xref: /openbmc/linux/mm/swapfile.c (revision 4800cd83)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
33 #include <linux/poll.h>
34 
35 #include <asm/pgtable.h>
36 #include <asm/tlbflush.h>
37 #include <linux/swapops.h>
38 #include <linux/page_cgroup.h>
39 
40 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
41 				 unsigned char);
42 static void free_swap_count_continuations(struct swap_info_struct *);
43 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
44 
45 static DEFINE_SPINLOCK(swap_lock);
46 static unsigned int nr_swapfiles;
47 long nr_swap_pages;
48 long total_swap_pages;
49 static int least_priority;
50 
51 static const char Bad_file[] = "Bad swap file entry ";
52 static const char Unused_file[] = "Unused swap file entry ";
53 static const char Bad_offset[] = "Bad swap offset entry ";
54 static const char Unused_offset[] = "Unused swap offset entry ";
55 
56 static struct swap_list_t swap_list = {-1, -1};
57 
58 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
59 
60 static DEFINE_MUTEX(swapon_mutex);
61 
62 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
63 /* Activity counter to indicate that a swapon or swapoff has occurred */
64 static atomic_t proc_poll_event = ATOMIC_INIT(0);
65 
66 static inline unsigned char swap_count(unsigned char ent)
67 {
68 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
69 }
70 
71 /* returns 1 if swap entry is freed */
72 static int
73 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
74 {
75 	swp_entry_t entry = swp_entry(si->type, offset);
76 	struct page *page;
77 	int ret = 0;
78 
79 	page = find_get_page(&swapper_space, entry.val);
80 	if (!page)
81 		return 0;
82 	/*
83 	 * This function is called from scan_swap_map() and it's called
84 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
85 	 * We have to use trylock for avoiding deadlock. This is a special
86 	 * case and you should use try_to_free_swap() with explicit lock_page()
87 	 * in usual operations.
88 	 */
89 	if (trylock_page(page)) {
90 		ret = try_to_free_swap(page);
91 		unlock_page(page);
92 	}
93 	page_cache_release(page);
94 	return ret;
95 }
96 
97 /*
98  * We need this because the bdev->unplug_fn can sleep and we cannot
99  * hold swap_lock while calling the unplug_fn. And swap_lock
100  * cannot be turned into a mutex.
101  */
102 static DECLARE_RWSEM(swap_unplug_sem);
103 
104 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
105 {
106 	swp_entry_t entry;
107 
108 	down_read(&swap_unplug_sem);
109 	entry.val = page_private(page);
110 	if (PageSwapCache(page)) {
111 		struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
112 		struct backing_dev_info *bdi;
113 
114 		/*
115 		 * If the page is removed from swapcache from under us (with a
116 		 * racy try_to_unuse/swapoff) we need an additional reference
117 		 * count to avoid reading garbage from page_private(page) above.
118 		 * If the WARN_ON triggers during a swapoff it maybe the race
119 		 * condition and it's harmless. However if it triggers without
120 		 * swapoff it signals a problem.
121 		 */
122 		WARN_ON(page_count(page) <= 1);
123 
124 		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
125 		blk_run_backing_dev(bdi, page);
126 	}
127 	up_read(&swap_unplug_sem);
128 }
129 
130 /*
131  * swapon tell device that all the old swap contents can be discarded,
132  * to allow the swap device to optimize its wear-levelling.
133  */
134 static int discard_swap(struct swap_info_struct *si)
135 {
136 	struct swap_extent *se;
137 	sector_t start_block;
138 	sector_t nr_blocks;
139 	int err = 0;
140 
141 	/* Do not discard the swap header page! */
142 	se = &si->first_swap_extent;
143 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
144 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
145 	if (nr_blocks) {
146 		err = blkdev_issue_discard(si->bdev, start_block,
147 				nr_blocks, GFP_KERNEL, 0);
148 		if (err)
149 			return err;
150 		cond_resched();
151 	}
152 
153 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
154 		start_block = se->start_block << (PAGE_SHIFT - 9);
155 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
156 
157 		err = blkdev_issue_discard(si->bdev, start_block,
158 				nr_blocks, GFP_KERNEL, 0);
159 		if (err)
160 			break;
161 
162 		cond_resched();
163 	}
164 	return err;		/* That will often be -EOPNOTSUPP */
165 }
166 
167 /*
168  * swap allocation tell device that a cluster of swap can now be discarded,
169  * to allow the swap device to optimize its wear-levelling.
170  */
171 static void discard_swap_cluster(struct swap_info_struct *si,
172 				 pgoff_t start_page, pgoff_t nr_pages)
173 {
174 	struct swap_extent *se = si->curr_swap_extent;
175 	int found_extent = 0;
176 
177 	while (nr_pages) {
178 		struct list_head *lh;
179 
180 		if (se->start_page <= start_page &&
181 		    start_page < se->start_page + se->nr_pages) {
182 			pgoff_t offset = start_page - se->start_page;
183 			sector_t start_block = se->start_block + offset;
184 			sector_t nr_blocks = se->nr_pages - offset;
185 
186 			if (nr_blocks > nr_pages)
187 				nr_blocks = nr_pages;
188 			start_page += nr_blocks;
189 			nr_pages -= nr_blocks;
190 
191 			if (!found_extent++)
192 				si->curr_swap_extent = se;
193 
194 			start_block <<= PAGE_SHIFT - 9;
195 			nr_blocks <<= PAGE_SHIFT - 9;
196 			if (blkdev_issue_discard(si->bdev, start_block,
197 				    nr_blocks, GFP_NOIO, 0))
198 				break;
199 		}
200 
201 		lh = se->list.next;
202 		se = list_entry(lh, struct swap_extent, list);
203 	}
204 }
205 
206 static int wait_for_discard(void *word)
207 {
208 	schedule();
209 	return 0;
210 }
211 
212 #define SWAPFILE_CLUSTER	256
213 #define LATENCY_LIMIT		256
214 
215 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
216 					  unsigned char usage)
217 {
218 	unsigned long offset;
219 	unsigned long scan_base;
220 	unsigned long last_in_cluster = 0;
221 	int latency_ration = LATENCY_LIMIT;
222 	int found_free_cluster = 0;
223 
224 	/*
225 	 * We try to cluster swap pages by allocating them sequentially
226 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
227 	 * way, however, we resort to first-free allocation, starting
228 	 * a new cluster.  This prevents us from scattering swap pages
229 	 * all over the entire swap partition, so that we reduce
230 	 * overall disk seek times between swap pages.  -- sct
231 	 * But we do now try to find an empty cluster.  -Andrea
232 	 * And we let swap pages go all over an SSD partition.  Hugh
233 	 */
234 
235 	si->flags += SWP_SCANNING;
236 	scan_base = offset = si->cluster_next;
237 
238 	if (unlikely(!si->cluster_nr--)) {
239 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
240 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
241 			goto checks;
242 		}
243 		if (si->flags & SWP_DISCARDABLE) {
244 			/*
245 			 * Start range check on racing allocations, in case
246 			 * they overlap the cluster we eventually decide on
247 			 * (we scan without swap_lock to allow preemption).
248 			 * It's hardly conceivable that cluster_nr could be
249 			 * wrapped during our scan, but don't depend on it.
250 			 */
251 			if (si->lowest_alloc)
252 				goto checks;
253 			si->lowest_alloc = si->max;
254 			si->highest_alloc = 0;
255 		}
256 		spin_unlock(&swap_lock);
257 
258 		/*
259 		 * If seek is expensive, start searching for new cluster from
260 		 * start of partition, to minimize the span of allocated swap.
261 		 * But if seek is cheap, search from our current position, so
262 		 * that swap is allocated from all over the partition: if the
263 		 * Flash Translation Layer only remaps within limited zones,
264 		 * we don't want to wear out the first zone too quickly.
265 		 */
266 		if (!(si->flags & SWP_SOLIDSTATE))
267 			scan_base = offset = si->lowest_bit;
268 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
269 
270 		/* Locate the first empty (unaligned) cluster */
271 		for (; last_in_cluster <= si->highest_bit; offset++) {
272 			if (si->swap_map[offset])
273 				last_in_cluster = offset + SWAPFILE_CLUSTER;
274 			else if (offset == last_in_cluster) {
275 				spin_lock(&swap_lock);
276 				offset -= SWAPFILE_CLUSTER - 1;
277 				si->cluster_next = offset;
278 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
279 				found_free_cluster = 1;
280 				goto checks;
281 			}
282 			if (unlikely(--latency_ration < 0)) {
283 				cond_resched();
284 				latency_ration = LATENCY_LIMIT;
285 			}
286 		}
287 
288 		offset = si->lowest_bit;
289 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
290 
291 		/* Locate the first empty (unaligned) cluster */
292 		for (; last_in_cluster < scan_base; offset++) {
293 			if (si->swap_map[offset])
294 				last_in_cluster = offset + SWAPFILE_CLUSTER;
295 			else if (offset == last_in_cluster) {
296 				spin_lock(&swap_lock);
297 				offset -= SWAPFILE_CLUSTER - 1;
298 				si->cluster_next = offset;
299 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
300 				found_free_cluster = 1;
301 				goto checks;
302 			}
303 			if (unlikely(--latency_ration < 0)) {
304 				cond_resched();
305 				latency_ration = LATENCY_LIMIT;
306 			}
307 		}
308 
309 		offset = scan_base;
310 		spin_lock(&swap_lock);
311 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
312 		si->lowest_alloc = 0;
313 	}
314 
315 checks:
316 	if (!(si->flags & SWP_WRITEOK))
317 		goto no_page;
318 	if (!si->highest_bit)
319 		goto no_page;
320 	if (offset > si->highest_bit)
321 		scan_base = offset = si->lowest_bit;
322 
323 	/* reuse swap entry of cache-only swap if not busy. */
324 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
325 		int swap_was_freed;
326 		spin_unlock(&swap_lock);
327 		swap_was_freed = __try_to_reclaim_swap(si, offset);
328 		spin_lock(&swap_lock);
329 		/* entry was freed successfully, try to use this again */
330 		if (swap_was_freed)
331 			goto checks;
332 		goto scan; /* check next one */
333 	}
334 
335 	if (si->swap_map[offset])
336 		goto scan;
337 
338 	if (offset == si->lowest_bit)
339 		si->lowest_bit++;
340 	if (offset == si->highest_bit)
341 		si->highest_bit--;
342 	si->inuse_pages++;
343 	if (si->inuse_pages == si->pages) {
344 		si->lowest_bit = si->max;
345 		si->highest_bit = 0;
346 	}
347 	si->swap_map[offset] = usage;
348 	si->cluster_next = offset + 1;
349 	si->flags -= SWP_SCANNING;
350 
351 	if (si->lowest_alloc) {
352 		/*
353 		 * Only set when SWP_DISCARDABLE, and there's a scan
354 		 * for a free cluster in progress or just completed.
355 		 */
356 		if (found_free_cluster) {
357 			/*
358 			 * To optimize wear-levelling, discard the
359 			 * old data of the cluster, taking care not to
360 			 * discard any of its pages that have already
361 			 * been allocated by racing tasks (offset has
362 			 * already stepped over any at the beginning).
363 			 */
364 			if (offset < si->highest_alloc &&
365 			    si->lowest_alloc <= last_in_cluster)
366 				last_in_cluster = si->lowest_alloc - 1;
367 			si->flags |= SWP_DISCARDING;
368 			spin_unlock(&swap_lock);
369 
370 			if (offset < last_in_cluster)
371 				discard_swap_cluster(si, offset,
372 					last_in_cluster - offset + 1);
373 
374 			spin_lock(&swap_lock);
375 			si->lowest_alloc = 0;
376 			si->flags &= ~SWP_DISCARDING;
377 
378 			smp_mb();	/* wake_up_bit advises this */
379 			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
380 
381 		} else if (si->flags & SWP_DISCARDING) {
382 			/*
383 			 * Delay using pages allocated by racing tasks
384 			 * until the whole discard has been issued. We
385 			 * could defer that delay until swap_writepage,
386 			 * but it's easier to keep this self-contained.
387 			 */
388 			spin_unlock(&swap_lock);
389 			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
390 				wait_for_discard, TASK_UNINTERRUPTIBLE);
391 			spin_lock(&swap_lock);
392 		} else {
393 			/*
394 			 * Note pages allocated by racing tasks while
395 			 * scan for a free cluster is in progress, so
396 			 * that its final discard can exclude them.
397 			 */
398 			if (offset < si->lowest_alloc)
399 				si->lowest_alloc = offset;
400 			if (offset > si->highest_alloc)
401 				si->highest_alloc = offset;
402 		}
403 	}
404 	return offset;
405 
406 scan:
407 	spin_unlock(&swap_lock);
408 	while (++offset <= si->highest_bit) {
409 		if (!si->swap_map[offset]) {
410 			spin_lock(&swap_lock);
411 			goto checks;
412 		}
413 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
414 			spin_lock(&swap_lock);
415 			goto checks;
416 		}
417 		if (unlikely(--latency_ration < 0)) {
418 			cond_resched();
419 			latency_ration = LATENCY_LIMIT;
420 		}
421 	}
422 	offset = si->lowest_bit;
423 	while (++offset < scan_base) {
424 		if (!si->swap_map[offset]) {
425 			spin_lock(&swap_lock);
426 			goto checks;
427 		}
428 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
429 			spin_lock(&swap_lock);
430 			goto checks;
431 		}
432 		if (unlikely(--latency_ration < 0)) {
433 			cond_resched();
434 			latency_ration = LATENCY_LIMIT;
435 		}
436 	}
437 	spin_lock(&swap_lock);
438 
439 no_page:
440 	si->flags -= SWP_SCANNING;
441 	return 0;
442 }
443 
444 swp_entry_t get_swap_page(void)
445 {
446 	struct swap_info_struct *si;
447 	pgoff_t offset;
448 	int type, next;
449 	int wrapped = 0;
450 
451 	spin_lock(&swap_lock);
452 	if (nr_swap_pages <= 0)
453 		goto noswap;
454 	nr_swap_pages--;
455 
456 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
457 		si = swap_info[type];
458 		next = si->next;
459 		if (next < 0 ||
460 		    (!wrapped && si->prio != swap_info[next]->prio)) {
461 			next = swap_list.head;
462 			wrapped++;
463 		}
464 
465 		if (!si->highest_bit)
466 			continue;
467 		if (!(si->flags & SWP_WRITEOK))
468 			continue;
469 
470 		swap_list.next = next;
471 		/* This is called for allocating swap entry for cache */
472 		offset = scan_swap_map(si, SWAP_HAS_CACHE);
473 		if (offset) {
474 			spin_unlock(&swap_lock);
475 			return swp_entry(type, offset);
476 		}
477 		next = swap_list.next;
478 	}
479 
480 	nr_swap_pages++;
481 noswap:
482 	spin_unlock(&swap_lock);
483 	return (swp_entry_t) {0};
484 }
485 
486 /* The only caller of this function is now susupend routine */
487 swp_entry_t get_swap_page_of_type(int type)
488 {
489 	struct swap_info_struct *si;
490 	pgoff_t offset;
491 
492 	spin_lock(&swap_lock);
493 	si = swap_info[type];
494 	if (si && (si->flags & SWP_WRITEOK)) {
495 		nr_swap_pages--;
496 		/* This is called for allocating swap entry, not cache */
497 		offset = scan_swap_map(si, 1);
498 		if (offset) {
499 			spin_unlock(&swap_lock);
500 			return swp_entry(type, offset);
501 		}
502 		nr_swap_pages++;
503 	}
504 	spin_unlock(&swap_lock);
505 	return (swp_entry_t) {0};
506 }
507 
508 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
509 {
510 	struct swap_info_struct *p;
511 	unsigned long offset, type;
512 
513 	if (!entry.val)
514 		goto out;
515 	type = swp_type(entry);
516 	if (type >= nr_swapfiles)
517 		goto bad_nofile;
518 	p = swap_info[type];
519 	if (!(p->flags & SWP_USED))
520 		goto bad_device;
521 	offset = swp_offset(entry);
522 	if (offset >= p->max)
523 		goto bad_offset;
524 	if (!p->swap_map[offset])
525 		goto bad_free;
526 	spin_lock(&swap_lock);
527 	return p;
528 
529 bad_free:
530 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
531 	goto out;
532 bad_offset:
533 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
534 	goto out;
535 bad_device:
536 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
537 	goto out;
538 bad_nofile:
539 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
540 out:
541 	return NULL;
542 }
543 
544 static unsigned char swap_entry_free(struct swap_info_struct *p,
545 				     swp_entry_t entry, unsigned char usage)
546 {
547 	unsigned long offset = swp_offset(entry);
548 	unsigned char count;
549 	unsigned char has_cache;
550 
551 	count = p->swap_map[offset];
552 	has_cache = count & SWAP_HAS_CACHE;
553 	count &= ~SWAP_HAS_CACHE;
554 
555 	if (usage == SWAP_HAS_CACHE) {
556 		VM_BUG_ON(!has_cache);
557 		has_cache = 0;
558 	} else if (count == SWAP_MAP_SHMEM) {
559 		/*
560 		 * Or we could insist on shmem.c using a special
561 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
562 		 */
563 		count = 0;
564 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
565 		if (count == COUNT_CONTINUED) {
566 			if (swap_count_continued(p, offset, count))
567 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
568 			else
569 				count = SWAP_MAP_MAX;
570 		} else
571 			count--;
572 	}
573 
574 	if (!count)
575 		mem_cgroup_uncharge_swap(entry);
576 
577 	usage = count | has_cache;
578 	p->swap_map[offset] = usage;
579 
580 	/* free if no reference */
581 	if (!usage) {
582 		struct gendisk *disk = p->bdev->bd_disk;
583 		if (offset < p->lowest_bit)
584 			p->lowest_bit = offset;
585 		if (offset > p->highest_bit)
586 			p->highest_bit = offset;
587 		if (swap_list.next >= 0 &&
588 		    p->prio > swap_info[swap_list.next]->prio)
589 			swap_list.next = p->type;
590 		nr_swap_pages++;
591 		p->inuse_pages--;
592 		if ((p->flags & SWP_BLKDEV) &&
593 				disk->fops->swap_slot_free_notify)
594 			disk->fops->swap_slot_free_notify(p->bdev, offset);
595 	}
596 
597 	return usage;
598 }
599 
600 /*
601  * Caller has made sure that the swapdevice corresponding to entry
602  * is still around or has not been recycled.
603  */
604 void swap_free(swp_entry_t entry)
605 {
606 	struct swap_info_struct *p;
607 
608 	p = swap_info_get(entry);
609 	if (p) {
610 		swap_entry_free(p, entry, 1);
611 		spin_unlock(&swap_lock);
612 	}
613 }
614 
615 /*
616  * Called after dropping swapcache to decrease refcnt to swap entries.
617  */
618 void swapcache_free(swp_entry_t entry, struct page *page)
619 {
620 	struct swap_info_struct *p;
621 	unsigned char count;
622 
623 	p = swap_info_get(entry);
624 	if (p) {
625 		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
626 		if (page)
627 			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
628 		spin_unlock(&swap_lock);
629 	}
630 }
631 
632 /*
633  * How many references to page are currently swapped out?
634  * This does not give an exact answer when swap count is continued,
635  * but does include the high COUNT_CONTINUED flag to allow for that.
636  */
637 static inline int page_swapcount(struct page *page)
638 {
639 	int count = 0;
640 	struct swap_info_struct *p;
641 	swp_entry_t entry;
642 
643 	entry.val = page_private(page);
644 	p = swap_info_get(entry);
645 	if (p) {
646 		count = swap_count(p->swap_map[swp_offset(entry)]);
647 		spin_unlock(&swap_lock);
648 	}
649 	return count;
650 }
651 
652 /*
653  * We can write to an anon page without COW if there are no other references
654  * to it.  And as a side-effect, free up its swap: because the old content
655  * on disk will never be read, and seeking back there to write new content
656  * later would only waste time away from clustering.
657  */
658 int reuse_swap_page(struct page *page)
659 {
660 	int count;
661 
662 	VM_BUG_ON(!PageLocked(page));
663 	if (unlikely(PageKsm(page)))
664 		return 0;
665 	count = page_mapcount(page);
666 	if (count <= 1 && PageSwapCache(page)) {
667 		count += page_swapcount(page);
668 		if (count == 1 && !PageWriteback(page)) {
669 			delete_from_swap_cache(page);
670 			SetPageDirty(page);
671 		}
672 	}
673 	return count <= 1;
674 }
675 
676 /*
677  * If swap is getting full, or if there are no more mappings of this page,
678  * then try_to_free_swap is called to free its swap space.
679  */
680 int try_to_free_swap(struct page *page)
681 {
682 	VM_BUG_ON(!PageLocked(page));
683 
684 	if (!PageSwapCache(page))
685 		return 0;
686 	if (PageWriteback(page))
687 		return 0;
688 	if (page_swapcount(page))
689 		return 0;
690 
691 	/*
692 	 * Once hibernation has begun to create its image of memory,
693 	 * there's a danger that one of the calls to try_to_free_swap()
694 	 * - most probably a call from __try_to_reclaim_swap() while
695 	 * hibernation is allocating its own swap pages for the image,
696 	 * but conceivably even a call from memory reclaim - will free
697 	 * the swap from a page which has already been recorded in the
698 	 * image as a clean swapcache page, and then reuse its swap for
699 	 * another page of the image.  On waking from hibernation, the
700 	 * original page might be freed under memory pressure, then
701 	 * later read back in from swap, now with the wrong data.
702 	 *
703 	 * Hibernation clears bits from gfp_allowed_mask to prevent
704 	 * memory reclaim from writing to disk, so check that here.
705 	 */
706 	if (!(gfp_allowed_mask & __GFP_IO))
707 		return 0;
708 
709 	delete_from_swap_cache(page);
710 	SetPageDirty(page);
711 	return 1;
712 }
713 
714 /*
715  * Free the swap entry like above, but also try to
716  * free the page cache entry if it is the last user.
717  */
718 int free_swap_and_cache(swp_entry_t entry)
719 {
720 	struct swap_info_struct *p;
721 	struct page *page = NULL;
722 
723 	if (non_swap_entry(entry))
724 		return 1;
725 
726 	p = swap_info_get(entry);
727 	if (p) {
728 		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
729 			page = find_get_page(&swapper_space, entry.val);
730 			if (page && !trylock_page(page)) {
731 				page_cache_release(page);
732 				page = NULL;
733 			}
734 		}
735 		spin_unlock(&swap_lock);
736 	}
737 	if (page) {
738 		/*
739 		 * Not mapped elsewhere, or swap space full? Free it!
740 		 * Also recheck PageSwapCache now page is locked (above).
741 		 */
742 		if (PageSwapCache(page) && !PageWriteback(page) &&
743 				(!page_mapped(page) || vm_swap_full())) {
744 			delete_from_swap_cache(page);
745 			SetPageDirty(page);
746 		}
747 		unlock_page(page);
748 		page_cache_release(page);
749 	}
750 	return p != NULL;
751 }
752 
753 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
754 /**
755  * mem_cgroup_count_swap_user - count the user of a swap entry
756  * @ent: the swap entry to be checked
757  * @pagep: the pointer for the swap cache page of the entry to be stored
758  *
759  * Returns the number of the user of the swap entry. The number is valid only
760  * for swaps of anonymous pages.
761  * If the entry is found on swap cache, the page is stored to pagep with
762  * refcount of it being incremented.
763  */
764 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
765 {
766 	struct page *page;
767 	struct swap_info_struct *p;
768 	int count = 0;
769 
770 	page = find_get_page(&swapper_space, ent.val);
771 	if (page)
772 		count += page_mapcount(page);
773 	p = swap_info_get(ent);
774 	if (p) {
775 		count += swap_count(p->swap_map[swp_offset(ent)]);
776 		spin_unlock(&swap_lock);
777 	}
778 
779 	*pagep = page;
780 	return count;
781 }
782 #endif
783 
784 #ifdef CONFIG_HIBERNATION
785 /*
786  * Find the swap type that corresponds to given device (if any).
787  *
788  * @offset - number of the PAGE_SIZE-sized block of the device, starting
789  * from 0, in which the swap header is expected to be located.
790  *
791  * This is needed for the suspend to disk (aka swsusp).
792  */
793 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
794 {
795 	struct block_device *bdev = NULL;
796 	int type;
797 
798 	if (device)
799 		bdev = bdget(device);
800 
801 	spin_lock(&swap_lock);
802 	for (type = 0; type < nr_swapfiles; type++) {
803 		struct swap_info_struct *sis = swap_info[type];
804 
805 		if (!(sis->flags & SWP_WRITEOK))
806 			continue;
807 
808 		if (!bdev) {
809 			if (bdev_p)
810 				*bdev_p = bdgrab(sis->bdev);
811 
812 			spin_unlock(&swap_lock);
813 			return type;
814 		}
815 		if (bdev == sis->bdev) {
816 			struct swap_extent *se = &sis->first_swap_extent;
817 
818 			if (se->start_block == offset) {
819 				if (bdev_p)
820 					*bdev_p = bdgrab(sis->bdev);
821 
822 				spin_unlock(&swap_lock);
823 				bdput(bdev);
824 				return type;
825 			}
826 		}
827 	}
828 	spin_unlock(&swap_lock);
829 	if (bdev)
830 		bdput(bdev);
831 
832 	return -ENODEV;
833 }
834 
835 /*
836  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
837  * corresponding to given index in swap_info (swap type).
838  */
839 sector_t swapdev_block(int type, pgoff_t offset)
840 {
841 	struct block_device *bdev;
842 
843 	if ((unsigned int)type >= nr_swapfiles)
844 		return 0;
845 	if (!(swap_info[type]->flags & SWP_WRITEOK))
846 		return 0;
847 	return map_swap_entry(swp_entry(type, offset), &bdev);
848 }
849 
850 /*
851  * Return either the total number of swap pages of given type, or the number
852  * of free pages of that type (depending on @free)
853  *
854  * This is needed for software suspend
855  */
856 unsigned int count_swap_pages(int type, int free)
857 {
858 	unsigned int n = 0;
859 
860 	spin_lock(&swap_lock);
861 	if ((unsigned int)type < nr_swapfiles) {
862 		struct swap_info_struct *sis = swap_info[type];
863 
864 		if (sis->flags & SWP_WRITEOK) {
865 			n = sis->pages;
866 			if (free)
867 				n -= sis->inuse_pages;
868 		}
869 	}
870 	spin_unlock(&swap_lock);
871 	return n;
872 }
873 #endif /* CONFIG_HIBERNATION */
874 
875 /*
876  * No need to decide whether this PTE shares the swap entry with others,
877  * just let do_wp_page work it out if a write is requested later - to
878  * force COW, vm_page_prot omits write permission from any private vma.
879  */
880 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
881 		unsigned long addr, swp_entry_t entry, struct page *page)
882 {
883 	struct mem_cgroup *ptr = NULL;
884 	spinlock_t *ptl;
885 	pte_t *pte;
886 	int ret = 1;
887 
888 	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
889 		ret = -ENOMEM;
890 		goto out_nolock;
891 	}
892 
893 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
894 	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
895 		if (ret > 0)
896 			mem_cgroup_cancel_charge_swapin(ptr);
897 		ret = 0;
898 		goto out;
899 	}
900 
901 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
902 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
903 	get_page(page);
904 	set_pte_at(vma->vm_mm, addr, pte,
905 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
906 	page_add_anon_rmap(page, vma, addr);
907 	mem_cgroup_commit_charge_swapin(page, ptr);
908 	swap_free(entry);
909 	/*
910 	 * Move the page to the active list so it is not
911 	 * immediately swapped out again after swapon.
912 	 */
913 	activate_page(page);
914 out:
915 	pte_unmap_unlock(pte, ptl);
916 out_nolock:
917 	return ret;
918 }
919 
920 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
921 				unsigned long addr, unsigned long end,
922 				swp_entry_t entry, struct page *page)
923 {
924 	pte_t swp_pte = swp_entry_to_pte(entry);
925 	pte_t *pte;
926 	int ret = 0;
927 
928 	/*
929 	 * We don't actually need pte lock while scanning for swp_pte: since
930 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
931 	 * page table while we're scanning; though it could get zapped, and on
932 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
933 	 * of unmatched parts which look like swp_pte, so unuse_pte must
934 	 * recheck under pte lock.  Scanning without pte lock lets it be
935 	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
936 	 */
937 	pte = pte_offset_map(pmd, addr);
938 	do {
939 		/*
940 		 * swapoff spends a _lot_ of time in this loop!
941 		 * Test inline before going to call unuse_pte.
942 		 */
943 		if (unlikely(pte_same(*pte, swp_pte))) {
944 			pte_unmap(pte);
945 			ret = unuse_pte(vma, pmd, addr, entry, page);
946 			if (ret)
947 				goto out;
948 			pte = pte_offset_map(pmd, addr);
949 		}
950 	} while (pte++, addr += PAGE_SIZE, addr != end);
951 	pte_unmap(pte - 1);
952 out:
953 	return ret;
954 }
955 
956 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
957 				unsigned long addr, unsigned long end,
958 				swp_entry_t entry, struct page *page)
959 {
960 	pmd_t *pmd;
961 	unsigned long next;
962 	int ret;
963 
964 	pmd = pmd_offset(pud, addr);
965 	do {
966 		next = pmd_addr_end(addr, end);
967 		if (unlikely(pmd_trans_huge(*pmd)))
968 			continue;
969 		if (pmd_none_or_clear_bad(pmd))
970 			continue;
971 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
972 		if (ret)
973 			return ret;
974 	} while (pmd++, addr = next, addr != end);
975 	return 0;
976 }
977 
978 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
979 				unsigned long addr, unsigned long end,
980 				swp_entry_t entry, struct page *page)
981 {
982 	pud_t *pud;
983 	unsigned long next;
984 	int ret;
985 
986 	pud = pud_offset(pgd, addr);
987 	do {
988 		next = pud_addr_end(addr, end);
989 		if (pud_none_or_clear_bad(pud))
990 			continue;
991 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
992 		if (ret)
993 			return ret;
994 	} while (pud++, addr = next, addr != end);
995 	return 0;
996 }
997 
998 static int unuse_vma(struct vm_area_struct *vma,
999 				swp_entry_t entry, struct page *page)
1000 {
1001 	pgd_t *pgd;
1002 	unsigned long addr, end, next;
1003 	int ret;
1004 
1005 	if (page_anon_vma(page)) {
1006 		addr = page_address_in_vma(page, vma);
1007 		if (addr == -EFAULT)
1008 			return 0;
1009 		else
1010 			end = addr + PAGE_SIZE;
1011 	} else {
1012 		addr = vma->vm_start;
1013 		end = vma->vm_end;
1014 	}
1015 
1016 	pgd = pgd_offset(vma->vm_mm, addr);
1017 	do {
1018 		next = pgd_addr_end(addr, end);
1019 		if (pgd_none_or_clear_bad(pgd))
1020 			continue;
1021 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1022 		if (ret)
1023 			return ret;
1024 	} while (pgd++, addr = next, addr != end);
1025 	return 0;
1026 }
1027 
1028 static int unuse_mm(struct mm_struct *mm,
1029 				swp_entry_t entry, struct page *page)
1030 {
1031 	struct vm_area_struct *vma;
1032 	int ret = 0;
1033 
1034 	if (!down_read_trylock(&mm->mmap_sem)) {
1035 		/*
1036 		 * Activate page so shrink_inactive_list is unlikely to unmap
1037 		 * its ptes while lock is dropped, so swapoff can make progress.
1038 		 */
1039 		activate_page(page);
1040 		unlock_page(page);
1041 		down_read(&mm->mmap_sem);
1042 		lock_page(page);
1043 	}
1044 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1045 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1046 			break;
1047 	}
1048 	up_read(&mm->mmap_sem);
1049 	return (ret < 0)? ret: 0;
1050 }
1051 
1052 /*
1053  * Scan swap_map from current position to next entry still in use.
1054  * Recycle to start on reaching the end, returning 0 when empty.
1055  */
1056 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1057 					unsigned int prev)
1058 {
1059 	unsigned int max = si->max;
1060 	unsigned int i = prev;
1061 	unsigned char count;
1062 
1063 	/*
1064 	 * No need for swap_lock here: we're just looking
1065 	 * for whether an entry is in use, not modifying it; false
1066 	 * hits are okay, and sys_swapoff() has already prevented new
1067 	 * allocations from this area (while holding swap_lock).
1068 	 */
1069 	for (;;) {
1070 		if (++i >= max) {
1071 			if (!prev) {
1072 				i = 0;
1073 				break;
1074 			}
1075 			/*
1076 			 * No entries in use at top of swap_map,
1077 			 * loop back to start and recheck there.
1078 			 */
1079 			max = prev + 1;
1080 			prev = 0;
1081 			i = 1;
1082 		}
1083 		count = si->swap_map[i];
1084 		if (count && swap_count(count) != SWAP_MAP_BAD)
1085 			break;
1086 	}
1087 	return i;
1088 }
1089 
1090 /*
1091  * We completely avoid races by reading each swap page in advance,
1092  * and then search for the process using it.  All the necessary
1093  * page table adjustments can then be made atomically.
1094  */
1095 static int try_to_unuse(unsigned int type)
1096 {
1097 	struct swap_info_struct *si = swap_info[type];
1098 	struct mm_struct *start_mm;
1099 	unsigned char *swap_map;
1100 	unsigned char swcount;
1101 	struct page *page;
1102 	swp_entry_t entry;
1103 	unsigned int i = 0;
1104 	int retval = 0;
1105 
1106 	/*
1107 	 * When searching mms for an entry, a good strategy is to
1108 	 * start at the first mm we freed the previous entry from
1109 	 * (though actually we don't notice whether we or coincidence
1110 	 * freed the entry).  Initialize this start_mm with a hold.
1111 	 *
1112 	 * A simpler strategy would be to start at the last mm we
1113 	 * freed the previous entry from; but that would take less
1114 	 * advantage of mmlist ordering, which clusters forked mms
1115 	 * together, child after parent.  If we race with dup_mmap(), we
1116 	 * prefer to resolve parent before child, lest we miss entries
1117 	 * duplicated after we scanned child: using last mm would invert
1118 	 * that.
1119 	 */
1120 	start_mm = &init_mm;
1121 	atomic_inc(&init_mm.mm_users);
1122 
1123 	/*
1124 	 * Keep on scanning until all entries have gone.  Usually,
1125 	 * one pass through swap_map is enough, but not necessarily:
1126 	 * there are races when an instance of an entry might be missed.
1127 	 */
1128 	while ((i = find_next_to_unuse(si, i)) != 0) {
1129 		if (signal_pending(current)) {
1130 			retval = -EINTR;
1131 			break;
1132 		}
1133 
1134 		/*
1135 		 * Get a page for the entry, using the existing swap
1136 		 * cache page if there is one.  Otherwise, get a clean
1137 		 * page and read the swap into it.
1138 		 */
1139 		swap_map = &si->swap_map[i];
1140 		entry = swp_entry(type, i);
1141 		page = read_swap_cache_async(entry,
1142 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1143 		if (!page) {
1144 			/*
1145 			 * Either swap_duplicate() failed because entry
1146 			 * has been freed independently, and will not be
1147 			 * reused since sys_swapoff() already disabled
1148 			 * allocation from here, or alloc_page() failed.
1149 			 */
1150 			if (!*swap_map)
1151 				continue;
1152 			retval = -ENOMEM;
1153 			break;
1154 		}
1155 
1156 		/*
1157 		 * Don't hold on to start_mm if it looks like exiting.
1158 		 */
1159 		if (atomic_read(&start_mm->mm_users) == 1) {
1160 			mmput(start_mm);
1161 			start_mm = &init_mm;
1162 			atomic_inc(&init_mm.mm_users);
1163 		}
1164 
1165 		/*
1166 		 * Wait for and lock page.  When do_swap_page races with
1167 		 * try_to_unuse, do_swap_page can handle the fault much
1168 		 * faster than try_to_unuse can locate the entry.  This
1169 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1170 		 * defer to do_swap_page in such a case - in some tests,
1171 		 * do_swap_page and try_to_unuse repeatedly compete.
1172 		 */
1173 		wait_on_page_locked(page);
1174 		wait_on_page_writeback(page);
1175 		lock_page(page);
1176 		wait_on_page_writeback(page);
1177 
1178 		/*
1179 		 * Remove all references to entry.
1180 		 */
1181 		swcount = *swap_map;
1182 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1183 			retval = shmem_unuse(entry, page);
1184 			/* page has already been unlocked and released */
1185 			if (retval < 0)
1186 				break;
1187 			continue;
1188 		}
1189 		if (swap_count(swcount) && start_mm != &init_mm)
1190 			retval = unuse_mm(start_mm, entry, page);
1191 
1192 		if (swap_count(*swap_map)) {
1193 			int set_start_mm = (*swap_map >= swcount);
1194 			struct list_head *p = &start_mm->mmlist;
1195 			struct mm_struct *new_start_mm = start_mm;
1196 			struct mm_struct *prev_mm = start_mm;
1197 			struct mm_struct *mm;
1198 
1199 			atomic_inc(&new_start_mm->mm_users);
1200 			atomic_inc(&prev_mm->mm_users);
1201 			spin_lock(&mmlist_lock);
1202 			while (swap_count(*swap_map) && !retval &&
1203 					(p = p->next) != &start_mm->mmlist) {
1204 				mm = list_entry(p, struct mm_struct, mmlist);
1205 				if (!atomic_inc_not_zero(&mm->mm_users))
1206 					continue;
1207 				spin_unlock(&mmlist_lock);
1208 				mmput(prev_mm);
1209 				prev_mm = mm;
1210 
1211 				cond_resched();
1212 
1213 				swcount = *swap_map;
1214 				if (!swap_count(swcount)) /* any usage ? */
1215 					;
1216 				else if (mm == &init_mm)
1217 					set_start_mm = 1;
1218 				else
1219 					retval = unuse_mm(mm, entry, page);
1220 
1221 				if (set_start_mm && *swap_map < swcount) {
1222 					mmput(new_start_mm);
1223 					atomic_inc(&mm->mm_users);
1224 					new_start_mm = mm;
1225 					set_start_mm = 0;
1226 				}
1227 				spin_lock(&mmlist_lock);
1228 			}
1229 			spin_unlock(&mmlist_lock);
1230 			mmput(prev_mm);
1231 			mmput(start_mm);
1232 			start_mm = new_start_mm;
1233 		}
1234 		if (retval) {
1235 			unlock_page(page);
1236 			page_cache_release(page);
1237 			break;
1238 		}
1239 
1240 		/*
1241 		 * If a reference remains (rare), we would like to leave
1242 		 * the page in the swap cache; but try_to_unmap could
1243 		 * then re-duplicate the entry once we drop page lock,
1244 		 * so we might loop indefinitely; also, that page could
1245 		 * not be swapped out to other storage meanwhile.  So:
1246 		 * delete from cache even if there's another reference,
1247 		 * after ensuring that the data has been saved to disk -
1248 		 * since if the reference remains (rarer), it will be
1249 		 * read from disk into another page.  Splitting into two
1250 		 * pages would be incorrect if swap supported "shared
1251 		 * private" pages, but they are handled by tmpfs files.
1252 		 *
1253 		 * Given how unuse_vma() targets one particular offset
1254 		 * in an anon_vma, once the anon_vma has been determined,
1255 		 * this splitting happens to be just what is needed to
1256 		 * handle where KSM pages have been swapped out: re-reading
1257 		 * is unnecessarily slow, but we can fix that later on.
1258 		 */
1259 		if (swap_count(*swap_map) &&
1260 		     PageDirty(page) && PageSwapCache(page)) {
1261 			struct writeback_control wbc = {
1262 				.sync_mode = WB_SYNC_NONE,
1263 			};
1264 
1265 			swap_writepage(page, &wbc);
1266 			lock_page(page);
1267 			wait_on_page_writeback(page);
1268 		}
1269 
1270 		/*
1271 		 * It is conceivable that a racing task removed this page from
1272 		 * swap cache just before we acquired the page lock at the top,
1273 		 * or while we dropped it in unuse_mm().  The page might even
1274 		 * be back in swap cache on another swap area: that we must not
1275 		 * delete, since it may not have been written out to swap yet.
1276 		 */
1277 		if (PageSwapCache(page) &&
1278 		    likely(page_private(page) == entry.val))
1279 			delete_from_swap_cache(page);
1280 
1281 		/*
1282 		 * So we could skip searching mms once swap count went
1283 		 * to 1, we did not mark any present ptes as dirty: must
1284 		 * mark page dirty so shrink_page_list will preserve it.
1285 		 */
1286 		SetPageDirty(page);
1287 		unlock_page(page);
1288 		page_cache_release(page);
1289 
1290 		/*
1291 		 * Make sure that we aren't completely killing
1292 		 * interactive performance.
1293 		 */
1294 		cond_resched();
1295 	}
1296 
1297 	mmput(start_mm);
1298 	return retval;
1299 }
1300 
1301 /*
1302  * After a successful try_to_unuse, if no swap is now in use, we know
1303  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1304  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1305  * added to the mmlist just after page_duplicate - before would be racy.
1306  */
1307 static void drain_mmlist(void)
1308 {
1309 	struct list_head *p, *next;
1310 	unsigned int type;
1311 
1312 	for (type = 0; type < nr_swapfiles; type++)
1313 		if (swap_info[type]->inuse_pages)
1314 			return;
1315 	spin_lock(&mmlist_lock);
1316 	list_for_each_safe(p, next, &init_mm.mmlist)
1317 		list_del_init(p);
1318 	spin_unlock(&mmlist_lock);
1319 }
1320 
1321 /*
1322  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1323  * corresponds to page offset for the specified swap entry.
1324  * Note that the type of this function is sector_t, but it returns page offset
1325  * into the bdev, not sector offset.
1326  */
1327 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1328 {
1329 	struct swap_info_struct *sis;
1330 	struct swap_extent *start_se;
1331 	struct swap_extent *se;
1332 	pgoff_t offset;
1333 
1334 	sis = swap_info[swp_type(entry)];
1335 	*bdev = sis->bdev;
1336 
1337 	offset = swp_offset(entry);
1338 	start_se = sis->curr_swap_extent;
1339 	se = start_se;
1340 
1341 	for ( ; ; ) {
1342 		struct list_head *lh;
1343 
1344 		if (se->start_page <= offset &&
1345 				offset < (se->start_page + se->nr_pages)) {
1346 			return se->start_block + (offset - se->start_page);
1347 		}
1348 		lh = se->list.next;
1349 		se = list_entry(lh, struct swap_extent, list);
1350 		sis->curr_swap_extent = se;
1351 		BUG_ON(se == start_se);		/* It *must* be present */
1352 	}
1353 }
1354 
1355 /*
1356  * Returns the page offset into bdev for the specified page's swap entry.
1357  */
1358 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1359 {
1360 	swp_entry_t entry;
1361 	entry.val = page_private(page);
1362 	return map_swap_entry(entry, bdev);
1363 }
1364 
1365 /*
1366  * Free all of a swapdev's extent information
1367  */
1368 static void destroy_swap_extents(struct swap_info_struct *sis)
1369 {
1370 	while (!list_empty(&sis->first_swap_extent.list)) {
1371 		struct swap_extent *se;
1372 
1373 		se = list_entry(sis->first_swap_extent.list.next,
1374 				struct swap_extent, list);
1375 		list_del(&se->list);
1376 		kfree(se);
1377 	}
1378 }
1379 
1380 /*
1381  * Add a block range (and the corresponding page range) into this swapdev's
1382  * extent list.  The extent list is kept sorted in page order.
1383  *
1384  * This function rather assumes that it is called in ascending page order.
1385  */
1386 static int
1387 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1388 		unsigned long nr_pages, sector_t start_block)
1389 {
1390 	struct swap_extent *se;
1391 	struct swap_extent *new_se;
1392 	struct list_head *lh;
1393 
1394 	if (start_page == 0) {
1395 		se = &sis->first_swap_extent;
1396 		sis->curr_swap_extent = se;
1397 		se->start_page = 0;
1398 		se->nr_pages = nr_pages;
1399 		se->start_block = start_block;
1400 		return 1;
1401 	} else {
1402 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1403 		se = list_entry(lh, struct swap_extent, list);
1404 		BUG_ON(se->start_page + se->nr_pages != start_page);
1405 		if (se->start_block + se->nr_pages == start_block) {
1406 			/* Merge it */
1407 			se->nr_pages += nr_pages;
1408 			return 0;
1409 		}
1410 	}
1411 
1412 	/*
1413 	 * No merge.  Insert a new extent, preserving ordering.
1414 	 */
1415 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1416 	if (new_se == NULL)
1417 		return -ENOMEM;
1418 	new_se->start_page = start_page;
1419 	new_se->nr_pages = nr_pages;
1420 	new_se->start_block = start_block;
1421 
1422 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1423 	return 1;
1424 }
1425 
1426 /*
1427  * A `swap extent' is a simple thing which maps a contiguous range of pages
1428  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1429  * is built at swapon time and is then used at swap_writepage/swap_readpage
1430  * time for locating where on disk a page belongs.
1431  *
1432  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1433  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1434  * swap files identically.
1435  *
1436  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1437  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1438  * swapfiles are handled *identically* after swapon time.
1439  *
1440  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1441  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1442  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1443  * requirements, they are simply tossed out - we will never use those blocks
1444  * for swapping.
1445  *
1446  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1447  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1448  * which will scribble on the fs.
1449  *
1450  * The amount of disk space which a single swap extent represents varies.
1451  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1452  * extents in the list.  To avoid much list walking, we cache the previous
1453  * search location in `curr_swap_extent', and start new searches from there.
1454  * This is extremely effective.  The average number of iterations in
1455  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1456  */
1457 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1458 {
1459 	struct inode *inode;
1460 	unsigned blocks_per_page;
1461 	unsigned long page_no;
1462 	unsigned blkbits;
1463 	sector_t probe_block;
1464 	sector_t last_block;
1465 	sector_t lowest_block = -1;
1466 	sector_t highest_block = 0;
1467 	int nr_extents = 0;
1468 	int ret;
1469 
1470 	inode = sis->swap_file->f_mapping->host;
1471 	if (S_ISBLK(inode->i_mode)) {
1472 		ret = add_swap_extent(sis, 0, sis->max, 0);
1473 		*span = sis->pages;
1474 		goto out;
1475 	}
1476 
1477 	blkbits = inode->i_blkbits;
1478 	blocks_per_page = PAGE_SIZE >> blkbits;
1479 
1480 	/*
1481 	 * Map all the blocks into the extent list.  This code doesn't try
1482 	 * to be very smart.
1483 	 */
1484 	probe_block = 0;
1485 	page_no = 0;
1486 	last_block = i_size_read(inode) >> blkbits;
1487 	while ((probe_block + blocks_per_page) <= last_block &&
1488 			page_no < sis->max) {
1489 		unsigned block_in_page;
1490 		sector_t first_block;
1491 
1492 		first_block = bmap(inode, probe_block);
1493 		if (first_block == 0)
1494 			goto bad_bmap;
1495 
1496 		/*
1497 		 * It must be PAGE_SIZE aligned on-disk
1498 		 */
1499 		if (first_block & (blocks_per_page - 1)) {
1500 			probe_block++;
1501 			goto reprobe;
1502 		}
1503 
1504 		for (block_in_page = 1; block_in_page < blocks_per_page;
1505 					block_in_page++) {
1506 			sector_t block;
1507 
1508 			block = bmap(inode, probe_block + block_in_page);
1509 			if (block == 0)
1510 				goto bad_bmap;
1511 			if (block != first_block + block_in_page) {
1512 				/* Discontiguity */
1513 				probe_block++;
1514 				goto reprobe;
1515 			}
1516 		}
1517 
1518 		first_block >>= (PAGE_SHIFT - blkbits);
1519 		if (page_no) {	/* exclude the header page */
1520 			if (first_block < lowest_block)
1521 				lowest_block = first_block;
1522 			if (first_block > highest_block)
1523 				highest_block = first_block;
1524 		}
1525 
1526 		/*
1527 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1528 		 */
1529 		ret = add_swap_extent(sis, page_no, 1, first_block);
1530 		if (ret < 0)
1531 			goto out;
1532 		nr_extents += ret;
1533 		page_no++;
1534 		probe_block += blocks_per_page;
1535 reprobe:
1536 		continue;
1537 	}
1538 	ret = nr_extents;
1539 	*span = 1 + highest_block - lowest_block;
1540 	if (page_no == 0)
1541 		page_no = 1;	/* force Empty message */
1542 	sis->max = page_no;
1543 	sis->pages = page_no - 1;
1544 	sis->highest_bit = page_no - 1;
1545 out:
1546 	return ret;
1547 bad_bmap:
1548 	printk(KERN_ERR "swapon: swapfile has holes\n");
1549 	ret = -EINVAL;
1550 	goto out;
1551 }
1552 
1553 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1554 {
1555 	struct swap_info_struct *p = NULL;
1556 	unsigned char *swap_map;
1557 	struct file *swap_file, *victim;
1558 	struct address_space *mapping;
1559 	struct inode *inode;
1560 	char *pathname;
1561 	int i, type, prev;
1562 	int err;
1563 
1564 	if (!capable(CAP_SYS_ADMIN))
1565 		return -EPERM;
1566 
1567 	pathname = getname(specialfile);
1568 	err = PTR_ERR(pathname);
1569 	if (IS_ERR(pathname))
1570 		goto out;
1571 
1572 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1573 	putname(pathname);
1574 	err = PTR_ERR(victim);
1575 	if (IS_ERR(victim))
1576 		goto out;
1577 
1578 	mapping = victim->f_mapping;
1579 	prev = -1;
1580 	spin_lock(&swap_lock);
1581 	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1582 		p = swap_info[type];
1583 		if (p->flags & SWP_WRITEOK) {
1584 			if (p->swap_file->f_mapping == mapping)
1585 				break;
1586 		}
1587 		prev = type;
1588 	}
1589 	if (type < 0) {
1590 		err = -EINVAL;
1591 		spin_unlock(&swap_lock);
1592 		goto out_dput;
1593 	}
1594 	if (!security_vm_enough_memory(p->pages))
1595 		vm_unacct_memory(p->pages);
1596 	else {
1597 		err = -ENOMEM;
1598 		spin_unlock(&swap_lock);
1599 		goto out_dput;
1600 	}
1601 	if (prev < 0)
1602 		swap_list.head = p->next;
1603 	else
1604 		swap_info[prev]->next = p->next;
1605 	if (type == swap_list.next) {
1606 		/* just pick something that's safe... */
1607 		swap_list.next = swap_list.head;
1608 	}
1609 	if (p->prio < 0) {
1610 		for (i = p->next; i >= 0; i = swap_info[i]->next)
1611 			swap_info[i]->prio = p->prio--;
1612 		least_priority++;
1613 	}
1614 	nr_swap_pages -= p->pages;
1615 	total_swap_pages -= p->pages;
1616 	p->flags &= ~SWP_WRITEOK;
1617 	spin_unlock(&swap_lock);
1618 
1619 	current->flags |= PF_OOM_ORIGIN;
1620 	err = try_to_unuse(type);
1621 	current->flags &= ~PF_OOM_ORIGIN;
1622 
1623 	if (err) {
1624 		/* re-insert swap space back into swap_list */
1625 		spin_lock(&swap_lock);
1626 		if (p->prio < 0)
1627 			p->prio = --least_priority;
1628 		prev = -1;
1629 		for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1630 			if (p->prio >= swap_info[i]->prio)
1631 				break;
1632 			prev = i;
1633 		}
1634 		p->next = i;
1635 		if (prev < 0)
1636 			swap_list.head = swap_list.next = type;
1637 		else
1638 			swap_info[prev]->next = type;
1639 		nr_swap_pages += p->pages;
1640 		total_swap_pages += p->pages;
1641 		p->flags |= SWP_WRITEOK;
1642 		spin_unlock(&swap_lock);
1643 		goto out_dput;
1644 	}
1645 
1646 	/* wait for any unplug function to finish */
1647 	down_write(&swap_unplug_sem);
1648 	up_write(&swap_unplug_sem);
1649 
1650 	destroy_swap_extents(p);
1651 	if (p->flags & SWP_CONTINUED)
1652 		free_swap_count_continuations(p);
1653 
1654 	mutex_lock(&swapon_mutex);
1655 	spin_lock(&swap_lock);
1656 	drain_mmlist();
1657 
1658 	/* wait for anyone still in scan_swap_map */
1659 	p->highest_bit = 0;		/* cuts scans short */
1660 	while (p->flags >= SWP_SCANNING) {
1661 		spin_unlock(&swap_lock);
1662 		schedule_timeout_uninterruptible(1);
1663 		spin_lock(&swap_lock);
1664 	}
1665 
1666 	swap_file = p->swap_file;
1667 	p->swap_file = NULL;
1668 	p->max = 0;
1669 	swap_map = p->swap_map;
1670 	p->swap_map = NULL;
1671 	p->flags = 0;
1672 	spin_unlock(&swap_lock);
1673 	mutex_unlock(&swapon_mutex);
1674 	vfree(swap_map);
1675 	/* Destroy swap account informatin */
1676 	swap_cgroup_swapoff(type);
1677 
1678 	inode = mapping->host;
1679 	if (S_ISBLK(inode->i_mode)) {
1680 		struct block_device *bdev = I_BDEV(inode);
1681 		set_blocksize(bdev, p->old_block_size);
1682 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1683 	} else {
1684 		mutex_lock(&inode->i_mutex);
1685 		inode->i_flags &= ~S_SWAPFILE;
1686 		mutex_unlock(&inode->i_mutex);
1687 	}
1688 	filp_close(swap_file, NULL);
1689 	err = 0;
1690 	atomic_inc(&proc_poll_event);
1691 	wake_up_interruptible(&proc_poll_wait);
1692 
1693 out_dput:
1694 	filp_close(victim, NULL);
1695 out:
1696 	return err;
1697 }
1698 
1699 #ifdef CONFIG_PROC_FS
1700 struct proc_swaps {
1701 	struct seq_file seq;
1702 	int event;
1703 };
1704 
1705 static unsigned swaps_poll(struct file *file, poll_table *wait)
1706 {
1707 	struct proc_swaps *s = file->private_data;
1708 
1709 	poll_wait(file, &proc_poll_wait, wait);
1710 
1711 	if (s->event != atomic_read(&proc_poll_event)) {
1712 		s->event = atomic_read(&proc_poll_event);
1713 		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1714 	}
1715 
1716 	return POLLIN | POLLRDNORM;
1717 }
1718 
1719 /* iterator */
1720 static void *swap_start(struct seq_file *swap, loff_t *pos)
1721 {
1722 	struct swap_info_struct *si;
1723 	int type;
1724 	loff_t l = *pos;
1725 
1726 	mutex_lock(&swapon_mutex);
1727 
1728 	if (!l)
1729 		return SEQ_START_TOKEN;
1730 
1731 	for (type = 0; type < nr_swapfiles; type++) {
1732 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1733 		si = swap_info[type];
1734 		if (!(si->flags & SWP_USED) || !si->swap_map)
1735 			continue;
1736 		if (!--l)
1737 			return si;
1738 	}
1739 
1740 	return NULL;
1741 }
1742 
1743 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1744 {
1745 	struct swap_info_struct *si = v;
1746 	int type;
1747 
1748 	if (v == SEQ_START_TOKEN)
1749 		type = 0;
1750 	else
1751 		type = si->type + 1;
1752 
1753 	for (; type < nr_swapfiles; type++) {
1754 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1755 		si = swap_info[type];
1756 		if (!(si->flags & SWP_USED) || !si->swap_map)
1757 			continue;
1758 		++*pos;
1759 		return si;
1760 	}
1761 
1762 	return NULL;
1763 }
1764 
1765 static void swap_stop(struct seq_file *swap, void *v)
1766 {
1767 	mutex_unlock(&swapon_mutex);
1768 }
1769 
1770 static int swap_show(struct seq_file *swap, void *v)
1771 {
1772 	struct swap_info_struct *si = v;
1773 	struct file *file;
1774 	int len;
1775 
1776 	if (si == SEQ_START_TOKEN) {
1777 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1778 		return 0;
1779 	}
1780 
1781 	file = si->swap_file;
1782 	len = seq_path(swap, &file->f_path, " \t\n\\");
1783 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1784 			len < 40 ? 40 - len : 1, " ",
1785 			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1786 				"partition" : "file\t",
1787 			si->pages << (PAGE_SHIFT - 10),
1788 			si->inuse_pages << (PAGE_SHIFT - 10),
1789 			si->prio);
1790 	return 0;
1791 }
1792 
1793 static const struct seq_operations swaps_op = {
1794 	.start =	swap_start,
1795 	.next =		swap_next,
1796 	.stop =		swap_stop,
1797 	.show =		swap_show
1798 };
1799 
1800 static int swaps_open(struct inode *inode, struct file *file)
1801 {
1802 	struct proc_swaps *s;
1803 	int ret;
1804 
1805 	s = kmalloc(sizeof(struct proc_swaps), GFP_KERNEL);
1806 	if (!s)
1807 		return -ENOMEM;
1808 
1809 	file->private_data = s;
1810 
1811 	ret = seq_open(file, &swaps_op);
1812 	if (ret) {
1813 		kfree(s);
1814 		return ret;
1815 	}
1816 
1817 	s->seq.private = s;
1818 	s->event = atomic_read(&proc_poll_event);
1819 	return ret;
1820 }
1821 
1822 static const struct file_operations proc_swaps_operations = {
1823 	.open		= swaps_open,
1824 	.read		= seq_read,
1825 	.llseek		= seq_lseek,
1826 	.release	= seq_release,
1827 	.poll		= swaps_poll,
1828 };
1829 
1830 static int __init procswaps_init(void)
1831 {
1832 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1833 	return 0;
1834 }
1835 __initcall(procswaps_init);
1836 #endif /* CONFIG_PROC_FS */
1837 
1838 #ifdef MAX_SWAPFILES_CHECK
1839 static int __init max_swapfiles_check(void)
1840 {
1841 	MAX_SWAPFILES_CHECK();
1842 	return 0;
1843 }
1844 late_initcall(max_swapfiles_check);
1845 #endif
1846 
1847 /*
1848  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1849  *
1850  * The swapon system call
1851  */
1852 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1853 {
1854 	struct swap_info_struct *p;
1855 	char *name = NULL;
1856 	struct block_device *bdev = NULL;
1857 	struct file *swap_file = NULL;
1858 	struct address_space *mapping;
1859 	unsigned int type;
1860 	int i, prev;
1861 	int error;
1862 	union swap_header *swap_header;
1863 	unsigned int nr_good_pages;
1864 	int nr_extents = 0;
1865 	sector_t span;
1866 	unsigned long maxpages;
1867 	unsigned long swapfilepages;
1868 	unsigned char *swap_map = NULL;
1869 	struct page *page = NULL;
1870 	struct inode *inode = NULL;
1871 	int did_down = 0;
1872 
1873 	if (!capable(CAP_SYS_ADMIN))
1874 		return -EPERM;
1875 
1876 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1877 	if (!p)
1878 		return -ENOMEM;
1879 
1880 	spin_lock(&swap_lock);
1881 	for (type = 0; type < nr_swapfiles; type++) {
1882 		if (!(swap_info[type]->flags & SWP_USED))
1883 			break;
1884 	}
1885 	error = -EPERM;
1886 	if (type >= MAX_SWAPFILES) {
1887 		spin_unlock(&swap_lock);
1888 		kfree(p);
1889 		goto out;
1890 	}
1891 	if (type >= nr_swapfiles) {
1892 		p->type = type;
1893 		swap_info[type] = p;
1894 		/*
1895 		 * Write swap_info[type] before nr_swapfiles, in case a
1896 		 * racing procfs swap_start() or swap_next() is reading them.
1897 		 * (We never shrink nr_swapfiles, we never free this entry.)
1898 		 */
1899 		smp_wmb();
1900 		nr_swapfiles++;
1901 	} else {
1902 		kfree(p);
1903 		p = swap_info[type];
1904 		/*
1905 		 * Do not memset this entry: a racing procfs swap_next()
1906 		 * would be relying on p->type to remain valid.
1907 		 */
1908 	}
1909 	INIT_LIST_HEAD(&p->first_swap_extent.list);
1910 	p->flags = SWP_USED;
1911 	p->next = -1;
1912 	spin_unlock(&swap_lock);
1913 
1914 	name = getname(specialfile);
1915 	error = PTR_ERR(name);
1916 	if (IS_ERR(name)) {
1917 		name = NULL;
1918 		goto bad_swap_2;
1919 	}
1920 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1921 	error = PTR_ERR(swap_file);
1922 	if (IS_ERR(swap_file)) {
1923 		swap_file = NULL;
1924 		goto bad_swap_2;
1925 	}
1926 
1927 	p->swap_file = swap_file;
1928 	mapping = swap_file->f_mapping;
1929 	inode = mapping->host;
1930 
1931 	error = -EBUSY;
1932 	for (i = 0; i < nr_swapfiles; i++) {
1933 		struct swap_info_struct *q = swap_info[i];
1934 
1935 		if (i == type || !q->swap_file)
1936 			continue;
1937 		if (mapping == q->swap_file->f_mapping)
1938 			goto bad_swap;
1939 	}
1940 
1941 	error = -EINVAL;
1942 	if (S_ISBLK(inode->i_mode)) {
1943 		bdev = bdgrab(I_BDEV(inode));
1944 		error = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1945 				   sys_swapon);
1946 		if (error < 0) {
1947 			bdev = NULL;
1948 			error = -EINVAL;
1949 			goto bad_swap;
1950 		}
1951 		p->old_block_size = block_size(bdev);
1952 		error = set_blocksize(bdev, PAGE_SIZE);
1953 		if (error < 0)
1954 			goto bad_swap;
1955 		p->bdev = bdev;
1956 		p->flags |= SWP_BLKDEV;
1957 	} else if (S_ISREG(inode->i_mode)) {
1958 		p->bdev = inode->i_sb->s_bdev;
1959 		mutex_lock(&inode->i_mutex);
1960 		did_down = 1;
1961 		if (IS_SWAPFILE(inode)) {
1962 			error = -EBUSY;
1963 			goto bad_swap;
1964 		}
1965 	} else {
1966 		goto bad_swap;
1967 	}
1968 
1969 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1970 
1971 	/*
1972 	 * Read the swap header.
1973 	 */
1974 	if (!mapping->a_ops->readpage) {
1975 		error = -EINVAL;
1976 		goto bad_swap;
1977 	}
1978 	page = read_mapping_page(mapping, 0, swap_file);
1979 	if (IS_ERR(page)) {
1980 		error = PTR_ERR(page);
1981 		goto bad_swap;
1982 	}
1983 	swap_header = kmap(page);
1984 
1985 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1986 		printk(KERN_ERR "Unable to find swap-space signature\n");
1987 		error = -EINVAL;
1988 		goto bad_swap;
1989 	}
1990 
1991 	/* swap partition endianess hack... */
1992 	if (swab32(swap_header->info.version) == 1) {
1993 		swab32s(&swap_header->info.version);
1994 		swab32s(&swap_header->info.last_page);
1995 		swab32s(&swap_header->info.nr_badpages);
1996 		for (i = 0; i < swap_header->info.nr_badpages; i++)
1997 			swab32s(&swap_header->info.badpages[i]);
1998 	}
1999 	/* Check the swap header's sub-version */
2000 	if (swap_header->info.version != 1) {
2001 		printk(KERN_WARNING
2002 		       "Unable to handle swap header version %d\n",
2003 		       swap_header->info.version);
2004 		error = -EINVAL;
2005 		goto bad_swap;
2006 	}
2007 
2008 	p->lowest_bit  = 1;
2009 	p->cluster_next = 1;
2010 	p->cluster_nr = 0;
2011 
2012 	/*
2013 	 * Find out how many pages are allowed for a single swap
2014 	 * device. There are two limiting factors: 1) the number of
2015 	 * bits for the swap offset in the swp_entry_t type and
2016 	 * 2) the number of bits in the a swap pte as defined by
2017 	 * the different architectures. In order to find the
2018 	 * largest possible bit mask a swap entry with swap type 0
2019 	 * and swap offset ~0UL is created, encoded to a swap pte,
2020 	 * decoded to a swp_entry_t again and finally the swap
2021 	 * offset is extracted. This will mask all the bits from
2022 	 * the initial ~0UL mask that can't be encoded in either
2023 	 * the swp_entry_t or the architecture definition of a
2024 	 * swap pte.
2025 	 */
2026 	maxpages = swp_offset(pte_to_swp_entry(
2027 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2028 	if (maxpages > swap_header->info.last_page) {
2029 		maxpages = swap_header->info.last_page + 1;
2030 		/* p->max is an unsigned int: don't overflow it */
2031 		if ((unsigned int)maxpages == 0)
2032 			maxpages = UINT_MAX;
2033 	}
2034 	p->highest_bit = maxpages - 1;
2035 
2036 	error = -EINVAL;
2037 	if (!maxpages)
2038 		goto bad_swap;
2039 	if (swapfilepages && maxpages > swapfilepages) {
2040 		printk(KERN_WARNING
2041 		       "Swap area shorter than signature indicates\n");
2042 		goto bad_swap;
2043 	}
2044 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2045 		goto bad_swap;
2046 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2047 		goto bad_swap;
2048 
2049 	/* OK, set up the swap map and apply the bad block list */
2050 	swap_map = vmalloc(maxpages);
2051 	if (!swap_map) {
2052 		error = -ENOMEM;
2053 		goto bad_swap;
2054 	}
2055 
2056 	memset(swap_map, 0, maxpages);
2057 	nr_good_pages = maxpages - 1;	/* omit header page */
2058 
2059 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2060 		unsigned int page_nr = swap_header->info.badpages[i];
2061 		if (page_nr == 0 || page_nr > swap_header->info.last_page) {
2062 			error = -EINVAL;
2063 			goto bad_swap;
2064 		}
2065 		if (page_nr < maxpages) {
2066 			swap_map[page_nr] = SWAP_MAP_BAD;
2067 			nr_good_pages--;
2068 		}
2069 	}
2070 
2071 	error = swap_cgroup_swapon(type, maxpages);
2072 	if (error)
2073 		goto bad_swap;
2074 
2075 	if (nr_good_pages) {
2076 		swap_map[0] = SWAP_MAP_BAD;
2077 		p->max = maxpages;
2078 		p->pages = nr_good_pages;
2079 		nr_extents = setup_swap_extents(p, &span);
2080 		if (nr_extents < 0) {
2081 			error = nr_extents;
2082 			goto bad_swap;
2083 		}
2084 		nr_good_pages = p->pages;
2085 	}
2086 	if (!nr_good_pages) {
2087 		printk(KERN_WARNING "Empty swap-file\n");
2088 		error = -EINVAL;
2089 		goto bad_swap;
2090 	}
2091 
2092 	if (p->bdev) {
2093 		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2094 			p->flags |= SWP_SOLIDSTATE;
2095 			p->cluster_next = 1 + (random32() % p->highest_bit);
2096 		}
2097 		if (discard_swap(p) == 0 && (swap_flags & SWAP_FLAG_DISCARD))
2098 			p->flags |= SWP_DISCARDABLE;
2099 	}
2100 
2101 	mutex_lock(&swapon_mutex);
2102 	spin_lock(&swap_lock);
2103 	if (swap_flags & SWAP_FLAG_PREFER)
2104 		p->prio =
2105 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2106 	else
2107 		p->prio = --least_priority;
2108 	p->swap_map = swap_map;
2109 	p->flags |= SWP_WRITEOK;
2110 	nr_swap_pages += nr_good_pages;
2111 	total_swap_pages += nr_good_pages;
2112 
2113 	printk(KERN_INFO "Adding %uk swap on %s.  "
2114 			"Priority:%d extents:%d across:%lluk %s%s\n",
2115 		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2116 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2117 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2118 		(p->flags & SWP_DISCARDABLE) ? "D" : "");
2119 
2120 	/* insert swap space into swap_list: */
2121 	prev = -1;
2122 	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2123 		if (p->prio >= swap_info[i]->prio)
2124 			break;
2125 		prev = i;
2126 	}
2127 	p->next = i;
2128 	if (prev < 0)
2129 		swap_list.head = swap_list.next = type;
2130 	else
2131 		swap_info[prev]->next = type;
2132 	spin_unlock(&swap_lock);
2133 	mutex_unlock(&swapon_mutex);
2134 	atomic_inc(&proc_poll_event);
2135 	wake_up_interruptible(&proc_poll_wait);
2136 
2137 	error = 0;
2138 	goto out;
2139 bad_swap:
2140 	if (bdev) {
2141 		set_blocksize(bdev, p->old_block_size);
2142 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2143 	}
2144 	destroy_swap_extents(p);
2145 	swap_cgroup_swapoff(type);
2146 bad_swap_2:
2147 	spin_lock(&swap_lock);
2148 	p->swap_file = NULL;
2149 	p->flags = 0;
2150 	spin_unlock(&swap_lock);
2151 	vfree(swap_map);
2152 	if (swap_file)
2153 		filp_close(swap_file, NULL);
2154 out:
2155 	if (page && !IS_ERR(page)) {
2156 		kunmap(page);
2157 		page_cache_release(page);
2158 	}
2159 	if (name)
2160 		putname(name);
2161 	if (did_down) {
2162 		if (!error)
2163 			inode->i_flags |= S_SWAPFILE;
2164 		mutex_unlock(&inode->i_mutex);
2165 	}
2166 	return error;
2167 }
2168 
2169 void si_swapinfo(struct sysinfo *val)
2170 {
2171 	unsigned int type;
2172 	unsigned long nr_to_be_unused = 0;
2173 
2174 	spin_lock(&swap_lock);
2175 	for (type = 0; type < nr_swapfiles; type++) {
2176 		struct swap_info_struct *si = swap_info[type];
2177 
2178 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2179 			nr_to_be_unused += si->inuse_pages;
2180 	}
2181 	val->freeswap = nr_swap_pages + nr_to_be_unused;
2182 	val->totalswap = total_swap_pages + nr_to_be_unused;
2183 	spin_unlock(&swap_lock);
2184 }
2185 
2186 /*
2187  * Verify that a swap entry is valid and increment its swap map count.
2188  *
2189  * Returns error code in following case.
2190  * - success -> 0
2191  * - swp_entry is invalid -> EINVAL
2192  * - swp_entry is migration entry -> EINVAL
2193  * - swap-cache reference is requested but there is already one. -> EEXIST
2194  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2195  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2196  */
2197 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2198 {
2199 	struct swap_info_struct *p;
2200 	unsigned long offset, type;
2201 	unsigned char count;
2202 	unsigned char has_cache;
2203 	int err = -EINVAL;
2204 
2205 	if (non_swap_entry(entry))
2206 		goto out;
2207 
2208 	type = swp_type(entry);
2209 	if (type >= nr_swapfiles)
2210 		goto bad_file;
2211 	p = swap_info[type];
2212 	offset = swp_offset(entry);
2213 
2214 	spin_lock(&swap_lock);
2215 	if (unlikely(offset >= p->max))
2216 		goto unlock_out;
2217 
2218 	count = p->swap_map[offset];
2219 	has_cache = count & SWAP_HAS_CACHE;
2220 	count &= ~SWAP_HAS_CACHE;
2221 	err = 0;
2222 
2223 	if (usage == SWAP_HAS_CACHE) {
2224 
2225 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2226 		if (!has_cache && count)
2227 			has_cache = SWAP_HAS_CACHE;
2228 		else if (has_cache)		/* someone else added cache */
2229 			err = -EEXIST;
2230 		else				/* no users remaining */
2231 			err = -ENOENT;
2232 
2233 	} else if (count || has_cache) {
2234 
2235 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2236 			count += usage;
2237 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2238 			err = -EINVAL;
2239 		else if (swap_count_continued(p, offset, count))
2240 			count = COUNT_CONTINUED;
2241 		else
2242 			err = -ENOMEM;
2243 	} else
2244 		err = -ENOENT;			/* unused swap entry */
2245 
2246 	p->swap_map[offset] = count | has_cache;
2247 
2248 unlock_out:
2249 	spin_unlock(&swap_lock);
2250 out:
2251 	return err;
2252 
2253 bad_file:
2254 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2255 	goto out;
2256 }
2257 
2258 /*
2259  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2260  * (in which case its reference count is never incremented).
2261  */
2262 void swap_shmem_alloc(swp_entry_t entry)
2263 {
2264 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2265 }
2266 
2267 /*
2268  * Increase reference count of swap entry by 1.
2269  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2270  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2271  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2272  * might occur if a page table entry has got corrupted.
2273  */
2274 int swap_duplicate(swp_entry_t entry)
2275 {
2276 	int err = 0;
2277 
2278 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2279 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2280 	return err;
2281 }
2282 
2283 /*
2284  * @entry: swap entry for which we allocate swap cache.
2285  *
2286  * Called when allocating swap cache for existing swap entry,
2287  * This can return error codes. Returns 0 at success.
2288  * -EBUSY means there is a swap cache.
2289  * Note: return code is different from swap_duplicate().
2290  */
2291 int swapcache_prepare(swp_entry_t entry)
2292 {
2293 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2294 }
2295 
2296 /*
2297  * swap_lock prevents swap_map being freed. Don't grab an extra
2298  * reference on the swaphandle, it doesn't matter if it becomes unused.
2299  */
2300 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2301 {
2302 	struct swap_info_struct *si;
2303 	int our_page_cluster = page_cluster;
2304 	pgoff_t target, toff;
2305 	pgoff_t base, end;
2306 	int nr_pages = 0;
2307 
2308 	if (!our_page_cluster)	/* no readahead */
2309 		return 0;
2310 
2311 	si = swap_info[swp_type(entry)];
2312 	target = swp_offset(entry);
2313 	base = (target >> our_page_cluster) << our_page_cluster;
2314 	end = base + (1 << our_page_cluster);
2315 	if (!base)		/* first page is swap header */
2316 		base++;
2317 
2318 	spin_lock(&swap_lock);
2319 	if (end > si->max)	/* don't go beyond end of map */
2320 		end = si->max;
2321 
2322 	/* Count contiguous allocated slots above our target */
2323 	for (toff = target; ++toff < end; nr_pages++) {
2324 		/* Don't read in free or bad pages */
2325 		if (!si->swap_map[toff])
2326 			break;
2327 		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2328 			break;
2329 	}
2330 	/* Count contiguous allocated slots below our target */
2331 	for (toff = target; --toff >= base; nr_pages++) {
2332 		/* Don't read in free or bad pages */
2333 		if (!si->swap_map[toff])
2334 			break;
2335 		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2336 			break;
2337 	}
2338 	spin_unlock(&swap_lock);
2339 
2340 	/*
2341 	 * Indicate starting offset, and return number of pages to get:
2342 	 * if only 1, say 0, since there's then no readahead to be done.
2343 	 */
2344 	*offset = ++toff;
2345 	return nr_pages? ++nr_pages: 0;
2346 }
2347 
2348 /*
2349  * add_swap_count_continuation - called when a swap count is duplicated
2350  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2351  * page of the original vmalloc'ed swap_map, to hold the continuation count
2352  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2353  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2354  *
2355  * These continuation pages are seldom referenced: the common paths all work
2356  * on the original swap_map, only referring to a continuation page when the
2357  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2358  *
2359  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2360  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2361  * can be called after dropping locks.
2362  */
2363 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2364 {
2365 	struct swap_info_struct *si;
2366 	struct page *head;
2367 	struct page *page;
2368 	struct page *list_page;
2369 	pgoff_t offset;
2370 	unsigned char count;
2371 
2372 	/*
2373 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2374 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2375 	 */
2376 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2377 
2378 	si = swap_info_get(entry);
2379 	if (!si) {
2380 		/*
2381 		 * An acceptable race has occurred since the failing
2382 		 * __swap_duplicate(): the swap entry has been freed,
2383 		 * perhaps even the whole swap_map cleared for swapoff.
2384 		 */
2385 		goto outer;
2386 	}
2387 
2388 	offset = swp_offset(entry);
2389 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2390 
2391 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2392 		/*
2393 		 * The higher the swap count, the more likely it is that tasks
2394 		 * will race to add swap count continuation: we need to avoid
2395 		 * over-provisioning.
2396 		 */
2397 		goto out;
2398 	}
2399 
2400 	if (!page) {
2401 		spin_unlock(&swap_lock);
2402 		return -ENOMEM;
2403 	}
2404 
2405 	/*
2406 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2407 	 * no architecture is using highmem pages for kernel pagetables: so it
2408 	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2409 	 */
2410 	head = vmalloc_to_page(si->swap_map + offset);
2411 	offset &= ~PAGE_MASK;
2412 
2413 	/*
2414 	 * Page allocation does not initialize the page's lru field,
2415 	 * but it does always reset its private field.
2416 	 */
2417 	if (!page_private(head)) {
2418 		BUG_ON(count & COUNT_CONTINUED);
2419 		INIT_LIST_HEAD(&head->lru);
2420 		set_page_private(head, SWP_CONTINUED);
2421 		si->flags |= SWP_CONTINUED;
2422 	}
2423 
2424 	list_for_each_entry(list_page, &head->lru, lru) {
2425 		unsigned char *map;
2426 
2427 		/*
2428 		 * If the previous map said no continuation, but we've found
2429 		 * a continuation page, free our allocation and use this one.
2430 		 */
2431 		if (!(count & COUNT_CONTINUED))
2432 			goto out;
2433 
2434 		map = kmap_atomic(list_page, KM_USER0) + offset;
2435 		count = *map;
2436 		kunmap_atomic(map, KM_USER0);
2437 
2438 		/*
2439 		 * If this continuation count now has some space in it,
2440 		 * free our allocation and use this one.
2441 		 */
2442 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2443 			goto out;
2444 	}
2445 
2446 	list_add_tail(&page->lru, &head->lru);
2447 	page = NULL;			/* now it's attached, don't free it */
2448 out:
2449 	spin_unlock(&swap_lock);
2450 outer:
2451 	if (page)
2452 		__free_page(page);
2453 	return 0;
2454 }
2455 
2456 /*
2457  * swap_count_continued - when the original swap_map count is incremented
2458  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2459  * into, carry if so, or else fail until a new continuation page is allocated;
2460  * when the original swap_map count is decremented from 0 with continuation,
2461  * borrow from the continuation and report whether it still holds more.
2462  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2463  */
2464 static bool swap_count_continued(struct swap_info_struct *si,
2465 				 pgoff_t offset, unsigned char count)
2466 {
2467 	struct page *head;
2468 	struct page *page;
2469 	unsigned char *map;
2470 
2471 	head = vmalloc_to_page(si->swap_map + offset);
2472 	if (page_private(head) != SWP_CONTINUED) {
2473 		BUG_ON(count & COUNT_CONTINUED);
2474 		return false;		/* need to add count continuation */
2475 	}
2476 
2477 	offset &= ~PAGE_MASK;
2478 	page = list_entry(head->lru.next, struct page, lru);
2479 	map = kmap_atomic(page, KM_USER0) + offset;
2480 
2481 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2482 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2483 
2484 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2485 		/*
2486 		 * Think of how you add 1 to 999
2487 		 */
2488 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2489 			kunmap_atomic(map, KM_USER0);
2490 			page = list_entry(page->lru.next, struct page, lru);
2491 			BUG_ON(page == head);
2492 			map = kmap_atomic(page, KM_USER0) + offset;
2493 		}
2494 		if (*map == SWAP_CONT_MAX) {
2495 			kunmap_atomic(map, KM_USER0);
2496 			page = list_entry(page->lru.next, struct page, lru);
2497 			if (page == head)
2498 				return false;	/* add count continuation */
2499 			map = kmap_atomic(page, KM_USER0) + offset;
2500 init_map:		*map = 0;		/* we didn't zero the page */
2501 		}
2502 		*map += 1;
2503 		kunmap_atomic(map, KM_USER0);
2504 		page = list_entry(page->lru.prev, struct page, lru);
2505 		while (page != head) {
2506 			map = kmap_atomic(page, KM_USER0) + offset;
2507 			*map = COUNT_CONTINUED;
2508 			kunmap_atomic(map, KM_USER0);
2509 			page = list_entry(page->lru.prev, struct page, lru);
2510 		}
2511 		return true;			/* incremented */
2512 
2513 	} else {				/* decrementing */
2514 		/*
2515 		 * Think of how you subtract 1 from 1000
2516 		 */
2517 		BUG_ON(count != COUNT_CONTINUED);
2518 		while (*map == COUNT_CONTINUED) {
2519 			kunmap_atomic(map, KM_USER0);
2520 			page = list_entry(page->lru.next, struct page, lru);
2521 			BUG_ON(page == head);
2522 			map = kmap_atomic(page, KM_USER0) + offset;
2523 		}
2524 		BUG_ON(*map == 0);
2525 		*map -= 1;
2526 		if (*map == 0)
2527 			count = 0;
2528 		kunmap_atomic(map, KM_USER0);
2529 		page = list_entry(page->lru.prev, struct page, lru);
2530 		while (page != head) {
2531 			map = kmap_atomic(page, KM_USER0) + offset;
2532 			*map = SWAP_CONT_MAX | count;
2533 			count = COUNT_CONTINUED;
2534 			kunmap_atomic(map, KM_USER0);
2535 			page = list_entry(page->lru.prev, struct page, lru);
2536 		}
2537 		return count == COUNT_CONTINUED;
2538 	}
2539 }
2540 
2541 /*
2542  * free_swap_count_continuations - swapoff free all the continuation pages
2543  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2544  */
2545 static void free_swap_count_continuations(struct swap_info_struct *si)
2546 {
2547 	pgoff_t offset;
2548 
2549 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2550 		struct page *head;
2551 		head = vmalloc_to_page(si->swap_map + offset);
2552 		if (page_private(head)) {
2553 			struct list_head *this, *next;
2554 			list_for_each_safe(this, next, &head->lru) {
2555 				struct page *page;
2556 				page = list_entry(this, struct page, lru);
2557 				list_del(this);
2558 				__free_page(page);
2559 			}
2560 		}
2561 	}
2562 }
2563