1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shmem_fs.h> 18 #include <linux/blkdev.h> 19 #include <linux/random.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/security.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mutex.h> 29 #include <linux/capability.h> 30 #include <linux/syscalls.h> 31 #include <linux/memcontrol.h> 32 #include <linux/poll.h> 33 #include <linux/oom.h> 34 #include <linux/frontswap.h> 35 #include <linux/swapfile.h> 36 #include <linux/export.h> 37 38 #include <asm/pgtable.h> 39 #include <asm/tlbflush.h> 40 #include <linux/swapops.h> 41 #include <linux/page_cgroup.h> 42 43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 44 unsigned char); 45 static void free_swap_count_continuations(struct swap_info_struct *); 46 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 47 48 DEFINE_SPINLOCK(swap_lock); 49 static unsigned int nr_swapfiles; 50 atomic_long_t nr_swap_pages; 51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 52 long total_swap_pages; 53 static int least_priority; 54 55 static const char Bad_file[] = "Bad swap file entry "; 56 static const char Unused_file[] = "Unused swap file entry "; 57 static const char Bad_offset[] = "Bad swap offset entry "; 58 static const char Unused_offset[] = "Unused swap offset entry "; 59 60 /* 61 * all active swap_info_structs 62 * protected with swap_lock, and ordered by priority. 63 */ 64 PLIST_HEAD(swap_active_head); 65 66 /* 67 * all available (active, not full) swap_info_structs 68 * protected with swap_avail_lock, ordered by priority. 69 * This is used by get_swap_page() instead of swap_active_head 70 * because swap_active_head includes all swap_info_structs, 71 * but get_swap_page() doesn't need to look at full ones. 72 * This uses its own lock instead of swap_lock because when a 73 * swap_info_struct changes between not-full/full, it needs to 74 * add/remove itself to/from this list, but the swap_info_struct->lock 75 * is held and the locking order requires swap_lock to be taken 76 * before any swap_info_struct->lock. 77 */ 78 static PLIST_HEAD(swap_avail_head); 79 static DEFINE_SPINLOCK(swap_avail_lock); 80 81 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 82 83 static DEFINE_MUTEX(swapon_mutex); 84 85 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 86 /* Activity counter to indicate that a swapon or swapoff has occurred */ 87 static atomic_t proc_poll_event = ATOMIC_INIT(0); 88 89 static inline unsigned char swap_count(unsigned char ent) 90 { 91 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ 92 } 93 94 /* returns 1 if swap entry is freed */ 95 static int 96 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) 97 { 98 swp_entry_t entry = swp_entry(si->type, offset); 99 struct page *page; 100 int ret = 0; 101 102 page = find_get_page(swap_address_space(entry), entry.val); 103 if (!page) 104 return 0; 105 /* 106 * This function is called from scan_swap_map() and it's called 107 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. 108 * We have to use trylock for avoiding deadlock. This is a special 109 * case and you should use try_to_free_swap() with explicit lock_page() 110 * in usual operations. 111 */ 112 if (trylock_page(page)) { 113 ret = try_to_free_swap(page); 114 unlock_page(page); 115 } 116 page_cache_release(page); 117 return ret; 118 } 119 120 /* 121 * swapon tell device that all the old swap contents can be discarded, 122 * to allow the swap device to optimize its wear-levelling. 123 */ 124 static int discard_swap(struct swap_info_struct *si) 125 { 126 struct swap_extent *se; 127 sector_t start_block; 128 sector_t nr_blocks; 129 int err = 0; 130 131 /* Do not discard the swap header page! */ 132 se = &si->first_swap_extent; 133 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 134 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 135 if (nr_blocks) { 136 err = blkdev_issue_discard(si->bdev, start_block, 137 nr_blocks, GFP_KERNEL, 0); 138 if (err) 139 return err; 140 cond_resched(); 141 } 142 143 list_for_each_entry(se, &si->first_swap_extent.list, list) { 144 start_block = se->start_block << (PAGE_SHIFT - 9); 145 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 146 147 err = blkdev_issue_discard(si->bdev, start_block, 148 nr_blocks, GFP_KERNEL, 0); 149 if (err) 150 break; 151 152 cond_resched(); 153 } 154 return err; /* That will often be -EOPNOTSUPP */ 155 } 156 157 /* 158 * swap allocation tell device that a cluster of swap can now be discarded, 159 * to allow the swap device to optimize its wear-levelling. 160 */ 161 static void discard_swap_cluster(struct swap_info_struct *si, 162 pgoff_t start_page, pgoff_t nr_pages) 163 { 164 struct swap_extent *se = si->curr_swap_extent; 165 int found_extent = 0; 166 167 while (nr_pages) { 168 struct list_head *lh; 169 170 if (se->start_page <= start_page && 171 start_page < se->start_page + se->nr_pages) { 172 pgoff_t offset = start_page - se->start_page; 173 sector_t start_block = se->start_block + offset; 174 sector_t nr_blocks = se->nr_pages - offset; 175 176 if (nr_blocks > nr_pages) 177 nr_blocks = nr_pages; 178 start_page += nr_blocks; 179 nr_pages -= nr_blocks; 180 181 if (!found_extent++) 182 si->curr_swap_extent = se; 183 184 start_block <<= PAGE_SHIFT - 9; 185 nr_blocks <<= PAGE_SHIFT - 9; 186 if (blkdev_issue_discard(si->bdev, start_block, 187 nr_blocks, GFP_NOIO, 0)) 188 break; 189 } 190 191 lh = se->list.next; 192 se = list_entry(lh, struct swap_extent, list); 193 } 194 } 195 196 #define SWAPFILE_CLUSTER 256 197 #define LATENCY_LIMIT 256 198 199 static inline void cluster_set_flag(struct swap_cluster_info *info, 200 unsigned int flag) 201 { 202 info->flags = flag; 203 } 204 205 static inline unsigned int cluster_count(struct swap_cluster_info *info) 206 { 207 return info->data; 208 } 209 210 static inline void cluster_set_count(struct swap_cluster_info *info, 211 unsigned int c) 212 { 213 info->data = c; 214 } 215 216 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 217 unsigned int c, unsigned int f) 218 { 219 info->flags = f; 220 info->data = c; 221 } 222 223 static inline unsigned int cluster_next(struct swap_cluster_info *info) 224 { 225 return info->data; 226 } 227 228 static inline void cluster_set_next(struct swap_cluster_info *info, 229 unsigned int n) 230 { 231 info->data = n; 232 } 233 234 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 235 unsigned int n, unsigned int f) 236 { 237 info->flags = f; 238 info->data = n; 239 } 240 241 static inline bool cluster_is_free(struct swap_cluster_info *info) 242 { 243 return info->flags & CLUSTER_FLAG_FREE; 244 } 245 246 static inline bool cluster_is_null(struct swap_cluster_info *info) 247 { 248 return info->flags & CLUSTER_FLAG_NEXT_NULL; 249 } 250 251 static inline void cluster_set_null(struct swap_cluster_info *info) 252 { 253 info->flags = CLUSTER_FLAG_NEXT_NULL; 254 info->data = 0; 255 } 256 257 /* Add a cluster to discard list and schedule it to do discard */ 258 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 259 unsigned int idx) 260 { 261 /* 262 * If scan_swap_map() can't find a free cluster, it will check 263 * si->swap_map directly. To make sure the discarding cluster isn't 264 * taken by scan_swap_map(), mark the swap entries bad (occupied). It 265 * will be cleared after discard 266 */ 267 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 268 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 269 270 if (cluster_is_null(&si->discard_cluster_head)) { 271 cluster_set_next_flag(&si->discard_cluster_head, 272 idx, 0); 273 cluster_set_next_flag(&si->discard_cluster_tail, 274 idx, 0); 275 } else { 276 unsigned int tail = cluster_next(&si->discard_cluster_tail); 277 cluster_set_next(&si->cluster_info[tail], idx); 278 cluster_set_next_flag(&si->discard_cluster_tail, 279 idx, 0); 280 } 281 282 schedule_work(&si->discard_work); 283 } 284 285 /* 286 * Doing discard actually. After a cluster discard is finished, the cluster 287 * will be added to free cluster list. caller should hold si->lock. 288 */ 289 static void swap_do_scheduled_discard(struct swap_info_struct *si) 290 { 291 struct swap_cluster_info *info; 292 unsigned int idx; 293 294 info = si->cluster_info; 295 296 while (!cluster_is_null(&si->discard_cluster_head)) { 297 idx = cluster_next(&si->discard_cluster_head); 298 299 cluster_set_next_flag(&si->discard_cluster_head, 300 cluster_next(&info[idx]), 0); 301 if (cluster_next(&si->discard_cluster_tail) == idx) { 302 cluster_set_null(&si->discard_cluster_head); 303 cluster_set_null(&si->discard_cluster_tail); 304 } 305 spin_unlock(&si->lock); 306 307 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 308 SWAPFILE_CLUSTER); 309 310 spin_lock(&si->lock); 311 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE); 312 if (cluster_is_null(&si->free_cluster_head)) { 313 cluster_set_next_flag(&si->free_cluster_head, 314 idx, 0); 315 cluster_set_next_flag(&si->free_cluster_tail, 316 idx, 0); 317 } else { 318 unsigned int tail; 319 320 tail = cluster_next(&si->free_cluster_tail); 321 cluster_set_next(&info[tail], idx); 322 cluster_set_next_flag(&si->free_cluster_tail, 323 idx, 0); 324 } 325 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 326 0, SWAPFILE_CLUSTER); 327 } 328 } 329 330 static void swap_discard_work(struct work_struct *work) 331 { 332 struct swap_info_struct *si; 333 334 si = container_of(work, struct swap_info_struct, discard_work); 335 336 spin_lock(&si->lock); 337 swap_do_scheduled_discard(si); 338 spin_unlock(&si->lock); 339 } 340 341 /* 342 * The cluster corresponding to page_nr will be used. The cluster will be 343 * removed from free cluster list and its usage counter will be increased. 344 */ 345 static void inc_cluster_info_page(struct swap_info_struct *p, 346 struct swap_cluster_info *cluster_info, unsigned long page_nr) 347 { 348 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 349 350 if (!cluster_info) 351 return; 352 if (cluster_is_free(&cluster_info[idx])) { 353 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx); 354 cluster_set_next_flag(&p->free_cluster_head, 355 cluster_next(&cluster_info[idx]), 0); 356 if (cluster_next(&p->free_cluster_tail) == idx) { 357 cluster_set_null(&p->free_cluster_tail); 358 cluster_set_null(&p->free_cluster_head); 359 } 360 cluster_set_count_flag(&cluster_info[idx], 0, 0); 361 } 362 363 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 364 cluster_set_count(&cluster_info[idx], 365 cluster_count(&cluster_info[idx]) + 1); 366 } 367 368 /* 369 * The cluster corresponding to page_nr decreases one usage. If the usage 370 * counter becomes 0, which means no page in the cluster is in using, we can 371 * optionally discard the cluster and add it to free cluster list. 372 */ 373 static void dec_cluster_info_page(struct swap_info_struct *p, 374 struct swap_cluster_info *cluster_info, unsigned long page_nr) 375 { 376 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 377 378 if (!cluster_info) 379 return; 380 381 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 382 cluster_set_count(&cluster_info[idx], 383 cluster_count(&cluster_info[idx]) - 1); 384 385 if (cluster_count(&cluster_info[idx]) == 0) { 386 /* 387 * If the swap is discardable, prepare discard the cluster 388 * instead of free it immediately. The cluster will be freed 389 * after discard. 390 */ 391 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 392 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 393 swap_cluster_schedule_discard(p, idx); 394 return; 395 } 396 397 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 398 if (cluster_is_null(&p->free_cluster_head)) { 399 cluster_set_next_flag(&p->free_cluster_head, idx, 0); 400 cluster_set_next_flag(&p->free_cluster_tail, idx, 0); 401 } else { 402 unsigned int tail = cluster_next(&p->free_cluster_tail); 403 cluster_set_next(&cluster_info[tail], idx); 404 cluster_set_next_flag(&p->free_cluster_tail, idx, 0); 405 } 406 } 407 } 408 409 /* 410 * It's possible scan_swap_map() uses a free cluster in the middle of free 411 * cluster list. Avoiding such abuse to avoid list corruption. 412 */ 413 static bool 414 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 415 unsigned long offset) 416 { 417 struct percpu_cluster *percpu_cluster; 418 bool conflict; 419 420 offset /= SWAPFILE_CLUSTER; 421 conflict = !cluster_is_null(&si->free_cluster_head) && 422 offset != cluster_next(&si->free_cluster_head) && 423 cluster_is_free(&si->cluster_info[offset]); 424 425 if (!conflict) 426 return false; 427 428 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 429 cluster_set_null(&percpu_cluster->index); 430 return true; 431 } 432 433 /* 434 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 435 * might involve allocating a new cluster for current CPU too. 436 */ 437 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 438 unsigned long *offset, unsigned long *scan_base) 439 { 440 struct percpu_cluster *cluster; 441 bool found_free; 442 unsigned long tmp; 443 444 new_cluster: 445 cluster = this_cpu_ptr(si->percpu_cluster); 446 if (cluster_is_null(&cluster->index)) { 447 if (!cluster_is_null(&si->free_cluster_head)) { 448 cluster->index = si->free_cluster_head; 449 cluster->next = cluster_next(&cluster->index) * 450 SWAPFILE_CLUSTER; 451 } else if (!cluster_is_null(&si->discard_cluster_head)) { 452 /* 453 * we don't have free cluster but have some clusters in 454 * discarding, do discard now and reclaim them 455 */ 456 swap_do_scheduled_discard(si); 457 *scan_base = *offset = si->cluster_next; 458 goto new_cluster; 459 } else 460 return; 461 } 462 463 found_free = false; 464 465 /* 466 * Other CPUs can use our cluster if they can't find a free cluster, 467 * check if there is still free entry in the cluster 468 */ 469 tmp = cluster->next; 470 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) * 471 SWAPFILE_CLUSTER) { 472 if (!si->swap_map[tmp]) { 473 found_free = true; 474 break; 475 } 476 tmp++; 477 } 478 if (!found_free) { 479 cluster_set_null(&cluster->index); 480 goto new_cluster; 481 } 482 cluster->next = tmp + 1; 483 *offset = tmp; 484 *scan_base = tmp; 485 } 486 487 static unsigned long scan_swap_map(struct swap_info_struct *si, 488 unsigned char usage) 489 { 490 unsigned long offset; 491 unsigned long scan_base; 492 unsigned long last_in_cluster = 0; 493 int latency_ration = LATENCY_LIMIT; 494 495 /* 496 * We try to cluster swap pages by allocating them sequentially 497 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 498 * way, however, we resort to first-free allocation, starting 499 * a new cluster. This prevents us from scattering swap pages 500 * all over the entire swap partition, so that we reduce 501 * overall disk seek times between swap pages. -- sct 502 * But we do now try to find an empty cluster. -Andrea 503 * And we let swap pages go all over an SSD partition. Hugh 504 */ 505 506 si->flags += SWP_SCANNING; 507 scan_base = offset = si->cluster_next; 508 509 /* SSD algorithm */ 510 if (si->cluster_info) { 511 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base); 512 goto checks; 513 } 514 515 if (unlikely(!si->cluster_nr--)) { 516 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 517 si->cluster_nr = SWAPFILE_CLUSTER - 1; 518 goto checks; 519 } 520 521 spin_unlock(&si->lock); 522 523 /* 524 * If seek is expensive, start searching for new cluster from 525 * start of partition, to minimize the span of allocated swap. 526 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 527 * case, just handled by scan_swap_map_try_ssd_cluster() above. 528 */ 529 scan_base = offset = si->lowest_bit; 530 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 531 532 /* Locate the first empty (unaligned) cluster */ 533 for (; last_in_cluster <= si->highest_bit; offset++) { 534 if (si->swap_map[offset]) 535 last_in_cluster = offset + SWAPFILE_CLUSTER; 536 else if (offset == last_in_cluster) { 537 spin_lock(&si->lock); 538 offset -= SWAPFILE_CLUSTER - 1; 539 si->cluster_next = offset; 540 si->cluster_nr = SWAPFILE_CLUSTER - 1; 541 goto checks; 542 } 543 if (unlikely(--latency_ration < 0)) { 544 cond_resched(); 545 latency_ration = LATENCY_LIMIT; 546 } 547 } 548 549 offset = scan_base; 550 spin_lock(&si->lock); 551 si->cluster_nr = SWAPFILE_CLUSTER - 1; 552 } 553 554 checks: 555 if (si->cluster_info) { 556 while (scan_swap_map_ssd_cluster_conflict(si, offset)) 557 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base); 558 } 559 if (!(si->flags & SWP_WRITEOK)) 560 goto no_page; 561 if (!si->highest_bit) 562 goto no_page; 563 if (offset > si->highest_bit) 564 scan_base = offset = si->lowest_bit; 565 566 /* reuse swap entry of cache-only swap if not busy. */ 567 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 568 int swap_was_freed; 569 spin_unlock(&si->lock); 570 swap_was_freed = __try_to_reclaim_swap(si, offset); 571 spin_lock(&si->lock); 572 /* entry was freed successfully, try to use this again */ 573 if (swap_was_freed) 574 goto checks; 575 goto scan; /* check next one */ 576 } 577 578 if (si->swap_map[offset]) 579 goto scan; 580 581 if (offset == si->lowest_bit) 582 si->lowest_bit++; 583 if (offset == si->highest_bit) 584 si->highest_bit--; 585 si->inuse_pages++; 586 if (si->inuse_pages == si->pages) { 587 si->lowest_bit = si->max; 588 si->highest_bit = 0; 589 spin_lock(&swap_avail_lock); 590 plist_del(&si->avail_list, &swap_avail_head); 591 spin_unlock(&swap_avail_lock); 592 } 593 si->swap_map[offset] = usage; 594 inc_cluster_info_page(si, si->cluster_info, offset); 595 si->cluster_next = offset + 1; 596 si->flags -= SWP_SCANNING; 597 598 return offset; 599 600 scan: 601 spin_unlock(&si->lock); 602 while (++offset <= si->highest_bit) { 603 if (!si->swap_map[offset]) { 604 spin_lock(&si->lock); 605 goto checks; 606 } 607 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 608 spin_lock(&si->lock); 609 goto checks; 610 } 611 if (unlikely(--latency_ration < 0)) { 612 cond_resched(); 613 latency_ration = LATENCY_LIMIT; 614 } 615 } 616 offset = si->lowest_bit; 617 while (offset < scan_base) { 618 if (!si->swap_map[offset]) { 619 spin_lock(&si->lock); 620 goto checks; 621 } 622 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 623 spin_lock(&si->lock); 624 goto checks; 625 } 626 if (unlikely(--latency_ration < 0)) { 627 cond_resched(); 628 latency_ration = LATENCY_LIMIT; 629 } 630 offset++; 631 } 632 spin_lock(&si->lock); 633 634 no_page: 635 si->flags -= SWP_SCANNING; 636 return 0; 637 } 638 639 swp_entry_t get_swap_page(void) 640 { 641 struct swap_info_struct *si, *next; 642 pgoff_t offset; 643 644 if (atomic_long_read(&nr_swap_pages) <= 0) 645 goto noswap; 646 atomic_long_dec(&nr_swap_pages); 647 648 spin_lock(&swap_avail_lock); 649 650 start_over: 651 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) { 652 /* requeue si to after same-priority siblings */ 653 plist_requeue(&si->avail_list, &swap_avail_head); 654 spin_unlock(&swap_avail_lock); 655 spin_lock(&si->lock); 656 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 657 spin_lock(&swap_avail_lock); 658 if (plist_node_empty(&si->avail_list)) { 659 spin_unlock(&si->lock); 660 goto nextsi; 661 } 662 WARN(!si->highest_bit, 663 "swap_info %d in list but !highest_bit\n", 664 si->type); 665 WARN(!(si->flags & SWP_WRITEOK), 666 "swap_info %d in list but !SWP_WRITEOK\n", 667 si->type); 668 plist_del(&si->avail_list, &swap_avail_head); 669 spin_unlock(&si->lock); 670 goto nextsi; 671 } 672 673 /* This is called for allocating swap entry for cache */ 674 offset = scan_swap_map(si, SWAP_HAS_CACHE); 675 spin_unlock(&si->lock); 676 if (offset) 677 return swp_entry(si->type, offset); 678 pr_debug("scan_swap_map of si %d failed to find offset\n", 679 si->type); 680 spin_lock(&swap_avail_lock); 681 nextsi: 682 /* 683 * if we got here, it's likely that si was almost full before, 684 * and since scan_swap_map() can drop the si->lock, multiple 685 * callers probably all tried to get a page from the same si 686 * and it filled up before we could get one; or, the si filled 687 * up between us dropping swap_avail_lock and taking si->lock. 688 * Since we dropped the swap_avail_lock, the swap_avail_head 689 * list may have been modified; so if next is still in the 690 * swap_avail_head list then try it, otherwise start over. 691 */ 692 if (plist_node_empty(&next->avail_list)) 693 goto start_over; 694 } 695 696 spin_unlock(&swap_avail_lock); 697 698 atomic_long_inc(&nr_swap_pages); 699 noswap: 700 return (swp_entry_t) {0}; 701 } 702 703 /* The only caller of this function is now suspend routine */ 704 swp_entry_t get_swap_page_of_type(int type) 705 { 706 struct swap_info_struct *si; 707 pgoff_t offset; 708 709 si = swap_info[type]; 710 spin_lock(&si->lock); 711 if (si && (si->flags & SWP_WRITEOK)) { 712 atomic_long_dec(&nr_swap_pages); 713 /* This is called for allocating swap entry, not cache */ 714 offset = scan_swap_map(si, 1); 715 if (offset) { 716 spin_unlock(&si->lock); 717 return swp_entry(type, offset); 718 } 719 atomic_long_inc(&nr_swap_pages); 720 } 721 spin_unlock(&si->lock); 722 return (swp_entry_t) {0}; 723 } 724 725 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 726 { 727 struct swap_info_struct *p; 728 unsigned long offset, type; 729 730 if (!entry.val) 731 goto out; 732 type = swp_type(entry); 733 if (type >= nr_swapfiles) 734 goto bad_nofile; 735 p = swap_info[type]; 736 if (!(p->flags & SWP_USED)) 737 goto bad_device; 738 offset = swp_offset(entry); 739 if (offset >= p->max) 740 goto bad_offset; 741 if (!p->swap_map[offset]) 742 goto bad_free; 743 spin_lock(&p->lock); 744 return p; 745 746 bad_free: 747 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val); 748 goto out; 749 bad_offset: 750 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val); 751 goto out; 752 bad_device: 753 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val); 754 goto out; 755 bad_nofile: 756 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val); 757 out: 758 return NULL; 759 } 760 761 static unsigned char swap_entry_free(struct swap_info_struct *p, 762 swp_entry_t entry, unsigned char usage) 763 { 764 unsigned long offset = swp_offset(entry); 765 unsigned char count; 766 unsigned char has_cache; 767 768 count = p->swap_map[offset]; 769 has_cache = count & SWAP_HAS_CACHE; 770 count &= ~SWAP_HAS_CACHE; 771 772 if (usage == SWAP_HAS_CACHE) { 773 VM_BUG_ON(!has_cache); 774 has_cache = 0; 775 } else if (count == SWAP_MAP_SHMEM) { 776 /* 777 * Or we could insist on shmem.c using a special 778 * swap_shmem_free() and free_shmem_swap_and_cache()... 779 */ 780 count = 0; 781 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 782 if (count == COUNT_CONTINUED) { 783 if (swap_count_continued(p, offset, count)) 784 count = SWAP_MAP_MAX | COUNT_CONTINUED; 785 else 786 count = SWAP_MAP_MAX; 787 } else 788 count--; 789 } 790 791 if (!count) 792 mem_cgroup_uncharge_swap(entry); 793 794 usage = count | has_cache; 795 p->swap_map[offset] = usage; 796 797 /* free if no reference */ 798 if (!usage) { 799 dec_cluster_info_page(p, p->cluster_info, offset); 800 if (offset < p->lowest_bit) 801 p->lowest_bit = offset; 802 if (offset > p->highest_bit) { 803 bool was_full = !p->highest_bit; 804 p->highest_bit = offset; 805 if (was_full && (p->flags & SWP_WRITEOK)) { 806 spin_lock(&swap_avail_lock); 807 WARN_ON(!plist_node_empty(&p->avail_list)); 808 if (plist_node_empty(&p->avail_list)) 809 plist_add(&p->avail_list, 810 &swap_avail_head); 811 spin_unlock(&swap_avail_lock); 812 } 813 } 814 atomic_long_inc(&nr_swap_pages); 815 p->inuse_pages--; 816 frontswap_invalidate_page(p->type, offset); 817 if (p->flags & SWP_BLKDEV) { 818 struct gendisk *disk = p->bdev->bd_disk; 819 if (disk->fops->swap_slot_free_notify) 820 disk->fops->swap_slot_free_notify(p->bdev, 821 offset); 822 } 823 } 824 825 return usage; 826 } 827 828 /* 829 * Caller has made sure that the swap device corresponding to entry 830 * is still around or has not been recycled. 831 */ 832 void swap_free(swp_entry_t entry) 833 { 834 struct swap_info_struct *p; 835 836 p = swap_info_get(entry); 837 if (p) { 838 swap_entry_free(p, entry, 1); 839 spin_unlock(&p->lock); 840 } 841 } 842 843 /* 844 * Called after dropping swapcache to decrease refcnt to swap entries. 845 */ 846 void swapcache_free(swp_entry_t entry, struct page *page) 847 { 848 struct swap_info_struct *p; 849 unsigned char count; 850 851 p = swap_info_get(entry); 852 if (p) { 853 count = swap_entry_free(p, entry, SWAP_HAS_CACHE); 854 if (page) 855 mem_cgroup_uncharge_swapcache(page, entry, count != 0); 856 spin_unlock(&p->lock); 857 } 858 } 859 860 /* 861 * How many references to page are currently swapped out? 862 * This does not give an exact answer when swap count is continued, 863 * but does include the high COUNT_CONTINUED flag to allow for that. 864 */ 865 int page_swapcount(struct page *page) 866 { 867 int count = 0; 868 struct swap_info_struct *p; 869 swp_entry_t entry; 870 871 entry.val = page_private(page); 872 p = swap_info_get(entry); 873 if (p) { 874 count = swap_count(p->swap_map[swp_offset(entry)]); 875 spin_unlock(&p->lock); 876 } 877 return count; 878 } 879 880 /* 881 * We can write to an anon page without COW if there are no other references 882 * to it. And as a side-effect, free up its swap: because the old content 883 * on disk will never be read, and seeking back there to write new content 884 * later would only waste time away from clustering. 885 */ 886 int reuse_swap_page(struct page *page) 887 { 888 int count; 889 890 VM_BUG_ON_PAGE(!PageLocked(page), page); 891 if (unlikely(PageKsm(page))) 892 return 0; 893 count = page_mapcount(page); 894 if (count <= 1 && PageSwapCache(page)) { 895 count += page_swapcount(page); 896 if (count == 1 && !PageWriteback(page)) { 897 delete_from_swap_cache(page); 898 SetPageDirty(page); 899 } 900 } 901 return count <= 1; 902 } 903 904 /* 905 * If swap is getting full, or if there are no more mappings of this page, 906 * then try_to_free_swap is called to free its swap space. 907 */ 908 int try_to_free_swap(struct page *page) 909 { 910 VM_BUG_ON_PAGE(!PageLocked(page), page); 911 912 if (!PageSwapCache(page)) 913 return 0; 914 if (PageWriteback(page)) 915 return 0; 916 if (page_swapcount(page)) 917 return 0; 918 919 /* 920 * Once hibernation has begun to create its image of memory, 921 * there's a danger that one of the calls to try_to_free_swap() 922 * - most probably a call from __try_to_reclaim_swap() while 923 * hibernation is allocating its own swap pages for the image, 924 * but conceivably even a call from memory reclaim - will free 925 * the swap from a page which has already been recorded in the 926 * image as a clean swapcache page, and then reuse its swap for 927 * another page of the image. On waking from hibernation, the 928 * original page might be freed under memory pressure, then 929 * later read back in from swap, now with the wrong data. 930 * 931 * Hibernation suspends storage while it is writing the image 932 * to disk so check that here. 933 */ 934 if (pm_suspended_storage()) 935 return 0; 936 937 delete_from_swap_cache(page); 938 SetPageDirty(page); 939 return 1; 940 } 941 942 /* 943 * Free the swap entry like above, but also try to 944 * free the page cache entry if it is the last user. 945 */ 946 int free_swap_and_cache(swp_entry_t entry) 947 { 948 struct swap_info_struct *p; 949 struct page *page = NULL; 950 951 if (non_swap_entry(entry)) 952 return 1; 953 954 p = swap_info_get(entry); 955 if (p) { 956 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) { 957 page = find_get_page(swap_address_space(entry), 958 entry.val); 959 if (page && !trylock_page(page)) { 960 page_cache_release(page); 961 page = NULL; 962 } 963 } 964 spin_unlock(&p->lock); 965 } 966 if (page) { 967 /* 968 * Not mapped elsewhere, or swap space full? Free it! 969 * Also recheck PageSwapCache now page is locked (above). 970 */ 971 if (PageSwapCache(page) && !PageWriteback(page) && 972 (!page_mapped(page) || vm_swap_full())) { 973 delete_from_swap_cache(page); 974 SetPageDirty(page); 975 } 976 unlock_page(page); 977 page_cache_release(page); 978 } 979 return p != NULL; 980 } 981 982 #ifdef CONFIG_HIBERNATION 983 /* 984 * Find the swap type that corresponds to given device (if any). 985 * 986 * @offset - number of the PAGE_SIZE-sized block of the device, starting 987 * from 0, in which the swap header is expected to be located. 988 * 989 * This is needed for the suspend to disk (aka swsusp). 990 */ 991 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 992 { 993 struct block_device *bdev = NULL; 994 int type; 995 996 if (device) 997 bdev = bdget(device); 998 999 spin_lock(&swap_lock); 1000 for (type = 0; type < nr_swapfiles; type++) { 1001 struct swap_info_struct *sis = swap_info[type]; 1002 1003 if (!(sis->flags & SWP_WRITEOK)) 1004 continue; 1005 1006 if (!bdev) { 1007 if (bdev_p) 1008 *bdev_p = bdgrab(sis->bdev); 1009 1010 spin_unlock(&swap_lock); 1011 return type; 1012 } 1013 if (bdev == sis->bdev) { 1014 struct swap_extent *se = &sis->first_swap_extent; 1015 1016 if (se->start_block == offset) { 1017 if (bdev_p) 1018 *bdev_p = bdgrab(sis->bdev); 1019 1020 spin_unlock(&swap_lock); 1021 bdput(bdev); 1022 return type; 1023 } 1024 } 1025 } 1026 spin_unlock(&swap_lock); 1027 if (bdev) 1028 bdput(bdev); 1029 1030 return -ENODEV; 1031 } 1032 1033 /* 1034 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1035 * corresponding to given index in swap_info (swap type). 1036 */ 1037 sector_t swapdev_block(int type, pgoff_t offset) 1038 { 1039 struct block_device *bdev; 1040 1041 if ((unsigned int)type >= nr_swapfiles) 1042 return 0; 1043 if (!(swap_info[type]->flags & SWP_WRITEOK)) 1044 return 0; 1045 return map_swap_entry(swp_entry(type, offset), &bdev); 1046 } 1047 1048 /* 1049 * Return either the total number of swap pages of given type, or the number 1050 * of free pages of that type (depending on @free) 1051 * 1052 * This is needed for software suspend 1053 */ 1054 unsigned int count_swap_pages(int type, int free) 1055 { 1056 unsigned int n = 0; 1057 1058 spin_lock(&swap_lock); 1059 if ((unsigned int)type < nr_swapfiles) { 1060 struct swap_info_struct *sis = swap_info[type]; 1061 1062 spin_lock(&sis->lock); 1063 if (sis->flags & SWP_WRITEOK) { 1064 n = sis->pages; 1065 if (free) 1066 n -= sis->inuse_pages; 1067 } 1068 spin_unlock(&sis->lock); 1069 } 1070 spin_unlock(&swap_lock); 1071 return n; 1072 } 1073 #endif /* CONFIG_HIBERNATION */ 1074 1075 static inline int maybe_same_pte(pte_t pte, pte_t swp_pte) 1076 { 1077 #ifdef CONFIG_MEM_SOFT_DIRTY 1078 /* 1079 * When pte keeps soft dirty bit the pte generated 1080 * from swap entry does not has it, still it's same 1081 * pte from logical point of view. 1082 */ 1083 pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte); 1084 return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty); 1085 #else 1086 return pte_same(pte, swp_pte); 1087 #endif 1088 } 1089 1090 /* 1091 * No need to decide whether this PTE shares the swap entry with others, 1092 * just let do_wp_page work it out if a write is requested later - to 1093 * force COW, vm_page_prot omits write permission from any private vma. 1094 */ 1095 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1096 unsigned long addr, swp_entry_t entry, struct page *page) 1097 { 1098 struct page *swapcache; 1099 struct mem_cgroup *memcg; 1100 spinlock_t *ptl; 1101 pte_t *pte; 1102 int ret = 1; 1103 1104 swapcache = page; 1105 page = ksm_might_need_to_copy(page, vma, addr); 1106 if (unlikely(!page)) 1107 return -ENOMEM; 1108 1109 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, 1110 GFP_KERNEL, &memcg)) { 1111 ret = -ENOMEM; 1112 goto out_nolock; 1113 } 1114 1115 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1116 if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) { 1117 mem_cgroup_cancel_charge_swapin(memcg); 1118 ret = 0; 1119 goto out; 1120 } 1121 1122 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1123 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1124 get_page(page); 1125 set_pte_at(vma->vm_mm, addr, pte, 1126 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1127 if (page == swapcache) 1128 page_add_anon_rmap(page, vma, addr); 1129 else /* ksm created a completely new copy */ 1130 page_add_new_anon_rmap(page, vma, addr); 1131 mem_cgroup_commit_charge_swapin(page, memcg); 1132 swap_free(entry); 1133 /* 1134 * Move the page to the active list so it is not 1135 * immediately swapped out again after swapon. 1136 */ 1137 activate_page(page); 1138 out: 1139 pte_unmap_unlock(pte, ptl); 1140 out_nolock: 1141 if (page != swapcache) { 1142 unlock_page(page); 1143 put_page(page); 1144 } 1145 return ret; 1146 } 1147 1148 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1149 unsigned long addr, unsigned long end, 1150 swp_entry_t entry, struct page *page) 1151 { 1152 pte_t swp_pte = swp_entry_to_pte(entry); 1153 pte_t *pte; 1154 int ret = 0; 1155 1156 /* 1157 * We don't actually need pte lock while scanning for swp_pte: since 1158 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 1159 * page table while we're scanning; though it could get zapped, and on 1160 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 1161 * of unmatched parts which look like swp_pte, so unuse_pte must 1162 * recheck under pte lock. Scanning without pte lock lets it be 1163 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 1164 */ 1165 pte = pte_offset_map(pmd, addr); 1166 do { 1167 /* 1168 * swapoff spends a _lot_ of time in this loop! 1169 * Test inline before going to call unuse_pte. 1170 */ 1171 if (unlikely(maybe_same_pte(*pte, swp_pte))) { 1172 pte_unmap(pte); 1173 ret = unuse_pte(vma, pmd, addr, entry, page); 1174 if (ret) 1175 goto out; 1176 pte = pte_offset_map(pmd, addr); 1177 } 1178 } while (pte++, addr += PAGE_SIZE, addr != end); 1179 pte_unmap(pte - 1); 1180 out: 1181 return ret; 1182 } 1183 1184 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1185 unsigned long addr, unsigned long end, 1186 swp_entry_t entry, struct page *page) 1187 { 1188 pmd_t *pmd; 1189 unsigned long next; 1190 int ret; 1191 1192 pmd = pmd_offset(pud, addr); 1193 do { 1194 next = pmd_addr_end(addr, end); 1195 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1196 continue; 1197 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 1198 if (ret) 1199 return ret; 1200 } while (pmd++, addr = next, addr != end); 1201 return 0; 1202 } 1203 1204 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 1205 unsigned long addr, unsigned long end, 1206 swp_entry_t entry, struct page *page) 1207 { 1208 pud_t *pud; 1209 unsigned long next; 1210 int ret; 1211 1212 pud = pud_offset(pgd, addr); 1213 do { 1214 next = pud_addr_end(addr, end); 1215 if (pud_none_or_clear_bad(pud)) 1216 continue; 1217 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 1218 if (ret) 1219 return ret; 1220 } while (pud++, addr = next, addr != end); 1221 return 0; 1222 } 1223 1224 static int unuse_vma(struct vm_area_struct *vma, 1225 swp_entry_t entry, struct page *page) 1226 { 1227 pgd_t *pgd; 1228 unsigned long addr, end, next; 1229 int ret; 1230 1231 if (page_anon_vma(page)) { 1232 addr = page_address_in_vma(page, vma); 1233 if (addr == -EFAULT) 1234 return 0; 1235 else 1236 end = addr + PAGE_SIZE; 1237 } else { 1238 addr = vma->vm_start; 1239 end = vma->vm_end; 1240 } 1241 1242 pgd = pgd_offset(vma->vm_mm, addr); 1243 do { 1244 next = pgd_addr_end(addr, end); 1245 if (pgd_none_or_clear_bad(pgd)) 1246 continue; 1247 ret = unuse_pud_range(vma, pgd, addr, next, entry, page); 1248 if (ret) 1249 return ret; 1250 } while (pgd++, addr = next, addr != end); 1251 return 0; 1252 } 1253 1254 static int unuse_mm(struct mm_struct *mm, 1255 swp_entry_t entry, struct page *page) 1256 { 1257 struct vm_area_struct *vma; 1258 int ret = 0; 1259 1260 if (!down_read_trylock(&mm->mmap_sem)) { 1261 /* 1262 * Activate page so shrink_inactive_list is unlikely to unmap 1263 * its ptes while lock is dropped, so swapoff can make progress. 1264 */ 1265 activate_page(page); 1266 unlock_page(page); 1267 down_read(&mm->mmap_sem); 1268 lock_page(page); 1269 } 1270 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1271 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 1272 break; 1273 } 1274 up_read(&mm->mmap_sem); 1275 return (ret < 0)? ret: 0; 1276 } 1277 1278 /* 1279 * Scan swap_map (or frontswap_map if frontswap parameter is true) 1280 * from current position to next entry still in use. 1281 * Recycle to start on reaching the end, returning 0 when empty. 1282 */ 1283 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1284 unsigned int prev, bool frontswap) 1285 { 1286 unsigned int max = si->max; 1287 unsigned int i = prev; 1288 unsigned char count; 1289 1290 /* 1291 * No need for swap_lock here: we're just looking 1292 * for whether an entry is in use, not modifying it; false 1293 * hits are okay, and sys_swapoff() has already prevented new 1294 * allocations from this area (while holding swap_lock). 1295 */ 1296 for (;;) { 1297 if (++i >= max) { 1298 if (!prev) { 1299 i = 0; 1300 break; 1301 } 1302 /* 1303 * No entries in use at top of swap_map, 1304 * loop back to start and recheck there. 1305 */ 1306 max = prev + 1; 1307 prev = 0; 1308 i = 1; 1309 } 1310 if (frontswap) { 1311 if (frontswap_test(si, i)) 1312 break; 1313 else 1314 continue; 1315 } 1316 count = ACCESS_ONCE(si->swap_map[i]); 1317 if (count && swap_count(count) != SWAP_MAP_BAD) 1318 break; 1319 } 1320 return i; 1321 } 1322 1323 /* 1324 * We completely avoid races by reading each swap page in advance, 1325 * and then search for the process using it. All the necessary 1326 * page table adjustments can then be made atomically. 1327 * 1328 * if the boolean frontswap is true, only unuse pages_to_unuse pages; 1329 * pages_to_unuse==0 means all pages; ignored if frontswap is false 1330 */ 1331 int try_to_unuse(unsigned int type, bool frontswap, 1332 unsigned long pages_to_unuse) 1333 { 1334 struct swap_info_struct *si = swap_info[type]; 1335 struct mm_struct *start_mm; 1336 volatile unsigned char *swap_map; /* swap_map is accessed without 1337 * locking. Mark it as volatile 1338 * to prevent compiler doing 1339 * something odd. 1340 */ 1341 unsigned char swcount; 1342 struct page *page; 1343 swp_entry_t entry; 1344 unsigned int i = 0; 1345 int retval = 0; 1346 1347 /* 1348 * When searching mms for an entry, a good strategy is to 1349 * start at the first mm we freed the previous entry from 1350 * (though actually we don't notice whether we or coincidence 1351 * freed the entry). Initialize this start_mm with a hold. 1352 * 1353 * A simpler strategy would be to start at the last mm we 1354 * freed the previous entry from; but that would take less 1355 * advantage of mmlist ordering, which clusters forked mms 1356 * together, child after parent. If we race with dup_mmap(), we 1357 * prefer to resolve parent before child, lest we miss entries 1358 * duplicated after we scanned child: using last mm would invert 1359 * that. 1360 */ 1361 start_mm = &init_mm; 1362 atomic_inc(&init_mm.mm_users); 1363 1364 /* 1365 * Keep on scanning until all entries have gone. Usually, 1366 * one pass through swap_map is enough, but not necessarily: 1367 * there are races when an instance of an entry might be missed. 1368 */ 1369 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) { 1370 if (signal_pending(current)) { 1371 retval = -EINTR; 1372 break; 1373 } 1374 1375 /* 1376 * Get a page for the entry, using the existing swap 1377 * cache page if there is one. Otherwise, get a clean 1378 * page and read the swap into it. 1379 */ 1380 swap_map = &si->swap_map[i]; 1381 entry = swp_entry(type, i); 1382 page = read_swap_cache_async(entry, 1383 GFP_HIGHUSER_MOVABLE, NULL, 0); 1384 if (!page) { 1385 /* 1386 * Either swap_duplicate() failed because entry 1387 * has been freed independently, and will not be 1388 * reused since sys_swapoff() already disabled 1389 * allocation from here, or alloc_page() failed. 1390 */ 1391 swcount = *swap_map; 1392 /* 1393 * We don't hold lock here, so the swap entry could be 1394 * SWAP_MAP_BAD (when the cluster is discarding). 1395 * Instead of fail out, We can just skip the swap 1396 * entry because swapoff will wait for discarding 1397 * finish anyway. 1398 */ 1399 if (!swcount || swcount == SWAP_MAP_BAD) 1400 continue; 1401 retval = -ENOMEM; 1402 break; 1403 } 1404 1405 /* 1406 * Don't hold on to start_mm if it looks like exiting. 1407 */ 1408 if (atomic_read(&start_mm->mm_users) == 1) { 1409 mmput(start_mm); 1410 start_mm = &init_mm; 1411 atomic_inc(&init_mm.mm_users); 1412 } 1413 1414 /* 1415 * Wait for and lock page. When do_swap_page races with 1416 * try_to_unuse, do_swap_page can handle the fault much 1417 * faster than try_to_unuse can locate the entry. This 1418 * apparently redundant "wait_on_page_locked" lets try_to_unuse 1419 * defer to do_swap_page in such a case - in some tests, 1420 * do_swap_page and try_to_unuse repeatedly compete. 1421 */ 1422 wait_on_page_locked(page); 1423 wait_on_page_writeback(page); 1424 lock_page(page); 1425 wait_on_page_writeback(page); 1426 1427 /* 1428 * Remove all references to entry. 1429 */ 1430 swcount = *swap_map; 1431 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 1432 retval = shmem_unuse(entry, page); 1433 /* page has already been unlocked and released */ 1434 if (retval < 0) 1435 break; 1436 continue; 1437 } 1438 if (swap_count(swcount) && start_mm != &init_mm) 1439 retval = unuse_mm(start_mm, entry, page); 1440 1441 if (swap_count(*swap_map)) { 1442 int set_start_mm = (*swap_map >= swcount); 1443 struct list_head *p = &start_mm->mmlist; 1444 struct mm_struct *new_start_mm = start_mm; 1445 struct mm_struct *prev_mm = start_mm; 1446 struct mm_struct *mm; 1447 1448 atomic_inc(&new_start_mm->mm_users); 1449 atomic_inc(&prev_mm->mm_users); 1450 spin_lock(&mmlist_lock); 1451 while (swap_count(*swap_map) && !retval && 1452 (p = p->next) != &start_mm->mmlist) { 1453 mm = list_entry(p, struct mm_struct, mmlist); 1454 if (!atomic_inc_not_zero(&mm->mm_users)) 1455 continue; 1456 spin_unlock(&mmlist_lock); 1457 mmput(prev_mm); 1458 prev_mm = mm; 1459 1460 cond_resched(); 1461 1462 swcount = *swap_map; 1463 if (!swap_count(swcount)) /* any usage ? */ 1464 ; 1465 else if (mm == &init_mm) 1466 set_start_mm = 1; 1467 else 1468 retval = unuse_mm(mm, entry, page); 1469 1470 if (set_start_mm && *swap_map < swcount) { 1471 mmput(new_start_mm); 1472 atomic_inc(&mm->mm_users); 1473 new_start_mm = mm; 1474 set_start_mm = 0; 1475 } 1476 spin_lock(&mmlist_lock); 1477 } 1478 spin_unlock(&mmlist_lock); 1479 mmput(prev_mm); 1480 mmput(start_mm); 1481 start_mm = new_start_mm; 1482 } 1483 if (retval) { 1484 unlock_page(page); 1485 page_cache_release(page); 1486 break; 1487 } 1488 1489 /* 1490 * If a reference remains (rare), we would like to leave 1491 * the page in the swap cache; but try_to_unmap could 1492 * then re-duplicate the entry once we drop page lock, 1493 * so we might loop indefinitely; also, that page could 1494 * not be swapped out to other storage meanwhile. So: 1495 * delete from cache even if there's another reference, 1496 * after ensuring that the data has been saved to disk - 1497 * since if the reference remains (rarer), it will be 1498 * read from disk into another page. Splitting into two 1499 * pages would be incorrect if swap supported "shared 1500 * private" pages, but they are handled by tmpfs files. 1501 * 1502 * Given how unuse_vma() targets one particular offset 1503 * in an anon_vma, once the anon_vma has been determined, 1504 * this splitting happens to be just what is needed to 1505 * handle where KSM pages have been swapped out: re-reading 1506 * is unnecessarily slow, but we can fix that later on. 1507 */ 1508 if (swap_count(*swap_map) && 1509 PageDirty(page) && PageSwapCache(page)) { 1510 struct writeback_control wbc = { 1511 .sync_mode = WB_SYNC_NONE, 1512 }; 1513 1514 swap_writepage(page, &wbc); 1515 lock_page(page); 1516 wait_on_page_writeback(page); 1517 } 1518 1519 /* 1520 * It is conceivable that a racing task removed this page from 1521 * swap cache just before we acquired the page lock at the top, 1522 * or while we dropped it in unuse_mm(). The page might even 1523 * be back in swap cache on another swap area: that we must not 1524 * delete, since it may not have been written out to swap yet. 1525 */ 1526 if (PageSwapCache(page) && 1527 likely(page_private(page) == entry.val)) 1528 delete_from_swap_cache(page); 1529 1530 /* 1531 * So we could skip searching mms once swap count went 1532 * to 1, we did not mark any present ptes as dirty: must 1533 * mark page dirty so shrink_page_list will preserve it. 1534 */ 1535 SetPageDirty(page); 1536 unlock_page(page); 1537 page_cache_release(page); 1538 1539 /* 1540 * Make sure that we aren't completely killing 1541 * interactive performance. 1542 */ 1543 cond_resched(); 1544 if (frontswap && pages_to_unuse > 0) { 1545 if (!--pages_to_unuse) 1546 break; 1547 } 1548 } 1549 1550 mmput(start_mm); 1551 return retval; 1552 } 1553 1554 /* 1555 * After a successful try_to_unuse, if no swap is now in use, we know 1556 * we can empty the mmlist. swap_lock must be held on entry and exit. 1557 * Note that mmlist_lock nests inside swap_lock, and an mm must be 1558 * added to the mmlist just after page_duplicate - before would be racy. 1559 */ 1560 static void drain_mmlist(void) 1561 { 1562 struct list_head *p, *next; 1563 unsigned int type; 1564 1565 for (type = 0; type < nr_swapfiles; type++) 1566 if (swap_info[type]->inuse_pages) 1567 return; 1568 spin_lock(&mmlist_lock); 1569 list_for_each_safe(p, next, &init_mm.mmlist) 1570 list_del_init(p); 1571 spin_unlock(&mmlist_lock); 1572 } 1573 1574 /* 1575 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 1576 * corresponds to page offset for the specified swap entry. 1577 * Note that the type of this function is sector_t, but it returns page offset 1578 * into the bdev, not sector offset. 1579 */ 1580 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 1581 { 1582 struct swap_info_struct *sis; 1583 struct swap_extent *start_se; 1584 struct swap_extent *se; 1585 pgoff_t offset; 1586 1587 sis = swap_info[swp_type(entry)]; 1588 *bdev = sis->bdev; 1589 1590 offset = swp_offset(entry); 1591 start_se = sis->curr_swap_extent; 1592 se = start_se; 1593 1594 for ( ; ; ) { 1595 struct list_head *lh; 1596 1597 if (se->start_page <= offset && 1598 offset < (se->start_page + se->nr_pages)) { 1599 return se->start_block + (offset - se->start_page); 1600 } 1601 lh = se->list.next; 1602 se = list_entry(lh, struct swap_extent, list); 1603 sis->curr_swap_extent = se; 1604 BUG_ON(se == start_se); /* It *must* be present */ 1605 } 1606 } 1607 1608 /* 1609 * Returns the page offset into bdev for the specified page's swap entry. 1610 */ 1611 sector_t map_swap_page(struct page *page, struct block_device **bdev) 1612 { 1613 swp_entry_t entry; 1614 entry.val = page_private(page); 1615 return map_swap_entry(entry, bdev); 1616 } 1617 1618 /* 1619 * Free all of a swapdev's extent information 1620 */ 1621 static void destroy_swap_extents(struct swap_info_struct *sis) 1622 { 1623 while (!list_empty(&sis->first_swap_extent.list)) { 1624 struct swap_extent *se; 1625 1626 se = list_entry(sis->first_swap_extent.list.next, 1627 struct swap_extent, list); 1628 list_del(&se->list); 1629 kfree(se); 1630 } 1631 1632 if (sis->flags & SWP_FILE) { 1633 struct file *swap_file = sis->swap_file; 1634 struct address_space *mapping = swap_file->f_mapping; 1635 1636 sis->flags &= ~SWP_FILE; 1637 mapping->a_ops->swap_deactivate(swap_file); 1638 } 1639 } 1640 1641 /* 1642 * Add a block range (and the corresponding page range) into this swapdev's 1643 * extent list. The extent list is kept sorted in page order. 1644 * 1645 * This function rather assumes that it is called in ascending page order. 1646 */ 1647 int 1648 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1649 unsigned long nr_pages, sector_t start_block) 1650 { 1651 struct swap_extent *se; 1652 struct swap_extent *new_se; 1653 struct list_head *lh; 1654 1655 if (start_page == 0) { 1656 se = &sis->first_swap_extent; 1657 sis->curr_swap_extent = se; 1658 se->start_page = 0; 1659 se->nr_pages = nr_pages; 1660 se->start_block = start_block; 1661 return 1; 1662 } else { 1663 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 1664 se = list_entry(lh, struct swap_extent, list); 1665 BUG_ON(se->start_page + se->nr_pages != start_page); 1666 if (se->start_block + se->nr_pages == start_block) { 1667 /* Merge it */ 1668 se->nr_pages += nr_pages; 1669 return 0; 1670 } 1671 } 1672 1673 /* 1674 * No merge. Insert a new extent, preserving ordering. 1675 */ 1676 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 1677 if (new_se == NULL) 1678 return -ENOMEM; 1679 new_se->start_page = start_page; 1680 new_se->nr_pages = nr_pages; 1681 new_se->start_block = start_block; 1682 1683 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 1684 return 1; 1685 } 1686 1687 /* 1688 * A `swap extent' is a simple thing which maps a contiguous range of pages 1689 * onto a contiguous range of disk blocks. An ordered list of swap extents 1690 * is built at swapon time and is then used at swap_writepage/swap_readpage 1691 * time for locating where on disk a page belongs. 1692 * 1693 * If the swapfile is an S_ISBLK block device, a single extent is installed. 1694 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 1695 * swap files identically. 1696 * 1697 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 1698 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1699 * swapfiles are handled *identically* after swapon time. 1700 * 1701 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1702 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1703 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1704 * requirements, they are simply tossed out - we will never use those blocks 1705 * for swapping. 1706 * 1707 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1708 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1709 * which will scribble on the fs. 1710 * 1711 * The amount of disk space which a single swap extent represents varies. 1712 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1713 * extents in the list. To avoid much list walking, we cache the previous 1714 * search location in `curr_swap_extent', and start new searches from there. 1715 * This is extremely effective. The average number of iterations in 1716 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1717 */ 1718 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1719 { 1720 struct file *swap_file = sis->swap_file; 1721 struct address_space *mapping = swap_file->f_mapping; 1722 struct inode *inode = mapping->host; 1723 int ret; 1724 1725 if (S_ISBLK(inode->i_mode)) { 1726 ret = add_swap_extent(sis, 0, sis->max, 0); 1727 *span = sis->pages; 1728 return ret; 1729 } 1730 1731 if (mapping->a_ops->swap_activate) { 1732 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 1733 if (!ret) { 1734 sis->flags |= SWP_FILE; 1735 ret = add_swap_extent(sis, 0, sis->max, 0); 1736 *span = sis->pages; 1737 } 1738 return ret; 1739 } 1740 1741 return generic_swapfile_activate(sis, swap_file, span); 1742 } 1743 1744 static void _enable_swap_info(struct swap_info_struct *p, int prio, 1745 unsigned char *swap_map, 1746 struct swap_cluster_info *cluster_info) 1747 { 1748 if (prio >= 0) 1749 p->prio = prio; 1750 else 1751 p->prio = --least_priority; 1752 /* 1753 * the plist prio is negated because plist ordering is 1754 * low-to-high, while swap ordering is high-to-low 1755 */ 1756 p->list.prio = -p->prio; 1757 p->avail_list.prio = -p->prio; 1758 p->swap_map = swap_map; 1759 p->cluster_info = cluster_info; 1760 p->flags |= SWP_WRITEOK; 1761 atomic_long_add(p->pages, &nr_swap_pages); 1762 total_swap_pages += p->pages; 1763 1764 assert_spin_locked(&swap_lock); 1765 /* 1766 * both lists are plists, and thus priority ordered. 1767 * swap_active_head needs to be priority ordered for swapoff(), 1768 * which on removal of any swap_info_struct with an auto-assigned 1769 * (i.e. negative) priority increments the auto-assigned priority 1770 * of any lower-priority swap_info_structs. 1771 * swap_avail_head needs to be priority ordered for get_swap_page(), 1772 * which allocates swap pages from the highest available priority 1773 * swap_info_struct. 1774 */ 1775 plist_add(&p->list, &swap_active_head); 1776 spin_lock(&swap_avail_lock); 1777 plist_add(&p->avail_list, &swap_avail_head); 1778 spin_unlock(&swap_avail_lock); 1779 } 1780 1781 static void enable_swap_info(struct swap_info_struct *p, int prio, 1782 unsigned char *swap_map, 1783 struct swap_cluster_info *cluster_info, 1784 unsigned long *frontswap_map) 1785 { 1786 frontswap_init(p->type, frontswap_map); 1787 spin_lock(&swap_lock); 1788 spin_lock(&p->lock); 1789 _enable_swap_info(p, prio, swap_map, cluster_info); 1790 spin_unlock(&p->lock); 1791 spin_unlock(&swap_lock); 1792 } 1793 1794 static void reinsert_swap_info(struct swap_info_struct *p) 1795 { 1796 spin_lock(&swap_lock); 1797 spin_lock(&p->lock); 1798 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info); 1799 spin_unlock(&p->lock); 1800 spin_unlock(&swap_lock); 1801 } 1802 1803 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 1804 { 1805 struct swap_info_struct *p = NULL; 1806 unsigned char *swap_map; 1807 struct swap_cluster_info *cluster_info; 1808 unsigned long *frontswap_map; 1809 struct file *swap_file, *victim; 1810 struct address_space *mapping; 1811 struct inode *inode; 1812 struct filename *pathname; 1813 int err, found = 0; 1814 unsigned int old_block_size; 1815 1816 if (!capable(CAP_SYS_ADMIN)) 1817 return -EPERM; 1818 1819 BUG_ON(!current->mm); 1820 1821 pathname = getname(specialfile); 1822 if (IS_ERR(pathname)) 1823 return PTR_ERR(pathname); 1824 1825 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 1826 err = PTR_ERR(victim); 1827 if (IS_ERR(victim)) 1828 goto out; 1829 1830 mapping = victim->f_mapping; 1831 spin_lock(&swap_lock); 1832 plist_for_each_entry(p, &swap_active_head, list) { 1833 if (p->flags & SWP_WRITEOK) { 1834 if (p->swap_file->f_mapping == mapping) { 1835 found = 1; 1836 break; 1837 } 1838 } 1839 } 1840 if (!found) { 1841 err = -EINVAL; 1842 spin_unlock(&swap_lock); 1843 goto out_dput; 1844 } 1845 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 1846 vm_unacct_memory(p->pages); 1847 else { 1848 err = -ENOMEM; 1849 spin_unlock(&swap_lock); 1850 goto out_dput; 1851 } 1852 spin_lock(&swap_avail_lock); 1853 plist_del(&p->avail_list, &swap_avail_head); 1854 spin_unlock(&swap_avail_lock); 1855 spin_lock(&p->lock); 1856 if (p->prio < 0) { 1857 struct swap_info_struct *si = p; 1858 1859 plist_for_each_entry_continue(si, &swap_active_head, list) { 1860 si->prio++; 1861 si->list.prio--; 1862 si->avail_list.prio--; 1863 } 1864 least_priority++; 1865 } 1866 plist_del(&p->list, &swap_active_head); 1867 atomic_long_sub(p->pages, &nr_swap_pages); 1868 total_swap_pages -= p->pages; 1869 p->flags &= ~SWP_WRITEOK; 1870 spin_unlock(&p->lock); 1871 spin_unlock(&swap_lock); 1872 1873 set_current_oom_origin(); 1874 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ 1875 clear_current_oom_origin(); 1876 1877 if (err) { 1878 /* re-insert swap space back into swap_list */ 1879 reinsert_swap_info(p); 1880 goto out_dput; 1881 } 1882 1883 flush_work(&p->discard_work); 1884 1885 destroy_swap_extents(p); 1886 if (p->flags & SWP_CONTINUED) 1887 free_swap_count_continuations(p); 1888 1889 mutex_lock(&swapon_mutex); 1890 spin_lock(&swap_lock); 1891 spin_lock(&p->lock); 1892 drain_mmlist(); 1893 1894 /* wait for anyone still in scan_swap_map */ 1895 p->highest_bit = 0; /* cuts scans short */ 1896 while (p->flags >= SWP_SCANNING) { 1897 spin_unlock(&p->lock); 1898 spin_unlock(&swap_lock); 1899 schedule_timeout_uninterruptible(1); 1900 spin_lock(&swap_lock); 1901 spin_lock(&p->lock); 1902 } 1903 1904 swap_file = p->swap_file; 1905 old_block_size = p->old_block_size; 1906 p->swap_file = NULL; 1907 p->max = 0; 1908 swap_map = p->swap_map; 1909 p->swap_map = NULL; 1910 cluster_info = p->cluster_info; 1911 p->cluster_info = NULL; 1912 frontswap_map = frontswap_map_get(p); 1913 spin_unlock(&p->lock); 1914 spin_unlock(&swap_lock); 1915 frontswap_invalidate_area(p->type); 1916 frontswap_map_set(p, NULL); 1917 mutex_unlock(&swapon_mutex); 1918 free_percpu(p->percpu_cluster); 1919 p->percpu_cluster = NULL; 1920 vfree(swap_map); 1921 vfree(cluster_info); 1922 vfree(frontswap_map); 1923 /* Destroy swap account information */ 1924 swap_cgroup_swapoff(p->type); 1925 1926 inode = mapping->host; 1927 if (S_ISBLK(inode->i_mode)) { 1928 struct block_device *bdev = I_BDEV(inode); 1929 set_blocksize(bdev, old_block_size); 1930 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 1931 } else { 1932 mutex_lock(&inode->i_mutex); 1933 inode->i_flags &= ~S_SWAPFILE; 1934 mutex_unlock(&inode->i_mutex); 1935 } 1936 filp_close(swap_file, NULL); 1937 1938 /* 1939 * Clear the SWP_USED flag after all resources are freed so that swapon 1940 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 1941 * not hold p->lock after we cleared its SWP_WRITEOK. 1942 */ 1943 spin_lock(&swap_lock); 1944 p->flags = 0; 1945 spin_unlock(&swap_lock); 1946 1947 err = 0; 1948 atomic_inc(&proc_poll_event); 1949 wake_up_interruptible(&proc_poll_wait); 1950 1951 out_dput: 1952 filp_close(victim, NULL); 1953 out: 1954 putname(pathname); 1955 return err; 1956 } 1957 1958 #ifdef CONFIG_PROC_FS 1959 static unsigned swaps_poll(struct file *file, poll_table *wait) 1960 { 1961 struct seq_file *seq = file->private_data; 1962 1963 poll_wait(file, &proc_poll_wait, wait); 1964 1965 if (seq->poll_event != atomic_read(&proc_poll_event)) { 1966 seq->poll_event = atomic_read(&proc_poll_event); 1967 return POLLIN | POLLRDNORM | POLLERR | POLLPRI; 1968 } 1969 1970 return POLLIN | POLLRDNORM; 1971 } 1972 1973 /* iterator */ 1974 static void *swap_start(struct seq_file *swap, loff_t *pos) 1975 { 1976 struct swap_info_struct *si; 1977 int type; 1978 loff_t l = *pos; 1979 1980 mutex_lock(&swapon_mutex); 1981 1982 if (!l) 1983 return SEQ_START_TOKEN; 1984 1985 for (type = 0; type < nr_swapfiles; type++) { 1986 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 1987 si = swap_info[type]; 1988 if (!(si->flags & SWP_USED) || !si->swap_map) 1989 continue; 1990 if (!--l) 1991 return si; 1992 } 1993 1994 return NULL; 1995 } 1996 1997 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 1998 { 1999 struct swap_info_struct *si = v; 2000 int type; 2001 2002 if (v == SEQ_START_TOKEN) 2003 type = 0; 2004 else 2005 type = si->type + 1; 2006 2007 for (; type < nr_swapfiles; type++) { 2008 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2009 si = swap_info[type]; 2010 if (!(si->flags & SWP_USED) || !si->swap_map) 2011 continue; 2012 ++*pos; 2013 return si; 2014 } 2015 2016 return NULL; 2017 } 2018 2019 static void swap_stop(struct seq_file *swap, void *v) 2020 { 2021 mutex_unlock(&swapon_mutex); 2022 } 2023 2024 static int swap_show(struct seq_file *swap, void *v) 2025 { 2026 struct swap_info_struct *si = v; 2027 struct file *file; 2028 int len; 2029 2030 if (si == SEQ_START_TOKEN) { 2031 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 2032 return 0; 2033 } 2034 2035 file = si->swap_file; 2036 len = seq_path(swap, &file->f_path, " \t\n\\"); 2037 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 2038 len < 40 ? 40 - len : 1, " ", 2039 S_ISBLK(file_inode(file)->i_mode) ? 2040 "partition" : "file\t", 2041 si->pages << (PAGE_SHIFT - 10), 2042 si->inuse_pages << (PAGE_SHIFT - 10), 2043 si->prio); 2044 return 0; 2045 } 2046 2047 static const struct seq_operations swaps_op = { 2048 .start = swap_start, 2049 .next = swap_next, 2050 .stop = swap_stop, 2051 .show = swap_show 2052 }; 2053 2054 static int swaps_open(struct inode *inode, struct file *file) 2055 { 2056 struct seq_file *seq; 2057 int ret; 2058 2059 ret = seq_open(file, &swaps_op); 2060 if (ret) 2061 return ret; 2062 2063 seq = file->private_data; 2064 seq->poll_event = atomic_read(&proc_poll_event); 2065 return 0; 2066 } 2067 2068 static const struct file_operations proc_swaps_operations = { 2069 .open = swaps_open, 2070 .read = seq_read, 2071 .llseek = seq_lseek, 2072 .release = seq_release, 2073 .poll = swaps_poll, 2074 }; 2075 2076 static int __init procswaps_init(void) 2077 { 2078 proc_create("swaps", 0, NULL, &proc_swaps_operations); 2079 return 0; 2080 } 2081 __initcall(procswaps_init); 2082 #endif /* CONFIG_PROC_FS */ 2083 2084 #ifdef MAX_SWAPFILES_CHECK 2085 static int __init max_swapfiles_check(void) 2086 { 2087 MAX_SWAPFILES_CHECK(); 2088 return 0; 2089 } 2090 late_initcall(max_swapfiles_check); 2091 #endif 2092 2093 static struct swap_info_struct *alloc_swap_info(void) 2094 { 2095 struct swap_info_struct *p; 2096 unsigned int type; 2097 2098 p = kzalloc(sizeof(*p), GFP_KERNEL); 2099 if (!p) 2100 return ERR_PTR(-ENOMEM); 2101 2102 spin_lock(&swap_lock); 2103 for (type = 0; type < nr_swapfiles; type++) { 2104 if (!(swap_info[type]->flags & SWP_USED)) 2105 break; 2106 } 2107 if (type >= MAX_SWAPFILES) { 2108 spin_unlock(&swap_lock); 2109 kfree(p); 2110 return ERR_PTR(-EPERM); 2111 } 2112 if (type >= nr_swapfiles) { 2113 p->type = type; 2114 swap_info[type] = p; 2115 /* 2116 * Write swap_info[type] before nr_swapfiles, in case a 2117 * racing procfs swap_start() or swap_next() is reading them. 2118 * (We never shrink nr_swapfiles, we never free this entry.) 2119 */ 2120 smp_wmb(); 2121 nr_swapfiles++; 2122 } else { 2123 kfree(p); 2124 p = swap_info[type]; 2125 /* 2126 * Do not memset this entry: a racing procfs swap_next() 2127 * would be relying on p->type to remain valid. 2128 */ 2129 } 2130 INIT_LIST_HEAD(&p->first_swap_extent.list); 2131 plist_node_init(&p->list, 0); 2132 plist_node_init(&p->avail_list, 0); 2133 p->flags = SWP_USED; 2134 spin_unlock(&swap_lock); 2135 spin_lock_init(&p->lock); 2136 2137 return p; 2138 } 2139 2140 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2141 { 2142 int error; 2143 2144 if (S_ISBLK(inode->i_mode)) { 2145 p->bdev = bdgrab(I_BDEV(inode)); 2146 error = blkdev_get(p->bdev, 2147 FMODE_READ | FMODE_WRITE | FMODE_EXCL, 2148 sys_swapon); 2149 if (error < 0) { 2150 p->bdev = NULL; 2151 return -EINVAL; 2152 } 2153 p->old_block_size = block_size(p->bdev); 2154 error = set_blocksize(p->bdev, PAGE_SIZE); 2155 if (error < 0) 2156 return error; 2157 p->flags |= SWP_BLKDEV; 2158 } else if (S_ISREG(inode->i_mode)) { 2159 p->bdev = inode->i_sb->s_bdev; 2160 mutex_lock(&inode->i_mutex); 2161 if (IS_SWAPFILE(inode)) 2162 return -EBUSY; 2163 } else 2164 return -EINVAL; 2165 2166 return 0; 2167 } 2168 2169 static unsigned long read_swap_header(struct swap_info_struct *p, 2170 union swap_header *swap_header, 2171 struct inode *inode) 2172 { 2173 int i; 2174 unsigned long maxpages; 2175 unsigned long swapfilepages; 2176 unsigned long last_page; 2177 2178 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2179 pr_err("Unable to find swap-space signature\n"); 2180 return 0; 2181 } 2182 2183 /* swap partition endianess hack... */ 2184 if (swab32(swap_header->info.version) == 1) { 2185 swab32s(&swap_header->info.version); 2186 swab32s(&swap_header->info.last_page); 2187 swab32s(&swap_header->info.nr_badpages); 2188 for (i = 0; i < swap_header->info.nr_badpages; i++) 2189 swab32s(&swap_header->info.badpages[i]); 2190 } 2191 /* Check the swap header's sub-version */ 2192 if (swap_header->info.version != 1) { 2193 pr_warn("Unable to handle swap header version %d\n", 2194 swap_header->info.version); 2195 return 0; 2196 } 2197 2198 p->lowest_bit = 1; 2199 p->cluster_next = 1; 2200 p->cluster_nr = 0; 2201 2202 /* 2203 * Find out how many pages are allowed for a single swap 2204 * device. There are two limiting factors: 1) the number 2205 * of bits for the swap offset in the swp_entry_t type, and 2206 * 2) the number of bits in the swap pte as defined by the 2207 * different architectures. In order to find the 2208 * largest possible bit mask, a swap entry with swap type 0 2209 * and swap offset ~0UL is created, encoded to a swap pte, 2210 * decoded to a swp_entry_t again, and finally the swap 2211 * offset is extracted. This will mask all the bits from 2212 * the initial ~0UL mask that can't be encoded in either 2213 * the swp_entry_t or the architecture definition of a 2214 * swap pte. 2215 */ 2216 maxpages = swp_offset(pte_to_swp_entry( 2217 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2218 last_page = swap_header->info.last_page; 2219 if (last_page > maxpages) { 2220 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2221 maxpages << (PAGE_SHIFT - 10), 2222 last_page << (PAGE_SHIFT - 10)); 2223 } 2224 if (maxpages > last_page) { 2225 maxpages = last_page + 1; 2226 /* p->max is an unsigned int: don't overflow it */ 2227 if ((unsigned int)maxpages == 0) 2228 maxpages = UINT_MAX; 2229 } 2230 p->highest_bit = maxpages - 1; 2231 2232 if (!maxpages) 2233 return 0; 2234 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2235 if (swapfilepages && maxpages > swapfilepages) { 2236 pr_warn("Swap area shorter than signature indicates\n"); 2237 return 0; 2238 } 2239 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2240 return 0; 2241 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2242 return 0; 2243 2244 return maxpages; 2245 } 2246 2247 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2248 union swap_header *swap_header, 2249 unsigned char *swap_map, 2250 struct swap_cluster_info *cluster_info, 2251 unsigned long maxpages, 2252 sector_t *span) 2253 { 2254 int i; 2255 unsigned int nr_good_pages; 2256 int nr_extents; 2257 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2258 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER; 2259 2260 nr_good_pages = maxpages - 1; /* omit header page */ 2261 2262 cluster_set_null(&p->free_cluster_head); 2263 cluster_set_null(&p->free_cluster_tail); 2264 cluster_set_null(&p->discard_cluster_head); 2265 cluster_set_null(&p->discard_cluster_tail); 2266 2267 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2268 unsigned int page_nr = swap_header->info.badpages[i]; 2269 if (page_nr == 0 || page_nr > swap_header->info.last_page) 2270 return -EINVAL; 2271 if (page_nr < maxpages) { 2272 swap_map[page_nr] = SWAP_MAP_BAD; 2273 nr_good_pages--; 2274 /* 2275 * Haven't marked the cluster free yet, no list 2276 * operation involved 2277 */ 2278 inc_cluster_info_page(p, cluster_info, page_nr); 2279 } 2280 } 2281 2282 /* Haven't marked the cluster free yet, no list operation involved */ 2283 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 2284 inc_cluster_info_page(p, cluster_info, i); 2285 2286 if (nr_good_pages) { 2287 swap_map[0] = SWAP_MAP_BAD; 2288 /* 2289 * Not mark the cluster free yet, no list 2290 * operation involved 2291 */ 2292 inc_cluster_info_page(p, cluster_info, 0); 2293 p->max = maxpages; 2294 p->pages = nr_good_pages; 2295 nr_extents = setup_swap_extents(p, span); 2296 if (nr_extents < 0) 2297 return nr_extents; 2298 nr_good_pages = p->pages; 2299 } 2300 if (!nr_good_pages) { 2301 pr_warn("Empty swap-file\n"); 2302 return -EINVAL; 2303 } 2304 2305 if (!cluster_info) 2306 return nr_extents; 2307 2308 for (i = 0; i < nr_clusters; i++) { 2309 if (!cluster_count(&cluster_info[idx])) { 2310 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 2311 if (cluster_is_null(&p->free_cluster_head)) { 2312 cluster_set_next_flag(&p->free_cluster_head, 2313 idx, 0); 2314 cluster_set_next_flag(&p->free_cluster_tail, 2315 idx, 0); 2316 } else { 2317 unsigned int tail; 2318 2319 tail = cluster_next(&p->free_cluster_tail); 2320 cluster_set_next(&cluster_info[tail], idx); 2321 cluster_set_next_flag(&p->free_cluster_tail, 2322 idx, 0); 2323 } 2324 } 2325 idx++; 2326 if (idx == nr_clusters) 2327 idx = 0; 2328 } 2329 return nr_extents; 2330 } 2331 2332 /* 2333 * Helper to sys_swapon determining if a given swap 2334 * backing device queue supports DISCARD operations. 2335 */ 2336 static bool swap_discardable(struct swap_info_struct *si) 2337 { 2338 struct request_queue *q = bdev_get_queue(si->bdev); 2339 2340 if (!q || !blk_queue_discard(q)) 2341 return false; 2342 2343 return true; 2344 } 2345 2346 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2347 { 2348 struct swap_info_struct *p; 2349 struct filename *name; 2350 struct file *swap_file = NULL; 2351 struct address_space *mapping; 2352 int i; 2353 int prio; 2354 int error; 2355 union swap_header *swap_header; 2356 int nr_extents; 2357 sector_t span; 2358 unsigned long maxpages; 2359 unsigned char *swap_map = NULL; 2360 struct swap_cluster_info *cluster_info = NULL; 2361 unsigned long *frontswap_map = NULL; 2362 struct page *page = NULL; 2363 struct inode *inode = NULL; 2364 2365 if (swap_flags & ~SWAP_FLAGS_VALID) 2366 return -EINVAL; 2367 2368 if (!capable(CAP_SYS_ADMIN)) 2369 return -EPERM; 2370 2371 p = alloc_swap_info(); 2372 if (IS_ERR(p)) 2373 return PTR_ERR(p); 2374 2375 INIT_WORK(&p->discard_work, swap_discard_work); 2376 2377 name = getname(specialfile); 2378 if (IS_ERR(name)) { 2379 error = PTR_ERR(name); 2380 name = NULL; 2381 goto bad_swap; 2382 } 2383 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 2384 if (IS_ERR(swap_file)) { 2385 error = PTR_ERR(swap_file); 2386 swap_file = NULL; 2387 goto bad_swap; 2388 } 2389 2390 p->swap_file = swap_file; 2391 mapping = swap_file->f_mapping; 2392 2393 for (i = 0; i < nr_swapfiles; i++) { 2394 struct swap_info_struct *q = swap_info[i]; 2395 2396 if (q == p || !q->swap_file) 2397 continue; 2398 if (mapping == q->swap_file->f_mapping) { 2399 error = -EBUSY; 2400 goto bad_swap; 2401 } 2402 } 2403 2404 inode = mapping->host; 2405 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */ 2406 error = claim_swapfile(p, inode); 2407 if (unlikely(error)) 2408 goto bad_swap; 2409 2410 /* 2411 * Read the swap header. 2412 */ 2413 if (!mapping->a_ops->readpage) { 2414 error = -EINVAL; 2415 goto bad_swap; 2416 } 2417 page = read_mapping_page(mapping, 0, swap_file); 2418 if (IS_ERR(page)) { 2419 error = PTR_ERR(page); 2420 goto bad_swap; 2421 } 2422 swap_header = kmap(page); 2423 2424 maxpages = read_swap_header(p, swap_header, inode); 2425 if (unlikely(!maxpages)) { 2426 error = -EINVAL; 2427 goto bad_swap; 2428 } 2429 2430 /* OK, set up the swap map and apply the bad block list */ 2431 swap_map = vzalloc(maxpages); 2432 if (!swap_map) { 2433 error = -ENOMEM; 2434 goto bad_swap; 2435 } 2436 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 2437 p->flags |= SWP_SOLIDSTATE; 2438 /* 2439 * select a random position to start with to help wear leveling 2440 * SSD 2441 */ 2442 p->cluster_next = 1 + (prandom_u32() % p->highest_bit); 2443 2444 cluster_info = vzalloc(DIV_ROUND_UP(maxpages, 2445 SWAPFILE_CLUSTER) * sizeof(*cluster_info)); 2446 if (!cluster_info) { 2447 error = -ENOMEM; 2448 goto bad_swap; 2449 } 2450 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 2451 if (!p->percpu_cluster) { 2452 error = -ENOMEM; 2453 goto bad_swap; 2454 } 2455 for_each_possible_cpu(i) { 2456 struct percpu_cluster *cluster; 2457 cluster = per_cpu_ptr(p->percpu_cluster, i); 2458 cluster_set_null(&cluster->index); 2459 } 2460 } 2461 2462 error = swap_cgroup_swapon(p->type, maxpages); 2463 if (error) 2464 goto bad_swap; 2465 2466 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 2467 cluster_info, maxpages, &span); 2468 if (unlikely(nr_extents < 0)) { 2469 error = nr_extents; 2470 goto bad_swap; 2471 } 2472 /* frontswap enabled? set up bit-per-page map for frontswap */ 2473 if (frontswap_enabled) 2474 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long)); 2475 2476 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 2477 /* 2478 * When discard is enabled for swap with no particular 2479 * policy flagged, we set all swap discard flags here in 2480 * order to sustain backward compatibility with older 2481 * swapon(8) releases. 2482 */ 2483 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 2484 SWP_PAGE_DISCARD); 2485 2486 /* 2487 * By flagging sys_swapon, a sysadmin can tell us to 2488 * either do single-time area discards only, or to just 2489 * perform discards for released swap page-clusters. 2490 * Now it's time to adjust the p->flags accordingly. 2491 */ 2492 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 2493 p->flags &= ~SWP_PAGE_DISCARD; 2494 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 2495 p->flags &= ~SWP_AREA_DISCARD; 2496 2497 /* issue a swapon-time discard if it's still required */ 2498 if (p->flags & SWP_AREA_DISCARD) { 2499 int err = discard_swap(p); 2500 if (unlikely(err)) 2501 pr_err("swapon: discard_swap(%p): %d\n", 2502 p, err); 2503 } 2504 } 2505 2506 mutex_lock(&swapon_mutex); 2507 prio = -1; 2508 if (swap_flags & SWAP_FLAG_PREFER) 2509 prio = 2510 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 2511 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 2512 2513 pr_info("Adding %uk swap on %s. " 2514 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 2515 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 2516 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 2517 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 2518 (p->flags & SWP_DISCARDABLE) ? "D" : "", 2519 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 2520 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 2521 (frontswap_map) ? "FS" : ""); 2522 2523 mutex_unlock(&swapon_mutex); 2524 atomic_inc(&proc_poll_event); 2525 wake_up_interruptible(&proc_poll_wait); 2526 2527 if (S_ISREG(inode->i_mode)) 2528 inode->i_flags |= S_SWAPFILE; 2529 error = 0; 2530 goto out; 2531 bad_swap: 2532 free_percpu(p->percpu_cluster); 2533 p->percpu_cluster = NULL; 2534 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 2535 set_blocksize(p->bdev, p->old_block_size); 2536 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2537 } 2538 destroy_swap_extents(p); 2539 swap_cgroup_swapoff(p->type); 2540 spin_lock(&swap_lock); 2541 p->swap_file = NULL; 2542 p->flags = 0; 2543 spin_unlock(&swap_lock); 2544 vfree(swap_map); 2545 vfree(cluster_info); 2546 if (swap_file) { 2547 if (inode && S_ISREG(inode->i_mode)) { 2548 mutex_unlock(&inode->i_mutex); 2549 inode = NULL; 2550 } 2551 filp_close(swap_file, NULL); 2552 } 2553 out: 2554 if (page && !IS_ERR(page)) { 2555 kunmap(page); 2556 page_cache_release(page); 2557 } 2558 if (name) 2559 putname(name); 2560 if (inode && S_ISREG(inode->i_mode)) 2561 mutex_unlock(&inode->i_mutex); 2562 return error; 2563 } 2564 2565 void si_swapinfo(struct sysinfo *val) 2566 { 2567 unsigned int type; 2568 unsigned long nr_to_be_unused = 0; 2569 2570 spin_lock(&swap_lock); 2571 for (type = 0; type < nr_swapfiles; type++) { 2572 struct swap_info_struct *si = swap_info[type]; 2573 2574 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 2575 nr_to_be_unused += si->inuse_pages; 2576 } 2577 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 2578 val->totalswap = total_swap_pages + nr_to_be_unused; 2579 spin_unlock(&swap_lock); 2580 } 2581 2582 /* 2583 * Verify that a swap entry is valid and increment its swap map count. 2584 * 2585 * Returns error code in following case. 2586 * - success -> 0 2587 * - swp_entry is invalid -> EINVAL 2588 * - swp_entry is migration entry -> EINVAL 2589 * - swap-cache reference is requested but there is already one. -> EEXIST 2590 * - swap-cache reference is requested but the entry is not used. -> ENOENT 2591 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 2592 */ 2593 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 2594 { 2595 struct swap_info_struct *p; 2596 unsigned long offset, type; 2597 unsigned char count; 2598 unsigned char has_cache; 2599 int err = -EINVAL; 2600 2601 if (non_swap_entry(entry)) 2602 goto out; 2603 2604 type = swp_type(entry); 2605 if (type >= nr_swapfiles) 2606 goto bad_file; 2607 p = swap_info[type]; 2608 offset = swp_offset(entry); 2609 2610 spin_lock(&p->lock); 2611 if (unlikely(offset >= p->max)) 2612 goto unlock_out; 2613 2614 count = p->swap_map[offset]; 2615 2616 /* 2617 * swapin_readahead() doesn't check if a swap entry is valid, so the 2618 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 2619 */ 2620 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 2621 err = -ENOENT; 2622 goto unlock_out; 2623 } 2624 2625 has_cache = count & SWAP_HAS_CACHE; 2626 count &= ~SWAP_HAS_CACHE; 2627 err = 0; 2628 2629 if (usage == SWAP_HAS_CACHE) { 2630 2631 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 2632 if (!has_cache && count) 2633 has_cache = SWAP_HAS_CACHE; 2634 else if (has_cache) /* someone else added cache */ 2635 err = -EEXIST; 2636 else /* no users remaining */ 2637 err = -ENOENT; 2638 2639 } else if (count || has_cache) { 2640 2641 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 2642 count += usage; 2643 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 2644 err = -EINVAL; 2645 else if (swap_count_continued(p, offset, count)) 2646 count = COUNT_CONTINUED; 2647 else 2648 err = -ENOMEM; 2649 } else 2650 err = -ENOENT; /* unused swap entry */ 2651 2652 p->swap_map[offset] = count | has_cache; 2653 2654 unlock_out: 2655 spin_unlock(&p->lock); 2656 out: 2657 return err; 2658 2659 bad_file: 2660 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val); 2661 goto out; 2662 } 2663 2664 /* 2665 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 2666 * (in which case its reference count is never incremented). 2667 */ 2668 void swap_shmem_alloc(swp_entry_t entry) 2669 { 2670 __swap_duplicate(entry, SWAP_MAP_SHMEM); 2671 } 2672 2673 /* 2674 * Increase reference count of swap entry by 1. 2675 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 2676 * but could not be atomically allocated. Returns 0, just as if it succeeded, 2677 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 2678 * might occur if a page table entry has got corrupted. 2679 */ 2680 int swap_duplicate(swp_entry_t entry) 2681 { 2682 int err = 0; 2683 2684 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 2685 err = add_swap_count_continuation(entry, GFP_ATOMIC); 2686 return err; 2687 } 2688 2689 /* 2690 * @entry: swap entry for which we allocate swap cache. 2691 * 2692 * Called when allocating swap cache for existing swap entry, 2693 * This can return error codes. Returns 0 at success. 2694 * -EBUSY means there is a swap cache. 2695 * Note: return code is different from swap_duplicate(). 2696 */ 2697 int swapcache_prepare(swp_entry_t entry) 2698 { 2699 return __swap_duplicate(entry, SWAP_HAS_CACHE); 2700 } 2701 2702 struct swap_info_struct *page_swap_info(struct page *page) 2703 { 2704 swp_entry_t swap = { .val = page_private(page) }; 2705 BUG_ON(!PageSwapCache(page)); 2706 return swap_info[swp_type(swap)]; 2707 } 2708 2709 /* 2710 * out-of-line __page_file_ methods to avoid include hell. 2711 */ 2712 struct address_space *__page_file_mapping(struct page *page) 2713 { 2714 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 2715 return page_swap_info(page)->swap_file->f_mapping; 2716 } 2717 EXPORT_SYMBOL_GPL(__page_file_mapping); 2718 2719 pgoff_t __page_file_index(struct page *page) 2720 { 2721 swp_entry_t swap = { .val = page_private(page) }; 2722 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 2723 return swp_offset(swap); 2724 } 2725 EXPORT_SYMBOL_GPL(__page_file_index); 2726 2727 /* 2728 * add_swap_count_continuation - called when a swap count is duplicated 2729 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 2730 * page of the original vmalloc'ed swap_map, to hold the continuation count 2731 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 2732 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 2733 * 2734 * These continuation pages are seldom referenced: the common paths all work 2735 * on the original swap_map, only referring to a continuation page when the 2736 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 2737 * 2738 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 2739 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 2740 * can be called after dropping locks. 2741 */ 2742 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 2743 { 2744 struct swap_info_struct *si; 2745 struct page *head; 2746 struct page *page; 2747 struct page *list_page; 2748 pgoff_t offset; 2749 unsigned char count; 2750 2751 /* 2752 * When debugging, it's easier to use __GFP_ZERO here; but it's better 2753 * for latency not to zero a page while GFP_ATOMIC and holding locks. 2754 */ 2755 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 2756 2757 si = swap_info_get(entry); 2758 if (!si) { 2759 /* 2760 * An acceptable race has occurred since the failing 2761 * __swap_duplicate(): the swap entry has been freed, 2762 * perhaps even the whole swap_map cleared for swapoff. 2763 */ 2764 goto outer; 2765 } 2766 2767 offset = swp_offset(entry); 2768 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 2769 2770 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 2771 /* 2772 * The higher the swap count, the more likely it is that tasks 2773 * will race to add swap count continuation: we need to avoid 2774 * over-provisioning. 2775 */ 2776 goto out; 2777 } 2778 2779 if (!page) { 2780 spin_unlock(&si->lock); 2781 return -ENOMEM; 2782 } 2783 2784 /* 2785 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 2786 * no architecture is using highmem pages for kernel page tables: so it 2787 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 2788 */ 2789 head = vmalloc_to_page(si->swap_map + offset); 2790 offset &= ~PAGE_MASK; 2791 2792 /* 2793 * Page allocation does not initialize the page's lru field, 2794 * but it does always reset its private field. 2795 */ 2796 if (!page_private(head)) { 2797 BUG_ON(count & COUNT_CONTINUED); 2798 INIT_LIST_HEAD(&head->lru); 2799 set_page_private(head, SWP_CONTINUED); 2800 si->flags |= SWP_CONTINUED; 2801 } 2802 2803 list_for_each_entry(list_page, &head->lru, lru) { 2804 unsigned char *map; 2805 2806 /* 2807 * If the previous map said no continuation, but we've found 2808 * a continuation page, free our allocation and use this one. 2809 */ 2810 if (!(count & COUNT_CONTINUED)) 2811 goto out; 2812 2813 map = kmap_atomic(list_page) + offset; 2814 count = *map; 2815 kunmap_atomic(map); 2816 2817 /* 2818 * If this continuation count now has some space in it, 2819 * free our allocation and use this one. 2820 */ 2821 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 2822 goto out; 2823 } 2824 2825 list_add_tail(&page->lru, &head->lru); 2826 page = NULL; /* now it's attached, don't free it */ 2827 out: 2828 spin_unlock(&si->lock); 2829 outer: 2830 if (page) 2831 __free_page(page); 2832 return 0; 2833 } 2834 2835 /* 2836 * swap_count_continued - when the original swap_map count is incremented 2837 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 2838 * into, carry if so, or else fail until a new continuation page is allocated; 2839 * when the original swap_map count is decremented from 0 with continuation, 2840 * borrow from the continuation and report whether it still holds more. 2841 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock. 2842 */ 2843 static bool swap_count_continued(struct swap_info_struct *si, 2844 pgoff_t offset, unsigned char count) 2845 { 2846 struct page *head; 2847 struct page *page; 2848 unsigned char *map; 2849 2850 head = vmalloc_to_page(si->swap_map + offset); 2851 if (page_private(head) != SWP_CONTINUED) { 2852 BUG_ON(count & COUNT_CONTINUED); 2853 return false; /* need to add count continuation */ 2854 } 2855 2856 offset &= ~PAGE_MASK; 2857 page = list_entry(head->lru.next, struct page, lru); 2858 map = kmap_atomic(page) + offset; 2859 2860 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 2861 goto init_map; /* jump over SWAP_CONT_MAX checks */ 2862 2863 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 2864 /* 2865 * Think of how you add 1 to 999 2866 */ 2867 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 2868 kunmap_atomic(map); 2869 page = list_entry(page->lru.next, struct page, lru); 2870 BUG_ON(page == head); 2871 map = kmap_atomic(page) + offset; 2872 } 2873 if (*map == SWAP_CONT_MAX) { 2874 kunmap_atomic(map); 2875 page = list_entry(page->lru.next, struct page, lru); 2876 if (page == head) 2877 return false; /* add count continuation */ 2878 map = kmap_atomic(page) + offset; 2879 init_map: *map = 0; /* we didn't zero the page */ 2880 } 2881 *map += 1; 2882 kunmap_atomic(map); 2883 page = list_entry(page->lru.prev, struct page, lru); 2884 while (page != head) { 2885 map = kmap_atomic(page) + offset; 2886 *map = COUNT_CONTINUED; 2887 kunmap_atomic(map); 2888 page = list_entry(page->lru.prev, struct page, lru); 2889 } 2890 return true; /* incremented */ 2891 2892 } else { /* decrementing */ 2893 /* 2894 * Think of how you subtract 1 from 1000 2895 */ 2896 BUG_ON(count != COUNT_CONTINUED); 2897 while (*map == COUNT_CONTINUED) { 2898 kunmap_atomic(map); 2899 page = list_entry(page->lru.next, struct page, lru); 2900 BUG_ON(page == head); 2901 map = kmap_atomic(page) + offset; 2902 } 2903 BUG_ON(*map == 0); 2904 *map -= 1; 2905 if (*map == 0) 2906 count = 0; 2907 kunmap_atomic(map); 2908 page = list_entry(page->lru.prev, struct page, lru); 2909 while (page != head) { 2910 map = kmap_atomic(page) + offset; 2911 *map = SWAP_CONT_MAX | count; 2912 count = COUNT_CONTINUED; 2913 kunmap_atomic(map); 2914 page = list_entry(page->lru.prev, struct page, lru); 2915 } 2916 return count == COUNT_CONTINUED; 2917 } 2918 } 2919 2920 /* 2921 * free_swap_count_continuations - swapoff free all the continuation pages 2922 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 2923 */ 2924 static void free_swap_count_continuations(struct swap_info_struct *si) 2925 { 2926 pgoff_t offset; 2927 2928 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 2929 struct page *head; 2930 head = vmalloc_to_page(si->swap_map + offset); 2931 if (page_private(head)) { 2932 struct list_head *this, *next; 2933 list_for_each_safe(this, next, &head->lru) { 2934 struct page *page; 2935 page = list_entry(this, struct page, lru); 2936 list_del(this); 2937 __free_page(page); 2938 } 2939 } 2940 } 2941 } 2942