1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shmem_fs.h> 18 #include <linux/blkdev.h> 19 #include <linux/random.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/security.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mutex.h> 29 #include <linux/capability.h> 30 #include <linux/syscalls.h> 31 #include <linux/memcontrol.h> 32 #include <linux/poll.h> 33 #include <linux/oom.h> 34 #include <linux/frontswap.h> 35 #include <linux/swapfile.h> 36 #include <linux/export.h> 37 #include <linux/swap_slots.h> 38 39 #include <asm/pgtable.h> 40 #include <asm/tlbflush.h> 41 #include <linux/swapops.h> 42 #include <linux/swap_cgroup.h> 43 44 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 45 unsigned char); 46 static void free_swap_count_continuations(struct swap_info_struct *); 47 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 48 49 DEFINE_SPINLOCK(swap_lock); 50 static unsigned int nr_swapfiles; 51 atomic_long_t nr_swap_pages; 52 /* 53 * Some modules use swappable objects and may try to swap them out under 54 * memory pressure (via the shrinker). Before doing so, they may wish to 55 * check to see if any swap space is available. 56 */ 57 EXPORT_SYMBOL_GPL(nr_swap_pages); 58 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 59 long total_swap_pages; 60 static int least_priority; 61 62 static const char Bad_file[] = "Bad swap file entry "; 63 static const char Unused_file[] = "Unused swap file entry "; 64 static const char Bad_offset[] = "Bad swap offset entry "; 65 static const char Unused_offset[] = "Unused swap offset entry "; 66 67 /* 68 * all active swap_info_structs 69 * protected with swap_lock, and ordered by priority. 70 */ 71 PLIST_HEAD(swap_active_head); 72 73 /* 74 * all available (active, not full) swap_info_structs 75 * protected with swap_avail_lock, ordered by priority. 76 * This is used by get_swap_page() instead of swap_active_head 77 * because swap_active_head includes all swap_info_structs, 78 * but get_swap_page() doesn't need to look at full ones. 79 * This uses its own lock instead of swap_lock because when a 80 * swap_info_struct changes between not-full/full, it needs to 81 * add/remove itself to/from this list, but the swap_info_struct->lock 82 * is held and the locking order requires swap_lock to be taken 83 * before any swap_info_struct->lock. 84 */ 85 static PLIST_HEAD(swap_avail_head); 86 static DEFINE_SPINLOCK(swap_avail_lock); 87 88 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 89 90 static DEFINE_MUTEX(swapon_mutex); 91 92 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 93 /* Activity counter to indicate that a swapon or swapoff has occurred */ 94 static atomic_t proc_poll_event = ATOMIC_INIT(0); 95 96 static inline unsigned char swap_count(unsigned char ent) 97 { 98 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ 99 } 100 101 /* returns 1 if swap entry is freed */ 102 static int 103 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) 104 { 105 swp_entry_t entry = swp_entry(si->type, offset); 106 struct page *page; 107 int ret = 0; 108 109 page = find_get_page(swap_address_space(entry), swp_offset(entry)); 110 if (!page) 111 return 0; 112 /* 113 * This function is called from scan_swap_map() and it's called 114 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. 115 * We have to use trylock for avoiding deadlock. This is a special 116 * case and you should use try_to_free_swap() with explicit lock_page() 117 * in usual operations. 118 */ 119 if (trylock_page(page)) { 120 ret = try_to_free_swap(page); 121 unlock_page(page); 122 } 123 put_page(page); 124 return ret; 125 } 126 127 /* 128 * swapon tell device that all the old swap contents can be discarded, 129 * to allow the swap device to optimize its wear-levelling. 130 */ 131 static int discard_swap(struct swap_info_struct *si) 132 { 133 struct swap_extent *se; 134 sector_t start_block; 135 sector_t nr_blocks; 136 int err = 0; 137 138 /* Do not discard the swap header page! */ 139 se = &si->first_swap_extent; 140 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 141 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 142 if (nr_blocks) { 143 err = blkdev_issue_discard(si->bdev, start_block, 144 nr_blocks, GFP_KERNEL, 0); 145 if (err) 146 return err; 147 cond_resched(); 148 } 149 150 list_for_each_entry(se, &si->first_swap_extent.list, list) { 151 start_block = se->start_block << (PAGE_SHIFT - 9); 152 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 153 154 err = blkdev_issue_discard(si->bdev, start_block, 155 nr_blocks, GFP_KERNEL, 0); 156 if (err) 157 break; 158 159 cond_resched(); 160 } 161 return err; /* That will often be -EOPNOTSUPP */ 162 } 163 164 /* 165 * swap allocation tell device that a cluster of swap can now be discarded, 166 * to allow the swap device to optimize its wear-levelling. 167 */ 168 static void discard_swap_cluster(struct swap_info_struct *si, 169 pgoff_t start_page, pgoff_t nr_pages) 170 { 171 struct swap_extent *se = si->curr_swap_extent; 172 int found_extent = 0; 173 174 while (nr_pages) { 175 if (se->start_page <= start_page && 176 start_page < se->start_page + se->nr_pages) { 177 pgoff_t offset = start_page - se->start_page; 178 sector_t start_block = se->start_block + offset; 179 sector_t nr_blocks = se->nr_pages - offset; 180 181 if (nr_blocks > nr_pages) 182 nr_blocks = nr_pages; 183 start_page += nr_blocks; 184 nr_pages -= nr_blocks; 185 186 if (!found_extent++) 187 si->curr_swap_extent = se; 188 189 start_block <<= PAGE_SHIFT - 9; 190 nr_blocks <<= PAGE_SHIFT - 9; 191 if (blkdev_issue_discard(si->bdev, start_block, 192 nr_blocks, GFP_NOIO, 0)) 193 break; 194 } 195 196 se = list_next_entry(se, list); 197 } 198 } 199 200 #define SWAPFILE_CLUSTER 256 201 #define LATENCY_LIMIT 256 202 203 static inline void cluster_set_flag(struct swap_cluster_info *info, 204 unsigned int flag) 205 { 206 info->flags = flag; 207 } 208 209 static inline unsigned int cluster_count(struct swap_cluster_info *info) 210 { 211 return info->data; 212 } 213 214 static inline void cluster_set_count(struct swap_cluster_info *info, 215 unsigned int c) 216 { 217 info->data = c; 218 } 219 220 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 221 unsigned int c, unsigned int f) 222 { 223 info->flags = f; 224 info->data = c; 225 } 226 227 static inline unsigned int cluster_next(struct swap_cluster_info *info) 228 { 229 return info->data; 230 } 231 232 static inline void cluster_set_next(struct swap_cluster_info *info, 233 unsigned int n) 234 { 235 info->data = n; 236 } 237 238 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 239 unsigned int n, unsigned int f) 240 { 241 info->flags = f; 242 info->data = n; 243 } 244 245 static inline bool cluster_is_free(struct swap_cluster_info *info) 246 { 247 return info->flags & CLUSTER_FLAG_FREE; 248 } 249 250 static inline bool cluster_is_null(struct swap_cluster_info *info) 251 { 252 return info->flags & CLUSTER_FLAG_NEXT_NULL; 253 } 254 255 static inline void cluster_set_null(struct swap_cluster_info *info) 256 { 257 info->flags = CLUSTER_FLAG_NEXT_NULL; 258 info->data = 0; 259 } 260 261 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 262 unsigned long offset) 263 { 264 struct swap_cluster_info *ci; 265 266 ci = si->cluster_info; 267 if (ci) { 268 ci += offset / SWAPFILE_CLUSTER; 269 spin_lock(&ci->lock); 270 } 271 return ci; 272 } 273 274 static inline void unlock_cluster(struct swap_cluster_info *ci) 275 { 276 if (ci) 277 spin_unlock(&ci->lock); 278 } 279 280 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 281 struct swap_info_struct *si, 282 unsigned long offset) 283 { 284 struct swap_cluster_info *ci; 285 286 ci = lock_cluster(si, offset); 287 if (!ci) 288 spin_lock(&si->lock); 289 290 return ci; 291 } 292 293 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 294 struct swap_cluster_info *ci) 295 { 296 if (ci) 297 unlock_cluster(ci); 298 else 299 spin_unlock(&si->lock); 300 } 301 302 static inline bool cluster_list_empty(struct swap_cluster_list *list) 303 { 304 return cluster_is_null(&list->head); 305 } 306 307 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 308 { 309 return cluster_next(&list->head); 310 } 311 312 static void cluster_list_init(struct swap_cluster_list *list) 313 { 314 cluster_set_null(&list->head); 315 cluster_set_null(&list->tail); 316 } 317 318 static void cluster_list_add_tail(struct swap_cluster_list *list, 319 struct swap_cluster_info *ci, 320 unsigned int idx) 321 { 322 if (cluster_list_empty(list)) { 323 cluster_set_next_flag(&list->head, idx, 0); 324 cluster_set_next_flag(&list->tail, idx, 0); 325 } else { 326 struct swap_cluster_info *ci_tail; 327 unsigned int tail = cluster_next(&list->tail); 328 329 /* 330 * Nested cluster lock, but both cluster locks are 331 * only acquired when we held swap_info_struct->lock 332 */ 333 ci_tail = ci + tail; 334 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 335 cluster_set_next(ci_tail, idx); 336 unlock_cluster(ci_tail); 337 cluster_set_next_flag(&list->tail, idx, 0); 338 } 339 } 340 341 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 342 struct swap_cluster_info *ci) 343 { 344 unsigned int idx; 345 346 idx = cluster_next(&list->head); 347 if (cluster_next(&list->tail) == idx) { 348 cluster_set_null(&list->head); 349 cluster_set_null(&list->tail); 350 } else 351 cluster_set_next_flag(&list->head, 352 cluster_next(&ci[idx]), 0); 353 354 return idx; 355 } 356 357 /* Add a cluster to discard list and schedule it to do discard */ 358 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 359 unsigned int idx) 360 { 361 /* 362 * If scan_swap_map() can't find a free cluster, it will check 363 * si->swap_map directly. To make sure the discarding cluster isn't 364 * taken by scan_swap_map(), mark the swap entries bad (occupied). It 365 * will be cleared after discard 366 */ 367 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 368 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 369 370 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 371 372 schedule_work(&si->discard_work); 373 } 374 375 /* 376 * Doing discard actually. After a cluster discard is finished, the cluster 377 * will be added to free cluster list. caller should hold si->lock. 378 */ 379 static void swap_do_scheduled_discard(struct swap_info_struct *si) 380 { 381 struct swap_cluster_info *info, *ci; 382 unsigned int idx; 383 384 info = si->cluster_info; 385 386 while (!cluster_list_empty(&si->discard_clusters)) { 387 idx = cluster_list_del_first(&si->discard_clusters, info); 388 spin_unlock(&si->lock); 389 390 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 391 SWAPFILE_CLUSTER); 392 393 spin_lock(&si->lock); 394 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 395 cluster_set_flag(ci, CLUSTER_FLAG_FREE); 396 unlock_cluster(ci); 397 cluster_list_add_tail(&si->free_clusters, info, idx); 398 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 399 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 400 0, SWAPFILE_CLUSTER); 401 unlock_cluster(ci); 402 } 403 } 404 405 static void swap_discard_work(struct work_struct *work) 406 { 407 struct swap_info_struct *si; 408 409 si = container_of(work, struct swap_info_struct, discard_work); 410 411 spin_lock(&si->lock); 412 swap_do_scheduled_discard(si); 413 spin_unlock(&si->lock); 414 } 415 416 /* 417 * The cluster corresponding to page_nr will be used. The cluster will be 418 * removed from free cluster list and its usage counter will be increased. 419 */ 420 static void inc_cluster_info_page(struct swap_info_struct *p, 421 struct swap_cluster_info *cluster_info, unsigned long page_nr) 422 { 423 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 424 425 if (!cluster_info) 426 return; 427 if (cluster_is_free(&cluster_info[idx])) { 428 VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx); 429 cluster_list_del_first(&p->free_clusters, cluster_info); 430 cluster_set_count_flag(&cluster_info[idx], 0, 0); 431 } 432 433 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 434 cluster_set_count(&cluster_info[idx], 435 cluster_count(&cluster_info[idx]) + 1); 436 } 437 438 /* 439 * The cluster corresponding to page_nr decreases one usage. If the usage 440 * counter becomes 0, which means no page in the cluster is in using, we can 441 * optionally discard the cluster and add it to free cluster list. 442 */ 443 static void dec_cluster_info_page(struct swap_info_struct *p, 444 struct swap_cluster_info *cluster_info, unsigned long page_nr) 445 { 446 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 447 448 if (!cluster_info) 449 return; 450 451 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 452 cluster_set_count(&cluster_info[idx], 453 cluster_count(&cluster_info[idx]) - 1); 454 455 if (cluster_count(&cluster_info[idx]) == 0) { 456 /* 457 * If the swap is discardable, prepare discard the cluster 458 * instead of free it immediately. The cluster will be freed 459 * after discard. 460 */ 461 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 462 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 463 swap_cluster_schedule_discard(p, idx); 464 return; 465 } 466 467 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 468 cluster_list_add_tail(&p->free_clusters, cluster_info, idx); 469 } 470 } 471 472 /* 473 * It's possible scan_swap_map() uses a free cluster in the middle of free 474 * cluster list. Avoiding such abuse to avoid list corruption. 475 */ 476 static bool 477 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 478 unsigned long offset) 479 { 480 struct percpu_cluster *percpu_cluster; 481 bool conflict; 482 483 offset /= SWAPFILE_CLUSTER; 484 conflict = !cluster_list_empty(&si->free_clusters) && 485 offset != cluster_list_first(&si->free_clusters) && 486 cluster_is_free(&si->cluster_info[offset]); 487 488 if (!conflict) 489 return false; 490 491 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 492 cluster_set_null(&percpu_cluster->index); 493 return true; 494 } 495 496 /* 497 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 498 * might involve allocating a new cluster for current CPU too. 499 */ 500 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 501 unsigned long *offset, unsigned long *scan_base) 502 { 503 struct percpu_cluster *cluster; 504 struct swap_cluster_info *ci; 505 bool found_free; 506 unsigned long tmp, max; 507 508 new_cluster: 509 cluster = this_cpu_ptr(si->percpu_cluster); 510 if (cluster_is_null(&cluster->index)) { 511 if (!cluster_list_empty(&si->free_clusters)) { 512 cluster->index = si->free_clusters.head; 513 cluster->next = cluster_next(&cluster->index) * 514 SWAPFILE_CLUSTER; 515 } else if (!cluster_list_empty(&si->discard_clusters)) { 516 /* 517 * we don't have free cluster but have some clusters in 518 * discarding, do discard now and reclaim them 519 */ 520 swap_do_scheduled_discard(si); 521 *scan_base = *offset = si->cluster_next; 522 goto new_cluster; 523 } else 524 return false; 525 } 526 527 found_free = false; 528 529 /* 530 * Other CPUs can use our cluster if they can't find a free cluster, 531 * check if there is still free entry in the cluster 532 */ 533 tmp = cluster->next; 534 max = min_t(unsigned long, si->max, 535 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 536 if (tmp >= max) { 537 cluster_set_null(&cluster->index); 538 goto new_cluster; 539 } 540 ci = lock_cluster(si, tmp); 541 while (tmp < max) { 542 if (!si->swap_map[tmp]) { 543 found_free = true; 544 break; 545 } 546 tmp++; 547 } 548 unlock_cluster(ci); 549 if (!found_free) { 550 cluster_set_null(&cluster->index); 551 goto new_cluster; 552 } 553 cluster->next = tmp + 1; 554 *offset = tmp; 555 *scan_base = tmp; 556 return found_free; 557 } 558 559 static int scan_swap_map_slots(struct swap_info_struct *si, 560 unsigned char usage, int nr, 561 swp_entry_t slots[]) 562 { 563 struct swap_cluster_info *ci; 564 unsigned long offset; 565 unsigned long scan_base; 566 unsigned long last_in_cluster = 0; 567 int latency_ration = LATENCY_LIMIT; 568 int n_ret = 0; 569 570 if (nr > SWAP_BATCH) 571 nr = SWAP_BATCH; 572 573 /* 574 * We try to cluster swap pages by allocating them sequentially 575 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 576 * way, however, we resort to first-free allocation, starting 577 * a new cluster. This prevents us from scattering swap pages 578 * all over the entire swap partition, so that we reduce 579 * overall disk seek times between swap pages. -- sct 580 * But we do now try to find an empty cluster. -Andrea 581 * And we let swap pages go all over an SSD partition. Hugh 582 */ 583 584 si->flags += SWP_SCANNING; 585 scan_base = offset = si->cluster_next; 586 587 /* SSD algorithm */ 588 if (si->cluster_info) { 589 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 590 goto checks; 591 else 592 goto scan; 593 } 594 595 if (unlikely(!si->cluster_nr--)) { 596 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 597 si->cluster_nr = SWAPFILE_CLUSTER - 1; 598 goto checks; 599 } 600 601 spin_unlock(&si->lock); 602 603 /* 604 * If seek is expensive, start searching for new cluster from 605 * start of partition, to minimize the span of allocated swap. 606 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 607 * case, just handled by scan_swap_map_try_ssd_cluster() above. 608 */ 609 scan_base = offset = si->lowest_bit; 610 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 611 612 /* Locate the first empty (unaligned) cluster */ 613 for (; last_in_cluster <= si->highest_bit; offset++) { 614 if (si->swap_map[offset]) 615 last_in_cluster = offset + SWAPFILE_CLUSTER; 616 else if (offset == last_in_cluster) { 617 spin_lock(&si->lock); 618 offset -= SWAPFILE_CLUSTER - 1; 619 si->cluster_next = offset; 620 si->cluster_nr = SWAPFILE_CLUSTER - 1; 621 goto checks; 622 } 623 if (unlikely(--latency_ration < 0)) { 624 cond_resched(); 625 latency_ration = LATENCY_LIMIT; 626 } 627 } 628 629 offset = scan_base; 630 spin_lock(&si->lock); 631 si->cluster_nr = SWAPFILE_CLUSTER - 1; 632 } 633 634 checks: 635 if (si->cluster_info) { 636 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 637 /* take a break if we already got some slots */ 638 if (n_ret) 639 goto done; 640 if (!scan_swap_map_try_ssd_cluster(si, &offset, 641 &scan_base)) 642 goto scan; 643 } 644 } 645 if (!(si->flags & SWP_WRITEOK)) 646 goto no_page; 647 if (!si->highest_bit) 648 goto no_page; 649 if (offset > si->highest_bit) 650 scan_base = offset = si->lowest_bit; 651 652 ci = lock_cluster(si, offset); 653 /* reuse swap entry of cache-only swap if not busy. */ 654 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 655 int swap_was_freed; 656 unlock_cluster(ci); 657 spin_unlock(&si->lock); 658 swap_was_freed = __try_to_reclaim_swap(si, offset); 659 spin_lock(&si->lock); 660 /* entry was freed successfully, try to use this again */ 661 if (swap_was_freed) 662 goto checks; 663 goto scan; /* check next one */ 664 } 665 666 if (si->swap_map[offset]) { 667 unlock_cluster(ci); 668 if (!n_ret) 669 goto scan; 670 else 671 goto done; 672 } 673 674 if (offset == si->lowest_bit) 675 si->lowest_bit++; 676 if (offset == si->highest_bit) 677 si->highest_bit--; 678 si->inuse_pages++; 679 if (si->inuse_pages == si->pages) { 680 si->lowest_bit = si->max; 681 si->highest_bit = 0; 682 spin_lock(&swap_avail_lock); 683 plist_del(&si->avail_list, &swap_avail_head); 684 spin_unlock(&swap_avail_lock); 685 } 686 si->swap_map[offset] = usage; 687 inc_cluster_info_page(si, si->cluster_info, offset); 688 unlock_cluster(ci); 689 si->cluster_next = offset + 1; 690 slots[n_ret++] = swp_entry(si->type, offset); 691 692 /* got enough slots or reach max slots? */ 693 if ((n_ret == nr) || (offset >= si->highest_bit)) 694 goto done; 695 696 /* search for next available slot */ 697 698 /* time to take a break? */ 699 if (unlikely(--latency_ration < 0)) { 700 if (n_ret) 701 goto done; 702 spin_unlock(&si->lock); 703 cond_resched(); 704 spin_lock(&si->lock); 705 latency_ration = LATENCY_LIMIT; 706 } 707 708 /* try to get more slots in cluster */ 709 if (si->cluster_info) { 710 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 711 goto checks; 712 else 713 goto done; 714 } 715 /* non-ssd case */ 716 ++offset; 717 718 /* non-ssd case, still more slots in cluster? */ 719 if (si->cluster_nr && !si->swap_map[offset]) { 720 --si->cluster_nr; 721 goto checks; 722 } 723 724 done: 725 si->flags -= SWP_SCANNING; 726 return n_ret; 727 728 scan: 729 spin_unlock(&si->lock); 730 while (++offset <= si->highest_bit) { 731 if (!si->swap_map[offset]) { 732 spin_lock(&si->lock); 733 goto checks; 734 } 735 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 736 spin_lock(&si->lock); 737 goto checks; 738 } 739 if (unlikely(--latency_ration < 0)) { 740 cond_resched(); 741 latency_ration = LATENCY_LIMIT; 742 } 743 } 744 offset = si->lowest_bit; 745 while (offset < scan_base) { 746 if (!si->swap_map[offset]) { 747 spin_lock(&si->lock); 748 goto checks; 749 } 750 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 751 spin_lock(&si->lock); 752 goto checks; 753 } 754 if (unlikely(--latency_ration < 0)) { 755 cond_resched(); 756 latency_ration = LATENCY_LIMIT; 757 } 758 offset++; 759 } 760 spin_lock(&si->lock); 761 762 no_page: 763 si->flags -= SWP_SCANNING; 764 return n_ret; 765 } 766 767 static unsigned long scan_swap_map(struct swap_info_struct *si, 768 unsigned char usage) 769 { 770 swp_entry_t entry; 771 int n_ret; 772 773 n_ret = scan_swap_map_slots(si, usage, 1, &entry); 774 775 if (n_ret) 776 return swp_offset(entry); 777 else 778 return 0; 779 780 } 781 782 int get_swap_pages(int n_goal, swp_entry_t swp_entries[]) 783 { 784 struct swap_info_struct *si, *next; 785 long avail_pgs; 786 int n_ret = 0; 787 788 avail_pgs = atomic_long_read(&nr_swap_pages); 789 if (avail_pgs <= 0) 790 goto noswap; 791 792 if (n_goal > SWAP_BATCH) 793 n_goal = SWAP_BATCH; 794 795 if (n_goal > avail_pgs) 796 n_goal = avail_pgs; 797 798 atomic_long_sub(n_goal, &nr_swap_pages); 799 800 spin_lock(&swap_avail_lock); 801 802 start_over: 803 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) { 804 /* requeue si to after same-priority siblings */ 805 plist_requeue(&si->avail_list, &swap_avail_head); 806 spin_unlock(&swap_avail_lock); 807 spin_lock(&si->lock); 808 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 809 spin_lock(&swap_avail_lock); 810 if (plist_node_empty(&si->avail_list)) { 811 spin_unlock(&si->lock); 812 goto nextsi; 813 } 814 WARN(!si->highest_bit, 815 "swap_info %d in list but !highest_bit\n", 816 si->type); 817 WARN(!(si->flags & SWP_WRITEOK), 818 "swap_info %d in list but !SWP_WRITEOK\n", 819 si->type); 820 plist_del(&si->avail_list, &swap_avail_head); 821 spin_unlock(&si->lock); 822 goto nextsi; 823 } 824 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 825 n_goal, swp_entries); 826 spin_unlock(&si->lock); 827 if (n_ret) 828 goto check_out; 829 pr_debug("scan_swap_map of si %d failed to find offset\n", 830 si->type); 831 832 spin_lock(&swap_avail_lock); 833 nextsi: 834 /* 835 * if we got here, it's likely that si was almost full before, 836 * and since scan_swap_map() can drop the si->lock, multiple 837 * callers probably all tried to get a page from the same si 838 * and it filled up before we could get one; or, the si filled 839 * up between us dropping swap_avail_lock and taking si->lock. 840 * Since we dropped the swap_avail_lock, the swap_avail_head 841 * list may have been modified; so if next is still in the 842 * swap_avail_head list then try it, otherwise start over 843 * if we have not gotten any slots. 844 */ 845 if (plist_node_empty(&next->avail_list)) 846 goto start_over; 847 } 848 849 spin_unlock(&swap_avail_lock); 850 851 check_out: 852 if (n_ret < n_goal) 853 atomic_long_add((long) (n_goal-n_ret), &nr_swap_pages); 854 noswap: 855 return n_ret; 856 } 857 858 /* The only caller of this function is now suspend routine */ 859 swp_entry_t get_swap_page_of_type(int type) 860 { 861 struct swap_info_struct *si; 862 pgoff_t offset; 863 864 si = swap_info[type]; 865 spin_lock(&si->lock); 866 if (si && (si->flags & SWP_WRITEOK)) { 867 atomic_long_dec(&nr_swap_pages); 868 /* This is called for allocating swap entry, not cache */ 869 offset = scan_swap_map(si, 1); 870 if (offset) { 871 spin_unlock(&si->lock); 872 return swp_entry(type, offset); 873 } 874 atomic_long_inc(&nr_swap_pages); 875 } 876 spin_unlock(&si->lock); 877 return (swp_entry_t) {0}; 878 } 879 880 static struct swap_info_struct *__swap_info_get(swp_entry_t entry) 881 { 882 struct swap_info_struct *p; 883 unsigned long offset, type; 884 885 if (!entry.val) 886 goto out; 887 type = swp_type(entry); 888 if (type >= nr_swapfiles) 889 goto bad_nofile; 890 p = swap_info[type]; 891 if (!(p->flags & SWP_USED)) 892 goto bad_device; 893 offset = swp_offset(entry); 894 if (offset >= p->max) 895 goto bad_offset; 896 return p; 897 898 bad_offset: 899 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val); 900 goto out; 901 bad_device: 902 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val); 903 goto out; 904 bad_nofile: 905 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val); 906 out: 907 return NULL; 908 } 909 910 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 911 { 912 struct swap_info_struct *p; 913 914 p = __swap_info_get(entry); 915 if (!p) 916 goto out; 917 if (!p->swap_map[swp_offset(entry)]) 918 goto bad_free; 919 return p; 920 921 bad_free: 922 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val); 923 goto out; 924 out: 925 return NULL; 926 } 927 928 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 929 { 930 struct swap_info_struct *p; 931 932 p = _swap_info_get(entry); 933 if (p) 934 spin_lock(&p->lock); 935 return p; 936 } 937 938 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 939 struct swap_info_struct *q) 940 { 941 struct swap_info_struct *p; 942 943 p = _swap_info_get(entry); 944 945 if (p != q) { 946 if (q != NULL) 947 spin_unlock(&q->lock); 948 if (p != NULL) 949 spin_lock(&p->lock); 950 } 951 return p; 952 } 953 954 static unsigned char __swap_entry_free(struct swap_info_struct *p, 955 swp_entry_t entry, unsigned char usage) 956 { 957 struct swap_cluster_info *ci; 958 unsigned long offset = swp_offset(entry); 959 unsigned char count; 960 unsigned char has_cache; 961 962 ci = lock_cluster_or_swap_info(p, offset); 963 964 count = p->swap_map[offset]; 965 966 has_cache = count & SWAP_HAS_CACHE; 967 count &= ~SWAP_HAS_CACHE; 968 969 if (usage == SWAP_HAS_CACHE) { 970 VM_BUG_ON(!has_cache); 971 has_cache = 0; 972 } else if (count == SWAP_MAP_SHMEM) { 973 /* 974 * Or we could insist on shmem.c using a special 975 * swap_shmem_free() and free_shmem_swap_and_cache()... 976 */ 977 count = 0; 978 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 979 if (count == COUNT_CONTINUED) { 980 if (swap_count_continued(p, offset, count)) 981 count = SWAP_MAP_MAX | COUNT_CONTINUED; 982 else 983 count = SWAP_MAP_MAX; 984 } else 985 count--; 986 } 987 988 usage = count | has_cache; 989 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE; 990 991 unlock_cluster_or_swap_info(p, ci); 992 993 return usage; 994 } 995 996 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 997 { 998 struct swap_cluster_info *ci; 999 unsigned long offset = swp_offset(entry); 1000 unsigned char count; 1001 1002 ci = lock_cluster(p, offset); 1003 count = p->swap_map[offset]; 1004 VM_BUG_ON(count != SWAP_HAS_CACHE); 1005 p->swap_map[offset] = 0; 1006 dec_cluster_info_page(p, p->cluster_info, offset); 1007 unlock_cluster(ci); 1008 1009 mem_cgroup_uncharge_swap(entry); 1010 if (offset < p->lowest_bit) 1011 p->lowest_bit = offset; 1012 if (offset > p->highest_bit) { 1013 bool was_full = !p->highest_bit; 1014 1015 p->highest_bit = offset; 1016 if (was_full && (p->flags & SWP_WRITEOK)) { 1017 spin_lock(&swap_avail_lock); 1018 WARN_ON(!plist_node_empty(&p->avail_list)); 1019 if (plist_node_empty(&p->avail_list)) 1020 plist_add(&p->avail_list, 1021 &swap_avail_head); 1022 spin_unlock(&swap_avail_lock); 1023 } 1024 } 1025 atomic_long_inc(&nr_swap_pages); 1026 p->inuse_pages--; 1027 frontswap_invalidate_page(p->type, offset); 1028 if (p->flags & SWP_BLKDEV) { 1029 struct gendisk *disk = p->bdev->bd_disk; 1030 1031 if (disk->fops->swap_slot_free_notify) 1032 disk->fops->swap_slot_free_notify(p->bdev, 1033 offset); 1034 } 1035 } 1036 1037 /* 1038 * Caller has made sure that the swap device corresponding to entry 1039 * is still around or has not been recycled. 1040 */ 1041 void swap_free(swp_entry_t entry) 1042 { 1043 struct swap_info_struct *p; 1044 1045 p = _swap_info_get(entry); 1046 if (p) { 1047 if (!__swap_entry_free(p, entry, 1)) 1048 free_swap_slot(entry); 1049 } 1050 } 1051 1052 /* 1053 * Called after dropping swapcache to decrease refcnt to swap entries. 1054 */ 1055 void swapcache_free(swp_entry_t entry) 1056 { 1057 struct swap_info_struct *p; 1058 1059 p = _swap_info_get(entry); 1060 if (p) { 1061 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE)) 1062 free_swap_slot(entry); 1063 } 1064 } 1065 1066 void swapcache_free_entries(swp_entry_t *entries, int n) 1067 { 1068 struct swap_info_struct *p, *prev; 1069 int i; 1070 1071 if (n <= 0) 1072 return; 1073 1074 prev = NULL; 1075 p = NULL; 1076 for (i = 0; i < n; ++i) { 1077 p = swap_info_get_cont(entries[i], prev); 1078 if (p) 1079 swap_entry_free(p, entries[i]); 1080 else 1081 break; 1082 prev = p; 1083 } 1084 if (p) 1085 spin_unlock(&p->lock); 1086 } 1087 1088 /* 1089 * How many references to page are currently swapped out? 1090 * This does not give an exact answer when swap count is continued, 1091 * but does include the high COUNT_CONTINUED flag to allow for that. 1092 */ 1093 int page_swapcount(struct page *page) 1094 { 1095 int count = 0; 1096 struct swap_info_struct *p; 1097 struct swap_cluster_info *ci; 1098 swp_entry_t entry; 1099 unsigned long offset; 1100 1101 entry.val = page_private(page); 1102 p = _swap_info_get(entry); 1103 if (p) { 1104 offset = swp_offset(entry); 1105 ci = lock_cluster_or_swap_info(p, offset); 1106 count = swap_count(p->swap_map[offset]); 1107 unlock_cluster_or_swap_info(p, ci); 1108 } 1109 return count; 1110 } 1111 1112 /* 1113 * How many references to @entry are currently swapped out? 1114 * This does not give an exact answer when swap count is continued, 1115 * but does include the high COUNT_CONTINUED flag to allow for that. 1116 */ 1117 int __swp_swapcount(swp_entry_t entry) 1118 { 1119 int count = 0; 1120 pgoff_t offset; 1121 struct swap_info_struct *si; 1122 struct swap_cluster_info *ci; 1123 1124 si = __swap_info_get(entry); 1125 if (si) { 1126 offset = swp_offset(entry); 1127 ci = lock_cluster_or_swap_info(si, offset); 1128 count = swap_count(si->swap_map[offset]); 1129 unlock_cluster_or_swap_info(si, ci); 1130 } 1131 return count; 1132 } 1133 1134 /* 1135 * How many references to @entry are currently swapped out? 1136 * This considers COUNT_CONTINUED so it returns exact answer. 1137 */ 1138 int swp_swapcount(swp_entry_t entry) 1139 { 1140 int count, tmp_count, n; 1141 struct swap_info_struct *p; 1142 struct swap_cluster_info *ci; 1143 struct page *page; 1144 pgoff_t offset; 1145 unsigned char *map; 1146 1147 p = _swap_info_get(entry); 1148 if (!p) 1149 return 0; 1150 1151 offset = swp_offset(entry); 1152 1153 ci = lock_cluster_or_swap_info(p, offset); 1154 1155 count = swap_count(p->swap_map[offset]); 1156 if (!(count & COUNT_CONTINUED)) 1157 goto out; 1158 1159 count &= ~COUNT_CONTINUED; 1160 n = SWAP_MAP_MAX + 1; 1161 1162 page = vmalloc_to_page(p->swap_map + offset); 1163 offset &= ~PAGE_MASK; 1164 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1165 1166 do { 1167 page = list_next_entry(page, lru); 1168 map = kmap_atomic(page); 1169 tmp_count = map[offset]; 1170 kunmap_atomic(map); 1171 1172 count += (tmp_count & ~COUNT_CONTINUED) * n; 1173 n *= (SWAP_CONT_MAX + 1); 1174 } while (tmp_count & COUNT_CONTINUED); 1175 out: 1176 unlock_cluster_or_swap_info(p, ci); 1177 return count; 1178 } 1179 1180 /* 1181 * We can write to an anon page without COW if there are no other references 1182 * to it. And as a side-effect, free up its swap: because the old content 1183 * on disk will never be read, and seeking back there to write new content 1184 * later would only waste time away from clustering. 1185 * 1186 * NOTE: total_mapcount should not be relied upon by the caller if 1187 * reuse_swap_page() returns false, but it may be always overwritten 1188 * (see the other implementation for CONFIG_SWAP=n). 1189 */ 1190 bool reuse_swap_page(struct page *page, int *total_mapcount) 1191 { 1192 int count; 1193 1194 VM_BUG_ON_PAGE(!PageLocked(page), page); 1195 if (unlikely(PageKsm(page))) 1196 return false; 1197 count = page_trans_huge_mapcount(page, total_mapcount); 1198 if (count <= 1 && PageSwapCache(page)) { 1199 count += page_swapcount(page); 1200 if (count != 1) 1201 goto out; 1202 if (!PageWriteback(page)) { 1203 delete_from_swap_cache(page); 1204 SetPageDirty(page); 1205 } else { 1206 swp_entry_t entry; 1207 struct swap_info_struct *p; 1208 1209 entry.val = page_private(page); 1210 p = swap_info_get(entry); 1211 if (p->flags & SWP_STABLE_WRITES) { 1212 spin_unlock(&p->lock); 1213 return false; 1214 } 1215 spin_unlock(&p->lock); 1216 } 1217 } 1218 out: 1219 return count <= 1; 1220 } 1221 1222 /* 1223 * If swap is getting full, or if there are no more mappings of this page, 1224 * then try_to_free_swap is called to free its swap space. 1225 */ 1226 int try_to_free_swap(struct page *page) 1227 { 1228 VM_BUG_ON_PAGE(!PageLocked(page), page); 1229 1230 if (!PageSwapCache(page)) 1231 return 0; 1232 if (PageWriteback(page)) 1233 return 0; 1234 if (page_swapcount(page)) 1235 return 0; 1236 1237 /* 1238 * Once hibernation has begun to create its image of memory, 1239 * there's a danger that one of the calls to try_to_free_swap() 1240 * - most probably a call from __try_to_reclaim_swap() while 1241 * hibernation is allocating its own swap pages for the image, 1242 * but conceivably even a call from memory reclaim - will free 1243 * the swap from a page which has already been recorded in the 1244 * image as a clean swapcache page, and then reuse its swap for 1245 * another page of the image. On waking from hibernation, the 1246 * original page might be freed under memory pressure, then 1247 * later read back in from swap, now with the wrong data. 1248 * 1249 * Hibernation suspends storage while it is writing the image 1250 * to disk so check that here. 1251 */ 1252 if (pm_suspended_storage()) 1253 return 0; 1254 1255 delete_from_swap_cache(page); 1256 SetPageDirty(page); 1257 return 1; 1258 } 1259 1260 /* 1261 * Free the swap entry like above, but also try to 1262 * free the page cache entry if it is the last user. 1263 */ 1264 int free_swap_and_cache(swp_entry_t entry) 1265 { 1266 struct swap_info_struct *p; 1267 struct page *page = NULL; 1268 unsigned char count; 1269 1270 if (non_swap_entry(entry)) 1271 return 1; 1272 1273 p = _swap_info_get(entry); 1274 if (p) { 1275 count = __swap_entry_free(p, entry, 1); 1276 if (count == SWAP_HAS_CACHE) { 1277 page = find_get_page(swap_address_space(entry), 1278 swp_offset(entry)); 1279 if (page && !trylock_page(page)) { 1280 put_page(page); 1281 page = NULL; 1282 } 1283 } else if (!count) 1284 free_swap_slot(entry); 1285 } 1286 if (page) { 1287 /* 1288 * Not mapped elsewhere, or swap space full? Free it! 1289 * Also recheck PageSwapCache now page is locked (above). 1290 */ 1291 if (PageSwapCache(page) && !PageWriteback(page) && 1292 (!page_mapped(page) || mem_cgroup_swap_full(page))) { 1293 delete_from_swap_cache(page); 1294 SetPageDirty(page); 1295 } 1296 unlock_page(page); 1297 put_page(page); 1298 } 1299 return p != NULL; 1300 } 1301 1302 #ifdef CONFIG_HIBERNATION 1303 /* 1304 * Find the swap type that corresponds to given device (if any). 1305 * 1306 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1307 * from 0, in which the swap header is expected to be located. 1308 * 1309 * This is needed for the suspend to disk (aka swsusp). 1310 */ 1311 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 1312 { 1313 struct block_device *bdev = NULL; 1314 int type; 1315 1316 if (device) 1317 bdev = bdget(device); 1318 1319 spin_lock(&swap_lock); 1320 for (type = 0; type < nr_swapfiles; type++) { 1321 struct swap_info_struct *sis = swap_info[type]; 1322 1323 if (!(sis->flags & SWP_WRITEOK)) 1324 continue; 1325 1326 if (!bdev) { 1327 if (bdev_p) 1328 *bdev_p = bdgrab(sis->bdev); 1329 1330 spin_unlock(&swap_lock); 1331 return type; 1332 } 1333 if (bdev == sis->bdev) { 1334 struct swap_extent *se = &sis->first_swap_extent; 1335 1336 if (se->start_block == offset) { 1337 if (bdev_p) 1338 *bdev_p = bdgrab(sis->bdev); 1339 1340 spin_unlock(&swap_lock); 1341 bdput(bdev); 1342 return type; 1343 } 1344 } 1345 } 1346 spin_unlock(&swap_lock); 1347 if (bdev) 1348 bdput(bdev); 1349 1350 return -ENODEV; 1351 } 1352 1353 /* 1354 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1355 * corresponding to given index in swap_info (swap type). 1356 */ 1357 sector_t swapdev_block(int type, pgoff_t offset) 1358 { 1359 struct block_device *bdev; 1360 1361 if ((unsigned int)type >= nr_swapfiles) 1362 return 0; 1363 if (!(swap_info[type]->flags & SWP_WRITEOK)) 1364 return 0; 1365 return map_swap_entry(swp_entry(type, offset), &bdev); 1366 } 1367 1368 /* 1369 * Return either the total number of swap pages of given type, or the number 1370 * of free pages of that type (depending on @free) 1371 * 1372 * This is needed for software suspend 1373 */ 1374 unsigned int count_swap_pages(int type, int free) 1375 { 1376 unsigned int n = 0; 1377 1378 spin_lock(&swap_lock); 1379 if ((unsigned int)type < nr_swapfiles) { 1380 struct swap_info_struct *sis = swap_info[type]; 1381 1382 spin_lock(&sis->lock); 1383 if (sis->flags & SWP_WRITEOK) { 1384 n = sis->pages; 1385 if (free) 1386 n -= sis->inuse_pages; 1387 } 1388 spin_unlock(&sis->lock); 1389 } 1390 spin_unlock(&swap_lock); 1391 return n; 1392 } 1393 #endif /* CONFIG_HIBERNATION */ 1394 1395 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1396 { 1397 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte); 1398 } 1399 1400 /* 1401 * No need to decide whether this PTE shares the swap entry with others, 1402 * just let do_wp_page work it out if a write is requested later - to 1403 * force COW, vm_page_prot omits write permission from any private vma. 1404 */ 1405 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1406 unsigned long addr, swp_entry_t entry, struct page *page) 1407 { 1408 struct page *swapcache; 1409 struct mem_cgroup *memcg; 1410 spinlock_t *ptl; 1411 pte_t *pte; 1412 int ret = 1; 1413 1414 swapcache = page; 1415 page = ksm_might_need_to_copy(page, vma, addr); 1416 if (unlikely(!page)) 1417 return -ENOMEM; 1418 1419 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, 1420 &memcg, false)) { 1421 ret = -ENOMEM; 1422 goto out_nolock; 1423 } 1424 1425 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1426 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1427 mem_cgroup_cancel_charge(page, memcg, false); 1428 ret = 0; 1429 goto out; 1430 } 1431 1432 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1433 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1434 get_page(page); 1435 set_pte_at(vma->vm_mm, addr, pte, 1436 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1437 if (page == swapcache) { 1438 page_add_anon_rmap(page, vma, addr, false); 1439 mem_cgroup_commit_charge(page, memcg, true, false); 1440 } else { /* ksm created a completely new copy */ 1441 page_add_new_anon_rmap(page, vma, addr, false); 1442 mem_cgroup_commit_charge(page, memcg, false, false); 1443 lru_cache_add_active_or_unevictable(page, vma); 1444 } 1445 swap_free(entry); 1446 /* 1447 * Move the page to the active list so it is not 1448 * immediately swapped out again after swapon. 1449 */ 1450 activate_page(page); 1451 out: 1452 pte_unmap_unlock(pte, ptl); 1453 out_nolock: 1454 if (page != swapcache) { 1455 unlock_page(page); 1456 put_page(page); 1457 } 1458 return ret; 1459 } 1460 1461 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1462 unsigned long addr, unsigned long end, 1463 swp_entry_t entry, struct page *page) 1464 { 1465 pte_t swp_pte = swp_entry_to_pte(entry); 1466 pte_t *pte; 1467 int ret = 0; 1468 1469 /* 1470 * We don't actually need pte lock while scanning for swp_pte: since 1471 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 1472 * page table while we're scanning; though it could get zapped, and on 1473 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 1474 * of unmatched parts which look like swp_pte, so unuse_pte must 1475 * recheck under pte lock. Scanning without pte lock lets it be 1476 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 1477 */ 1478 pte = pte_offset_map(pmd, addr); 1479 do { 1480 /* 1481 * swapoff spends a _lot_ of time in this loop! 1482 * Test inline before going to call unuse_pte. 1483 */ 1484 if (unlikely(pte_same_as_swp(*pte, swp_pte))) { 1485 pte_unmap(pte); 1486 ret = unuse_pte(vma, pmd, addr, entry, page); 1487 if (ret) 1488 goto out; 1489 pte = pte_offset_map(pmd, addr); 1490 } 1491 } while (pte++, addr += PAGE_SIZE, addr != end); 1492 pte_unmap(pte - 1); 1493 out: 1494 return ret; 1495 } 1496 1497 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1498 unsigned long addr, unsigned long end, 1499 swp_entry_t entry, struct page *page) 1500 { 1501 pmd_t *pmd; 1502 unsigned long next; 1503 int ret; 1504 1505 pmd = pmd_offset(pud, addr); 1506 do { 1507 cond_resched(); 1508 next = pmd_addr_end(addr, end); 1509 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1510 continue; 1511 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 1512 if (ret) 1513 return ret; 1514 } while (pmd++, addr = next, addr != end); 1515 return 0; 1516 } 1517 1518 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 1519 unsigned long addr, unsigned long end, 1520 swp_entry_t entry, struct page *page) 1521 { 1522 pud_t *pud; 1523 unsigned long next; 1524 int ret; 1525 1526 pud = pud_offset(pgd, addr); 1527 do { 1528 next = pud_addr_end(addr, end); 1529 if (pud_none_or_clear_bad(pud)) 1530 continue; 1531 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 1532 if (ret) 1533 return ret; 1534 } while (pud++, addr = next, addr != end); 1535 return 0; 1536 } 1537 1538 static int unuse_vma(struct vm_area_struct *vma, 1539 swp_entry_t entry, struct page *page) 1540 { 1541 pgd_t *pgd; 1542 unsigned long addr, end, next; 1543 int ret; 1544 1545 if (page_anon_vma(page)) { 1546 addr = page_address_in_vma(page, vma); 1547 if (addr == -EFAULT) 1548 return 0; 1549 else 1550 end = addr + PAGE_SIZE; 1551 } else { 1552 addr = vma->vm_start; 1553 end = vma->vm_end; 1554 } 1555 1556 pgd = pgd_offset(vma->vm_mm, addr); 1557 do { 1558 next = pgd_addr_end(addr, end); 1559 if (pgd_none_or_clear_bad(pgd)) 1560 continue; 1561 ret = unuse_pud_range(vma, pgd, addr, next, entry, page); 1562 if (ret) 1563 return ret; 1564 } while (pgd++, addr = next, addr != end); 1565 return 0; 1566 } 1567 1568 static int unuse_mm(struct mm_struct *mm, 1569 swp_entry_t entry, struct page *page) 1570 { 1571 struct vm_area_struct *vma; 1572 int ret = 0; 1573 1574 if (!down_read_trylock(&mm->mmap_sem)) { 1575 /* 1576 * Activate page so shrink_inactive_list is unlikely to unmap 1577 * its ptes while lock is dropped, so swapoff can make progress. 1578 */ 1579 activate_page(page); 1580 unlock_page(page); 1581 down_read(&mm->mmap_sem); 1582 lock_page(page); 1583 } 1584 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1585 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 1586 break; 1587 cond_resched(); 1588 } 1589 up_read(&mm->mmap_sem); 1590 return (ret < 0)? ret: 0; 1591 } 1592 1593 /* 1594 * Scan swap_map (or frontswap_map if frontswap parameter is true) 1595 * from current position to next entry still in use. 1596 * Recycle to start on reaching the end, returning 0 when empty. 1597 */ 1598 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1599 unsigned int prev, bool frontswap) 1600 { 1601 unsigned int max = si->max; 1602 unsigned int i = prev; 1603 unsigned char count; 1604 1605 /* 1606 * No need for swap_lock here: we're just looking 1607 * for whether an entry is in use, not modifying it; false 1608 * hits are okay, and sys_swapoff() has already prevented new 1609 * allocations from this area (while holding swap_lock). 1610 */ 1611 for (;;) { 1612 if (++i >= max) { 1613 if (!prev) { 1614 i = 0; 1615 break; 1616 } 1617 /* 1618 * No entries in use at top of swap_map, 1619 * loop back to start and recheck there. 1620 */ 1621 max = prev + 1; 1622 prev = 0; 1623 i = 1; 1624 } 1625 count = READ_ONCE(si->swap_map[i]); 1626 if (count && swap_count(count) != SWAP_MAP_BAD) 1627 if (!frontswap || frontswap_test(si, i)) 1628 break; 1629 if ((i % LATENCY_LIMIT) == 0) 1630 cond_resched(); 1631 } 1632 return i; 1633 } 1634 1635 /* 1636 * We completely avoid races by reading each swap page in advance, 1637 * and then search for the process using it. All the necessary 1638 * page table adjustments can then be made atomically. 1639 * 1640 * if the boolean frontswap is true, only unuse pages_to_unuse pages; 1641 * pages_to_unuse==0 means all pages; ignored if frontswap is false 1642 */ 1643 int try_to_unuse(unsigned int type, bool frontswap, 1644 unsigned long pages_to_unuse) 1645 { 1646 struct swap_info_struct *si = swap_info[type]; 1647 struct mm_struct *start_mm; 1648 volatile unsigned char *swap_map; /* swap_map is accessed without 1649 * locking. Mark it as volatile 1650 * to prevent compiler doing 1651 * something odd. 1652 */ 1653 unsigned char swcount; 1654 struct page *page; 1655 swp_entry_t entry; 1656 unsigned int i = 0; 1657 int retval = 0; 1658 1659 /* 1660 * When searching mms for an entry, a good strategy is to 1661 * start at the first mm we freed the previous entry from 1662 * (though actually we don't notice whether we or coincidence 1663 * freed the entry). Initialize this start_mm with a hold. 1664 * 1665 * A simpler strategy would be to start at the last mm we 1666 * freed the previous entry from; but that would take less 1667 * advantage of mmlist ordering, which clusters forked mms 1668 * together, child after parent. If we race with dup_mmap(), we 1669 * prefer to resolve parent before child, lest we miss entries 1670 * duplicated after we scanned child: using last mm would invert 1671 * that. 1672 */ 1673 start_mm = &init_mm; 1674 atomic_inc(&init_mm.mm_users); 1675 1676 /* 1677 * Keep on scanning until all entries have gone. Usually, 1678 * one pass through swap_map is enough, but not necessarily: 1679 * there are races when an instance of an entry might be missed. 1680 */ 1681 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) { 1682 if (signal_pending(current)) { 1683 retval = -EINTR; 1684 break; 1685 } 1686 1687 /* 1688 * Get a page for the entry, using the existing swap 1689 * cache page if there is one. Otherwise, get a clean 1690 * page and read the swap into it. 1691 */ 1692 swap_map = &si->swap_map[i]; 1693 entry = swp_entry(type, i); 1694 page = read_swap_cache_async(entry, 1695 GFP_HIGHUSER_MOVABLE, NULL, 0); 1696 if (!page) { 1697 /* 1698 * Either swap_duplicate() failed because entry 1699 * has been freed independently, and will not be 1700 * reused since sys_swapoff() already disabled 1701 * allocation from here, or alloc_page() failed. 1702 */ 1703 swcount = *swap_map; 1704 /* 1705 * We don't hold lock here, so the swap entry could be 1706 * SWAP_MAP_BAD (when the cluster is discarding). 1707 * Instead of fail out, We can just skip the swap 1708 * entry because swapoff will wait for discarding 1709 * finish anyway. 1710 */ 1711 if (!swcount || swcount == SWAP_MAP_BAD) 1712 continue; 1713 retval = -ENOMEM; 1714 break; 1715 } 1716 1717 /* 1718 * Don't hold on to start_mm if it looks like exiting. 1719 */ 1720 if (atomic_read(&start_mm->mm_users) == 1) { 1721 mmput(start_mm); 1722 start_mm = &init_mm; 1723 atomic_inc(&init_mm.mm_users); 1724 } 1725 1726 /* 1727 * Wait for and lock page. When do_swap_page races with 1728 * try_to_unuse, do_swap_page can handle the fault much 1729 * faster than try_to_unuse can locate the entry. This 1730 * apparently redundant "wait_on_page_locked" lets try_to_unuse 1731 * defer to do_swap_page in such a case - in some tests, 1732 * do_swap_page and try_to_unuse repeatedly compete. 1733 */ 1734 wait_on_page_locked(page); 1735 wait_on_page_writeback(page); 1736 lock_page(page); 1737 wait_on_page_writeback(page); 1738 1739 /* 1740 * Remove all references to entry. 1741 */ 1742 swcount = *swap_map; 1743 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 1744 retval = shmem_unuse(entry, page); 1745 /* page has already been unlocked and released */ 1746 if (retval < 0) 1747 break; 1748 continue; 1749 } 1750 if (swap_count(swcount) && start_mm != &init_mm) 1751 retval = unuse_mm(start_mm, entry, page); 1752 1753 if (swap_count(*swap_map)) { 1754 int set_start_mm = (*swap_map >= swcount); 1755 struct list_head *p = &start_mm->mmlist; 1756 struct mm_struct *new_start_mm = start_mm; 1757 struct mm_struct *prev_mm = start_mm; 1758 struct mm_struct *mm; 1759 1760 atomic_inc(&new_start_mm->mm_users); 1761 atomic_inc(&prev_mm->mm_users); 1762 spin_lock(&mmlist_lock); 1763 while (swap_count(*swap_map) && !retval && 1764 (p = p->next) != &start_mm->mmlist) { 1765 mm = list_entry(p, struct mm_struct, mmlist); 1766 if (!atomic_inc_not_zero(&mm->mm_users)) 1767 continue; 1768 spin_unlock(&mmlist_lock); 1769 mmput(prev_mm); 1770 prev_mm = mm; 1771 1772 cond_resched(); 1773 1774 swcount = *swap_map; 1775 if (!swap_count(swcount)) /* any usage ? */ 1776 ; 1777 else if (mm == &init_mm) 1778 set_start_mm = 1; 1779 else 1780 retval = unuse_mm(mm, entry, page); 1781 1782 if (set_start_mm && *swap_map < swcount) { 1783 mmput(new_start_mm); 1784 atomic_inc(&mm->mm_users); 1785 new_start_mm = mm; 1786 set_start_mm = 0; 1787 } 1788 spin_lock(&mmlist_lock); 1789 } 1790 spin_unlock(&mmlist_lock); 1791 mmput(prev_mm); 1792 mmput(start_mm); 1793 start_mm = new_start_mm; 1794 } 1795 if (retval) { 1796 unlock_page(page); 1797 put_page(page); 1798 break; 1799 } 1800 1801 /* 1802 * If a reference remains (rare), we would like to leave 1803 * the page in the swap cache; but try_to_unmap could 1804 * then re-duplicate the entry once we drop page lock, 1805 * so we might loop indefinitely; also, that page could 1806 * not be swapped out to other storage meanwhile. So: 1807 * delete from cache even if there's another reference, 1808 * after ensuring that the data has been saved to disk - 1809 * since if the reference remains (rarer), it will be 1810 * read from disk into another page. Splitting into two 1811 * pages would be incorrect if swap supported "shared 1812 * private" pages, but they are handled by tmpfs files. 1813 * 1814 * Given how unuse_vma() targets one particular offset 1815 * in an anon_vma, once the anon_vma has been determined, 1816 * this splitting happens to be just what is needed to 1817 * handle where KSM pages have been swapped out: re-reading 1818 * is unnecessarily slow, but we can fix that later on. 1819 */ 1820 if (swap_count(*swap_map) && 1821 PageDirty(page) && PageSwapCache(page)) { 1822 struct writeback_control wbc = { 1823 .sync_mode = WB_SYNC_NONE, 1824 }; 1825 1826 swap_writepage(page, &wbc); 1827 lock_page(page); 1828 wait_on_page_writeback(page); 1829 } 1830 1831 /* 1832 * It is conceivable that a racing task removed this page from 1833 * swap cache just before we acquired the page lock at the top, 1834 * or while we dropped it in unuse_mm(). The page might even 1835 * be back in swap cache on another swap area: that we must not 1836 * delete, since it may not have been written out to swap yet. 1837 */ 1838 if (PageSwapCache(page) && 1839 likely(page_private(page) == entry.val)) 1840 delete_from_swap_cache(page); 1841 1842 /* 1843 * So we could skip searching mms once swap count went 1844 * to 1, we did not mark any present ptes as dirty: must 1845 * mark page dirty so shrink_page_list will preserve it. 1846 */ 1847 SetPageDirty(page); 1848 unlock_page(page); 1849 put_page(page); 1850 1851 /* 1852 * Make sure that we aren't completely killing 1853 * interactive performance. 1854 */ 1855 cond_resched(); 1856 if (frontswap && pages_to_unuse > 0) { 1857 if (!--pages_to_unuse) 1858 break; 1859 } 1860 } 1861 1862 mmput(start_mm); 1863 return retval; 1864 } 1865 1866 /* 1867 * After a successful try_to_unuse, if no swap is now in use, we know 1868 * we can empty the mmlist. swap_lock must be held on entry and exit. 1869 * Note that mmlist_lock nests inside swap_lock, and an mm must be 1870 * added to the mmlist just after page_duplicate - before would be racy. 1871 */ 1872 static void drain_mmlist(void) 1873 { 1874 struct list_head *p, *next; 1875 unsigned int type; 1876 1877 for (type = 0; type < nr_swapfiles; type++) 1878 if (swap_info[type]->inuse_pages) 1879 return; 1880 spin_lock(&mmlist_lock); 1881 list_for_each_safe(p, next, &init_mm.mmlist) 1882 list_del_init(p); 1883 spin_unlock(&mmlist_lock); 1884 } 1885 1886 /* 1887 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 1888 * corresponds to page offset for the specified swap entry. 1889 * Note that the type of this function is sector_t, but it returns page offset 1890 * into the bdev, not sector offset. 1891 */ 1892 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 1893 { 1894 struct swap_info_struct *sis; 1895 struct swap_extent *start_se; 1896 struct swap_extent *se; 1897 pgoff_t offset; 1898 1899 sis = swap_info[swp_type(entry)]; 1900 *bdev = sis->bdev; 1901 1902 offset = swp_offset(entry); 1903 start_se = sis->curr_swap_extent; 1904 se = start_se; 1905 1906 for ( ; ; ) { 1907 if (se->start_page <= offset && 1908 offset < (se->start_page + se->nr_pages)) { 1909 return se->start_block + (offset - se->start_page); 1910 } 1911 se = list_next_entry(se, list); 1912 sis->curr_swap_extent = se; 1913 BUG_ON(se == start_se); /* It *must* be present */ 1914 } 1915 } 1916 1917 /* 1918 * Returns the page offset into bdev for the specified page's swap entry. 1919 */ 1920 sector_t map_swap_page(struct page *page, struct block_device **bdev) 1921 { 1922 swp_entry_t entry; 1923 entry.val = page_private(page); 1924 return map_swap_entry(entry, bdev); 1925 } 1926 1927 /* 1928 * Free all of a swapdev's extent information 1929 */ 1930 static void destroy_swap_extents(struct swap_info_struct *sis) 1931 { 1932 while (!list_empty(&sis->first_swap_extent.list)) { 1933 struct swap_extent *se; 1934 1935 se = list_first_entry(&sis->first_swap_extent.list, 1936 struct swap_extent, list); 1937 list_del(&se->list); 1938 kfree(se); 1939 } 1940 1941 if (sis->flags & SWP_FILE) { 1942 struct file *swap_file = sis->swap_file; 1943 struct address_space *mapping = swap_file->f_mapping; 1944 1945 sis->flags &= ~SWP_FILE; 1946 mapping->a_ops->swap_deactivate(swap_file); 1947 } 1948 } 1949 1950 /* 1951 * Add a block range (and the corresponding page range) into this swapdev's 1952 * extent list. The extent list is kept sorted in page order. 1953 * 1954 * This function rather assumes that it is called in ascending page order. 1955 */ 1956 int 1957 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1958 unsigned long nr_pages, sector_t start_block) 1959 { 1960 struct swap_extent *se; 1961 struct swap_extent *new_se; 1962 struct list_head *lh; 1963 1964 if (start_page == 0) { 1965 se = &sis->first_swap_extent; 1966 sis->curr_swap_extent = se; 1967 se->start_page = 0; 1968 se->nr_pages = nr_pages; 1969 se->start_block = start_block; 1970 return 1; 1971 } else { 1972 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 1973 se = list_entry(lh, struct swap_extent, list); 1974 BUG_ON(se->start_page + se->nr_pages != start_page); 1975 if (se->start_block + se->nr_pages == start_block) { 1976 /* Merge it */ 1977 se->nr_pages += nr_pages; 1978 return 0; 1979 } 1980 } 1981 1982 /* 1983 * No merge. Insert a new extent, preserving ordering. 1984 */ 1985 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 1986 if (new_se == NULL) 1987 return -ENOMEM; 1988 new_se->start_page = start_page; 1989 new_se->nr_pages = nr_pages; 1990 new_se->start_block = start_block; 1991 1992 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 1993 return 1; 1994 } 1995 1996 /* 1997 * A `swap extent' is a simple thing which maps a contiguous range of pages 1998 * onto a contiguous range of disk blocks. An ordered list of swap extents 1999 * is built at swapon time and is then used at swap_writepage/swap_readpage 2000 * time for locating where on disk a page belongs. 2001 * 2002 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2003 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2004 * swap files identically. 2005 * 2006 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2007 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2008 * swapfiles are handled *identically* after swapon time. 2009 * 2010 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2011 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 2012 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 2013 * requirements, they are simply tossed out - we will never use those blocks 2014 * for swapping. 2015 * 2016 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 2017 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 2018 * which will scribble on the fs. 2019 * 2020 * The amount of disk space which a single swap extent represents varies. 2021 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2022 * extents in the list. To avoid much list walking, we cache the previous 2023 * search location in `curr_swap_extent', and start new searches from there. 2024 * This is extremely effective. The average number of iterations in 2025 * map_swap_page() has been measured at about 0.3 per page. - akpm. 2026 */ 2027 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2028 { 2029 struct file *swap_file = sis->swap_file; 2030 struct address_space *mapping = swap_file->f_mapping; 2031 struct inode *inode = mapping->host; 2032 int ret; 2033 2034 if (S_ISBLK(inode->i_mode)) { 2035 ret = add_swap_extent(sis, 0, sis->max, 0); 2036 *span = sis->pages; 2037 return ret; 2038 } 2039 2040 if (mapping->a_ops->swap_activate) { 2041 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2042 if (!ret) { 2043 sis->flags |= SWP_FILE; 2044 ret = add_swap_extent(sis, 0, sis->max, 0); 2045 *span = sis->pages; 2046 } 2047 return ret; 2048 } 2049 2050 return generic_swapfile_activate(sis, swap_file, span); 2051 } 2052 2053 static void _enable_swap_info(struct swap_info_struct *p, int prio, 2054 unsigned char *swap_map, 2055 struct swap_cluster_info *cluster_info) 2056 { 2057 if (prio >= 0) 2058 p->prio = prio; 2059 else 2060 p->prio = --least_priority; 2061 /* 2062 * the plist prio is negated because plist ordering is 2063 * low-to-high, while swap ordering is high-to-low 2064 */ 2065 p->list.prio = -p->prio; 2066 p->avail_list.prio = -p->prio; 2067 p->swap_map = swap_map; 2068 p->cluster_info = cluster_info; 2069 p->flags |= SWP_WRITEOK; 2070 atomic_long_add(p->pages, &nr_swap_pages); 2071 total_swap_pages += p->pages; 2072 2073 assert_spin_locked(&swap_lock); 2074 /* 2075 * both lists are plists, and thus priority ordered. 2076 * swap_active_head needs to be priority ordered for swapoff(), 2077 * which on removal of any swap_info_struct with an auto-assigned 2078 * (i.e. negative) priority increments the auto-assigned priority 2079 * of any lower-priority swap_info_structs. 2080 * swap_avail_head needs to be priority ordered for get_swap_page(), 2081 * which allocates swap pages from the highest available priority 2082 * swap_info_struct. 2083 */ 2084 plist_add(&p->list, &swap_active_head); 2085 spin_lock(&swap_avail_lock); 2086 plist_add(&p->avail_list, &swap_avail_head); 2087 spin_unlock(&swap_avail_lock); 2088 } 2089 2090 static void enable_swap_info(struct swap_info_struct *p, int prio, 2091 unsigned char *swap_map, 2092 struct swap_cluster_info *cluster_info, 2093 unsigned long *frontswap_map) 2094 { 2095 frontswap_init(p->type, frontswap_map); 2096 spin_lock(&swap_lock); 2097 spin_lock(&p->lock); 2098 _enable_swap_info(p, prio, swap_map, cluster_info); 2099 spin_unlock(&p->lock); 2100 spin_unlock(&swap_lock); 2101 } 2102 2103 static void reinsert_swap_info(struct swap_info_struct *p) 2104 { 2105 spin_lock(&swap_lock); 2106 spin_lock(&p->lock); 2107 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2108 spin_unlock(&p->lock); 2109 spin_unlock(&swap_lock); 2110 } 2111 2112 bool has_usable_swap(void) 2113 { 2114 bool ret = true; 2115 2116 spin_lock(&swap_lock); 2117 if (plist_head_empty(&swap_active_head)) 2118 ret = false; 2119 spin_unlock(&swap_lock); 2120 return ret; 2121 } 2122 2123 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2124 { 2125 struct swap_info_struct *p = NULL; 2126 unsigned char *swap_map; 2127 struct swap_cluster_info *cluster_info; 2128 unsigned long *frontswap_map; 2129 struct file *swap_file, *victim; 2130 struct address_space *mapping; 2131 struct inode *inode; 2132 struct filename *pathname; 2133 int err, found = 0; 2134 unsigned int old_block_size; 2135 2136 if (!capable(CAP_SYS_ADMIN)) 2137 return -EPERM; 2138 2139 BUG_ON(!current->mm); 2140 2141 pathname = getname(specialfile); 2142 if (IS_ERR(pathname)) 2143 return PTR_ERR(pathname); 2144 2145 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2146 err = PTR_ERR(victim); 2147 if (IS_ERR(victim)) 2148 goto out; 2149 2150 mapping = victim->f_mapping; 2151 spin_lock(&swap_lock); 2152 plist_for_each_entry(p, &swap_active_head, list) { 2153 if (p->flags & SWP_WRITEOK) { 2154 if (p->swap_file->f_mapping == mapping) { 2155 found = 1; 2156 break; 2157 } 2158 } 2159 } 2160 if (!found) { 2161 err = -EINVAL; 2162 spin_unlock(&swap_lock); 2163 goto out_dput; 2164 } 2165 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2166 vm_unacct_memory(p->pages); 2167 else { 2168 err = -ENOMEM; 2169 spin_unlock(&swap_lock); 2170 goto out_dput; 2171 } 2172 spin_lock(&swap_avail_lock); 2173 plist_del(&p->avail_list, &swap_avail_head); 2174 spin_unlock(&swap_avail_lock); 2175 spin_lock(&p->lock); 2176 if (p->prio < 0) { 2177 struct swap_info_struct *si = p; 2178 2179 plist_for_each_entry_continue(si, &swap_active_head, list) { 2180 si->prio++; 2181 si->list.prio--; 2182 si->avail_list.prio--; 2183 } 2184 least_priority++; 2185 } 2186 plist_del(&p->list, &swap_active_head); 2187 atomic_long_sub(p->pages, &nr_swap_pages); 2188 total_swap_pages -= p->pages; 2189 p->flags &= ~SWP_WRITEOK; 2190 spin_unlock(&p->lock); 2191 spin_unlock(&swap_lock); 2192 2193 disable_swap_slots_cache_lock(); 2194 2195 set_current_oom_origin(); 2196 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ 2197 clear_current_oom_origin(); 2198 2199 if (err) { 2200 /* re-insert swap space back into swap_list */ 2201 reinsert_swap_info(p); 2202 reenable_swap_slots_cache_unlock(); 2203 goto out_dput; 2204 } 2205 2206 reenable_swap_slots_cache_unlock(); 2207 2208 flush_work(&p->discard_work); 2209 2210 destroy_swap_extents(p); 2211 if (p->flags & SWP_CONTINUED) 2212 free_swap_count_continuations(p); 2213 2214 mutex_lock(&swapon_mutex); 2215 spin_lock(&swap_lock); 2216 spin_lock(&p->lock); 2217 drain_mmlist(); 2218 2219 /* wait for anyone still in scan_swap_map */ 2220 p->highest_bit = 0; /* cuts scans short */ 2221 while (p->flags >= SWP_SCANNING) { 2222 spin_unlock(&p->lock); 2223 spin_unlock(&swap_lock); 2224 schedule_timeout_uninterruptible(1); 2225 spin_lock(&swap_lock); 2226 spin_lock(&p->lock); 2227 } 2228 2229 swap_file = p->swap_file; 2230 old_block_size = p->old_block_size; 2231 p->swap_file = NULL; 2232 p->max = 0; 2233 swap_map = p->swap_map; 2234 p->swap_map = NULL; 2235 cluster_info = p->cluster_info; 2236 p->cluster_info = NULL; 2237 frontswap_map = frontswap_map_get(p); 2238 spin_unlock(&p->lock); 2239 spin_unlock(&swap_lock); 2240 frontswap_invalidate_area(p->type); 2241 frontswap_map_set(p, NULL); 2242 mutex_unlock(&swapon_mutex); 2243 free_percpu(p->percpu_cluster); 2244 p->percpu_cluster = NULL; 2245 vfree(swap_map); 2246 vfree(cluster_info); 2247 vfree(frontswap_map); 2248 /* Destroy swap account information */ 2249 swap_cgroup_swapoff(p->type); 2250 exit_swap_address_space(p->type); 2251 2252 inode = mapping->host; 2253 if (S_ISBLK(inode->i_mode)) { 2254 struct block_device *bdev = I_BDEV(inode); 2255 set_blocksize(bdev, old_block_size); 2256 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2257 } else { 2258 inode_lock(inode); 2259 inode->i_flags &= ~S_SWAPFILE; 2260 inode_unlock(inode); 2261 } 2262 filp_close(swap_file, NULL); 2263 2264 /* 2265 * Clear the SWP_USED flag after all resources are freed so that swapon 2266 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2267 * not hold p->lock after we cleared its SWP_WRITEOK. 2268 */ 2269 spin_lock(&swap_lock); 2270 p->flags = 0; 2271 spin_unlock(&swap_lock); 2272 2273 err = 0; 2274 atomic_inc(&proc_poll_event); 2275 wake_up_interruptible(&proc_poll_wait); 2276 2277 out_dput: 2278 filp_close(victim, NULL); 2279 out: 2280 putname(pathname); 2281 return err; 2282 } 2283 2284 #ifdef CONFIG_PROC_FS 2285 static unsigned swaps_poll(struct file *file, poll_table *wait) 2286 { 2287 struct seq_file *seq = file->private_data; 2288 2289 poll_wait(file, &proc_poll_wait, wait); 2290 2291 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2292 seq->poll_event = atomic_read(&proc_poll_event); 2293 return POLLIN | POLLRDNORM | POLLERR | POLLPRI; 2294 } 2295 2296 return POLLIN | POLLRDNORM; 2297 } 2298 2299 /* iterator */ 2300 static void *swap_start(struct seq_file *swap, loff_t *pos) 2301 { 2302 struct swap_info_struct *si; 2303 int type; 2304 loff_t l = *pos; 2305 2306 mutex_lock(&swapon_mutex); 2307 2308 if (!l) 2309 return SEQ_START_TOKEN; 2310 2311 for (type = 0; type < nr_swapfiles; type++) { 2312 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2313 si = swap_info[type]; 2314 if (!(si->flags & SWP_USED) || !si->swap_map) 2315 continue; 2316 if (!--l) 2317 return si; 2318 } 2319 2320 return NULL; 2321 } 2322 2323 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2324 { 2325 struct swap_info_struct *si = v; 2326 int type; 2327 2328 if (v == SEQ_START_TOKEN) 2329 type = 0; 2330 else 2331 type = si->type + 1; 2332 2333 for (; type < nr_swapfiles; type++) { 2334 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2335 si = swap_info[type]; 2336 if (!(si->flags & SWP_USED) || !si->swap_map) 2337 continue; 2338 ++*pos; 2339 return si; 2340 } 2341 2342 return NULL; 2343 } 2344 2345 static void swap_stop(struct seq_file *swap, void *v) 2346 { 2347 mutex_unlock(&swapon_mutex); 2348 } 2349 2350 static int swap_show(struct seq_file *swap, void *v) 2351 { 2352 struct swap_info_struct *si = v; 2353 struct file *file; 2354 int len; 2355 2356 if (si == SEQ_START_TOKEN) { 2357 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 2358 return 0; 2359 } 2360 2361 file = si->swap_file; 2362 len = seq_file_path(swap, file, " \t\n\\"); 2363 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 2364 len < 40 ? 40 - len : 1, " ", 2365 S_ISBLK(file_inode(file)->i_mode) ? 2366 "partition" : "file\t", 2367 si->pages << (PAGE_SHIFT - 10), 2368 si->inuse_pages << (PAGE_SHIFT - 10), 2369 si->prio); 2370 return 0; 2371 } 2372 2373 static const struct seq_operations swaps_op = { 2374 .start = swap_start, 2375 .next = swap_next, 2376 .stop = swap_stop, 2377 .show = swap_show 2378 }; 2379 2380 static int swaps_open(struct inode *inode, struct file *file) 2381 { 2382 struct seq_file *seq; 2383 int ret; 2384 2385 ret = seq_open(file, &swaps_op); 2386 if (ret) 2387 return ret; 2388 2389 seq = file->private_data; 2390 seq->poll_event = atomic_read(&proc_poll_event); 2391 return 0; 2392 } 2393 2394 static const struct file_operations proc_swaps_operations = { 2395 .open = swaps_open, 2396 .read = seq_read, 2397 .llseek = seq_lseek, 2398 .release = seq_release, 2399 .poll = swaps_poll, 2400 }; 2401 2402 static int __init procswaps_init(void) 2403 { 2404 proc_create("swaps", 0, NULL, &proc_swaps_operations); 2405 return 0; 2406 } 2407 __initcall(procswaps_init); 2408 #endif /* CONFIG_PROC_FS */ 2409 2410 #ifdef MAX_SWAPFILES_CHECK 2411 static int __init max_swapfiles_check(void) 2412 { 2413 MAX_SWAPFILES_CHECK(); 2414 return 0; 2415 } 2416 late_initcall(max_swapfiles_check); 2417 #endif 2418 2419 static struct swap_info_struct *alloc_swap_info(void) 2420 { 2421 struct swap_info_struct *p; 2422 unsigned int type; 2423 2424 p = kzalloc(sizeof(*p), GFP_KERNEL); 2425 if (!p) 2426 return ERR_PTR(-ENOMEM); 2427 2428 spin_lock(&swap_lock); 2429 for (type = 0; type < nr_swapfiles; type++) { 2430 if (!(swap_info[type]->flags & SWP_USED)) 2431 break; 2432 } 2433 if (type >= MAX_SWAPFILES) { 2434 spin_unlock(&swap_lock); 2435 kfree(p); 2436 return ERR_PTR(-EPERM); 2437 } 2438 if (type >= nr_swapfiles) { 2439 p->type = type; 2440 swap_info[type] = p; 2441 /* 2442 * Write swap_info[type] before nr_swapfiles, in case a 2443 * racing procfs swap_start() or swap_next() is reading them. 2444 * (We never shrink nr_swapfiles, we never free this entry.) 2445 */ 2446 smp_wmb(); 2447 nr_swapfiles++; 2448 } else { 2449 kfree(p); 2450 p = swap_info[type]; 2451 /* 2452 * Do not memset this entry: a racing procfs swap_next() 2453 * would be relying on p->type to remain valid. 2454 */ 2455 } 2456 INIT_LIST_HEAD(&p->first_swap_extent.list); 2457 plist_node_init(&p->list, 0); 2458 plist_node_init(&p->avail_list, 0); 2459 p->flags = SWP_USED; 2460 spin_unlock(&swap_lock); 2461 spin_lock_init(&p->lock); 2462 2463 return p; 2464 } 2465 2466 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2467 { 2468 int error; 2469 2470 if (S_ISBLK(inode->i_mode)) { 2471 p->bdev = bdgrab(I_BDEV(inode)); 2472 error = blkdev_get(p->bdev, 2473 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2474 if (error < 0) { 2475 p->bdev = NULL; 2476 return error; 2477 } 2478 p->old_block_size = block_size(p->bdev); 2479 error = set_blocksize(p->bdev, PAGE_SIZE); 2480 if (error < 0) 2481 return error; 2482 p->flags |= SWP_BLKDEV; 2483 } else if (S_ISREG(inode->i_mode)) { 2484 p->bdev = inode->i_sb->s_bdev; 2485 inode_lock(inode); 2486 if (IS_SWAPFILE(inode)) 2487 return -EBUSY; 2488 } else 2489 return -EINVAL; 2490 2491 return 0; 2492 } 2493 2494 static unsigned long read_swap_header(struct swap_info_struct *p, 2495 union swap_header *swap_header, 2496 struct inode *inode) 2497 { 2498 int i; 2499 unsigned long maxpages; 2500 unsigned long swapfilepages; 2501 unsigned long last_page; 2502 2503 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2504 pr_err("Unable to find swap-space signature\n"); 2505 return 0; 2506 } 2507 2508 /* swap partition endianess hack... */ 2509 if (swab32(swap_header->info.version) == 1) { 2510 swab32s(&swap_header->info.version); 2511 swab32s(&swap_header->info.last_page); 2512 swab32s(&swap_header->info.nr_badpages); 2513 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2514 return 0; 2515 for (i = 0; i < swap_header->info.nr_badpages; i++) 2516 swab32s(&swap_header->info.badpages[i]); 2517 } 2518 /* Check the swap header's sub-version */ 2519 if (swap_header->info.version != 1) { 2520 pr_warn("Unable to handle swap header version %d\n", 2521 swap_header->info.version); 2522 return 0; 2523 } 2524 2525 p->lowest_bit = 1; 2526 p->cluster_next = 1; 2527 p->cluster_nr = 0; 2528 2529 /* 2530 * Find out how many pages are allowed for a single swap 2531 * device. There are two limiting factors: 1) the number 2532 * of bits for the swap offset in the swp_entry_t type, and 2533 * 2) the number of bits in the swap pte as defined by the 2534 * different architectures. In order to find the 2535 * largest possible bit mask, a swap entry with swap type 0 2536 * and swap offset ~0UL is created, encoded to a swap pte, 2537 * decoded to a swp_entry_t again, and finally the swap 2538 * offset is extracted. This will mask all the bits from 2539 * the initial ~0UL mask that can't be encoded in either 2540 * the swp_entry_t or the architecture definition of a 2541 * swap pte. 2542 */ 2543 maxpages = swp_offset(pte_to_swp_entry( 2544 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2545 last_page = swap_header->info.last_page; 2546 if (last_page > maxpages) { 2547 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2548 maxpages << (PAGE_SHIFT - 10), 2549 last_page << (PAGE_SHIFT - 10)); 2550 } 2551 if (maxpages > last_page) { 2552 maxpages = last_page + 1; 2553 /* p->max is an unsigned int: don't overflow it */ 2554 if ((unsigned int)maxpages == 0) 2555 maxpages = UINT_MAX; 2556 } 2557 p->highest_bit = maxpages - 1; 2558 2559 if (!maxpages) 2560 return 0; 2561 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2562 if (swapfilepages && maxpages > swapfilepages) { 2563 pr_warn("Swap area shorter than signature indicates\n"); 2564 return 0; 2565 } 2566 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2567 return 0; 2568 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2569 return 0; 2570 2571 return maxpages; 2572 } 2573 2574 #define SWAP_CLUSTER_INFO_COLS \ 2575 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 2576 #define SWAP_CLUSTER_SPACE_COLS \ 2577 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 2578 #define SWAP_CLUSTER_COLS \ 2579 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 2580 2581 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2582 union swap_header *swap_header, 2583 unsigned char *swap_map, 2584 struct swap_cluster_info *cluster_info, 2585 unsigned long maxpages, 2586 sector_t *span) 2587 { 2588 unsigned int j, k; 2589 unsigned int nr_good_pages; 2590 int nr_extents; 2591 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2592 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 2593 unsigned long i, idx; 2594 2595 nr_good_pages = maxpages - 1; /* omit header page */ 2596 2597 cluster_list_init(&p->free_clusters); 2598 cluster_list_init(&p->discard_clusters); 2599 2600 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2601 unsigned int page_nr = swap_header->info.badpages[i]; 2602 if (page_nr == 0 || page_nr > swap_header->info.last_page) 2603 return -EINVAL; 2604 if (page_nr < maxpages) { 2605 swap_map[page_nr] = SWAP_MAP_BAD; 2606 nr_good_pages--; 2607 /* 2608 * Haven't marked the cluster free yet, no list 2609 * operation involved 2610 */ 2611 inc_cluster_info_page(p, cluster_info, page_nr); 2612 } 2613 } 2614 2615 /* Haven't marked the cluster free yet, no list operation involved */ 2616 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 2617 inc_cluster_info_page(p, cluster_info, i); 2618 2619 if (nr_good_pages) { 2620 swap_map[0] = SWAP_MAP_BAD; 2621 /* 2622 * Not mark the cluster free yet, no list 2623 * operation involved 2624 */ 2625 inc_cluster_info_page(p, cluster_info, 0); 2626 p->max = maxpages; 2627 p->pages = nr_good_pages; 2628 nr_extents = setup_swap_extents(p, span); 2629 if (nr_extents < 0) 2630 return nr_extents; 2631 nr_good_pages = p->pages; 2632 } 2633 if (!nr_good_pages) { 2634 pr_warn("Empty swap-file\n"); 2635 return -EINVAL; 2636 } 2637 2638 if (!cluster_info) 2639 return nr_extents; 2640 2641 2642 /* 2643 * Reduce false cache line sharing between cluster_info and 2644 * sharing same address space. 2645 */ 2646 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 2647 j = (k + col) % SWAP_CLUSTER_COLS; 2648 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 2649 idx = i * SWAP_CLUSTER_COLS + j; 2650 if (idx >= nr_clusters) 2651 continue; 2652 if (cluster_count(&cluster_info[idx])) 2653 continue; 2654 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 2655 cluster_list_add_tail(&p->free_clusters, cluster_info, 2656 idx); 2657 } 2658 } 2659 return nr_extents; 2660 } 2661 2662 /* 2663 * Helper to sys_swapon determining if a given swap 2664 * backing device queue supports DISCARD operations. 2665 */ 2666 static bool swap_discardable(struct swap_info_struct *si) 2667 { 2668 struct request_queue *q = bdev_get_queue(si->bdev); 2669 2670 if (!q || !blk_queue_discard(q)) 2671 return false; 2672 2673 return true; 2674 } 2675 2676 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2677 { 2678 struct swap_info_struct *p; 2679 struct filename *name; 2680 struct file *swap_file = NULL; 2681 struct address_space *mapping; 2682 int prio; 2683 int error; 2684 union swap_header *swap_header; 2685 int nr_extents; 2686 sector_t span; 2687 unsigned long maxpages; 2688 unsigned char *swap_map = NULL; 2689 struct swap_cluster_info *cluster_info = NULL; 2690 unsigned long *frontswap_map = NULL; 2691 struct page *page = NULL; 2692 struct inode *inode = NULL; 2693 2694 if (swap_flags & ~SWAP_FLAGS_VALID) 2695 return -EINVAL; 2696 2697 if (!capable(CAP_SYS_ADMIN)) 2698 return -EPERM; 2699 2700 p = alloc_swap_info(); 2701 if (IS_ERR(p)) 2702 return PTR_ERR(p); 2703 2704 INIT_WORK(&p->discard_work, swap_discard_work); 2705 2706 name = getname(specialfile); 2707 if (IS_ERR(name)) { 2708 error = PTR_ERR(name); 2709 name = NULL; 2710 goto bad_swap; 2711 } 2712 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 2713 if (IS_ERR(swap_file)) { 2714 error = PTR_ERR(swap_file); 2715 swap_file = NULL; 2716 goto bad_swap; 2717 } 2718 2719 p->swap_file = swap_file; 2720 mapping = swap_file->f_mapping; 2721 inode = mapping->host; 2722 2723 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */ 2724 error = claim_swapfile(p, inode); 2725 if (unlikely(error)) 2726 goto bad_swap; 2727 2728 /* 2729 * Read the swap header. 2730 */ 2731 if (!mapping->a_ops->readpage) { 2732 error = -EINVAL; 2733 goto bad_swap; 2734 } 2735 page = read_mapping_page(mapping, 0, swap_file); 2736 if (IS_ERR(page)) { 2737 error = PTR_ERR(page); 2738 goto bad_swap; 2739 } 2740 swap_header = kmap(page); 2741 2742 maxpages = read_swap_header(p, swap_header, inode); 2743 if (unlikely(!maxpages)) { 2744 error = -EINVAL; 2745 goto bad_swap; 2746 } 2747 2748 /* OK, set up the swap map and apply the bad block list */ 2749 swap_map = vzalloc(maxpages); 2750 if (!swap_map) { 2751 error = -ENOMEM; 2752 goto bad_swap; 2753 } 2754 2755 if (bdi_cap_stable_pages_required(inode_to_bdi(inode))) 2756 p->flags |= SWP_STABLE_WRITES; 2757 2758 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 2759 int cpu; 2760 unsigned long ci, nr_cluster; 2761 2762 p->flags |= SWP_SOLIDSTATE; 2763 /* 2764 * select a random position to start with to help wear leveling 2765 * SSD 2766 */ 2767 p->cluster_next = 1 + (prandom_u32() % p->highest_bit); 2768 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2769 2770 cluster_info = vzalloc(nr_cluster * sizeof(*cluster_info)); 2771 if (!cluster_info) { 2772 error = -ENOMEM; 2773 goto bad_swap; 2774 } 2775 2776 for (ci = 0; ci < nr_cluster; ci++) 2777 spin_lock_init(&((cluster_info + ci)->lock)); 2778 2779 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 2780 if (!p->percpu_cluster) { 2781 error = -ENOMEM; 2782 goto bad_swap; 2783 } 2784 for_each_possible_cpu(cpu) { 2785 struct percpu_cluster *cluster; 2786 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 2787 cluster_set_null(&cluster->index); 2788 } 2789 } 2790 2791 error = swap_cgroup_swapon(p->type, maxpages); 2792 if (error) 2793 goto bad_swap; 2794 2795 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 2796 cluster_info, maxpages, &span); 2797 if (unlikely(nr_extents < 0)) { 2798 error = nr_extents; 2799 goto bad_swap; 2800 } 2801 /* frontswap enabled? set up bit-per-page map for frontswap */ 2802 if (IS_ENABLED(CONFIG_FRONTSWAP)) 2803 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long)); 2804 2805 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 2806 /* 2807 * When discard is enabled for swap with no particular 2808 * policy flagged, we set all swap discard flags here in 2809 * order to sustain backward compatibility with older 2810 * swapon(8) releases. 2811 */ 2812 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 2813 SWP_PAGE_DISCARD); 2814 2815 /* 2816 * By flagging sys_swapon, a sysadmin can tell us to 2817 * either do single-time area discards only, or to just 2818 * perform discards for released swap page-clusters. 2819 * Now it's time to adjust the p->flags accordingly. 2820 */ 2821 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 2822 p->flags &= ~SWP_PAGE_DISCARD; 2823 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 2824 p->flags &= ~SWP_AREA_DISCARD; 2825 2826 /* issue a swapon-time discard if it's still required */ 2827 if (p->flags & SWP_AREA_DISCARD) { 2828 int err = discard_swap(p); 2829 if (unlikely(err)) 2830 pr_err("swapon: discard_swap(%p): %d\n", 2831 p, err); 2832 } 2833 } 2834 2835 error = init_swap_address_space(p->type, maxpages); 2836 if (error) 2837 goto bad_swap; 2838 2839 mutex_lock(&swapon_mutex); 2840 prio = -1; 2841 if (swap_flags & SWAP_FLAG_PREFER) 2842 prio = 2843 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 2844 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 2845 2846 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 2847 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 2848 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 2849 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 2850 (p->flags & SWP_DISCARDABLE) ? "D" : "", 2851 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 2852 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 2853 (frontswap_map) ? "FS" : ""); 2854 2855 mutex_unlock(&swapon_mutex); 2856 atomic_inc(&proc_poll_event); 2857 wake_up_interruptible(&proc_poll_wait); 2858 2859 if (S_ISREG(inode->i_mode)) 2860 inode->i_flags |= S_SWAPFILE; 2861 error = 0; 2862 goto out; 2863 bad_swap: 2864 free_percpu(p->percpu_cluster); 2865 p->percpu_cluster = NULL; 2866 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 2867 set_blocksize(p->bdev, p->old_block_size); 2868 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2869 } 2870 destroy_swap_extents(p); 2871 swap_cgroup_swapoff(p->type); 2872 spin_lock(&swap_lock); 2873 p->swap_file = NULL; 2874 p->flags = 0; 2875 spin_unlock(&swap_lock); 2876 vfree(swap_map); 2877 vfree(cluster_info); 2878 if (swap_file) { 2879 if (inode && S_ISREG(inode->i_mode)) { 2880 inode_unlock(inode); 2881 inode = NULL; 2882 } 2883 filp_close(swap_file, NULL); 2884 } 2885 out: 2886 if (page && !IS_ERR(page)) { 2887 kunmap(page); 2888 put_page(page); 2889 } 2890 if (name) 2891 putname(name); 2892 if (inode && S_ISREG(inode->i_mode)) 2893 inode_unlock(inode); 2894 if (!error) 2895 enable_swap_slots_cache(); 2896 return error; 2897 } 2898 2899 void si_swapinfo(struct sysinfo *val) 2900 { 2901 unsigned int type; 2902 unsigned long nr_to_be_unused = 0; 2903 2904 spin_lock(&swap_lock); 2905 for (type = 0; type < nr_swapfiles; type++) { 2906 struct swap_info_struct *si = swap_info[type]; 2907 2908 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 2909 nr_to_be_unused += si->inuse_pages; 2910 } 2911 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 2912 val->totalswap = total_swap_pages + nr_to_be_unused; 2913 spin_unlock(&swap_lock); 2914 } 2915 2916 /* 2917 * Verify that a swap entry is valid and increment its swap map count. 2918 * 2919 * Returns error code in following case. 2920 * - success -> 0 2921 * - swp_entry is invalid -> EINVAL 2922 * - swp_entry is migration entry -> EINVAL 2923 * - swap-cache reference is requested but there is already one. -> EEXIST 2924 * - swap-cache reference is requested but the entry is not used. -> ENOENT 2925 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 2926 */ 2927 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 2928 { 2929 struct swap_info_struct *p; 2930 struct swap_cluster_info *ci; 2931 unsigned long offset, type; 2932 unsigned char count; 2933 unsigned char has_cache; 2934 int err = -EINVAL; 2935 2936 if (non_swap_entry(entry)) 2937 goto out; 2938 2939 type = swp_type(entry); 2940 if (type >= nr_swapfiles) 2941 goto bad_file; 2942 p = swap_info[type]; 2943 offset = swp_offset(entry); 2944 if (unlikely(offset >= p->max)) 2945 goto out; 2946 2947 ci = lock_cluster_or_swap_info(p, offset); 2948 2949 count = p->swap_map[offset]; 2950 2951 /* 2952 * swapin_readahead() doesn't check if a swap entry is valid, so the 2953 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 2954 */ 2955 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 2956 err = -ENOENT; 2957 goto unlock_out; 2958 } 2959 2960 has_cache = count & SWAP_HAS_CACHE; 2961 count &= ~SWAP_HAS_CACHE; 2962 err = 0; 2963 2964 if (usage == SWAP_HAS_CACHE) { 2965 2966 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 2967 if (!has_cache && count) 2968 has_cache = SWAP_HAS_CACHE; 2969 else if (has_cache) /* someone else added cache */ 2970 err = -EEXIST; 2971 else /* no users remaining */ 2972 err = -ENOENT; 2973 2974 } else if (count || has_cache) { 2975 2976 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 2977 count += usage; 2978 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 2979 err = -EINVAL; 2980 else if (swap_count_continued(p, offset, count)) 2981 count = COUNT_CONTINUED; 2982 else 2983 err = -ENOMEM; 2984 } else 2985 err = -ENOENT; /* unused swap entry */ 2986 2987 p->swap_map[offset] = count | has_cache; 2988 2989 unlock_out: 2990 unlock_cluster_or_swap_info(p, ci); 2991 out: 2992 return err; 2993 2994 bad_file: 2995 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val); 2996 goto out; 2997 } 2998 2999 /* 3000 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3001 * (in which case its reference count is never incremented). 3002 */ 3003 void swap_shmem_alloc(swp_entry_t entry) 3004 { 3005 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3006 } 3007 3008 /* 3009 * Increase reference count of swap entry by 1. 3010 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3011 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3012 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3013 * might occur if a page table entry has got corrupted. 3014 */ 3015 int swap_duplicate(swp_entry_t entry) 3016 { 3017 int err = 0; 3018 3019 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3020 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3021 return err; 3022 } 3023 3024 /* 3025 * @entry: swap entry for which we allocate swap cache. 3026 * 3027 * Called when allocating swap cache for existing swap entry, 3028 * This can return error codes. Returns 0 at success. 3029 * -EBUSY means there is a swap cache. 3030 * Note: return code is different from swap_duplicate(). 3031 */ 3032 int swapcache_prepare(swp_entry_t entry) 3033 { 3034 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3035 } 3036 3037 struct swap_info_struct *page_swap_info(struct page *page) 3038 { 3039 swp_entry_t swap = { .val = page_private(page) }; 3040 return swap_info[swp_type(swap)]; 3041 } 3042 3043 /* 3044 * out-of-line __page_file_ methods to avoid include hell. 3045 */ 3046 struct address_space *__page_file_mapping(struct page *page) 3047 { 3048 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 3049 return page_swap_info(page)->swap_file->f_mapping; 3050 } 3051 EXPORT_SYMBOL_GPL(__page_file_mapping); 3052 3053 pgoff_t __page_file_index(struct page *page) 3054 { 3055 swp_entry_t swap = { .val = page_private(page) }; 3056 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 3057 return swp_offset(swap); 3058 } 3059 EXPORT_SYMBOL_GPL(__page_file_index); 3060 3061 /* 3062 * add_swap_count_continuation - called when a swap count is duplicated 3063 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3064 * page of the original vmalloc'ed swap_map, to hold the continuation count 3065 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3066 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3067 * 3068 * These continuation pages are seldom referenced: the common paths all work 3069 * on the original swap_map, only referring to a continuation page when the 3070 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3071 * 3072 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3073 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3074 * can be called after dropping locks. 3075 */ 3076 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3077 { 3078 struct swap_info_struct *si; 3079 struct swap_cluster_info *ci; 3080 struct page *head; 3081 struct page *page; 3082 struct page *list_page; 3083 pgoff_t offset; 3084 unsigned char count; 3085 3086 /* 3087 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3088 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3089 */ 3090 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3091 3092 si = swap_info_get(entry); 3093 if (!si) { 3094 /* 3095 * An acceptable race has occurred since the failing 3096 * __swap_duplicate(): the swap entry has been freed, 3097 * perhaps even the whole swap_map cleared for swapoff. 3098 */ 3099 goto outer; 3100 } 3101 3102 offset = swp_offset(entry); 3103 3104 ci = lock_cluster(si, offset); 3105 3106 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 3107 3108 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3109 /* 3110 * The higher the swap count, the more likely it is that tasks 3111 * will race to add swap count continuation: we need to avoid 3112 * over-provisioning. 3113 */ 3114 goto out; 3115 } 3116 3117 if (!page) { 3118 unlock_cluster(ci); 3119 spin_unlock(&si->lock); 3120 return -ENOMEM; 3121 } 3122 3123 /* 3124 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 3125 * no architecture is using highmem pages for kernel page tables: so it 3126 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 3127 */ 3128 head = vmalloc_to_page(si->swap_map + offset); 3129 offset &= ~PAGE_MASK; 3130 3131 /* 3132 * Page allocation does not initialize the page's lru field, 3133 * but it does always reset its private field. 3134 */ 3135 if (!page_private(head)) { 3136 BUG_ON(count & COUNT_CONTINUED); 3137 INIT_LIST_HEAD(&head->lru); 3138 set_page_private(head, SWP_CONTINUED); 3139 si->flags |= SWP_CONTINUED; 3140 } 3141 3142 list_for_each_entry(list_page, &head->lru, lru) { 3143 unsigned char *map; 3144 3145 /* 3146 * If the previous map said no continuation, but we've found 3147 * a continuation page, free our allocation and use this one. 3148 */ 3149 if (!(count & COUNT_CONTINUED)) 3150 goto out; 3151 3152 map = kmap_atomic(list_page) + offset; 3153 count = *map; 3154 kunmap_atomic(map); 3155 3156 /* 3157 * If this continuation count now has some space in it, 3158 * free our allocation and use this one. 3159 */ 3160 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3161 goto out; 3162 } 3163 3164 list_add_tail(&page->lru, &head->lru); 3165 page = NULL; /* now it's attached, don't free it */ 3166 out: 3167 unlock_cluster(ci); 3168 spin_unlock(&si->lock); 3169 outer: 3170 if (page) 3171 __free_page(page); 3172 return 0; 3173 } 3174 3175 /* 3176 * swap_count_continued - when the original swap_map count is incremented 3177 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3178 * into, carry if so, or else fail until a new continuation page is allocated; 3179 * when the original swap_map count is decremented from 0 with continuation, 3180 * borrow from the continuation and report whether it still holds more. 3181 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3182 * lock. 3183 */ 3184 static bool swap_count_continued(struct swap_info_struct *si, 3185 pgoff_t offset, unsigned char count) 3186 { 3187 struct page *head; 3188 struct page *page; 3189 unsigned char *map; 3190 3191 head = vmalloc_to_page(si->swap_map + offset); 3192 if (page_private(head) != SWP_CONTINUED) { 3193 BUG_ON(count & COUNT_CONTINUED); 3194 return false; /* need to add count continuation */ 3195 } 3196 3197 offset &= ~PAGE_MASK; 3198 page = list_entry(head->lru.next, struct page, lru); 3199 map = kmap_atomic(page) + offset; 3200 3201 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3202 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3203 3204 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3205 /* 3206 * Think of how you add 1 to 999 3207 */ 3208 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3209 kunmap_atomic(map); 3210 page = list_entry(page->lru.next, struct page, lru); 3211 BUG_ON(page == head); 3212 map = kmap_atomic(page) + offset; 3213 } 3214 if (*map == SWAP_CONT_MAX) { 3215 kunmap_atomic(map); 3216 page = list_entry(page->lru.next, struct page, lru); 3217 if (page == head) 3218 return false; /* add count continuation */ 3219 map = kmap_atomic(page) + offset; 3220 init_map: *map = 0; /* we didn't zero the page */ 3221 } 3222 *map += 1; 3223 kunmap_atomic(map); 3224 page = list_entry(page->lru.prev, struct page, lru); 3225 while (page != head) { 3226 map = kmap_atomic(page) + offset; 3227 *map = COUNT_CONTINUED; 3228 kunmap_atomic(map); 3229 page = list_entry(page->lru.prev, struct page, lru); 3230 } 3231 return true; /* incremented */ 3232 3233 } else { /* decrementing */ 3234 /* 3235 * Think of how you subtract 1 from 1000 3236 */ 3237 BUG_ON(count != COUNT_CONTINUED); 3238 while (*map == COUNT_CONTINUED) { 3239 kunmap_atomic(map); 3240 page = list_entry(page->lru.next, struct page, lru); 3241 BUG_ON(page == head); 3242 map = kmap_atomic(page) + offset; 3243 } 3244 BUG_ON(*map == 0); 3245 *map -= 1; 3246 if (*map == 0) 3247 count = 0; 3248 kunmap_atomic(map); 3249 page = list_entry(page->lru.prev, struct page, lru); 3250 while (page != head) { 3251 map = kmap_atomic(page) + offset; 3252 *map = SWAP_CONT_MAX | count; 3253 count = COUNT_CONTINUED; 3254 kunmap_atomic(map); 3255 page = list_entry(page->lru.prev, struct page, lru); 3256 } 3257 return count == COUNT_CONTINUED; 3258 } 3259 } 3260 3261 /* 3262 * free_swap_count_continuations - swapoff free all the continuation pages 3263 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3264 */ 3265 static void free_swap_count_continuations(struct swap_info_struct *si) 3266 { 3267 pgoff_t offset; 3268 3269 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3270 struct page *head; 3271 head = vmalloc_to_page(si->swap_map + offset); 3272 if (page_private(head)) { 3273 struct page *page, *next; 3274 3275 list_for_each_entry_safe(page, next, &head->lru, lru) { 3276 list_del(&page->lru); 3277 __free_page(page); 3278 } 3279 } 3280 } 3281 } 3282