1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/sched/mm.h> 10 #include <linux/sched/task.h> 11 #include <linux/hugetlb.h> 12 #include <linux/mman.h> 13 #include <linux/slab.h> 14 #include <linux/kernel_stat.h> 15 #include <linux/swap.h> 16 #include <linux/vmalloc.h> 17 #include <linux/pagemap.h> 18 #include <linux/namei.h> 19 #include <linux/shmem_fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/random.h> 22 #include <linux/writeback.h> 23 #include <linux/proc_fs.h> 24 #include <linux/seq_file.h> 25 #include <linux/init.h> 26 #include <linux/ksm.h> 27 #include <linux/rmap.h> 28 #include <linux/security.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mutex.h> 31 #include <linux/capability.h> 32 #include <linux/syscalls.h> 33 #include <linux/memcontrol.h> 34 #include <linux/poll.h> 35 #include <linux/oom.h> 36 #include <linux/frontswap.h> 37 #include <linux/swapfile.h> 38 #include <linux/export.h> 39 #include <linux/swap_slots.h> 40 #include <linux/sort.h> 41 42 #include <asm/pgtable.h> 43 #include <asm/tlbflush.h> 44 #include <linux/swapops.h> 45 #include <linux/swap_cgroup.h> 46 47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 48 unsigned char); 49 static void free_swap_count_continuations(struct swap_info_struct *); 50 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 51 52 DEFINE_SPINLOCK(swap_lock); 53 static unsigned int nr_swapfiles; 54 atomic_long_t nr_swap_pages; 55 /* 56 * Some modules use swappable objects and may try to swap them out under 57 * memory pressure (via the shrinker). Before doing so, they may wish to 58 * check to see if any swap space is available. 59 */ 60 EXPORT_SYMBOL_GPL(nr_swap_pages); 61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 62 long total_swap_pages; 63 static int least_priority = -1; 64 65 static const char Bad_file[] = "Bad swap file entry "; 66 static const char Unused_file[] = "Unused swap file entry "; 67 static const char Bad_offset[] = "Bad swap offset entry "; 68 static const char Unused_offset[] = "Unused swap offset entry "; 69 70 /* 71 * all active swap_info_structs 72 * protected with swap_lock, and ordered by priority. 73 */ 74 PLIST_HEAD(swap_active_head); 75 76 /* 77 * all available (active, not full) swap_info_structs 78 * protected with swap_avail_lock, ordered by priority. 79 * This is used by get_swap_page() instead of swap_active_head 80 * because swap_active_head includes all swap_info_structs, 81 * but get_swap_page() doesn't need to look at full ones. 82 * This uses its own lock instead of swap_lock because when a 83 * swap_info_struct changes between not-full/full, it needs to 84 * add/remove itself to/from this list, but the swap_info_struct->lock 85 * is held and the locking order requires swap_lock to be taken 86 * before any swap_info_struct->lock. 87 */ 88 struct plist_head *swap_avail_heads; 89 static DEFINE_SPINLOCK(swap_avail_lock); 90 91 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 92 93 static DEFINE_MUTEX(swapon_mutex); 94 95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 96 /* Activity counter to indicate that a swapon or swapoff has occurred */ 97 static atomic_t proc_poll_event = ATOMIC_INIT(0); 98 99 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 100 101 static inline unsigned char swap_count(unsigned char ent) 102 { 103 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ 104 } 105 106 /* returns 1 if swap entry is freed */ 107 static int 108 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) 109 { 110 swp_entry_t entry = swp_entry(si->type, offset); 111 struct page *page; 112 int ret = 0; 113 114 page = find_get_page(swap_address_space(entry), swp_offset(entry)); 115 if (!page) 116 return 0; 117 /* 118 * This function is called from scan_swap_map() and it's called 119 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. 120 * We have to use trylock for avoiding deadlock. This is a special 121 * case and you should use try_to_free_swap() with explicit lock_page() 122 * in usual operations. 123 */ 124 if (trylock_page(page)) { 125 ret = try_to_free_swap(page); 126 unlock_page(page); 127 } 128 put_page(page); 129 return ret; 130 } 131 132 /* 133 * swapon tell device that all the old swap contents can be discarded, 134 * to allow the swap device to optimize its wear-levelling. 135 */ 136 static int discard_swap(struct swap_info_struct *si) 137 { 138 struct swap_extent *se; 139 sector_t start_block; 140 sector_t nr_blocks; 141 int err = 0; 142 143 /* Do not discard the swap header page! */ 144 se = &si->first_swap_extent; 145 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 146 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 147 if (nr_blocks) { 148 err = blkdev_issue_discard(si->bdev, start_block, 149 nr_blocks, GFP_KERNEL, 0); 150 if (err) 151 return err; 152 cond_resched(); 153 } 154 155 list_for_each_entry(se, &si->first_swap_extent.list, list) { 156 start_block = se->start_block << (PAGE_SHIFT - 9); 157 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 158 159 err = blkdev_issue_discard(si->bdev, start_block, 160 nr_blocks, GFP_KERNEL, 0); 161 if (err) 162 break; 163 164 cond_resched(); 165 } 166 return err; /* That will often be -EOPNOTSUPP */ 167 } 168 169 /* 170 * swap allocation tell device that a cluster of swap can now be discarded, 171 * to allow the swap device to optimize its wear-levelling. 172 */ 173 static void discard_swap_cluster(struct swap_info_struct *si, 174 pgoff_t start_page, pgoff_t nr_pages) 175 { 176 struct swap_extent *se = si->curr_swap_extent; 177 int found_extent = 0; 178 179 while (nr_pages) { 180 if (se->start_page <= start_page && 181 start_page < se->start_page + se->nr_pages) { 182 pgoff_t offset = start_page - se->start_page; 183 sector_t start_block = se->start_block + offset; 184 sector_t nr_blocks = se->nr_pages - offset; 185 186 if (nr_blocks > nr_pages) 187 nr_blocks = nr_pages; 188 start_page += nr_blocks; 189 nr_pages -= nr_blocks; 190 191 if (!found_extent++) 192 si->curr_swap_extent = se; 193 194 start_block <<= PAGE_SHIFT - 9; 195 nr_blocks <<= PAGE_SHIFT - 9; 196 if (blkdev_issue_discard(si->bdev, start_block, 197 nr_blocks, GFP_NOIO, 0)) 198 break; 199 } 200 201 se = list_next_entry(se, list); 202 } 203 } 204 205 #ifdef CONFIG_THP_SWAP 206 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 207 #else 208 #define SWAPFILE_CLUSTER 256 209 #endif 210 #define LATENCY_LIMIT 256 211 212 static inline void cluster_set_flag(struct swap_cluster_info *info, 213 unsigned int flag) 214 { 215 info->flags = flag; 216 } 217 218 static inline unsigned int cluster_count(struct swap_cluster_info *info) 219 { 220 return info->data; 221 } 222 223 static inline void cluster_set_count(struct swap_cluster_info *info, 224 unsigned int c) 225 { 226 info->data = c; 227 } 228 229 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 230 unsigned int c, unsigned int f) 231 { 232 info->flags = f; 233 info->data = c; 234 } 235 236 static inline unsigned int cluster_next(struct swap_cluster_info *info) 237 { 238 return info->data; 239 } 240 241 static inline void cluster_set_next(struct swap_cluster_info *info, 242 unsigned int n) 243 { 244 info->data = n; 245 } 246 247 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 248 unsigned int n, unsigned int f) 249 { 250 info->flags = f; 251 info->data = n; 252 } 253 254 static inline bool cluster_is_free(struct swap_cluster_info *info) 255 { 256 return info->flags & CLUSTER_FLAG_FREE; 257 } 258 259 static inline bool cluster_is_null(struct swap_cluster_info *info) 260 { 261 return info->flags & CLUSTER_FLAG_NEXT_NULL; 262 } 263 264 static inline void cluster_set_null(struct swap_cluster_info *info) 265 { 266 info->flags = CLUSTER_FLAG_NEXT_NULL; 267 info->data = 0; 268 } 269 270 static inline bool cluster_is_huge(struct swap_cluster_info *info) 271 { 272 return info->flags & CLUSTER_FLAG_HUGE; 273 } 274 275 static inline void cluster_clear_huge(struct swap_cluster_info *info) 276 { 277 info->flags &= ~CLUSTER_FLAG_HUGE; 278 } 279 280 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 281 unsigned long offset) 282 { 283 struct swap_cluster_info *ci; 284 285 ci = si->cluster_info; 286 if (ci) { 287 ci += offset / SWAPFILE_CLUSTER; 288 spin_lock(&ci->lock); 289 } 290 return ci; 291 } 292 293 static inline void unlock_cluster(struct swap_cluster_info *ci) 294 { 295 if (ci) 296 spin_unlock(&ci->lock); 297 } 298 299 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 300 struct swap_info_struct *si, 301 unsigned long offset) 302 { 303 struct swap_cluster_info *ci; 304 305 ci = lock_cluster(si, offset); 306 if (!ci) 307 spin_lock(&si->lock); 308 309 return ci; 310 } 311 312 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 313 struct swap_cluster_info *ci) 314 { 315 if (ci) 316 unlock_cluster(ci); 317 else 318 spin_unlock(&si->lock); 319 } 320 321 static inline bool cluster_list_empty(struct swap_cluster_list *list) 322 { 323 return cluster_is_null(&list->head); 324 } 325 326 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 327 { 328 return cluster_next(&list->head); 329 } 330 331 static void cluster_list_init(struct swap_cluster_list *list) 332 { 333 cluster_set_null(&list->head); 334 cluster_set_null(&list->tail); 335 } 336 337 static void cluster_list_add_tail(struct swap_cluster_list *list, 338 struct swap_cluster_info *ci, 339 unsigned int idx) 340 { 341 if (cluster_list_empty(list)) { 342 cluster_set_next_flag(&list->head, idx, 0); 343 cluster_set_next_flag(&list->tail, idx, 0); 344 } else { 345 struct swap_cluster_info *ci_tail; 346 unsigned int tail = cluster_next(&list->tail); 347 348 /* 349 * Nested cluster lock, but both cluster locks are 350 * only acquired when we held swap_info_struct->lock 351 */ 352 ci_tail = ci + tail; 353 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 354 cluster_set_next(ci_tail, idx); 355 spin_unlock(&ci_tail->lock); 356 cluster_set_next_flag(&list->tail, idx, 0); 357 } 358 } 359 360 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 361 struct swap_cluster_info *ci) 362 { 363 unsigned int idx; 364 365 idx = cluster_next(&list->head); 366 if (cluster_next(&list->tail) == idx) { 367 cluster_set_null(&list->head); 368 cluster_set_null(&list->tail); 369 } else 370 cluster_set_next_flag(&list->head, 371 cluster_next(&ci[idx]), 0); 372 373 return idx; 374 } 375 376 /* Add a cluster to discard list and schedule it to do discard */ 377 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 378 unsigned int idx) 379 { 380 /* 381 * If scan_swap_map() can't find a free cluster, it will check 382 * si->swap_map directly. To make sure the discarding cluster isn't 383 * taken by scan_swap_map(), mark the swap entries bad (occupied). It 384 * will be cleared after discard 385 */ 386 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 387 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 388 389 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 390 391 schedule_work(&si->discard_work); 392 } 393 394 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 395 { 396 struct swap_cluster_info *ci = si->cluster_info; 397 398 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 399 cluster_list_add_tail(&si->free_clusters, ci, idx); 400 } 401 402 /* 403 * Doing discard actually. After a cluster discard is finished, the cluster 404 * will be added to free cluster list. caller should hold si->lock. 405 */ 406 static void swap_do_scheduled_discard(struct swap_info_struct *si) 407 { 408 struct swap_cluster_info *info, *ci; 409 unsigned int idx; 410 411 info = si->cluster_info; 412 413 while (!cluster_list_empty(&si->discard_clusters)) { 414 idx = cluster_list_del_first(&si->discard_clusters, info); 415 spin_unlock(&si->lock); 416 417 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 418 SWAPFILE_CLUSTER); 419 420 spin_lock(&si->lock); 421 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 422 __free_cluster(si, idx); 423 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 424 0, SWAPFILE_CLUSTER); 425 unlock_cluster(ci); 426 } 427 } 428 429 static void swap_discard_work(struct work_struct *work) 430 { 431 struct swap_info_struct *si; 432 433 si = container_of(work, struct swap_info_struct, discard_work); 434 435 spin_lock(&si->lock); 436 swap_do_scheduled_discard(si); 437 spin_unlock(&si->lock); 438 } 439 440 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 441 { 442 struct swap_cluster_info *ci = si->cluster_info; 443 444 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 445 cluster_list_del_first(&si->free_clusters, ci); 446 cluster_set_count_flag(ci + idx, 0, 0); 447 } 448 449 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 450 { 451 struct swap_cluster_info *ci = si->cluster_info + idx; 452 453 VM_BUG_ON(cluster_count(ci) != 0); 454 /* 455 * If the swap is discardable, prepare discard the cluster 456 * instead of free it immediately. The cluster will be freed 457 * after discard. 458 */ 459 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 460 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 461 swap_cluster_schedule_discard(si, idx); 462 return; 463 } 464 465 __free_cluster(si, idx); 466 } 467 468 /* 469 * The cluster corresponding to page_nr will be used. The cluster will be 470 * removed from free cluster list and its usage counter will be increased. 471 */ 472 static void inc_cluster_info_page(struct swap_info_struct *p, 473 struct swap_cluster_info *cluster_info, unsigned long page_nr) 474 { 475 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 476 477 if (!cluster_info) 478 return; 479 if (cluster_is_free(&cluster_info[idx])) 480 alloc_cluster(p, idx); 481 482 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 483 cluster_set_count(&cluster_info[idx], 484 cluster_count(&cluster_info[idx]) + 1); 485 } 486 487 /* 488 * The cluster corresponding to page_nr decreases one usage. If the usage 489 * counter becomes 0, which means no page in the cluster is in using, we can 490 * optionally discard the cluster and add it to free cluster list. 491 */ 492 static void dec_cluster_info_page(struct swap_info_struct *p, 493 struct swap_cluster_info *cluster_info, unsigned long page_nr) 494 { 495 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 496 497 if (!cluster_info) 498 return; 499 500 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 501 cluster_set_count(&cluster_info[idx], 502 cluster_count(&cluster_info[idx]) - 1); 503 504 if (cluster_count(&cluster_info[idx]) == 0) 505 free_cluster(p, idx); 506 } 507 508 /* 509 * It's possible scan_swap_map() uses a free cluster in the middle of free 510 * cluster list. Avoiding such abuse to avoid list corruption. 511 */ 512 static bool 513 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 514 unsigned long offset) 515 { 516 struct percpu_cluster *percpu_cluster; 517 bool conflict; 518 519 offset /= SWAPFILE_CLUSTER; 520 conflict = !cluster_list_empty(&si->free_clusters) && 521 offset != cluster_list_first(&si->free_clusters) && 522 cluster_is_free(&si->cluster_info[offset]); 523 524 if (!conflict) 525 return false; 526 527 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 528 cluster_set_null(&percpu_cluster->index); 529 return true; 530 } 531 532 /* 533 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 534 * might involve allocating a new cluster for current CPU too. 535 */ 536 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 537 unsigned long *offset, unsigned long *scan_base) 538 { 539 struct percpu_cluster *cluster; 540 struct swap_cluster_info *ci; 541 bool found_free; 542 unsigned long tmp, max; 543 544 new_cluster: 545 cluster = this_cpu_ptr(si->percpu_cluster); 546 if (cluster_is_null(&cluster->index)) { 547 if (!cluster_list_empty(&si->free_clusters)) { 548 cluster->index = si->free_clusters.head; 549 cluster->next = cluster_next(&cluster->index) * 550 SWAPFILE_CLUSTER; 551 } else if (!cluster_list_empty(&si->discard_clusters)) { 552 /* 553 * we don't have free cluster but have some clusters in 554 * discarding, do discard now and reclaim them 555 */ 556 swap_do_scheduled_discard(si); 557 *scan_base = *offset = si->cluster_next; 558 goto new_cluster; 559 } else 560 return false; 561 } 562 563 found_free = false; 564 565 /* 566 * Other CPUs can use our cluster if they can't find a free cluster, 567 * check if there is still free entry in the cluster 568 */ 569 tmp = cluster->next; 570 max = min_t(unsigned long, si->max, 571 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 572 if (tmp >= max) { 573 cluster_set_null(&cluster->index); 574 goto new_cluster; 575 } 576 ci = lock_cluster(si, tmp); 577 while (tmp < max) { 578 if (!si->swap_map[tmp]) { 579 found_free = true; 580 break; 581 } 582 tmp++; 583 } 584 unlock_cluster(ci); 585 if (!found_free) { 586 cluster_set_null(&cluster->index); 587 goto new_cluster; 588 } 589 cluster->next = tmp + 1; 590 *offset = tmp; 591 *scan_base = tmp; 592 return found_free; 593 } 594 595 static void __del_from_avail_list(struct swap_info_struct *p) 596 { 597 int nid; 598 599 for_each_node(nid) 600 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 601 } 602 603 static void del_from_avail_list(struct swap_info_struct *p) 604 { 605 spin_lock(&swap_avail_lock); 606 __del_from_avail_list(p); 607 spin_unlock(&swap_avail_lock); 608 } 609 610 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 611 unsigned int nr_entries) 612 { 613 unsigned int end = offset + nr_entries - 1; 614 615 if (offset == si->lowest_bit) 616 si->lowest_bit += nr_entries; 617 if (end == si->highest_bit) 618 si->highest_bit -= nr_entries; 619 si->inuse_pages += nr_entries; 620 if (si->inuse_pages == si->pages) { 621 si->lowest_bit = si->max; 622 si->highest_bit = 0; 623 del_from_avail_list(si); 624 } 625 } 626 627 static void add_to_avail_list(struct swap_info_struct *p) 628 { 629 int nid; 630 631 spin_lock(&swap_avail_lock); 632 for_each_node(nid) { 633 WARN_ON(!plist_node_empty(&p->avail_lists[nid])); 634 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 635 } 636 spin_unlock(&swap_avail_lock); 637 } 638 639 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 640 unsigned int nr_entries) 641 { 642 unsigned long end = offset + nr_entries - 1; 643 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 644 645 if (offset < si->lowest_bit) 646 si->lowest_bit = offset; 647 if (end > si->highest_bit) { 648 bool was_full = !si->highest_bit; 649 650 si->highest_bit = end; 651 if (was_full && (si->flags & SWP_WRITEOK)) 652 add_to_avail_list(si); 653 } 654 atomic_long_add(nr_entries, &nr_swap_pages); 655 si->inuse_pages -= nr_entries; 656 if (si->flags & SWP_BLKDEV) 657 swap_slot_free_notify = 658 si->bdev->bd_disk->fops->swap_slot_free_notify; 659 else 660 swap_slot_free_notify = NULL; 661 while (offset <= end) { 662 frontswap_invalidate_page(si->type, offset); 663 if (swap_slot_free_notify) 664 swap_slot_free_notify(si->bdev, offset); 665 offset++; 666 } 667 } 668 669 static int scan_swap_map_slots(struct swap_info_struct *si, 670 unsigned char usage, int nr, 671 swp_entry_t slots[]) 672 { 673 struct swap_cluster_info *ci; 674 unsigned long offset; 675 unsigned long scan_base; 676 unsigned long last_in_cluster = 0; 677 int latency_ration = LATENCY_LIMIT; 678 int n_ret = 0; 679 680 if (nr > SWAP_BATCH) 681 nr = SWAP_BATCH; 682 683 /* 684 * We try to cluster swap pages by allocating them sequentially 685 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 686 * way, however, we resort to first-free allocation, starting 687 * a new cluster. This prevents us from scattering swap pages 688 * all over the entire swap partition, so that we reduce 689 * overall disk seek times between swap pages. -- sct 690 * But we do now try to find an empty cluster. -Andrea 691 * And we let swap pages go all over an SSD partition. Hugh 692 */ 693 694 si->flags += SWP_SCANNING; 695 scan_base = offset = si->cluster_next; 696 697 /* SSD algorithm */ 698 if (si->cluster_info) { 699 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 700 goto checks; 701 else 702 goto scan; 703 } 704 705 if (unlikely(!si->cluster_nr--)) { 706 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 707 si->cluster_nr = SWAPFILE_CLUSTER - 1; 708 goto checks; 709 } 710 711 spin_unlock(&si->lock); 712 713 /* 714 * If seek is expensive, start searching for new cluster from 715 * start of partition, to minimize the span of allocated swap. 716 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 717 * case, just handled by scan_swap_map_try_ssd_cluster() above. 718 */ 719 scan_base = offset = si->lowest_bit; 720 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 721 722 /* Locate the first empty (unaligned) cluster */ 723 for (; last_in_cluster <= si->highest_bit; offset++) { 724 if (si->swap_map[offset]) 725 last_in_cluster = offset + SWAPFILE_CLUSTER; 726 else if (offset == last_in_cluster) { 727 spin_lock(&si->lock); 728 offset -= SWAPFILE_CLUSTER - 1; 729 si->cluster_next = offset; 730 si->cluster_nr = SWAPFILE_CLUSTER - 1; 731 goto checks; 732 } 733 if (unlikely(--latency_ration < 0)) { 734 cond_resched(); 735 latency_ration = LATENCY_LIMIT; 736 } 737 } 738 739 offset = scan_base; 740 spin_lock(&si->lock); 741 si->cluster_nr = SWAPFILE_CLUSTER - 1; 742 } 743 744 checks: 745 if (si->cluster_info) { 746 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 747 /* take a break if we already got some slots */ 748 if (n_ret) 749 goto done; 750 if (!scan_swap_map_try_ssd_cluster(si, &offset, 751 &scan_base)) 752 goto scan; 753 } 754 } 755 if (!(si->flags & SWP_WRITEOK)) 756 goto no_page; 757 if (!si->highest_bit) 758 goto no_page; 759 if (offset > si->highest_bit) 760 scan_base = offset = si->lowest_bit; 761 762 ci = lock_cluster(si, offset); 763 /* reuse swap entry of cache-only swap if not busy. */ 764 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 765 int swap_was_freed; 766 unlock_cluster(ci); 767 spin_unlock(&si->lock); 768 swap_was_freed = __try_to_reclaim_swap(si, offset); 769 spin_lock(&si->lock); 770 /* entry was freed successfully, try to use this again */ 771 if (swap_was_freed) 772 goto checks; 773 goto scan; /* check next one */ 774 } 775 776 if (si->swap_map[offset]) { 777 unlock_cluster(ci); 778 if (!n_ret) 779 goto scan; 780 else 781 goto done; 782 } 783 si->swap_map[offset] = usage; 784 inc_cluster_info_page(si, si->cluster_info, offset); 785 unlock_cluster(ci); 786 787 swap_range_alloc(si, offset, 1); 788 si->cluster_next = offset + 1; 789 slots[n_ret++] = swp_entry(si->type, offset); 790 791 /* got enough slots or reach max slots? */ 792 if ((n_ret == nr) || (offset >= si->highest_bit)) 793 goto done; 794 795 /* search for next available slot */ 796 797 /* time to take a break? */ 798 if (unlikely(--latency_ration < 0)) { 799 if (n_ret) 800 goto done; 801 spin_unlock(&si->lock); 802 cond_resched(); 803 spin_lock(&si->lock); 804 latency_ration = LATENCY_LIMIT; 805 } 806 807 /* try to get more slots in cluster */ 808 if (si->cluster_info) { 809 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 810 goto checks; 811 else 812 goto done; 813 } 814 /* non-ssd case */ 815 ++offset; 816 817 /* non-ssd case, still more slots in cluster? */ 818 if (si->cluster_nr && !si->swap_map[offset]) { 819 --si->cluster_nr; 820 goto checks; 821 } 822 823 done: 824 si->flags -= SWP_SCANNING; 825 return n_ret; 826 827 scan: 828 spin_unlock(&si->lock); 829 while (++offset <= si->highest_bit) { 830 if (!si->swap_map[offset]) { 831 spin_lock(&si->lock); 832 goto checks; 833 } 834 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 835 spin_lock(&si->lock); 836 goto checks; 837 } 838 if (unlikely(--latency_ration < 0)) { 839 cond_resched(); 840 latency_ration = LATENCY_LIMIT; 841 } 842 } 843 offset = si->lowest_bit; 844 while (offset < scan_base) { 845 if (!si->swap_map[offset]) { 846 spin_lock(&si->lock); 847 goto checks; 848 } 849 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 850 spin_lock(&si->lock); 851 goto checks; 852 } 853 if (unlikely(--latency_ration < 0)) { 854 cond_resched(); 855 latency_ration = LATENCY_LIMIT; 856 } 857 offset++; 858 } 859 spin_lock(&si->lock); 860 861 no_page: 862 si->flags -= SWP_SCANNING; 863 return n_ret; 864 } 865 866 #ifdef CONFIG_THP_SWAP 867 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 868 { 869 unsigned long idx; 870 struct swap_cluster_info *ci; 871 unsigned long offset, i; 872 unsigned char *map; 873 874 if (cluster_list_empty(&si->free_clusters)) 875 return 0; 876 877 idx = cluster_list_first(&si->free_clusters); 878 offset = idx * SWAPFILE_CLUSTER; 879 ci = lock_cluster(si, offset); 880 alloc_cluster(si, idx); 881 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 882 883 map = si->swap_map + offset; 884 for (i = 0; i < SWAPFILE_CLUSTER; i++) 885 map[i] = SWAP_HAS_CACHE; 886 unlock_cluster(ci); 887 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 888 *slot = swp_entry(si->type, offset); 889 890 return 1; 891 } 892 893 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 894 { 895 unsigned long offset = idx * SWAPFILE_CLUSTER; 896 struct swap_cluster_info *ci; 897 898 ci = lock_cluster(si, offset); 899 cluster_set_count_flag(ci, 0, 0); 900 free_cluster(si, idx); 901 unlock_cluster(ci); 902 swap_range_free(si, offset, SWAPFILE_CLUSTER); 903 } 904 #else 905 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 906 { 907 VM_WARN_ON_ONCE(1); 908 return 0; 909 } 910 #endif /* CONFIG_THP_SWAP */ 911 912 static unsigned long scan_swap_map(struct swap_info_struct *si, 913 unsigned char usage) 914 { 915 swp_entry_t entry; 916 int n_ret; 917 918 n_ret = scan_swap_map_slots(si, usage, 1, &entry); 919 920 if (n_ret) 921 return swp_offset(entry); 922 else 923 return 0; 924 925 } 926 927 int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[]) 928 { 929 unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1; 930 struct swap_info_struct *si, *next; 931 long avail_pgs; 932 int n_ret = 0; 933 int node; 934 935 /* Only single cluster request supported */ 936 WARN_ON_ONCE(n_goal > 1 && cluster); 937 938 avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages; 939 if (avail_pgs <= 0) 940 goto noswap; 941 942 if (n_goal > SWAP_BATCH) 943 n_goal = SWAP_BATCH; 944 945 if (n_goal > avail_pgs) 946 n_goal = avail_pgs; 947 948 atomic_long_sub(n_goal * nr_pages, &nr_swap_pages); 949 950 spin_lock(&swap_avail_lock); 951 952 start_over: 953 node = numa_node_id(); 954 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 955 /* requeue si to after same-priority siblings */ 956 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 957 spin_unlock(&swap_avail_lock); 958 spin_lock(&si->lock); 959 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 960 spin_lock(&swap_avail_lock); 961 if (plist_node_empty(&si->avail_lists[node])) { 962 spin_unlock(&si->lock); 963 goto nextsi; 964 } 965 WARN(!si->highest_bit, 966 "swap_info %d in list but !highest_bit\n", 967 si->type); 968 WARN(!(si->flags & SWP_WRITEOK), 969 "swap_info %d in list but !SWP_WRITEOK\n", 970 si->type); 971 __del_from_avail_list(si); 972 spin_unlock(&si->lock); 973 goto nextsi; 974 } 975 if (cluster) { 976 if (!(si->flags & SWP_FILE)) 977 n_ret = swap_alloc_cluster(si, swp_entries); 978 } else 979 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 980 n_goal, swp_entries); 981 spin_unlock(&si->lock); 982 if (n_ret || cluster) 983 goto check_out; 984 pr_debug("scan_swap_map of si %d failed to find offset\n", 985 si->type); 986 987 spin_lock(&swap_avail_lock); 988 nextsi: 989 /* 990 * if we got here, it's likely that si was almost full before, 991 * and since scan_swap_map() can drop the si->lock, multiple 992 * callers probably all tried to get a page from the same si 993 * and it filled up before we could get one; or, the si filled 994 * up between us dropping swap_avail_lock and taking si->lock. 995 * Since we dropped the swap_avail_lock, the swap_avail_head 996 * list may have been modified; so if next is still in the 997 * swap_avail_head list then try it, otherwise start over 998 * if we have not gotten any slots. 999 */ 1000 if (plist_node_empty(&next->avail_lists[node])) 1001 goto start_over; 1002 } 1003 1004 spin_unlock(&swap_avail_lock); 1005 1006 check_out: 1007 if (n_ret < n_goal) 1008 atomic_long_add((long)(n_goal - n_ret) * nr_pages, 1009 &nr_swap_pages); 1010 noswap: 1011 return n_ret; 1012 } 1013 1014 /* The only caller of this function is now suspend routine */ 1015 swp_entry_t get_swap_page_of_type(int type) 1016 { 1017 struct swap_info_struct *si; 1018 pgoff_t offset; 1019 1020 si = swap_info[type]; 1021 spin_lock(&si->lock); 1022 if (si && (si->flags & SWP_WRITEOK)) { 1023 atomic_long_dec(&nr_swap_pages); 1024 /* This is called for allocating swap entry, not cache */ 1025 offset = scan_swap_map(si, 1); 1026 if (offset) { 1027 spin_unlock(&si->lock); 1028 return swp_entry(type, offset); 1029 } 1030 atomic_long_inc(&nr_swap_pages); 1031 } 1032 spin_unlock(&si->lock); 1033 return (swp_entry_t) {0}; 1034 } 1035 1036 static struct swap_info_struct *__swap_info_get(swp_entry_t entry) 1037 { 1038 struct swap_info_struct *p; 1039 unsigned long offset, type; 1040 1041 if (!entry.val) 1042 goto out; 1043 type = swp_type(entry); 1044 if (type >= nr_swapfiles) 1045 goto bad_nofile; 1046 p = swap_info[type]; 1047 if (!(p->flags & SWP_USED)) 1048 goto bad_device; 1049 offset = swp_offset(entry); 1050 if (offset >= p->max) 1051 goto bad_offset; 1052 return p; 1053 1054 bad_offset: 1055 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val); 1056 goto out; 1057 bad_device: 1058 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val); 1059 goto out; 1060 bad_nofile: 1061 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val); 1062 out: 1063 return NULL; 1064 } 1065 1066 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1067 { 1068 struct swap_info_struct *p; 1069 1070 p = __swap_info_get(entry); 1071 if (!p) 1072 goto out; 1073 if (!p->swap_map[swp_offset(entry)]) 1074 goto bad_free; 1075 return p; 1076 1077 bad_free: 1078 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val); 1079 goto out; 1080 out: 1081 return NULL; 1082 } 1083 1084 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 1085 { 1086 struct swap_info_struct *p; 1087 1088 p = _swap_info_get(entry); 1089 if (p) 1090 spin_lock(&p->lock); 1091 return p; 1092 } 1093 1094 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1095 struct swap_info_struct *q) 1096 { 1097 struct swap_info_struct *p; 1098 1099 p = _swap_info_get(entry); 1100 1101 if (p != q) { 1102 if (q != NULL) 1103 spin_unlock(&q->lock); 1104 if (p != NULL) 1105 spin_lock(&p->lock); 1106 } 1107 return p; 1108 } 1109 1110 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1111 swp_entry_t entry, unsigned char usage) 1112 { 1113 struct swap_cluster_info *ci; 1114 unsigned long offset = swp_offset(entry); 1115 unsigned char count; 1116 unsigned char has_cache; 1117 1118 ci = lock_cluster_or_swap_info(p, offset); 1119 1120 count = p->swap_map[offset]; 1121 1122 has_cache = count & SWAP_HAS_CACHE; 1123 count &= ~SWAP_HAS_CACHE; 1124 1125 if (usage == SWAP_HAS_CACHE) { 1126 VM_BUG_ON(!has_cache); 1127 has_cache = 0; 1128 } else if (count == SWAP_MAP_SHMEM) { 1129 /* 1130 * Or we could insist on shmem.c using a special 1131 * swap_shmem_free() and free_shmem_swap_and_cache()... 1132 */ 1133 count = 0; 1134 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1135 if (count == COUNT_CONTINUED) { 1136 if (swap_count_continued(p, offset, count)) 1137 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1138 else 1139 count = SWAP_MAP_MAX; 1140 } else 1141 count--; 1142 } 1143 1144 usage = count | has_cache; 1145 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE; 1146 1147 unlock_cluster_or_swap_info(p, ci); 1148 1149 return usage; 1150 } 1151 1152 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1153 { 1154 struct swap_cluster_info *ci; 1155 unsigned long offset = swp_offset(entry); 1156 unsigned char count; 1157 1158 ci = lock_cluster(p, offset); 1159 count = p->swap_map[offset]; 1160 VM_BUG_ON(count != SWAP_HAS_CACHE); 1161 p->swap_map[offset] = 0; 1162 dec_cluster_info_page(p, p->cluster_info, offset); 1163 unlock_cluster(ci); 1164 1165 mem_cgroup_uncharge_swap(entry, 1); 1166 swap_range_free(p, offset, 1); 1167 } 1168 1169 /* 1170 * Caller has made sure that the swap device corresponding to entry 1171 * is still around or has not been recycled. 1172 */ 1173 void swap_free(swp_entry_t entry) 1174 { 1175 struct swap_info_struct *p; 1176 1177 p = _swap_info_get(entry); 1178 if (p) { 1179 if (!__swap_entry_free(p, entry, 1)) 1180 free_swap_slot(entry); 1181 } 1182 } 1183 1184 /* 1185 * Called after dropping swapcache to decrease refcnt to swap entries. 1186 */ 1187 static void swapcache_free(swp_entry_t entry) 1188 { 1189 struct swap_info_struct *p; 1190 1191 p = _swap_info_get(entry); 1192 if (p) { 1193 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE)) 1194 free_swap_slot(entry); 1195 } 1196 } 1197 1198 #ifdef CONFIG_THP_SWAP 1199 static void swapcache_free_cluster(swp_entry_t entry) 1200 { 1201 unsigned long offset = swp_offset(entry); 1202 unsigned long idx = offset / SWAPFILE_CLUSTER; 1203 struct swap_cluster_info *ci; 1204 struct swap_info_struct *si; 1205 unsigned char *map; 1206 unsigned int i, free_entries = 0; 1207 unsigned char val; 1208 1209 si = _swap_info_get(entry); 1210 if (!si) 1211 return; 1212 1213 ci = lock_cluster(si, offset); 1214 VM_BUG_ON(!cluster_is_huge(ci)); 1215 map = si->swap_map + offset; 1216 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1217 val = map[i]; 1218 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1219 if (val == SWAP_HAS_CACHE) 1220 free_entries++; 1221 } 1222 if (!free_entries) { 1223 for (i = 0; i < SWAPFILE_CLUSTER; i++) 1224 map[i] &= ~SWAP_HAS_CACHE; 1225 } 1226 cluster_clear_huge(ci); 1227 unlock_cluster(ci); 1228 if (free_entries == SWAPFILE_CLUSTER) { 1229 spin_lock(&si->lock); 1230 ci = lock_cluster(si, offset); 1231 memset(map, 0, SWAPFILE_CLUSTER); 1232 unlock_cluster(ci); 1233 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1234 swap_free_cluster(si, idx); 1235 spin_unlock(&si->lock); 1236 } else if (free_entries) { 1237 for (i = 0; i < SWAPFILE_CLUSTER; i++, entry.val++) { 1238 if (!__swap_entry_free(si, entry, SWAP_HAS_CACHE)) 1239 free_swap_slot(entry); 1240 } 1241 } 1242 } 1243 1244 int split_swap_cluster(swp_entry_t entry) 1245 { 1246 struct swap_info_struct *si; 1247 struct swap_cluster_info *ci; 1248 unsigned long offset = swp_offset(entry); 1249 1250 si = _swap_info_get(entry); 1251 if (!si) 1252 return -EBUSY; 1253 ci = lock_cluster(si, offset); 1254 cluster_clear_huge(ci); 1255 unlock_cluster(ci); 1256 return 0; 1257 } 1258 #else 1259 static inline void swapcache_free_cluster(swp_entry_t entry) 1260 { 1261 } 1262 #endif /* CONFIG_THP_SWAP */ 1263 1264 void put_swap_page(struct page *page, swp_entry_t entry) 1265 { 1266 if (!PageTransHuge(page)) 1267 swapcache_free(entry); 1268 else 1269 swapcache_free_cluster(entry); 1270 } 1271 1272 static int swp_entry_cmp(const void *ent1, const void *ent2) 1273 { 1274 const swp_entry_t *e1 = ent1, *e2 = ent2; 1275 1276 return (int)swp_type(*e1) - (int)swp_type(*e2); 1277 } 1278 1279 void swapcache_free_entries(swp_entry_t *entries, int n) 1280 { 1281 struct swap_info_struct *p, *prev; 1282 int i; 1283 1284 if (n <= 0) 1285 return; 1286 1287 prev = NULL; 1288 p = NULL; 1289 1290 /* 1291 * Sort swap entries by swap device, so each lock is only taken once. 1292 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1293 * so low that it isn't necessary to optimize further. 1294 */ 1295 if (nr_swapfiles > 1) 1296 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1297 for (i = 0; i < n; ++i) { 1298 p = swap_info_get_cont(entries[i], prev); 1299 if (p) 1300 swap_entry_free(p, entries[i]); 1301 prev = p; 1302 } 1303 if (p) 1304 spin_unlock(&p->lock); 1305 } 1306 1307 /* 1308 * How many references to page are currently swapped out? 1309 * This does not give an exact answer when swap count is continued, 1310 * but does include the high COUNT_CONTINUED flag to allow for that. 1311 */ 1312 int page_swapcount(struct page *page) 1313 { 1314 int count = 0; 1315 struct swap_info_struct *p; 1316 struct swap_cluster_info *ci; 1317 swp_entry_t entry; 1318 unsigned long offset; 1319 1320 entry.val = page_private(page); 1321 p = _swap_info_get(entry); 1322 if (p) { 1323 offset = swp_offset(entry); 1324 ci = lock_cluster_or_swap_info(p, offset); 1325 count = swap_count(p->swap_map[offset]); 1326 unlock_cluster_or_swap_info(p, ci); 1327 } 1328 return count; 1329 } 1330 1331 int __swap_count(struct swap_info_struct *si, swp_entry_t entry) 1332 { 1333 pgoff_t offset = swp_offset(entry); 1334 1335 return swap_count(si->swap_map[offset]); 1336 } 1337 1338 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1339 { 1340 int count = 0; 1341 pgoff_t offset = swp_offset(entry); 1342 struct swap_cluster_info *ci; 1343 1344 ci = lock_cluster_or_swap_info(si, offset); 1345 count = swap_count(si->swap_map[offset]); 1346 unlock_cluster_or_swap_info(si, ci); 1347 return count; 1348 } 1349 1350 /* 1351 * How many references to @entry are currently swapped out? 1352 * This does not give an exact answer when swap count is continued, 1353 * but does include the high COUNT_CONTINUED flag to allow for that. 1354 */ 1355 int __swp_swapcount(swp_entry_t entry) 1356 { 1357 int count = 0; 1358 struct swap_info_struct *si; 1359 1360 si = __swap_info_get(entry); 1361 if (si) 1362 count = swap_swapcount(si, entry); 1363 return count; 1364 } 1365 1366 /* 1367 * How many references to @entry are currently swapped out? 1368 * This considers COUNT_CONTINUED so it returns exact answer. 1369 */ 1370 int swp_swapcount(swp_entry_t entry) 1371 { 1372 int count, tmp_count, n; 1373 struct swap_info_struct *p; 1374 struct swap_cluster_info *ci; 1375 struct page *page; 1376 pgoff_t offset; 1377 unsigned char *map; 1378 1379 p = _swap_info_get(entry); 1380 if (!p) 1381 return 0; 1382 1383 offset = swp_offset(entry); 1384 1385 ci = lock_cluster_or_swap_info(p, offset); 1386 1387 count = swap_count(p->swap_map[offset]); 1388 if (!(count & COUNT_CONTINUED)) 1389 goto out; 1390 1391 count &= ~COUNT_CONTINUED; 1392 n = SWAP_MAP_MAX + 1; 1393 1394 page = vmalloc_to_page(p->swap_map + offset); 1395 offset &= ~PAGE_MASK; 1396 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1397 1398 do { 1399 page = list_next_entry(page, lru); 1400 map = kmap_atomic(page); 1401 tmp_count = map[offset]; 1402 kunmap_atomic(map); 1403 1404 count += (tmp_count & ~COUNT_CONTINUED) * n; 1405 n *= (SWAP_CONT_MAX + 1); 1406 } while (tmp_count & COUNT_CONTINUED); 1407 out: 1408 unlock_cluster_or_swap_info(p, ci); 1409 return count; 1410 } 1411 1412 #ifdef CONFIG_THP_SWAP 1413 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1414 swp_entry_t entry) 1415 { 1416 struct swap_cluster_info *ci; 1417 unsigned char *map = si->swap_map; 1418 unsigned long roffset = swp_offset(entry); 1419 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1420 int i; 1421 bool ret = false; 1422 1423 ci = lock_cluster_or_swap_info(si, offset); 1424 if (!ci || !cluster_is_huge(ci)) { 1425 if (map[roffset] != SWAP_HAS_CACHE) 1426 ret = true; 1427 goto unlock_out; 1428 } 1429 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1430 if (map[offset + i] != SWAP_HAS_CACHE) { 1431 ret = true; 1432 break; 1433 } 1434 } 1435 unlock_out: 1436 unlock_cluster_or_swap_info(si, ci); 1437 return ret; 1438 } 1439 1440 static bool page_swapped(struct page *page) 1441 { 1442 swp_entry_t entry; 1443 struct swap_info_struct *si; 1444 1445 if (likely(!PageTransCompound(page))) 1446 return page_swapcount(page) != 0; 1447 1448 page = compound_head(page); 1449 entry.val = page_private(page); 1450 si = _swap_info_get(entry); 1451 if (si) 1452 return swap_page_trans_huge_swapped(si, entry); 1453 return false; 1454 } 1455 1456 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount, 1457 int *total_swapcount) 1458 { 1459 int i, map_swapcount, _total_mapcount, _total_swapcount; 1460 unsigned long offset = 0; 1461 struct swap_info_struct *si; 1462 struct swap_cluster_info *ci = NULL; 1463 unsigned char *map = NULL; 1464 int mapcount, swapcount = 0; 1465 1466 /* hugetlbfs shouldn't call it */ 1467 VM_BUG_ON_PAGE(PageHuge(page), page); 1468 1469 if (likely(!PageTransCompound(page))) { 1470 mapcount = atomic_read(&page->_mapcount) + 1; 1471 if (total_mapcount) 1472 *total_mapcount = mapcount; 1473 if (PageSwapCache(page)) 1474 swapcount = page_swapcount(page); 1475 if (total_swapcount) 1476 *total_swapcount = swapcount; 1477 return mapcount + swapcount; 1478 } 1479 1480 page = compound_head(page); 1481 1482 _total_mapcount = _total_swapcount = map_swapcount = 0; 1483 if (PageSwapCache(page)) { 1484 swp_entry_t entry; 1485 1486 entry.val = page_private(page); 1487 si = _swap_info_get(entry); 1488 if (si) { 1489 map = si->swap_map; 1490 offset = swp_offset(entry); 1491 } 1492 } 1493 if (map) 1494 ci = lock_cluster(si, offset); 1495 for (i = 0; i < HPAGE_PMD_NR; i++) { 1496 mapcount = atomic_read(&page[i]._mapcount) + 1; 1497 _total_mapcount += mapcount; 1498 if (map) { 1499 swapcount = swap_count(map[offset + i]); 1500 _total_swapcount += swapcount; 1501 } 1502 map_swapcount = max(map_swapcount, mapcount + swapcount); 1503 } 1504 unlock_cluster(ci); 1505 if (PageDoubleMap(page)) { 1506 map_swapcount -= 1; 1507 _total_mapcount -= HPAGE_PMD_NR; 1508 } 1509 mapcount = compound_mapcount(page); 1510 map_swapcount += mapcount; 1511 _total_mapcount += mapcount; 1512 if (total_mapcount) 1513 *total_mapcount = _total_mapcount; 1514 if (total_swapcount) 1515 *total_swapcount = _total_swapcount; 1516 1517 return map_swapcount; 1518 } 1519 #else 1520 #define swap_page_trans_huge_swapped(si, entry) swap_swapcount(si, entry) 1521 #define page_swapped(page) (page_swapcount(page) != 0) 1522 1523 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount, 1524 int *total_swapcount) 1525 { 1526 int mapcount, swapcount = 0; 1527 1528 /* hugetlbfs shouldn't call it */ 1529 VM_BUG_ON_PAGE(PageHuge(page), page); 1530 1531 mapcount = page_trans_huge_mapcount(page, total_mapcount); 1532 if (PageSwapCache(page)) 1533 swapcount = page_swapcount(page); 1534 if (total_swapcount) 1535 *total_swapcount = swapcount; 1536 return mapcount + swapcount; 1537 } 1538 #endif 1539 1540 /* 1541 * We can write to an anon page without COW if there are no other references 1542 * to it. And as a side-effect, free up its swap: because the old content 1543 * on disk will never be read, and seeking back there to write new content 1544 * later would only waste time away from clustering. 1545 * 1546 * NOTE: total_map_swapcount should not be relied upon by the caller if 1547 * reuse_swap_page() returns false, but it may be always overwritten 1548 * (see the other implementation for CONFIG_SWAP=n). 1549 */ 1550 bool reuse_swap_page(struct page *page, int *total_map_swapcount) 1551 { 1552 int count, total_mapcount, total_swapcount; 1553 1554 VM_BUG_ON_PAGE(!PageLocked(page), page); 1555 if (unlikely(PageKsm(page))) 1556 return false; 1557 count = page_trans_huge_map_swapcount(page, &total_mapcount, 1558 &total_swapcount); 1559 if (total_map_swapcount) 1560 *total_map_swapcount = total_mapcount + total_swapcount; 1561 if (count == 1 && PageSwapCache(page) && 1562 (likely(!PageTransCompound(page)) || 1563 /* The remaining swap count will be freed soon */ 1564 total_swapcount == page_swapcount(page))) { 1565 if (!PageWriteback(page)) { 1566 page = compound_head(page); 1567 delete_from_swap_cache(page); 1568 SetPageDirty(page); 1569 } else { 1570 swp_entry_t entry; 1571 struct swap_info_struct *p; 1572 1573 entry.val = page_private(page); 1574 p = swap_info_get(entry); 1575 if (p->flags & SWP_STABLE_WRITES) { 1576 spin_unlock(&p->lock); 1577 return false; 1578 } 1579 spin_unlock(&p->lock); 1580 } 1581 } 1582 1583 return count <= 1; 1584 } 1585 1586 /* 1587 * If swap is getting full, or if there are no more mappings of this page, 1588 * then try_to_free_swap is called to free its swap space. 1589 */ 1590 int try_to_free_swap(struct page *page) 1591 { 1592 VM_BUG_ON_PAGE(!PageLocked(page), page); 1593 1594 if (!PageSwapCache(page)) 1595 return 0; 1596 if (PageWriteback(page)) 1597 return 0; 1598 if (page_swapped(page)) 1599 return 0; 1600 1601 /* 1602 * Once hibernation has begun to create its image of memory, 1603 * there's a danger that one of the calls to try_to_free_swap() 1604 * - most probably a call from __try_to_reclaim_swap() while 1605 * hibernation is allocating its own swap pages for the image, 1606 * but conceivably even a call from memory reclaim - will free 1607 * the swap from a page which has already been recorded in the 1608 * image as a clean swapcache page, and then reuse its swap for 1609 * another page of the image. On waking from hibernation, the 1610 * original page might be freed under memory pressure, then 1611 * later read back in from swap, now with the wrong data. 1612 * 1613 * Hibernation suspends storage while it is writing the image 1614 * to disk so check that here. 1615 */ 1616 if (pm_suspended_storage()) 1617 return 0; 1618 1619 page = compound_head(page); 1620 delete_from_swap_cache(page); 1621 SetPageDirty(page); 1622 return 1; 1623 } 1624 1625 /* 1626 * Free the swap entry like above, but also try to 1627 * free the page cache entry if it is the last user. 1628 */ 1629 int free_swap_and_cache(swp_entry_t entry) 1630 { 1631 struct swap_info_struct *p; 1632 struct page *page = NULL; 1633 unsigned char count; 1634 1635 if (non_swap_entry(entry)) 1636 return 1; 1637 1638 p = _swap_info_get(entry); 1639 if (p) { 1640 count = __swap_entry_free(p, entry, 1); 1641 if (count == SWAP_HAS_CACHE && 1642 !swap_page_trans_huge_swapped(p, entry)) { 1643 page = find_get_page(swap_address_space(entry), 1644 swp_offset(entry)); 1645 if (page && !trylock_page(page)) { 1646 put_page(page); 1647 page = NULL; 1648 } 1649 } else if (!count) 1650 free_swap_slot(entry); 1651 } 1652 if (page) { 1653 /* 1654 * Not mapped elsewhere, or swap space full? Free it! 1655 * Also recheck PageSwapCache now page is locked (above). 1656 */ 1657 if (PageSwapCache(page) && !PageWriteback(page) && 1658 (!page_mapped(page) || mem_cgroup_swap_full(page)) && 1659 !swap_page_trans_huge_swapped(p, entry)) { 1660 page = compound_head(page); 1661 delete_from_swap_cache(page); 1662 SetPageDirty(page); 1663 } 1664 unlock_page(page); 1665 put_page(page); 1666 } 1667 return p != NULL; 1668 } 1669 1670 #ifdef CONFIG_HIBERNATION 1671 /* 1672 * Find the swap type that corresponds to given device (if any). 1673 * 1674 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1675 * from 0, in which the swap header is expected to be located. 1676 * 1677 * This is needed for the suspend to disk (aka swsusp). 1678 */ 1679 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 1680 { 1681 struct block_device *bdev = NULL; 1682 int type; 1683 1684 if (device) 1685 bdev = bdget(device); 1686 1687 spin_lock(&swap_lock); 1688 for (type = 0; type < nr_swapfiles; type++) { 1689 struct swap_info_struct *sis = swap_info[type]; 1690 1691 if (!(sis->flags & SWP_WRITEOK)) 1692 continue; 1693 1694 if (!bdev) { 1695 if (bdev_p) 1696 *bdev_p = bdgrab(sis->bdev); 1697 1698 spin_unlock(&swap_lock); 1699 return type; 1700 } 1701 if (bdev == sis->bdev) { 1702 struct swap_extent *se = &sis->first_swap_extent; 1703 1704 if (se->start_block == offset) { 1705 if (bdev_p) 1706 *bdev_p = bdgrab(sis->bdev); 1707 1708 spin_unlock(&swap_lock); 1709 bdput(bdev); 1710 return type; 1711 } 1712 } 1713 } 1714 spin_unlock(&swap_lock); 1715 if (bdev) 1716 bdput(bdev); 1717 1718 return -ENODEV; 1719 } 1720 1721 /* 1722 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1723 * corresponding to given index in swap_info (swap type). 1724 */ 1725 sector_t swapdev_block(int type, pgoff_t offset) 1726 { 1727 struct block_device *bdev; 1728 1729 if ((unsigned int)type >= nr_swapfiles) 1730 return 0; 1731 if (!(swap_info[type]->flags & SWP_WRITEOK)) 1732 return 0; 1733 return map_swap_entry(swp_entry(type, offset), &bdev); 1734 } 1735 1736 /* 1737 * Return either the total number of swap pages of given type, or the number 1738 * of free pages of that type (depending on @free) 1739 * 1740 * This is needed for software suspend 1741 */ 1742 unsigned int count_swap_pages(int type, int free) 1743 { 1744 unsigned int n = 0; 1745 1746 spin_lock(&swap_lock); 1747 if ((unsigned int)type < nr_swapfiles) { 1748 struct swap_info_struct *sis = swap_info[type]; 1749 1750 spin_lock(&sis->lock); 1751 if (sis->flags & SWP_WRITEOK) { 1752 n = sis->pages; 1753 if (free) 1754 n -= sis->inuse_pages; 1755 } 1756 spin_unlock(&sis->lock); 1757 } 1758 spin_unlock(&swap_lock); 1759 return n; 1760 } 1761 #endif /* CONFIG_HIBERNATION */ 1762 1763 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1764 { 1765 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte); 1766 } 1767 1768 /* 1769 * No need to decide whether this PTE shares the swap entry with others, 1770 * just let do_wp_page work it out if a write is requested later - to 1771 * force COW, vm_page_prot omits write permission from any private vma. 1772 */ 1773 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1774 unsigned long addr, swp_entry_t entry, struct page *page) 1775 { 1776 struct page *swapcache; 1777 struct mem_cgroup *memcg; 1778 spinlock_t *ptl; 1779 pte_t *pte; 1780 int ret = 1; 1781 1782 swapcache = page; 1783 page = ksm_might_need_to_copy(page, vma, addr); 1784 if (unlikely(!page)) 1785 return -ENOMEM; 1786 1787 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, 1788 &memcg, false)) { 1789 ret = -ENOMEM; 1790 goto out_nolock; 1791 } 1792 1793 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1794 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1795 mem_cgroup_cancel_charge(page, memcg, false); 1796 ret = 0; 1797 goto out; 1798 } 1799 1800 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1801 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1802 get_page(page); 1803 set_pte_at(vma->vm_mm, addr, pte, 1804 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1805 if (page == swapcache) { 1806 page_add_anon_rmap(page, vma, addr, false); 1807 mem_cgroup_commit_charge(page, memcg, true, false); 1808 } else { /* ksm created a completely new copy */ 1809 page_add_new_anon_rmap(page, vma, addr, false); 1810 mem_cgroup_commit_charge(page, memcg, false, false); 1811 lru_cache_add_active_or_unevictable(page, vma); 1812 } 1813 swap_free(entry); 1814 /* 1815 * Move the page to the active list so it is not 1816 * immediately swapped out again after swapon. 1817 */ 1818 activate_page(page); 1819 out: 1820 pte_unmap_unlock(pte, ptl); 1821 out_nolock: 1822 if (page != swapcache) { 1823 unlock_page(page); 1824 put_page(page); 1825 } 1826 return ret; 1827 } 1828 1829 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1830 unsigned long addr, unsigned long end, 1831 swp_entry_t entry, struct page *page) 1832 { 1833 pte_t swp_pte = swp_entry_to_pte(entry); 1834 pte_t *pte; 1835 int ret = 0; 1836 1837 /* 1838 * We don't actually need pte lock while scanning for swp_pte: since 1839 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 1840 * page table while we're scanning; though it could get zapped, and on 1841 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 1842 * of unmatched parts which look like swp_pte, so unuse_pte must 1843 * recheck under pte lock. Scanning without pte lock lets it be 1844 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 1845 */ 1846 pte = pte_offset_map(pmd, addr); 1847 do { 1848 /* 1849 * swapoff spends a _lot_ of time in this loop! 1850 * Test inline before going to call unuse_pte. 1851 */ 1852 if (unlikely(pte_same_as_swp(*pte, swp_pte))) { 1853 pte_unmap(pte); 1854 ret = unuse_pte(vma, pmd, addr, entry, page); 1855 if (ret) 1856 goto out; 1857 pte = pte_offset_map(pmd, addr); 1858 } 1859 } while (pte++, addr += PAGE_SIZE, addr != end); 1860 pte_unmap(pte - 1); 1861 out: 1862 return ret; 1863 } 1864 1865 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1866 unsigned long addr, unsigned long end, 1867 swp_entry_t entry, struct page *page) 1868 { 1869 pmd_t *pmd; 1870 unsigned long next; 1871 int ret; 1872 1873 pmd = pmd_offset(pud, addr); 1874 do { 1875 cond_resched(); 1876 next = pmd_addr_end(addr, end); 1877 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1878 continue; 1879 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 1880 if (ret) 1881 return ret; 1882 } while (pmd++, addr = next, addr != end); 1883 return 0; 1884 } 1885 1886 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 1887 unsigned long addr, unsigned long end, 1888 swp_entry_t entry, struct page *page) 1889 { 1890 pud_t *pud; 1891 unsigned long next; 1892 int ret; 1893 1894 pud = pud_offset(p4d, addr); 1895 do { 1896 next = pud_addr_end(addr, end); 1897 if (pud_none_or_clear_bad(pud)) 1898 continue; 1899 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 1900 if (ret) 1901 return ret; 1902 } while (pud++, addr = next, addr != end); 1903 return 0; 1904 } 1905 1906 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 1907 unsigned long addr, unsigned long end, 1908 swp_entry_t entry, struct page *page) 1909 { 1910 p4d_t *p4d; 1911 unsigned long next; 1912 int ret; 1913 1914 p4d = p4d_offset(pgd, addr); 1915 do { 1916 next = p4d_addr_end(addr, end); 1917 if (p4d_none_or_clear_bad(p4d)) 1918 continue; 1919 ret = unuse_pud_range(vma, p4d, addr, next, entry, page); 1920 if (ret) 1921 return ret; 1922 } while (p4d++, addr = next, addr != end); 1923 return 0; 1924 } 1925 1926 static int unuse_vma(struct vm_area_struct *vma, 1927 swp_entry_t entry, struct page *page) 1928 { 1929 pgd_t *pgd; 1930 unsigned long addr, end, next; 1931 int ret; 1932 1933 if (page_anon_vma(page)) { 1934 addr = page_address_in_vma(page, vma); 1935 if (addr == -EFAULT) 1936 return 0; 1937 else 1938 end = addr + PAGE_SIZE; 1939 } else { 1940 addr = vma->vm_start; 1941 end = vma->vm_end; 1942 } 1943 1944 pgd = pgd_offset(vma->vm_mm, addr); 1945 do { 1946 next = pgd_addr_end(addr, end); 1947 if (pgd_none_or_clear_bad(pgd)) 1948 continue; 1949 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page); 1950 if (ret) 1951 return ret; 1952 } while (pgd++, addr = next, addr != end); 1953 return 0; 1954 } 1955 1956 static int unuse_mm(struct mm_struct *mm, 1957 swp_entry_t entry, struct page *page) 1958 { 1959 struct vm_area_struct *vma; 1960 int ret = 0; 1961 1962 if (!down_read_trylock(&mm->mmap_sem)) { 1963 /* 1964 * Activate page so shrink_inactive_list is unlikely to unmap 1965 * its ptes while lock is dropped, so swapoff can make progress. 1966 */ 1967 activate_page(page); 1968 unlock_page(page); 1969 down_read(&mm->mmap_sem); 1970 lock_page(page); 1971 } 1972 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1973 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 1974 break; 1975 cond_resched(); 1976 } 1977 up_read(&mm->mmap_sem); 1978 return (ret < 0)? ret: 0; 1979 } 1980 1981 /* 1982 * Scan swap_map (or frontswap_map if frontswap parameter is true) 1983 * from current position to next entry still in use. 1984 * Recycle to start on reaching the end, returning 0 when empty. 1985 */ 1986 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1987 unsigned int prev, bool frontswap) 1988 { 1989 unsigned int max = si->max; 1990 unsigned int i = prev; 1991 unsigned char count; 1992 1993 /* 1994 * No need for swap_lock here: we're just looking 1995 * for whether an entry is in use, not modifying it; false 1996 * hits are okay, and sys_swapoff() has already prevented new 1997 * allocations from this area (while holding swap_lock). 1998 */ 1999 for (;;) { 2000 if (++i >= max) { 2001 if (!prev) { 2002 i = 0; 2003 break; 2004 } 2005 /* 2006 * No entries in use at top of swap_map, 2007 * loop back to start and recheck there. 2008 */ 2009 max = prev + 1; 2010 prev = 0; 2011 i = 1; 2012 } 2013 count = READ_ONCE(si->swap_map[i]); 2014 if (count && swap_count(count) != SWAP_MAP_BAD) 2015 if (!frontswap || frontswap_test(si, i)) 2016 break; 2017 if ((i % LATENCY_LIMIT) == 0) 2018 cond_resched(); 2019 } 2020 return i; 2021 } 2022 2023 /* 2024 * We completely avoid races by reading each swap page in advance, 2025 * and then search for the process using it. All the necessary 2026 * page table adjustments can then be made atomically. 2027 * 2028 * if the boolean frontswap is true, only unuse pages_to_unuse pages; 2029 * pages_to_unuse==0 means all pages; ignored if frontswap is false 2030 */ 2031 int try_to_unuse(unsigned int type, bool frontswap, 2032 unsigned long pages_to_unuse) 2033 { 2034 struct swap_info_struct *si = swap_info[type]; 2035 struct mm_struct *start_mm; 2036 volatile unsigned char *swap_map; /* swap_map is accessed without 2037 * locking. Mark it as volatile 2038 * to prevent compiler doing 2039 * something odd. 2040 */ 2041 unsigned char swcount; 2042 struct page *page; 2043 swp_entry_t entry; 2044 unsigned int i = 0; 2045 int retval = 0; 2046 2047 /* 2048 * When searching mms for an entry, a good strategy is to 2049 * start at the first mm we freed the previous entry from 2050 * (though actually we don't notice whether we or coincidence 2051 * freed the entry). Initialize this start_mm with a hold. 2052 * 2053 * A simpler strategy would be to start at the last mm we 2054 * freed the previous entry from; but that would take less 2055 * advantage of mmlist ordering, which clusters forked mms 2056 * together, child after parent. If we race with dup_mmap(), we 2057 * prefer to resolve parent before child, lest we miss entries 2058 * duplicated after we scanned child: using last mm would invert 2059 * that. 2060 */ 2061 start_mm = &init_mm; 2062 mmget(&init_mm); 2063 2064 /* 2065 * Keep on scanning until all entries have gone. Usually, 2066 * one pass through swap_map is enough, but not necessarily: 2067 * there are races when an instance of an entry might be missed. 2068 */ 2069 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) { 2070 if (signal_pending(current)) { 2071 retval = -EINTR; 2072 break; 2073 } 2074 2075 /* 2076 * Get a page for the entry, using the existing swap 2077 * cache page if there is one. Otherwise, get a clean 2078 * page and read the swap into it. 2079 */ 2080 swap_map = &si->swap_map[i]; 2081 entry = swp_entry(type, i); 2082 page = read_swap_cache_async(entry, 2083 GFP_HIGHUSER_MOVABLE, NULL, 0, false); 2084 if (!page) { 2085 /* 2086 * Either swap_duplicate() failed because entry 2087 * has been freed independently, and will not be 2088 * reused since sys_swapoff() already disabled 2089 * allocation from here, or alloc_page() failed. 2090 */ 2091 swcount = *swap_map; 2092 /* 2093 * We don't hold lock here, so the swap entry could be 2094 * SWAP_MAP_BAD (when the cluster is discarding). 2095 * Instead of fail out, We can just skip the swap 2096 * entry because swapoff will wait for discarding 2097 * finish anyway. 2098 */ 2099 if (!swcount || swcount == SWAP_MAP_BAD) 2100 continue; 2101 retval = -ENOMEM; 2102 break; 2103 } 2104 2105 /* 2106 * Don't hold on to start_mm if it looks like exiting. 2107 */ 2108 if (atomic_read(&start_mm->mm_users) == 1) { 2109 mmput(start_mm); 2110 start_mm = &init_mm; 2111 mmget(&init_mm); 2112 } 2113 2114 /* 2115 * Wait for and lock page. When do_swap_page races with 2116 * try_to_unuse, do_swap_page can handle the fault much 2117 * faster than try_to_unuse can locate the entry. This 2118 * apparently redundant "wait_on_page_locked" lets try_to_unuse 2119 * defer to do_swap_page in such a case - in some tests, 2120 * do_swap_page and try_to_unuse repeatedly compete. 2121 */ 2122 wait_on_page_locked(page); 2123 wait_on_page_writeback(page); 2124 lock_page(page); 2125 wait_on_page_writeback(page); 2126 2127 /* 2128 * Remove all references to entry. 2129 */ 2130 swcount = *swap_map; 2131 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 2132 retval = shmem_unuse(entry, page); 2133 /* page has already been unlocked and released */ 2134 if (retval < 0) 2135 break; 2136 continue; 2137 } 2138 if (swap_count(swcount) && start_mm != &init_mm) 2139 retval = unuse_mm(start_mm, entry, page); 2140 2141 if (swap_count(*swap_map)) { 2142 int set_start_mm = (*swap_map >= swcount); 2143 struct list_head *p = &start_mm->mmlist; 2144 struct mm_struct *new_start_mm = start_mm; 2145 struct mm_struct *prev_mm = start_mm; 2146 struct mm_struct *mm; 2147 2148 mmget(new_start_mm); 2149 mmget(prev_mm); 2150 spin_lock(&mmlist_lock); 2151 while (swap_count(*swap_map) && !retval && 2152 (p = p->next) != &start_mm->mmlist) { 2153 mm = list_entry(p, struct mm_struct, mmlist); 2154 if (!mmget_not_zero(mm)) 2155 continue; 2156 spin_unlock(&mmlist_lock); 2157 mmput(prev_mm); 2158 prev_mm = mm; 2159 2160 cond_resched(); 2161 2162 swcount = *swap_map; 2163 if (!swap_count(swcount)) /* any usage ? */ 2164 ; 2165 else if (mm == &init_mm) 2166 set_start_mm = 1; 2167 else 2168 retval = unuse_mm(mm, entry, page); 2169 2170 if (set_start_mm && *swap_map < swcount) { 2171 mmput(new_start_mm); 2172 mmget(mm); 2173 new_start_mm = mm; 2174 set_start_mm = 0; 2175 } 2176 spin_lock(&mmlist_lock); 2177 } 2178 spin_unlock(&mmlist_lock); 2179 mmput(prev_mm); 2180 mmput(start_mm); 2181 start_mm = new_start_mm; 2182 } 2183 if (retval) { 2184 unlock_page(page); 2185 put_page(page); 2186 break; 2187 } 2188 2189 /* 2190 * If a reference remains (rare), we would like to leave 2191 * the page in the swap cache; but try_to_unmap could 2192 * then re-duplicate the entry once we drop page lock, 2193 * so we might loop indefinitely; also, that page could 2194 * not be swapped out to other storage meanwhile. So: 2195 * delete from cache even if there's another reference, 2196 * after ensuring that the data has been saved to disk - 2197 * since if the reference remains (rarer), it will be 2198 * read from disk into another page. Splitting into two 2199 * pages would be incorrect if swap supported "shared 2200 * private" pages, but they are handled by tmpfs files. 2201 * 2202 * Given how unuse_vma() targets one particular offset 2203 * in an anon_vma, once the anon_vma has been determined, 2204 * this splitting happens to be just what is needed to 2205 * handle where KSM pages have been swapped out: re-reading 2206 * is unnecessarily slow, but we can fix that later on. 2207 */ 2208 if (swap_count(*swap_map) && 2209 PageDirty(page) && PageSwapCache(page)) { 2210 struct writeback_control wbc = { 2211 .sync_mode = WB_SYNC_NONE, 2212 }; 2213 2214 swap_writepage(compound_head(page), &wbc); 2215 lock_page(page); 2216 wait_on_page_writeback(page); 2217 } 2218 2219 /* 2220 * It is conceivable that a racing task removed this page from 2221 * swap cache just before we acquired the page lock at the top, 2222 * or while we dropped it in unuse_mm(). The page might even 2223 * be back in swap cache on another swap area: that we must not 2224 * delete, since it may not have been written out to swap yet. 2225 */ 2226 if (PageSwapCache(page) && 2227 likely(page_private(page) == entry.val) && 2228 !page_swapped(page)) 2229 delete_from_swap_cache(compound_head(page)); 2230 2231 /* 2232 * So we could skip searching mms once swap count went 2233 * to 1, we did not mark any present ptes as dirty: must 2234 * mark page dirty so shrink_page_list will preserve it. 2235 */ 2236 SetPageDirty(page); 2237 unlock_page(page); 2238 put_page(page); 2239 2240 /* 2241 * Make sure that we aren't completely killing 2242 * interactive performance. 2243 */ 2244 cond_resched(); 2245 if (frontswap && pages_to_unuse > 0) { 2246 if (!--pages_to_unuse) 2247 break; 2248 } 2249 } 2250 2251 mmput(start_mm); 2252 return retval; 2253 } 2254 2255 /* 2256 * After a successful try_to_unuse, if no swap is now in use, we know 2257 * we can empty the mmlist. swap_lock must be held on entry and exit. 2258 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2259 * added to the mmlist just after page_duplicate - before would be racy. 2260 */ 2261 static void drain_mmlist(void) 2262 { 2263 struct list_head *p, *next; 2264 unsigned int type; 2265 2266 for (type = 0; type < nr_swapfiles; type++) 2267 if (swap_info[type]->inuse_pages) 2268 return; 2269 spin_lock(&mmlist_lock); 2270 list_for_each_safe(p, next, &init_mm.mmlist) 2271 list_del_init(p); 2272 spin_unlock(&mmlist_lock); 2273 } 2274 2275 /* 2276 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 2277 * corresponds to page offset for the specified swap entry. 2278 * Note that the type of this function is sector_t, but it returns page offset 2279 * into the bdev, not sector offset. 2280 */ 2281 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 2282 { 2283 struct swap_info_struct *sis; 2284 struct swap_extent *start_se; 2285 struct swap_extent *se; 2286 pgoff_t offset; 2287 2288 sis = swap_info[swp_type(entry)]; 2289 *bdev = sis->bdev; 2290 2291 offset = swp_offset(entry); 2292 start_se = sis->curr_swap_extent; 2293 se = start_se; 2294 2295 for ( ; ; ) { 2296 if (se->start_page <= offset && 2297 offset < (se->start_page + se->nr_pages)) { 2298 return se->start_block + (offset - se->start_page); 2299 } 2300 se = list_next_entry(se, list); 2301 sis->curr_swap_extent = se; 2302 BUG_ON(se == start_se); /* It *must* be present */ 2303 } 2304 } 2305 2306 /* 2307 * Returns the page offset into bdev for the specified page's swap entry. 2308 */ 2309 sector_t map_swap_page(struct page *page, struct block_device **bdev) 2310 { 2311 swp_entry_t entry; 2312 entry.val = page_private(page); 2313 return map_swap_entry(entry, bdev); 2314 } 2315 2316 /* 2317 * Free all of a swapdev's extent information 2318 */ 2319 static void destroy_swap_extents(struct swap_info_struct *sis) 2320 { 2321 while (!list_empty(&sis->first_swap_extent.list)) { 2322 struct swap_extent *se; 2323 2324 se = list_first_entry(&sis->first_swap_extent.list, 2325 struct swap_extent, list); 2326 list_del(&se->list); 2327 kfree(se); 2328 } 2329 2330 if (sis->flags & SWP_FILE) { 2331 struct file *swap_file = sis->swap_file; 2332 struct address_space *mapping = swap_file->f_mapping; 2333 2334 sis->flags &= ~SWP_FILE; 2335 mapping->a_ops->swap_deactivate(swap_file); 2336 } 2337 } 2338 2339 /* 2340 * Add a block range (and the corresponding page range) into this swapdev's 2341 * extent list. The extent list is kept sorted in page order. 2342 * 2343 * This function rather assumes that it is called in ascending page order. 2344 */ 2345 int 2346 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2347 unsigned long nr_pages, sector_t start_block) 2348 { 2349 struct swap_extent *se; 2350 struct swap_extent *new_se; 2351 struct list_head *lh; 2352 2353 if (start_page == 0) { 2354 se = &sis->first_swap_extent; 2355 sis->curr_swap_extent = se; 2356 se->start_page = 0; 2357 se->nr_pages = nr_pages; 2358 se->start_block = start_block; 2359 return 1; 2360 } else { 2361 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 2362 se = list_entry(lh, struct swap_extent, list); 2363 BUG_ON(se->start_page + se->nr_pages != start_page); 2364 if (se->start_block + se->nr_pages == start_block) { 2365 /* Merge it */ 2366 se->nr_pages += nr_pages; 2367 return 0; 2368 } 2369 } 2370 2371 /* 2372 * No merge. Insert a new extent, preserving ordering. 2373 */ 2374 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2375 if (new_se == NULL) 2376 return -ENOMEM; 2377 new_se->start_page = start_page; 2378 new_se->nr_pages = nr_pages; 2379 new_se->start_block = start_block; 2380 2381 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 2382 return 1; 2383 } 2384 2385 /* 2386 * A `swap extent' is a simple thing which maps a contiguous range of pages 2387 * onto a contiguous range of disk blocks. An ordered list of swap extents 2388 * is built at swapon time and is then used at swap_writepage/swap_readpage 2389 * time for locating where on disk a page belongs. 2390 * 2391 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2392 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2393 * swap files identically. 2394 * 2395 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2396 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2397 * swapfiles are handled *identically* after swapon time. 2398 * 2399 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2400 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 2401 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 2402 * requirements, they are simply tossed out - we will never use those blocks 2403 * for swapping. 2404 * 2405 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 2406 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 2407 * which will scribble on the fs. 2408 * 2409 * The amount of disk space which a single swap extent represents varies. 2410 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2411 * extents in the list. To avoid much list walking, we cache the previous 2412 * search location in `curr_swap_extent', and start new searches from there. 2413 * This is extremely effective. The average number of iterations in 2414 * map_swap_page() has been measured at about 0.3 per page. - akpm. 2415 */ 2416 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2417 { 2418 struct file *swap_file = sis->swap_file; 2419 struct address_space *mapping = swap_file->f_mapping; 2420 struct inode *inode = mapping->host; 2421 int ret; 2422 2423 if (S_ISBLK(inode->i_mode)) { 2424 ret = add_swap_extent(sis, 0, sis->max, 0); 2425 *span = sis->pages; 2426 return ret; 2427 } 2428 2429 if (mapping->a_ops->swap_activate) { 2430 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2431 if (!ret) { 2432 sis->flags |= SWP_FILE; 2433 ret = add_swap_extent(sis, 0, sis->max, 0); 2434 *span = sis->pages; 2435 } 2436 return ret; 2437 } 2438 2439 return generic_swapfile_activate(sis, swap_file, span); 2440 } 2441 2442 static int swap_node(struct swap_info_struct *p) 2443 { 2444 struct block_device *bdev; 2445 2446 if (p->bdev) 2447 bdev = p->bdev; 2448 else 2449 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2450 2451 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2452 } 2453 2454 static void _enable_swap_info(struct swap_info_struct *p, int prio, 2455 unsigned char *swap_map, 2456 struct swap_cluster_info *cluster_info) 2457 { 2458 int i; 2459 2460 if (prio >= 0) 2461 p->prio = prio; 2462 else 2463 p->prio = --least_priority; 2464 /* 2465 * the plist prio is negated because plist ordering is 2466 * low-to-high, while swap ordering is high-to-low 2467 */ 2468 p->list.prio = -p->prio; 2469 for_each_node(i) { 2470 if (p->prio >= 0) 2471 p->avail_lists[i].prio = -p->prio; 2472 else { 2473 if (swap_node(p) == i) 2474 p->avail_lists[i].prio = 1; 2475 else 2476 p->avail_lists[i].prio = -p->prio; 2477 } 2478 } 2479 p->swap_map = swap_map; 2480 p->cluster_info = cluster_info; 2481 p->flags |= SWP_WRITEOK; 2482 atomic_long_add(p->pages, &nr_swap_pages); 2483 total_swap_pages += p->pages; 2484 2485 assert_spin_locked(&swap_lock); 2486 /* 2487 * both lists are plists, and thus priority ordered. 2488 * swap_active_head needs to be priority ordered for swapoff(), 2489 * which on removal of any swap_info_struct with an auto-assigned 2490 * (i.e. negative) priority increments the auto-assigned priority 2491 * of any lower-priority swap_info_structs. 2492 * swap_avail_head needs to be priority ordered for get_swap_page(), 2493 * which allocates swap pages from the highest available priority 2494 * swap_info_struct. 2495 */ 2496 plist_add(&p->list, &swap_active_head); 2497 add_to_avail_list(p); 2498 } 2499 2500 static void enable_swap_info(struct swap_info_struct *p, int prio, 2501 unsigned char *swap_map, 2502 struct swap_cluster_info *cluster_info, 2503 unsigned long *frontswap_map) 2504 { 2505 frontswap_init(p->type, frontswap_map); 2506 spin_lock(&swap_lock); 2507 spin_lock(&p->lock); 2508 _enable_swap_info(p, prio, swap_map, cluster_info); 2509 spin_unlock(&p->lock); 2510 spin_unlock(&swap_lock); 2511 } 2512 2513 static void reinsert_swap_info(struct swap_info_struct *p) 2514 { 2515 spin_lock(&swap_lock); 2516 spin_lock(&p->lock); 2517 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2518 spin_unlock(&p->lock); 2519 spin_unlock(&swap_lock); 2520 } 2521 2522 bool has_usable_swap(void) 2523 { 2524 bool ret = true; 2525 2526 spin_lock(&swap_lock); 2527 if (plist_head_empty(&swap_active_head)) 2528 ret = false; 2529 spin_unlock(&swap_lock); 2530 return ret; 2531 } 2532 2533 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2534 { 2535 struct swap_info_struct *p = NULL; 2536 unsigned char *swap_map; 2537 struct swap_cluster_info *cluster_info; 2538 unsigned long *frontswap_map; 2539 struct file *swap_file, *victim; 2540 struct address_space *mapping; 2541 struct inode *inode; 2542 struct filename *pathname; 2543 int err, found = 0; 2544 unsigned int old_block_size; 2545 2546 if (!capable(CAP_SYS_ADMIN)) 2547 return -EPERM; 2548 2549 BUG_ON(!current->mm); 2550 2551 pathname = getname(specialfile); 2552 if (IS_ERR(pathname)) 2553 return PTR_ERR(pathname); 2554 2555 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2556 err = PTR_ERR(victim); 2557 if (IS_ERR(victim)) 2558 goto out; 2559 2560 mapping = victim->f_mapping; 2561 spin_lock(&swap_lock); 2562 plist_for_each_entry(p, &swap_active_head, list) { 2563 if (p->flags & SWP_WRITEOK) { 2564 if (p->swap_file->f_mapping == mapping) { 2565 found = 1; 2566 break; 2567 } 2568 } 2569 } 2570 if (!found) { 2571 err = -EINVAL; 2572 spin_unlock(&swap_lock); 2573 goto out_dput; 2574 } 2575 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2576 vm_unacct_memory(p->pages); 2577 else { 2578 err = -ENOMEM; 2579 spin_unlock(&swap_lock); 2580 goto out_dput; 2581 } 2582 del_from_avail_list(p); 2583 spin_lock(&p->lock); 2584 if (p->prio < 0) { 2585 struct swap_info_struct *si = p; 2586 int nid; 2587 2588 plist_for_each_entry_continue(si, &swap_active_head, list) { 2589 si->prio++; 2590 si->list.prio--; 2591 for_each_node(nid) { 2592 if (si->avail_lists[nid].prio != 1) 2593 si->avail_lists[nid].prio--; 2594 } 2595 } 2596 least_priority++; 2597 } 2598 plist_del(&p->list, &swap_active_head); 2599 atomic_long_sub(p->pages, &nr_swap_pages); 2600 total_swap_pages -= p->pages; 2601 p->flags &= ~SWP_WRITEOK; 2602 spin_unlock(&p->lock); 2603 spin_unlock(&swap_lock); 2604 2605 disable_swap_slots_cache_lock(); 2606 2607 set_current_oom_origin(); 2608 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ 2609 clear_current_oom_origin(); 2610 2611 if (err) { 2612 /* re-insert swap space back into swap_list */ 2613 reinsert_swap_info(p); 2614 reenable_swap_slots_cache_unlock(); 2615 goto out_dput; 2616 } 2617 2618 reenable_swap_slots_cache_unlock(); 2619 2620 flush_work(&p->discard_work); 2621 2622 destroy_swap_extents(p); 2623 if (p->flags & SWP_CONTINUED) 2624 free_swap_count_continuations(p); 2625 2626 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev))) 2627 atomic_dec(&nr_rotate_swap); 2628 2629 mutex_lock(&swapon_mutex); 2630 spin_lock(&swap_lock); 2631 spin_lock(&p->lock); 2632 drain_mmlist(); 2633 2634 /* wait for anyone still in scan_swap_map */ 2635 p->highest_bit = 0; /* cuts scans short */ 2636 while (p->flags >= SWP_SCANNING) { 2637 spin_unlock(&p->lock); 2638 spin_unlock(&swap_lock); 2639 schedule_timeout_uninterruptible(1); 2640 spin_lock(&swap_lock); 2641 spin_lock(&p->lock); 2642 } 2643 2644 swap_file = p->swap_file; 2645 old_block_size = p->old_block_size; 2646 p->swap_file = NULL; 2647 p->max = 0; 2648 swap_map = p->swap_map; 2649 p->swap_map = NULL; 2650 cluster_info = p->cluster_info; 2651 p->cluster_info = NULL; 2652 frontswap_map = frontswap_map_get(p); 2653 spin_unlock(&p->lock); 2654 spin_unlock(&swap_lock); 2655 frontswap_invalidate_area(p->type); 2656 frontswap_map_set(p, NULL); 2657 mutex_unlock(&swapon_mutex); 2658 free_percpu(p->percpu_cluster); 2659 p->percpu_cluster = NULL; 2660 vfree(swap_map); 2661 kvfree(cluster_info); 2662 kvfree(frontswap_map); 2663 /* Destroy swap account information */ 2664 swap_cgroup_swapoff(p->type); 2665 exit_swap_address_space(p->type); 2666 2667 inode = mapping->host; 2668 if (S_ISBLK(inode->i_mode)) { 2669 struct block_device *bdev = I_BDEV(inode); 2670 set_blocksize(bdev, old_block_size); 2671 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2672 } else { 2673 inode_lock(inode); 2674 inode->i_flags &= ~S_SWAPFILE; 2675 inode_unlock(inode); 2676 } 2677 filp_close(swap_file, NULL); 2678 2679 /* 2680 * Clear the SWP_USED flag after all resources are freed so that swapon 2681 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2682 * not hold p->lock after we cleared its SWP_WRITEOK. 2683 */ 2684 spin_lock(&swap_lock); 2685 p->flags = 0; 2686 spin_unlock(&swap_lock); 2687 2688 err = 0; 2689 atomic_inc(&proc_poll_event); 2690 wake_up_interruptible(&proc_poll_wait); 2691 2692 out_dput: 2693 filp_close(victim, NULL); 2694 out: 2695 putname(pathname); 2696 return err; 2697 } 2698 2699 #ifdef CONFIG_PROC_FS 2700 static unsigned swaps_poll(struct file *file, poll_table *wait) 2701 { 2702 struct seq_file *seq = file->private_data; 2703 2704 poll_wait(file, &proc_poll_wait, wait); 2705 2706 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2707 seq->poll_event = atomic_read(&proc_poll_event); 2708 return POLLIN | POLLRDNORM | POLLERR | POLLPRI; 2709 } 2710 2711 return POLLIN | POLLRDNORM; 2712 } 2713 2714 /* iterator */ 2715 static void *swap_start(struct seq_file *swap, loff_t *pos) 2716 { 2717 struct swap_info_struct *si; 2718 int type; 2719 loff_t l = *pos; 2720 2721 mutex_lock(&swapon_mutex); 2722 2723 if (!l) 2724 return SEQ_START_TOKEN; 2725 2726 for (type = 0; type < nr_swapfiles; type++) { 2727 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2728 si = swap_info[type]; 2729 if (!(si->flags & SWP_USED) || !si->swap_map) 2730 continue; 2731 if (!--l) 2732 return si; 2733 } 2734 2735 return NULL; 2736 } 2737 2738 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2739 { 2740 struct swap_info_struct *si = v; 2741 int type; 2742 2743 if (v == SEQ_START_TOKEN) 2744 type = 0; 2745 else 2746 type = si->type + 1; 2747 2748 for (; type < nr_swapfiles; type++) { 2749 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2750 si = swap_info[type]; 2751 if (!(si->flags & SWP_USED) || !si->swap_map) 2752 continue; 2753 ++*pos; 2754 return si; 2755 } 2756 2757 return NULL; 2758 } 2759 2760 static void swap_stop(struct seq_file *swap, void *v) 2761 { 2762 mutex_unlock(&swapon_mutex); 2763 } 2764 2765 static int swap_show(struct seq_file *swap, void *v) 2766 { 2767 struct swap_info_struct *si = v; 2768 struct file *file; 2769 int len; 2770 2771 if (si == SEQ_START_TOKEN) { 2772 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 2773 return 0; 2774 } 2775 2776 file = si->swap_file; 2777 len = seq_file_path(swap, file, " \t\n\\"); 2778 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 2779 len < 40 ? 40 - len : 1, " ", 2780 S_ISBLK(file_inode(file)->i_mode) ? 2781 "partition" : "file\t", 2782 si->pages << (PAGE_SHIFT - 10), 2783 si->inuse_pages << (PAGE_SHIFT - 10), 2784 si->prio); 2785 return 0; 2786 } 2787 2788 static const struct seq_operations swaps_op = { 2789 .start = swap_start, 2790 .next = swap_next, 2791 .stop = swap_stop, 2792 .show = swap_show 2793 }; 2794 2795 static int swaps_open(struct inode *inode, struct file *file) 2796 { 2797 struct seq_file *seq; 2798 int ret; 2799 2800 ret = seq_open(file, &swaps_op); 2801 if (ret) 2802 return ret; 2803 2804 seq = file->private_data; 2805 seq->poll_event = atomic_read(&proc_poll_event); 2806 return 0; 2807 } 2808 2809 static const struct file_operations proc_swaps_operations = { 2810 .open = swaps_open, 2811 .read = seq_read, 2812 .llseek = seq_lseek, 2813 .release = seq_release, 2814 .poll = swaps_poll, 2815 }; 2816 2817 static int __init procswaps_init(void) 2818 { 2819 proc_create("swaps", 0, NULL, &proc_swaps_operations); 2820 return 0; 2821 } 2822 __initcall(procswaps_init); 2823 #endif /* CONFIG_PROC_FS */ 2824 2825 #ifdef MAX_SWAPFILES_CHECK 2826 static int __init max_swapfiles_check(void) 2827 { 2828 MAX_SWAPFILES_CHECK(); 2829 return 0; 2830 } 2831 late_initcall(max_swapfiles_check); 2832 #endif 2833 2834 static struct swap_info_struct *alloc_swap_info(void) 2835 { 2836 struct swap_info_struct *p; 2837 unsigned int type; 2838 int i; 2839 2840 p = kzalloc(sizeof(*p), GFP_KERNEL); 2841 if (!p) 2842 return ERR_PTR(-ENOMEM); 2843 2844 spin_lock(&swap_lock); 2845 for (type = 0; type < nr_swapfiles; type++) { 2846 if (!(swap_info[type]->flags & SWP_USED)) 2847 break; 2848 } 2849 if (type >= MAX_SWAPFILES) { 2850 spin_unlock(&swap_lock); 2851 kfree(p); 2852 return ERR_PTR(-EPERM); 2853 } 2854 if (type >= nr_swapfiles) { 2855 p->type = type; 2856 swap_info[type] = p; 2857 /* 2858 * Write swap_info[type] before nr_swapfiles, in case a 2859 * racing procfs swap_start() or swap_next() is reading them. 2860 * (We never shrink nr_swapfiles, we never free this entry.) 2861 */ 2862 smp_wmb(); 2863 nr_swapfiles++; 2864 } else { 2865 kfree(p); 2866 p = swap_info[type]; 2867 /* 2868 * Do not memset this entry: a racing procfs swap_next() 2869 * would be relying on p->type to remain valid. 2870 */ 2871 } 2872 INIT_LIST_HEAD(&p->first_swap_extent.list); 2873 plist_node_init(&p->list, 0); 2874 for_each_node(i) 2875 plist_node_init(&p->avail_lists[i], 0); 2876 p->flags = SWP_USED; 2877 spin_unlock(&swap_lock); 2878 spin_lock_init(&p->lock); 2879 spin_lock_init(&p->cont_lock); 2880 2881 return p; 2882 } 2883 2884 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2885 { 2886 int error; 2887 2888 if (S_ISBLK(inode->i_mode)) { 2889 p->bdev = bdgrab(I_BDEV(inode)); 2890 error = blkdev_get(p->bdev, 2891 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2892 if (error < 0) { 2893 p->bdev = NULL; 2894 return error; 2895 } 2896 p->old_block_size = block_size(p->bdev); 2897 error = set_blocksize(p->bdev, PAGE_SIZE); 2898 if (error < 0) 2899 return error; 2900 p->flags |= SWP_BLKDEV; 2901 } else if (S_ISREG(inode->i_mode)) { 2902 p->bdev = inode->i_sb->s_bdev; 2903 inode_lock(inode); 2904 if (IS_SWAPFILE(inode)) 2905 return -EBUSY; 2906 } else 2907 return -EINVAL; 2908 2909 return 0; 2910 } 2911 2912 static unsigned long read_swap_header(struct swap_info_struct *p, 2913 union swap_header *swap_header, 2914 struct inode *inode) 2915 { 2916 int i; 2917 unsigned long maxpages; 2918 unsigned long swapfilepages; 2919 unsigned long last_page; 2920 2921 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2922 pr_err("Unable to find swap-space signature\n"); 2923 return 0; 2924 } 2925 2926 /* swap partition endianess hack... */ 2927 if (swab32(swap_header->info.version) == 1) { 2928 swab32s(&swap_header->info.version); 2929 swab32s(&swap_header->info.last_page); 2930 swab32s(&swap_header->info.nr_badpages); 2931 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2932 return 0; 2933 for (i = 0; i < swap_header->info.nr_badpages; i++) 2934 swab32s(&swap_header->info.badpages[i]); 2935 } 2936 /* Check the swap header's sub-version */ 2937 if (swap_header->info.version != 1) { 2938 pr_warn("Unable to handle swap header version %d\n", 2939 swap_header->info.version); 2940 return 0; 2941 } 2942 2943 p->lowest_bit = 1; 2944 p->cluster_next = 1; 2945 p->cluster_nr = 0; 2946 2947 /* 2948 * Find out how many pages are allowed for a single swap 2949 * device. There are two limiting factors: 1) the number 2950 * of bits for the swap offset in the swp_entry_t type, and 2951 * 2) the number of bits in the swap pte as defined by the 2952 * different architectures. In order to find the 2953 * largest possible bit mask, a swap entry with swap type 0 2954 * and swap offset ~0UL is created, encoded to a swap pte, 2955 * decoded to a swp_entry_t again, and finally the swap 2956 * offset is extracted. This will mask all the bits from 2957 * the initial ~0UL mask that can't be encoded in either 2958 * the swp_entry_t or the architecture definition of a 2959 * swap pte. 2960 */ 2961 maxpages = swp_offset(pte_to_swp_entry( 2962 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2963 last_page = swap_header->info.last_page; 2964 if (last_page > maxpages) { 2965 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2966 maxpages << (PAGE_SHIFT - 10), 2967 last_page << (PAGE_SHIFT - 10)); 2968 } 2969 if (maxpages > last_page) { 2970 maxpages = last_page + 1; 2971 /* p->max is an unsigned int: don't overflow it */ 2972 if ((unsigned int)maxpages == 0) 2973 maxpages = UINT_MAX; 2974 } 2975 p->highest_bit = maxpages - 1; 2976 2977 if (!maxpages) 2978 return 0; 2979 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2980 if (swapfilepages && maxpages > swapfilepages) { 2981 pr_warn("Swap area shorter than signature indicates\n"); 2982 return 0; 2983 } 2984 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2985 return 0; 2986 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2987 return 0; 2988 2989 return maxpages; 2990 } 2991 2992 #define SWAP_CLUSTER_INFO_COLS \ 2993 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 2994 #define SWAP_CLUSTER_SPACE_COLS \ 2995 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 2996 #define SWAP_CLUSTER_COLS \ 2997 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 2998 2999 static int setup_swap_map_and_extents(struct swap_info_struct *p, 3000 union swap_header *swap_header, 3001 unsigned char *swap_map, 3002 struct swap_cluster_info *cluster_info, 3003 unsigned long maxpages, 3004 sector_t *span) 3005 { 3006 unsigned int j, k; 3007 unsigned int nr_good_pages; 3008 int nr_extents; 3009 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3010 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 3011 unsigned long i, idx; 3012 3013 nr_good_pages = maxpages - 1; /* omit header page */ 3014 3015 cluster_list_init(&p->free_clusters); 3016 cluster_list_init(&p->discard_clusters); 3017 3018 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3019 unsigned int page_nr = swap_header->info.badpages[i]; 3020 if (page_nr == 0 || page_nr > swap_header->info.last_page) 3021 return -EINVAL; 3022 if (page_nr < maxpages) { 3023 swap_map[page_nr] = SWAP_MAP_BAD; 3024 nr_good_pages--; 3025 /* 3026 * Haven't marked the cluster free yet, no list 3027 * operation involved 3028 */ 3029 inc_cluster_info_page(p, cluster_info, page_nr); 3030 } 3031 } 3032 3033 /* Haven't marked the cluster free yet, no list operation involved */ 3034 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 3035 inc_cluster_info_page(p, cluster_info, i); 3036 3037 if (nr_good_pages) { 3038 swap_map[0] = SWAP_MAP_BAD; 3039 /* 3040 * Not mark the cluster free yet, no list 3041 * operation involved 3042 */ 3043 inc_cluster_info_page(p, cluster_info, 0); 3044 p->max = maxpages; 3045 p->pages = nr_good_pages; 3046 nr_extents = setup_swap_extents(p, span); 3047 if (nr_extents < 0) 3048 return nr_extents; 3049 nr_good_pages = p->pages; 3050 } 3051 if (!nr_good_pages) { 3052 pr_warn("Empty swap-file\n"); 3053 return -EINVAL; 3054 } 3055 3056 if (!cluster_info) 3057 return nr_extents; 3058 3059 3060 /* 3061 * Reduce false cache line sharing between cluster_info and 3062 * sharing same address space. 3063 */ 3064 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 3065 j = (k + col) % SWAP_CLUSTER_COLS; 3066 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 3067 idx = i * SWAP_CLUSTER_COLS + j; 3068 if (idx >= nr_clusters) 3069 continue; 3070 if (cluster_count(&cluster_info[idx])) 3071 continue; 3072 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 3073 cluster_list_add_tail(&p->free_clusters, cluster_info, 3074 idx); 3075 } 3076 } 3077 return nr_extents; 3078 } 3079 3080 /* 3081 * Helper to sys_swapon determining if a given swap 3082 * backing device queue supports DISCARD operations. 3083 */ 3084 static bool swap_discardable(struct swap_info_struct *si) 3085 { 3086 struct request_queue *q = bdev_get_queue(si->bdev); 3087 3088 if (!q || !blk_queue_discard(q)) 3089 return false; 3090 3091 return true; 3092 } 3093 3094 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 3095 { 3096 struct swap_info_struct *p; 3097 struct filename *name; 3098 struct file *swap_file = NULL; 3099 struct address_space *mapping; 3100 int prio; 3101 int error; 3102 union swap_header *swap_header; 3103 int nr_extents; 3104 sector_t span; 3105 unsigned long maxpages; 3106 unsigned char *swap_map = NULL; 3107 struct swap_cluster_info *cluster_info = NULL; 3108 unsigned long *frontswap_map = NULL; 3109 struct page *page = NULL; 3110 struct inode *inode = NULL; 3111 3112 if (swap_flags & ~SWAP_FLAGS_VALID) 3113 return -EINVAL; 3114 3115 if (!capable(CAP_SYS_ADMIN)) 3116 return -EPERM; 3117 3118 if (!swap_avail_heads) 3119 return -ENOMEM; 3120 3121 p = alloc_swap_info(); 3122 if (IS_ERR(p)) 3123 return PTR_ERR(p); 3124 3125 INIT_WORK(&p->discard_work, swap_discard_work); 3126 3127 name = getname(specialfile); 3128 if (IS_ERR(name)) { 3129 error = PTR_ERR(name); 3130 name = NULL; 3131 goto bad_swap; 3132 } 3133 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3134 if (IS_ERR(swap_file)) { 3135 error = PTR_ERR(swap_file); 3136 swap_file = NULL; 3137 goto bad_swap; 3138 } 3139 3140 p->swap_file = swap_file; 3141 mapping = swap_file->f_mapping; 3142 inode = mapping->host; 3143 3144 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */ 3145 error = claim_swapfile(p, inode); 3146 if (unlikely(error)) 3147 goto bad_swap; 3148 3149 /* 3150 * Read the swap header. 3151 */ 3152 if (!mapping->a_ops->readpage) { 3153 error = -EINVAL; 3154 goto bad_swap; 3155 } 3156 page = read_mapping_page(mapping, 0, swap_file); 3157 if (IS_ERR(page)) { 3158 error = PTR_ERR(page); 3159 goto bad_swap; 3160 } 3161 swap_header = kmap(page); 3162 3163 maxpages = read_swap_header(p, swap_header, inode); 3164 if (unlikely(!maxpages)) { 3165 error = -EINVAL; 3166 goto bad_swap; 3167 } 3168 3169 /* OK, set up the swap map and apply the bad block list */ 3170 swap_map = vzalloc(maxpages); 3171 if (!swap_map) { 3172 error = -ENOMEM; 3173 goto bad_swap; 3174 } 3175 3176 if (bdi_cap_stable_pages_required(inode_to_bdi(inode))) 3177 p->flags |= SWP_STABLE_WRITES; 3178 3179 if (bdi_cap_synchronous_io(inode_to_bdi(inode))) 3180 p->flags |= SWP_SYNCHRONOUS_IO; 3181 3182 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 3183 int cpu; 3184 unsigned long ci, nr_cluster; 3185 3186 p->flags |= SWP_SOLIDSTATE; 3187 /* 3188 * select a random position to start with to help wear leveling 3189 * SSD 3190 */ 3191 p->cluster_next = 1 + (prandom_u32() % p->highest_bit); 3192 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3193 3194 cluster_info = kvzalloc(nr_cluster * sizeof(*cluster_info), 3195 GFP_KERNEL); 3196 if (!cluster_info) { 3197 error = -ENOMEM; 3198 goto bad_swap; 3199 } 3200 3201 for (ci = 0; ci < nr_cluster; ci++) 3202 spin_lock_init(&((cluster_info + ci)->lock)); 3203 3204 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3205 if (!p->percpu_cluster) { 3206 error = -ENOMEM; 3207 goto bad_swap; 3208 } 3209 for_each_possible_cpu(cpu) { 3210 struct percpu_cluster *cluster; 3211 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3212 cluster_set_null(&cluster->index); 3213 } 3214 } else 3215 atomic_inc(&nr_rotate_swap); 3216 3217 error = swap_cgroup_swapon(p->type, maxpages); 3218 if (error) 3219 goto bad_swap; 3220 3221 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3222 cluster_info, maxpages, &span); 3223 if (unlikely(nr_extents < 0)) { 3224 error = nr_extents; 3225 goto bad_swap; 3226 } 3227 /* frontswap enabled? set up bit-per-page map for frontswap */ 3228 if (IS_ENABLED(CONFIG_FRONTSWAP)) 3229 frontswap_map = kvzalloc(BITS_TO_LONGS(maxpages) * sizeof(long), 3230 GFP_KERNEL); 3231 3232 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 3233 /* 3234 * When discard is enabled for swap with no particular 3235 * policy flagged, we set all swap discard flags here in 3236 * order to sustain backward compatibility with older 3237 * swapon(8) releases. 3238 */ 3239 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3240 SWP_PAGE_DISCARD); 3241 3242 /* 3243 * By flagging sys_swapon, a sysadmin can tell us to 3244 * either do single-time area discards only, or to just 3245 * perform discards for released swap page-clusters. 3246 * Now it's time to adjust the p->flags accordingly. 3247 */ 3248 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3249 p->flags &= ~SWP_PAGE_DISCARD; 3250 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3251 p->flags &= ~SWP_AREA_DISCARD; 3252 3253 /* issue a swapon-time discard if it's still required */ 3254 if (p->flags & SWP_AREA_DISCARD) { 3255 int err = discard_swap(p); 3256 if (unlikely(err)) 3257 pr_err("swapon: discard_swap(%p): %d\n", 3258 p, err); 3259 } 3260 } 3261 3262 error = init_swap_address_space(p->type, maxpages); 3263 if (error) 3264 goto bad_swap; 3265 3266 mutex_lock(&swapon_mutex); 3267 prio = -1; 3268 if (swap_flags & SWAP_FLAG_PREFER) 3269 prio = 3270 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3271 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 3272 3273 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 3274 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 3275 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 3276 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3277 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3278 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3279 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 3280 (frontswap_map) ? "FS" : ""); 3281 3282 mutex_unlock(&swapon_mutex); 3283 atomic_inc(&proc_poll_event); 3284 wake_up_interruptible(&proc_poll_wait); 3285 3286 if (S_ISREG(inode->i_mode)) 3287 inode->i_flags |= S_SWAPFILE; 3288 error = 0; 3289 goto out; 3290 bad_swap: 3291 free_percpu(p->percpu_cluster); 3292 p->percpu_cluster = NULL; 3293 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 3294 set_blocksize(p->bdev, p->old_block_size); 3295 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 3296 } 3297 destroy_swap_extents(p); 3298 swap_cgroup_swapoff(p->type); 3299 spin_lock(&swap_lock); 3300 p->swap_file = NULL; 3301 p->flags = 0; 3302 spin_unlock(&swap_lock); 3303 vfree(swap_map); 3304 kvfree(cluster_info); 3305 kvfree(frontswap_map); 3306 if (swap_file) { 3307 if (inode && S_ISREG(inode->i_mode)) { 3308 inode_unlock(inode); 3309 inode = NULL; 3310 } 3311 filp_close(swap_file, NULL); 3312 } 3313 out: 3314 if (page && !IS_ERR(page)) { 3315 kunmap(page); 3316 put_page(page); 3317 } 3318 if (name) 3319 putname(name); 3320 if (inode && S_ISREG(inode->i_mode)) 3321 inode_unlock(inode); 3322 if (!error) 3323 enable_swap_slots_cache(); 3324 return error; 3325 } 3326 3327 void si_swapinfo(struct sysinfo *val) 3328 { 3329 unsigned int type; 3330 unsigned long nr_to_be_unused = 0; 3331 3332 spin_lock(&swap_lock); 3333 for (type = 0; type < nr_swapfiles; type++) { 3334 struct swap_info_struct *si = swap_info[type]; 3335 3336 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3337 nr_to_be_unused += si->inuse_pages; 3338 } 3339 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3340 val->totalswap = total_swap_pages + nr_to_be_unused; 3341 spin_unlock(&swap_lock); 3342 } 3343 3344 /* 3345 * Verify that a swap entry is valid and increment its swap map count. 3346 * 3347 * Returns error code in following case. 3348 * - success -> 0 3349 * - swp_entry is invalid -> EINVAL 3350 * - swp_entry is migration entry -> EINVAL 3351 * - swap-cache reference is requested but there is already one. -> EEXIST 3352 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3353 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3354 */ 3355 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3356 { 3357 struct swap_info_struct *p; 3358 struct swap_cluster_info *ci; 3359 unsigned long offset, type; 3360 unsigned char count; 3361 unsigned char has_cache; 3362 int err = -EINVAL; 3363 3364 if (non_swap_entry(entry)) 3365 goto out; 3366 3367 type = swp_type(entry); 3368 if (type >= nr_swapfiles) 3369 goto bad_file; 3370 p = swap_info[type]; 3371 offset = swp_offset(entry); 3372 if (unlikely(offset >= p->max)) 3373 goto out; 3374 3375 ci = lock_cluster_or_swap_info(p, offset); 3376 3377 count = p->swap_map[offset]; 3378 3379 /* 3380 * swapin_readahead() doesn't check if a swap entry is valid, so the 3381 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3382 */ 3383 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3384 err = -ENOENT; 3385 goto unlock_out; 3386 } 3387 3388 has_cache = count & SWAP_HAS_CACHE; 3389 count &= ~SWAP_HAS_CACHE; 3390 err = 0; 3391 3392 if (usage == SWAP_HAS_CACHE) { 3393 3394 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3395 if (!has_cache && count) 3396 has_cache = SWAP_HAS_CACHE; 3397 else if (has_cache) /* someone else added cache */ 3398 err = -EEXIST; 3399 else /* no users remaining */ 3400 err = -ENOENT; 3401 3402 } else if (count || has_cache) { 3403 3404 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3405 count += usage; 3406 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3407 err = -EINVAL; 3408 else if (swap_count_continued(p, offset, count)) 3409 count = COUNT_CONTINUED; 3410 else 3411 err = -ENOMEM; 3412 } else 3413 err = -ENOENT; /* unused swap entry */ 3414 3415 p->swap_map[offset] = count | has_cache; 3416 3417 unlock_out: 3418 unlock_cluster_or_swap_info(p, ci); 3419 out: 3420 return err; 3421 3422 bad_file: 3423 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val); 3424 goto out; 3425 } 3426 3427 /* 3428 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3429 * (in which case its reference count is never incremented). 3430 */ 3431 void swap_shmem_alloc(swp_entry_t entry) 3432 { 3433 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3434 } 3435 3436 /* 3437 * Increase reference count of swap entry by 1. 3438 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3439 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3440 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3441 * might occur if a page table entry has got corrupted. 3442 */ 3443 int swap_duplicate(swp_entry_t entry) 3444 { 3445 int err = 0; 3446 3447 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3448 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3449 return err; 3450 } 3451 3452 /* 3453 * @entry: swap entry for which we allocate swap cache. 3454 * 3455 * Called when allocating swap cache for existing swap entry, 3456 * This can return error codes. Returns 0 at success. 3457 * -EBUSY means there is a swap cache. 3458 * Note: return code is different from swap_duplicate(). 3459 */ 3460 int swapcache_prepare(swp_entry_t entry) 3461 { 3462 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3463 } 3464 3465 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3466 { 3467 return swap_info[swp_type(entry)]; 3468 } 3469 3470 struct swap_info_struct *page_swap_info(struct page *page) 3471 { 3472 swp_entry_t entry = { .val = page_private(page) }; 3473 return swp_swap_info(entry); 3474 } 3475 3476 /* 3477 * out-of-line __page_file_ methods to avoid include hell. 3478 */ 3479 struct address_space *__page_file_mapping(struct page *page) 3480 { 3481 return page_swap_info(page)->swap_file->f_mapping; 3482 } 3483 EXPORT_SYMBOL_GPL(__page_file_mapping); 3484 3485 pgoff_t __page_file_index(struct page *page) 3486 { 3487 swp_entry_t swap = { .val = page_private(page) }; 3488 return swp_offset(swap); 3489 } 3490 EXPORT_SYMBOL_GPL(__page_file_index); 3491 3492 /* 3493 * add_swap_count_continuation - called when a swap count is duplicated 3494 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3495 * page of the original vmalloc'ed swap_map, to hold the continuation count 3496 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3497 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3498 * 3499 * These continuation pages are seldom referenced: the common paths all work 3500 * on the original swap_map, only referring to a continuation page when the 3501 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3502 * 3503 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3504 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3505 * can be called after dropping locks. 3506 */ 3507 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3508 { 3509 struct swap_info_struct *si; 3510 struct swap_cluster_info *ci; 3511 struct page *head; 3512 struct page *page; 3513 struct page *list_page; 3514 pgoff_t offset; 3515 unsigned char count; 3516 3517 /* 3518 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3519 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3520 */ 3521 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3522 3523 si = swap_info_get(entry); 3524 if (!si) { 3525 /* 3526 * An acceptable race has occurred since the failing 3527 * __swap_duplicate(): the swap entry has been freed, 3528 * perhaps even the whole swap_map cleared for swapoff. 3529 */ 3530 goto outer; 3531 } 3532 3533 offset = swp_offset(entry); 3534 3535 ci = lock_cluster(si, offset); 3536 3537 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 3538 3539 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3540 /* 3541 * The higher the swap count, the more likely it is that tasks 3542 * will race to add swap count continuation: we need to avoid 3543 * over-provisioning. 3544 */ 3545 goto out; 3546 } 3547 3548 if (!page) { 3549 unlock_cluster(ci); 3550 spin_unlock(&si->lock); 3551 return -ENOMEM; 3552 } 3553 3554 /* 3555 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 3556 * no architecture is using highmem pages for kernel page tables: so it 3557 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 3558 */ 3559 head = vmalloc_to_page(si->swap_map + offset); 3560 offset &= ~PAGE_MASK; 3561 3562 spin_lock(&si->cont_lock); 3563 /* 3564 * Page allocation does not initialize the page's lru field, 3565 * but it does always reset its private field. 3566 */ 3567 if (!page_private(head)) { 3568 BUG_ON(count & COUNT_CONTINUED); 3569 INIT_LIST_HEAD(&head->lru); 3570 set_page_private(head, SWP_CONTINUED); 3571 si->flags |= SWP_CONTINUED; 3572 } 3573 3574 list_for_each_entry(list_page, &head->lru, lru) { 3575 unsigned char *map; 3576 3577 /* 3578 * If the previous map said no continuation, but we've found 3579 * a continuation page, free our allocation and use this one. 3580 */ 3581 if (!(count & COUNT_CONTINUED)) 3582 goto out_unlock_cont; 3583 3584 map = kmap_atomic(list_page) + offset; 3585 count = *map; 3586 kunmap_atomic(map); 3587 3588 /* 3589 * If this continuation count now has some space in it, 3590 * free our allocation and use this one. 3591 */ 3592 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3593 goto out_unlock_cont; 3594 } 3595 3596 list_add_tail(&page->lru, &head->lru); 3597 page = NULL; /* now it's attached, don't free it */ 3598 out_unlock_cont: 3599 spin_unlock(&si->cont_lock); 3600 out: 3601 unlock_cluster(ci); 3602 spin_unlock(&si->lock); 3603 outer: 3604 if (page) 3605 __free_page(page); 3606 return 0; 3607 } 3608 3609 /* 3610 * swap_count_continued - when the original swap_map count is incremented 3611 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3612 * into, carry if so, or else fail until a new continuation page is allocated; 3613 * when the original swap_map count is decremented from 0 with continuation, 3614 * borrow from the continuation and report whether it still holds more. 3615 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3616 * lock. 3617 */ 3618 static bool swap_count_continued(struct swap_info_struct *si, 3619 pgoff_t offset, unsigned char count) 3620 { 3621 struct page *head; 3622 struct page *page; 3623 unsigned char *map; 3624 bool ret; 3625 3626 head = vmalloc_to_page(si->swap_map + offset); 3627 if (page_private(head) != SWP_CONTINUED) { 3628 BUG_ON(count & COUNT_CONTINUED); 3629 return false; /* need to add count continuation */ 3630 } 3631 3632 spin_lock(&si->cont_lock); 3633 offset &= ~PAGE_MASK; 3634 page = list_entry(head->lru.next, struct page, lru); 3635 map = kmap_atomic(page) + offset; 3636 3637 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3638 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3639 3640 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3641 /* 3642 * Think of how you add 1 to 999 3643 */ 3644 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3645 kunmap_atomic(map); 3646 page = list_entry(page->lru.next, struct page, lru); 3647 BUG_ON(page == head); 3648 map = kmap_atomic(page) + offset; 3649 } 3650 if (*map == SWAP_CONT_MAX) { 3651 kunmap_atomic(map); 3652 page = list_entry(page->lru.next, struct page, lru); 3653 if (page == head) { 3654 ret = false; /* add count continuation */ 3655 goto out; 3656 } 3657 map = kmap_atomic(page) + offset; 3658 init_map: *map = 0; /* we didn't zero the page */ 3659 } 3660 *map += 1; 3661 kunmap_atomic(map); 3662 page = list_entry(page->lru.prev, struct page, lru); 3663 while (page != head) { 3664 map = kmap_atomic(page) + offset; 3665 *map = COUNT_CONTINUED; 3666 kunmap_atomic(map); 3667 page = list_entry(page->lru.prev, struct page, lru); 3668 } 3669 ret = true; /* incremented */ 3670 3671 } else { /* decrementing */ 3672 /* 3673 * Think of how you subtract 1 from 1000 3674 */ 3675 BUG_ON(count != COUNT_CONTINUED); 3676 while (*map == COUNT_CONTINUED) { 3677 kunmap_atomic(map); 3678 page = list_entry(page->lru.next, struct page, lru); 3679 BUG_ON(page == head); 3680 map = kmap_atomic(page) + offset; 3681 } 3682 BUG_ON(*map == 0); 3683 *map -= 1; 3684 if (*map == 0) 3685 count = 0; 3686 kunmap_atomic(map); 3687 page = list_entry(page->lru.prev, struct page, lru); 3688 while (page != head) { 3689 map = kmap_atomic(page) + offset; 3690 *map = SWAP_CONT_MAX | count; 3691 count = COUNT_CONTINUED; 3692 kunmap_atomic(map); 3693 page = list_entry(page->lru.prev, struct page, lru); 3694 } 3695 ret = count == COUNT_CONTINUED; 3696 } 3697 out: 3698 spin_unlock(&si->cont_lock); 3699 return ret; 3700 } 3701 3702 /* 3703 * free_swap_count_continuations - swapoff free all the continuation pages 3704 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3705 */ 3706 static void free_swap_count_continuations(struct swap_info_struct *si) 3707 { 3708 pgoff_t offset; 3709 3710 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3711 struct page *head; 3712 head = vmalloc_to_page(si->swap_map + offset); 3713 if (page_private(head)) { 3714 struct page *page, *next; 3715 3716 list_for_each_entry_safe(page, next, &head->lru, lru) { 3717 list_del(&page->lru); 3718 __free_page(page); 3719 } 3720 } 3721 } 3722 } 3723 3724 static int __init swapfile_init(void) 3725 { 3726 int nid; 3727 3728 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3729 GFP_KERNEL); 3730 if (!swap_avail_heads) { 3731 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3732 return -ENOMEM; 3733 } 3734 3735 for_each_node(nid) 3736 plist_head_init(&swap_avail_heads[nid]); 3737 3738 return 0; 3739 } 3740 subsys_initcall(swapfile_init); 3741