1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/mm.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/task.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mman.h> 15 #include <linux/slab.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/swap.h> 18 #include <linux/vmalloc.h> 19 #include <linux/pagemap.h> 20 #include <linux/namei.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/blk-cgroup.h> 23 #include <linux/random.h> 24 #include <linux/writeback.h> 25 #include <linux/proc_fs.h> 26 #include <linux/seq_file.h> 27 #include <linux/init.h> 28 #include <linux/ksm.h> 29 #include <linux/rmap.h> 30 #include <linux/security.h> 31 #include <linux/backing-dev.h> 32 #include <linux/mutex.h> 33 #include <linux/capability.h> 34 #include <linux/syscalls.h> 35 #include <linux/memcontrol.h> 36 #include <linux/poll.h> 37 #include <linux/oom.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/swap_slots.h> 41 #include <linux/sort.h> 42 #include <linux/completion.h> 43 #include <linux/suspend.h> 44 #include <linux/zswap.h> 45 46 #include <asm/tlbflush.h> 47 #include <linux/swapops.h> 48 #include <linux/swap_cgroup.h> 49 #include "swap.h" 50 51 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 52 unsigned char); 53 static void free_swap_count_continuations(struct swap_info_struct *); 54 55 static DEFINE_SPINLOCK(swap_lock); 56 static unsigned int nr_swapfiles; 57 atomic_long_t nr_swap_pages; 58 /* 59 * Some modules use swappable objects and may try to swap them out under 60 * memory pressure (via the shrinker). Before doing so, they may wish to 61 * check to see if any swap space is available. 62 */ 63 EXPORT_SYMBOL_GPL(nr_swap_pages); 64 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 65 long total_swap_pages; 66 static int least_priority = -1; 67 unsigned long swapfile_maximum_size; 68 #ifdef CONFIG_MIGRATION 69 bool swap_migration_ad_supported; 70 #endif /* CONFIG_MIGRATION */ 71 72 static const char Bad_file[] = "Bad swap file entry "; 73 static const char Unused_file[] = "Unused swap file entry "; 74 static const char Bad_offset[] = "Bad swap offset entry "; 75 static const char Unused_offset[] = "Unused swap offset entry "; 76 77 /* 78 * all active swap_info_structs 79 * protected with swap_lock, and ordered by priority. 80 */ 81 static PLIST_HEAD(swap_active_head); 82 83 /* 84 * all available (active, not full) swap_info_structs 85 * protected with swap_avail_lock, ordered by priority. 86 * This is used by folio_alloc_swap() instead of swap_active_head 87 * because swap_active_head includes all swap_info_structs, 88 * but folio_alloc_swap() doesn't need to look at full ones. 89 * This uses its own lock instead of swap_lock because when a 90 * swap_info_struct changes between not-full/full, it needs to 91 * add/remove itself to/from this list, but the swap_info_struct->lock 92 * is held and the locking order requires swap_lock to be taken 93 * before any swap_info_struct->lock. 94 */ 95 static struct plist_head *swap_avail_heads; 96 static DEFINE_SPINLOCK(swap_avail_lock); 97 98 static struct swap_info_struct *swap_info[MAX_SWAPFILES]; 99 100 static DEFINE_MUTEX(swapon_mutex); 101 102 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 103 /* Activity counter to indicate that a swapon or swapoff has occurred */ 104 static atomic_t proc_poll_event = ATOMIC_INIT(0); 105 106 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 107 108 static struct swap_info_struct *swap_type_to_swap_info(int type) 109 { 110 if (type >= MAX_SWAPFILES) 111 return NULL; 112 113 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 114 } 115 116 static inline unsigned char swap_count(unsigned char ent) 117 { 118 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 119 } 120 121 /* Reclaim the swap entry anyway if possible */ 122 #define TTRS_ANYWAY 0x1 123 /* 124 * Reclaim the swap entry if there are no more mappings of the 125 * corresponding page 126 */ 127 #define TTRS_UNMAPPED 0x2 128 /* Reclaim the swap entry if swap is getting full*/ 129 #define TTRS_FULL 0x4 130 131 /* returns 1 if swap entry is freed */ 132 static int __try_to_reclaim_swap(struct swap_info_struct *si, 133 unsigned long offset, unsigned long flags) 134 { 135 swp_entry_t entry = swp_entry(si->type, offset); 136 struct folio *folio; 137 int ret = 0; 138 139 folio = filemap_get_folio(swap_address_space(entry), offset); 140 if (IS_ERR(folio)) 141 return 0; 142 /* 143 * When this function is called from scan_swap_map_slots() and it's 144 * called by vmscan.c at reclaiming folios. So we hold a folio lock 145 * here. We have to use trylock for avoiding deadlock. This is a special 146 * case and you should use folio_free_swap() with explicit folio_lock() 147 * in usual operations. 148 */ 149 if (folio_trylock(folio)) { 150 if ((flags & TTRS_ANYWAY) || 151 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) || 152 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio))) 153 ret = folio_free_swap(folio); 154 folio_unlock(folio); 155 } 156 folio_put(folio); 157 return ret; 158 } 159 160 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 161 { 162 struct rb_node *rb = rb_first(&sis->swap_extent_root); 163 return rb_entry(rb, struct swap_extent, rb_node); 164 } 165 166 static inline struct swap_extent *next_se(struct swap_extent *se) 167 { 168 struct rb_node *rb = rb_next(&se->rb_node); 169 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 170 } 171 172 /* 173 * swapon tell device that all the old swap contents can be discarded, 174 * to allow the swap device to optimize its wear-levelling. 175 */ 176 static int discard_swap(struct swap_info_struct *si) 177 { 178 struct swap_extent *se; 179 sector_t start_block; 180 sector_t nr_blocks; 181 int err = 0; 182 183 /* Do not discard the swap header page! */ 184 se = first_se(si); 185 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 186 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 187 if (nr_blocks) { 188 err = blkdev_issue_discard(si->bdev, start_block, 189 nr_blocks, GFP_KERNEL); 190 if (err) 191 return err; 192 cond_resched(); 193 } 194 195 for (se = next_se(se); se; se = next_se(se)) { 196 start_block = se->start_block << (PAGE_SHIFT - 9); 197 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 198 199 err = blkdev_issue_discard(si->bdev, start_block, 200 nr_blocks, GFP_KERNEL); 201 if (err) 202 break; 203 204 cond_resched(); 205 } 206 return err; /* That will often be -EOPNOTSUPP */ 207 } 208 209 static struct swap_extent * 210 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 211 { 212 struct swap_extent *se; 213 struct rb_node *rb; 214 215 rb = sis->swap_extent_root.rb_node; 216 while (rb) { 217 se = rb_entry(rb, struct swap_extent, rb_node); 218 if (offset < se->start_page) 219 rb = rb->rb_left; 220 else if (offset >= se->start_page + se->nr_pages) 221 rb = rb->rb_right; 222 else 223 return se; 224 } 225 /* It *must* be present */ 226 BUG(); 227 } 228 229 sector_t swap_page_sector(struct page *page) 230 { 231 struct swap_info_struct *sis = page_swap_info(page); 232 struct swap_extent *se; 233 sector_t sector; 234 pgoff_t offset; 235 236 offset = __page_file_index(page); 237 se = offset_to_swap_extent(sis, offset); 238 sector = se->start_block + (offset - se->start_page); 239 return sector << (PAGE_SHIFT - 9); 240 } 241 242 /* 243 * swap allocation tell device that a cluster of swap can now be discarded, 244 * to allow the swap device to optimize its wear-levelling. 245 */ 246 static void discard_swap_cluster(struct swap_info_struct *si, 247 pgoff_t start_page, pgoff_t nr_pages) 248 { 249 struct swap_extent *se = offset_to_swap_extent(si, start_page); 250 251 while (nr_pages) { 252 pgoff_t offset = start_page - se->start_page; 253 sector_t start_block = se->start_block + offset; 254 sector_t nr_blocks = se->nr_pages - offset; 255 256 if (nr_blocks > nr_pages) 257 nr_blocks = nr_pages; 258 start_page += nr_blocks; 259 nr_pages -= nr_blocks; 260 261 start_block <<= PAGE_SHIFT - 9; 262 nr_blocks <<= PAGE_SHIFT - 9; 263 if (blkdev_issue_discard(si->bdev, start_block, 264 nr_blocks, GFP_NOIO)) 265 break; 266 267 se = next_se(se); 268 } 269 } 270 271 #ifdef CONFIG_THP_SWAP 272 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 273 274 #define swap_entry_size(size) (size) 275 #else 276 #define SWAPFILE_CLUSTER 256 277 278 /* 279 * Define swap_entry_size() as constant to let compiler to optimize 280 * out some code if !CONFIG_THP_SWAP 281 */ 282 #define swap_entry_size(size) 1 283 #endif 284 #define LATENCY_LIMIT 256 285 286 static inline void cluster_set_flag(struct swap_cluster_info *info, 287 unsigned int flag) 288 { 289 info->flags = flag; 290 } 291 292 static inline unsigned int cluster_count(struct swap_cluster_info *info) 293 { 294 return info->data; 295 } 296 297 static inline void cluster_set_count(struct swap_cluster_info *info, 298 unsigned int c) 299 { 300 info->data = c; 301 } 302 303 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 304 unsigned int c, unsigned int f) 305 { 306 info->flags = f; 307 info->data = c; 308 } 309 310 static inline unsigned int cluster_next(struct swap_cluster_info *info) 311 { 312 return info->data; 313 } 314 315 static inline void cluster_set_next(struct swap_cluster_info *info, 316 unsigned int n) 317 { 318 info->data = n; 319 } 320 321 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 322 unsigned int n, unsigned int f) 323 { 324 info->flags = f; 325 info->data = n; 326 } 327 328 static inline bool cluster_is_free(struct swap_cluster_info *info) 329 { 330 return info->flags & CLUSTER_FLAG_FREE; 331 } 332 333 static inline bool cluster_is_null(struct swap_cluster_info *info) 334 { 335 return info->flags & CLUSTER_FLAG_NEXT_NULL; 336 } 337 338 static inline void cluster_set_null(struct swap_cluster_info *info) 339 { 340 info->flags = CLUSTER_FLAG_NEXT_NULL; 341 info->data = 0; 342 } 343 344 static inline bool cluster_is_huge(struct swap_cluster_info *info) 345 { 346 if (IS_ENABLED(CONFIG_THP_SWAP)) 347 return info->flags & CLUSTER_FLAG_HUGE; 348 return false; 349 } 350 351 static inline void cluster_clear_huge(struct swap_cluster_info *info) 352 { 353 info->flags &= ~CLUSTER_FLAG_HUGE; 354 } 355 356 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 357 unsigned long offset) 358 { 359 struct swap_cluster_info *ci; 360 361 ci = si->cluster_info; 362 if (ci) { 363 ci += offset / SWAPFILE_CLUSTER; 364 spin_lock(&ci->lock); 365 } 366 return ci; 367 } 368 369 static inline void unlock_cluster(struct swap_cluster_info *ci) 370 { 371 if (ci) 372 spin_unlock(&ci->lock); 373 } 374 375 /* 376 * Determine the locking method in use for this device. Return 377 * swap_cluster_info if SSD-style cluster-based locking is in place. 378 */ 379 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 380 struct swap_info_struct *si, unsigned long offset) 381 { 382 struct swap_cluster_info *ci; 383 384 /* Try to use fine-grained SSD-style locking if available: */ 385 ci = lock_cluster(si, offset); 386 /* Otherwise, fall back to traditional, coarse locking: */ 387 if (!ci) 388 spin_lock(&si->lock); 389 390 return ci; 391 } 392 393 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 394 struct swap_cluster_info *ci) 395 { 396 if (ci) 397 unlock_cluster(ci); 398 else 399 spin_unlock(&si->lock); 400 } 401 402 static inline bool cluster_list_empty(struct swap_cluster_list *list) 403 { 404 return cluster_is_null(&list->head); 405 } 406 407 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 408 { 409 return cluster_next(&list->head); 410 } 411 412 static void cluster_list_init(struct swap_cluster_list *list) 413 { 414 cluster_set_null(&list->head); 415 cluster_set_null(&list->tail); 416 } 417 418 static void cluster_list_add_tail(struct swap_cluster_list *list, 419 struct swap_cluster_info *ci, 420 unsigned int idx) 421 { 422 if (cluster_list_empty(list)) { 423 cluster_set_next_flag(&list->head, idx, 0); 424 cluster_set_next_flag(&list->tail, idx, 0); 425 } else { 426 struct swap_cluster_info *ci_tail; 427 unsigned int tail = cluster_next(&list->tail); 428 429 /* 430 * Nested cluster lock, but both cluster locks are 431 * only acquired when we held swap_info_struct->lock 432 */ 433 ci_tail = ci + tail; 434 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 435 cluster_set_next(ci_tail, idx); 436 spin_unlock(&ci_tail->lock); 437 cluster_set_next_flag(&list->tail, idx, 0); 438 } 439 } 440 441 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 442 struct swap_cluster_info *ci) 443 { 444 unsigned int idx; 445 446 idx = cluster_next(&list->head); 447 if (cluster_next(&list->tail) == idx) { 448 cluster_set_null(&list->head); 449 cluster_set_null(&list->tail); 450 } else 451 cluster_set_next_flag(&list->head, 452 cluster_next(&ci[idx]), 0); 453 454 return idx; 455 } 456 457 /* Add a cluster to discard list and schedule it to do discard */ 458 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 459 unsigned int idx) 460 { 461 /* 462 * If scan_swap_map_slots() can't find a free cluster, it will check 463 * si->swap_map directly. To make sure the discarding cluster isn't 464 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied). 465 * It will be cleared after discard 466 */ 467 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 468 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 469 470 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 471 472 schedule_work(&si->discard_work); 473 } 474 475 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 476 { 477 struct swap_cluster_info *ci = si->cluster_info; 478 479 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 480 cluster_list_add_tail(&si->free_clusters, ci, idx); 481 } 482 483 /* 484 * Doing discard actually. After a cluster discard is finished, the cluster 485 * will be added to free cluster list. caller should hold si->lock. 486 */ 487 static void swap_do_scheduled_discard(struct swap_info_struct *si) 488 { 489 struct swap_cluster_info *info, *ci; 490 unsigned int idx; 491 492 info = si->cluster_info; 493 494 while (!cluster_list_empty(&si->discard_clusters)) { 495 idx = cluster_list_del_first(&si->discard_clusters, info); 496 spin_unlock(&si->lock); 497 498 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 499 SWAPFILE_CLUSTER); 500 501 spin_lock(&si->lock); 502 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 503 __free_cluster(si, idx); 504 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 505 0, SWAPFILE_CLUSTER); 506 unlock_cluster(ci); 507 } 508 } 509 510 static void swap_discard_work(struct work_struct *work) 511 { 512 struct swap_info_struct *si; 513 514 si = container_of(work, struct swap_info_struct, discard_work); 515 516 spin_lock(&si->lock); 517 swap_do_scheduled_discard(si); 518 spin_unlock(&si->lock); 519 } 520 521 static void swap_users_ref_free(struct percpu_ref *ref) 522 { 523 struct swap_info_struct *si; 524 525 si = container_of(ref, struct swap_info_struct, users); 526 complete(&si->comp); 527 } 528 529 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 530 { 531 struct swap_cluster_info *ci = si->cluster_info; 532 533 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 534 cluster_list_del_first(&si->free_clusters, ci); 535 cluster_set_count_flag(ci + idx, 0, 0); 536 } 537 538 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 539 { 540 struct swap_cluster_info *ci = si->cluster_info + idx; 541 542 VM_BUG_ON(cluster_count(ci) != 0); 543 /* 544 * If the swap is discardable, prepare discard the cluster 545 * instead of free it immediately. The cluster will be freed 546 * after discard. 547 */ 548 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 549 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 550 swap_cluster_schedule_discard(si, idx); 551 return; 552 } 553 554 __free_cluster(si, idx); 555 } 556 557 /* 558 * The cluster corresponding to page_nr will be used. The cluster will be 559 * removed from free cluster list and its usage counter will be increased. 560 */ 561 static void inc_cluster_info_page(struct swap_info_struct *p, 562 struct swap_cluster_info *cluster_info, unsigned long page_nr) 563 { 564 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 565 566 if (!cluster_info) 567 return; 568 if (cluster_is_free(&cluster_info[idx])) 569 alloc_cluster(p, idx); 570 571 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 572 cluster_set_count(&cluster_info[idx], 573 cluster_count(&cluster_info[idx]) + 1); 574 } 575 576 /* 577 * The cluster corresponding to page_nr decreases one usage. If the usage 578 * counter becomes 0, which means no page in the cluster is in using, we can 579 * optionally discard the cluster and add it to free cluster list. 580 */ 581 static void dec_cluster_info_page(struct swap_info_struct *p, 582 struct swap_cluster_info *cluster_info, unsigned long page_nr) 583 { 584 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 585 586 if (!cluster_info) 587 return; 588 589 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 590 cluster_set_count(&cluster_info[idx], 591 cluster_count(&cluster_info[idx]) - 1); 592 593 if (cluster_count(&cluster_info[idx]) == 0) 594 free_cluster(p, idx); 595 } 596 597 /* 598 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free 599 * cluster list. Avoiding such abuse to avoid list corruption. 600 */ 601 static bool 602 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 603 unsigned long offset) 604 { 605 struct percpu_cluster *percpu_cluster; 606 bool conflict; 607 608 offset /= SWAPFILE_CLUSTER; 609 conflict = !cluster_list_empty(&si->free_clusters) && 610 offset != cluster_list_first(&si->free_clusters) && 611 cluster_is_free(&si->cluster_info[offset]); 612 613 if (!conflict) 614 return false; 615 616 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 617 cluster_set_null(&percpu_cluster->index); 618 return true; 619 } 620 621 /* 622 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 623 * might involve allocating a new cluster for current CPU too. 624 */ 625 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 626 unsigned long *offset, unsigned long *scan_base) 627 { 628 struct percpu_cluster *cluster; 629 struct swap_cluster_info *ci; 630 unsigned long tmp, max; 631 632 new_cluster: 633 cluster = this_cpu_ptr(si->percpu_cluster); 634 if (cluster_is_null(&cluster->index)) { 635 if (!cluster_list_empty(&si->free_clusters)) { 636 cluster->index = si->free_clusters.head; 637 cluster->next = cluster_next(&cluster->index) * 638 SWAPFILE_CLUSTER; 639 } else if (!cluster_list_empty(&si->discard_clusters)) { 640 /* 641 * we don't have free cluster but have some clusters in 642 * discarding, do discard now and reclaim them, then 643 * reread cluster_next_cpu since we dropped si->lock 644 */ 645 swap_do_scheduled_discard(si); 646 *scan_base = this_cpu_read(*si->cluster_next_cpu); 647 *offset = *scan_base; 648 goto new_cluster; 649 } else 650 return false; 651 } 652 653 /* 654 * Other CPUs can use our cluster if they can't find a free cluster, 655 * check if there is still free entry in the cluster 656 */ 657 tmp = cluster->next; 658 max = min_t(unsigned long, si->max, 659 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 660 if (tmp < max) { 661 ci = lock_cluster(si, tmp); 662 while (tmp < max) { 663 if (!si->swap_map[tmp]) 664 break; 665 tmp++; 666 } 667 unlock_cluster(ci); 668 } 669 if (tmp >= max) { 670 cluster_set_null(&cluster->index); 671 goto new_cluster; 672 } 673 cluster->next = tmp + 1; 674 *offset = tmp; 675 *scan_base = tmp; 676 return true; 677 } 678 679 static void __del_from_avail_list(struct swap_info_struct *p) 680 { 681 int nid; 682 683 assert_spin_locked(&p->lock); 684 for_each_node(nid) 685 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 686 } 687 688 static void del_from_avail_list(struct swap_info_struct *p) 689 { 690 spin_lock(&swap_avail_lock); 691 __del_from_avail_list(p); 692 spin_unlock(&swap_avail_lock); 693 } 694 695 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 696 unsigned int nr_entries) 697 { 698 unsigned int end = offset + nr_entries - 1; 699 700 if (offset == si->lowest_bit) 701 si->lowest_bit += nr_entries; 702 if (end == si->highest_bit) 703 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries); 704 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries); 705 if (si->inuse_pages == si->pages) { 706 si->lowest_bit = si->max; 707 si->highest_bit = 0; 708 del_from_avail_list(si); 709 } 710 } 711 712 static void add_to_avail_list(struct swap_info_struct *p) 713 { 714 int nid; 715 716 spin_lock(&swap_avail_lock); 717 for_each_node(nid) 718 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 719 spin_unlock(&swap_avail_lock); 720 } 721 722 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 723 unsigned int nr_entries) 724 { 725 unsigned long begin = offset; 726 unsigned long end = offset + nr_entries - 1; 727 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 728 729 if (offset < si->lowest_bit) 730 si->lowest_bit = offset; 731 if (end > si->highest_bit) { 732 bool was_full = !si->highest_bit; 733 734 WRITE_ONCE(si->highest_bit, end); 735 if (was_full && (si->flags & SWP_WRITEOK)) 736 add_to_avail_list(si); 737 } 738 atomic_long_add(nr_entries, &nr_swap_pages); 739 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries); 740 if (si->flags & SWP_BLKDEV) 741 swap_slot_free_notify = 742 si->bdev->bd_disk->fops->swap_slot_free_notify; 743 else 744 swap_slot_free_notify = NULL; 745 while (offset <= end) { 746 arch_swap_invalidate_page(si->type, offset); 747 zswap_invalidate(si->type, offset); 748 if (swap_slot_free_notify) 749 swap_slot_free_notify(si->bdev, offset); 750 offset++; 751 } 752 clear_shadow_from_swap_cache(si->type, begin, end); 753 } 754 755 static void set_cluster_next(struct swap_info_struct *si, unsigned long next) 756 { 757 unsigned long prev; 758 759 if (!(si->flags & SWP_SOLIDSTATE)) { 760 si->cluster_next = next; 761 return; 762 } 763 764 prev = this_cpu_read(*si->cluster_next_cpu); 765 /* 766 * Cross the swap address space size aligned trunk, choose 767 * another trunk randomly to avoid lock contention on swap 768 * address space if possible. 769 */ 770 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) != 771 (next >> SWAP_ADDRESS_SPACE_SHIFT)) { 772 /* No free swap slots available */ 773 if (si->highest_bit <= si->lowest_bit) 774 return; 775 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit); 776 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES); 777 next = max_t(unsigned int, next, si->lowest_bit); 778 } 779 this_cpu_write(*si->cluster_next_cpu, next); 780 } 781 782 static bool swap_offset_available_and_locked(struct swap_info_struct *si, 783 unsigned long offset) 784 { 785 if (data_race(!si->swap_map[offset])) { 786 spin_lock(&si->lock); 787 return true; 788 } 789 790 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 791 spin_lock(&si->lock); 792 return true; 793 } 794 795 return false; 796 } 797 798 static int scan_swap_map_slots(struct swap_info_struct *si, 799 unsigned char usage, int nr, 800 swp_entry_t slots[]) 801 { 802 struct swap_cluster_info *ci; 803 unsigned long offset; 804 unsigned long scan_base; 805 unsigned long last_in_cluster = 0; 806 int latency_ration = LATENCY_LIMIT; 807 int n_ret = 0; 808 bool scanned_many = false; 809 810 /* 811 * We try to cluster swap pages by allocating them sequentially 812 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 813 * way, however, we resort to first-free allocation, starting 814 * a new cluster. This prevents us from scattering swap pages 815 * all over the entire swap partition, so that we reduce 816 * overall disk seek times between swap pages. -- sct 817 * But we do now try to find an empty cluster. -Andrea 818 * And we let swap pages go all over an SSD partition. Hugh 819 */ 820 821 si->flags += SWP_SCANNING; 822 /* 823 * Use percpu scan base for SSD to reduce lock contention on 824 * cluster and swap cache. For HDD, sequential access is more 825 * important. 826 */ 827 if (si->flags & SWP_SOLIDSTATE) 828 scan_base = this_cpu_read(*si->cluster_next_cpu); 829 else 830 scan_base = si->cluster_next; 831 offset = scan_base; 832 833 /* SSD algorithm */ 834 if (si->cluster_info) { 835 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 836 goto scan; 837 } else if (unlikely(!si->cluster_nr--)) { 838 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 839 si->cluster_nr = SWAPFILE_CLUSTER - 1; 840 goto checks; 841 } 842 843 spin_unlock(&si->lock); 844 845 /* 846 * If seek is expensive, start searching for new cluster from 847 * start of partition, to minimize the span of allocated swap. 848 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 849 * case, just handled by scan_swap_map_try_ssd_cluster() above. 850 */ 851 scan_base = offset = si->lowest_bit; 852 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 853 854 /* Locate the first empty (unaligned) cluster */ 855 for (; last_in_cluster <= si->highest_bit; offset++) { 856 if (si->swap_map[offset]) 857 last_in_cluster = offset + SWAPFILE_CLUSTER; 858 else if (offset == last_in_cluster) { 859 spin_lock(&si->lock); 860 offset -= SWAPFILE_CLUSTER - 1; 861 si->cluster_next = offset; 862 si->cluster_nr = SWAPFILE_CLUSTER - 1; 863 goto checks; 864 } 865 if (unlikely(--latency_ration < 0)) { 866 cond_resched(); 867 latency_ration = LATENCY_LIMIT; 868 } 869 } 870 871 offset = scan_base; 872 spin_lock(&si->lock); 873 si->cluster_nr = SWAPFILE_CLUSTER - 1; 874 } 875 876 checks: 877 if (si->cluster_info) { 878 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 879 /* take a break if we already got some slots */ 880 if (n_ret) 881 goto done; 882 if (!scan_swap_map_try_ssd_cluster(si, &offset, 883 &scan_base)) 884 goto scan; 885 } 886 } 887 if (!(si->flags & SWP_WRITEOK)) 888 goto no_page; 889 if (!si->highest_bit) 890 goto no_page; 891 if (offset > si->highest_bit) 892 scan_base = offset = si->lowest_bit; 893 894 ci = lock_cluster(si, offset); 895 /* reuse swap entry of cache-only swap if not busy. */ 896 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 897 int swap_was_freed; 898 unlock_cluster(ci); 899 spin_unlock(&si->lock); 900 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 901 spin_lock(&si->lock); 902 /* entry was freed successfully, try to use this again */ 903 if (swap_was_freed) 904 goto checks; 905 goto scan; /* check next one */ 906 } 907 908 if (si->swap_map[offset]) { 909 unlock_cluster(ci); 910 if (!n_ret) 911 goto scan; 912 else 913 goto done; 914 } 915 WRITE_ONCE(si->swap_map[offset], usage); 916 inc_cluster_info_page(si, si->cluster_info, offset); 917 unlock_cluster(ci); 918 919 swap_range_alloc(si, offset, 1); 920 slots[n_ret++] = swp_entry(si->type, offset); 921 922 /* got enough slots or reach max slots? */ 923 if ((n_ret == nr) || (offset >= si->highest_bit)) 924 goto done; 925 926 /* search for next available slot */ 927 928 /* time to take a break? */ 929 if (unlikely(--latency_ration < 0)) { 930 if (n_ret) 931 goto done; 932 spin_unlock(&si->lock); 933 cond_resched(); 934 spin_lock(&si->lock); 935 latency_ration = LATENCY_LIMIT; 936 } 937 938 /* try to get more slots in cluster */ 939 if (si->cluster_info) { 940 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 941 goto checks; 942 } else if (si->cluster_nr && !si->swap_map[++offset]) { 943 /* non-ssd case, still more slots in cluster? */ 944 --si->cluster_nr; 945 goto checks; 946 } 947 948 /* 949 * Even if there's no free clusters available (fragmented), 950 * try to scan a little more quickly with lock held unless we 951 * have scanned too many slots already. 952 */ 953 if (!scanned_many) { 954 unsigned long scan_limit; 955 956 if (offset < scan_base) 957 scan_limit = scan_base; 958 else 959 scan_limit = si->highest_bit; 960 for (; offset <= scan_limit && --latency_ration > 0; 961 offset++) { 962 if (!si->swap_map[offset]) 963 goto checks; 964 } 965 } 966 967 done: 968 set_cluster_next(si, offset + 1); 969 si->flags -= SWP_SCANNING; 970 return n_ret; 971 972 scan: 973 spin_unlock(&si->lock); 974 while (++offset <= READ_ONCE(si->highest_bit)) { 975 if (unlikely(--latency_ration < 0)) { 976 cond_resched(); 977 latency_ration = LATENCY_LIMIT; 978 scanned_many = true; 979 } 980 if (swap_offset_available_and_locked(si, offset)) 981 goto checks; 982 } 983 offset = si->lowest_bit; 984 while (offset < scan_base) { 985 if (unlikely(--latency_ration < 0)) { 986 cond_resched(); 987 latency_ration = LATENCY_LIMIT; 988 scanned_many = true; 989 } 990 if (swap_offset_available_and_locked(si, offset)) 991 goto checks; 992 offset++; 993 } 994 spin_lock(&si->lock); 995 996 no_page: 997 si->flags -= SWP_SCANNING; 998 return n_ret; 999 } 1000 1001 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 1002 { 1003 unsigned long idx; 1004 struct swap_cluster_info *ci; 1005 unsigned long offset; 1006 1007 /* 1008 * Should not even be attempting cluster allocations when huge 1009 * page swap is disabled. Warn and fail the allocation. 1010 */ 1011 if (!IS_ENABLED(CONFIG_THP_SWAP)) { 1012 VM_WARN_ON_ONCE(1); 1013 return 0; 1014 } 1015 1016 if (cluster_list_empty(&si->free_clusters)) 1017 return 0; 1018 1019 idx = cluster_list_first(&si->free_clusters); 1020 offset = idx * SWAPFILE_CLUSTER; 1021 ci = lock_cluster(si, offset); 1022 alloc_cluster(si, idx); 1023 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 1024 1025 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER); 1026 unlock_cluster(ci); 1027 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 1028 *slot = swp_entry(si->type, offset); 1029 1030 return 1; 1031 } 1032 1033 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 1034 { 1035 unsigned long offset = idx * SWAPFILE_CLUSTER; 1036 struct swap_cluster_info *ci; 1037 1038 ci = lock_cluster(si, offset); 1039 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 1040 cluster_set_count_flag(ci, 0, 0); 1041 free_cluster(si, idx); 1042 unlock_cluster(ci); 1043 swap_range_free(si, offset, SWAPFILE_CLUSTER); 1044 } 1045 1046 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) 1047 { 1048 unsigned long size = swap_entry_size(entry_size); 1049 struct swap_info_struct *si, *next; 1050 long avail_pgs; 1051 int n_ret = 0; 1052 int node; 1053 1054 /* Only single cluster request supported */ 1055 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); 1056 1057 spin_lock(&swap_avail_lock); 1058 1059 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 1060 if (avail_pgs <= 0) { 1061 spin_unlock(&swap_avail_lock); 1062 goto noswap; 1063 } 1064 1065 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); 1066 1067 atomic_long_sub(n_goal * size, &nr_swap_pages); 1068 1069 start_over: 1070 node = numa_node_id(); 1071 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1072 /* requeue si to after same-priority siblings */ 1073 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1074 spin_unlock(&swap_avail_lock); 1075 spin_lock(&si->lock); 1076 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 1077 spin_lock(&swap_avail_lock); 1078 if (plist_node_empty(&si->avail_lists[node])) { 1079 spin_unlock(&si->lock); 1080 goto nextsi; 1081 } 1082 WARN(!si->highest_bit, 1083 "swap_info %d in list but !highest_bit\n", 1084 si->type); 1085 WARN(!(si->flags & SWP_WRITEOK), 1086 "swap_info %d in list but !SWP_WRITEOK\n", 1087 si->type); 1088 __del_from_avail_list(si); 1089 spin_unlock(&si->lock); 1090 goto nextsi; 1091 } 1092 if (size == SWAPFILE_CLUSTER) { 1093 if (si->flags & SWP_BLKDEV) 1094 n_ret = swap_alloc_cluster(si, swp_entries); 1095 } else 1096 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1097 n_goal, swp_entries); 1098 spin_unlock(&si->lock); 1099 if (n_ret || size == SWAPFILE_CLUSTER) 1100 goto check_out; 1101 cond_resched(); 1102 1103 spin_lock(&swap_avail_lock); 1104 nextsi: 1105 /* 1106 * if we got here, it's likely that si was almost full before, 1107 * and since scan_swap_map_slots() can drop the si->lock, 1108 * multiple callers probably all tried to get a page from the 1109 * same si and it filled up before we could get one; or, the si 1110 * filled up between us dropping swap_avail_lock and taking 1111 * si->lock. Since we dropped the swap_avail_lock, the 1112 * swap_avail_head list may have been modified; so if next is 1113 * still in the swap_avail_head list then try it, otherwise 1114 * start over if we have not gotten any slots. 1115 */ 1116 if (plist_node_empty(&next->avail_lists[node])) 1117 goto start_over; 1118 } 1119 1120 spin_unlock(&swap_avail_lock); 1121 1122 check_out: 1123 if (n_ret < n_goal) 1124 atomic_long_add((long)(n_goal - n_ret) * size, 1125 &nr_swap_pages); 1126 noswap: 1127 return n_ret; 1128 } 1129 1130 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1131 { 1132 struct swap_info_struct *p; 1133 unsigned long offset; 1134 1135 if (!entry.val) 1136 goto out; 1137 p = swp_swap_info(entry); 1138 if (!p) 1139 goto bad_nofile; 1140 if (data_race(!(p->flags & SWP_USED))) 1141 goto bad_device; 1142 offset = swp_offset(entry); 1143 if (offset >= p->max) 1144 goto bad_offset; 1145 if (data_race(!p->swap_map[swp_offset(entry)])) 1146 goto bad_free; 1147 return p; 1148 1149 bad_free: 1150 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1151 goto out; 1152 bad_offset: 1153 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1154 goto out; 1155 bad_device: 1156 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1157 goto out; 1158 bad_nofile: 1159 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1160 out: 1161 return NULL; 1162 } 1163 1164 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1165 struct swap_info_struct *q) 1166 { 1167 struct swap_info_struct *p; 1168 1169 p = _swap_info_get(entry); 1170 1171 if (p != q) { 1172 if (q != NULL) 1173 spin_unlock(&q->lock); 1174 if (p != NULL) 1175 spin_lock(&p->lock); 1176 } 1177 return p; 1178 } 1179 1180 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1181 unsigned long offset, 1182 unsigned char usage) 1183 { 1184 unsigned char count; 1185 unsigned char has_cache; 1186 1187 count = p->swap_map[offset]; 1188 1189 has_cache = count & SWAP_HAS_CACHE; 1190 count &= ~SWAP_HAS_CACHE; 1191 1192 if (usage == SWAP_HAS_CACHE) { 1193 VM_BUG_ON(!has_cache); 1194 has_cache = 0; 1195 } else if (count == SWAP_MAP_SHMEM) { 1196 /* 1197 * Or we could insist on shmem.c using a special 1198 * swap_shmem_free() and free_shmem_swap_and_cache()... 1199 */ 1200 count = 0; 1201 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1202 if (count == COUNT_CONTINUED) { 1203 if (swap_count_continued(p, offset, count)) 1204 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1205 else 1206 count = SWAP_MAP_MAX; 1207 } else 1208 count--; 1209 } 1210 1211 usage = count | has_cache; 1212 if (usage) 1213 WRITE_ONCE(p->swap_map[offset], usage); 1214 else 1215 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE); 1216 1217 return usage; 1218 } 1219 1220 /* 1221 * When we get a swap entry, if there aren't some other ways to 1222 * prevent swapoff, such as the folio in swap cache is locked, page 1223 * table lock is held, etc., the swap entry may become invalid because 1224 * of swapoff. Then, we need to enclose all swap related functions 1225 * with get_swap_device() and put_swap_device(), unless the swap 1226 * functions call get/put_swap_device() by themselves. 1227 * 1228 * Check whether swap entry is valid in the swap device. If so, 1229 * return pointer to swap_info_struct, and keep the swap entry valid 1230 * via preventing the swap device from being swapoff, until 1231 * put_swap_device() is called. Otherwise return NULL. 1232 * 1233 * Notice that swapoff or swapoff+swapon can still happen before the 1234 * percpu_ref_tryget_live() in get_swap_device() or after the 1235 * percpu_ref_put() in put_swap_device() if there isn't any other way 1236 * to prevent swapoff. The caller must be prepared for that. For 1237 * example, the following situation is possible. 1238 * 1239 * CPU1 CPU2 1240 * do_swap_page() 1241 * ... swapoff+swapon 1242 * __read_swap_cache_async() 1243 * swapcache_prepare() 1244 * __swap_duplicate() 1245 * // check swap_map 1246 * // verify PTE not changed 1247 * 1248 * In __swap_duplicate(), the swap_map need to be checked before 1249 * changing partly because the specified swap entry may be for another 1250 * swap device which has been swapoff. And in do_swap_page(), after 1251 * the page is read from the swap device, the PTE is verified not 1252 * changed with the page table locked to check whether the swap device 1253 * has been swapoff or swapoff+swapon. 1254 */ 1255 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1256 { 1257 struct swap_info_struct *si; 1258 unsigned long offset; 1259 1260 if (!entry.val) 1261 goto out; 1262 si = swp_swap_info(entry); 1263 if (!si) 1264 goto bad_nofile; 1265 if (!percpu_ref_tryget_live(&si->users)) 1266 goto out; 1267 /* 1268 * Guarantee the si->users are checked before accessing other 1269 * fields of swap_info_struct. 1270 * 1271 * Paired with the spin_unlock() after setup_swap_info() in 1272 * enable_swap_info(). 1273 */ 1274 smp_rmb(); 1275 offset = swp_offset(entry); 1276 if (offset >= si->max) 1277 goto put_out; 1278 1279 return si; 1280 bad_nofile: 1281 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1282 out: 1283 return NULL; 1284 put_out: 1285 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1286 percpu_ref_put(&si->users); 1287 return NULL; 1288 } 1289 1290 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1291 swp_entry_t entry) 1292 { 1293 struct swap_cluster_info *ci; 1294 unsigned long offset = swp_offset(entry); 1295 unsigned char usage; 1296 1297 ci = lock_cluster_or_swap_info(p, offset); 1298 usage = __swap_entry_free_locked(p, offset, 1); 1299 unlock_cluster_or_swap_info(p, ci); 1300 if (!usage) 1301 free_swap_slot(entry); 1302 1303 return usage; 1304 } 1305 1306 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1307 { 1308 struct swap_cluster_info *ci; 1309 unsigned long offset = swp_offset(entry); 1310 unsigned char count; 1311 1312 ci = lock_cluster(p, offset); 1313 count = p->swap_map[offset]; 1314 VM_BUG_ON(count != SWAP_HAS_CACHE); 1315 p->swap_map[offset] = 0; 1316 dec_cluster_info_page(p, p->cluster_info, offset); 1317 unlock_cluster(ci); 1318 1319 mem_cgroup_uncharge_swap(entry, 1); 1320 swap_range_free(p, offset, 1); 1321 } 1322 1323 /* 1324 * Caller has made sure that the swap device corresponding to entry 1325 * is still around or has not been recycled. 1326 */ 1327 void swap_free(swp_entry_t entry) 1328 { 1329 struct swap_info_struct *p; 1330 1331 p = _swap_info_get(entry); 1332 if (p) 1333 __swap_entry_free(p, entry); 1334 } 1335 1336 /* 1337 * Called after dropping swapcache to decrease refcnt to swap entries. 1338 */ 1339 void put_swap_folio(struct folio *folio, swp_entry_t entry) 1340 { 1341 unsigned long offset = swp_offset(entry); 1342 unsigned long idx = offset / SWAPFILE_CLUSTER; 1343 struct swap_cluster_info *ci; 1344 struct swap_info_struct *si; 1345 unsigned char *map; 1346 unsigned int i, free_entries = 0; 1347 unsigned char val; 1348 int size = swap_entry_size(folio_nr_pages(folio)); 1349 1350 si = _swap_info_get(entry); 1351 if (!si) 1352 return; 1353 1354 ci = lock_cluster_or_swap_info(si, offset); 1355 if (size == SWAPFILE_CLUSTER) { 1356 VM_BUG_ON(!cluster_is_huge(ci)); 1357 map = si->swap_map + offset; 1358 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1359 val = map[i]; 1360 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1361 if (val == SWAP_HAS_CACHE) 1362 free_entries++; 1363 } 1364 cluster_clear_huge(ci); 1365 if (free_entries == SWAPFILE_CLUSTER) { 1366 unlock_cluster_or_swap_info(si, ci); 1367 spin_lock(&si->lock); 1368 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1369 swap_free_cluster(si, idx); 1370 spin_unlock(&si->lock); 1371 return; 1372 } 1373 } 1374 for (i = 0; i < size; i++, entry.val++) { 1375 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1376 unlock_cluster_or_swap_info(si, ci); 1377 free_swap_slot(entry); 1378 if (i == size - 1) 1379 return; 1380 lock_cluster_or_swap_info(si, offset); 1381 } 1382 } 1383 unlock_cluster_or_swap_info(si, ci); 1384 } 1385 1386 #ifdef CONFIG_THP_SWAP 1387 int split_swap_cluster(swp_entry_t entry) 1388 { 1389 struct swap_info_struct *si; 1390 struct swap_cluster_info *ci; 1391 unsigned long offset = swp_offset(entry); 1392 1393 si = _swap_info_get(entry); 1394 if (!si) 1395 return -EBUSY; 1396 ci = lock_cluster(si, offset); 1397 cluster_clear_huge(ci); 1398 unlock_cluster(ci); 1399 return 0; 1400 } 1401 #endif 1402 1403 static int swp_entry_cmp(const void *ent1, const void *ent2) 1404 { 1405 const swp_entry_t *e1 = ent1, *e2 = ent2; 1406 1407 return (int)swp_type(*e1) - (int)swp_type(*e2); 1408 } 1409 1410 void swapcache_free_entries(swp_entry_t *entries, int n) 1411 { 1412 struct swap_info_struct *p, *prev; 1413 int i; 1414 1415 if (n <= 0) 1416 return; 1417 1418 prev = NULL; 1419 p = NULL; 1420 1421 /* 1422 * Sort swap entries by swap device, so each lock is only taken once. 1423 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1424 * so low that it isn't necessary to optimize further. 1425 */ 1426 if (nr_swapfiles > 1) 1427 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1428 for (i = 0; i < n; ++i) { 1429 p = swap_info_get_cont(entries[i], prev); 1430 if (p) 1431 swap_entry_free(p, entries[i]); 1432 prev = p; 1433 } 1434 if (p) 1435 spin_unlock(&p->lock); 1436 } 1437 1438 int __swap_count(swp_entry_t entry) 1439 { 1440 struct swap_info_struct *si = swp_swap_info(entry); 1441 pgoff_t offset = swp_offset(entry); 1442 1443 return swap_count(si->swap_map[offset]); 1444 } 1445 1446 /* 1447 * How many references to @entry are currently swapped out? 1448 * This does not give an exact answer when swap count is continued, 1449 * but does include the high COUNT_CONTINUED flag to allow for that. 1450 */ 1451 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1452 { 1453 pgoff_t offset = swp_offset(entry); 1454 struct swap_cluster_info *ci; 1455 int count; 1456 1457 ci = lock_cluster_or_swap_info(si, offset); 1458 count = swap_count(si->swap_map[offset]); 1459 unlock_cluster_or_swap_info(si, ci); 1460 return count; 1461 } 1462 1463 /* 1464 * How many references to @entry are currently swapped out? 1465 * This considers COUNT_CONTINUED so it returns exact answer. 1466 */ 1467 int swp_swapcount(swp_entry_t entry) 1468 { 1469 int count, tmp_count, n; 1470 struct swap_info_struct *p; 1471 struct swap_cluster_info *ci; 1472 struct page *page; 1473 pgoff_t offset; 1474 unsigned char *map; 1475 1476 p = _swap_info_get(entry); 1477 if (!p) 1478 return 0; 1479 1480 offset = swp_offset(entry); 1481 1482 ci = lock_cluster_or_swap_info(p, offset); 1483 1484 count = swap_count(p->swap_map[offset]); 1485 if (!(count & COUNT_CONTINUED)) 1486 goto out; 1487 1488 count &= ~COUNT_CONTINUED; 1489 n = SWAP_MAP_MAX + 1; 1490 1491 page = vmalloc_to_page(p->swap_map + offset); 1492 offset &= ~PAGE_MASK; 1493 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1494 1495 do { 1496 page = list_next_entry(page, lru); 1497 map = kmap_atomic(page); 1498 tmp_count = map[offset]; 1499 kunmap_atomic(map); 1500 1501 count += (tmp_count & ~COUNT_CONTINUED) * n; 1502 n *= (SWAP_CONT_MAX + 1); 1503 } while (tmp_count & COUNT_CONTINUED); 1504 out: 1505 unlock_cluster_or_swap_info(p, ci); 1506 return count; 1507 } 1508 1509 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1510 swp_entry_t entry) 1511 { 1512 struct swap_cluster_info *ci; 1513 unsigned char *map = si->swap_map; 1514 unsigned long roffset = swp_offset(entry); 1515 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1516 int i; 1517 bool ret = false; 1518 1519 ci = lock_cluster_or_swap_info(si, offset); 1520 if (!ci || !cluster_is_huge(ci)) { 1521 if (swap_count(map[roffset])) 1522 ret = true; 1523 goto unlock_out; 1524 } 1525 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1526 if (swap_count(map[offset + i])) { 1527 ret = true; 1528 break; 1529 } 1530 } 1531 unlock_out: 1532 unlock_cluster_or_swap_info(si, ci); 1533 return ret; 1534 } 1535 1536 static bool folio_swapped(struct folio *folio) 1537 { 1538 swp_entry_t entry = folio_swap_entry(folio); 1539 struct swap_info_struct *si = _swap_info_get(entry); 1540 1541 if (!si) 1542 return false; 1543 1544 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio))) 1545 return swap_swapcount(si, entry) != 0; 1546 1547 return swap_page_trans_huge_swapped(si, entry); 1548 } 1549 1550 /** 1551 * folio_free_swap() - Free the swap space used for this folio. 1552 * @folio: The folio to remove. 1553 * 1554 * If swap is getting full, or if there are no more mappings of this folio, 1555 * then call folio_free_swap to free its swap space. 1556 * 1557 * Return: true if we were able to release the swap space. 1558 */ 1559 bool folio_free_swap(struct folio *folio) 1560 { 1561 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1562 1563 if (!folio_test_swapcache(folio)) 1564 return false; 1565 if (folio_test_writeback(folio)) 1566 return false; 1567 if (folio_swapped(folio)) 1568 return false; 1569 1570 /* 1571 * Once hibernation has begun to create its image of memory, 1572 * there's a danger that one of the calls to folio_free_swap() 1573 * - most probably a call from __try_to_reclaim_swap() while 1574 * hibernation is allocating its own swap pages for the image, 1575 * but conceivably even a call from memory reclaim - will free 1576 * the swap from a folio which has already been recorded in the 1577 * image as a clean swapcache folio, and then reuse its swap for 1578 * another page of the image. On waking from hibernation, the 1579 * original folio might be freed under memory pressure, then 1580 * later read back in from swap, now with the wrong data. 1581 * 1582 * Hibernation suspends storage while it is writing the image 1583 * to disk so check that here. 1584 */ 1585 if (pm_suspended_storage()) 1586 return false; 1587 1588 delete_from_swap_cache(folio); 1589 folio_set_dirty(folio); 1590 return true; 1591 } 1592 1593 /* 1594 * Free the swap entry like above, but also try to 1595 * free the page cache entry if it is the last user. 1596 */ 1597 int free_swap_and_cache(swp_entry_t entry) 1598 { 1599 struct swap_info_struct *p; 1600 unsigned char count; 1601 1602 if (non_swap_entry(entry)) 1603 return 1; 1604 1605 p = _swap_info_get(entry); 1606 if (p) { 1607 count = __swap_entry_free(p, entry); 1608 if (count == SWAP_HAS_CACHE && 1609 !swap_page_trans_huge_swapped(p, entry)) 1610 __try_to_reclaim_swap(p, swp_offset(entry), 1611 TTRS_UNMAPPED | TTRS_FULL); 1612 } 1613 return p != NULL; 1614 } 1615 1616 #ifdef CONFIG_HIBERNATION 1617 1618 swp_entry_t get_swap_page_of_type(int type) 1619 { 1620 struct swap_info_struct *si = swap_type_to_swap_info(type); 1621 swp_entry_t entry = {0}; 1622 1623 if (!si) 1624 goto fail; 1625 1626 /* This is called for allocating swap entry, not cache */ 1627 spin_lock(&si->lock); 1628 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry)) 1629 atomic_long_dec(&nr_swap_pages); 1630 spin_unlock(&si->lock); 1631 fail: 1632 return entry; 1633 } 1634 1635 /* 1636 * Find the swap type that corresponds to given device (if any). 1637 * 1638 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1639 * from 0, in which the swap header is expected to be located. 1640 * 1641 * This is needed for the suspend to disk (aka swsusp). 1642 */ 1643 int swap_type_of(dev_t device, sector_t offset) 1644 { 1645 int type; 1646 1647 if (!device) 1648 return -1; 1649 1650 spin_lock(&swap_lock); 1651 for (type = 0; type < nr_swapfiles; type++) { 1652 struct swap_info_struct *sis = swap_info[type]; 1653 1654 if (!(sis->flags & SWP_WRITEOK)) 1655 continue; 1656 1657 if (device == sis->bdev->bd_dev) { 1658 struct swap_extent *se = first_se(sis); 1659 1660 if (se->start_block == offset) { 1661 spin_unlock(&swap_lock); 1662 return type; 1663 } 1664 } 1665 } 1666 spin_unlock(&swap_lock); 1667 return -ENODEV; 1668 } 1669 1670 int find_first_swap(dev_t *device) 1671 { 1672 int type; 1673 1674 spin_lock(&swap_lock); 1675 for (type = 0; type < nr_swapfiles; type++) { 1676 struct swap_info_struct *sis = swap_info[type]; 1677 1678 if (!(sis->flags & SWP_WRITEOK)) 1679 continue; 1680 *device = sis->bdev->bd_dev; 1681 spin_unlock(&swap_lock); 1682 return type; 1683 } 1684 spin_unlock(&swap_lock); 1685 return -ENODEV; 1686 } 1687 1688 /* 1689 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1690 * corresponding to given index in swap_info (swap type). 1691 */ 1692 sector_t swapdev_block(int type, pgoff_t offset) 1693 { 1694 struct swap_info_struct *si = swap_type_to_swap_info(type); 1695 struct swap_extent *se; 1696 1697 if (!si || !(si->flags & SWP_WRITEOK)) 1698 return 0; 1699 se = offset_to_swap_extent(si, offset); 1700 return se->start_block + (offset - se->start_page); 1701 } 1702 1703 /* 1704 * Return either the total number of swap pages of given type, or the number 1705 * of free pages of that type (depending on @free) 1706 * 1707 * This is needed for software suspend 1708 */ 1709 unsigned int count_swap_pages(int type, int free) 1710 { 1711 unsigned int n = 0; 1712 1713 spin_lock(&swap_lock); 1714 if ((unsigned int)type < nr_swapfiles) { 1715 struct swap_info_struct *sis = swap_info[type]; 1716 1717 spin_lock(&sis->lock); 1718 if (sis->flags & SWP_WRITEOK) { 1719 n = sis->pages; 1720 if (free) 1721 n -= sis->inuse_pages; 1722 } 1723 spin_unlock(&sis->lock); 1724 } 1725 spin_unlock(&swap_lock); 1726 return n; 1727 } 1728 #endif /* CONFIG_HIBERNATION */ 1729 1730 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1731 { 1732 return pte_same(pte_swp_clear_flags(pte), swp_pte); 1733 } 1734 1735 /* 1736 * No need to decide whether this PTE shares the swap entry with others, 1737 * just let do_wp_page work it out if a write is requested later - to 1738 * force COW, vm_page_prot omits write permission from any private vma. 1739 */ 1740 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1741 unsigned long addr, swp_entry_t entry, struct folio *folio) 1742 { 1743 struct page *page = folio_file_page(folio, swp_offset(entry)); 1744 struct page *swapcache; 1745 spinlock_t *ptl; 1746 pte_t *pte, new_pte, old_pte; 1747 bool hwposioned = false; 1748 int ret = 1; 1749 1750 swapcache = page; 1751 page = ksm_might_need_to_copy(page, vma, addr); 1752 if (unlikely(!page)) 1753 return -ENOMEM; 1754 else if (unlikely(PTR_ERR(page) == -EHWPOISON)) 1755 hwposioned = true; 1756 1757 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1758 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte), 1759 swp_entry_to_pte(entry)))) { 1760 ret = 0; 1761 goto out; 1762 } 1763 1764 old_pte = ptep_get(pte); 1765 1766 if (unlikely(hwposioned || !PageUptodate(page))) { 1767 swp_entry_t swp_entry; 1768 1769 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1770 if (hwposioned) { 1771 swp_entry = make_hwpoison_entry(swapcache); 1772 page = swapcache; 1773 } else { 1774 swp_entry = make_poisoned_swp_entry(); 1775 } 1776 new_pte = swp_entry_to_pte(swp_entry); 1777 ret = 0; 1778 goto setpte; 1779 } 1780 1781 /* 1782 * Some architectures may have to restore extra metadata to the page 1783 * when reading from swap. This metadata may be indexed by swap entry 1784 * so this must be called before swap_free(). 1785 */ 1786 arch_swap_restore(entry, page_folio(page)); 1787 1788 /* See do_swap_page() */ 1789 BUG_ON(!PageAnon(page) && PageMappedToDisk(page)); 1790 BUG_ON(PageAnon(page) && PageAnonExclusive(page)); 1791 1792 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1793 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1794 get_page(page); 1795 if (page == swapcache) { 1796 rmap_t rmap_flags = RMAP_NONE; 1797 1798 /* 1799 * See do_swap_page(): PageWriteback() would be problematic. 1800 * However, we do a wait_on_page_writeback() just before this 1801 * call and have the page locked. 1802 */ 1803 VM_BUG_ON_PAGE(PageWriteback(page), page); 1804 if (pte_swp_exclusive(old_pte)) 1805 rmap_flags |= RMAP_EXCLUSIVE; 1806 1807 page_add_anon_rmap(page, vma, addr, rmap_flags); 1808 } else { /* ksm created a completely new copy */ 1809 page_add_new_anon_rmap(page, vma, addr); 1810 lru_cache_add_inactive_or_unevictable(page, vma); 1811 } 1812 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot)); 1813 if (pte_swp_soft_dirty(old_pte)) 1814 new_pte = pte_mksoft_dirty(new_pte); 1815 if (pte_swp_uffd_wp(old_pte)) 1816 new_pte = pte_mkuffd_wp(new_pte); 1817 setpte: 1818 set_pte_at(vma->vm_mm, addr, pte, new_pte); 1819 swap_free(entry); 1820 out: 1821 if (pte) 1822 pte_unmap_unlock(pte, ptl); 1823 if (page != swapcache) { 1824 unlock_page(page); 1825 put_page(page); 1826 } 1827 return ret; 1828 } 1829 1830 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1831 unsigned long addr, unsigned long end, 1832 unsigned int type) 1833 { 1834 pte_t *pte = NULL; 1835 struct swap_info_struct *si; 1836 1837 si = swap_info[type]; 1838 do { 1839 struct folio *folio; 1840 unsigned long offset; 1841 unsigned char swp_count; 1842 swp_entry_t entry; 1843 int ret; 1844 pte_t ptent; 1845 1846 if (!pte++) { 1847 pte = pte_offset_map(pmd, addr); 1848 if (!pte) 1849 break; 1850 } 1851 1852 ptent = ptep_get_lockless(pte); 1853 1854 if (!is_swap_pte(ptent)) 1855 continue; 1856 1857 entry = pte_to_swp_entry(ptent); 1858 if (swp_type(entry) != type) 1859 continue; 1860 1861 offset = swp_offset(entry); 1862 pte_unmap(pte); 1863 pte = NULL; 1864 1865 folio = swap_cache_get_folio(entry, vma, addr); 1866 if (!folio) { 1867 struct page *page; 1868 struct vm_fault vmf = { 1869 .vma = vma, 1870 .address = addr, 1871 .real_address = addr, 1872 .pmd = pmd, 1873 }; 1874 1875 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 1876 &vmf); 1877 if (page) 1878 folio = page_folio(page); 1879 } 1880 if (!folio) { 1881 swp_count = READ_ONCE(si->swap_map[offset]); 1882 if (swp_count == 0 || swp_count == SWAP_MAP_BAD) 1883 continue; 1884 return -ENOMEM; 1885 } 1886 1887 folio_lock(folio); 1888 folio_wait_writeback(folio); 1889 ret = unuse_pte(vma, pmd, addr, entry, folio); 1890 if (ret < 0) { 1891 folio_unlock(folio); 1892 folio_put(folio); 1893 return ret; 1894 } 1895 1896 folio_free_swap(folio); 1897 folio_unlock(folio); 1898 folio_put(folio); 1899 } while (addr += PAGE_SIZE, addr != end); 1900 1901 if (pte) 1902 pte_unmap(pte); 1903 return 0; 1904 } 1905 1906 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1907 unsigned long addr, unsigned long end, 1908 unsigned int type) 1909 { 1910 pmd_t *pmd; 1911 unsigned long next; 1912 int ret; 1913 1914 pmd = pmd_offset(pud, addr); 1915 do { 1916 cond_resched(); 1917 next = pmd_addr_end(addr, end); 1918 ret = unuse_pte_range(vma, pmd, addr, next, type); 1919 if (ret) 1920 return ret; 1921 } while (pmd++, addr = next, addr != end); 1922 return 0; 1923 } 1924 1925 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 1926 unsigned long addr, unsigned long end, 1927 unsigned int type) 1928 { 1929 pud_t *pud; 1930 unsigned long next; 1931 int ret; 1932 1933 pud = pud_offset(p4d, addr); 1934 do { 1935 next = pud_addr_end(addr, end); 1936 if (pud_none_or_clear_bad(pud)) 1937 continue; 1938 ret = unuse_pmd_range(vma, pud, addr, next, type); 1939 if (ret) 1940 return ret; 1941 } while (pud++, addr = next, addr != end); 1942 return 0; 1943 } 1944 1945 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 1946 unsigned long addr, unsigned long end, 1947 unsigned int type) 1948 { 1949 p4d_t *p4d; 1950 unsigned long next; 1951 int ret; 1952 1953 p4d = p4d_offset(pgd, addr); 1954 do { 1955 next = p4d_addr_end(addr, end); 1956 if (p4d_none_or_clear_bad(p4d)) 1957 continue; 1958 ret = unuse_pud_range(vma, p4d, addr, next, type); 1959 if (ret) 1960 return ret; 1961 } while (p4d++, addr = next, addr != end); 1962 return 0; 1963 } 1964 1965 static int unuse_vma(struct vm_area_struct *vma, unsigned int type) 1966 { 1967 pgd_t *pgd; 1968 unsigned long addr, end, next; 1969 int ret; 1970 1971 addr = vma->vm_start; 1972 end = vma->vm_end; 1973 1974 pgd = pgd_offset(vma->vm_mm, addr); 1975 do { 1976 next = pgd_addr_end(addr, end); 1977 if (pgd_none_or_clear_bad(pgd)) 1978 continue; 1979 ret = unuse_p4d_range(vma, pgd, addr, next, type); 1980 if (ret) 1981 return ret; 1982 } while (pgd++, addr = next, addr != end); 1983 return 0; 1984 } 1985 1986 static int unuse_mm(struct mm_struct *mm, unsigned int type) 1987 { 1988 struct vm_area_struct *vma; 1989 int ret = 0; 1990 VMA_ITERATOR(vmi, mm, 0); 1991 1992 mmap_read_lock(mm); 1993 for_each_vma(vmi, vma) { 1994 if (vma->anon_vma) { 1995 ret = unuse_vma(vma, type); 1996 if (ret) 1997 break; 1998 } 1999 2000 cond_resched(); 2001 } 2002 mmap_read_unlock(mm); 2003 return ret; 2004 } 2005 2006 /* 2007 * Scan swap_map from current position to next entry still in use. 2008 * Return 0 if there are no inuse entries after prev till end of 2009 * the map. 2010 */ 2011 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2012 unsigned int prev) 2013 { 2014 unsigned int i; 2015 unsigned char count; 2016 2017 /* 2018 * No need for swap_lock here: we're just looking 2019 * for whether an entry is in use, not modifying it; false 2020 * hits are okay, and sys_swapoff() has already prevented new 2021 * allocations from this area (while holding swap_lock). 2022 */ 2023 for (i = prev + 1; i < si->max; i++) { 2024 count = READ_ONCE(si->swap_map[i]); 2025 if (count && swap_count(count) != SWAP_MAP_BAD) 2026 break; 2027 if ((i % LATENCY_LIMIT) == 0) 2028 cond_resched(); 2029 } 2030 2031 if (i == si->max) 2032 i = 0; 2033 2034 return i; 2035 } 2036 2037 static int try_to_unuse(unsigned int type) 2038 { 2039 struct mm_struct *prev_mm; 2040 struct mm_struct *mm; 2041 struct list_head *p; 2042 int retval = 0; 2043 struct swap_info_struct *si = swap_info[type]; 2044 struct folio *folio; 2045 swp_entry_t entry; 2046 unsigned int i; 2047 2048 if (!READ_ONCE(si->inuse_pages)) 2049 return 0; 2050 2051 retry: 2052 retval = shmem_unuse(type); 2053 if (retval) 2054 return retval; 2055 2056 prev_mm = &init_mm; 2057 mmget(prev_mm); 2058 2059 spin_lock(&mmlist_lock); 2060 p = &init_mm.mmlist; 2061 while (READ_ONCE(si->inuse_pages) && 2062 !signal_pending(current) && 2063 (p = p->next) != &init_mm.mmlist) { 2064 2065 mm = list_entry(p, struct mm_struct, mmlist); 2066 if (!mmget_not_zero(mm)) 2067 continue; 2068 spin_unlock(&mmlist_lock); 2069 mmput(prev_mm); 2070 prev_mm = mm; 2071 retval = unuse_mm(mm, type); 2072 if (retval) { 2073 mmput(prev_mm); 2074 return retval; 2075 } 2076 2077 /* 2078 * Make sure that we aren't completely killing 2079 * interactive performance. 2080 */ 2081 cond_resched(); 2082 spin_lock(&mmlist_lock); 2083 } 2084 spin_unlock(&mmlist_lock); 2085 2086 mmput(prev_mm); 2087 2088 i = 0; 2089 while (READ_ONCE(si->inuse_pages) && 2090 !signal_pending(current) && 2091 (i = find_next_to_unuse(si, i)) != 0) { 2092 2093 entry = swp_entry(type, i); 2094 folio = filemap_get_folio(swap_address_space(entry), i); 2095 if (IS_ERR(folio)) 2096 continue; 2097 2098 /* 2099 * It is conceivable that a racing task removed this folio from 2100 * swap cache just before we acquired the page lock. The folio 2101 * might even be back in swap cache on another swap area. But 2102 * that is okay, folio_free_swap() only removes stale folios. 2103 */ 2104 folio_lock(folio); 2105 folio_wait_writeback(folio); 2106 folio_free_swap(folio); 2107 folio_unlock(folio); 2108 folio_put(folio); 2109 } 2110 2111 /* 2112 * Lets check again to see if there are still swap entries in the map. 2113 * If yes, we would need to do retry the unuse logic again. 2114 * Under global memory pressure, swap entries can be reinserted back 2115 * into process space after the mmlist loop above passes over them. 2116 * 2117 * Limit the number of retries? No: when mmget_not_zero() 2118 * above fails, that mm is likely to be freeing swap from 2119 * exit_mmap(), which proceeds at its own independent pace; 2120 * and even shmem_writepage() could have been preempted after 2121 * folio_alloc_swap(), temporarily hiding that swap. It's easy 2122 * and robust (though cpu-intensive) just to keep retrying. 2123 */ 2124 if (READ_ONCE(si->inuse_pages)) { 2125 if (!signal_pending(current)) 2126 goto retry; 2127 return -EINTR; 2128 } 2129 2130 return 0; 2131 } 2132 2133 /* 2134 * After a successful try_to_unuse, if no swap is now in use, we know 2135 * we can empty the mmlist. swap_lock must be held on entry and exit. 2136 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2137 * added to the mmlist just after page_duplicate - before would be racy. 2138 */ 2139 static void drain_mmlist(void) 2140 { 2141 struct list_head *p, *next; 2142 unsigned int type; 2143 2144 for (type = 0; type < nr_swapfiles; type++) 2145 if (swap_info[type]->inuse_pages) 2146 return; 2147 spin_lock(&mmlist_lock); 2148 list_for_each_safe(p, next, &init_mm.mmlist) 2149 list_del_init(p); 2150 spin_unlock(&mmlist_lock); 2151 } 2152 2153 /* 2154 * Free all of a swapdev's extent information 2155 */ 2156 static void destroy_swap_extents(struct swap_info_struct *sis) 2157 { 2158 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2159 struct rb_node *rb = sis->swap_extent_root.rb_node; 2160 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2161 2162 rb_erase(rb, &sis->swap_extent_root); 2163 kfree(se); 2164 } 2165 2166 if (sis->flags & SWP_ACTIVATED) { 2167 struct file *swap_file = sis->swap_file; 2168 struct address_space *mapping = swap_file->f_mapping; 2169 2170 sis->flags &= ~SWP_ACTIVATED; 2171 if (mapping->a_ops->swap_deactivate) 2172 mapping->a_ops->swap_deactivate(swap_file); 2173 } 2174 } 2175 2176 /* 2177 * Add a block range (and the corresponding page range) into this swapdev's 2178 * extent tree. 2179 * 2180 * This function rather assumes that it is called in ascending page order. 2181 */ 2182 int 2183 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2184 unsigned long nr_pages, sector_t start_block) 2185 { 2186 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2187 struct swap_extent *se; 2188 struct swap_extent *new_se; 2189 2190 /* 2191 * place the new node at the right most since the 2192 * function is called in ascending page order. 2193 */ 2194 while (*link) { 2195 parent = *link; 2196 link = &parent->rb_right; 2197 } 2198 2199 if (parent) { 2200 se = rb_entry(parent, struct swap_extent, rb_node); 2201 BUG_ON(se->start_page + se->nr_pages != start_page); 2202 if (se->start_block + se->nr_pages == start_block) { 2203 /* Merge it */ 2204 se->nr_pages += nr_pages; 2205 return 0; 2206 } 2207 } 2208 2209 /* No merge, insert a new extent. */ 2210 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2211 if (new_se == NULL) 2212 return -ENOMEM; 2213 new_se->start_page = start_page; 2214 new_se->nr_pages = nr_pages; 2215 new_se->start_block = start_block; 2216 2217 rb_link_node(&new_se->rb_node, parent, link); 2218 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2219 return 1; 2220 } 2221 EXPORT_SYMBOL_GPL(add_swap_extent); 2222 2223 /* 2224 * A `swap extent' is a simple thing which maps a contiguous range of pages 2225 * onto a contiguous range of disk blocks. A rbtree of swap extents is 2226 * built at swapon time and is then used at swap_writepage/swap_readpage 2227 * time for locating where on disk a page belongs. 2228 * 2229 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2230 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2231 * swap files identically. 2232 * 2233 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2234 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2235 * swapfiles are handled *identically* after swapon time. 2236 * 2237 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2238 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray 2239 * blocks are found which do not fall within the PAGE_SIZE alignment 2240 * requirements, they are simply tossed out - we will never use those blocks 2241 * for swapping. 2242 * 2243 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2244 * prevents users from writing to the swap device, which will corrupt memory. 2245 * 2246 * The amount of disk space which a single swap extent represents varies. 2247 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2248 * extents in the rbtree. - akpm. 2249 */ 2250 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2251 { 2252 struct file *swap_file = sis->swap_file; 2253 struct address_space *mapping = swap_file->f_mapping; 2254 struct inode *inode = mapping->host; 2255 int ret; 2256 2257 if (S_ISBLK(inode->i_mode)) { 2258 ret = add_swap_extent(sis, 0, sis->max, 0); 2259 *span = sis->pages; 2260 return ret; 2261 } 2262 2263 if (mapping->a_ops->swap_activate) { 2264 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2265 if (ret < 0) 2266 return ret; 2267 sis->flags |= SWP_ACTIVATED; 2268 if ((sis->flags & SWP_FS_OPS) && 2269 sio_pool_init() != 0) { 2270 destroy_swap_extents(sis); 2271 return -ENOMEM; 2272 } 2273 return ret; 2274 } 2275 2276 return generic_swapfile_activate(sis, swap_file, span); 2277 } 2278 2279 static int swap_node(struct swap_info_struct *p) 2280 { 2281 struct block_device *bdev; 2282 2283 if (p->bdev) 2284 bdev = p->bdev; 2285 else 2286 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2287 2288 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2289 } 2290 2291 static void setup_swap_info(struct swap_info_struct *p, int prio, 2292 unsigned char *swap_map, 2293 struct swap_cluster_info *cluster_info) 2294 { 2295 int i; 2296 2297 if (prio >= 0) 2298 p->prio = prio; 2299 else 2300 p->prio = --least_priority; 2301 /* 2302 * the plist prio is negated because plist ordering is 2303 * low-to-high, while swap ordering is high-to-low 2304 */ 2305 p->list.prio = -p->prio; 2306 for_each_node(i) { 2307 if (p->prio >= 0) 2308 p->avail_lists[i].prio = -p->prio; 2309 else { 2310 if (swap_node(p) == i) 2311 p->avail_lists[i].prio = 1; 2312 else 2313 p->avail_lists[i].prio = -p->prio; 2314 } 2315 } 2316 p->swap_map = swap_map; 2317 p->cluster_info = cluster_info; 2318 } 2319 2320 static void _enable_swap_info(struct swap_info_struct *p) 2321 { 2322 p->flags |= SWP_WRITEOK; 2323 atomic_long_add(p->pages, &nr_swap_pages); 2324 total_swap_pages += p->pages; 2325 2326 assert_spin_locked(&swap_lock); 2327 /* 2328 * both lists are plists, and thus priority ordered. 2329 * swap_active_head needs to be priority ordered for swapoff(), 2330 * which on removal of any swap_info_struct with an auto-assigned 2331 * (i.e. negative) priority increments the auto-assigned priority 2332 * of any lower-priority swap_info_structs. 2333 * swap_avail_head needs to be priority ordered for folio_alloc_swap(), 2334 * which allocates swap pages from the highest available priority 2335 * swap_info_struct. 2336 */ 2337 plist_add(&p->list, &swap_active_head); 2338 2339 /* add to available list iff swap device is not full */ 2340 if (p->highest_bit) 2341 add_to_avail_list(p); 2342 } 2343 2344 static void enable_swap_info(struct swap_info_struct *p, int prio, 2345 unsigned char *swap_map, 2346 struct swap_cluster_info *cluster_info) 2347 { 2348 zswap_swapon(p->type); 2349 2350 spin_lock(&swap_lock); 2351 spin_lock(&p->lock); 2352 setup_swap_info(p, prio, swap_map, cluster_info); 2353 spin_unlock(&p->lock); 2354 spin_unlock(&swap_lock); 2355 /* 2356 * Finished initializing swap device, now it's safe to reference it. 2357 */ 2358 percpu_ref_resurrect(&p->users); 2359 spin_lock(&swap_lock); 2360 spin_lock(&p->lock); 2361 _enable_swap_info(p); 2362 spin_unlock(&p->lock); 2363 spin_unlock(&swap_lock); 2364 } 2365 2366 static void reinsert_swap_info(struct swap_info_struct *p) 2367 { 2368 spin_lock(&swap_lock); 2369 spin_lock(&p->lock); 2370 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2371 _enable_swap_info(p); 2372 spin_unlock(&p->lock); 2373 spin_unlock(&swap_lock); 2374 } 2375 2376 bool has_usable_swap(void) 2377 { 2378 bool ret = true; 2379 2380 spin_lock(&swap_lock); 2381 if (plist_head_empty(&swap_active_head)) 2382 ret = false; 2383 spin_unlock(&swap_lock); 2384 return ret; 2385 } 2386 2387 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2388 { 2389 struct swap_info_struct *p = NULL; 2390 unsigned char *swap_map; 2391 struct swap_cluster_info *cluster_info; 2392 struct file *swap_file, *victim; 2393 struct address_space *mapping; 2394 struct inode *inode; 2395 struct filename *pathname; 2396 int err, found = 0; 2397 unsigned int old_block_size; 2398 2399 if (!capable(CAP_SYS_ADMIN)) 2400 return -EPERM; 2401 2402 BUG_ON(!current->mm); 2403 2404 pathname = getname(specialfile); 2405 if (IS_ERR(pathname)) 2406 return PTR_ERR(pathname); 2407 2408 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2409 err = PTR_ERR(victim); 2410 if (IS_ERR(victim)) 2411 goto out; 2412 2413 mapping = victim->f_mapping; 2414 spin_lock(&swap_lock); 2415 plist_for_each_entry(p, &swap_active_head, list) { 2416 if (p->flags & SWP_WRITEOK) { 2417 if (p->swap_file->f_mapping == mapping) { 2418 found = 1; 2419 break; 2420 } 2421 } 2422 } 2423 if (!found) { 2424 err = -EINVAL; 2425 spin_unlock(&swap_lock); 2426 goto out_dput; 2427 } 2428 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2429 vm_unacct_memory(p->pages); 2430 else { 2431 err = -ENOMEM; 2432 spin_unlock(&swap_lock); 2433 goto out_dput; 2434 } 2435 spin_lock(&p->lock); 2436 del_from_avail_list(p); 2437 if (p->prio < 0) { 2438 struct swap_info_struct *si = p; 2439 int nid; 2440 2441 plist_for_each_entry_continue(si, &swap_active_head, list) { 2442 si->prio++; 2443 si->list.prio--; 2444 for_each_node(nid) { 2445 if (si->avail_lists[nid].prio != 1) 2446 si->avail_lists[nid].prio--; 2447 } 2448 } 2449 least_priority++; 2450 } 2451 plist_del(&p->list, &swap_active_head); 2452 atomic_long_sub(p->pages, &nr_swap_pages); 2453 total_swap_pages -= p->pages; 2454 p->flags &= ~SWP_WRITEOK; 2455 spin_unlock(&p->lock); 2456 spin_unlock(&swap_lock); 2457 2458 disable_swap_slots_cache_lock(); 2459 2460 set_current_oom_origin(); 2461 err = try_to_unuse(p->type); 2462 clear_current_oom_origin(); 2463 2464 if (err) { 2465 /* re-insert swap space back into swap_list */ 2466 reinsert_swap_info(p); 2467 reenable_swap_slots_cache_unlock(); 2468 goto out_dput; 2469 } 2470 2471 reenable_swap_slots_cache_unlock(); 2472 2473 /* 2474 * Wait for swap operations protected by get/put_swap_device() 2475 * to complete. 2476 * 2477 * We need synchronize_rcu() here to protect the accessing to 2478 * the swap cache data structure. 2479 */ 2480 percpu_ref_kill(&p->users); 2481 synchronize_rcu(); 2482 wait_for_completion(&p->comp); 2483 2484 flush_work(&p->discard_work); 2485 2486 destroy_swap_extents(p); 2487 if (p->flags & SWP_CONTINUED) 2488 free_swap_count_continuations(p); 2489 2490 if (!p->bdev || !bdev_nonrot(p->bdev)) 2491 atomic_dec(&nr_rotate_swap); 2492 2493 mutex_lock(&swapon_mutex); 2494 spin_lock(&swap_lock); 2495 spin_lock(&p->lock); 2496 drain_mmlist(); 2497 2498 /* wait for anyone still in scan_swap_map_slots */ 2499 p->highest_bit = 0; /* cuts scans short */ 2500 while (p->flags >= SWP_SCANNING) { 2501 spin_unlock(&p->lock); 2502 spin_unlock(&swap_lock); 2503 schedule_timeout_uninterruptible(1); 2504 spin_lock(&swap_lock); 2505 spin_lock(&p->lock); 2506 } 2507 2508 swap_file = p->swap_file; 2509 old_block_size = p->old_block_size; 2510 p->swap_file = NULL; 2511 p->max = 0; 2512 swap_map = p->swap_map; 2513 p->swap_map = NULL; 2514 cluster_info = p->cluster_info; 2515 p->cluster_info = NULL; 2516 spin_unlock(&p->lock); 2517 spin_unlock(&swap_lock); 2518 arch_swap_invalidate_area(p->type); 2519 zswap_swapoff(p->type); 2520 mutex_unlock(&swapon_mutex); 2521 free_percpu(p->percpu_cluster); 2522 p->percpu_cluster = NULL; 2523 free_percpu(p->cluster_next_cpu); 2524 p->cluster_next_cpu = NULL; 2525 vfree(swap_map); 2526 kvfree(cluster_info); 2527 /* Destroy swap account information */ 2528 swap_cgroup_swapoff(p->type); 2529 exit_swap_address_space(p->type); 2530 2531 inode = mapping->host; 2532 if (S_ISBLK(inode->i_mode)) { 2533 struct block_device *bdev = I_BDEV(inode); 2534 2535 set_blocksize(bdev, old_block_size); 2536 blkdev_put(bdev, p); 2537 } 2538 2539 inode_lock(inode); 2540 inode->i_flags &= ~S_SWAPFILE; 2541 inode_unlock(inode); 2542 filp_close(swap_file, NULL); 2543 2544 /* 2545 * Clear the SWP_USED flag after all resources are freed so that swapon 2546 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2547 * not hold p->lock after we cleared its SWP_WRITEOK. 2548 */ 2549 spin_lock(&swap_lock); 2550 p->flags = 0; 2551 spin_unlock(&swap_lock); 2552 2553 err = 0; 2554 atomic_inc(&proc_poll_event); 2555 wake_up_interruptible(&proc_poll_wait); 2556 2557 out_dput: 2558 filp_close(victim, NULL); 2559 out: 2560 putname(pathname); 2561 return err; 2562 } 2563 2564 #ifdef CONFIG_PROC_FS 2565 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2566 { 2567 struct seq_file *seq = file->private_data; 2568 2569 poll_wait(file, &proc_poll_wait, wait); 2570 2571 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2572 seq->poll_event = atomic_read(&proc_poll_event); 2573 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2574 } 2575 2576 return EPOLLIN | EPOLLRDNORM; 2577 } 2578 2579 /* iterator */ 2580 static void *swap_start(struct seq_file *swap, loff_t *pos) 2581 { 2582 struct swap_info_struct *si; 2583 int type; 2584 loff_t l = *pos; 2585 2586 mutex_lock(&swapon_mutex); 2587 2588 if (!l) 2589 return SEQ_START_TOKEN; 2590 2591 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2592 if (!(si->flags & SWP_USED) || !si->swap_map) 2593 continue; 2594 if (!--l) 2595 return si; 2596 } 2597 2598 return NULL; 2599 } 2600 2601 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2602 { 2603 struct swap_info_struct *si = v; 2604 int type; 2605 2606 if (v == SEQ_START_TOKEN) 2607 type = 0; 2608 else 2609 type = si->type + 1; 2610 2611 ++(*pos); 2612 for (; (si = swap_type_to_swap_info(type)); type++) { 2613 if (!(si->flags & SWP_USED) || !si->swap_map) 2614 continue; 2615 return si; 2616 } 2617 2618 return NULL; 2619 } 2620 2621 static void swap_stop(struct seq_file *swap, void *v) 2622 { 2623 mutex_unlock(&swapon_mutex); 2624 } 2625 2626 static int swap_show(struct seq_file *swap, void *v) 2627 { 2628 struct swap_info_struct *si = v; 2629 struct file *file; 2630 int len; 2631 unsigned long bytes, inuse; 2632 2633 if (si == SEQ_START_TOKEN) { 2634 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2635 return 0; 2636 } 2637 2638 bytes = si->pages << (PAGE_SHIFT - 10); 2639 inuse = READ_ONCE(si->inuse_pages) << (PAGE_SHIFT - 10); 2640 2641 file = si->swap_file; 2642 len = seq_file_path(swap, file, " \t\n\\"); 2643 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", 2644 len < 40 ? 40 - len : 1, " ", 2645 S_ISBLK(file_inode(file)->i_mode) ? 2646 "partition" : "file\t", 2647 bytes, bytes < 10000000 ? "\t" : "", 2648 inuse, inuse < 10000000 ? "\t" : "", 2649 si->prio); 2650 return 0; 2651 } 2652 2653 static const struct seq_operations swaps_op = { 2654 .start = swap_start, 2655 .next = swap_next, 2656 .stop = swap_stop, 2657 .show = swap_show 2658 }; 2659 2660 static int swaps_open(struct inode *inode, struct file *file) 2661 { 2662 struct seq_file *seq; 2663 int ret; 2664 2665 ret = seq_open(file, &swaps_op); 2666 if (ret) 2667 return ret; 2668 2669 seq = file->private_data; 2670 seq->poll_event = atomic_read(&proc_poll_event); 2671 return 0; 2672 } 2673 2674 static const struct proc_ops swaps_proc_ops = { 2675 .proc_flags = PROC_ENTRY_PERMANENT, 2676 .proc_open = swaps_open, 2677 .proc_read = seq_read, 2678 .proc_lseek = seq_lseek, 2679 .proc_release = seq_release, 2680 .proc_poll = swaps_poll, 2681 }; 2682 2683 static int __init procswaps_init(void) 2684 { 2685 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2686 return 0; 2687 } 2688 __initcall(procswaps_init); 2689 #endif /* CONFIG_PROC_FS */ 2690 2691 #ifdef MAX_SWAPFILES_CHECK 2692 static int __init max_swapfiles_check(void) 2693 { 2694 MAX_SWAPFILES_CHECK(); 2695 return 0; 2696 } 2697 late_initcall(max_swapfiles_check); 2698 #endif 2699 2700 static struct swap_info_struct *alloc_swap_info(void) 2701 { 2702 struct swap_info_struct *p; 2703 struct swap_info_struct *defer = NULL; 2704 unsigned int type; 2705 int i; 2706 2707 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2708 if (!p) 2709 return ERR_PTR(-ENOMEM); 2710 2711 if (percpu_ref_init(&p->users, swap_users_ref_free, 2712 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 2713 kvfree(p); 2714 return ERR_PTR(-ENOMEM); 2715 } 2716 2717 spin_lock(&swap_lock); 2718 for (type = 0; type < nr_swapfiles; type++) { 2719 if (!(swap_info[type]->flags & SWP_USED)) 2720 break; 2721 } 2722 if (type >= MAX_SWAPFILES) { 2723 spin_unlock(&swap_lock); 2724 percpu_ref_exit(&p->users); 2725 kvfree(p); 2726 return ERR_PTR(-EPERM); 2727 } 2728 if (type >= nr_swapfiles) { 2729 p->type = type; 2730 /* 2731 * Publish the swap_info_struct after initializing it. 2732 * Note that kvzalloc() above zeroes all its fields. 2733 */ 2734 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 2735 nr_swapfiles++; 2736 } else { 2737 defer = p; 2738 p = swap_info[type]; 2739 /* 2740 * Do not memset this entry: a racing procfs swap_next() 2741 * would be relying on p->type to remain valid. 2742 */ 2743 } 2744 p->swap_extent_root = RB_ROOT; 2745 plist_node_init(&p->list, 0); 2746 for_each_node(i) 2747 plist_node_init(&p->avail_lists[i], 0); 2748 p->flags = SWP_USED; 2749 spin_unlock(&swap_lock); 2750 if (defer) { 2751 percpu_ref_exit(&defer->users); 2752 kvfree(defer); 2753 } 2754 spin_lock_init(&p->lock); 2755 spin_lock_init(&p->cont_lock); 2756 init_completion(&p->comp); 2757 2758 return p; 2759 } 2760 2761 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2762 { 2763 int error; 2764 2765 if (S_ISBLK(inode->i_mode)) { 2766 p->bdev = blkdev_get_by_dev(inode->i_rdev, 2767 BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL); 2768 if (IS_ERR(p->bdev)) { 2769 error = PTR_ERR(p->bdev); 2770 p->bdev = NULL; 2771 return error; 2772 } 2773 p->old_block_size = block_size(p->bdev); 2774 error = set_blocksize(p->bdev, PAGE_SIZE); 2775 if (error < 0) 2776 return error; 2777 /* 2778 * Zoned block devices contain zones that have a sequential 2779 * write only restriction. Hence zoned block devices are not 2780 * suitable for swapping. Disallow them here. 2781 */ 2782 if (bdev_is_zoned(p->bdev)) 2783 return -EINVAL; 2784 p->flags |= SWP_BLKDEV; 2785 } else if (S_ISREG(inode->i_mode)) { 2786 p->bdev = inode->i_sb->s_bdev; 2787 } 2788 2789 return 0; 2790 } 2791 2792 2793 /* 2794 * Find out how many pages are allowed for a single swap device. There 2795 * are two limiting factors: 2796 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2797 * 2) the number of bits in the swap pte, as defined by the different 2798 * architectures. 2799 * 2800 * In order to find the largest possible bit mask, a swap entry with 2801 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2802 * decoded to a swp_entry_t again, and finally the swap offset is 2803 * extracted. 2804 * 2805 * This will mask all the bits from the initial ~0UL mask that can't 2806 * be encoded in either the swp_entry_t or the architecture definition 2807 * of a swap pte. 2808 */ 2809 unsigned long generic_max_swapfile_size(void) 2810 { 2811 return swp_offset(pte_to_swp_entry( 2812 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2813 } 2814 2815 /* Can be overridden by an architecture for additional checks. */ 2816 __weak unsigned long arch_max_swapfile_size(void) 2817 { 2818 return generic_max_swapfile_size(); 2819 } 2820 2821 static unsigned long read_swap_header(struct swap_info_struct *p, 2822 union swap_header *swap_header, 2823 struct inode *inode) 2824 { 2825 int i; 2826 unsigned long maxpages; 2827 unsigned long swapfilepages; 2828 unsigned long last_page; 2829 2830 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2831 pr_err("Unable to find swap-space signature\n"); 2832 return 0; 2833 } 2834 2835 /* swap partition endianness hack... */ 2836 if (swab32(swap_header->info.version) == 1) { 2837 swab32s(&swap_header->info.version); 2838 swab32s(&swap_header->info.last_page); 2839 swab32s(&swap_header->info.nr_badpages); 2840 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2841 return 0; 2842 for (i = 0; i < swap_header->info.nr_badpages; i++) 2843 swab32s(&swap_header->info.badpages[i]); 2844 } 2845 /* Check the swap header's sub-version */ 2846 if (swap_header->info.version != 1) { 2847 pr_warn("Unable to handle swap header version %d\n", 2848 swap_header->info.version); 2849 return 0; 2850 } 2851 2852 p->lowest_bit = 1; 2853 p->cluster_next = 1; 2854 p->cluster_nr = 0; 2855 2856 maxpages = swapfile_maximum_size; 2857 last_page = swap_header->info.last_page; 2858 if (!last_page) { 2859 pr_warn("Empty swap-file\n"); 2860 return 0; 2861 } 2862 if (last_page > maxpages) { 2863 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2864 maxpages << (PAGE_SHIFT - 10), 2865 last_page << (PAGE_SHIFT - 10)); 2866 } 2867 if (maxpages > last_page) { 2868 maxpages = last_page + 1; 2869 /* p->max is an unsigned int: don't overflow it */ 2870 if ((unsigned int)maxpages == 0) 2871 maxpages = UINT_MAX; 2872 } 2873 p->highest_bit = maxpages - 1; 2874 2875 if (!maxpages) 2876 return 0; 2877 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2878 if (swapfilepages && maxpages > swapfilepages) { 2879 pr_warn("Swap area shorter than signature indicates\n"); 2880 return 0; 2881 } 2882 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2883 return 0; 2884 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2885 return 0; 2886 2887 return maxpages; 2888 } 2889 2890 #define SWAP_CLUSTER_INFO_COLS \ 2891 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 2892 #define SWAP_CLUSTER_SPACE_COLS \ 2893 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 2894 #define SWAP_CLUSTER_COLS \ 2895 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 2896 2897 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2898 union swap_header *swap_header, 2899 unsigned char *swap_map, 2900 struct swap_cluster_info *cluster_info, 2901 unsigned long maxpages, 2902 sector_t *span) 2903 { 2904 unsigned int j, k; 2905 unsigned int nr_good_pages; 2906 int nr_extents; 2907 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2908 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 2909 unsigned long i, idx; 2910 2911 nr_good_pages = maxpages - 1; /* omit header page */ 2912 2913 cluster_list_init(&p->free_clusters); 2914 cluster_list_init(&p->discard_clusters); 2915 2916 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2917 unsigned int page_nr = swap_header->info.badpages[i]; 2918 if (page_nr == 0 || page_nr > swap_header->info.last_page) 2919 return -EINVAL; 2920 if (page_nr < maxpages) { 2921 swap_map[page_nr] = SWAP_MAP_BAD; 2922 nr_good_pages--; 2923 /* 2924 * Haven't marked the cluster free yet, no list 2925 * operation involved 2926 */ 2927 inc_cluster_info_page(p, cluster_info, page_nr); 2928 } 2929 } 2930 2931 /* Haven't marked the cluster free yet, no list operation involved */ 2932 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 2933 inc_cluster_info_page(p, cluster_info, i); 2934 2935 if (nr_good_pages) { 2936 swap_map[0] = SWAP_MAP_BAD; 2937 /* 2938 * Not mark the cluster free yet, no list 2939 * operation involved 2940 */ 2941 inc_cluster_info_page(p, cluster_info, 0); 2942 p->max = maxpages; 2943 p->pages = nr_good_pages; 2944 nr_extents = setup_swap_extents(p, span); 2945 if (nr_extents < 0) 2946 return nr_extents; 2947 nr_good_pages = p->pages; 2948 } 2949 if (!nr_good_pages) { 2950 pr_warn("Empty swap-file\n"); 2951 return -EINVAL; 2952 } 2953 2954 if (!cluster_info) 2955 return nr_extents; 2956 2957 2958 /* 2959 * Reduce false cache line sharing between cluster_info and 2960 * sharing same address space. 2961 */ 2962 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 2963 j = (k + col) % SWAP_CLUSTER_COLS; 2964 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 2965 idx = i * SWAP_CLUSTER_COLS + j; 2966 if (idx >= nr_clusters) 2967 continue; 2968 if (cluster_count(&cluster_info[idx])) 2969 continue; 2970 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 2971 cluster_list_add_tail(&p->free_clusters, cluster_info, 2972 idx); 2973 } 2974 } 2975 return nr_extents; 2976 } 2977 2978 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2979 { 2980 struct swap_info_struct *p; 2981 struct filename *name; 2982 struct file *swap_file = NULL; 2983 struct address_space *mapping; 2984 struct dentry *dentry; 2985 int prio; 2986 int error; 2987 union swap_header *swap_header; 2988 int nr_extents; 2989 sector_t span; 2990 unsigned long maxpages; 2991 unsigned char *swap_map = NULL; 2992 struct swap_cluster_info *cluster_info = NULL; 2993 struct page *page = NULL; 2994 struct inode *inode = NULL; 2995 bool inced_nr_rotate_swap = false; 2996 2997 if (swap_flags & ~SWAP_FLAGS_VALID) 2998 return -EINVAL; 2999 3000 if (!capable(CAP_SYS_ADMIN)) 3001 return -EPERM; 3002 3003 if (!swap_avail_heads) 3004 return -ENOMEM; 3005 3006 p = alloc_swap_info(); 3007 if (IS_ERR(p)) 3008 return PTR_ERR(p); 3009 3010 INIT_WORK(&p->discard_work, swap_discard_work); 3011 3012 name = getname(specialfile); 3013 if (IS_ERR(name)) { 3014 error = PTR_ERR(name); 3015 name = NULL; 3016 goto bad_swap; 3017 } 3018 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3019 if (IS_ERR(swap_file)) { 3020 error = PTR_ERR(swap_file); 3021 swap_file = NULL; 3022 goto bad_swap; 3023 } 3024 3025 p->swap_file = swap_file; 3026 mapping = swap_file->f_mapping; 3027 dentry = swap_file->f_path.dentry; 3028 inode = mapping->host; 3029 3030 error = claim_swapfile(p, inode); 3031 if (unlikely(error)) 3032 goto bad_swap; 3033 3034 inode_lock(inode); 3035 if (d_unlinked(dentry) || cant_mount(dentry)) { 3036 error = -ENOENT; 3037 goto bad_swap_unlock_inode; 3038 } 3039 if (IS_SWAPFILE(inode)) { 3040 error = -EBUSY; 3041 goto bad_swap_unlock_inode; 3042 } 3043 3044 /* 3045 * Read the swap header. 3046 */ 3047 if (!mapping->a_ops->read_folio) { 3048 error = -EINVAL; 3049 goto bad_swap_unlock_inode; 3050 } 3051 page = read_mapping_page(mapping, 0, swap_file); 3052 if (IS_ERR(page)) { 3053 error = PTR_ERR(page); 3054 goto bad_swap_unlock_inode; 3055 } 3056 swap_header = kmap(page); 3057 3058 maxpages = read_swap_header(p, swap_header, inode); 3059 if (unlikely(!maxpages)) { 3060 error = -EINVAL; 3061 goto bad_swap_unlock_inode; 3062 } 3063 3064 /* OK, set up the swap map and apply the bad block list */ 3065 swap_map = vzalloc(maxpages); 3066 if (!swap_map) { 3067 error = -ENOMEM; 3068 goto bad_swap_unlock_inode; 3069 } 3070 3071 if (p->bdev && bdev_stable_writes(p->bdev)) 3072 p->flags |= SWP_STABLE_WRITES; 3073 3074 if (p->bdev && bdev_synchronous(p->bdev)) 3075 p->flags |= SWP_SYNCHRONOUS_IO; 3076 3077 if (p->bdev && bdev_nonrot(p->bdev)) { 3078 int cpu; 3079 unsigned long ci, nr_cluster; 3080 3081 p->flags |= SWP_SOLIDSTATE; 3082 p->cluster_next_cpu = alloc_percpu(unsigned int); 3083 if (!p->cluster_next_cpu) { 3084 error = -ENOMEM; 3085 goto bad_swap_unlock_inode; 3086 } 3087 /* 3088 * select a random position to start with to help wear leveling 3089 * SSD 3090 */ 3091 for_each_possible_cpu(cpu) { 3092 per_cpu(*p->cluster_next_cpu, cpu) = 3093 get_random_u32_inclusive(1, p->highest_bit); 3094 } 3095 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3096 3097 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3098 GFP_KERNEL); 3099 if (!cluster_info) { 3100 error = -ENOMEM; 3101 goto bad_swap_unlock_inode; 3102 } 3103 3104 for (ci = 0; ci < nr_cluster; ci++) 3105 spin_lock_init(&((cluster_info + ci)->lock)); 3106 3107 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3108 if (!p->percpu_cluster) { 3109 error = -ENOMEM; 3110 goto bad_swap_unlock_inode; 3111 } 3112 for_each_possible_cpu(cpu) { 3113 struct percpu_cluster *cluster; 3114 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3115 cluster_set_null(&cluster->index); 3116 } 3117 } else { 3118 atomic_inc(&nr_rotate_swap); 3119 inced_nr_rotate_swap = true; 3120 } 3121 3122 error = swap_cgroup_swapon(p->type, maxpages); 3123 if (error) 3124 goto bad_swap_unlock_inode; 3125 3126 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3127 cluster_info, maxpages, &span); 3128 if (unlikely(nr_extents < 0)) { 3129 error = nr_extents; 3130 goto bad_swap_unlock_inode; 3131 } 3132 3133 if ((swap_flags & SWAP_FLAG_DISCARD) && 3134 p->bdev && bdev_max_discard_sectors(p->bdev)) { 3135 /* 3136 * When discard is enabled for swap with no particular 3137 * policy flagged, we set all swap discard flags here in 3138 * order to sustain backward compatibility with older 3139 * swapon(8) releases. 3140 */ 3141 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3142 SWP_PAGE_DISCARD); 3143 3144 /* 3145 * By flagging sys_swapon, a sysadmin can tell us to 3146 * either do single-time area discards only, or to just 3147 * perform discards for released swap page-clusters. 3148 * Now it's time to adjust the p->flags accordingly. 3149 */ 3150 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3151 p->flags &= ~SWP_PAGE_DISCARD; 3152 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3153 p->flags &= ~SWP_AREA_DISCARD; 3154 3155 /* issue a swapon-time discard if it's still required */ 3156 if (p->flags & SWP_AREA_DISCARD) { 3157 int err = discard_swap(p); 3158 if (unlikely(err)) 3159 pr_err("swapon: discard_swap(%p): %d\n", 3160 p, err); 3161 } 3162 } 3163 3164 error = init_swap_address_space(p->type, maxpages); 3165 if (error) 3166 goto bad_swap_unlock_inode; 3167 3168 /* 3169 * Flush any pending IO and dirty mappings before we start using this 3170 * swap device. 3171 */ 3172 inode->i_flags |= S_SWAPFILE; 3173 error = inode_drain_writes(inode); 3174 if (error) { 3175 inode->i_flags &= ~S_SWAPFILE; 3176 goto free_swap_address_space; 3177 } 3178 3179 mutex_lock(&swapon_mutex); 3180 prio = -1; 3181 if (swap_flags & SWAP_FLAG_PREFER) 3182 prio = 3183 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3184 enable_swap_info(p, prio, swap_map, cluster_info); 3185 3186 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n", 3187 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 3188 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 3189 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3190 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3191 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3192 (p->flags & SWP_PAGE_DISCARD) ? "c" : ""); 3193 3194 mutex_unlock(&swapon_mutex); 3195 atomic_inc(&proc_poll_event); 3196 wake_up_interruptible(&proc_poll_wait); 3197 3198 error = 0; 3199 goto out; 3200 free_swap_address_space: 3201 exit_swap_address_space(p->type); 3202 bad_swap_unlock_inode: 3203 inode_unlock(inode); 3204 bad_swap: 3205 free_percpu(p->percpu_cluster); 3206 p->percpu_cluster = NULL; 3207 free_percpu(p->cluster_next_cpu); 3208 p->cluster_next_cpu = NULL; 3209 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 3210 set_blocksize(p->bdev, p->old_block_size); 3211 blkdev_put(p->bdev, p); 3212 } 3213 inode = NULL; 3214 destroy_swap_extents(p); 3215 swap_cgroup_swapoff(p->type); 3216 spin_lock(&swap_lock); 3217 p->swap_file = NULL; 3218 p->flags = 0; 3219 spin_unlock(&swap_lock); 3220 vfree(swap_map); 3221 kvfree(cluster_info); 3222 if (inced_nr_rotate_swap) 3223 atomic_dec(&nr_rotate_swap); 3224 if (swap_file) 3225 filp_close(swap_file, NULL); 3226 out: 3227 if (page && !IS_ERR(page)) { 3228 kunmap(page); 3229 put_page(page); 3230 } 3231 if (name) 3232 putname(name); 3233 if (inode) 3234 inode_unlock(inode); 3235 if (!error) 3236 enable_swap_slots_cache(); 3237 return error; 3238 } 3239 3240 void si_swapinfo(struct sysinfo *val) 3241 { 3242 unsigned int type; 3243 unsigned long nr_to_be_unused = 0; 3244 3245 spin_lock(&swap_lock); 3246 for (type = 0; type < nr_swapfiles; type++) { 3247 struct swap_info_struct *si = swap_info[type]; 3248 3249 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3250 nr_to_be_unused += READ_ONCE(si->inuse_pages); 3251 } 3252 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3253 val->totalswap = total_swap_pages + nr_to_be_unused; 3254 spin_unlock(&swap_lock); 3255 } 3256 3257 /* 3258 * Verify that a swap entry is valid and increment its swap map count. 3259 * 3260 * Returns error code in following case. 3261 * - success -> 0 3262 * - swp_entry is invalid -> EINVAL 3263 * - swp_entry is migration entry -> EINVAL 3264 * - swap-cache reference is requested but there is already one. -> EEXIST 3265 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3266 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3267 */ 3268 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3269 { 3270 struct swap_info_struct *p; 3271 struct swap_cluster_info *ci; 3272 unsigned long offset; 3273 unsigned char count; 3274 unsigned char has_cache; 3275 int err; 3276 3277 p = swp_swap_info(entry); 3278 3279 offset = swp_offset(entry); 3280 ci = lock_cluster_or_swap_info(p, offset); 3281 3282 count = p->swap_map[offset]; 3283 3284 /* 3285 * swapin_readahead() doesn't check if a swap entry is valid, so the 3286 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3287 */ 3288 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3289 err = -ENOENT; 3290 goto unlock_out; 3291 } 3292 3293 has_cache = count & SWAP_HAS_CACHE; 3294 count &= ~SWAP_HAS_CACHE; 3295 err = 0; 3296 3297 if (usage == SWAP_HAS_CACHE) { 3298 3299 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3300 if (!has_cache && count) 3301 has_cache = SWAP_HAS_CACHE; 3302 else if (has_cache) /* someone else added cache */ 3303 err = -EEXIST; 3304 else /* no users remaining */ 3305 err = -ENOENT; 3306 3307 } else if (count || has_cache) { 3308 3309 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3310 count += usage; 3311 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3312 err = -EINVAL; 3313 else if (swap_count_continued(p, offset, count)) 3314 count = COUNT_CONTINUED; 3315 else 3316 err = -ENOMEM; 3317 } else 3318 err = -ENOENT; /* unused swap entry */ 3319 3320 WRITE_ONCE(p->swap_map[offset], count | has_cache); 3321 3322 unlock_out: 3323 unlock_cluster_or_swap_info(p, ci); 3324 return err; 3325 } 3326 3327 /* 3328 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3329 * (in which case its reference count is never incremented). 3330 */ 3331 void swap_shmem_alloc(swp_entry_t entry) 3332 { 3333 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3334 } 3335 3336 /* 3337 * Increase reference count of swap entry by 1. 3338 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3339 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3340 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3341 * might occur if a page table entry has got corrupted. 3342 */ 3343 int swap_duplicate(swp_entry_t entry) 3344 { 3345 int err = 0; 3346 3347 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3348 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3349 return err; 3350 } 3351 3352 /* 3353 * @entry: swap entry for which we allocate swap cache. 3354 * 3355 * Called when allocating swap cache for existing swap entry, 3356 * This can return error codes. Returns 0 at success. 3357 * -EEXIST means there is a swap cache. 3358 * Note: return code is different from swap_duplicate(). 3359 */ 3360 int swapcache_prepare(swp_entry_t entry) 3361 { 3362 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3363 } 3364 3365 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3366 { 3367 return swap_type_to_swap_info(swp_type(entry)); 3368 } 3369 3370 struct swap_info_struct *page_swap_info(struct page *page) 3371 { 3372 swp_entry_t entry = { .val = page_private(page) }; 3373 return swp_swap_info(entry); 3374 } 3375 3376 /* 3377 * out-of-line methods to avoid include hell. 3378 */ 3379 struct address_space *swapcache_mapping(struct folio *folio) 3380 { 3381 return page_swap_info(&folio->page)->swap_file->f_mapping; 3382 } 3383 EXPORT_SYMBOL_GPL(swapcache_mapping); 3384 3385 pgoff_t __page_file_index(struct page *page) 3386 { 3387 swp_entry_t swap = { .val = page_private(page) }; 3388 return swp_offset(swap); 3389 } 3390 EXPORT_SYMBOL_GPL(__page_file_index); 3391 3392 /* 3393 * add_swap_count_continuation - called when a swap count is duplicated 3394 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3395 * page of the original vmalloc'ed swap_map, to hold the continuation count 3396 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3397 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3398 * 3399 * These continuation pages are seldom referenced: the common paths all work 3400 * on the original swap_map, only referring to a continuation page when the 3401 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3402 * 3403 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3404 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3405 * can be called after dropping locks. 3406 */ 3407 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3408 { 3409 struct swap_info_struct *si; 3410 struct swap_cluster_info *ci; 3411 struct page *head; 3412 struct page *page; 3413 struct page *list_page; 3414 pgoff_t offset; 3415 unsigned char count; 3416 int ret = 0; 3417 3418 /* 3419 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3420 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3421 */ 3422 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3423 3424 si = get_swap_device(entry); 3425 if (!si) { 3426 /* 3427 * An acceptable race has occurred since the failing 3428 * __swap_duplicate(): the swap device may be swapoff 3429 */ 3430 goto outer; 3431 } 3432 spin_lock(&si->lock); 3433 3434 offset = swp_offset(entry); 3435 3436 ci = lock_cluster(si, offset); 3437 3438 count = swap_count(si->swap_map[offset]); 3439 3440 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3441 /* 3442 * The higher the swap count, the more likely it is that tasks 3443 * will race to add swap count continuation: we need to avoid 3444 * over-provisioning. 3445 */ 3446 goto out; 3447 } 3448 3449 if (!page) { 3450 ret = -ENOMEM; 3451 goto out; 3452 } 3453 3454 head = vmalloc_to_page(si->swap_map + offset); 3455 offset &= ~PAGE_MASK; 3456 3457 spin_lock(&si->cont_lock); 3458 /* 3459 * Page allocation does not initialize the page's lru field, 3460 * but it does always reset its private field. 3461 */ 3462 if (!page_private(head)) { 3463 BUG_ON(count & COUNT_CONTINUED); 3464 INIT_LIST_HEAD(&head->lru); 3465 set_page_private(head, SWP_CONTINUED); 3466 si->flags |= SWP_CONTINUED; 3467 } 3468 3469 list_for_each_entry(list_page, &head->lru, lru) { 3470 unsigned char *map; 3471 3472 /* 3473 * If the previous map said no continuation, but we've found 3474 * a continuation page, free our allocation and use this one. 3475 */ 3476 if (!(count & COUNT_CONTINUED)) 3477 goto out_unlock_cont; 3478 3479 map = kmap_atomic(list_page) + offset; 3480 count = *map; 3481 kunmap_atomic(map); 3482 3483 /* 3484 * If this continuation count now has some space in it, 3485 * free our allocation and use this one. 3486 */ 3487 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3488 goto out_unlock_cont; 3489 } 3490 3491 list_add_tail(&page->lru, &head->lru); 3492 page = NULL; /* now it's attached, don't free it */ 3493 out_unlock_cont: 3494 spin_unlock(&si->cont_lock); 3495 out: 3496 unlock_cluster(ci); 3497 spin_unlock(&si->lock); 3498 put_swap_device(si); 3499 outer: 3500 if (page) 3501 __free_page(page); 3502 return ret; 3503 } 3504 3505 /* 3506 * swap_count_continued - when the original swap_map count is incremented 3507 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3508 * into, carry if so, or else fail until a new continuation page is allocated; 3509 * when the original swap_map count is decremented from 0 with continuation, 3510 * borrow from the continuation and report whether it still holds more. 3511 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3512 * lock. 3513 */ 3514 static bool swap_count_continued(struct swap_info_struct *si, 3515 pgoff_t offset, unsigned char count) 3516 { 3517 struct page *head; 3518 struct page *page; 3519 unsigned char *map; 3520 bool ret; 3521 3522 head = vmalloc_to_page(si->swap_map + offset); 3523 if (page_private(head) != SWP_CONTINUED) { 3524 BUG_ON(count & COUNT_CONTINUED); 3525 return false; /* need to add count continuation */ 3526 } 3527 3528 spin_lock(&si->cont_lock); 3529 offset &= ~PAGE_MASK; 3530 page = list_next_entry(head, lru); 3531 map = kmap_atomic(page) + offset; 3532 3533 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3534 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3535 3536 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3537 /* 3538 * Think of how you add 1 to 999 3539 */ 3540 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3541 kunmap_atomic(map); 3542 page = list_next_entry(page, lru); 3543 BUG_ON(page == head); 3544 map = kmap_atomic(page) + offset; 3545 } 3546 if (*map == SWAP_CONT_MAX) { 3547 kunmap_atomic(map); 3548 page = list_next_entry(page, lru); 3549 if (page == head) { 3550 ret = false; /* add count continuation */ 3551 goto out; 3552 } 3553 map = kmap_atomic(page) + offset; 3554 init_map: *map = 0; /* we didn't zero the page */ 3555 } 3556 *map += 1; 3557 kunmap_atomic(map); 3558 while ((page = list_prev_entry(page, lru)) != head) { 3559 map = kmap_atomic(page) + offset; 3560 *map = COUNT_CONTINUED; 3561 kunmap_atomic(map); 3562 } 3563 ret = true; /* incremented */ 3564 3565 } else { /* decrementing */ 3566 /* 3567 * Think of how you subtract 1 from 1000 3568 */ 3569 BUG_ON(count != COUNT_CONTINUED); 3570 while (*map == COUNT_CONTINUED) { 3571 kunmap_atomic(map); 3572 page = list_next_entry(page, lru); 3573 BUG_ON(page == head); 3574 map = kmap_atomic(page) + offset; 3575 } 3576 BUG_ON(*map == 0); 3577 *map -= 1; 3578 if (*map == 0) 3579 count = 0; 3580 kunmap_atomic(map); 3581 while ((page = list_prev_entry(page, lru)) != head) { 3582 map = kmap_atomic(page) + offset; 3583 *map = SWAP_CONT_MAX | count; 3584 count = COUNT_CONTINUED; 3585 kunmap_atomic(map); 3586 } 3587 ret = count == COUNT_CONTINUED; 3588 } 3589 out: 3590 spin_unlock(&si->cont_lock); 3591 return ret; 3592 } 3593 3594 /* 3595 * free_swap_count_continuations - swapoff free all the continuation pages 3596 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3597 */ 3598 static void free_swap_count_continuations(struct swap_info_struct *si) 3599 { 3600 pgoff_t offset; 3601 3602 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3603 struct page *head; 3604 head = vmalloc_to_page(si->swap_map + offset); 3605 if (page_private(head)) { 3606 struct page *page, *next; 3607 3608 list_for_each_entry_safe(page, next, &head->lru, lru) { 3609 list_del(&page->lru); 3610 __free_page(page); 3611 } 3612 } 3613 } 3614 } 3615 3616 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3617 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp) 3618 { 3619 struct swap_info_struct *si, *next; 3620 int nid = folio_nid(folio); 3621 3622 if (!(gfp & __GFP_IO)) 3623 return; 3624 3625 if (!blk_cgroup_congested()) 3626 return; 3627 3628 /* 3629 * We've already scheduled a throttle, avoid taking the global swap 3630 * lock. 3631 */ 3632 if (current->throttle_disk) 3633 return; 3634 3635 spin_lock(&swap_avail_lock); 3636 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3637 avail_lists[nid]) { 3638 if (si->bdev) { 3639 blkcg_schedule_throttle(si->bdev->bd_disk, true); 3640 break; 3641 } 3642 } 3643 spin_unlock(&swap_avail_lock); 3644 } 3645 #endif 3646 3647 static int __init swapfile_init(void) 3648 { 3649 int nid; 3650 3651 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3652 GFP_KERNEL); 3653 if (!swap_avail_heads) { 3654 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3655 return -ENOMEM; 3656 } 3657 3658 for_each_node(nid) 3659 plist_head_init(&swap_avail_heads[nid]); 3660 3661 swapfile_maximum_size = arch_max_swapfile_size(); 3662 3663 #ifdef CONFIG_MIGRATION 3664 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS)) 3665 swap_migration_ad_supported = true; 3666 #endif /* CONFIG_MIGRATION */ 3667 3668 return 0; 3669 } 3670 subsys_initcall(swapfile_init); 3671