mappings of this page,
1224  * then try_to_free_swap is called to free its swap space.
1225  */
1226 int try_to_free_swap(struct page *page)
1227 {
1228 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1229 
1230 	if (!PageSwapCache(page))
1231 		return 0;
1232 	if (PageWriteback(page))
1233 		return 0;
1234 	if (page_swapcount(page))
1235 		return 0;
1236 
1237 	/*
1238 	 * Once hibernation has begun to create its image of memory,
1239 	 * there's a danger that one of the calls to try_to_free_swap()
1240 	 * - most probably a call from __try_to_reclaim_swap() while
1241 	 * hibernation is allocating its own swap pages for the image,
1242 	 * but conceivably even a call from memory reclaim - will free
1243 	 * the swap from a page which has already been recorded in the
1244 	 * image as a clean swapcache page, and then reuse its swap for
1245 	 * another page of the image.  On waking from hibernation, the
1246 	 * original page might be freed under memory pressure, then
1247 	 * later read back in from swap, now with the wrong data.
1248 	 *
1249 	 * Hibernation suspends storage while it is writing the image
1250 	 * to disk so check that here.
1251 	 */
1252 	if (pm_suspended_storage())
1253 		return 0;
1254 
1255 	delete_from_swap_cache(page);
1256 	SetPageDirty(page);
1257 	return 1;
1258 }
1259 
1260 /*
1261  * Free the swap entry like above, but also try to
1262  * free the page cache entry if it is the last user.
1263  */
1264 int free_swap_and_cache(swp_entry_t entry)
1265 {
1266 	struct swap_info_struct *p;
1267 	struct page *page = NULL;
1268 	unsigned char count;
1269 
1270 	if (non_swap_entry(entry))
1271 		return 1;
1272 
1273 	p = _swap_info_get(entry);
1274 	if (p) {
1275 		count = __swap_entry_free(p, entry, 1);
1276 		if (count == SWAP_HAS_CACHE) {
1277 			page = find_get_page(swap_address_space(entry),
1278 					     swp_offset(entry));
1279 			if (page && !trylock_page(page)) {
1280 				put_page(page);
1281 				page = NULL;
1282 			}
1283 		} else if (!count)
1284 			free_swap_slot(entry);
1285 	}
1286 	if (page) {
1287 		/*
1288 		 * Not mapped elsewhere, or swap space full? Free it!
1289 		 * Also recheck PageSwapCache now page is locked (above).
1290 		 */
1291 		if (PageSwapCache(page) && !PageWriteback(page) &&
1292 		    (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1293 			delete_from_swap_cache(page);
1294 			SetPageDirty(page);
1295 		}
1296 		unlock_page(page);
1297 		put_page(page);
1298 	}
1299 	return p != NULL;
1300 }
1301 
1302 #ifdef CONFIG_HIBERNATION
1303 /*
1304  * Find the swap type that corresponds to given device (if any).
1305  *
1306  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1307  * from 0, in which the swap header is expected to be located.
1308  *
1309  * This is needed for the suspend to disk (aka swsusp).
1310  */
1311 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1312 {
1313 	struct block_device *bdev = NULL;
1314 	int type;
1315 
1316 	if (device)
1317 		bdev = bdget(device);
1318 
1319 	spin_lock(&swap_lock);
1320 	for (type = 0; type < nr_swapfiles; type++) {
1321 		struct swap_info_struct *sis = swap_info[type];
1322 
1323 		if (!(sis->flags & SWP_WRITEOK))
1324 			continue;
1325 
1326 		if (!bdev) {
1327 			if (bdev_p)
1328 				*bdev_p = bdgrab(sis->bdev);
1329 
1330 			spin_unlock(&swap_lock);
1331 			return type;
1332 		}
1333 		if (bdev == sis->bdev) {
1334 			struct swap_extent *se = &sis->first_swap_extent;
1335 
1336 			if (se->start_block == offset) {
1337 				if (bdev_p)
1338 					*bdev_p = bdgrab(sis->bdev);
1339 
1340 				spin_unlock(&swap_lock);
1341 				bdput(bdev);
1342 				return type;
1343 			}
1344 		}
1345 	}
1346 	spin_unlock(&swap_lock);
1347 	if (bdev)
1348 		bdput(bdev);
1349 
1350 	return -ENODEV;
1351 }
1352 
1353 /*
1354  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1355  * corresponding to given index in swap_info (swap type).
1356  */
1357 sector_t swapdev_block(int type, pgoff_t offset)
1358 {
1359 	struct block_device *bdev;
1360 
1361 	if ((unsigned int)type >= nr_swapfiles)
1362 		return 0;
1363 	if (!(swap_info[type]->flags & SWP_WRITEOK))
1364 		return 0;
1365 	return map_swap_entry(swp_entry(type, offset), &bdev);
1366 }
1367 
1368 /*
1369  * Return either the total number of swap pages of given type, or the number
1370  * of free pages of that type (depending on @free)
1371  *
1372  * This is needed for software suspend
1373  */
1374 unsigned int count_swap_pages(int type, int free)
1375 {
1376 	unsigned int n = 0;
1377 
1378 	spin_lock(&swap_lock);
1379 	if ((unsigned int)type < nr_swapfiles) {
1380 		struct swap_info_struct *sis = swap_info[type];
1381 
1382 		spin_lock(&sis->lock);
1383 		if (sis->flags & SWP_WRITEOK) {
1384 			n = sis->pages;
1385 			if (free)
1386 				n -= sis->inuse_pages;
1387 		}
1388 		spin_unlock(&sis->lock);
1389 	}
1390 	spin_unlock(&swap_lock);
1391 	return n;
1392 }
1393 #endif /* CONFIG_HIBERNATION */
1394 
1395 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1396 {
1397 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1398 }
1399 
1400 /*
1401  * No need to decide whether this PTE shares the swap entry with others,
1402  * just let do_wp_page work it out if a write is requested later - to
1403  * force COW, vm_page_prot omits write permission from any private vma.
1404  */
1405 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1406 		unsigned long addr, swp_entry_t entry, struct page *page)
1407 {
1408 	struct page *swapcache;
1409 	struct mem_cgroup *memcg;
1410 	spinlock_t *ptl;
1411 	pte_t *pte;
1412 	int ret = 1;
1413 
1414 	swapcache = page;
1415 	page = ksm_might_need_to_copy(page, vma, addr);
1416 	if (unlikely(!page))
1417 		return -ENOMEM;
1418 
1419 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1420 				&memcg, false)) {
1421 		ret = -ENOMEM;
1422 		goto out_nolock;
1423 	}
1424 
1425 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1426 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1427 		mem_cgroup_cancel_charge(page, memcg, false);
1428 		ret = 0;
1429 		goto out;
1430 	}
1431 
1432 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1433 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1434 	get_page(page);
1435 	set_pte_at(vma->vm_mm, addr, pte,
1436 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1437 	if (page == swapcache) {
1438 		page_add_anon_rmap(page, vma, addr, false);
1439 		mem_cgroup_commit_charge(page, memcg, true, false);
1440 	} else { /* ksm created a completely new copy */
1441 		page_add_new_anon_rmap(page, vma, addr, false);
1442 		mem_cgroup_commit_charge(page, memcg, false, false);
1443 		lru_cache_add_active_or_unevictable(page, vma);
1444 	}
1445 	swap_free(entry);
1446 	/*
1447 	 * Move the page to the active list so it is not
1448 	 * immediately swapped out again after swapon.
1449 	 */
1450 	activate_page(page);
1451 out:
1452 	pte_unmap_unlock(pte, ptl);
1453 out_nolock:
1454 	if (page != swapcache) {
1455 		unlock_page(page);
1456 		put_page(page);
1457 	}
1458 	return ret;
1459 }
1460 
1461 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1462 				unsigned long addr, unsigned long end,
1463 				swp_entry_t entry, struct page *page)
1464 {
1465 	pte_t swp_pte = swp_entry_to_pte(entry);
1466 	pte_t *pte;
1467 	int ret = 0;
1468 
1469 	/*
1470 	 * We don't actually need pte lock while scanning for swp_pte: since
1471 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1472 	 * page table while we're scanning; though it could get zapped, and on
1473 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1474 	 * of unmatched parts which look like swp_pte, so unuse_pte must
1475 	 * recheck under pte lock.  Scanning without pte lock lets it be
1476 	 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1477 	 */
1478 	pte = pte_offset_map(pmd, addr);
1479 	do {
1480 		/*
1481 		 * swapoff spends a _lot_ of time in this loop!
1482 		 * Test inline before going to call unuse_pte.
1483 		 */
1484 		if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1485 			pte_unmap(pte);
1486 			ret = unuse_pte(vma, pmd, addr, entry, page);
1487 			if (ret)
1488 				goto out;
1489 			pte = pte_offset_map(pmd, addr);
1490 		}
1491 	} while (pte++, addr += PAGE_SIZE, addr != end);
1492 	pte_unmap(pte - 1);
1493 out:
1494 	return ret;
1495 }
1496 
1497 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1498 				unsigned long addr, unsigned long end,
1499 				swp_entry_t entry, struct page *page)
1500 {
1501 	pmd_t *pmd;
1502 	unsigned long next;
1503 	int ret;
1504 
1505 	pmd = pmd_offset(pud, addr);
1506 	do {
1507 		cond_resched();
1508 		next = pmd_addr_end(addr, end);
1509 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1510 			continue;
1511 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1512 		if (ret)
1513 			return ret;
1514 	} while (pmd++, addr = next, addr != end);
1515 	return 0;
1516 }
1517 
1518 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1519 				unsigned long addr, unsigned long end,
1520 				swp_entry_t entry, struct page *page)
1521 {
1522 	pud_t *pud;
1523 	unsigned long next;
1524 	int ret;
1525 
1526 	pud = pud_offset(pgd, addr);
1527 	do {
1528 		next = pud_addr_end(addr, end);
1529 		if (pud_none_or_clear_bad(pud))
1530 			continue;
1531 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1532 		if (ret)
1533 			return ret;
1534 	} while (pud++, addr = next, addr != end);
1535 	return 0;
1536 }
1537 
1538 static int unuse_vma(struct vm_area_struct *vma,
1539 				swp_entry_t entry, struct page *page)
1540 {
1541 	pgd_t *pgd;
1542 	unsigned long addr, end, next;
1543 	int ret;
1544 
1545 	if (page_anon_vma(page)) {
1546 		addr = page_address_in_vma(page, vma);
1547 		if (addr == -EFAULT)
1548 			return 0;
1549 		else
1550 			end = addr + PAGE_SIZE;
1551 	} else {
1552 		addr = vma->vm_start;
1553 		end = vma->vm_end;
1554 	}
1555 
1556 	pgd = pgd_offset(vma->vm_mm, addr);
1557 	do {
1558 		next = pgd_addr_end(addr, end);
1559 		if (pgd_none_or_clear_bad(pgd))
1560 			continue;
1561 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1562 		if (ret)
1563 			return ret;
1564 	} while (pgd++, addr = next, addr != end);
1565 	return 0;
1566 }
1567 
1568 static int unuse_mm(struct mm_struct *mm,
1569 				swp_entry_t entry, struct page *page)
1570 {
1571 	struct vm_area_struct *vma;
1572 	int ret = 0;
1573 
1574 	if (!down_read_trylock(&mm->mmap_sem)) {
1575 		/*
1576 		 * Activate page so shrink_inactive_list is unlikely to unmap
1577 		 * its ptes while lock is dropped, so swapoff can make progress.
1578 		 */
1579 		activate_page(page);
1580 		unlock_page(page);
1581 		down_read(&mm->mmap_sem);
1582 		lock_page(page);
1583 	}
1584 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1585 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1586 			break;
1587 		cond_resched();
1588 	}
1589 	up_read(&mm->mmap_sem);
1590 	return (ret < 0)? ret: 0;
1591 }
1592 
1593 /*
1594  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1595  * from current position to next entry still in use.
1596  * Recycle to start on reaching the end, returning 0 when empty.
1597  */
1598 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1599 					unsigned int prev, bool frontswap)
1600 {
1601 	unsigned int max = si->max;
1602 	unsigned int i = prev;
1603 	unsigned char count;
1604 
1605 	/*
1606 	 * No need for swap_lock here: we're just looking
1607 	 * for whether an entry is in use, not modifying it; false
1608 	 * hits are okay, and sys_swapoff() has already prevented new
1609 	 * allocations from this area (while holding swap_lock).
1610 	 */
1611 	for (;;) {
1612 		if (++i >= max) {
1613 			if (!prev) {
1614 				i = 0;
1615 				break;
1616 			}
1617 			/*
1618 			 * No entries in use at top of swap_map,
1619 			 * loop back to start and recheck there.
1620 			 */
1621 			max = prev + 1;
1622 			prev = 0;
1623 			i = 1;
1624 		}
1625 		count = READ_ONCE(si->swap_map[i]);
1626 		if (count && swap_count(count) != SWAP_MAP_BAD)
1627 			if (!frontswap || frontswap_test(si, i))
1628 				break;
1629 		if ((i % LATENCY_LIMIT) == 0)
1630 			cond_resched();
1631 	}
1632 	return i;
1633 }
1634 
1635 /*
1636  * We completely avoid races by reading each swap page in advance,
1637  * and then search for the process using it.  All the necessary
1638  * page table adjustments can then be made atomically.
1639  *
1640  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1641  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1642  */
1643 int try_to_unuse(unsigned int type, bool frontswap,
1644 		 unsigned long pages_to_unuse)
1645 {
1646 	struct swap_info_struct *si = swap_info[type];
1647 	struct mm_struct *start_mm;
1648 	volatile unsigned char *swap_map; /* swap_map is accessed without
1649 					   * locking. Mark it as volatile
1650 					   * to prevent compiler doing
1651 					   * something odd.
1652 					   */
1653 	unsigned char swcount;
1654 	struct page *page;
1655 	swp_entry_t entry;
1656 	unsigned int i = 0;
1657 	int retval = 0;
1658 
1659 	/*
1660 	 * When searching mms for an entry, a good strategy is to
1661 	 * start at the first mm we freed the previous entry from
1662 	 * (though actually we don't notice whether we or coincidence
1663 	 * freed the entry).  Initialize this start_mm with a hold.
1664 	 *
1665 	 * A simpler strategy would be to start at the last mm we
1666 	 * freed the previous entry from; but that would take less
1667 	 * advantage of mmlist ordering, which clusters forked mms
1668 	 * together, child after parent.  If we race with dup_mmap(), we
1669 	 * prefer to resolve parent before child, lest we miss entries
1670 	 * duplicated after we scanned child: using last mm would invert
1671 	 * that.
1672 	 */
1673 	start_mm = &init_mm;
1674 	atomic_inc(&init_mm.mm_users);
1675 
1676 	/*
1677 	 * Keep on scanning until all entries have gone.  Usually,
1678 	 * one pass through swap_map is enough, but not necessarily:
1679 	 * there are races when an instance of an entry might be missed.
1680 	 */
1681 	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1682 		if (signal_pending(current)) {
1683 			retval = -EINTR;
1684 			break;
1685 		}
1686 
1687 		/*
1688 		 * Get a page for the entry, using the existing swap
1689 		 * cache page if there is one.  Otherwise, get a clean
1690 		 * page and read the swap into it.
1691 		 */
1692 		swap_map = &si->swap_map[i];
1693 		entry = swp_entry(type, i);
1694 		page = read_swap_cache_async(entry,
1695 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1696 		if (!page) {
1697 			/*
1698 			 * Either swap_duplicate() failed because entry
1699 			 * has been freed independently, and will not be
1700 			 * reused since sys_swapoff() already disabled
1701 			 * allocation from here, or alloc_page() failed.
1702 			 */
1703 			swcount = *swap_map;
1704 			/*
1705 			 * We don't hold lock here, so the swap entry could be
1706 			 * SWAP_MAP_BAD (when the cluster is discarding).
1707 			 * Instead of fail out, We can just skip the swap
1708 			 * entry because swapoff will wait for discarding
1709 			 * finish anyway.
1710 			 */
1711 			if (!swcount || swcount == SWAP_MAP_BAD)
1712 				continue;
1713 			retval = -ENOMEM;
1714 			break;
1715 		}
1716 
1717 		/*
1718 		 * Don't hold on to start_mm if it looks like exiting.
1719 		 */
1720 		if (atomic_read(&start_mm->mm_users) == 1) {
1721 			mmput(start_mm);
1722 			start_mm = &init_mm;
1723 			atomic_inc(&init_mm.mm_users);
1724 		}
1725 
1726 		/*
1727 		 * Wait for and lock page.  When do_swap_page races with
1728 		 * try_to_unuse, do_swap_page can handle the fault much
1729 		 * faster than try_to_unuse can locate the entry.  This
1730 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1731 		 * defer to do_swap_page in such a case - in some tests,
1732 		 * do_swap_page and try_to_unuse repeatedly compete.
1733 		 */
1734 		wait_on_page_locked(page);
1735 		wait_on_page_writeback(page);
1736 		lock_page(page);
1737 		wait_on_page_writeback(page);
1738 
1739 		/*
1740 		 * Remove all references to entry.
1741 		 */
1742 		swcount = *swap_map;
1743 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1744 			retval = shmem_unuse(entry, page);
1745 			/* page has already been unlocked and released */
1746 			if (retval < 0)
1747 				break;
1748 			continue;
1749 		}
1750 		if (swap_count(swcount) && start_mm != &init_mm)
1751 			retval = unuse_mm(start_mm, entry, page);
1752 
1753 		if (swap_count(*swap_map)) {
1754 			int set_start_mm = (*swap_map >= swcount);
1755 			struct list_head *p = &start_mm->mmlist;
1756 			struct mm_struct *new_start_mm = start_mm;
1757 			struct mm_struct *prev_mm = start_mm;
1758 			struct mm_struct *mm;
1759 
1760 			atomic_inc(&new_start_mm->mm_users);
1761 			atomic_inc(&prev_mm->mm_users);
1762 			spin_lock(&mmlist_lock);
1763 			while (swap_count(*swap_map) && !retval &&
1764 					(p = p->next) != &start_mm->mmlist) {
1765 				mm = list_entry(p, struct mm_struct, mmlist);
1766 				if (!atomic_inc_not_zero(&mm->mm_users))
1767 					continue;
1768 				spin_unlock(&mmlist_lock);
1769 				mmput(prev_mm);
1770 				prev_mm = mm;
1771 
1772 				cond_resched();
1773 
1774 				swcount = *swap_map;
1775 				if (!swap_count(swcount)) /* any usage ? */
1776 					;
1777 				else if (mm == &init_mm)
1778 					set_start_mm = 1;
1779 				else
1780 					retval = unuse_mm(mm, entry, page);
1781 
1782 				if (set_start_mm && *swap_map < swcount) {
1783 					mmput(new_start_mm);
1784 					atomic_inc(&mm->mm_users);
1785 					new_start_mm = mm;
1786 					set_start_mm = 0;
1787 				}
1788 				spin_lock(&mmlist_lock);
1789 			}
1790 			spin_unlock(&mmlist_lock);
1791 			mmput(prev_mm);
1792 			mmput(start_mm);
1793 			start_mm = new_start_mm;
1794 		}
1795 		if (retval) {
1796 			unlock_page(page);
1797 			put_page(page);
1798 			break;
1799 		}
1800 
1801 		/*
1802 		 * If a reference remains (rare), we would like to leave
1803 		 * the page in the swap cache; but try_to_unmap could
1804 		 * then re-duplicate the entry once we drop page lock,
1805 		 * so we might loop indefinitely; also, that page could
1806 		 * not be swapped out to other storage meanwhile.  So:
1807 		 * delete from cache even if there's another reference,
1808 		 * after ensuring that the data has been saved to disk -
1809 		 * since if the reference remains (rarer), it will be
1810 		 * read from disk into another page.  Splitting into two
1811 		 * pages would be incorrect if swap supported "shared
1812 		 * private" pages, but they are handled by tmpfs files.
1813 		 *
1814 		 * Given how unuse_vma() targets one particular offset
1815 		 * in an anon_vma, once the anon_vma has been determined,
1816 		 * this splitting happens to be just what is needed to
1817 		 * handle where KSM pages have been swapped out: re-reading
1818 		 * is unnecessarily slow, but we can fix that later on.
1819 		 */
1820 		if (swap_count(*swap_map) &&
1821 		     PageDirty(page) && PageSwapCache(page)) {
1822 			struct writeback_control wbc = {
1823 				.sync_mode = WB_SYNC_NONE,
1824 			};
1825 
1826 			swap_writepage(page, &wbc);
1827 			lock_page(page);
1828 			wait_on_page_writeback(page);
1829 		}
1830 
1831 		/*
1832 		 * It is conceivable that a racing task removed this page from
1833 		 * swap cache just before we acquired the page lock at the top,
1834 		 * or while we dropped it in unuse_mm().  The page might even
1835 		 * be back in swap cache on another swap area: that we must not
1836 		 * delete, since it may not have been written out to swap yet.
1837 		 */
1838 		if (PageSwapCache(page) &&
1839 		    likely(page_private(page) == entry.val))
1840 			delete_from_swap_cache(page);
1841 
1842 		/*
1843 		 * So we could skip searching mms once swap count went
1844 		 * to 1, we did not mark any present ptes as dirty: must
1845 		 * mark page dirty so shrink_page_list will preserve it.
1846 		 */
1847 		SetPageDirty(page);
1848 		unlock_page(page);
1849 		put_page(page);
1850 
1851 		/*
1852 		 * Make sure that we aren't completely killing
1853 		 * interactive performance.
1854 		 */
1855 		cond_resched();
1856 		if (frontswap && pages_to_unuse > 0) {
1857 			if (!--pages_to_unuse)
1858 				break;
1859 		}
1860 	}
1861 
1862 	mmput(start_mm);
1863 	return retval;
1864 }
1865 
1866 /*
1867  * After a successful try_to_unuse, if no swap is now in use, we know
1868  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1869  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1870  * added to the mmlist just after page_duplicate - before would be racy.
1871  */
1872 static void drain_mmlist(void)
1873 {
1874 	struct list_head *p, *next;
1875 	unsigned int type;
1876 
1877 	for (type = 0; type < nr_swapfiles; type++)
1878 		if (swap_info[type]->inuse_pages)
1879 			return;
1880 	spin_lock(&mmlist_lock);
1881 	list_for_each_safe(p, next, &init_mm.mmlist)
1882 		list_del_init(p);
1883 	spin_unlock(&mmlist_lock);
1884 }
1885 
1886 /*
1887  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1888  * corresponds to page offset for the specified swap entry.
1889  * Note that the type of this function is sector_t, but it returns page offset
1890  * into the bdev, not sector offset.
1891  */
1892 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1893 {
1894 	struct swap_info_struct *sis;
1895 	struct swap_extent *start_se;
1896 	struct swap_extent *se;
1897 	pgoff_t offset;
1898 
1899 	sis = swap_info[swp_type(entry)];
1900 	*bdev = sis->bdev;
1901 
1902 	offset = swp_offset(entry);
1903 	start_se = sis->curr_swap_extent;
1904 	se = start_se;
1905 
1906 	for ( ; ; ) {
1907 		if (se->start_page <= offset &&
1908 				offset < (se->start_page + se->nr_pages)) {
1909 			return se->start_block + (offset - se->start_page);
1910 		}
1911 		se = list_next_entry(se, list);
1912 		sis->curr_swap_extent = se;
1913 		BUG_ON(se == start_se);		/* It *must* be present */
1914 	}
1915 }
1916 
1917 /*
1918  * Returns the page offset into bdev for the specified page's swap entry.
1919  */
1920 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1921 {
1922 	swp_entry_t entry;
1923 	entry.val = page_private(page);
1924 	return map_swap_entry(entry, bdev);
1925 }
1926 
1927 /*
1928  * Free all of a swapdev's extent information
1929  */
1930 static void destroy_swap_extents(struct swap_info_struct *sis)
1931 {
1932 	while (!list_empty(&sis->first_swap_extent.list)) {
1933 		struct swap_extent *se;
1934 
1935 		se = list_first_entry(&sis->first_swap_extent.list,
1936 				struct swap_extent, list);
1937 		list_del(&se->list);
1938 		kfree(se);
1939 	}
1940 
1941 	if (sis->flags & SWP_FILE) {
1942 		struct file *swap_file = sis->swap_file;
1943 		struct address_space *mapping = swap_file->f_mapping;
1944 
1945 		sis->flags &= ~SWP_FILE;
1946 		mapping->a_ops->swap_deactivate(swap_file);
1947 	}
1948 }
1949 
1950 /*
1951  * Add a block range (and the corresponding page range) into this swapdev's
1952  * extent list.  The extent list is kept sorted in page order.
1953  *
1954  * This function rather assumes that it is called in ascending page order.
1955  */
1956 int
1957 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1958 		unsigned long nr_pages, sector_t start_block)
1959 {
1960 	struct swap_extent *se;
1961 	struct swap_extent *new_se;
1962 	struct list_head *lh;
1963 
1964 	if (start_page == 0) {
1965 		se = &sis->first_swap_extent;
1966 		sis->curr_swap_extent = se;
1967 		se->start_page = 0;
1968 		se->nr_pages = nr_pages;
1969 		se->start_block = start_block;
1970 		return 1;
1971 	} else {
1972 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1973 		se = list_entry(lh, struct swap_extent, list);
1974 		BUG_ON(se->start_page + se->nr_pages != start_page);
1975 		if (se->start_block + se->nr_pages == start_block) {
1976 			/* Merge it */
1977 			se->nr_pages += nr_pages;
1978 			return 0;
1979 		}
1980 	}
1981 
1982 	/*
1983 	 * No merge.  Insert a new extent, preserving ordering.
1984 	 */
1985 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1986 	if (new_se == NULL)
1987 		return -ENOMEM;
1988 	new_se->start_page = start_page;
1989 	new_se->nr_pages = nr_pages;
1990 	new_se->start_block = start_block;
1991 
1992 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1993 	return 1;
1994 }
1995 
1996 /*
1997  * A `swap extent' is a simple thing which maps a contiguous range of pages
1998  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1999  * is built at swapon time and is then used at swap_writepage/swap_readpage
2000  * time for locating where on disk a page belongs.
2001  *
2002  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2003  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2004  * swap files identically.
2005  *
2006  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2007  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2008  * swapfiles are handled *identically* after swapon time.
2009  *
2010  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2011  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2012  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2013  * requirements, they are simply tossed out - we will never use those blocks
2014  * for swapping.
2015  *
2016  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2017  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2018  * which will scribble on the fs.
2019  *
2020  * The amount of disk space which a single swap extent represents varies.
2021  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2022  * extents in the list.  To avoid much list walking, we cache the previous
2023  * search location in `curr_swap_extent', and start new searches from there.
2024  * This is extremely effective.  The average number of iterations in
2025  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2026  */
2027 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2028 {
2029 	struct file *swap_file = sis->swap_file;
2030 	struct address_space *mapping = swap_file->f_mapping;
2031 	struct inode *inode = mapping->host;
2032 	int ret;
2033 
2034 	if (S_ISBLK(inode->i_mode)) {
2035 		ret = add_swap_extent(sis, 0, sis->max, 0);
2036 		*span = sis->pages;
2037 		return ret;
2038 	}
2039 
2040 	if (mapping->a_ops->swap_activate) {
2041 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2042 		if (!ret) {
2043 			sis->flags |= SWP_FILE;
2044 			ret = add_swap_extent(sis, 0, sis->max, 0);
2045 			*span = sis->pages;
2046 		}
2047 		return ret;
2048 	}
2049 
2050 	return generic_swapfile_activate(sis, swap_file, span);
2051 }
2052 
2053 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2054 				unsigned char *swap_map,
2055 				struct swap_cluster_info *cluster_info)
2056 {
2057 	if (prio >= 0)
2058 		p->prio = prio;
2059 	else
2060 		p->prio = --least_priority;
2061 	/*
2062 	 * the plist prio is negated because plist ordering is
2063 	 * low-to-high, while swap ordering is high-to-low
2064 	 */
2065 	p->list.prio = -p->prio;
2066 	p->avail_list.prio = -p->prio;
2067 	p->swap_map = swap_map;
2068 	p->cluster_info = cluster_info;
2069 	p->flags |= SWP_WRITEOK;
2070 	atomic_long_add(p->pages, &nr_swap_pages);
2071 	total_swap_pages += p->pages;
2072 
2073 	assert_spin_locked(&swap_lock);
2074 	/*
2075 	 * both lists are plists, and thus priority ordered.
2076 	 * swap_active_head needs to be priority ordered for swapoff(),
2077 	 * which on removal of any swap_info_struct with an auto-assigned
2078 	 * (i.e. negative) priority increments the auto-assigned priority
2079 	 * of any lower-priority swap_info_structs.
2080 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2081 	 * which allocates swap pages from the highest available priority
2082 	 * swap_info_struct.
2083 	 */
2084 	plist_add(&p->list, &swap_active_head);
2085 	spin_lock(&swap_avail_lock);
2086 	plist_add(&p->avail_list, &swap_avail_head);
2087 	spin_unlock(&swap_avail_lock);
2088 }
2089 
2090 static void enable_swap_info(struct swap_info_struct *p, int prio,
2091 				unsigned char *swap_map,
2092 				struct swap_cluster_info *cluster_info,
2093 				unsigned long *frontswap_map)
2094 {
2095 	frontswap_init(p->type, frontswap_map);
2096 	spin_lock(&swap_lock);
2097 	spin_lock(&p->lock);
2098 	 _enable_swap_info(p, prio, swap_map, cluster_info);
2099 	spin_unlock(&p->lock);
2100 	spin_unlock(&swap_lock);
2101 }
2102 
2103 static void reinsert_swap_info(struct swap_info_struct *p)
2104 {
2105 	spin_lock(&swap_lock);
2106 	spin_lock(&p->lock);
2107 	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2108 	spin_unlock(&p->lock);
2109 	spin_unlock(&swap_lock);
2110 }
2111 
2112 bool has_usable_swap(void)
2113 {
2114 	bool ret = true;
2115 
2116 	spin_lock(&swap_lock);
2117 	if (plist_head_empty(&swap_active_head))
2118 		ret = false;
2119 	spin_unlock(&swap_lock);
2120 	return ret;
2121 }
2122 
2123 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2124 {
2125 	struct swap_info_struct *p = NULL;
2126 	unsigned char *swap_map;
2127 	struct swap_cluster_info *cluster_info;
2128 	unsigned long *frontswap_map;
2129 	struct file *swap_file, *victim;
2130 	struct address_space *mapping;
2131 	struct inode *inode;
2132 	struct filename *pathname;
2133 	int err, found = 0;
2134 	unsigned int old_block_size;
2135 
2136 	if (!capable(CAP_SYS_ADMIN))
2137 		return -EPERM;
2138 
2139 	BUG_ON(!current->mm);
2140 
2141 	pathname = getname(specialfile);
2142 	if (IS_ERR(pathname))
2143 		return PTR_ERR(pathname);
2144 
2145 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2146 	err = PTR_ERR(victim);
2147 	if (IS_ERR(victim))
2148 		goto out;
2149 
2150 	mapping = victim->f_mapping;
2151 	spin_lock(&swap_lock);
2152 	plist_for_each_entry(p, &swap_active_head, list) {
2153 		if (p->flags & SWP_WRITEOK) {
2154 			if (p->swap_file->f_mapping == mapping) {
2155 				found = 1;
2156 				break;
2157 			}
2158 		}
2159 	}
2160 	if (!found) {
2161 		err = -EINVAL;
2162 		spin_unlock(&swap_lock);
2163 		goto out_dput;
2164 	}
2165 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2166 		vm_unacct_memory(p->pages);
2167 	else {
2168 		err = -ENOMEM;
2169 		spin_unlock(&swap_lock);
2170 		goto out_dput;
2171 	}
2172 	spin_lock(&swap_avail_lock);
2173 	plist_del(&p->avail_list, &swap_avail_head);
2174 	spin_unlock(&swap_avail_lock);
2175 	spin_lock(&p->lock);
2176 	if (p->prio < 0) {
2177 		struct swap_info_struct *si = p;
2178 
2179 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2180 			si->prio++;
2181 			si->list.prio--;
2182 			si->avail_list.prio--;
2183 		}
2184 		least_priority++;
2185 	}
2186 	plist_del(&p->list, &swap_active_head);
2187 	atomic_long_sub(p->pages, &nr_swap_pages);
2188 	total_swap_pages -= p->pages;
2189 	p->flags &= ~SWP_WRITEOK;
2190 	spin_unlock(&p->lock);
2191 	spin_unlock(&swap_lock);
2192 
2193 	disable_swap_slots_cache_lock();
2194 
2195 	set_current_oom_origin();
2196 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2197 	clear_current_oom_origin();
2198 
2199 	if (err) {
2200 		/* re-insert swap space back into swap_list */
2201 		reinsert_swap_info(p);
2202 		reenable_swap_slots_cache_unlock();
2203 		goto out_dput;
2204 	}
2205 
2206 	reenable_swap_slots_cache_unlock();
2207 
2208 	flush_work(&p->discard_work);
2209 
2210 	destroy_swap_extents(p);
2211 	if (p->flags & SWP_CONTINUED)
2212 		free_swap_count_continuations(p);
2213 
2214 	mutex_lock(&swapon_mutex);
2215 	spin_lock(&swap_lock);
2216 	spin_lock(&p->lock);
2217 	drain_mmlist();
2218 
2219 	/* wait for anyone still in scan_swap_map */
2220 	p->highest_bit = 0;		/* cuts scans short */
2221 	while (p->flags >= SWP_SCANNING) {
2222 		spin_unlock(&p->lock);
2223 		spin_unlock(&swap_lock);
2224 		schedule_timeout_uninterruptible(1);
2225 		spin_lock(&swap_lock);
2226 		spin_lock(&p->lock);
2227 	}
2228 
2229 	swap_file = p->swap_file;
2230 	old_block_size = p->old_block_size;
2231 	p->swap_file = NULL;
2232 	p->max = 0;
2233 	swap_map = p->swap_map;
2234 	p->swap_map = NULL;
2235 	cluster_info = p->cluster_info;
2236 	p->cluster_info = NULL;
2237 	frontswap_map = frontswap_map_get(p);
2238 	spin_unlock(&p->lock);
2239 	spin_unlock(&swap_lock);
2240 	frontswap_invalidate_area(p->type);
2241 	frontswap_map_set(p, NULL);
2242 	mutex_unlock(&swapon_mutex);
2243 	free_percpu(p->percpu_cluster);
2244 	p->percpu_cluster = NULL;
2245 	vfree(swap_map);
2246 	vfree(cluster_info);
2247 	vfree(frontswap_map);
2248 	/* Destroy swap account information */
2249 	swap_cgroup_swapoff(p->type);
2250 	exit_swap_address_space(p->type);
2251 
2252 	inode = mapping->host;
2253 	if (S_ISBLK(inode->i_mode)) {
2254 		struct block_device *bdev = I_BDEV(inode);
2255 		set_blocksize(bdev, old_block_size);
2256 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2257 	} else {
2258 		inode_lock(inode);
2259 		inode->i_flags &= ~S_SWAPFILE;
2260 		inode_unlock(inode);
2261 	}
2262 	filp_close(swap_file, NULL);
2263 
2264 	/*
2265 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2266 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2267 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2268 	 */
2269 	spin_lock(&swap_lock);
2270 	p->flags = 0;
2271 	spin_unlock(&swap_lock);
2272 
2273 	err = 0;
2274 	atomic_inc(&proc_poll_event);
2275 	wake_up_interruptible(&proc_poll_wait);
2276 
2277 out_dput:
2278 	filp_close(victim, NULL);
2279 out:
2280 	putname(pathname);
2281 	return err;
2282 }
2283 
2284 #ifdef CONFIG_PROC_FS
2285 static unsigned swaps_poll(struct file *file, poll_table *wait)
2286 {
2287 	struct seq_file *seq = file->private_data;
2288 
2289 	poll_wait(file, &proc_poll_wait, wait);
2290 
2291 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2292 		seq->poll_event = atomic_read(&proc_poll_event);
2293 		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2294 	}
2295 
2296 	return POLLIN | POLLRDNORM;
2297 }
2298 
2299 /* iterator */
2300 static void *swap_start(struct seq_file *swap, loff_t *pos)
2301 {
2302 	struct swap_info_struct *si;
2303 	int type;
2304 	loff_t l = *pos;
2305 
2306 	mutex_lock(&swapon_mutex);
2307 
2308 	if (!l)
2309 		return SEQ_START_TOKEN;
2310 
2311 	for (type = 0; type < nr_swapfiles; type++) {
2312 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2313 		si = swap_info[type];
2314 		if (!(si->flags & SWP_USED) || !si->swap_map)
2315 			continue;
2316 		if (!--l)
2317 			return si;
2318 	}
2319 
2320 	return NULL;
2321 }
2322 
2323 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2324 {
2325 	struct swap_info_struct *si = v;
2326 	int type;
2327 
2328 	if (v == SEQ_START_TOKEN)
2329 		type = 0;
2330 	else
2331 		type = si->type + 1;
2332 
2333 	for (; type < nr_swapfiles; type++) {
2334 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2335 		si = swap_info[type];
2336 		if (!(si->flags & SWP_USED) || !si->swap_map)
2337 			continue;
2338 		++*pos;
2339 		return si;
2340 	}
2341 
2342 	return NULL;
2343 }
2344 
2345 static void swap_stop(struct seq_file *swap, void *v)
2346 {
2347 	mutex_unlock(&swapon_mutex);
2348 }
2349 
2350 static int swap_show(struct seq_file *swap, void *v)
2351 {
2352 	struct swap_info_struct *si = v;
2353 	struct file *file;
2354 	int len;
2355 
2356 	if (si == SEQ_START_TOKEN) {
2357 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2358 		return 0;
2359 	}
2360 
2361 	file = si->swap_file;
2362 	len = seq_file_path(swap, file, " \t\n\\");
2363 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2364 			len < 40 ? 40 - len : 1, " ",
2365 			S_ISBLK(file_inode(file)->i_mode) ?
2366 				"partition" : "file\t",
2367 			si->pages << (PAGE_SHIFT - 10),
2368 			si->inuse_pages << (PAGE_SHIFT - 10),
2369 			si->prio);
2370 	return 0;
2371 }
2372 
2373 static const struct seq_operations swaps_op = {
2374 	.start =	swap_start,
2375 	.next =		swap_next,
2376 	.stop =		swap_stop,
2377 	.show =		swap_show
2378 };
2379 
2380 static int swaps_open(struct inode *inode, struct file *file)
2381 {
2382 	struct seq_file *seq;
2383 	int ret;
2384 
2385 	ret = seq_open(file, &swaps_op);
2386 	if (ret)
2387 		return ret;
2388 
2389 	seq = file->private_data;
2390 	seq->poll_event = atomic_read(&proc_poll_event);
2391 	return 0;
2392 }
2393 
2394 static const struct file_operations proc_swaps_operations = {
2395 	.open		= swaps_open,
2396 	.read		= seq_read,
2397 	.llseek		= seq_lseek,
2398 	.release	= seq_release,
2399 	.poll		= swaps_poll,
2400 };
2401 
2402 static int __init procswaps_init(void)
2403 {
2404 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2405 	return 0;
2406 }
2407 __initcall(procswaps_init);
2408 #endif /* CONFIG_PROC_FS */
2409 
2410 #ifdef MAX_SWAPFILES_CHECK
2411 static int __init max_swapfiles_check(void)
2412 {
2413 	MAX_SWAPFILES_CHECK();
2414 	return 0;
2415 }
2416 late_initcall(max_swapfiles_check);
2417 #endif
2418 
2419 static struct swap_info_struct *alloc_swap_info(void)
2420 {
2421 	struct swap_info_struct *p;
2422 	unsigned int type;
2423 
2424 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2425 	if (!p)
2426 		return ERR_PTR(-ENOMEM);
2427 
2428 	spin_lock(&swap_lock);
2429 	for (type = 0; type < nr_swapfiles; type++) {
2430 		if (!(swap_info[type]->flags & SWP_USED))
2431 			break;
2432 	}
2433 	if (type >= MAX_SWAPFILES) {
2434 		spin_unlock(&swap_lock);
2435 		kfree(p);
2436 		return ERR_PTR(-EPERM);
2437 	}
2438 	if (type >= nr_swapfiles) {
2439 		p->type = type;
2440 		swap_info[type] = p;
2441 		/*
2442 		 * Write swap_info[type] before nr_swapfiles, in case a
2443 		 * racing procfs swap_start() or swap_next() is reading them.
2444 		 * (We never shrink nr_swapfiles, we never free this entry.)
2445 		 */
2446 		smp_wmb();
2447 		nr_swapfiles++;
2448 	} else {
2449 		kfree(p);
2450 		p = swap_info[type];
2451 		/*
2452 		 * Do not memset this entry: a racing procfs swap_next()
2453 		 * would be relying on p->type to remain valid.
2454 		 */
2455 	}
2456 	INIT_LIST_HEAD(&p->first_swap_extent.list);
2457 	plist_node_init(&p->list, 0);
2458 	plist_node_init(&p->avail_list, 0);
2459 	p->flags = SWP_USED;
2460 	spin_unlock(&swap_lock);
2461 	spin_lock_init(&p->lock);
2462 
2463 	return p;
2464 }
2465 
2466 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2467 {
2468 	int error;
2469 
2470 	if (S_ISBLK(inode->i_mode)) {
2471 		p->bdev = bdgrab(I_BDEV(inode));
2472 		error = blkdev_get(p->bdev,
2473 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2474 		if (error < 0) {
2475 			p->bdev = NULL;
2476 			return error;
2477 		}
2478 		p->old_block_size = block_size(p->bdev);
2479 		error = set_blocksize(p->bdev, PAGE_SIZE);
2480 		if (error < 0)
2481 			return error;
2482 		p->flags |= SWP_BLKDEV;
2483 	} else if (S_ISREG(inode->i_mode)) {
2484 		p->bdev = inode->i_sb->s_bdev;
2485 		inode_lock(inode);
2486 		if (IS_SWAPFILE(inode))
2487 			return -EBUSY;
2488 	} else
2489 		return -EINVAL;
2490 
2491 	return 0;
2492 }
2493 
2494 static unsigned long read_swap_header(struct swap_info_struct *p,
2495 					union swap_header *swap_header,
2496 					struct inode *inode)
2497 {
2498 	int i;
2499 	unsigned long maxpages;
2500 	unsigned long swapfilepages;
2501 	unsigned long last_page;
2502 
2503 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2504 		pr_err("Unable to find swap-space signature\n");
2505 		return 0;
2506 	}
2507 
2508 	/* swap partition endianess hack... */
2509 	if (swab32(swap_header->info.version) == 1) {
2510 		swab32s(&swap_header->info.version);
2511 		swab32s(&swap_header->info.last_page);
2512 		swab32s(&swap_header->info.nr_badpages);
2513 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2514 			return 0;
2515 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2516 			swab32s(&swap_header->info.badpages[i]);
2517 	}
2518 	/* Check the swap header's sub-version */
2519 	if (swap_header->info.version != 1) {
2520 		pr_warn("Unable to handle swap header version %d\n",
2521 			swap_header->info.version);
2522 		return 0;
2523 	}
2524 
2525 	p->lowest_bit  = 1;
2526 	p->cluster_next = 1;
2527 	p->cluster_nr = 0;
2528 
2529 	/*
2530 	 * Find out how many pages are allowed for a single swap
2531 	 * device. There are two limiting factors: 1) the number
2532 	 * of bits for the swap offset in the swp_entry_t type, and
2533 	 * 2) the number of bits in the swap pte as defined by the
2534 	 * different architectures. In order to find the
2535 	 * largest possible bit mask, a swap entry with swap type 0
2536 	 * and swap offset ~0UL is created, encoded to a swap pte,
2537 	 * decoded to a swp_entry_t again, and finally the swap
2538 	 * offset is extracted. This will mask all the bits from
2539 	 * the initial ~0UL mask that can't be encoded in either
2540 	 * the swp_entry_t or the architecture definition of a
2541 	 * swap pte.
2542 	 */
2543 	maxpages = swp_offset(pte_to_swp_entry(
2544 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2545 	last_page = swap_header->info.last_page;
2546 	if (last_page > maxpages) {
2547 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2548 			maxpages << (PAGE_SHIFT - 10),
2549 			last_page << (PAGE_SHIFT - 10));
2550 	}
2551 	if (maxpages > last_page) {
2552 		maxpages = last_page + 1;
2553 		/* p->max is an unsigned int: don't overflow it */
2554 		if ((unsigned int)maxpages == 0)
2555 			maxpages = UINT_MAX;
2556 	}
2557 	p->highest_bit = maxpages - 1;
2558 
2559 	if (!maxpages)
2560 		return 0;
2561 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2562 	if (swapfilepages && maxpages > swapfilepages) {
2563 		pr_warn("Swap area shorter than signature indicates\n");
2564 		return 0;
2565 	}
2566 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2567 		return 0;
2568 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2569 		return 0;
2570 
2571 	return maxpages;
2572 }
2573 
2574 #define SWAP_CLUSTER_INFO_COLS						\
2575 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2576 #define SWAP_CLUSTER_SPACE_COLS						\
2577 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2578 #define SWAP_CLUSTER_COLS						\
2579 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2580 
2581 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2582 					union swap_header *swap_header,
2583 					unsigned char *swap_map,
2584 					struct swap_cluster_info *cluster_info,
2585 					unsigned long maxpages,
2586 					sector_t *span)
2587 {
2588 	unsigned int j, k;
2589 	unsigned int nr_good_pages;
2590 	int nr_extents;
2591 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2592 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2593 	unsigned long i, idx;
2594 
2595 	nr_good_pages = maxpages - 1;	/* omit header page */
2596 
2597 	cluster_list_init(&p->free_clusters);
2598 	cluster_list_init(&p->discard_clusters);
2599 
2600 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2601 		unsigned int page_nr = swap_header->info.badpages[i];
2602 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2603 			return -EINVAL;
2604 		if (page_nr < maxpages) {
2605 			swap_map[page_nr] = SWAP_MAP_BAD;
2606 			nr_good_pages--;
2607 			/*
2608 			 * Haven't marked the cluster free yet, no list
2609 			 * operation involved
2610 			 */
2611 			inc_cluster_info_page(p, cluster_info, page_nr);
2612 		}
2613 	}
2614 
2615 	/* Haven't marked the cluster free yet, no list operation involved */
2616 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2617 		inc_cluster_info_page(p, cluster_info, i);
2618 
2619 	if (nr_good_pages) {
2620 		swap_map[0] = SWAP_MAP_BAD;
2621 		/*
2622 		 * Not mark the cluster free yet, no list
2623 		 * operation involved
2624 		 */
2625 		inc_cluster_info_page(p, cluster_info, 0);
2626 		p->max = maxpages;
2627 		p->pages = nr_good_pages;
2628 		nr_extents = setup_swap_extents(p, span);
2629 		if (nr_extents < 0)
2630 			return nr_extents;
2631 		nr_good_pages = p->pages;
2632 	}
2633 	if (!nr_good_pages) {
2634 		pr_warn("Empty swap-file\n");
2635 		return -EINVAL;
2636 	}
2637 
2638 	if (!cluster_info)
2639 		return nr_extents;
2640 
2641 
2642 	/*
2643 	 * Reduce false cache line sharing between cluster_info and
2644 	 * sharing same address space.
2645 	 */
2646 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2647 		j = (k + col) % SWAP_CLUSTER_COLS;
2648 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2649 			idx = i * SWAP_CLUSTER_COLS + j;
2650 			if (idx >= nr_clusters)
2651 				continue;
2652 			if (cluster_count(&cluster_info[idx]))
2653 				continue;
2654 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2655 			cluster_list_add_tail(&p->free_clusters, cluster_info,
2656 					      idx);
2657 		}
2658 	}
2659 	return nr_extents;
2660 }
2661 
2662 /*
2663  * Helper to sys_swapon determining if a given swap
2664  * backing device queue supports DISCARD operations.
2665  */
2666 static bool swap_discardable(struct swap_info_struct *si)
2667 {
2668 	struct request_queue *q = bdev_get_queue(si->bdev);
2669 
2670 	if (!q || !blk_queue_discard(q))
2671 		return false;
2672 
2673 	return true;
2674 }
2675 
2676 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2677 {
2678 	struct swap_info_struct *p;
2679 	struct filename *name;
2680 	struct file *swap_file = NULL;
2681 	struct address_space *mapping;
2682 	int prio;
2683 	int error;
2684 	union swap_header *swap_header;
2685 	int nr_extents;
2686 	sector_t span;
2687 	unsigned long maxpages;
2688 	unsigned char *swap_map = NULL;
2689 	struct swap_cluster_info *cluster_info = NULL;
2690 	unsigned long *frontswap_map = NULL;
2691 	struct page *page = NULL;
2692 	struct inode *inode = NULL;
2693 
2694 	if (swap_flags & ~SWAP_FLAGS_VALID)
2695 		return -EINVAL;
2696 
2697 	if (!capable(CAP_SYS_ADMIN))
2698 		return -EPERM;
2699 
2700 	p = alloc_swap_info();
2701 	if (IS_ERR(p))
2702 		return PTR_ERR(p);
2703 
2704 	INIT_WORK(&p->discard_work, swap_discard_work);
2705 
2706 	name = getname(specialfile);
2707 	if (IS_ERR(name)) {
2708 		error = PTR_ERR(name);
2709 		name = NULL;
2710 		goto bad_swap;
2711 	}
2712 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2713 	if (IS_ERR(swap_file)) {
2714 		error = PTR_ERR(swap_file);
2715 		swap_file = NULL;
2716 		goto bad_swap;
2717 	}
2718 
2719 	p->swap_file = swap_file;
2720 	mapping = swap_file->f_mapping;
2721 	inode = mapping->host;
2722 
2723 	/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2724 	error = claim_swapfile(p, inode);
2725 	if (unlikely(error))
2726 		goto bad_swap;
2727 
2728 	/*
2729 	 * Read the swap header.
2730 	 */
2731 	if (!mapping->a_ops->readpage) {
2732 		error = -EINVAL;
2733 		goto bad_swap;
2734 	}
2735 	page = read_mapping_page(mapping, 0, swap_file);
2736 	if (IS_ERR(page)) {
2737 		error = PTR_ERR(page);
2738 		goto bad_swap;
2739 	}
2740 	swap_header = kmap(page);
2741 
2742 	maxpages = read_swap_header(p, swap_header, inode);
2743 	if (unlikely(!maxpages)) {
2744 		error = -EINVAL;
2745 		goto bad_swap;
2746 	}
2747 
2748 	/* OK, set up the swap map and apply the bad block list */
2749 	swap_map = vzalloc(maxpages);
2750 	if (!swap_map) {
2751 		error = -ENOMEM;
2752 		goto bad_swap;
2753 	}
2754 
2755 	if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2756 		p->flags |= SWP_STABLE_WRITES;
2757 
2758 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2759 		int cpu;
2760 		unsigned long ci, nr_cluster;
2761 
2762 		p->flags |= SWP_SOLIDSTATE;
2763 		/*
2764 		 * select a random position to start with to help wear leveling
2765 		 * SSD
2766 		 */
2767 		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2768 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2769 
2770 		cluster_info = vzalloc(nr_cluster * sizeof(*cluster_info));
2771 		if (!cluster_info) {
2772 			error = -ENOMEM;
2773 			goto bad_swap;
2774 		}
2775 
2776 		for (ci = 0; ci < nr_cluster; ci++)
2777 			spin_lock_init(&((cluster_info + ci)->lock));
2778 
2779 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2780 		if (!p->percpu_cluster) {
2781 			error = -ENOMEM;
2782 			goto bad_swap;
2783 		}
2784 		for_each_possible_cpu(cpu) {
2785 			struct percpu_cluster *cluster;
2786 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2787 			cluster_set_null(&cluster->index);
2788 		}
2789 	}
2790 
2791 	error = swap_cgroup_swapon(p->type, maxpages);
2792 	if (error)
2793 		goto bad_swap;
2794 
2795 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2796 		cluster_info, maxpages, &span);
2797 	if (unlikely(nr_extents < 0)) {
2798 		error = nr_extents;
2799 		goto bad_swap;
2800 	}
2801 	/* frontswap enabled? set up bit-per-page map for frontswap */
2802 	if (IS_ENABLED(CONFIG_FRONTSWAP))
2803 		frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2804 
2805 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2806 		/*
2807 		 * When discard is enabled for swap with no particular
2808 		 * policy flagged, we set all swap discard flags here in
2809 		 * order to sustain backward compatibility with older
2810 		 * swapon(8) releases.
2811 		 */
2812 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2813 			     SWP_PAGE_DISCARD);
2814 
2815 		/*
2816 		 * By flagging sys_swapon, a sysadmin can tell us to
2817 		 * either do single-time area discards only, or to just
2818 		 * perform discards for released swap page-clusters.
2819 		 * Now it's time to adjust the p->flags accordingly.
2820 		 */
2821 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2822 			p->flags &= ~SWP_PAGE_DISCARD;
2823 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2824 			p->flags &= ~SWP_AREA_DISCARD;
2825 
2826 		/* issue a swapon-time discard if it's still required */
2827 		if (p->flags & SWP_AREA_DISCARD) {
2828 			int err = discard_swap(p);
2829 			if (unlikely(err))
2830 				pr_err("swapon: discard_swap(%p): %d\n",
2831 					p, err);
2832 		}
2833 	}
2834 
2835 	error = init_swap_address_space(p->type, maxpages);
2836 	if (error)
2837 		goto bad_swap;
2838 
2839 	mutex_lock(&swapon_mutex);
2840 	prio = -1;
2841 	if (swap_flags & SWAP_FLAG_PREFER)
2842 		prio =
2843 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2844 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2845 
2846 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2847 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2848 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2849 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2850 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
2851 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
2852 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2853 		(frontswap_map) ? "FS" : "");
2854 
2855 	mutex_unlock(&swapon_mutex);
2856 	atomic_inc(&proc_poll_event);
2857 	wake_up_interruptible(&proc_poll_wait);
2858 
2859 	if (S_ISREG(inode->i_mode))
2860 		inode->i_flags |= S_SWAPFILE;
2861 	error = 0;
2862 	goto out;
2863 bad_swap:
2864 	free_percpu(p->percpu_cluster);
2865 	p->percpu_cluster = NULL;
2866 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2867 		set_blocksize(p->bdev, p->old_block_size);
2868 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2869 	}
2870 	destroy_swap_extents(p);
2871 	swap_cgroup_swapoff(p->type);
2872 	spin_lock(&swap_lock);
2873 	p->swap_file = NULL;
2874 	p->flags = 0;
2875 	spin_unlock(&swap_lock);
2876 	vfree(swap_map);
2877 	vfree(cluster_info);
2878 	if (swap_file) {
2879 		if (inode && S_ISREG(inode->i_mode)) {
2880 			inode_unlock(inode);
2881 			inode = NULL;
2882 		}
2883 		filp_close(swap_file, NULL);
2884 	}
2885 out:
2886 	if (page && !IS_ERR(page)) {
2887 		kunmap(page);
2888 		put_page(page);
2889 	}
2890 	if (name)
2891 		putname(name);
2892 	if (inode && S_ISREG(inode->i_mode))
2893 		inode_unlock(inode);
2894 	if (!error)
2895 		enable_swap_slots_cache();
2896 	return error;
2897 }
2898 
2899 void si_swapinfo(struct sysinfo *val)
2900 {
2901 	unsigned int type;
2902 	unsigned long nr_to_be_unused = 0;
2903 
2904 	spin_lock(&swap_lock);
2905 	for (type = 0; type < nr_swapfiles; type++) {
2906 		struct swap_info_struct *si = swap_info[type];
2907 
2908 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2909 			nr_to_be_unused += si->inuse_pages;
2910 	}
2911 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2912 	val->totalswap = total_swap_pages + nr_to_be_unused;
2913 	spin_unlock(&swap_lock);
2914 }
2915 
2916 /*
2917  * Verify that a swap entry is valid and increment its swap map count.
2918  *
2919  * Returns error code in following case.
2920  * - success -> 0
2921  * - swp_entry is invalid -> EINVAL
2922  * - swp_entry is migration entry -> EINVAL
2923  * - swap-cache reference is requested but there is already one. -> EEXIST
2924  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2925  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2926  */
2927 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2928 {
2929 	struct swap_info_struct *p;
2930 	struct swap_cluster_info *ci;
2931 	unsigned long offset, type;
2932 	unsigned char count;
2933 	unsigned char has_cache;
2934 	int err = -EINVAL;
2935 
2936 	if (non_swap_entry(entry))
2937 		goto out;
2938 
2939 	type = swp_type(entry);
2940 	if (type >= nr_swapfiles)
2941 		goto bad_file;
2942 	p = swap_info[type];
2943 	offset = swp_offset(entry);
2944 	if (unlikely(offset >= p->max))
2945 		goto out;
2946 
2947 	ci = lock_cluster_or_swap_info(p, offset);
2948 
2949 	count = p->swap_map[offset];
2950 
2951 	/*
2952 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
2953 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2954 	 */
2955 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2956 		err = -ENOENT;
2957 		goto unlock_out;
2958 	}
2959 
2960 	has_cache = count & SWAP_HAS_CACHE;
2961 	count &= ~SWAP_HAS_CACHE;
2962 	err = 0;
2963 
2964 	if (usage == SWAP_HAS_CACHE) {
2965 
2966 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2967 		if (!has_cache && count)
2968 			has_cache = SWAP_HAS_CACHE;
2969 		else if (has_cache)		/* someone else added cache */
2970 			err = -EEXIST;
2971 		else				/* no users remaining */
2972 			err = -ENOENT;
2973 
2974 	} else if (count || has_cache) {
2975 
2976 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2977 			count += usage;
2978 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2979 			err = -EINVAL;
2980 		else if (swap_count_continued(p, offset, count))
2981 			count = COUNT_CONTINUED;
2982 		else
2983 			err = -ENOMEM;
2984 	} else
2985 		err = -ENOENT;			/* unused swap entry */
2986 
2987 	p->swap_map[offset] = count | has_cache;
2988 
2989 unlock_out:
2990 	unlock_cluster_or_swap_info(p, ci);
2991 out:
2992 	return err;
2993 
2994 bad_file:
2995 	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2996 	goto out;
2997 }
2998 
2999 /*
3000  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3001  * (in which case its reference count is never incremented).
3002  */
3003 void swap_shmem_alloc(swp_entry_t entry)
3004 {
3005 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3006 }
3007 
3008 /*
3009  * Increase reference count of swap entry by 1.
3010  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3011  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3012  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3013  * might occur if a page table entry has got corrupted.
3014  */
3015 int swap_duplicate(swp_entry_t entry)
3016 {
3017 	int err = 0;
3018 
3019 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3020 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3021 	return err;
3022 }
3023 
3024 /*
3025  * @entry: swap entry for which we allocate swap cache.
3026  *
3027  * Called when allocating swap cache for existing swap entry,
3028  * This can return error codes. Returns 0 at success.
3029  * -EBUSY means there is a swap cache.
3030  * Note: return code is different from swap_duplicate().
3031  */
3032 int swapcache_prepare(swp_entry_t entry)
3033 {
3034 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3035 }
3036 
3037 struct swap_info_struct *page_swap_info(struct page *page)
3038 {
3039 	swp_entry_t swap = { .val = page_private(page) };
3040 	return swap_info[swp_type(swap)];
3041 }
3042 
3043 /*
3044  * out-of-line __page_file_ methods to avoid include hell.
3045  */
3046 struct address_space *__page_file_mapping(struct page *page)
3047 {
3048 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3049 	return page_swap_info(page)->swap_file->f_mapping;
3050 }
3051 EXPORT_SYMBOL_GPL(__page_file_mapping);
3052 
3053 pgoff_t __page_file_index(struct page *page)
3054 {
3055 	swp_entry_t swap = { .val = page_private(page) };
3056 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3057 	return swp_offset(swap);
3058 }
3059 EXPORT_SYMBOL_GPL(__page_file_index);
3060 
3061 /*
3062  * add_swap_count_continuation - called when a swap count is duplicated
3063  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3064  * page of the original vmalloc'ed swap_map, to hold the continuation count
3065  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3066  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3067  *
3068  * These continuation pages are seldom referenced: the common paths all work
3069  * on the original swap_map, only referring to a continuation page when the
3070  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3071  *
3072  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3073  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3074  * can be called after dropping locks.
3075  */
3076 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3077 {
3078 	struct swap_info_struct *si;
3079 	struct swap_cluster_info *ci;
3080 	struct page *head;
3081 	struct page *page;
3082 	struct page *list_page;
3083 	pgoff_t offset;
3084 	unsigned char count;
3085 
3086 	/*
3087 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3088 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3089 	 */
3090 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3091 
3092 	si = swap_info_get(entry);
3093 	if (!si) {
3094 		/*
3095 		 * An acceptable race has occurred since the failing
3096 		 * __swap_duplicate(): the swap entry has been freed,
3097 		 * perhaps even the whole swap_map cleared for swapoff.
3098 		 */
3099 		goto outer;
3100 	}
3101 
3102 	offset = swp_offset(entry);
3103 
3104 	ci = lock_cluster(si, offset);
3105 
3106 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3107 
3108 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3109 		/*
3110 		 * The higher the swap count, the more likely it is that tasks
3111 		 * will race to add swap count continuation: we need to avoid
3112 		 * over-provisioning.
3113 		 */
3114 		goto out;
3115 	}
3116 
3117 	if (!page) {
3118 		unlock_cluster(ci);
3119 		spin_unlock(&si->lock);
3120 		return -ENOMEM;
3121 	}
3122 
3123 	/*
3124 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3125 	 * no architecture is using highmem pages for kernel page tables: so it
3126 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3127 	 */
3128 	head = vmalloc_to_page(si->swap_map + offset);
3129 	offset &= ~PAGE_MASK;
3130 
3131 	/*
3132 	 * Page allocation does not initialize the page's lru field,
3133 	 * but it does always reset its private field.
3134 	 */
3135 	if (!page_private(head)) {
3136 		BUG_ON(count & COUNT_CONTINUED);
3137 		INIT_LIST_HEAD(&head->lru);
3138 		set_page_private(head, SWP_CONTINUED);
3139 		si->flags |= SWP_CONTINUED;
3140 	}
3141 
3142 	list_for_each_entry(list_page, &head->lru, lru) {
3143 		unsigned char *map;
3144 
3145 		/*
3146 		 * If the previous map said no continuation, but we've found
3147 		 * a continuation page, free our allocation and use this one.
3148 		 */
3149 		if (!(count & COUNT_CONTINUED))
3150 			goto out;
3151 
3152 		map = kmap_atomic(list_page) + offset;
3153 		count = *map;
3154 		kunmap_atomic(map);
3155 
3156 		/*
3157 		 * If this continuation count now has some space in it,
3158 		 * free our allocation and use this one.
3159 		 */
3160 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3161 			goto out;
3162 	}
3163 
3164 	list_add_tail(&page->lru, &head->lru);
3165 	page = NULL;			/* now it's attached, don't free it */
3166 out:
3167 	unlock_cluster(ci);
3168 	spin_unlock(&si->lock);
3169 outer:
3170 	if (page)
3171 		__free_page(page);
3172 	return 0;
3173 }
3174 
3175 /*
3176  * swap_count_continued - when the original swap_map count is incremented
3177  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3178  * into, carry if so, or else fail until a new continuation page is allocated;
3179  * when the original swap_map count is decremented from 0 with continuation,
3180  * borrow from the continuation and report whether it still holds more.
3181  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3182  * lock.
3183  */
3184 static bool swap_count_continued(struct swap_info_struct *si,
3185 				 pgoff_t offset, unsigned char count)
3186 {
3187 	struct page *head;
3188 	struct page *page;
3189 	unsigned char *map;
3190 
3191 	head = vmalloc_to_page(si->swap_map + offset);
3192 	if (page_private(head) != SWP_CONTINUED) {
3193 		BUG_ON(count & COUNT_CONTINUED);
3194 		return false;		/* need to add count continuation */
3195 	}
3196 
3197 	offset &= ~PAGE_MASK;
3198 	page = list_entry(head->lru.next, struct page, lru);
3199 	map = kmap_atomic(page) + offset;
3200 
3201 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3202 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3203 
3204 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3205 		/*
3206 		 * Think of how you add 1 to 999
3207 		 */
3208 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3209 			kunmap_atomic(map);
3210 			page = list_entry(page->lru.next, struct page, lru);
3211 			BUG_ON(page == head);
3212 			map = kmap_atomic(page) + offset;
3213 		}
3214 		if (*map == SWAP_CONT_MAX) {
3215 			kunmap_atomic(map);
3216 			page = list_entry(page->lru.next, struct page, lru);
3217 			if (page == head)
3218 				return false;	/* add count continuation */
3219 			map = kmap_atomic(page) + offset;
3220 init_map:		*map = 0;		/* we didn't zero the page */
3221 		}
3222 		*map += 1;
3223 		kunmap_atomic(map);
3224 		page = list_entry(page->lru.prev, struct page, lru);
3225 		while (page != head) {
3226 			map = kmap_atomic(page) + offset;
3227 			*map = COUNT_CONTINUED;
3228 			kunmap_atomic(map);
3229 			page = list_entry(page->lru.prev, struct page, lru);
3230 		}
3231 		return true;			/* incremented */
3232 
3233 	} else {				/* decrementing */
3234 		/*
3235 		 * Think of how you subtract 1 from 1000
3236 		 */
3237 		BUG_ON(count != COUNT_CONTINUED);
3238 		while (*map == COUNT_CONTINUED) {
3239 			kunmap_atomic(map);
3240 			page = list_entry(page->lru.next, struct page, lru);
3241 			BUG_ON(page == head);
3242 			map = kmap_atomic(page) + offset;
3243 		}
3244 		BUG_ON(*map == 0);
3245 		*map -= 1;
3246 		if (*map == 0)
3247 			count = 0;
3248 		kunmap_atomic(map);
3249 		page = list_entry(page->lru.prev, struct page, lru);
3250 		while (page != head) {
3251 			map = kmap_atomic(page) + offset;
3252 			*map = SWAP_CONT_MAX | count;
3253 			count = COUNT_CONTINUED;
3254 			kunmap_atomic(map);
3255 			page = list_entry(page->lru.prev, struct page, lru);
3256 		}
3257 		return count == COUNT_CONTINUED;
3258 	}
3259 }
3260 
3261 /*
3262  * free_swap_count_continuations - swapoff free all the continuation pages
3263  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3264  */
3265 static void free_swap_count_continuations(struct swap_info_struct *si)
3266 {
3267 	pgoff_t offset;
3268 
3269 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3270 		struct page *head;
3271 		head = vmalloc_to_page(si->swap_map + offset);
3272 		if (page_private(head)) {
3273 			struct page *page, *next;
3274 
3275 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3276 				list_del(&page->lru);
3277 				__free_page(page);
3278 			}
3279 		}
3280 	}
3281 }
3282