xref: /openbmc/linux/mm/swapfile.c (revision 42c06a0e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45 
46 #include <asm/tlbflush.h>
47 #include <linux/swapops.h>
48 #include <linux/swap_cgroup.h>
49 #include "swap.h"
50 
51 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
52 				 unsigned char);
53 static void free_swap_count_continuations(struct swap_info_struct *);
54 
55 static DEFINE_SPINLOCK(swap_lock);
56 static unsigned int nr_swapfiles;
57 atomic_long_t nr_swap_pages;
58 /*
59  * Some modules use swappable objects and may try to swap them out under
60  * memory pressure (via the shrinker). Before doing so, they may wish to
61  * check to see if any swap space is available.
62  */
63 EXPORT_SYMBOL_GPL(nr_swap_pages);
64 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
65 long total_swap_pages;
66 static int least_priority = -1;
67 unsigned long swapfile_maximum_size;
68 #ifdef CONFIG_MIGRATION
69 bool swap_migration_ad_supported;
70 #endif	/* CONFIG_MIGRATION */
71 
72 static const char Bad_file[] = "Bad swap file entry ";
73 static const char Unused_file[] = "Unused swap file entry ";
74 static const char Bad_offset[] = "Bad swap offset entry ";
75 static const char Unused_offset[] = "Unused swap offset entry ";
76 
77 /*
78  * all active swap_info_structs
79  * protected with swap_lock, and ordered by priority.
80  */
81 static PLIST_HEAD(swap_active_head);
82 
83 /*
84  * all available (active, not full) swap_info_structs
85  * protected with swap_avail_lock, ordered by priority.
86  * This is used by folio_alloc_swap() instead of swap_active_head
87  * because swap_active_head includes all swap_info_structs,
88  * but folio_alloc_swap() doesn't need to look at full ones.
89  * This uses its own lock instead of swap_lock because when a
90  * swap_info_struct changes between not-full/full, it needs to
91  * add/remove itself to/from this list, but the swap_info_struct->lock
92  * is held and the locking order requires swap_lock to be taken
93  * before any swap_info_struct->lock.
94  */
95 static struct plist_head *swap_avail_heads;
96 static DEFINE_SPINLOCK(swap_avail_lock);
97 
98 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
99 
100 static DEFINE_MUTEX(swapon_mutex);
101 
102 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
103 /* Activity counter to indicate that a swapon or swapoff has occurred */
104 static atomic_t proc_poll_event = ATOMIC_INIT(0);
105 
106 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
107 
108 static struct swap_info_struct *swap_type_to_swap_info(int type)
109 {
110 	if (type >= MAX_SWAPFILES)
111 		return NULL;
112 
113 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
114 }
115 
116 static inline unsigned char swap_count(unsigned char ent)
117 {
118 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
119 }
120 
121 /* Reclaim the swap entry anyway if possible */
122 #define TTRS_ANYWAY		0x1
123 /*
124  * Reclaim the swap entry if there are no more mappings of the
125  * corresponding page
126  */
127 #define TTRS_UNMAPPED		0x2
128 /* Reclaim the swap entry if swap is getting full*/
129 #define TTRS_FULL		0x4
130 
131 /* returns 1 if swap entry is freed */
132 static int __try_to_reclaim_swap(struct swap_info_struct *si,
133 				 unsigned long offset, unsigned long flags)
134 {
135 	swp_entry_t entry = swp_entry(si->type, offset);
136 	struct folio *folio;
137 	int ret = 0;
138 
139 	folio = filemap_get_folio(swap_address_space(entry), offset);
140 	if (IS_ERR(folio))
141 		return 0;
142 	/*
143 	 * When this function is called from scan_swap_map_slots() and it's
144 	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
145 	 * here. We have to use trylock for avoiding deadlock. This is a special
146 	 * case and you should use folio_free_swap() with explicit folio_lock()
147 	 * in usual operations.
148 	 */
149 	if (folio_trylock(folio)) {
150 		if ((flags & TTRS_ANYWAY) ||
151 		    ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
152 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
153 			ret = folio_free_swap(folio);
154 		folio_unlock(folio);
155 	}
156 	folio_put(folio);
157 	return ret;
158 }
159 
160 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
161 {
162 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
163 	return rb_entry(rb, struct swap_extent, rb_node);
164 }
165 
166 static inline struct swap_extent *next_se(struct swap_extent *se)
167 {
168 	struct rb_node *rb = rb_next(&se->rb_node);
169 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
170 }
171 
172 /*
173  * swapon tell device that all the old swap contents can be discarded,
174  * to allow the swap device to optimize its wear-levelling.
175  */
176 static int discard_swap(struct swap_info_struct *si)
177 {
178 	struct swap_extent *se;
179 	sector_t start_block;
180 	sector_t nr_blocks;
181 	int err = 0;
182 
183 	/* Do not discard the swap header page! */
184 	se = first_se(si);
185 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
186 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
187 	if (nr_blocks) {
188 		err = blkdev_issue_discard(si->bdev, start_block,
189 				nr_blocks, GFP_KERNEL);
190 		if (err)
191 			return err;
192 		cond_resched();
193 	}
194 
195 	for (se = next_se(se); se; se = next_se(se)) {
196 		start_block = se->start_block << (PAGE_SHIFT - 9);
197 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
198 
199 		err = blkdev_issue_discard(si->bdev, start_block,
200 				nr_blocks, GFP_KERNEL);
201 		if (err)
202 			break;
203 
204 		cond_resched();
205 	}
206 	return err;		/* That will often be -EOPNOTSUPP */
207 }
208 
209 static struct swap_extent *
210 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
211 {
212 	struct swap_extent *se;
213 	struct rb_node *rb;
214 
215 	rb = sis->swap_extent_root.rb_node;
216 	while (rb) {
217 		se = rb_entry(rb, struct swap_extent, rb_node);
218 		if (offset < se->start_page)
219 			rb = rb->rb_left;
220 		else if (offset >= se->start_page + se->nr_pages)
221 			rb = rb->rb_right;
222 		else
223 			return se;
224 	}
225 	/* It *must* be present */
226 	BUG();
227 }
228 
229 sector_t swap_page_sector(struct page *page)
230 {
231 	struct swap_info_struct *sis = page_swap_info(page);
232 	struct swap_extent *se;
233 	sector_t sector;
234 	pgoff_t offset;
235 
236 	offset = __page_file_index(page);
237 	se = offset_to_swap_extent(sis, offset);
238 	sector = se->start_block + (offset - se->start_page);
239 	return sector << (PAGE_SHIFT - 9);
240 }
241 
242 /*
243  * swap allocation tell device that a cluster of swap can now be discarded,
244  * to allow the swap device to optimize its wear-levelling.
245  */
246 static void discard_swap_cluster(struct swap_info_struct *si,
247 				 pgoff_t start_page, pgoff_t nr_pages)
248 {
249 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
250 
251 	while (nr_pages) {
252 		pgoff_t offset = start_page - se->start_page;
253 		sector_t start_block = se->start_block + offset;
254 		sector_t nr_blocks = se->nr_pages - offset;
255 
256 		if (nr_blocks > nr_pages)
257 			nr_blocks = nr_pages;
258 		start_page += nr_blocks;
259 		nr_pages -= nr_blocks;
260 
261 		start_block <<= PAGE_SHIFT - 9;
262 		nr_blocks <<= PAGE_SHIFT - 9;
263 		if (blkdev_issue_discard(si->bdev, start_block,
264 					nr_blocks, GFP_NOIO))
265 			break;
266 
267 		se = next_se(se);
268 	}
269 }
270 
271 #ifdef CONFIG_THP_SWAP
272 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
273 
274 #define swap_entry_size(size)	(size)
275 #else
276 #define SWAPFILE_CLUSTER	256
277 
278 /*
279  * Define swap_entry_size() as constant to let compiler to optimize
280  * out some code if !CONFIG_THP_SWAP
281  */
282 #define swap_entry_size(size)	1
283 #endif
284 #define LATENCY_LIMIT		256
285 
286 static inline void cluster_set_flag(struct swap_cluster_info *info,
287 	unsigned int flag)
288 {
289 	info->flags = flag;
290 }
291 
292 static inline unsigned int cluster_count(struct swap_cluster_info *info)
293 {
294 	return info->data;
295 }
296 
297 static inline void cluster_set_count(struct swap_cluster_info *info,
298 				     unsigned int c)
299 {
300 	info->data = c;
301 }
302 
303 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
304 					 unsigned int c, unsigned int f)
305 {
306 	info->flags = f;
307 	info->data = c;
308 }
309 
310 static inline unsigned int cluster_next(struct swap_cluster_info *info)
311 {
312 	return info->data;
313 }
314 
315 static inline void cluster_set_next(struct swap_cluster_info *info,
316 				    unsigned int n)
317 {
318 	info->data = n;
319 }
320 
321 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
322 					 unsigned int n, unsigned int f)
323 {
324 	info->flags = f;
325 	info->data = n;
326 }
327 
328 static inline bool cluster_is_free(struct swap_cluster_info *info)
329 {
330 	return info->flags & CLUSTER_FLAG_FREE;
331 }
332 
333 static inline bool cluster_is_null(struct swap_cluster_info *info)
334 {
335 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
336 }
337 
338 static inline void cluster_set_null(struct swap_cluster_info *info)
339 {
340 	info->flags = CLUSTER_FLAG_NEXT_NULL;
341 	info->data = 0;
342 }
343 
344 static inline bool cluster_is_huge(struct swap_cluster_info *info)
345 {
346 	if (IS_ENABLED(CONFIG_THP_SWAP))
347 		return info->flags & CLUSTER_FLAG_HUGE;
348 	return false;
349 }
350 
351 static inline void cluster_clear_huge(struct swap_cluster_info *info)
352 {
353 	info->flags &= ~CLUSTER_FLAG_HUGE;
354 }
355 
356 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
357 						     unsigned long offset)
358 {
359 	struct swap_cluster_info *ci;
360 
361 	ci = si->cluster_info;
362 	if (ci) {
363 		ci += offset / SWAPFILE_CLUSTER;
364 		spin_lock(&ci->lock);
365 	}
366 	return ci;
367 }
368 
369 static inline void unlock_cluster(struct swap_cluster_info *ci)
370 {
371 	if (ci)
372 		spin_unlock(&ci->lock);
373 }
374 
375 /*
376  * Determine the locking method in use for this device.  Return
377  * swap_cluster_info if SSD-style cluster-based locking is in place.
378  */
379 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
380 		struct swap_info_struct *si, unsigned long offset)
381 {
382 	struct swap_cluster_info *ci;
383 
384 	/* Try to use fine-grained SSD-style locking if available: */
385 	ci = lock_cluster(si, offset);
386 	/* Otherwise, fall back to traditional, coarse locking: */
387 	if (!ci)
388 		spin_lock(&si->lock);
389 
390 	return ci;
391 }
392 
393 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
394 					       struct swap_cluster_info *ci)
395 {
396 	if (ci)
397 		unlock_cluster(ci);
398 	else
399 		spin_unlock(&si->lock);
400 }
401 
402 static inline bool cluster_list_empty(struct swap_cluster_list *list)
403 {
404 	return cluster_is_null(&list->head);
405 }
406 
407 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
408 {
409 	return cluster_next(&list->head);
410 }
411 
412 static void cluster_list_init(struct swap_cluster_list *list)
413 {
414 	cluster_set_null(&list->head);
415 	cluster_set_null(&list->tail);
416 }
417 
418 static void cluster_list_add_tail(struct swap_cluster_list *list,
419 				  struct swap_cluster_info *ci,
420 				  unsigned int idx)
421 {
422 	if (cluster_list_empty(list)) {
423 		cluster_set_next_flag(&list->head, idx, 0);
424 		cluster_set_next_flag(&list->tail, idx, 0);
425 	} else {
426 		struct swap_cluster_info *ci_tail;
427 		unsigned int tail = cluster_next(&list->tail);
428 
429 		/*
430 		 * Nested cluster lock, but both cluster locks are
431 		 * only acquired when we held swap_info_struct->lock
432 		 */
433 		ci_tail = ci + tail;
434 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
435 		cluster_set_next(ci_tail, idx);
436 		spin_unlock(&ci_tail->lock);
437 		cluster_set_next_flag(&list->tail, idx, 0);
438 	}
439 }
440 
441 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
442 					   struct swap_cluster_info *ci)
443 {
444 	unsigned int idx;
445 
446 	idx = cluster_next(&list->head);
447 	if (cluster_next(&list->tail) == idx) {
448 		cluster_set_null(&list->head);
449 		cluster_set_null(&list->tail);
450 	} else
451 		cluster_set_next_flag(&list->head,
452 				      cluster_next(&ci[idx]), 0);
453 
454 	return idx;
455 }
456 
457 /* Add a cluster to discard list and schedule it to do discard */
458 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
459 		unsigned int idx)
460 {
461 	/*
462 	 * If scan_swap_map_slots() can't find a free cluster, it will check
463 	 * si->swap_map directly. To make sure the discarding cluster isn't
464 	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
465 	 * It will be cleared after discard
466 	 */
467 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
468 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
469 
470 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
471 
472 	schedule_work(&si->discard_work);
473 }
474 
475 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
476 {
477 	struct swap_cluster_info *ci = si->cluster_info;
478 
479 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
480 	cluster_list_add_tail(&si->free_clusters, ci, idx);
481 }
482 
483 /*
484  * Doing discard actually. After a cluster discard is finished, the cluster
485  * will be added to free cluster list. caller should hold si->lock.
486 */
487 static void swap_do_scheduled_discard(struct swap_info_struct *si)
488 {
489 	struct swap_cluster_info *info, *ci;
490 	unsigned int idx;
491 
492 	info = si->cluster_info;
493 
494 	while (!cluster_list_empty(&si->discard_clusters)) {
495 		idx = cluster_list_del_first(&si->discard_clusters, info);
496 		spin_unlock(&si->lock);
497 
498 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
499 				SWAPFILE_CLUSTER);
500 
501 		spin_lock(&si->lock);
502 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
503 		__free_cluster(si, idx);
504 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
505 				0, SWAPFILE_CLUSTER);
506 		unlock_cluster(ci);
507 	}
508 }
509 
510 static void swap_discard_work(struct work_struct *work)
511 {
512 	struct swap_info_struct *si;
513 
514 	si = container_of(work, struct swap_info_struct, discard_work);
515 
516 	spin_lock(&si->lock);
517 	swap_do_scheduled_discard(si);
518 	spin_unlock(&si->lock);
519 }
520 
521 static void swap_users_ref_free(struct percpu_ref *ref)
522 {
523 	struct swap_info_struct *si;
524 
525 	si = container_of(ref, struct swap_info_struct, users);
526 	complete(&si->comp);
527 }
528 
529 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
530 {
531 	struct swap_cluster_info *ci = si->cluster_info;
532 
533 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
534 	cluster_list_del_first(&si->free_clusters, ci);
535 	cluster_set_count_flag(ci + idx, 0, 0);
536 }
537 
538 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
539 {
540 	struct swap_cluster_info *ci = si->cluster_info + idx;
541 
542 	VM_BUG_ON(cluster_count(ci) != 0);
543 	/*
544 	 * If the swap is discardable, prepare discard the cluster
545 	 * instead of free it immediately. The cluster will be freed
546 	 * after discard.
547 	 */
548 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
549 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
550 		swap_cluster_schedule_discard(si, idx);
551 		return;
552 	}
553 
554 	__free_cluster(si, idx);
555 }
556 
557 /*
558  * The cluster corresponding to page_nr will be used. The cluster will be
559  * removed from free cluster list and its usage counter will be increased.
560  */
561 static void inc_cluster_info_page(struct swap_info_struct *p,
562 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
563 {
564 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
565 
566 	if (!cluster_info)
567 		return;
568 	if (cluster_is_free(&cluster_info[idx]))
569 		alloc_cluster(p, idx);
570 
571 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
572 	cluster_set_count(&cluster_info[idx],
573 		cluster_count(&cluster_info[idx]) + 1);
574 }
575 
576 /*
577  * The cluster corresponding to page_nr decreases one usage. If the usage
578  * counter becomes 0, which means no page in the cluster is in using, we can
579  * optionally discard the cluster and add it to free cluster list.
580  */
581 static void dec_cluster_info_page(struct swap_info_struct *p,
582 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
583 {
584 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
585 
586 	if (!cluster_info)
587 		return;
588 
589 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
590 	cluster_set_count(&cluster_info[idx],
591 		cluster_count(&cluster_info[idx]) - 1);
592 
593 	if (cluster_count(&cluster_info[idx]) == 0)
594 		free_cluster(p, idx);
595 }
596 
597 /*
598  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
599  * cluster list. Avoiding such abuse to avoid list corruption.
600  */
601 static bool
602 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
603 	unsigned long offset)
604 {
605 	struct percpu_cluster *percpu_cluster;
606 	bool conflict;
607 
608 	offset /= SWAPFILE_CLUSTER;
609 	conflict = !cluster_list_empty(&si->free_clusters) &&
610 		offset != cluster_list_first(&si->free_clusters) &&
611 		cluster_is_free(&si->cluster_info[offset]);
612 
613 	if (!conflict)
614 		return false;
615 
616 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
617 	cluster_set_null(&percpu_cluster->index);
618 	return true;
619 }
620 
621 /*
622  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
623  * might involve allocating a new cluster for current CPU too.
624  */
625 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
626 	unsigned long *offset, unsigned long *scan_base)
627 {
628 	struct percpu_cluster *cluster;
629 	struct swap_cluster_info *ci;
630 	unsigned long tmp, max;
631 
632 new_cluster:
633 	cluster = this_cpu_ptr(si->percpu_cluster);
634 	if (cluster_is_null(&cluster->index)) {
635 		if (!cluster_list_empty(&si->free_clusters)) {
636 			cluster->index = si->free_clusters.head;
637 			cluster->next = cluster_next(&cluster->index) *
638 					SWAPFILE_CLUSTER;
639 		} else if (!cluster_list_empty(&si->discard_clusters)) {
640 			/*
641 			 * we don't have free cluster but have some clusters in
642 			 * discarding, do discard now and reclaim them, then
643 			 * reread cluster_next_cpu since we dropped si->lock
644 			 */
645 			swap_do_scheduled_discard(si);
646 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
647 			*offset = *scan_base;
648 			goto new_cluster;
649 		} else
650 			return false;
651 	}
652 
653 	/*
654 	 * Other CPUs can use our cluster if they can't find a free cluster,
655 	 * check if there is still free entry in the cluster
656 	 */
657 	tmp = cluster->next;
658 	max = min_t(unsigned long, si->max,
659 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
660 	if (tmp < max) {
661 		ci = lock_cluster(si, tmp);
662 		while (tmp < max) {
663 			if (!si->swap_map[tmp])
664 				break;
665 			tmp++;
666 		}
667 		unlock_cluster(ci);
668 	}
669 	if (tmp >= max) {
670 		cluster_set_null(&cluster->index);
671 		goto new_cluster;
672 	}
673 	cluster->next = tmp + 1;
674 	*offset = tmp;
675 	*scan_base = tmp;
676 	return true;
677 }
678 
679 static void __del_from_avail_list(struct swap_info_struct *p)
680 {
681 	int nid;
682 
683 	assert_spin_locked(&p->lock);
684 	for_each_node(nid)
685 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
686 }
687 
688 static void del_from_avail_list(struct swap_info_struct *p)
689 {
690 	spin_lock(&swap_avail_lock);
691 	__del_from_avail_list(p);
692 	spin_unlock(&swap_avail_lock);
693 }
694 
695 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
696 			     unsigned int nr_entries)
697 {
698 	unsigned int end = offset + nr_entries - 1;
699 
700 	if (offset == si->lowest_bit)
701 		si->lowest_bit += nr_entries;
702 	if (end == si->highest_bit)
703 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
704 	WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
705 	if (si->inuse_pages == si->pages) {
706 		si->lowest_bit = si->max;
707 		si->highest_bit = 0;
708 		del_from_avail_list(si);
709 	}
710 }
711 
712 static void add_to_avail_list(struct swap_info_struct *p)
713 {
714 	int nid;
715 
716 	spin_lock(&swap_avail_lock);
717 	for_each_node(nid)
718 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
719 	spin_unlock(&swap_avail_lock);
720 }
721 
722 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
723 			    unsigned int nr_entries)
724 {
725 	unsigned long begin = offset;
726 	unsigned long end = offset + nr_entries - 1;
727 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
728 
729 	if (offset < si->lowest_bit)
730 		si->lowest_bit = offset;
731 	if (end > si->highest_bit) {
732 		bool was_full = !si->highest_bit;
733 
734 		WRITE_ONCE(si->highest_bit, end);
735 		if (was_full && (si->flags & SWP_WRITEOK))
736 			add_to_avail_list(si);
737 	}
738 	atomic_long_add(nr_entries, &nr_swap_pages);
739 	WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
740 	if (si->flags & SWP_BLKDEV)
741 		swap_slot_free_notify =
742 			si->bdev->bd_disk->fops->swap_slot_free_notify;
743 	else
744 		swap_slot_free_notify = NULL;
745 	while (offset <= end) {
746 		arch_swap_invalidate_page(si->type, offset);
747 		zswap_invalidate(si->type, offset);
748 		if (swap_slot_free_notify)
749 			swap_slot_free_notify(si->bdev, offset);
750 		offset++;
751 	}
752 	clear_shadow_from_swap_cache(si->type, begin, end);
753 }
754 
755 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
756 {
757 	unsigned long prev;
758 
759 	if (!(si->flags & SWP_SOLIDSTATE)) {
760 		si->cluster_next = next;
761 		return;
762 	}
763 
764 	prev = this_cpu_read(*si->cluster_next_cpu);
765 	/*
766 	 * Cross the swap address space size aligned trunk, choose
767 	 * another trunk randomly to avoid lock contention on swap
768 	 * address space if possible.
769 	 */
770 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
771 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
772 		/* No free swap slots available */
773 		if (si->highest_bit <= si->lowest_bit)
774 			return;
775 		next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
776 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
777 		next = max_t(unsigned int, next, si->lowest_bit);
778 	}
779 	this_cpu_write(*si->cluster_next_cpu, next);
780 }
781 
782 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
783 					     unsigned long offset)
784 {
785 	if (data_race(!si->swap_map[offset])) {
786 		spin_lock(&si->lock);
787 		return true;
788 	}
789 
790 	if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
791 		spin_lock(&si->lock);
792 		return true;
793 	}
794 
795 	return false;
796 }
797 
798 static int scan_swap_map_slots(struct swap_info_struct *si,
799 			       unsigned char usage, int nr,
800 			       swp_entry_t slots[])
801 {
802 	struct swap_cluster_info *ci;
803 	unsigned long offset;
804 	unsigned long scan_base;
805 	unsigned long last_in_cluster = 0;
806 	int latency_ration = LATENCY_LIMIT;
807 	int n_ret = 0;
808 	bool scanned_many = false;
809 
810 	/*
811 	 * We try to cluster swap pages by allocating them sequentially
812 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
813 	 * way, however, we resort to first-free allocation, starting
814 	 * a new cluster.  This prevents us from scattering swap pages
815 	 * all over the entire swap partition, so that we reduce
816 	 * overall disk seek times between swap pages.  -- sct
817 	 * But we do now try to find an empty cluster.  -Andrea
818 	 * And we let swap pages go all over an SSD partition.  Hugh
819 	 */
820 
821 	si->flags += SWP_SCANNING;
822 	/*
823 	 * Use percpu scan base for SSD to reduce lock contention on
824 	 * cluster and swap cache.  For HDD, sequential access is more
825 	 * important.
826 	 */
827 	if (si->flags & SWP_SOLIDSTATE)
828 		scan_base = this_cpu_read(*si->cluster_next_cpu);
829 	else
830 		scan_base = si->cluster_next;
831 	offset = scan_base;
832 
833 	/* SSD algorithm */
834 	if (si->cluster_info) {
835 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
836 			goto scan;
837 	} else if (unlikely(!si->cluster_nr--)) {
838 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
839 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
840 			goto checks;
841 		}
842 
843 		spin_unlock(&si->lock);
844 
845 		/*
846 		 * If seek is expensive, start searching for new cluster from
847 		 * start of partition, to minimize the span of allocated swap.
848 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
849 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
850 		 */
851 		scan_base = offset = si->lowest_bit;
852 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
853 
854 		/* Locate the first empty (unaligned) cluster */
855 		for (; last_in_cluster <= si->highest_bit; offset++) {
856 			if (si->swap_map[offset])
857 				last_in_cluster = offset + SWAPFILE_CLUSTER;
858 			else if (offset == last_in_cluster) {
859 				spin_lock(&si->lock);
860 				offset -= SWAPFILE_CLUSTER - 1;
861 				si->cluster_next = offset;
862 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
863 				goto checks;
864 			}
865 			if (unlikely(--latency_ration < 0)) {
866 				cond_resched();
867 				latency_ration = LATENCY_LIMIT;
868 			}
869 		}
870 
871 		offset = scan_base;
872 		spin_lock(&si->lock);
873 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
874 	}
875 
876 checks:
877 	if (si->cluster_info) {
878 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
879 		/* take a break if we already got some slots */
880 			if (n_ret)
881 				goto done;
882 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
883 							&scan_base))
884 				goto scan;
885 		}
886 	}
887 	if (!(si->flags & SWP_WRITEOK))
888 		goto no_page;
889 	if (!si->highest_bit)
890 		goto no_page;
891 	if (offset > si->highest_bit)
892 		scan_base = offset = si->lowest_bit;
893 
894 	ci = lock_cluster(si, offset);
895 	/* reuse swap entry of cache-only swap if not busy. */
896 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
897 		int swap_was_freed;
898 		unlock_cluster(ci);
899 		spin_unlock(&si->lock);
900 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
901 		spin_lock(&si->lock);
902 		/* entry was freed successfully, try to use this again */
903 		if (swap_was_freed)
904 			goto checks;
905 		goto scan; /* check next one */
906 	}
907 
908 	if (si->swap_map[offset]) {
909 		unlock_cluster(ci);
910 		if (!n_ret)
911 			goto scan;
912 		else
913 			goto done;
914 	}
915 	WRITE_ONCE(si->swap_map[offset], usage);
916 	inc_cluster_info_page(si, si->cluster_info, offset);
917 	unlock_cluster(ci);
918 
919 	swap_range_alloc(si, offset, 1);
920 	slots[n_ret++] = swp_entry(si->type, offset);
921 
922 	/* got enough slots or reach max slots? */
923 	if ((n_ret == nr) || (offset >= si->highest_bit))
924 		goto done;
925 
926 	/* search for next available slot */
927 
928 	/* time to take a break? */
929 	if (unlikely(--latency_ration < 0)) {
930 		if (n_ret)
931 			goto done;
932 		spin_unlock(&si->lock);
933 		cond_resched();
934 		spin_lock(&si->lock);
935 		latency_ration = LATENCY_LIMIT;
936 	}
937 
938 	/* try to get more slots in cluster */
939 	if (si->cluster_info) {
940 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
941 			goto checks;
942 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
943 		/* non-ssd case, still more slots in cluster? */
944 		--si->cluster_nr;
945 		goto checks;
946 	}
947 
948 	/*
949 	 * Even if there's no free clusters available (fragmented),
950 	 * try to scan a little more quickly with lock held unless we
951 	 * have scanned too many slots already.
952 	 */
953 	if (!scanned_many) {
954 		unsigned long scan_limit;
955 
956 		if (offset < scan_base)
957 			scan_limit = scan_base;
958 		else
959 			scan_limit = si->highest_bit;
960 		for (; offset <= scan_limit && --latency_ration > 0;
961 		     offset++) {
962 			if (!si->swap_map[offset])
963 				goto checks;
964 		}
965 	}
966 
967 done:
968 	set_cluster_next(si, offset + 1);
969 	si->flags -= SWP_SCANNING;
970 	return n_ret;
971 
972 scan:
973 	spin_unlock(&si->lock);
974 	while (++offset <= READ_ONCE(si->highest_bit)) {
975 		if (unlikely(--latency_ration < 0)) {
976 			cond_resched();
977 			latency_ration = LATENCY_LIMIT;
978 			scanned_many = true;
979 		}
980 		if (swap_offset_available_and_locked(si, offset))
981 			goto checks;
982 	}
983 	offset = si->lowest_bit;
984 	while (offset < scan_base) {
985 		if (unlikely(--latency_ration < 0)) {
986 			cond_resched();
987 			latency_ration = LATENCY_LIMIT;
988 			scanned_many = true;
989 		}
990 		if (swap_offset_available_and_locked(si, offset))
991 			goto checks;
992 		offset++;
993 	}
994 	spin_lock(&si->lock);
995 
996 no_page:
997 	si->flags -= SWP_SCANNING;
998 	return n_ret;
999 }
1000 
1001 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1002 {
1003 	unsigned long idx;
1004 	struct swap_cluster_info *ci;
1005 	unsigned long offset;
1006 
1007 	/*
1008 	 * Should not even be attempting cluster allocations when huge
1009 	 * page swap is disabled.  Warn and fail the allocation.
1010 	 */
1011 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1012 		VM_WARN_ON_ONCE(1);
1013 		return 0;
1014 	}
1015 
1016 	if (cluster_list_empty(&si->free_clusters))
1017 		return 0;
1018 
1019 	idx = cluster_list_first(&si->free_clusters);
1020 	offset = idx * SWAPFILE_CLUSTER;
1021 	ci = lock_cluster(si, offset);
1022 	alloc_cluster(si, idx);
1023 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1024 
1025 	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1026 	unlock_cluster(ci);
1027 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1028 	*slot = swp_entry(si->type, offset);
1029 
1030 	return 1;
1031 }
1032 
1033 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1034 {
1035 	unsigned long offset = idx * SWAPFILE_CLUSTER;
1036 	struct swap_cluster_info *ci;
1037 
1038 	ci = lock_cluster(si, offset);
1039 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1040 	cluster_set_count_flag(ci, 0, 0);
1041 	free_cluster(si, idx);
1042 	unlock_cluster(ci);
1043 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1044 }
1045 
1046 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1047 {
1048 	unsigned long size = swap_entry_size(entry_size);
1049 	struct swap_info_struct *si, *next;
1050 	long avail_pgs;
1051 	int n_ret = 0;
1052 	int node;
1053 
1054 	/* Only single cluster request supported */
1055 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1056 
1057 	spin_lock(&swap_avail_lock);
1058 
1059 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1060 	if (avail_pgs <= 0) {
1061 		spin_unlock(&swap_avail_lock);
1062 		goto noswap;
1063 	}
1064 
1065 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1066 
1067 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1068 
1069 start_over:
1070 	node = numa_node_id();
1071 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1072 		/* requeue si to after same-priority siblings */
1073 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1074 		spin_unlock(&swap_avail_lock);
1075 		spin_lock(&si->lock);
1076 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1077 			spin_lock(&swap_avail_lock);
1078 			if (plist_node_empty(&si->avail_lists[node])) {
1079 				spin_unlock(&si->lock);
1080 				goto nextsi;
1081 			}
1082 			WARN(!si->highest_bit,
1083 			     "swap_info %d in list but !highest_bit\n",
1084 			     si->type);
1085 			WARN(!(si->flags & SWP_WRITEOK),
1086 			     "swap_info %d in list but !SWP_WRITEOK\n",
1087 			     si->type);
1088 			__del_from_avail_list(si);
1089 			spin_unlock(&si->lock);
1090 			goto nextsi;
1091 		}
1092 		if (size == SWAPFILE_CLUSTER) {
1093 			if (si->flags & SWP_BLKDEV)
1094 				n_ret = swap_alloc_cluster(si, swp_entries);
1095 		} else
1096 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1097 						    n_goal, swp_entries);
1098 		spin_unlock(&si->lock);
1099 		if (n_ret || size == SWAPFILE_CLUSTER)
1100 			goto check_out;
1101 		cond_resched();
1102 
1103 		spin_lock(&swap_avail_lock);
1104 nextsi:
1105 		/*
1106 		 * if we got here, it's likely that si was almost full before,
1107 		 * and since scan_swap_map_slots() can drop the si->lock,
1108 		 * multiple callers probably all tried to get a page from the
1109 		 * same si and it filled up before we could get one; or, the si
1110 		 * filled up between us dropping swap_avail_lock and taking
1111 		 * si->lock. Since we dropped the swap_avail_lock, the
1112 		 * swap_avail_head list may have been modified; so if next is
1113 		 * still in the swap_avail_head list then try it, otherwise
1114 		 * start over if we have not gotten any slots.
1115 		 */
1116 		if (plist_node_empty(&next->avail_lists[node]))
1117 			goto start_over;
1118 	}
1119 
1120 	spin_unlock(&swap_avail_lock);
1121 
1122 check_out:
1123 	if (n_ret < n_goal)
1124 		atomic_long_add((long)(n_goal - n_ret) * size,
1125 				&nr_swap_pages);
1126 noswap:
1127 	return n_ret;
1128 }
1129 
1130 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1131 {
1132 	struct swap_info_struct *p;
1133 	unsigned long offset;
1134 
1135 	if (!entry.val)
1136 		goto out;
1137 	p = swp_swap_info(entry);
1138 	if (!p)
1139 		goto bad_nofile;
1140 	if (data_race(!(p->flags & SWP_USED)))
1141 		goto bad_device;
1142 	offset = swp_offset(entry);
1143 	if (offset >= p->max)
1144 		goto bad_offset;
1145 	if (data_race(!p->swap_map[swp_offset(entry)]))
1146 		goto bad_free;
1147 	return p;
1148 
1149 bad_free:
1150 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1151 	goto out;
1152 bad_offset:
1153 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1154 	goto out;
1155 bad_device:
1156 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1157 	goto out;
1158 bad_nofile:
1159 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1160 out:
1161 	return NULL;
1162 }
1163 
1164 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1165 					struct swap_info_struct *q)
1166 {
1167 	struct swap_info_struct *p;
1168 
1169 	p = _swap_info_get(entry);
1170 
1171 	if (p != q) {
1172 		if (q != NULL)
1173 			spin_unlock(&q->lock);
1174 		if (p != NULL)
1175 			spin_lock(&p->lock);
1176 	}
1177 	return p;
1178 }
1179 
1180 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1181 					      unsigned long offset,
1182 					      unsigned char usage)
1183 {
1184 	unsigned char count;
1185 	unsigned char has_cache;
1186 
1187 	count = p->swap_map[offset];
1188 
1189 	has_cache = count & SWAP_HAS_CACHE;
1190 	count &= ~SWAP_HAS_CACHE;
1191 
1192 	if (usage == SWAP_HAS_CACHE) {
1193 		VM_BUG_ON(!has_cache);
1194 		has_cache = 0;
1195 	} else if (count == SWAP_MAP_SHMEM) {
1196 		/*
1197 		 * Or we could insist on shmem.c using a special
1198 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1199 		 */
1200 		count = 0;
1201 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1202 		if (count == COUNT_CONTINUED) {
1203 			if (swap_count_continued(p, offset, count))
1204 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1205 			else
1206 				count = SWAP_MAP_MAX;
1207 		} else
1208 			count--;
1209 	}
1210 
1211 	usage = count | has_cache;
1212 	if (usage)
1213 		WRITE_ONCE(p->swap_map[offset], usage);
1214 	else
1215 		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1216 
1217 	return usage;
1218 }
1219 
1220 /*
1221  * When we get a swap entry, if there aren't some other ways to
1222  * prevent swapoff, such as the folio in swap cache is locked, page
1223  * table lock is held, etc., the swap entry may become invalid because
1224  * of swapoff.  Then, we need to enclose all swap related functions
1225  * with get_swap_device() and put_swap_device(), unless the swap
1226  * functions call get/put_swap_device() by themselves.
1227  *
1228  * Check whether swap entry is valid in the swap device.  If so,
1229  * return pointer to swap_info_struct, and keep the swap entry valid
1230  * via preventing the swap device from being swapoff, until
1231  * put_swap_device() is called.  Otherwise return NULL.
1232  *
1233  * Notice that swapoff or swapoff+swapon can still happen before the
1234  * percpu_ref_tryget_live() in get_swap_device() or after the
1235  * percpu_ref_put() in put_swap_device() if there isn't any other way
1236  * to prevent swapoff.  The caller must be prepared for that.  For
1237  * example, the following situation is possible.
1238  *
1239  *   CPU1				CPU2
1240  *   do_swap_page()
1241  *     ...				swapoff+swapon
1242  *     __read_swap_cache_async()
1243  *       swapcache_prepare()
1244  *         __swap_duplicate()
1245  *           // check swap_map
1246  *     // verify PTE not changed
1247  *
1248  * In __swap_duplicate(), the swap_map need to be checked before
1249  * changing partly because the specified swap entry may be for another
1250  * swap device which has been swapoff.  And in do_swap_page(), after
1251  * the page is read from the swap device, the PTE is verified not
1252  * changed with the page table locked to check whether the swap device
1253  * has been swapoff or swapoff+swapon.
1254  */
1255 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1256 {
1257 	struct swap_info_struct *si;
1258 	unsigned long offset;
1259 
1260 	if (!entry.val)
1261 		goto out;
1262 	si = swp_swap_info(entry);
1263 	if (!si)
1264 		goto bad_nofile;
1265 	if (!percpu_ref_tryget_live(&si->users))
1266 		goto out;
1267 	/*
1268 	 * Guarantee the si->users are checked before accessing other
1269 	 * fields of swap_info_struct.
1270 	 *
1271 	 * Paired with the spin_unlock() after setup_swap_info() in
1272 	 * enable_swap_info().
1273 	 */
1274 	smp_rmb();
1275 	offset = swp_offset(entry);
1276 	if (offset >= si->max)
1277 		goto put_out;
1278 
1279 	return si;
1280 bad_nofile:
1281 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1282 out:
1283 	return NULL;
1284 put_out:
1285 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1286 	percpu_ref_put(&si->users);
1287 	return NULL;
1288 }
1289 
1290 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1291 				       swp_entry_t entry)
1292 {
1293 	struct swap_cluster_info *ci;
1294 	unsigned long offset = swp_offset(entry);
1295 	unsigned char usage;
1296 
1297 	ci = lock_cluster_or_swap_info(p, offset);
1298 	usage = __swap_entry_free_locked(p, offset, 1);
1299 	unlock_cluster_or_swap_info(p, ci);
1300 	if (!usage)
1301 		free_swap_slot(entry);
1302 
1303 	return usage;
1304 }
1305 
1306 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1307 {
1308 	struct swap_cluster_info *ci;
1309 	unsigned long offset = swp_offset(entry);
1310 	unsigned char count;
1311 
1312 	ci = lock_cluster(p, offset);
1313 	count = p->swap_map[offset];
1314 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1315 	p->swap_map[offset] = 0;
1316 	dec_cluster_info_page(p, p->cluster_info, offset);
1317 	unlock_cluster(ci);
1318 
1319 	mem_cgroup_uncharge_swap(entry, 1);
1320 	swap_range_free(p, offset, 1);
1321 }
1322 
1323 /*
1324  * Caller has made sure that the swap device corresponding to entry
1325  * is still around or has not been recycled.
1326  */
1327 void swap_free(swp_entry_t entry)
1328 {
1329 	struct swap_info_struct *p;
1330 
1331 	p = _swap_info_get(entry);
1332 	if (p)
1333 		__swap_entry_free(p, entry);
1334 }
1335 
1336 /*
1337  * Called after dropping swapcache to decrease refcnt to swap entries.
1338  */
1339 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1340 {
1341 	unsigned long offset = swp_offset(entry);
1342 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1343 	struct swap_cluster_info *ci;
1344 	struct swap_info_struct *si;
1345 	unsigned char *map;
1346 	unsigned int i, free_entries = 0;
1347 	unsigned char val;
1348 	int size = swap_entry_size(folio_nr_pages(folio));
1349 
1350 	si = _swap_info_get(entry);
1351 	if (!si)
1352 		return;
1353 
1354 	ci = lock_cluster_or_swap_info(si, offset);
1355 	if (size == SWAPFILE_CLUSTER) {
1356 		VM_BUG_ON(!cluster_is_huge(ci));
1357 		map = si->swap_map + offset;
1358 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1359 			val = map[i];
1360 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1361 			if (val == SWAP_HAS_CACHE)
1362 				free_entries++;
1363 		}
1364 		cluster_clear_huge(ci);
1365 		if (free_entries == SWAPFILE_CLUSTER) {
1366 			unlock_cluster_or_swap_info(si, ci);
1367 			spin_lock(&si->lock);
1368 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1369 			swap_free_cluster(si, idx);
1370 			spin_unlock(&si->lock);
1371 			return;
1372 		}
1373 	}
1374 	for (i = 0; i < size; i++, entry.val++) {
1375 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1376 			unlock_cluster_or_swap_info(si, ci);
1377 			free_swap_slot(entry);
1378 			if (i == size - 1)
1379 				return;
1380 			lock_cluster_or_swap_info(si, offset);
1381 		}
1382 	}
1383 	unlock_cluster_or_swap_info(si, ci);
1384 }
1385 
1386 #ifdef CONFIG_THP_SWAP
1387 int split_swap_cluster(swp_entry_t entry)
1388 {
1389 	struct swap_info_struct *si;
1390 	struct swap_cluster_info *ci;
1391 	unsigned long offset = swp_offset(entry);
1392 
1393 	si = _swap_info_get(entry);
1394 	if (!si)
1395 		return -EBUSY;
1396 	ci = lock_cluster(si, offset);
1397 	cluster_clear_huge(ci);
1398 	unlock_cluster(ci);
1399 	return 0;
1400 }
1401 #endif
1402 
1403 static int swp_entry_cmp(const void *ent1, const void *ent2)
1404 {
1405 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1406 
1407 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1408 }
1409 
1410 void swapcache_free_entries(swp_entry_t *entries, int n)
1411 {
1412 	struct swap_info_struct *p, *prev;
1413 	int i;
1414 
1415 	if (n <= 0)
1416 		return;
1417 
1418 	prev = NULL;
1419 	p = NULL;
1420 
1421 	/*
1422 	 * Sort swap entries by swap device, so each lock is only taken once.
1423 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1424 	 * so low that it isn't necessary to optimize further.
1425 	 */
1426 	if (nr_swapfiles > 1)
1427 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1428 	for (i = 0; i < n; ++i) {
1429 		p = swap_info_get_cont(entries[i], prev);
1430 		if (p)
1431 			swap_entry_free(p, entries[i]);
1432 		prev = p;
1433 	}
1434 	if (p)
1435 		spin_unlock(&p->lock);
1436 }
1437 
1438 int __swap_count(swp_entry_t entry)
1439 {
1440 	struct swap_info_struct *si = swp_swap_info(entry);
1441 	pgoff_t offset = swp_offset(entry);
1442 
1443 	return swap_count(si->swap_map[offset]);
1444 }
1445 
1446 /*
1447  * How many references to @entry are currently swapped out?
1448  * This does not give an exact answer when swap count is continued,
1449  * but does include the high COUNT_CONTINUED flag to allow for that.
1450  */
1451 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1452 {
1453 	pgoff_t offset = swp_offset(entry);
1454 	struct swap_cluster_info *ci;
1455 	int count;
1456 
1457 	ci = lock_cluster_or_swap_info(si, offset);
1458 	count = swap_count(si->swap_map[offset]);
1459 	unlock_cluster_or_swap_info(si, ci);
1460 	return count;
1461 }
1462 
1463 /*
1464  * How many references to @entry are currently swapped out?
1465  * This considers COUNT_CONTINUED so it returns exact answer.
1466  */
1467 int swp_swapcount(swp_entry_t entry)
1468 {
1469 	int count, tmp_count, n;
1470 	struct swap_info_struct *p;
1471 	struct swap_cluster_info *ci;
1472 	struct page *page;
1473 	pgoff_t offset;
1474 	unsigned char *map;
1475 
1476 	p = _swap_info_get(entry);
1477 	if (!p)
1478 		return 0;
1479 
1480 	offset = swp_offset(entry);
1481 
1482 	ci = lock_cluster_or_swap_info(p, offset);
1483 
1484 	count = swap_count(p->swap_map[offset]);
1485 	if (!(count & COUNT_CONTINUED))
1486 		goto out;
1487 
1488 	count &= ~COUNT_CONTINUED;
1489 	n = SWAP_MAP_MAX + 1;
1490 
1491 	page = vmalloc_to_page(p->swap_map + offset);
1492 	offset &= ~PAGE_MASK;
1493 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1494 
1495 	do {
1496 		page = list_next_entry(page, lru);
1497 		map = kmap_atomic(page);
1498 		tmp_count = map[offset];
1499 		kunmap_atomic(map);
1500 
1501 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1502 		n *= (SWAP_CONT_MAX + 1);
1503 	} while (tmp_count & COUNT_CONTINUED);
1504 out:
1505 	unlock_cluster_or_swap_info(p, ci);
1506 	return count;
1507 }
1508 
1509 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1510 					 swp_entry_t entry)
1511 {
1512 	struct swap_cluster_info *ci;
1513 	unsigned char *map = si->swap_map;
1514 	unsigned long roffset = swp_offset(entry);
1515 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1516 	int i;
1517 	bool ret = false;
1518 
1519 	ci = lock_cluster_or_swap_info(si, offset);
1520 	if (!ci || !cluster_is_huge(ci)) {
1521 		if (swap_count(map[roffset]))
1522 			ret = true;
1523 		goto unlock_out;
1524 	}
1525 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1526 		if (swap_count(map[offset + i])) {
1527 			ret = true;
1528 			break;
1529 		}
1530 	}
1531 unlock_out:
1532 	unlock_cluster_or_swap_info(si, ci);
1533 	return ret;
1534 }
1535 
1536 static bool folio_swapped(struct folio *folio)
1537 {
1538 	swp_entry_t entry = folio_swap_entry(folio);
1539 	struct swap_info_struct *si = _swap_info_get(entry);
1540 
1541 	if (!si)
1542 		return false;
1543 
1544 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1545 		return swap_swapcount(si, entry) != 0;
1546 
1547 	return swap_page_trans_huge_swapped(si, entry);
1548 }
1549 
1550 /**
1551  * folio_free_swap() - Free the swap space used for this folio.
1552  * @folio: The folio to remove.
1553  *
1554  * If swap is getting full, or if there are no more mappings of this folio,
1555  * then call folio_free_swap to free its swap space.
1556  *
1557  * Return: true if we were able to release the swap space.
1558  */
1559 bool folio_free_swap(struct folio *folio)
1560 {
1561 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1562 
1563 	if (!folio_test_swapcache(folio))
1564 		return false;
1565 	if (folio_test_writeback(folio))
1566 		return false;
1567 	if (folio_swapped(folio))
1568 		return false;
1569 
1570 	/*
1571 	 * Once hibernation has begun to create its image of memory,
1572 	 * there's a danger that one of the calls to folio_free_swap()
1573 	 * - most probably a call from __try_to_reclaim_swap() while
1574 	 * hibernation is allocating its own swap pages for the image,
1575 	 * but conceivably even a call from memory reclaim - will free
1576 	 * the swap from a folio which has already been recorded in the
1577 	 * image as a clean swapcache folio, and then reuse its swap for
1578 	 * another page of the image.  On waking from hibernation, the
1579 	 * original folio might be freed under memory pressure, then
1580 	 * later read back in from swap, now with the wrong data.
1581 	 *
1582 	 * Hibernation suspends storage while it is writing the image
1583 	 * to disk so check that here.
1584 	 */
1585 	if (pm_suspended_storage())
1586 		return false;
1587 
1588 	delete_from_swap_cache(folio);
1589 	folio_set_dirty(folio);
1590 	return true;
1591 }
1592 
1593 /*
1594  * Free the swap entry like above, but also try to
1595  * free the page cache entry if it is the last user.
1596  */
1597 int free_swap_and_cache(swp_entry_t entry)
1598 {
1599 	struct swap_info_struct *p;
1600 	unsigned char count;
1601 
1602 	if (non_swap_entry(entry))
1603 		return 1;
1604 
1605 	p = _swap_info_get(entry);
1606 	if (p) {
1607 		count = __swap_entry_free(p, entry);
1608 		if (count == SWAP_HAS_CACHE &&
1609 		    !swap_page_trans_huge_swapped(p, entry))
1610 			__try_to_reclaim_swap(p, swp_offset(entry),
1611 					      TTRS_UNMAPPED | TTRS_FULL);
1612 	}
1613 	return p != NULL;
1614 }
1615 
1616 #ifdef CONFIG_HIBERNATION
1617 
1618 swp_entry_t get_swap_page_of_type(int type)
1619 {
1620 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1621 	swp_entry_t entry = {0};
1622 
1623 	if (!si)
1624 		goto fail;
1625 
1626 	/* This is called for allocating swap entry, not cache */
1627 	spin_lock(&si->lock);
1628 	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1629 		atomic_long_dec(&nr_swap_pages);
1630 	spin_unlock(&si->lock);
1631 fail:
1632 	return entry;
1633 }
1634 
1635 /*
1636  * Find the swap type that corresponds to given device (if any).
1637  *
1638  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1639  * from 0, in which the swap header is expected to be located.
1640  *
1641  * This is needed for the suspend to disk (aka swsusp).
1642  */
1643 int swap_type_of(dev_t device, sector_t offset)
1644 {
1645 	int type;
1646 
1647 	if (!device)
1648 		return -1;
1649 
1650 	spin_lock(&swap_lock);
1651 	for (type = 0; type < nr_swapfiles; type++) {
1652 		struct swap_info_struct *sis = swap_info[type];
1653 
1654 		if (!(sis->flags & SWP_WRITEOK))
1655 			continue;
1656 
1657 		if (device == sis->bdev->bd_dev) {
1658 			struct swap_extent *se = first_se(sis);
1659 
1660 			if (se->start_block == offset) {
1661 				spin_unlock(&swap_lock);
1662 				return type;
1663 			}
1664 		}
1665 	}
1666 	spin_unlock(&swap_lock);
1667 	return -ENODEV;
1668 }
1669 
1670 int find_first_swap(dev_t *device)
1671 {
1672 	int type;
1673 
1674 	spin_lock(&swap_lock);
1675 	for (type = 0; type < nr_swapfiles; type++) {
1676 		struct swap_info_struct *sis = swap_info[type];
1677 
1678 		if (!(sis->flags & SWP_WRITEOK))
1679 			continue;
1680 		*device = sis->bdev->bd_dev;
1681 		spin_unlock(&swap_lock);
1682 		return type;
1683 	}
1684 	spin_unlock(&swap_lock);
1685 	return -ENODEV;
1686 }
1687 
1688 /*
1689  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1690  * corresponding to given index in swap_info (swap type).
1691  */
1692 sector_t swapdev_block(int type, pgoff_t offset)
1693 {
1694 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1695 	struct swap_extent *se;
1696 
1697 	if (!si || !(si->flags & SWP_WRITEOK))
1698 		return 0;
1699 	se = offset_to_swap_extent(si, offset);
1700 	return se->start_block + (offset - se->start_page);
1701 }
1702 
1703 /*
1704  * Return either the total number of swap pages of given type, or the number
1705  * of free pages of that type (depending on @free)
1706  *
1707  * This is needed for software suspend
1708  */
1709 unsigned int count_swap_pages(int type, int free)
1710 {
1711 	unsigned int n = 0;
1712 
1713 	spin_lock(&swap_lock);
1714 	if ((unsigned int)type < nr_swapfiles) {
1715 		struct swap_info_struct *sis = swap_info[type];
1716 
1717 		spin_lock(&sis->lock);
1718 		if (sis->flags & SWP_WRITEOK) {
1719 			n = sis->pages;
1720 			if (free)
1721 				n -= sis->inuse_pages;
1722 		}
1723 		spin_unlock(&sis->lock);
1724 	}
1725 	spin_unlock(&swap_lock);
1726 	return n;
1727 }
1728 #endif /* CONFIG_HIBERNATION */
1729 
1730 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1731 {
1732 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1733 }
1734 
1735 /*
1736  * No need to decide whether this PTE shares the swap entry with others,
1737  * just let do_wp_page work it out if a write is requested later - to
1738  * force COW, vm_page_prot omits write permission from any private vma.
1739  */
1740 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1741 		unsigned long addr, swp_entry_t entry, struct folio *folio)
1742 {
1743 	struct page *page = folio_file_page(folio, swp_offset(entry));
1744 	struct page *swapcache;
1745 	spinlock_t *ptl;
1746 	pte_t *pte, new_pte, old_pte;
1747 	bool hwposioned = false;
1748 	int ret = 1;
1749 
1750 	swapcache = page;
1751 	page = ksm_might_need_to_copy(page, vma, addr);
1752 	if (unlikely(!page))
1753 		return -ENOMEM;
1754 	else if (unlikely(PTR_ERR(page) == -EHWPOISON))
1755 		hwposioned = true;
1756 
1757 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1758 	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1759 						swp_entry_to_pte(entry)))) {
1760 		ret = 0;
1761 		goto out;
1762 	}
1763 
1764 	old_pte = ptep_get(pte);
1765 
1766 	if (unlikely(hwposioned || !PageUptodate(page))) {
1767 		swp_entry_t swp_entry;
1768 
1769 		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1770 		if (hwposioned) {
1771 			swp_entry = make_hwpoison_entry(swapcache);
1772 			page = swapcache;
1773 		} else {
1774 			swp_entry = make_poisoned_swp_entry();
1775 		}
1776 		new_pte = swp_entry_to_pte(swp_entry);
1777 		ret = 0;
1778 		goto setpte;
1779 	}
1780 
1781 	/*
1782 	 * Some architectures may have to restore extra metadata to the page
1783 	 * when reading from swap. This metadata may be indexed by swap entry
1784 	 * so this must be called before swap_free().
1785 	 */
1786 	arch_swap_restore(entry, page_folio(page));
1787 
1788 	/* See do_swap_page() */
1789 	BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1790 	BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1791 
1792 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1793 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1794 	get_page(page);
1795 	if (page == swapcache) {
1796 		rmap_t rmap_flags = RMAP_NONE;
1797 
1798 		/*
1799 		 * See do_swap_page(): PageWriteback() would be problematic.
1800 		 * However, we do a wait_on_page_writeback() just before this
1801 		 * call and have the page locked.
1802 		 */
1803 		VM_BUG_ON_PAGE(PageWriteback(page), page);
1804 		if (pte_swp_exclusive(old_pte))
1805 			rmap_flags |= RMAP_EXCLUSIVE;
1806 
1807 		page_add_anon_rmap(page, vma, addr, rmap_flags);
1808 	} else { /* ksm created a completely new copy */
1809 		page_add_new_anon_rmap(page, vma, addr);
1810 		lru_cache_add_inactive_or_unevictable(page, vma);
1811 	}
1812 	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1813 	if (pte_swp_soft_dirty(old_pte))
1814 		new_pte = pte_mksoft_dirty(new_pte);
1815 	if (pte_swp_uffd_wp(old_pte))
1816 		new_pte = pte_mkuffd_wp(new_pte);
1817 setpte:
1818 	set_pte_at(vma->vm_mm, addr, pte, new_pte);
1819 	swap_free(entry);
1820 out:
1821 	if (pte)
1822 		pte_unmap_unlock(pte, ptl);
1823 	if (page != swapcache) {
1824 		unlock_page(page);
1825 		put_page(page);
1826 	}
1827 	return ret;
1828 }
1829 
1830 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1831 			unsigned long addr, unsigned long end,
1832 			unsigned int type)
1833 {
1834 	pte_t *pte = NULL;
1835 	struct swap_info_struct *si;
1836 
1837 	si = swap_info[type];
1838 	do {
1839 		struct folio *folio;
1840 		unsigned long offset;
1841 		unsigned char swp_count;
1842 		swp_entry_t entry;
1843 		int ret;
1844 		pte_t ptent;
1845 
1846 		if (!pte++) {
1847 			pte = pte_offset_map(pmd, addr);
1848 			if (!pte)
1849 				break;
1850 		}
1851 
1852 		ptent = ptep_get_lockless(pte);
1853 
1854 		if (!is_swap_pte(ptent))
1855 			continue;
1856 
1857 		entry = pte_to_swp_entry(ptent);
1858 		if (swp_type(entry) != type)
1859 			continue;
1860 
1861 		offset = swp_offset(entry);
1862 		pte_unmap(pte);
1863 		pte = NULL;
1864 
1865 		folio = swap_cache_get_folio(entry, vma, addr);
1866 		if (!folio) {
1867 			struct page *page;
1868 			struct vm_fault vmf = {
1869 				.vma = vma,
1870 				.address = addr,
1871 				.real_address = addr,
1872 				.pmd = pmd,
1873 			};
1874 
1875 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1876 						&vmf);
1877 			if (page)
1878 				folio = page_folio(page);
1879 		}
1880 		if (!folio) {
1881 			swp_count = READ_ONCE(si->swap_map[offset]);
1882 			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1883 				continue;
1884 			return -ENOMEM;
1885 		}
1886 
1887 		folio_lock(folio);
1888 		folio_wait_writeback(folio);
1889 		ret = unuse_pte(vma, pmd, addr, entry, folio);
1890 		if (ret < 0) {
1891 			folio_unlock(folio);
1892 			folio_put(folio);
1893 			return ret;
1894 		}
1895 
1896 		folio_free_swap(folio);
1897 		folio_unlock(folio);
1898 		folio_put(folio);
1899 	} while (addr += PAGE_SIZE, addr != end);
1900 
1901 	if (pte)
1902 		pte_unmap(pte);
1903 	return 0;
1904 }
1905 
1906 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1907 				unsigned long addr, unsigned long end,
1908 				unsigned int type)
1909 {
1910 	pmd_t *pmd;
1911 	unsigned long next;
1912 	int ret;
1913 
1914 	pmd = pmd_offset(pud, addr);
1915 	do {
1916 		cond_resched();
1917 		next = pmd_addr_end(addr, end);
1918 		ret = unuse_pte_range(vma, pmd, addr, next, type);
1919 		if (ret)
1920 			return ret;
1921 	} while (pmd++, addr = next, addr != end);
1922 	return 0;
1923 }
1924 
1925 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1926 				unsigned long addr, unsigned long end,
1927 				unsigned int type)
1928 {
1929 	pud_t *pud;
1930 	unsigned long next;
1931 	int ret;
1932 
1933 	pud = pud_offset(p4d, addr);
1934 	do {
1935 		next = pud_addr_end(addr, end);
1936 		if (pud_none_or_clear_bad(pud))
1937 			continue;
1938 		ret = unuse_pmd_range(vma, pud, addr, next, type);
1939 		if (ret)
1940 			return ret;
1941 	} while (pud++, addr = next, addr != end);
1942 	return 0;
1943 }
1944 
1945 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1946 				unsigned long addr, unsigned long end,
1947 				unsigned int type)
1948 {
1949 	p4d_t *p4d;
1950 	unsigned long next;
1951 	int ret;
1952 
1953 	p4d = p4d_offset(pgd, addr);
1954 	do {
1955 		next = p4d_addr_end(addr, end);
1956 		if (p4d_none_or_clear_bad(p4d))
1957 			continue;
1958 		ret = unuse_pud_range(vma, p4d, addr, next, type);
1959 		if (ret)
1960 			return ret;
1961 	} while (p4d++, addr = next, addr != end);
1962 	return 0;
1963 }
1964 
1965 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1966 {
1967 	pgd_t *pgd;
1968 	unsigned long addr, end, next;
1969 	int ret;
1970 
1971 	addr = vma->vm_start;
1972 	end = vma->vm_end;
1973 
1974 	pgd = pgd_offset(vma->vm_mm, addr);
1975 	do {
1976 		next = pgd_addr_end(addr, end);
1977 		if (pgd_none_or_clear_bad(pgd))
1978 			continue;
1979 		ret = unuse_p4d_range(vma, pgd, addr, next, type);
1980 		if (ret)
1981 			return ret;
1982 	} while (pgd++, addr = next, addr != end);
1983 	return 0;
1984 }
1985 
1986 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1987 {
1988 	struct vm_area_struct *vma;
1989 	int ret = 0;
1990 	VMA_ITERATOR(vmi, mm, 0);
1991 
1992 	mmap_read_lock(mm);
1993 	for_each_vma(vmi, vma) {
1994 		if (vma->anon_vma) {
1995 			ret = unuse_vma(vma, type);
1996 			if (ret)
1997 				break;
1998 		}
1999 
2000 		cond_resched();
2001 	}
2002 	mmap_read_unlock(mm);
2003 	return ret;
2004 }
2005 
2006 /*
2007  * Scan swap_map from current position to next entry still in use.
2008  * Return 0 if there are no inuse entries after prev till end of
2009  * the map.
2010  */
2011 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2012 					unsigned int prev)
2013 {
2014 	unsigned int i;
2015 	unsigned char count;
2016 
2017 	/*
2018 	 * No need for swap_lock here: we're just looking
2019 	 * for whether an entry is in use, not modifying it; false
2020 	 * hits are okay, and sys_swapoff() has already prevented new
2021 	 * allocations from this area (while holding swap_lock).
2022 	 */
2023 	for (i = prev + 1; i < si->max; i++) {
2024 		count = READ_ONCE(si->swap_map[i]);
2025 		if (count && swap_count(count) != SWAP_MAP_BAD)
2026 			break;
2027 		if ((i % LATENCY_LIMIT) == 0)
2028 			cond_resched();
2029 	}
2030 
2031 	if (i == si->max)
2032 		i = 0;
2033 
2034 	return i;
2035 }
2036 
2037 static int try_to_unuse(unsigned int type)
2038 {
2039 	struct mm_struct *prev_mm;
2040 	struct mm_struct *mm;
2041 	struct list_head *p;
2042 	int retval = 0;
2043 	struct swap_info_struct *si = swap_info[type];
2044 	struct folio *folio;
2045 	swp_entry_t entry;
2046 	unsigned int i;
2047 
2048 	if (!READ_ONCE(si->inuse_pages))
2049 		return 0;
2050 
2051 retry:
2052 	retval = shmem_unuse(type);
2053 	if (retval)
2054 		return retval;
2055 
2056 	prev_mm = &init_mm;
2057 	mmget(prev_mm);
2058 
2059 	spin_lock(&mmlist_lock);
2060 	p = &init_mm.mmlist;
2061 	while (READ_ONCE(si->inuse_pages) &&
2062 	       !signal_pending(current) &&
2063 	       (p = p->next) != &init_mm.mmlist) {
2064 
2065 		mm = list_entry(p, struct mm_struct, mmlist);
2066 		if (!mmget_not_zero(mm))
2067 			continue;
2068 		spin_unlock(&mmlist_lock);
2069 		mmput(prev_mm);
2070 		prev_mm = mm;
2071 		retval = unuse_mm(mm, type);
2072 		if (retval) {
2073 			mmput(prev_mm);
2074 			return retval;
2075 		}
2076 
2077 		/*
2078 		 * Make sure that we aren't completely killing
2079 		 * interactive performance.
2080 		 */
2081 		cond_resched();
2082 		spin_lock(&mmlist_lock);
2083 	}
2084 	spin_unlock(&mmlist_lock);
2085 
2086 	mmput(prev_mm);
2087 
2088 	i = 0;
2089 	while (READ_ONCE(si->inuse_pages) &&
2090 	       !signal_pending(current) &&
2091 	       (i = find_next_to_unuse(si, i)) != 0) {
2092 
2093 		entry = swp_entry(type, i);
2094 		folio = filemap_get_folio(swap_address_space(entry), i);
2095 		if (IS_ERR(folio))
2096 			continue;
2097 
2098 		/*
2099 		 * It is conceivable that a racing task removed this folio from
2100 		 * swap cache just before we acquired the page lock. The folio
2101 		 * might even be back in swap cache on another swap area. But
2102 		 * that is okay, folio_free_swap() only removes stale folios.
2103 		 */
2104 		folio_lock(folio);
2105 		folio_wait_writeback(folio);
2106 		folio_free_swap(folio);
2107 		folio_unlock(folio);
2108 		folio_put(folio);
2109 	}
2110 
2111 	/*
2112 	 * Lets check again to see if there are still swap entries in the map.
2113 	 * If yes, we would need to do retry the unuse logic again.
2114 	 * Under global memory pressure, swap entries can be reinserted back
2115 	 * into process space after the mmlist loop above passes over them.
2116 	 *
2117 	 * Limit the number of retries? No: when mmget_not_zero()
2118 	 * above fails, that mm is likely to be freeing swap from
2119 	 * exit_mmap(), which proceeds at its own independent pace;
2120 	 * and even shmem_writepage() could have been preempted after
2121 	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2122 	 * and robust (though cpu-intensive) just to keep retrying.
2123 	 */
2124 	if (READ_ONCE(si->inuse_pages)) {
2125 		if (!signal_pending(current))
2126 			goto retry;
2127 		return -EINTR;
2128 	}
2129 
2130 	return 0;
2131 }
2132 
2133 /*
2134  * After a successful try_to_unuse, if no swap is now in use, we know
2135  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2136  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2137  * added to the mmlist just after page_duplicate - before would be racy.
2138  */
2139 static void drain_mmlist(void)
2140 {
2141 	struct list_head *p, *next;
2142 	unsigned int type;
2143 
2144 	for (type = 0; type < nr_swapfiles; type++)
2145 		if (swap_info[type]->inuse_pages)
2146 			return;
2147 	spin_lock(&mmlist_lock);
2148 	list_for_each_safe(p, next, &init_mm.mmlist)
2149 		list_del_init(p);
2150 	spin_unlock(&mmlist_lock);
2151 }
2152 
2153 /*
2154  * Free all of a swapdev's extent information
2155  */
2156 static void destroy_swap_extents(struct swap_info_struct *sis)
2157 {
2158 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2159 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2160 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2161 
2162 		rb_erase(rb, &sis->swap_extent_root);
2163 		kfree(se);
2164 	}
2165 
2166 	if (sis->flags & SWP_ACTIVATED) {
2167 		struct file *swap_file = sis->swap_file;
2168 		struct address_space *mapping = swap_file->f_mapping;
2169 
2170 		sis->flags &= ~SWP_ACTIVATED;
2171 		if (mapping->a_ops->swap_deactivate)
2172 			mapping->a_ops->swap_deactivate(swap_file);
2173 	}
2174 }
2175 
2176 /*
2177  * Add a block range (and the corresponding page range) into this swapdev's
2178  * extent tree.
2179  *
2180  * This function rather assumes that it is called in ascending page order.
2181  */
2182 int
2183 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2184 		unsigned long nr_pages, sector_t start_block)
2185 {
2186 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2187 	struct swap_extent *se;
2188 	struct swap_extent *new_se;
2189 
2190 	/*
2191 	 * place the new node at the right most since the
2192 	 * function is called in ascending page order.
2193 	 */
2194 	while (*link) {
2195 		parent = *link;
2196 		link = &parent->rb_right;
2197 	}
2198 
2199 	if (parent) {
2200 		se = rb_entry(parent, struct swap_extent, rb_node);
2201 		BUG_ON(se->start_page + se->nr_pages != start_page);
2202 		if (se->start_block + se->nr_pages == start_block) {
2203 			/* Merge it */
2204 			se->nr_pages += nr_pages;
2205 			return 0;
2206 		}
2207 	}
2208 
2209 	/* No merge, insert a new extent. */
2210 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2211 	if (new_se == NULL)
2212 		return -ENOMEM;
2213 	new_se->start_page = start_page;
2214 	new_se->nr_pages = nr_pages;
2215 	new_se->start_block = start_block;
2216 
2217 	rb_link_node(&new_se->rb_node, parent, link);
2218 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2219 	return 1;
2220 }
2221 EXPORT_SYMBOL_GPL(add_swap_extent);
2222 
2223 /*
2224  * A `swap extent' is a simple thing which maps a contiguous range of pages
2225  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2226  * built at swapon time and is then used at swap_writepage/swap_readpage
2227  * time for locating where on disk a page belongs.
2228  *
2229  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2230  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2231  * swap files identically.
2232  *
2233  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2234  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2235  * swapfiles are handled *identically* after swapon time.
2236  *
2237  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2238  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2239  * blocks are found which do not fall within the PAGE_SIZE alignment
2240  * requirements, they are simply tossed out - we will never use those blocks
2241  * for swapping.
2242  *
2243  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2244  * prevents users from writing to the swap device, which will corrupt memory.
2245  *
2246  * The amount of disk space which a single swap extent represents varies.
2247  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2248  * extents in the rbtree. - akpm.
2249  */
2250 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2251 {
2252 	struct file *swap_file = sis->swap_file;
2253 	struct address_space *mapping = swap_file->f_mapping;
2254 	struct inode *inode = mapping->host;
2255 	int ret;
2256 
2257 	if (S_ISBLK(inode->i_mode)) {
2258 		ret = add_swap_extent(sis, 0, sis->max, 0);
2259 		*span = sis->pages;
2260 		return ret;
2261 	}
2262 
2263 	if (mapping->a_ops->swap_activate) {
2264 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2265 		if (ret < 0)
2266 			return ret;
2267 		sis->flags |= SWP_ACTIVATED;
2268 		if ((sis->flags & SWP_FS_OPS) &&
2269 		    sio_pool_init() != 0) {
2270 			destroy_swap_extents(sis);
2271 			return -ENOMEM;
2272 		}
2273 		return ret;
2274 	}
2275 
2276 	return generic_swapfile_activate(sis, swap_file, span);
2277 }
2278 
2279 static int swap_node(struct swap_info_struct *p)
2280 {
2281 	struct block_device *bdev;
2282 
2283 	if (p->bdev)
2284 		bdev = p->bdev;
2285 	else
2286 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2287 
2288 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2289 }
2290 
2291 static void setup_swap_info(struct swap_info_struct *p, int prio,
2292 			    unsigned char *swap_map,
2293 			    struct swap_cluster_info *cluster_info)
2294 {
2295 	int i;
2296 
2297 	if (prio >= 0)
2298 		p->prio = prio;
2299 	else
2300 		p->prio = --least_priority;
2301 	/*
2302 	 * the plist prio is negated because plist ordering is
2303 	 * low-to-high, while swap ordering is high-to-low
2304 	 */
2305 	p->list.prio = -p->prio;
2306 	for_each_node(i) {
2307 		if (p->prio >= 0)
2308 			p->avail_lists[i].prio = -p->prio;
2309 		else {
2310 			if (swap_node(p) == i)
2311 				p->avail_lists[i].prio = 1;
2312 			else
2313 				p->avail_lists[i].prio = -p->prio;
2314 		}
2315 	}
2316 	p->swap_map = swap_map;
2317 	p->cluster_info = cluster_info;
2318 }
2319 
2320 static void _enable_swap_info(struct swap_info_struct *p)
2321 {
2322 	p->flags |= SWP_WRITEOK;
2323 	atomic_long_add(p->pages, &nr_swap_pages);
2324 	total_swap_pages += p->pages;
2325 
2326 	assert_spin_locked(&swap_lock);
2327 	/*
2328 	 * both lists are plists, and thus priority ordered.
2329 	 * swap_active_head needs to be priority ordered for swapoff(),
2330 	 * which on removal of any swap_info_struct with an auto-assigned
2331 	 * (i.e. negative) priority increments the auto-assigned priority
2332 	 * of any lower-priority swap_info_structs.
2333 	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2334 	 * which allocates swap pages from the highest available priority
2335 	 * swap_info_struct.
2336 	 */
2337 	plist_add(&p->list, &swap_active_head);
2338 
2339 	/* add to available list iff swap device is not full */
2340 	if (p->highest_bit)
2341 		add_to_avail_list(p);
2342 }
2343 
2344 static void enable_swap_info(struct swap_info_struct *p, int prio,
2345 				unsigned char *swap_map,
2346 				struct swap_cluster_info *cluster_info)
2347 {
2348 	zswap_swapon(p->type);
2349 
2350 	spin_lock(&swap_lock);
2351 	spin_lock(&p->lock);
2352 	setup_swap_info(p, prio, swap_map, cluster_info);
2353 	spin_unlock(&p->lock);
2354 	spin_unlock(&swap_lock);
2355 	/*
2356 	 * Finished initializing swap device, now it's safe to reference it.
2357 	 */
2358 	percpu_ref_resurrect(&p->users);
2359 	spin_lock(&swap_lock);
2360 	spin_lock(&p->lock);
2361 	_enable_swap_info(p);
2362 	spin_unlock(&p->lock);
2363 	spin_unlock(&swap_lock);
2364 }
2365 
2366 static void reinsert_swap_info(struct swap_info_struct *p)
2367 {
2368 	spin_lock(&swap_lock);
2369 	spin_lock(&p->lock);
2370 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2371 	_enable_swap_info(p);
2372 	spin_unlock(&p->lock);
2373 	spin_unlock(&swap_lock);
2374 }
2375 
2376 bool has_usable_swap(void)
2377 {
2378 	bool ret = true;
2379 
2380 	spin_lock(&swap_lock);
2381 	if (plist_head_empty(&swap_active_head))
2382 		ret = false;
2383 	spin_unlock(&swap_lock);
2384 	return ret;
2385 }
2386 
2387 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2388 {
2389 	struct swap_info_struct *p = NULL;
2390 	unsigned char *swap_map;
2391 	struct swap_cluster_info *cluster_info;
2392 	struct file *swap_file, *victim;
2393 	struct address_space *mapping;
2394 	struct inode *inode;
2395 	struct filename *pathname;
2396 	int err, found = 0;
2397 	unsigned int old_block_size;
2398 
2399 	if (!capable(CAP_SYS_ADMIN))
2400 		return -EPERM;
2401 
2402 	BUG_ON(!current->mm);
2403 
2404 	pathname = getname(specialfile);
2405 	if (IS_ERR(pathname))
2406 		return PTR_ERR(pathname);
2407 
2408 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2409 	err = PTR_ERR(victim);
2410 	if (IS_ERR(victim))
2411 		goto out;
2412 
2413 	mapping = victim->f_mapping;
2414 	spin_lock(&swap_lock);
2415 	plist_for_each_entry(p, &swap_active_head, list) {
2416 		if (p->flags & SWP_WRITEOK) {
2417 			if (p->swap_file->f_mapping == mapping) {
2418 				found = 1;
2419 				break;
2420 			}
2421 		}
2422 	}
2423 	if (!found) {
2424 		err = -EINVAL;
2425 		spin_unlock(&swap_lock);
2426 		goto out_dput;
2427 	}
2428 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2429 		vm_unacct_memory(p->pages);
2430 	else {
2431 		err = -ENOMEM;
2432 		spin_unlock(&swap_lock);
2433 		goto out_dput;
2434 	}
2435 	spin_lock(&p->lock);
2436 	del_from_avail_list(p);
2437 	if (p->prio < 0) {
2438 		struct swap_info_struct *si = p;
2439 		int nid;
2440 
2441 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2442 			si->prio++;
2443 			si->list.prio--;
2444 			for_each_node(nid) {
2445 				if (si->avail_lists[nid].prio != 1)
2446 					si->avail_lists[nid].prio--;
2447 			}
2448 		}
2449 		least_priority++;
2450 	}
2451 	plist_del(&p->list, &swap_active_head);
2452 	atomic_long_sub(p->pages, &nr_swap_pages);
2453 	total_swap_pages -= p->pages;
2454 	p->flags &= ~SWP_WRITEOK;
2455 	spin_unlock(&p->lock);
2456 	spin_unlock(&swap_lock);
2457 
2458 	disable_swap_slots_cache_lock();
2459 
2460 	set_current_oom_origin();
2461 	err = try_to_unuse(p->type);
2462 	clear_current_oom_origin();
2463 
2464 	if (err) {
2465 		/* re-insert swap space back into swap_list */
2466 		reinsert_swap_info(p);
2467 		reenable_swap_slots_cache_unlock();
2468 		goto out_dput;
2469 	}
2470 
2471 	reenable_swap_slots_cache_unlock();
2472 
2473 	/*
2474 	 * Wait for swap operations protected by get/put_swap_device()
2475 	 * to complete.
2476 	 *
2477 	 * We need synchronize_rcu() here to protect the accessing to
2478 	 * the swap cache data structure.
2479 	 */
2480 	percpu_ref_kill(&p->users);
2481 	synchronize_rcu();
2482 	wait_for_completion(&p->comp);
2483 
2484 	flush_work(&p->discard_work);
2485 
2486 	destroy_swap_extents(p);
2487 	if (p->flags & SWP_CONTINUED)
2488 		free_swap_count_continuations(p);
2489 
2490 	if (!p->bdev || !bdev_nonrot(p->bdev))
2491 		atomic_dec(&nr_rotate_swap);
2492 
2493 	mutex_lock(&swapon_mutex);
2494 	spin_lock(&swap_lock);
2495 	spin_lock(&p->lock);
2496 	drain_mmlist();
2497 
2498 	/* wait for anyone still in scan_swap_map_slots */
2499 	p->highest_bit = 0;		/* cuts scans short */
2500 	while (p->flags >= SWP_SCANNING) {
2501 		spin_unlock(&p->lock);
2502 		spin_unlock(&swap_lock);
2503 		schedule_timeout_uninterruptible(1);
2504 		spin_lock(&swap_lock);
2505 		spin_lock(&p->lock);
2506 	}
2507 
2508 	swap_file = p->swap_file;
2509 	old_block_size = p->old_block_size;
2510 	p->swap_file = NULL;
2511 	p->max = 0;
2512 	swap_map = p->swap_map;
2513 	p->swap_map = NULL;
2514 	cluster_info = p->cluster_info;
2515 	p->cluster_info = NULL;
2516 	spin_unlock(&p->lock);
2517 	spin_unlock(&swap_lock);
2518 	arch_swap_invalidate_area(p->type);
2519 	zswap_swapoff(p->type);
2520 	mutex_unlock(&swapon_mutex);
2521 	free_percpu(p->percpu_cluster);
2522 	p->percpu_cluster = NULL;
2523 	free_percpu(p->cluster_next_cpu);
2524 	p->cluster_next_cpu = NULL;
2525 	vfree(swap_map);
2526 	kvfree(cluster_info);
2527 	/* Destroy swap account information */
2528 	swap_cgroup_swapoff(p->type);
2529 	exit_swap_address_space(p->type);
2530 
2531 	inode = mapping->host;
2532 	if (S_ISBLK(inode->i_mode)) {
2533 		struct block_device *bdev = I_BDEV(inode);
2534 
2535 		set_blocksize(bdev, old_block_size);
2536 		blkdev_put(bdev, p);
2537 	}
2538 
2539 	inode_lock(inode);
2540 	inode->i_flags &= ~S_SWAPFILE;
2541 	inode_unlock(inode);
2542 	filp_close(swap_file, NULL);
2543 
2544 	/*
2545 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2546 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2547 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2548 	 */
2549 	spin_lock(&swap_lock);
2550 	p->flags = 0;
2551 	spin_unlock(&swap_lock);
2552 
2553 	err = 0;
2554 	atomic_inc(&proc_poll_event);
2555 	wake_up_interruptible(&proc_poll_wait);
2556 
2557 out_dput:
2558 	filp_close(victim, NULL);
2559 out:
2560 	putname(pathname);
2561 	return err;
2562 }
2563 
2564 #ifdef CONFIG_PROC_FS
2565 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2566 {
2567 	struct seq_file *seq = file->private_data;
2568 
2569 	poll_wait(file, &proc_poll_wait, wait);
2570 
2571 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2572 		seq->poll_event = atomic_read(&proc_poll_event);
2573 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2574 	}
2575 
2576 	return EPOLLIN | EPOLLRDNORM;
2577 }
2578 
2579 /* iterator */
2580 static void *swap_start(struct seq_file *swap, loff_t *pos)
2581 {
2582 	struct swap_info_struct *si;
2583 	int type;
2584 	loff_t l = *pos;
2585 
2586 	mutex_lock(&swapon_mutex);
2587 
2588 	if (!l)
2589 		return SEQ_START_TOKEN;
2590 
2591 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2592 		if (!(si->flags & SWP_USED) || !si->swap_map)
2593 			continue;
2594 		if (!--l)
2595 			return si;
2596 	}
2597 
2598 	return NULL;
2599 }
2600 
2601 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2602 {
2603 	struct swap_info_struct *si = v;
2604 	int type;
2605 
2606 	if (v == SEQ_START_TOKEN)
2607 		type = 0;
2608 	else
2609 		type = si->type + 1;
2610 
2611 	++(*pos);
2612 	for (; (si = swap_type_to_swap_info(type)); type++) {
2613 		if (!(si->flags & SWP_USED) || !si->swap_map)
2614 			continue;
2615 		return si;
2616 	}
2617 
2618 	return NULL;
2619 }
2620 
2621 static void swap_stop(struct seq_file *swap, void *v)
2622 {
2623 	mutex_unlock(&swapon_mutex);
2624 }
2625 
2626 static int swap_show(struct seq_file *swap, void *v)
2627 {
2628 	struct swap_info_struct *si = v;
2629 	struct file *file;
2630 	int len;
2631 	unsigned long bytes, inuse;
2632 
2633 	if (si == SEQ_START_TOKEN) {
2634 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2635 		return 0;
2636 	}
2637 
2638 	bytes = si->pages << (PAGE_SHIFT - 10);
2639 	inuse = READ_ONCE(si->inuse_pages) << (PAGE_SHIFT - 10);
2640 
2641 	file = si->swap_file;
2642 	len = seq_file_path(swap, file, " \t\n\\");
2643 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2644 			len < 40 ? 40 - len : 1, " ",
2645 			S_ISBLK(file_inode(file)->i_mode) ?
2646 				"partition" : "file\t",
2647 			bytes, bytes < 10000000 ? "\t" : "",
2648 			inuse, inuse < 10000000 ? "\t" : "",
2649 			si->prio);
2650 	return 0;
2651 }
2652 
2653 static const struct seq_operations swaps_op = {
2654 	.start =	swap_start,
2655 	.next =		swap_next,
2656 	.stop =		swap_stop,
2657 	.show =		swap_show
2658 };
2659 
2660 static int swaps_open(struct inode *inode, struct file *file)
2661 {
2662 	struct seq_file *seq;
2663 	int ret;
2664 
2665 	ret = seq_open(file, &swaps_op);
2666 	if (ret)
2667 		return ret;
2668 
2669 	seq = file->private_data;
2670 	seq->poll_event = atomic_read(&proc_poll_event);
2671 	return 0;
2672 }
2673 
2674 static const struct proc_ops swaps_proc_ops = {
2675 	.proc_flags	= PROC_ENTRY_PERMANENT,
2676 	.proc_open	= swaps_open,
2677 	.proc_read	= seq_read,
2678 	.proc_lseek	= seq_lseek,
2679 	.proc_release	= seq_release,
2680 	.proc_poll	= swaps_poll,
2681 };
2682 
2683 static int __init procswaps_init(void)
2684 {
2685 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2686 	return 0;
2687 }
2688 __initcall(procswaps_init);
2689 #endif /* CONFIG_PROC_FS */
2690 
2691 #ifdef MAX_SWAPFILES_CHECK
2692 static int __init max_swapfiles_check(void)
2693 {
2694 	MAX_SWAPFILES_CHECK();
2695 	return 0;
2696 }
2697 late_initcall(max_swapfiles_check);
2698 #endif
2699 
2700 static struct swap_info_struct *alloc_swap_info(void)
2701 {
2702 	struct swap_info_struct *p;
2703 	struct swap_info_struct *defer = NULL;
2704 	unsigned int type;
2705 	int i;
2706 
2707 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2708 	if (!p)
2709 		return ERR_PTR(-ENOMEM);
2710 
2711 	if (percpu_ref_init(&p->users, swap_users_ref_free,
2712 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2713 		kvfree(p);
2714 		return ERR_PTR(-ENOMEM);
2715 	}
2716 
2717 	spin_lock(&swap_lock);
2718 	for (type = 0; type < nr_swapfiles; type++) {
2719 		if (!(swap_info[type]->flags & SWP_USED))
2720 			break;
2721 	}
2722 	if (type >= MAX_SWAPFILES) {
2723 		spin_unlock(&swap_lock);
2724 		percpu_ref_exit(&p->users);
2725 		kvfree(p);
2726 		return ERR_PTR(-EPERM);
2727 	}
2728 	if (type >= nr_swapfiles) {
2729 		p->type = type;
2730 		/*
2731 		 * Publish the swap_info_struct after initializing it.
2732 		 * Note that kvzalloc() above zeroes all its fields.
2733 		 */
2734 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2735 		nr_swapfiles++;
2736 	} else {
2737 		defer = p;
2738 		p = swap_info[type];
2739 		/*
2740 		 * Do not memset this entry: a racing procfs swap_next()
2741 		 * would be relying on p->type to remain valid.
2742 		 */
2743 	}
2744 	p->swap_extent_root = RB_ROOT;
2745 	plist_node_init(&p->list, 0);
2746 	for_each_node(i)
2747 		plist_node_init(&p->avail_lists[i], 0);
2748 	p->flags = SWP_USED;
2749 	spin_unlock(&swap_lock);
2750 	if (defer) {
2751 		percpu_ref_exit(&defer->users);
2752 		kvfree(defer);
2753 	}
2754 	spin_lock_init(&p->lock);
2755 	spin_lock_init(&p->cont_lock);
2756 	init_completion(&p->comp);
2757 
2758 	return p;
2759 }
2760 
2761 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2762 {
2763 	int error;
2764 
2765 	if (S_ISBLK(inode->i_mode)) {
2766 		p->bdev = blkdev_get_by_dev(inode->i_rdev,
2767 				BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL);
2768 		if (IS_ERR(p->bdev)) {
2769 			error = PTR_ERR(p->bdev);
2770 			p->bdev = NULL;
2771 			return error;
2772 		}
2773 		p->old_block_size = block_size(p->bdev);
2774 		error = set_blocksize(p->bdev, PAGE_SIZE);
2775 		if (error < 0)
2776 			return error;
2777 		/*
2778 		 * Zoned block devices contain zones that have a sequential
2779 		 * write only restriction.  Hence zoned block devices are not
2780 		 * suitable for swapping.  Disallow them here.
2781 		 */
2782 		if (bdev_is_zoned(p->bdev))
2783 			return -EINVAL;
2784 		p->flags |= SWP_BLKDEV;
2785 	} else if (S_ISREG(inode->i_mode)) {
2786 		p->bdev = inode->i_sb->s_bdev;
2787 	}
2788 
2789 	return 0;
2790 }
2791 
2792 
2793 /*
2794  * Find out how many pages are allowed for a single swap device. There
2795  * are two limiting factors:
2796  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2797  * 2) the number of bits in the swap pte, as defined by the different
2798  * architectures.
2799  *
2800  * In order to find the largest possible bit mask, a swap entry with
2801  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2802  * decoded to a swp_entry_t again, and finally the swap offset is
2803  * extracted.
2804  *
2805  * This will mask all the bits from the initial ~0UL mask that can't
2806  * be encoded in either the swp_entry_t or the architecture definition
2807  * of a swap pte.
2808  */
2809 unsigned long generic_max_swapfile_size(void)
2810 {
2811 	return swp_offset(pte_to_swp_entry(
2812 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2813 }
2814 
2815 /* Can be overridden by an architecture for additional checks. */
2816 __weak unsigned long arch_max_swapfile_size(void)
2817 {
2818 	return generic_max_swapfile_size();
2819 }
2820 
2821 static unsigned long read_swap_header(struct swap_info_struct *p,
2822 					union swap_header *swap_header,
2823 					struct inode *inode)
2824 {
2825 	int i;
2826 	unsigned long maxpages;
2827 	unsigned long swapfilepages;
2828 	unsigned long last_page;
2829 
2830 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2831 		pr_err("Unable to find swap-space signature\n");
2832 		return 0;
2833 	}
2834 
2835 	/* swap partition endianness hack... */
2836 	if (swab32(swap_header->info.version) == 1) {
2837 		swab32s(&swap_header->info.version);
2838 		swab32s(&swap_header->info.last_page);
2839 		swab32s(&swap_header->info.nr_badpages);
2840 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2841 			return 0;
2842 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2843 			swab32s(&swap_header->info.badpages[i]);
2844 	}
2845 	/* Check the swap header's sub-version */
2846 	if (swap_header->info.version != 1) {
2847 		pr_warn("Unable to handle swap header version %d\n",
2848 			swap_header->info.version);
2849 		return 0;
2850 	}
2851 
2852 	p->lowest_bit  = 1;
2853 	p->cluster_next = 1;
2854 	p->cluster_nr = 0;
2855 
2856 	maxpages = swapfile_maximum_size;
2857 	last_page = swap_header->info.last_page;
2858 	if (!last_page) {
2859 		pr_warn("Empty swap-file\n");
2860 		return 0;
2861 	}
2862 	if (last_page > maxpages) {
2863 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2864 			maxpages << (PAGE_SHIFT - 10),
2865 			last_page << (PAGE_SHIFT - 10));
2866 	}
2867 	if (maxpages > last_page) {
2868 		maxpages = last_page + 1;
2869 		/* p->max is an unsigned int: don't overflow it */
2870 		if ((unsigned int)maxpages == 0)
2871 			maxpages = UINT_MAX;
2872 	}
2873 	p->highest_bit = maxpages - 1;
2874 
2875 	if (!maxpages)
2876 		return 0;
2877 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2878 	if (swapfilepages && maxpages > swapfilepages) {
2879 		pr_warn("Swap area shorter than signature indicates\n");
2880 		return 0;
2881 	}
2882 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2883 		return 0;
2884 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2885 		return 0;
2886 
2887 	return maxpages;
2888 }
2889 
2890 #define SWAP_CLUSTER_INFO_COLS						\
2891 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2892 #define SWAP_CLUSTER_SPACE_COLS						\
2893 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2894 #define SWAP_CLUSTER_COLS						\
2895 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2896 
2897 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2898 					union swap_header *swap_header,
2899 					unsigned char *swap_map,
2900 					struct swap_cluster_info *cluster_info,
2901 					unsigned long maxpages,
2902 					sector_t *span)
2903 {
2904 	unsigned int j, k;
2905 	unsigned int nr_good_pages;
2906 	int nr_extents;
2907 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2908 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2909 	unsigned long i, idx;
2910 
2911 	nr_good_pages = maxpages - 1;	/* omit header page */
2912 
2913 	cluster_list_init(&p->free_clusters);
2914 	cluster_list_init(&p->discard_clusters);
2915 
2916 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2917 		unsigned int page_nr = swap_header->info.badpages[i];
2918 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2919 			return -EINVAL;
2920 		if (page_nr < maxpages) {
2921 			swap_map[page_nr] = SWAP_MAP_BAD;
2922 			nr_good_pages--;
2923 			/*
2924 			 * Haven't marked the cluster free yet, no list
2925 			 * operation involved
2926 			 */
2927 			inc_cluster_info_page(p, cluster_info, page_nr);
2928 		}
2929 	}
2930 
2931 	/* Haven't marked the cluster free yet, no list operation involved */
2932 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2933 		inc_cluster_info_page(p, cluster_info, i);
2934 
2935 	if (nr_good_pages) {
2936 		swap_map[0] = SWAP_MAP_BAD;
2937 		/*
2938 		 * Not mark the cluster free yet, no list
2939 		 * operation involved
2940 		 */
2941 		inc_cluster_info_page(p, cluster_info, 0);
2942 		p->max = maxpages;
2943 		p->pages = nr_good_pages;
2944 		nr_extents = setup_swap_extents(p, span);
2945 		if (nr_extents < 0)
2946 			return nr_extents;
2947 		nr_good_pages = p->pages;
2948 	}
2949 	if (!nr_good_pages) {
2950 		pr_warn("Empty swap-file\n");
2951 		return -EINVAL;
2952 	}
2953 
2954 	if (!cluster_info)
2955 		return nr_extents;
2956 
2957 
2958 	/*
2959 	 * Reduce false cache line sharing between cluster_info and
2960 	 * sharing same address space.
2961 	 */
2962 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2963 		j = (k + col) % SWAP_CLUSTER_COLS;
2964 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2965 			idx = i * SWAP_CLUSTER_COLS + j;
2966 			if (idx >= nr_clusters)
2967 				continue;
2968 			if (cluster_count(&cluster_info[idx]))
2969 				continue;
2970 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2971 			cluster_list_add_tail(&p->free_clusters, cluster_info,
2972 					      idx);
2973 		}
2974 	}
2975 	return nr_extents;
2976 }
2977 
2978 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2979 {
2980 	struct swap_info_struct *p;
2981 	struct filename *name;
2982 	struct file *swap_file = NULL;
2983 	struct address_space *mapping;
2984 	struct dentry *dentry;
2985 	int prio;
2986 	int error;
2987 	union swap_header *swap_header;
2988 	int nr_extents;
2989 	sector_t span;
2990 	unsigned long maxpages;
2991 	unsigned char *swap_map = NULL;
2992 	struct swap_cluster_info *cluster_info = NULL;
2993 	struct page *page = NULL;
2994 	struct inode *inode = NULL;
2995 	bool inced_nr_rotate_swap = false;
2996 
2997 	if (swap_flags & ~SWAP_FLAGS_VALID)
2998 		return -EINVAL;
2999 
3000 	if (!capable(CAP_SYS_ADMIN))
3001 		return -EPERM;
3002 
3003 	if (!swap_avail_heads)
3004 		return -ENOMEM;
3005 
3006 	p = alloc_swap_info();
3007 	if (IS_ERR(p))
3008 		return PTR_ERR(p);
3009 
3010 	INIT_WORK(&p->discard_work, swap_discard_work);
3011 
3012 	name = getname(specialfile);
3013 	if (IS_ERR(name)) {
3014 		error = PTR_ERR(name);
3015 		name = NULL;
3016 		goto bad_swap;
3017 	}
3018 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3019 	if (IS_ERR(swap_file)) {
3020 		error = PTR_ERR(swap_file);
3021 		swap_file = NULL;
3022 		goto bad_swap;
3023 	}
3024 
3025 	p->swap_file = swap_file;
3026 	mapping = swap_file->f_mapping;
3027 	dentry = swap_file->f_path.dentry;
3028 	inode = mapping->host;
3029 
3030 	error = claim_swapfile(p, inode);
3031 	if (unlikely(error))
3032 		goto bad_swap;
3033 
3034 	inode_lock(inode);
3035 	if (d_unlinked(dentry) || cant_mount(dentry)) {
3036 		error = -ENOENT;
3037 		goto bad_swap_unlock_inode;
3038 	}
3039 	if (IS_SWAPFILE(inode)) {
3040 		error = -EBUSY;
3041 		goto bad_swap_unlock_inode;
3042 	}
3043 
3044 	/*
3045 	 * Read the swap header.
3046 	 */
3047 	if (!mapping->a_ops->read_folio) {
3048 		error = -EINVAL;
3049 		goto bad_swap_unlock_inode;
3050 	}
3051 	page = read_mapping_page(mapping, 0, swap_file);
3052 	if (IS_ERR(page)) {
3053 		error = PTR_ERR(page);
3054 		goto bad_swap_unlock_inode;
3055 	}
3056 	swap_header = kmap(page);
3057 
3058 	maxpages = read_swap_header(p, swap_header, inode);
3059 	if (unlikely(!maxpages)) {
3060 		error = -EINVAL;
3061 		goto bad_swap_unlock_inode;
3062 	}
3063 
3064 	/* OK, set up the swap map and apply the bad block list */
3065 	swap_map = vzalloc(maxpages);
3066 	if (!swap_map) {
3067 		error = -ENOMEM;
3068 		goto bad_swap_unlock_inode;
3069 	}
3070 
3071 	if (p->bdev && bdev_stable_writes(p->bdev))
3072 		p->flags |= SWP_STABLE_WRITES;
3073 
3074 	if (p->bdev && bdev_synchronous(p->bdev))
3075 		p->flags |= SWP_SYNCHRONOUS_IO;
3076 
3077 	if (p->bdev && bdev_nonrot(p->bdev)) {
3078 		int cpu;
3079 		unsigned long ci, nr_cluster;
3080 
3081 		p->flags |= SWP_SOLIDSTATE;
3082 		p->cluster_next_cpu = alloc_percpu(unsigned int);
3083 		if (!p->cluster_next_cpu) {
3084 			error = -ENOMEM;
3085 			goto bad_swap_unlock_inode;
3086 		}
3087 		/*
3088 		 * select a random position to start with to help wear leveling
3089 		 * SSD
3090 		 */
3091 		for_each_possible_cpu(cpu) {
3092 			per_cpu(*p->cluster_next_cpu, cpu) =
3093 				get_random_u32_inclusive(1, p->highest_bit);
3094 		}
3095 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3096 
3097 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3098 					GFP_KERNEL);
3099 		if (!cluster_info) {
3100 			error = -ENOMEM;
3101 			goto bad_swap_unlock_inode;
3102 		}
3103 
3104 		for (ci = 0; ci < nr_cluster; ci++)
3105 			spin_lock_init(&((cluster_info + ci)->lock));
3106 
3107 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3108 		if (!p->percpu_cluster) {
3109 			error = -ENOMEM;
3110 			goto bad_swap_unlock_inode;
3111 		}
3112 		for_each_possible_cpu(cpu) {
3113 			struct percpu_cluster *cluster;
3114 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3115 			cluster_set_null(&cluster->index);
3116 		}
3117 	} else {
3118 		atomic_inc(&nr_rotate_swap);
3119 		inced_nr_rotate_swap = true;
3120 	}
3121 
3122 	error = swap_cgroup_swapon(p->type, maxpages);
3123 	if (error)
3124 		goto bad_swap_unlock_inode;
3125 
3126 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3127 		cluster_info, maxpages, &span);
3128 	if (unlikely(nr_extents < 0)) {
3129 		error = nr_extents;
3130 		goto bad_swap_unlock_inode;
3131 	}
3132 
3133 	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3134 	    p->bdev && bdev_max_discard_sectors(p->bdev)) {
3135 		/*
3136 		 * When discard is enabled for swap with no particular
3137 		 * policy flagged, we set all swap discard flags here in
3138 		 * order to sustain backward compatibility with older
3139 		 * swapon(8) releases.
3140 		 */
3141 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3142 			     SWP_PAGE_DISCARD);
3143 
3144 		/*
3145 		 * By flagging sys_swapon, a sysadmin can tell us to
3146 		 * either do single-time area discards only, or to just
3147 		 * perform discards for released swap page-clusters.
3148 		 * Now it's time to adjust the p->flags accordingly.
3149 		 */
3150 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3151 			p->flags &= ~SWP_PAGE_DISCARD;
3152 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3153 			p->flags &= ~SWP_AREA_DISCARD;
3154 
3155 		/* issue a swapon-time discard if it's still required */
3156 		if (p->flags & SWP_AREA_DISCARD) {
3157 			int err = discard_swap(p);
3158 			if (unlikely(err))
3159 				pr_err("swapon: discard_swap(%p): %d\n",
3160 					p, err);
3161 		}
3162 	}
3163 
3164 	error = init_swap_address_space(p->type, maxpages);
3165 	if (error)
3166 		goto bad_swap_unlock_inode;
3167 
3168 	/*
3169 	 * Flush any pending IO and dirty mappings before we start using this
3170 	 * swap device.
3171 	 */
3172 	inode->i_flags |= S_SWAPFILE;
3173 	error = inode_drain_writes(inode);
3174 	if (error) {
3175 		inode->i_flags &= ~S_SWAPFILE;
3176 		goto free_swap_address_space;
3177 	}
3178 
3179 	mutex_lock(&swapon_mutex);
3180 	prio = -1;
3181 	if (swap_flags & SWAP_FLAG_PREFER)
3182 		prio =
3183 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3184 	enable_swap_info(p, prio, swap_map, cluster_info);
3185 
3186 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3187 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3188 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3189 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3190 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3191 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3192 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "");
3193 
3194 	mutex_unlock(&swapon_mutex);
3195 	atomic_inc(&proc_poll_event);
3196 	wake_up_interruptible(&proc_poll_wait);
3197 
3198 	error = 0;
3199 	goto out;
3200 free_swap_address_space:
3201 	exit_swap_address_space(p->type);
3202 bad_swap_unlock_inode:
3203 	inode_unlock(inode);
3204 bad_swap:
3205 	free_percpu(p->percpu_cluster);
3206 	p->percpu_cluster = NULL;
3207 	free_percpu(p->cluster_next_cpu);
3208 	p->cluster_next_cpu = NULL;
3209 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3210 		set_blocksize(p->bdev, p->old_block_size);
3211 		blkdev_put(p->bdev, p);
3212 	}
3213 	inode = NULL;
3214 	destroy_swap_extents(p);
3215 	swap_cgroup_swapoff(p->type);
3216 	spin_lock(&swap_lock);
3217 	p->swap_file = NULL;
3218 	p->flags = 0;
3219 	spin_unlock(&swap_lock);
3220 	vfree(swap_map);
3221 	kvfree(cluster_info);
3222 	if (inced_nr_rotate_swap)
3223 		atomic_dec(&nr_rotate_swap);
3224 	if (swap_file)
3225 		filp_close(swap_file, NULL);
3226 out:
3227 	if (page && !IS_ERR(page)) {
3228 		kunmap(page);
3229 		put_page(page);
3230 	}
3231 	if (name)
3232 		putname(name);
3233 	if (inode)
3234 		inode_unlock(inode);
3235 	if (!error)
3236 		enable_swap_slots_cache();
3237 	return error;
3238 }
3239 
3240 void si_swapinfo(struct sysinfo *val)
3241 {
3242 	unsigned int type;
3243 	unsigned long nr_to_be_unused = 0;
3244 
3245 	spin_lock(&swap_lock);
3246 	for (type = 0; type < nr_swapfiles; type++) {
3247 		struct swap_info_struct *si = swap_info[type];
3248 
3249 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3250 			nr_to_be_unused += READ_ONCE(si->inuse_pages);
3251 	}
3252 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3253 	val->totalswap = total_swap_pages + nr_to_be_unused;
3254 	spin_unlock(&swap_lock);
3255 }
3256 
3257 /*
3258  * Verify that a swap entry is valid and increment its swap map count.
3259  *
3260  * Returns error code in following case.
3261  * - success -> 0
3262  * - swp_entry is invalid -> EINVAL
3263  * - swp_entry is migration entry -> EINVAL
3264  * - swap-cache reference is requested but there is already one. -> EEXIST
3265  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3266  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3267  */
3268 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3269 {
3270 	struct swap_info_struct *p;
3271 	struct swap_cluster_info *ci;
3272 	unsigned long offset;
3273 	unsigned char count;
3274 	unsigned char has_cache;
3275 	int err;
3276 
3277 	p = swp_swap_info(entry);
3278 
3279 	offset = swp_offset(entry);
3280 	ci = lock_cluster_or_swap_info(p, offset);
3281 
3282 	count = p->swap_map[offset];
3283 
3284 	/*
3285 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3286 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3287 	 */
3288 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3289 		err = -ENOENT;
3290 		goto unlock_out;
3291 	}
3292 
3293 	has_cache = count & SWAP_HAS_CACHE;
3294 	count &= ~SWAP_HAS_CACHE;
3295 	err = 0;
3296 
3297 	if (usage == SWAP_HAS_CACHE) {
3298 
3299 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3300 		if (!has_cache && count)
3301 			has_cache = SWAP_HAS_CACHE;
3302 		else if (has_cache)		/* someone else added cache */
3303 			err = -EEXIST;
3304 		else				/* no users remaining */
3305 			err = -ENOENT;
3306 
3307 	} else if (count || has_cache) {
3308 
3309 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3310 			count += usage;
3311 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3312 			err = -EINVAL;
3313 		else if (swap_count_continued(p, offset, count))
3314 			count = COUNT_CONTINUED;
3315 		else
3316 			err = -ENOMEM;
3317 	} else
3318 		err = -ENOENT;			/* unused swap entry */
3319 
3320 	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3321 
3322 unlock_out:
3323 	unlock_cluster_or_swap_info(p, ci);
3324 	return err;
3325 }
3326 
3327 /*
3328  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3329  * (in which case its reference count is never incremented).
3330  */
3331 void swap_shmem_alloc(swp_entry_t entry)
3332 {
3333 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3334 }
3335 
3336 /*
3337  * Increase reference count of swap entry by 1.
3338  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3339  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3340  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3341  * might occur if a page table entry has got corrupted.
3342  */
3343 int swap_duplicate(swp_entry_t entry)
3344 {
3345 	int err = 0;
3346 
3347 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3348 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3349 	return err;
3350 }
3351 
3352 /*
3353  * @entry: swap entry for which we allocate swap cache.
3354  *
3355  * Called when allocating swap cache for existing swap entry,
3356  * This can return error codes. Returns 0 at success.
3357  * -EEXIST means there is a swap cache.
3358  * Note: return code is different from swap_duplicate().
3359  */
3360 int swapcache_prepare(swp_entry_t entry)
3361 {
3362 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3363 }
3364 
3365 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3366 {
3367 	return swap_type_to_swap_info(swp_type(entry));
3368 }
3369 
3370 struct swap_info_struct *page_swap_info(struct page *page)
3371 {
3372 	swp_entry_t entry = { .val = page_private(page) };
3373 	return swp_swap_info(entry);
3374 }
3375 
3376 /*
3377  * out-of-line methods to avoid include hell.
3378  */
3379 struct address_space *swapcache_mapping(struct folio *folio)
3380 {
3381 	return page_swap_info(&folio->page)->swap_file->f_mapping;
3382 }
3383 EXPORT_SYMBOL_GPL(swapcache_mapping);
3384 
3385 pgoff_t __page_file_index(struct page *page)
3386 {
3387 	swp_entry_t swap = { .val = page_private(page) };
3388 	return swp_offset(swap);
3389 }
3390 EXPORT_SYMBOL_GPL(__page_file_index);
3391 
3392 /*
3393  * add_swap_count_continuation - called when a swap count is duplicated
3394  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3395  * page of the original vmalloc'ed swap_map, to hold the continuation count
3396  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3397  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3398  *
3399  * These continuation pages are seldom referenced: the common paths all work
3400  * on the original swap_map, only referring to a continuation page when the
3401  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3402  *
3403  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3404  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3405  * can be called after dropping locks.
3406  */
3407 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3408 {
3409 	struct swap_info_struct *si;
3410 	struct swap_cluster_info *ci;
3411 	struct page *head;
3412 	struct page *page;
3413 	struct page *list_page;
3414 	pgoff_t offset;
3415 	unsigned char count;
3416 	int ret = 0;
3417 
3418 	/*
3419 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3420 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3421 	 */
3422 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3423 
3424 	si = get_swap_device(entry);
3425 	if (!si) {
3426 		/*
3427 		 * An acceptable race has occurred since the failing
3428 		 * __swap_duplicate(): the swap device may be swapoff
3429 		 */
3430 		goto outer;
3431 	}
3432 	spin_lock(&si->lock);
3433 
3434 	offset = swp_offset(entry);
3435 
3436 	ci = lock_cluster(si, offset);
3437 
3438 	count = swap_count(si->swap_map[offset]);
3439 
3440 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3441 		/*
3442 		 * The higher the swap count, the more likely it is that tasks
3443 		 * will race to add swap count continuation: we need to avoid
3444 		 * over-provisioning.
3445 		 */
3446 		goto out;
3447 	}
3448 
3449 	if (!page) {
3450 		ret = -ENOMEM;
3451 		goto out;
3452 	}
3453 
3454 	head = vmalloc_to_page(si->swap_map + offset);
3455 	offset &= ~PAGE_MASK;
3456 
3457 	spin_lock(&si->cont_lock);
3458 	/*
3459 	 * Page allocation does not initialize the page's lru field,
3460 	 * but it does always reset its private field.
3461 	 */
3462 	if (!page_private(head)) {
3463 		BUG_ON(count & COUNT_CONTINUED);
3464 		INIT_LIST_HEAD(&head->lru);
3465 		set_page_private(head, SWP_CONTINUED);
3466 		si->flags |= SWP_CONTINUED;
3467 	}
3468 
3469 	list_for_each_entry(list_page, &head->lru, lru) {
3470 		unsigned char *map;
3471 
3472 		/*
3473 		 * If the previous map said no continuation, but we've found
3474 		 * a continuation page, free our allocation and use this one.
3475 		 */
3476 		if (!(count & COUNT_CONTINUED))
3477 			goto out_unlock_cont;
3478 
3479 		map = kmap_atomic(list_page) + offset;
3480 		count = *map;
3481 		kunmap_atomic(map);
3482 
3483 		/*
3484 		 * If this continuation count now has some space in it,
3485 		 * free our allocation and use this one.
3486 		 */
3487 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3488 			goto out_unlock_cont;
3489 	}
3490 
3491 	list_add_tail(&page->lru, &head->lru);
3492 	page = NULL;			/* now it's attached, don't free it */
3493 out_unlock_cont:
3494 	spin_unlock(&si->cont_lock);
3495 out:
3496 	unlock_cluster(ci);
3497 	spin_unlock(&si->lock);
3498 	put_swap_device(si);
3499 outer:
3500 	if (page)
3501 		__free_page(page);
3502 	return ret;
3503 }
3504 
3505 /*
3506  * swap_count_continued - when the original swap_map count is incremented
3507  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3508  * into, carry if so, or else fail until a new continuation page is allocated;
3509  * when the original swap_map count is decremented from 0 with continuation,
3510  * borrow from the continuation and report whether it still holds more.
3511  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3512  * lock.
3513  */
3514 static bool swap_count_continued(struct swap_info_struct *si,
3515 				 pgoff_t offset, unsigned char count)
3516 {
3517 	struct page *head;
3518 	struct page *page;
3519 	unsigned char *map;
3520 	bool ret;
3521 
3522 	head = vmalloc_to_page(si->swap_map + offset);
3523 	if (page_private(head) != SWP_CONTINUED) {
3524 		BUG_ON(count & COUNT_CONTINUED);
3525 		return false;		/* need to add count continuation */
3526 	}
3527 
3528 	spin_lock(&si->cont_lock);
3529 	offset &= ~PAGE_MASK;
3530 	page = list_next_entry(head, lru);
3531 	map = kmap_atomic(page) + offset;
3532 
3533 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3534 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3535 
3536 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3537 		/*
3538 		 * Think of how you add 1 to 999
3539 		 */
3540 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3541 			kunmap_atomic(map);
3542 			page = list_next_entry(page, lru);
3543 			BUG_ON(page == head);
3544 			map = kmap_atomic(page) + offset;
3545 		}
3546 		if (*map == SWAP_CONT_MAX) {
3547 			kunmap_atomic(map);
3548 			page = list_next_entry(page, lru);
3549 			if (page == head) {
3550 				ret = false;	/* add count continuation */
3551 				goto out;
3552 			}
3553 			map = kmap_atomic(page) + offset;
3554 init_map:		*map = 0;		/* we didn't zero the page */
3555 		}
3556 		*map += 1;
3557 		kunmap_atomic(map);
3558 		while ((page = list_prev_entry(page, lru)) != head) {
3559 			map = kmap_atomic(page) + offset;
3560 			*map = COUNT_CONTINUED;
3561 			kunmap_atomic(map);
3562 		}
3563 		ret = true;			/* incremented */
3564 
3565 	} else {				/* decrementing */
3566 		/*
3567 		 * Think of how you subtract 1 from 1000
3568 		 */
3569 		BUG_ON(count != COUNT_CONTINUED);
3570 		while (*map == COUNT_CONTINUED) {
3571 			kunmap_atomic(map);
3572 			page = list_next_entry(page, lru);
3573 			BUG_ON(page == head);
3574 			map = kmap_atomic(page) + offset;
3575 		}
3576 		BUG_ON(*map == 0);
3577 		*map -= 1;
3578 		if (*map == 0)
3579 			count = 0;
3580 		kunmap_atomic(map);
3581 		while ((page = list_prev_entry(page, lru)) != head) {
3582 			map = kmap_atomic(page) + offset;
3583 			*map = SWAP_CONT_MAX | count;
3584 			count = COUNT_CONTINUED;
3585 			kunmap_atomic(map);
3586 		}
3587 		ret = count == COUNT_CONTINUED;
3588 	}
3589 out:
3590 	spin_unlock(&si->cont_lock);
3591 	return ret;
3592 }
3593 
3594 /*
3595  * free_swap_count_continuations - swapoff free all the continuation pages
3596  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3597  */
3598 static void free_swap_count_continuations(struct swap_info_struct *si)
3599 {
3600 	pgoff_t offset;
3601 
3602 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3603 		struct page *head;
3604 		head = vmalloc_to_page(si->swap_map + offset);
3605 		if (page_private(head)) {
3606 			struct page *page, *next;
3607 
3608 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3609 				list_del(&page->lru);
3610 				__free_page(page);
3611 			}
3612 		}
3613 	}
3614 }
3615 
3616 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3617 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3618 {
3619 	struct swap_info_struct *si, *next;
3620 	int nid = folio_nid(folio);
3621 
3622 	if (!(gfp & __GFP_IO))
3623 		return;
3624 
3625 	if (!blk_cgroup_congested())
3626 		return;
3627 
3628 	/*
3629 	 * We've already scheduled a throttle, avoid taking the global swap
3630 	 * lock.
3631 	 */
3632 	if (current->throttle_disk)
3633 		return;
3634 
3635 	spin_lock(&swap_avail_lock);
3636 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3637 				  avail_lists[nid]) {
3638 		if (si->bdev) {
3639 			blkcg_schedule_throttle(si->bdev->bd_disk, true);
3640 			break;
3641 		}
3642 	}
3643 	spin_unlock(&swap_avail_lock);
3644 }
3645 #endif
3646 
3647 static int __init swapfile_init(void)
3648 {
3649 	int nid;
3650 
3651 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3652 					 GFP_KERNEL);
3653 	if (!swap_avail_heads) {
3654 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3655 		return -ENOMEM;
3656 	}
3657 
3658 	for_each_node(nid)
3659 		plist_head_init(&swap_avail_heads[nid]);
3660 
3661 	swapfile_maximum_size = arch_max_swapfile_size();
3662 
3663 #ifdef CONFIG_MIGRATION
3664 	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3665 		swap_migration_ad_supported = true;
3666 #endif	/* CONFIG_MIGRATION */
3667 
3668 	return 0;
3669 }
3670 subsys_initcall(swapfile_init);
3671