1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shmem_fs.h> 18 #include <linux/blkdev.h> 19 #include <linux/random.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/security.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mutex.h> 29 #include <linux/capability.h> 30 #include <linux/syscalls.h> 31 #include <linux/memcontrol.h> 32 #include <linux/poll.h> 33 #include <linux/oom.h> 34 #include <linux/frontswap.h> 35 #include <linux/swapfile.h> 36 #include <linux/export.h> 37 38 #include <asm/pgtable.h> 39 #include <asm/tlbflush.h> 40 #include <linux/swapops.h> 41 #include <linux/swap_cgroup.h> 42 43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 44 unsigned char); 45 static void free_swap_count_continuations(struct swap_info_struct *); 46 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 47 48 DEFINE_SPINLOCK(swap_lock); 49 static unsigned int nr_swapfiles; 50 atomic_long_t nr_swap_pages; 51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 52 long total_swap_pages; 53 static int least_priority; 54 55 static const char Bad_file[] = "Bad swap file entry "; 56 static const char Unused_file[] = "Unused swap file entry "; 57 static const char Bad_offset[] = "Bad swap offset entry "; 58 static const char Unused_offset[] = "Unused swap offset entry "; 59 60 /* 61 * all active swap_info_structs 62 * protected with swap_lock, and ordered by priority. 63 */ 64 PLIST_HEAD(swap_active_head); 65 66 /* 67 * all available (active, not full) swap_info_structs 68 * protected with swap_avail_lock, ordered by priority. 69 * This is used by get_swap_page() instead of swap_active_head 70 * because swap_active_head includes all swap_info_structs, 71 * but get_swap_page() doesn't need to look at full ones. 72 * This uses its own lock instead of swap_lock because when a 73 * swap_info_struct changes between not-full/full, it needs to 74 * add/remove itself to/from this list, but the swap_info_struct->lock 75 * is held and the locking order requires swap_lock to be taken 76 * before any swap_info_struct->lock. 77 */ 78 static PLIST_HEAD(swap_avail_head); 79 static DEFINE_SPINLOCK(swap_avail_lock); 80 81 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 82 83 static DEFINE_MUTEX(swapon_mutex); 84 85 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 86 /* Activity counter to indicate that a swapon or swapoff has occurred */ 87 static atomic_t proc_poll_event = ATOMIC_INIT(0); 88 89 static inline unsigned char swap_count(unsigned char ent) 90 { 91 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ 92 } 93 94 /* returns 1 if swap entry is freed */ 95 static int 96 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) 97 { 98 swp_entry_t entry = swp_entry(si->type, offset); 99 struct page *page; 100 int ret = 0; 101 102 page = find_get_page(swap_address_space(entry), entry.val); 103 if (!page) 104 return 0; 105 /* 106 * This function is called from scan_swap_map() and it's called 107 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. 108 * We have to use trylock for avoiding deadlock. This is a special 109 * case and you should use try_to_free_swap() with explicit lock_page() 110 * in usual operations. 111 */ 112 if (trylock_page(page)) { 113 ret = try_to_free_swap(page); 114 unlock_page(page); 115 } 116 page_cache_release(page); 117 return ret; 118 } 119 120 /* 121 * swapon tell device that all the old swap contents can be discarded, 122 * to allow the swap device to optimize its wear-levelling. 123 */ 124 static int discard_swap(struct swap_info_struct *si) 125 { 126 struct swap_extent *se; 127 sector_t start_block; 128 sector_t nr_blocks; 129 int err = 0; 130 131 /* Do not discard the swap header page! */ 132 se = &si->first_swap_extent; 133 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 134 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 135 if (nr_blocks) { 136 err = blkdev_issue_discard(si->bdev, start_block, 137 nr_blocks, GFP_KERNEL, 0); 138 if (err) 139 return err; 140 cond_resched(); 141 } 142 143 list_for_each_entry(se, &si->first_swap_extent.list, list) { 144 start_block = se->start_block << (PAGE_SHIFT - 9); 145 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 146 147 err = blkdev_issue_discard(si->bdev, start_block, 148 nr_blocks, GFP_KERNEL, 0); 149 if (err) 150 break; 151 152 cond_resched(); 153 } 154 return err; /* That will often be -EOPNOTSUPP */ 155 } 156 157 /* 158 * swap allocation tell device that a cluster of swap can now be discarded, 159 * to allow the swap device to optimize its wear-levelling. 160 */ 161 static void discard_swap_cluster(struct swap_info_struct *si, 162 pgoff_t start_page, pgoff_t nr_pages) 163 { 164 struct swap_extent *se = si->curr_swap_extent; 165 int found_extent = 0; 166 167 while (nr_pages) { 168 if (se->start_page <= start_page && 169 start_page < se->start_page + se->nr_pages) { 170 pgoff_t offset = start_page - se->start_page; 171 sector_t start_block = se->start_block + offset; 172 sector_t nr_blocks = se->nr_pages - offset; 173 174 if (nr_blocks > nr_pages) 175 nr_blocks = nr_pages; 176 start_page += nr_blocks; 177 nr_pages -= nr_blocks; 178 179 if (!found_extent++) 180 si->curr_swap_extent = se; 181 182 start_block <<= PAGE_SHIFT - 9; 183 nr_blocks <<= PAGE_SHIFT - 9; 184 if (blkdev_issue_discard(si->bdev, start_block, 185 nr_blocks, GFP_NOIO, 0)) 186 break; 187 } 188 189 se = list_next_entry(se, list); 190 } 191 } 192 193 #define SWAPFILE_CLUSTER 256 194 #define LATENCY_LIMIT 256 195 196 static inline void cluster_set_flag(struct swap_cluster_info *info, 197 unsigned int flag) 198 { 199 info->flags = flag; 200 } 201 202 static inline unsigned int cluster_count(struct swap_cluster_info *info) 203 { 204 return info->data; 205 } 206 207 static inline void cluster_set_count(struct swap_cluster_info *info, 208 unsigned int c) 209 { 210 info->data = c; 211 } 212 213 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 214 unsigned int c, unsigned int f) 215 { 216 info->flags = f; 217 info->data = c; 218 } 219 220 static inline unsigned int cluster_next(struct swap_cluster_info *info) 221 { 222 return info->data; 223 } 224 225 static inline void cluster_set_next(struct swap_cluster_info *info, 226 unsigned int n) 227 { 228 info->data = n; 229 } 230 231 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 232 unsigned int n, unsigned int f) 233 { 234 info->flags = f; 235 info->data = n; 236 } 237 238 static inline bool cluster_is_free(struct swap_cluster_info *info) 239 { 240 return info->flags & CLUSTER_FLAG_FREE; 241 } 242 243 static inline bool cluster_is_null(struct swap_cluster_info *info) 244 { 245 return info->flags & CLUSTER_FLAG_NEXT_NULL; 246 } 247 248 static inline void cluster_set_null(struct swap_cluster_info *info) 249 { 250 info->flags = CLUSTER_FLAG_NEXT_NULL; 251 info->data = 0; 252 } 253 254 /* Add a cluster to discard list and schedule it to do discard */ 255 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 256 unsigned int idx) 257 { 258 /* 259 * If scan_swap_map() can't find a free cluster, it will check 260 * si->swap_map directly. To make sure the discarding cluster isn't 261 * taken by scan_swap_map(), mark the swap entries bad (occupied). It 262 * will be cleared after discard 263 */ 264 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 265 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 266 267 if (cluster_is_null(&si->discard_cluster_head)) { 268 cluster_set_next_flag(&si->discard_cluster_head, 269 idx, 0); 270 cluster_set_next_flag(&si->discard_cluster_tail, 271 idx, 0); 272 } else { 273 unsigned int tail = cluster_next(&si->discard_cluster_tail); 274 cluster_set_next(&si->cluster_info[tail], idx); 275 cluster_set_next_flag(&si->discard_cluster_tail, 276 idx, 0); 277 } 278 279 schedule_work(&si->discard_work); 280 } 281 282 /* 283 * Doing discard actually. After a cluster discard is finished, the cluster 284 * will be added to free cluster list. caller should hold si->lock. 285 */ 286 static void swap_do_scheduled_discard(struct swap_info_struct *si) 287 { 288 struct swap_cluster_info *info; 289 unsigned int idx; 290 291 info = si->cluster_info; 292 293 while (!cluster_is_null(&si->discard_cluster_head)) { 294 idx = cluster_next(&si->discard_cluster_head); 295 296 cluster_set_next_flag(&si->discard_cluster_head, 297 cluster_next(&info[idx]), 0); 298 if (cluster_next(&si->discard_cluster_tail) == idx) { 299 cluster_set_null(&si->discard_cluster_head); 300 cluster_set_null(&si->discard_cluster_tail); 301 } 302 spin_unlock(&si->lock); 303 304 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 305 SWAPFILE_CLUSTER); 306 307 spin_lock(&si->lock); 308 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE); 309 if (cluster_is_null(&si->free_cluster_head)) { 310 cluster_set_next_flag(&si->free_cluster_head, 311 idx, 0); 312 cluster_set_next_flag(&si->free_cluster_tail, 313 idx, 0); 314 } else { 315 unsigned int tail; 316 317 tail = cluster_next(&si->free_cluster_tail); 318 cluster_set_next(&info[tail], idx); 319 cluster_set_next_flag(&si->free_cluster_tail, 320 idx, 0); 321 } 322 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 323 0, SWAPFILE_CLUSTER); 324 } 325 } 326 327 static void swap_discard_work(struct work_struct *work) 328 { 329 struct swap_info_struct *si; 330 331 si = container_of(work, struct swap_info_struct, discard_work); 332 333 spin_lock(&si->lock); 334 swap_do_scheduled_discard(si); 335 spin_unlock(&si->lock); 336 } 337 338 /* 339 * The cluster corresponding to page_nr will be used. The cluster will be 340 * removed from free cluster list and its usage counter will be increased. 341 */ 342 static void inc_cluster_info_page(struct swap_info_struct *p, 343 struct swap_cluster_info *cluster_info, unsigned long page_nr) 344 { 345 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 346 347 if (!cluster_info) 348 return; 349 if (cluster_is_free(&cluster_info[idx])) { 350 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx); 351 cluster_set_next_flag(&p->free_cluster_head, 352 cluster_next(&cluster_info[idx]), 0); 353 if (cluster_next(&p->free_cluster_tail) == idx) { 354 cluster_set_null(&p->free_cluster_tail); 355 cluster_set_null(&p->free_cluster_head); 356 } 357 cluster_set_count_flag(&cluster_info[idx], 0, 0); 358 } 359 360 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 361 cluster_set_count(&cluster_info[idx], 362 cluster_count(&cluster_info[idx]) + 1); 363 } 364 365 /* 366 * The cluster corresponding to page_nr decreases one usage. If the usage 367 * counter becomes 0, which means no page in the cluster is in using, we can 368 * optionally discard the cluster and add it to free cluster list. 369 */ 370 static void dec_cluster_info_page(struct swap_info_struct *p, 371 struct swap_cluster_info *cluster_info, unsigned long page_nr) 372 { 373 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 374 375 if (!cluster_info) 376 return; 377 378 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 379 cluster_set_count(&cluster_info[idx], 380 cluster_count(&cluster_info[idx]) - 1); 381 382 if (cluster_count(&cluster_info[idx]) == 0) { 383 /* 384 * If the swap is discardable, prepare discard the cluster 385 * instead of free it immediately. The cluster will be freed 386 * after discard. 387 */ 388 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 389 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 390 swap_cluster_schedule_discard(p, idx); 391 return; 392 } 393 394 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 395 if (cluster_is_null(&p->free_cluster_head)) { 396 cluster_set_next_flag(&p->free_cluster_head, idx, 0); 397 cluster_set_next_flag(&p->free_cluster_tail, idx, 0); 398 } else { 399 unsigned int tail = cluster_next(&p->free_cluster_tail); 400 cluster_set_next(&cluster_info[tail], idx); 401 cluster_set_next_flag(&p->free_cluster_tail, idx, 0); 402 } 403 } 404 } 405 406 /* 407 * It's possible scan_swap_map() uses a free cluster in the middle of free 408 * cluster list. Avoiding such abuse to avoid list corruption. 409 */ 410 static bool 411 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 412 unsigned long offset) 413 { 414 struct percpu_cluster *percpu_cluster; 415 bool conflict; 416 417 offset /= SWAPFILE_CLUSTER; 418 conflict = !cluster_is_null(&si->free_cluster_head) && 419 offset != cluster_next(&si->free_cluster_head) && 420 cluster_is_free(&si->cluster_info[offset]); 421 422 if (!conflict) 423 return false; 424 425 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 426 cluster_set_null(&percpu_cluster->index); 427 return true; 428 } 429 430 /* 431 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 432 * might involve allocating a new cluster for current CPU too. 433 */ 434 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 435 unsigned long *offset, unsigned long *scan_base) 436 { 437 struct percpu_cluster *cluster; 438 bool found_free; 439 unsigned long tmp; 440 441 new_cluster: 442 cluster = this_cpu_ptr(si->percpu_cluster); 443 if (cluster_is_null(&cluster->index)) { 444 if (!cluster_is_null(&si->free_cluster_head)) { 445 cluster->index = si->free_cluster_head; 446 cluster->next = cluster_next(&cluster->index) * 447 SWAPFILE_CLUSTER; 448 } else if (!cluster_is_null(&si->discard_cluster_head)) { 449 /* 450 * we don't have free cluster but have some clusters in 451 * discarding, do discard now and reclaim them 452 */ 453 swap_do_scheduled_discard(si); 454 *scan_base = *offset = si->cluster_next; 455 goto new_cluster; 456 } else 457 return; 458 } 459 460 found_free = false; 461 462 /* 463 * Other CPUs can use our cluster if they can't find a free cluster, 464 * check if there is still free entry in the cluster 465 */ 466 tmp = cluster->next; 467 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) * 468 SWAPFILE_CLUSTER) { 469 if (!si->swap_map[tmp]) { 470 found_free = true; 471 break; 472 } 473 tmp++; 474 } 475 if (!found_free) { 476 cluster_set_null(&cluster->index); 477 goto new_cluster; 478 } 479 cluster->next = tmp + 1; 480 *offset = tmp; 481 *scan_base = tmp; 482 } 483 484 static unsigned long scan_swap_map(struct swap_info_struct *si, 485 unsigned char usage) 486 { 487 unsigned long offset; 488 unsigned long scan_base; 489 unsigned long last_in_cluster = 0; 490 int latency_ration = LATENCY_LIMIT; 491 492 /* 493 * We try to cluster swap pages by allocating them sequentially 494 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 495 * way, however, we resort to first-free allocation, starting 496 * a new cluster. This prevents us from scattering swap pages 497 * all over the entire swap partition, so that we reduce 498 * overall disk seek times between swap pages. -- sct 499 * But we do now try to find an empty cluster. -Andrea 500 * And we let swap pages go all over an SSD partition. Hugh 501 */ 502 503 si->flags += SWP_SCANNING; 504 scan_base = offset = si->cluster_next; 505 506 /* SSD algorithm */ 507 if (si->cluster_info) { 508 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base); 509 goto checks; 510 } 511 512 if (unlikely(!si->cluster_nr--)) { 513 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 514 si->cluster_nr = SWAPFILE_CLUSTER - 1; 515 goto checks; 516 } 517 518 spin_unlock(&si->lock); 519 520 /* 521 * If seek is expensive, start searching for new cluster from 522 * start of partition, to minimize the span of allocated swap. 523 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 524 * case, just handled by scan_swap_map_try_ssd_cluster() above. 525 */ 526 scan_base = offset = si->lowest_bit; 527 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 528 529 /* Locate the first empty (unaligned) cluster */ 530 for (; last_in_cluster <= si->highest_bit; offset++) { 531 if (si->swap_map[offset]) 532 last_in_cluster = offset + SWAPFILE_CLUSTER; 533 else if (offset == last_in_cluster) { 534 spin_lock(&si->lock); 535 offset -= SWAPFILE_CLUSTER - 1; 536 si->cluster_next = offset; 537 si->cluster_nr = SWAPFILE_CLUSTER - 1; 538 goto checks; 539 } 540 if (unlikely(--latency_ration < 0)) { 541 cond_resched(); 542 latency_ration = LATENCY_LIMIT; 543 } 544 } 545 546 offset = scan_base; 547 spin_lock(&si->lock); 548 si->cluster_nr = SWAPFILE_CLUSTER - 1; 549 } 550 551 checks: 552 if (si->cluster_info) { 553 while (scan_swap_map_ssd_cluster_conflict(si, offset)) 554 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base); 555 } 556 if (!(si->flags & SWP_WRITEOK)) 557 goto no_page; 558 if (!si->highest_bit) 559 goto no_page; 560 if (offset > si->highest_bit) 561 scan_base = offset = si->lowest_bit; 562 563 /* reuse swap entry of cache-only swap if not busy. */ 564 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 565 int swap_was_freed; 566 spin_unlock(&si->lock); 567 swap_was_freed = __try_to_reclaim_swap(si, offset); 568 spin_lock(&si->lock); 569 /* entry was freed successfully, try to use this again */ 570 if (swap_was_freed) 571 goto checks; 572 goto scan; /* check next one */ 573 } 574 575 if (si->swap_map[offset]) 576 goto scan; 577 578 if (offset == si->lowest_bit) 579 si->lowest_bit++; 580 if (offset == si->highest_bit) 581 si->highest_bit--; 582 si->inuse_pages++; 583 if (si->inuse_pages == si->pages) { 584 si->lowest_bit = si->max; 585 si->highest_bit = 0; 586 spin_lock(&swap_avail_lock); 587 plist_del(&si->avail_list, &swap_avail_head); 588 spin_unlock(&swap_avail_lock); 589 } 590 si->swap_map[offset] = usage; 591 inc_cluster_info_page(si, si->cluster_info, offset); 592 si->cluster_next = offset + 1; 593 si->flags -= SWP_SCANNING; 594 595 return offset; 596 597 scan: 598 spin_unlock(&si->lock); 599 while (++offset <= si->highest_bit) { 600 if (!si->swap_map[offset]) { 601 spin_lock(&si->lock); 602 goto checks; 603 } 604 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 605 spin_lock(&si->lock); 606 goto checks; 607 } 608 if (unlikely(--latency_ration < 0)) { 609 cond_resched(); 610 latency_ration = LATENCY_LIMIT; 611 } 612 } 613 offset = si->lowest_bit; 614 while (offset < scan_base) { 615 if (!si->swap_map[offset]) { 616 spin_lock(&si->lock); 617 goto checks; 618 } 619 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 620 spin_lock(&si->lock); 621 goto checks; 622 } 623 if (unlikely(--latency_ration < 0)) { 624 cond_resched(); 625 latency_ration = LATENCY_LIMIT; 626 } 627 offset++; 628 } 629 spin_lock(&si->lock); 630 631 no_page: 632 si->flags -= SWP_SCANNING; 633 return 0; 634 } 635 636 swp_entry_t get_swap_page(void) 637 { 638 struct swap_info_struct *si, *next; 639 pgoff_t offset; 640 641 if (atomic_long_read(&nr_swap_pages) <= 0) 642 goto noswap; 643 atomic_long_dec(&nr_swap_pages); 644 645 spin_lock(&swap_avail_lock); 646 647 start_over: 648 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) { 649 /* requeue si to after same-priority siblings */ 650 plist_requeue(&si->avail_list, &swap_avail_head); 651 spin_unlock(&swap_avail_lock); 652 spin_lock(&si->lock); 653 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 654 spin_lock(&swap_avail_lock); 655 if (plist_node_empty(&si->avail_list)) { 656 spin_unlock(&si->lock); 657 goto nextsi; 658 } 659 WARN(!si->highest_bit, 660 "swap_info %d in list but !highest_bit\n", 661 si->type); 662 WARN(!(si->flags & SWP_WRITEOK), 663 "swap_info %d in list but !SWP_WRITEOK\n", 664 si->type); 665 plist_del(&si->avail_list, &swap_avail_head); 666 spin_unlock(&si->lock); 667 goto nextsi; 668 } 669 670 /* This is called for allocating swap entry for cache */ 671 offset = scan_swap_map(si, SWAP_HAS_CACHE); 672 spin_unlock(&si->lock); 673 if (offset) 674 return swp_entry(si->type, offset); 675 pr_debug("scan_swap_map of si %d failed to find offset\n", 676 si->type); 677 spin_lock(&swap_avail_lock); 678 nextsi: 679 /* 680 * if we got here, it's likely that si was almost full before, 681 * and since scan_swap_map() can drop the si->lock, multiple 682 * callers probably all tried to get a page from the same si 683 * and it filled up before we could get one; or, the si filled 684 * up between us dropping swap_avail_lock and taking si->lock. 685 * Since we dropped the swap_avail_lock, the swap_avail_head 686 * list may have been modified; so if next is still in the 687 * swap_avail_head list then try it, otherwise start over. 688 */ 689 if (plist_node_empty(&next->avail_list)) 690 goto start_over; 691 } 692 693 spin_unlock(&swap_avail_lock); 694 695 atomic_long_inc(&nr_swap_pages); 696 noswap: 697 return (swp_entry_t) {0}; 698 } 699 700 /* The only caller of this function is now suspend routine */ 701 swp_entry_t get_swap_page_of_type(int type) 702 { 703 struct swap_info_struct *si; 704 pgoff_t offset; 705 706 si = swap_info[type]; 707 spin_lock(&si->lock); 708 if (si && (si->flags & SWP_WRITEOK)) { 709 atomic_long_dec(&nr_swap_pages); 710 /* This is called for allocating swap entry, not cache */ 711 offset = scan_swap_map(si, 1); 712 if (offset) { 713 spin_unlock(&si->lock); 714 return swp_entry(type, offset); 715 } 716 atomic_long_inc(&nr_swap_pages); 717 } 718 spin_unlock(&si->lock); 719 return (swp_entry_t) {0}; 720 } 721 722 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 723 { 724 struct swap_info_struct *p; 725 unsigned long offset, type; 726 727 if (!entry.val) 728 goto out; 729 type = swp_type(entry); 730 if (type >= nr_swapfiles) 731 goto bad_nofile; 732 p = swap_info[type]; 733 if (!(p->flags & SWP_USED)) 734 goto bad_device; 735 offset = swp_offset(entry); 736 if (offset >= p->max) 737 goto bad_offset; 738 if (!p->swap_map[offset]) 739 goto bad_free; 740 spin_lock(&p->lock); 741 return p; 742 743 bad_free: 744 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val); 745 goto out; 746 bad_offset: 747 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val); 748 goto out; 749 bad_device: 750 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val); 751 goto out; 752 bad_nofile: 753 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val); 754 out: 755 return NULL; 756 } 757 758 static unsigned char swap_entry_free(struct swap_info_struct *p, 759 swp_entry_t entry, unsigned char usage) 760 { 761 unsigned long offset = swp_offset(entry); 762 unsigned char count; 763 unsigned char has_cache; 764 765 count = p->swap_map[offset]; 766 has_cache = count & SWAP_HAS_CACHE; 767 count &= ~SWAP_HAS_CACHE; 768 769 if (usage == SWAP_HAS_CACHE) { 770 VM_BUG_ON(!has_cache); 771 has_cache = 0; 772 } else if (count == SWAP_MAP_SHMEM) { 773 /* 774 * Or we could insist on shmem.c using a special 775 * swap_shmem_free() and free_shmem_swap_and_cache()... 776 */ 777 count = 0; 778 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 779 if (count == COUNT_CONTINUED) { 780 if (swap_count_continued(p, offset, count)) 781 count = SWAP_MAP_MAX | COUNT_CONTINUED; 782 else 783 count = SWAP_MAP_MAX; 784 } else 785 count--; 786 } 787 788 usage = count | has_cache; 789 p->swap_map[offset] = usage; 790 791 /* free if no reference */ 792 if (!usage) { 793 mem_cgroup_uncharge_swap(entry); 794 dec_cluster_info_page(p, p->cluster_info, offset); 795 if (offset < p->lowest_bit) 796 p->lowest_bit = offset; 797 if (offset > p->highest_bit) { 798 bool was_full = !p->highest_bit; 799 p->highest_bit = offset; 800 if (was_full && (p->flags & SWP_WRITEOK)) { 801 spin_lock(&swap_avail_lock); 802 WARN_ON(!plist_node_empty(&p->avail_list)); 803 if (plist_node_empty(&p->avail_list)) 804 plist_add(&p->avail_list, 805 &swap_avail_head); 806 spin_unlock(&swap_avail_lock); 807 } 808 } 809 atomic_long_inc(&nr_swap_pages); 810 p->inuse_pages--; 811 frontswap_invalidate_page(p->type, offset); 812 if (p->flags & SWP_BLKDEV) { 813 struct gendisk *disk = p->bdev->bd_disk; 814 if (disk->fops->swap_slot_free_notify) 815 disk->fops->swap_slot_free_notify(p->bdev, 816 offset); 817 } 818 } 819 820 return usage; 821 } 822 823 /* 824 * Caller has made sure that the swap device corresponding to entry 825 * is still around or has not been recycled. 826 */ 827 void swap_free(swp_entry_t entry) 828 { 829 struct swap_info_struct *p; 830 831 p = swap_info_get(entry); 832 if (p) { 833 swap_entry_free(p, entry, 1); 834 spin_unlock(&p->lock); 835 } 836 } 837 838 /* 839 * Called after dropping swapcache to decrease refcnt to swap entries. 840 */ 841 void swapcache_free(swp_entry_t entry) 842 { 843 struct swap_info_struct *p; 844 845 p = swap_info_get(entry); 846 if (p) { 847 swap_entry_free(p, entry, SWAP_HAS_CACHE); 848 spin_unlock(&p->lock); 849 } 850 } 851 852 /* 853 * How many references to page are currently swapped out? 854 * This does not give an exact answer when swap count is continued, 855 * but does include the high COUNT_CONTINUED flag to allow for that. 856 */ 857 int page_swapcount(struct page *page) 858 { 859 int count = 0; 860 struct swap_info_struct *p; 861 swp_entry_t entry; 862 863 entry.val = page_private(page); 864 p = swap_info_get(entry); 865 if (p) { 866 count = swap_count(p->swap_map[swp_offset(entry)]); 867 spin_unlock(&p->lock); 868 } 869 return count; 870 } 871 872 /* 873 * How many references to @entry are currently swapped out? 874 * This considers COUNT_CONTINUED so it returns exact answer. 875 */ 876 int swp_swapcount(swp_entry_t entry) 877 { 878 int count, tmp_count, n; 879 struct swap_info_struct *p; 880 struct page *page; 881 pgoff_t offset; 882 unsigned char *map; 883 884 p = swap_info_get(entry); 885 if (!p) 886 return 0; 887 888 count = swap_count(p->swap_map[swp_offset(entry)]); 889 if (!(count & COUNT_CONTINUED)) 890 goto out; 891 892 count &= ~COUNT_CONTINUED; 893 n = SWAP_MAP_MAX + 1; 894 895 offset = swp_offset(entry); 896 page = vmalloc_to_page(p->swap_map + offset); 897 offset &= ~PAGE_MASK; 898 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 899 900 do { 901 page = list_next_entry(page, lru); 902 map = kmap_atomic(page); 903 tmp_count = map[offset]; 904 kunmap_atomic(map); 905 906 count += (tmp_count & ~COUNT_CONTINUED) * n; 907 n *= (SWAP_CONT_MAX + 1); 908 } while (tmp_count & COUNT_CONTINUED); 909 out: 910 spin_unlock(&p->lock); 911 return count; 912 } 913 914 /* 915 * We can write to an anon page without COW if there are no other references 916 * to it. And as a side-effect, free up its swap: because the old content 917 * on disk will never be read, and seeking back there to write new content 918 * later would only waste time away from clustering. 919 */ 920 int reuse_swap_page(struct page *page) 921 { 922 int count; 923 924 VM_BUG_ON_PAGE(!PageLocked(page), page); 925 if (unlikely(PageKsm(page))) 926 return 0; 927 /* The page is part of THP and cannot be reused */ 928 if (PageTransCompound(page)) 929 return 0; 930 count = page_mapcount(page); 931 if (count <= 1 && PageSwapCache(page)) { 932 count += page_swapcount(page); 933 if (count == 1 && !PageWriteback(page)) { 934 delete_from_swap_cache(page); 935 SetPageDirty(page); 936 } 937 } 938 return count <= 1; 939 } 940 941 /* 942 * If swap is getting full, or if there are no more mappings of this page, 943 * then try_to_free_swap is called to free its swap space. 944 */ 945 int try_to_free_swap(struct page *page) 946 { 947 VM_BUG_ON_PAGE(!PageLocked(page), page); 948 949 if (!PageSwapCache(page)) 950 return 0; 951 if (PageWriteback(page)) 952 return 0; 953 if (page_swapcount(page)) 954 return 0; 955 956 /* 957 * Once hibernation has begun to create its image of memory, 958 * there's a danger that one of the calls to try_to_free_swap() 959 * - most probably a call from __try_to_reclaim_swap() while 960 * hibernation is allocating its own swap pages for the image, 961 * but conceivably even a call from memory reclaim - will free 962 * the swap from a page which has already been recorded in the 963 * image as a clean swapcache page, and then reuse its swap for 964 * another page of the image. On waking from hibernation, the 965 * original page might be freed under memory pressure, then 966 * later read back in from swap, now with the wrong data. 967 * 968 * Hibernation suspends storage while it is writing the image 969 * to disk so check that here. 970 */ 971 if (pm_suspended_storage()) 972 return 0; 973 974 delete_from_swap_cache(page); 975 SetPageDirty(page); 976 return 1; 977 } 978 979 /* 980 * Free the swap entry like above, but also try to 981 * free the page cache entry if it is the last user. 982 */ 983 int free_swap_and_cache(swp_entry_t entry) 984 { 985 struct swap_info_struct *p; 986 struct page *page = NULL; 987 988 if (non_swap_entry(entry)) 989 return 1; 990 991 p = swap_info_get(entry); 992 if (p) { 993 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) { 994 page = find_get_page(swap_address_space(entry), 995 entry.val); 996 if (page && !trylock_page(page)) { 997 page_cache_release(page); 998 page = NULL; 999 } 1000 } 1001 spin_unlock(&p->lock); 1002 } 1003 if (page) { 1004 /* 1005 * Not mapped elsewhere, or swap space full? Free it! 1006 * Also recheck PageSwapCache now page is locked (above). 1007 */ 1008 if (PageSwapCache(page) && !PageWriteback(page) && 1009 (!page_mapped(page) || mem_cgroup_swap_full(page))) { 1010 delete_from_swap_cache(page); 1011 SetPageDirty(page); 1012 } 1013 unlock_page(page); 1014 page_cache_release(page); 1015 } 1016 return p != NULL; 1017 } 1018 1019 #ifdef CONFIG_HIBERNATION 1020 /* 1021 * Find the swap type that corresponds to given device (if any). 1022 * 1023 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1024 * from 0, in which the swap header is expected to be located. 1025 * 1026 * This is needed for the suspend to disk (aka swsusp). 1027 */ 1028 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 1029 { 1030 struct block_device *bdev = NULL; 1031 int type; 1032 1033 if (device) 1034 bdev = bdget(device); 1035 1036 spin_lock(&swap_lock); 1037 for (type = 0; type < nr_swapfiles; type++) { 1038 struct swap_info_struct *sis = swap_info[type]; 1039 1040 if (!(sis->flags & SWP_WRITEOK)) 1041 continue; 1042 1043 if (!bdev) { 1044 if (bdev_p) 1045 *bdev_p = bdgrab(sis->bdev); 1046 1047 spin_unlock(&swap_lock); 1048 return type; 1049 } 1050 if (bdev == sis->bdev) { 1051 struct swap_extent *se = &sis->first_swap_extent; 1052 1053 if (se->start_block == offset) { 1054 if (bdev_p) 1055 *bdev_p = bdgrab(sis->bdev); 1056 1057 spin_unlock(&swap_lock); 1058 bdput(bdev); 1059 return type; 1060 } 1061 } 1062 } 1063 spin_unlock(&swap_lock); 1064 if (bdev) 1065 bdput(bdev); 1066 1067 return -ENODEV; 1068 } 1069 1070 /* 1071 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1072 * corresponding to given index in swap_info (swap type). 1073 */ 1074 sector_t swapdev_block(int type, pgoff_t offset) 1075 { 1076 struct block_device *bdev; 1077 1078 if ((unsigned int)type >= nr_swapfiles) 1079 return 0; 1080 if (!(swap_info[type]->flags & SWP_WRITEOK)) 1081 return 0; 1082 return map_swap_entry(swp_entry(type, offset), &bdev); 1083 } 1084 1085 /* 1086 * Return either the total number of swap pages of given type, or the number 1087 * of free pages of that type (depending on @free) 1088 * 1089 * This is needed for software suspend 1090 */ 1091 unsigned int count_swap_pages(int type, int free) 1092 { 1093 unsigned int n = 0; 1094 1095 spin_lock(&swap_lock); 1096 if ((unsigned int)type < nr_swapfiles) { 1097 struct swap_info_struct *sis = swap_info[type]; 1098 1099 spin_lock(&sis->lock); 1100 if (sis->flags & SWP_WRITEOK) { 1101 n = sis->pages; 1102 if (free) 1103 n -= sis->inuse_pages; 1104 } 1105 spin_unlock(&sis->lock); 1106 } 1107 spin_unlock(&swap_lock); 1108 return n; 1109 } 1110 #endif /* CONFIG_HIBERNATION */ 1111 1112 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1113 { 1114 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte); 1115 } 1116 1117 /* 1118 * No need to decide whether this PTE shares the swap entry with others, 1119 * just let do_wp_page work it out if a write is requested later - to 1120 * force COW, vm_page_prot omits write permission from any private vma. 1121 */ 1122 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1123 unsigned long addr, swp_entry_t entry, struct page *page) 1124 { 1125 struct page *swapcache; 1126 struct mem_cgroup *memcg; 1127 spinlock_t *ptl; 1128 pte_t *pte; 1129 int ret = 1; 1130 1131 swapcache = page; 1132 page = ksm_might_need_to_copy(page, vma, addr); 1133 if (unlikely(!page)) 1134 return -ENOMEM; 1135 1136 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, 1137 &memcg, false)) { 1138 ret = -ENOMEM; 1139 goto out_nolock; 1140 } 1141 1142 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1143 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1144 mem_cgroup_cancel_charge(page, memcg, false); 1145 ret = 0; 1146 goto out; 1147 } 1148 1149 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1150 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1151 get_page(page); 1152 set_pte_at(vma->vm_mm, addr, pte, 1153 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1154 if (page == swapcache) { 1155 page_add_anon_rmap(page, vma, addr, false); 1156 mem_cgroup_commit_charge(page, memcg, true, false); 1157 } else { /* ksm created a completely new copy */ 1158 page_add_new_anon_rmap(page, vma, addr, false); 1159 mem_cgroup_commit_charge(page, memcg, false, false); 1160 lru_cache_add_active_or_unevictable(page, vma); 1161 } 1162 swap_free(entry); 1163 /* 1164 * Move the page to the active list so it is not 1165 * immediately swapped out again after swapon. 1166 */ 1167 activate_page(page); 1168 out: 1169 pte_unmap_unlock(pte, ptl); 1170 out_nolock: 1171 if (page != swapcache) { 1172 unlock_page(page); 1173 put_page(page); 1174 } 1175 return ret; 1176 } 1177 1178 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1179 unsigned long addr, unsigned long end, 1180 swp_entry_t entry, struct page *page) 1181 { 1182 pte_t swp_pte = swp_entry_to_pte(entry); 1183 pte_t *pte; 1184 int ret = 0; 1185 1186 /* 1187 * We don't actually need pte lock while scanning for swp_pte: since 1188 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 1189 * page table while we're scanning; though it could get zapped, and on 1190 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 1191 * of unmatched parts which look like swp_pte, so unuse_pte must 1192 * recheck under pte lock. Scanning without pte lock lets it be 1193 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 1194 */ 1195 pte = pte_offset_map(pmd, addr); 1196 do { 1197 /* 1198 * swapoff spends a _lot_ of time in this loop! 1199 * Test inline before going to call unuse_pte. 1200 */ 1201 if (unlikely(pte_same_as_swp(*pte, swp_pte))) { 1202 pte_unmap(pte); 1203 ret = unuse_pte(vma, pmd, addr, entry, page); 1204 if (ret) 1205 goto out; 1206 pte = pte_offset_map(pmd, addr); 1207 } 1208 } while (pte++, addr += PAGE_SIZE, addr != end); 1209 pte_unmap(pte - 1); 1210 out: 1211 return ret; 1212 } 1213 1214 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1215 unsigned long addr, unsigned long end, 1216 swp_entry_t entry, struct page *page) 1217 { 1218 pmd_t *pmd; 1219 unsigned long next; 1220 int ret; 1221 1222 pmd = pmd_offset(pud, addr); 1223 do { 1224 next = pmd_addr_end(addr, end); 1225 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1226 continue; 1227 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 1228 if (ret) 1229 return ret; 1230 } while (pmd++, addr = next, addr != end); 1231 return 0; 1232 } 1233 1234 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 1235 unsigned long addr, unsigned long end, 1236 swp_entry_t entry, struct page *page) 1237 { 1238 pud_t *pud; 1239 unsigned long next; 1240 int ret; 1241 1242 pud = pud_offset(pgd, addr); 1243 do { 1244 next = pud_addr_end(addr, end); 1245 if (pud_none_or_clear_bad(pud)) 1246 continue; 1247 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 1248 if (ret) 1249 return ret; 1250 } while (pud++, addr = next, addr != end); 1251 return 0; 1252 } 1253 1254 static int unuse_vma(struct vm_area_struct *vma, 1255 swp_entry_t entry, struct page *page) 1256 { 1257 pgd_t *pgd; 1258 unsigned long addr, end, next; 1259 int ret; 1260 1261 if (page_anon_vma(page)) { 1262 addr = page_address_in_vma(page, vma); 1263 if (addr == -EFAULT) 1264 return 0; 1265 else 1266 end = addr + PAGE_SIZE; 1267 } else { 1268 addr = vma->vm_start; 1269 end = vma->vm_end; 1270 } 1271 1272 pgd = pgd_offset(vma->vm_mm, addr); 1273 do { 1274 next = pgd_addr_end(addr, end); 1275 if (pgd_none_or_clear_bad(pgd)) 1276 continue; 1277 ret = unuse_pud_range(vma, pgd, addr, next, entry, page); 1278 if (ret) 1279 return ret; 1280 } while (pgd++, addr = next, addr != end); 1281 return 0; 1282 } 1283 1284 static int unuse_mm(struct mm_struct *mm, 1285 swp_entry_t entry, struct page *page) 1286 { 1287 struct vm_area_struct *vma; 1288 int ret = 0; 1289 1290 if (!down_read_trylock(&mm->mmap_sem)) { 1291 /* 1292 * Activate page so shrink_inactive_list is unlikely to unmap 1293 * its ptes while lock is dropped, so swapoff can make progress. 1294 */ 1295 activate_page(page); 1296 unlock_page(page); 1297 down_read(&mm->mmap_sem); 1298 lock_page(page); 1299 } 1300 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1301 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 1302 break; 1303 } 1304 up_read(&mm->mmap_sem); 1305 return (ret < 0)? ret: 0; 1306 } 1307 1308 /* 1309 * Scan swap_map (or frontswap_map if frontswap parameter is true) 1310 * from current position to next entry still in use. 1311 * Recycle to start on reaching the end, returning 0 when empty. 1312 */ 1313 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1314 unsigned int prev, bool frontswap) 1315 { 1316 unsigned int max = si->max; 1317 unsigned int i = prev; 1318 unsigned char count; 1319 1320 /* 1321 * No need for swap_lock here: we're just looking 1322 * for whether an entry is in use, not modifying it; false 1323 * hits are okay, and sys_swapoff() has already prevented new 1324 * allocations from this area (while holding swap_lock). 1325 */ 1326 for (;;) { 1327 if (++i >= max) { 1328 if (!prev) { 1329 i = 0; 1330 break; 1331 } 1332 /* 1333 * No entries in use at top of swap_map, 1334 * loop back to start and recheck there. 1335 */ 1336 max = prev + 1; 1337 prev = 0; 1338 i = 1; 1339 } 1340 if (frontswap) { 1341 if (frontswap_test(si, i)) 1342 break; 1343 else 1344 continue; 1345 } 1346 count = READ_ONCE(si->swap_map[i]); 1347 if (count && swap_count(count) != SWAP_MAP_BAD) 1348 break; 1349 } 1350 return i; 1351 } 1352 1353 /* 1354 * We completely avoid races by reading each swap page in advance, 1355 * and then search for the process using it. All the necessary 1356 * page table adjustments can then be made atomically. 1357 * 1358 * if the boolean frontswap is true, only unuse pages_to_unuse pages; 1359 * pages_to_unuse==0 means all pages; ignored if frontswap is false 1360 */ 1361 int try_to_unuse(unsigned int type, bool frontswap, 1362 unsigned long pages_to_unuse) 1363 { 1364 struct swap_info_struct *si = swap_info[type]; 1365 struct mm_struct *start_mm; 1366 volatile unsigned char *swap_map; /* swap_map is accessed without 1367 * locking. Mark it as volatile 1368 * to prevent compiler doing 1369 * something odd. 1370 */ 1371 unsigned char swcount; 1372 struct page *page; 1373 swp_entry_t entry; 1374 unsigned int i = 0; 1375 int retval = 0; 1376 1377 /* 1378 * When searching mms for an entry, a good strategy is to 1379 * start at the first mm we freed the previous entry from 1380 * (though actually we don't notice whether we or coincidence 1381 * freed the entry). Initialize this start_mm with a hold. 1382 * 1383 * A simpler strategy would be to start at the last mm we 1384 * freed the previous entry from; but that would take less 1385 * advantage of mmlist ordering, which clusters forked mms 1386 * together, child after parent. If we race with dup_mmap(), we 1387 * prefer to resolve parent before child, lest we miss entries 1388 * duplicated after we scanned child: using last mm would invert 1389 * that. 1390 */ 1391 start_mm = &init_mm; 1392 atomic_inc(&init_mm.mm_users); 1393 1394 /* 1395 * Keep on scanning until all entries have gone. Usually, 1396 * one pass through swap_map is enough, but not necessarily: 1397 * there are races when an instance of an entry might be missed. 1398 */ 1399 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) { 1400 if (signal_pending(current)) { 1401 retval = -EINTR; 1402 break; 1403 } 1404 1405 /* 1406 * Get a page for the entry, using the existing swap 1407 * cache page if there is one. Otherwise, get a clean 1408 * page and read the swap into it. 1409 */ 1410 swap_map = &si->swap_map[i]; 1411 entry = swp_entry(type, i); 1412 page = read_swap_cache_async(entry, 1413 GFP_HIGHUSER_MOVABLE, NULL, 0); 1414 if (!page) { 1415 /* 1416 * Either swap_duplicate() failed because entry 1417 * has been freed independently, and will not be 1418 * reused since sys_swapoff() already disabled 1419 * allocation from here, or alloc_page() failed. 1420 */ 1421 swcount = *swap_map; 1422 /* 1423 * We don't hold lock here, so the swap entry could be 1424 * SWAP_MAP_BAD (when the cluster is discarding). 1425 * Instead of fail out, We can just skip the swap 1426 * entry because swapoff will wait for discarding 1427 * finish anyway. 1428 */ 1429 if (!swcount || swcount == SWAP_MAP_BAD) 1430 continue; 1431 retval = -ENOMEM; 1432 break; 1433 } 1434 1435 /* 1436 * Don't hold on to start_mm if it looks like exiting. 1437 */ 1438 if (atomic_read(&start_mm->mm_users) == 1) { 1439 mmput(start_mm); 1440 start_mm = &init_mm; 1441 atomic_inc(&init_mm.mm_users); 1442 } 1443 1444 /* 1445 * Wait for and lock page. When do_swap_page races with 1446 * try_to_unuse, do_swap_page can handle the fault much 1447 * faster than try_to_unuse can locate the entry. This 1448 * apparently redundant "wait_on_page_locked" lets try_to_unuse 1449 * defer to do_swap_page in such a case - in some tests, 1450 * do_swap_page and try_to_unuse repeatedly compete. 1451 */ 1452 wait_on_page_locked(page); 1453 wait_on_page_writeback(page); 1454 lock_page(page); 1455 wait_on_page_writeback(page); 1456 1457 /* 1458 * Remove all references to entry. 1459 */ 1460 swcount = *swap_map; 1461 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 1462 retval = shmem_unuse(entry, page); 1463 /* page has already been unlocked and released */ 1464 if (retval < 0) 1465 break; 1466 continue; 1467 } 1468 if (swap_count(swcount) && start_mm != &init_mm) 1469 retval = unuse_mm(start_mm, entry, page); 1470 1471 if (swap_count(*swap_map)) { 1472 int set_start_mm = (*swap_map >= swcount); 1473 struct list_head *p = &start_mm->mmlist; 1474 struct mm_struct *new_start_mm = start_mm; 1475 struct mm_struct *prev_mm = start_mm; 1476 struct mm_struct *mm; 1477 1478 atomic_inc(&new_start_mm->mm_users); 1479 atomic_inc(&prev_mm->mm_users); 1480 spin_lock(&mmlist_lock); 1481 while (swap_count(*swap_map) && !retval && 1482 (p = p->next) != &start_mm->mmlist) { 1483 mm = list_entry(p, struct mm_struct, mmlist); 1484 if (!atomic_inc_not_zero(&mm->mm_users)) 1485 continue; 1486 spin_unlock(&mmlist_lock); 1487 mmput(prev_mm); 1488 prev_mm = mm; 1489 1490 cond_resched(); 1491 1492 swcount = *swap_map; 1493 if (!swap_count(swcount)) /* any usage ? */ 1494 ; 1495 else if (mm == &init_mm) 1496 set_start_mm = 1; 1497 else 1498 retval = unuse_mm(mm, entry, page); 1499 1500 if (set_start_mm && *swap_map < swcount) { 1501 mmput(new_start_mm); 1502 atomic_inc(&mm->mm_users); 1503 new_start_mm = mm; 1504 set_start_mm = 0; 1505 } 1506 spin_lock(&mmlist_lock); 1507 } 1508 spin_unlock(&mmlist_lock); 1509 mmput(prev_mm); 1510 mmput(start_mm); 1511 start_mm = new_start_mm; 1512 } 1513 if (retval) { 1514 unlock_page(page); 1515 page_cache_release(page); 1516 break; 1517 } 1518 1519 /* 1520 * If a reference remains (rare), we would like to leave 1521 * the page in the swap cache; but try_to_unmap could 1522 * then re-duplicate the entry once we drop page lock, 1523 * so we might loop indefinitely; also, that page could 1524 * not be swapped out to other storage meanwhile. So: 1525 * delete from cache even if there's another reference, 1526 * after ensuring that the data has been saved to disk - 1527 * since if the reference remains (rarer), it will be 1528 * read from disk into another page. Splitting into two 1529 * pages would be incorrect if swap supported "shared 1530 * private" pages, but they are handled by tmpfs files. 1531 * 1532 * Given how unuse_vma() targets one particular offset 1533 * in an anon_vma, once the anon_vma has been determined, 1534 * this splitting happens to be just what is needed to 1535 * handle where KSM pages have been swapped out: re-reading 1536 * is unnecessarily slow, but we can fix that later on. 1537 */ 1538 if (swap_count(*swap_map) && 1539 PageDirty(page) && PageSwapCache(page)) { 1540 struct writeback_control wbc = { 1541 .sync_mode = WB_SYNC_NONE, 1542 }; 1543 1544 swap_writepage(page, &wbc); 1545 lock_page(page); 1546 wait_on_page_writeback(page); 1547 } 1548 1549 /* 1550 * It is conceivable that a racing task removed this page from 1551 * swap cache just before we acquired the page lock at the top, 1552 * or while we dropped it in unuse_mm(). The page might even 1553 * be back in swap cache on another swap area: that we must not 1554 * delete, since it may not have been written out to swap yet. 1555 */ 1556 if (PageSwapCache(page) && 1557 likely(page_private(page) == entry.val)) 1558 delete_from_swap_cache(page); 1559 1560 /* 1561 * So we could skip searching mms once swap count went 1562 * to 1, we did not mark any present ptes as dirty: must 1563 * mark page dirty so shrink_page_list will preserve it. 1564 */ 1565 SetPageDirty(page); 1566 unlock_page(page); 1567 page_cache_release(page); 1568 1569 /* 1570 * Make sure that we aren't completely killing 1571 * interactive performance. 1572 */ 1573 cond_resched(); 1574 if (frontswap && pages_to_unuse > 0) { 1575 if (!--pages_to_unuse) 1576 break; 1577 } 1578 } 1579 1580 mmput(start_mm); 1581 return retval; 1582 } 1583 1584 /* 1585 * After a successful try_to_unuse, if no swap is now in use, we know 1586 * we can empty the mmlist. swap_lock must be held on entry and exit. 1587 * Note that mmlist_lock nests inside swap_lock, and an mm must be 1588 * added to the mmlist just after page_duplicate - before would be racy. 1589 */ 1590 static void drain_mmlist(void) 1591 { 1592 struct list_head *p, *next; 1593 unsigned int type; 1594 1595 for (type = 0; type < nr_swapfiles; type++) 1596 if (swap_info[type]->inuse_pages) 1597 return; 1598 spin_lock(&mmlist_lock); 1599 list_for_each_safe(p, next, &init_mm.mmlist) 1600 list_del_init(p); 1601 spin_unlock(&mmlist_lock); 1602 } 1603 1604 /* 1605 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 1606 * corresponds to page offset for the specified swap entry. 1607 * Note that the type of this function is sector_t, but it returns page offset 1608 * into the bdev, not sector offset. 1609 */ 1610 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 1611 { 1612 struct swap_info_struct *sis; 1613 struct swap_extent *start_se; 1614 struct swap_extent *se; 1615 pgoff_t offset; 1616 1617 sis = swap_info[swp_type(entry)]; 1618 *bdev = sis->bdev; 1619 1620 offset = swp_offset(entry); 1621 start_se = sis->curr_swap_extent; 1622 se = start_se; 1623 1624 for ( ; ; ) { 1625 if (se->start_page <= offset && 1626 offset < (se->start_page + se->nr_pages)) { 1627 return se->start_block + (offset - se->start_page); 1628 } 1629 se = list_next_entry(se, list); 1630 sis->curr_swap_extent = se; 1631 BUG_ON(se == start_se); /* It *must* be present */ 1632 } 1633 } 1634 1635 /* 1636 * Returns the page offset into bdev for the specified page's swap entry. 1637 */ 1638 sector_t map_swap_page(struct page *page, struct block_device **bdev) 1639 { 1640 swp_entry_t entry; 1641 entry.val = page_private(page); 1642 return map_swap_entry(entry, bdev); 1643 } 1644 1645 /* 1646 * Free all of a swapdev's extent information 1647 */ 1648 static void destroy_swap_extents(struct swap_info_struct *sis) 1649 { 1650 while (!list_empty(&sis->first_swap_extent.list)) { 1651 struct swap_extent *se; 1652 1653 se = list_first_entry(&sis->first_swap_extent.list, 1654 struct swap_extent, list); 1655 list_del(&se->list); 1656 kfree(se); 1657 } 1658 1659 if (sis->flags & SWP_FILE) { 1660 struct file *swap_file = sis->swap_file; 1661 struct address_space *mapping = swap_file->f_mapping; 1662 1663 sis->flags &= ~SWP_FILE; 1664 mapping->a_ops->swap_deactivate(swap_file); 1665 } 1666 } 1667 1668 /* 1669 * Add a block range (and the corresponding page range) into this swapdev's 1670 * extent list. The extent list is kept sorted in page order. 1671 * 1672 * This function rather assumes that it is called in ascending page order. 1673 */ 1674 int 1675 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1676 unsigned long nr_pages, sector_t start_block) 1677 { 1678 struct swap_extent *se; 1679 struct swap_extent *new_se; 1680 struct list_head *lh; 1681 1682 if (start_page == 0) { 1683 se = &sis->first_swap_extent; 1684 sis->curr_swap_extent = se; 1685 se->start_page = 0; 1686 se->nr_pages = nr_pages; 1687 se->start_block = start_block; 1688 return 1; 1689 } else { 1690 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 1691 se = list_entry(lh, struct swap_extent, list); 1692 BUG_ON(se->start_page + se->nr_pages != start_page); 1693 if (se->start_block + se->nr_pages == start_block) { 1694 /* Merge it */ 1695 se->nr_pages += nr_pages; 1696 return 0; 1697 } 1698 } 1699 1700 /* 1701 * No merge. Insert a new extent, preserving ordering. 1702 */ 1703 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 1704 if (new_se == NULL) 1705 return -ENOMEM; 1706 new_se->start_page = start_page; 1707 new_se->nr_pages = nr_pages; 1708 new_se->start_block = start_block; 1709 1710 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 1711 return 1; 1712 } 1713 1714 /* 1715 * A `swap extent' is a simple thing which maps a contiguous range of pages 1716 * onto a contiguous range of disk blocks. An ordered list of swap extents 1717 * is built at swapon time and is then used at swap_writepage/swap_readpage 1718 * time for locating where on disk a page belongs. 1719 * 1720 * If the swapfile is an S_ISBLK block device, a single extent is installed. 1721 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 1722 * swap files identically. 1723 * 1724 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 1725 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1726 * swapfiles are handled *identically* after swapon time. 1727 * 1728 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1729 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1730 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1731 * requirements, they are simply tossed out - we will never use those blocks 1732 * for swapping. 1733 * 1734 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1735 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1736 * which will scribble on the fs. 1737 * 1738 * The amount of disk space which a single swap extent represents varies. 1739 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1740 * extents in the list. To avoid much list walking, we cache the previous 1741 * search location in `curr_swap_extent', and start new searches from there. 1742 * This is extremely effective. The average number of iterations in 1743 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1744 */ 1745 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1746 { 1747 struct file *swap_file = sis->swap_file; 1748 struct address_space *mapping = swap_file->f_mapping; 1749 struct inode *inode = mapping->host; 1750 int ret; 1751 1752 if (S_ISBLK(inode->i_mode)) { 1753 ret = add_swap_extent(sis, 0, sis->max, 0); 1754 *span = sis->pages; 1755 return ret; 1756 } 1757 1758 if (mapping->a_ops->swap_activate) { 1759 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 1760 if (!ret) { 1761 sis->flags |= SWP_FILE; 1762 ret = add_swap_extent(sis, 0, sis->max, 0); 1763 *span = sis->pages; 1764 } 1765 return ret; 1766 } 1767 1768 return generic_swapfile_activate(sis, swap_file, span); 1769 } 1770 1771 static void _enable_swap_info(struct swap_info_struct *p, int prio, 1772 unsigned char *swap_map, 1773 struct swap_cluster_info *cluster_info) 1774 { 1775 if (prio >= 0) 1776 p->prio = prio; 1777 else 1778 p->prio = --least_priority; 1779 /* 1780 * the plist prio is negated because plist ordering is 1781 * low-to-high, while swap ordering is high-to-low 1782 */ 1783 p->list.prio = -p->prio; 1784 p->avail_list.prio = -p->prio; 1785 p->swap_map = swap_map; 1786 p->cluster_info = cluster_info; 1787 p->flags |= SWP_WRITEOK; 1788 atomic_long_add(p->pages, &nr_swap_pages); 1789 total_swap_pages += p->pages; 1790 1791 assert_spin_locked(&swap_lock); 1792 /* 1793 * both lists are plists, and thus priority ordered. 1794 * swap_active_head needs to be priority ordered for swapoff(), 1795 * which on removal of any swap_info_struct with an auto-assigned 1796 * (i.e. negative) priority increments the auto-assigned priority 1797 * of any lower-priority swap_info_structs. 1798 * swap_avail_head needs to be priority ordered for get_swap_page(), 1799 * which allocates swap pages from the highest available priority 1800 * swap_info_struct. 1801 */ 1802 plist_add(&p->list, &swap_active_head); 1803 spin_lock(&swap_avail_lock); 1804 plist_add(&p->avail_list, &swap_avail_head); 1805 spin_unlock(&swap_avail_lock); 1806 } 1807 1808 static void enable_swap_info(struct swap_info_struct *p, int prio, 1809 unsigned char *swap_map, 1810 struct swap_cluster_info *cluster_info, 1811 unsigned long *frontswap_map) 1812 { 1813 frontswap_init(p->type, frontswap_map); 1814 spin_lock(&swap_lock); 1815 spin_lock(&p->lock); 1816 _enable_swap_info(p, prio, swap_map, cluster_info); 1817 spin_unlock(&p->lock); 1818 spin_unlock(&swap_lock); 1819 } 1820 1821 static void reinsert_swap_info(struct swap_info_struct *p) 1822 { 1823 spin_lock(&swap_lock); 1824 spin_lock(&p->lock); 1825 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info); 1826 spin_unlock(&p->lock); 1827 spin_unlock(&swap_lock); 1828 } 1829 1830 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 1831 { 1832 struct swap_info_struct *p = NULL; 1833 unsigned char *swap_map; 1834 struct swap_cluster_info *cluster_info; 1835 unsigned long *frontswap_map; 1836 struct file *swap_file, *victim; 1837 struct address_space *mapping; 1838 struct inode *inode; 1839 struct filename *pathname; 1840 int err, found = 0; 1841 unsigned int old_block_size; 1842 1843 if (!capable(CAP_SYS_ADMIN)) 1844 return -EPERM; 1845 1846 BUG_ON(!current->mm); 1847 1848 pathname = getname(specialfile); 1849 if (IS_ERR(pathname)) 1850 return PTR_ERR(pathname); 1851 1852 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 1853 err = PTR_ERR(victim); 1854 if (IS_ERR(victim)) 1855 goto out; 1856 1857 mapping = victim->f_mapping; 1858 spin_lock(&swap_lock); 1859 plist_for_each_entry(p, &swap_active_head, list) { 1860 if (p->flags & SWP_WRITEOK) { 1861 if (p->swap_file->f_mapping == mapping) { 1862 found = 1; 1863 break; 1864 } 1865 } 1866 } 1867 if (!found) { 1868 err = -EINVAL; 1869 spin_unlock(&swap_lock); 1870 goto out_dput; 1871 } 1872 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 1873 vm_unacct_memory(p->pages); 1874 else { 1875 err = -ENOMEM; 1876 spin_unlock(&swap_lock); 1877 goto out_dput; 1878 } 1879 spin_lock(&swap_avail_lock); 1880 plist_del(&p->avail_list, &swap_avail_head); 1881 spin_unlock(&swap_avail_lock); 1882 spin_lock(&p->lock); 1883 if (p->prio < 0) { 1884 struct swap_info_struct *si = p; 1885 1886 plist_for_each_entry_continue(si, &swap_active_head, list) { 1887 si->prio++; 1888 si->list.prio--; 1889 si->avail_list.prio--; 1890 } 1891 least_priority++; 1892 } 1893 plist_del(&p->list, &swap_active_head); 1894 atomic_long_sub(p->pages, &nr_swap_pages); 1895 total_swap_pages -= p->pages; 1896 p->flags &= ~SWP_WRITEOK; 1897 spin_unlock(&p->lock); 1898 spin_unlock(&swap_lock); 1899 1900 set_current_oom_origin(); 1901 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ 1902 clear_current_oom_origin(); 1903 1904 if (err) { 1905 /* re-insert swap space back into swap_list */ 1906 reinsert_swap_info(p); 1907 goto out_dput; 1908 } 1909 1910 flush_work(&p->discard_work); 1911 1912 destroy_swap_extents(p); 1913 if (p->flags & SWP_CONTINUED) 1914 free_swap_count_continuations(p); 1915 1916 mutex_lock(&swapon_mutex); 1917 spin_lock(&swap_lock); 1918 spin_lock(&p->lock); 1919 drain_mmlist(); 1920 1921 /* wait for anyone still in scan_swap_map */ 1922 p->highest_bit = 0; /* cuts scans short */ 1923 while (p->flags >= SWP_SCANNING) { 1924 spin_unlock(&p->lock); 1925 spin_unlock(&swap_lock); 1926 schedule_timeout_uninterruptible(1); 1927 spin_lock(&swap_lock); 1928 spin_lock(&p->lock); 1929 } 1930 1931 swap_file = p->swap_file; 1932 old_block_size = p->old_block_size; 1933 p->swap_file = NULL; 1934 p->max = 0; 1935 swap_map = p->swap_map; 1936 p->swap_map = NULL; 1937 cluster_info = p->cluster_info; 1938 p->cluster_info = NULL; 1939 frontswap_map = frontswap_map_get(p); 1940 spin_unlock(&p->lock); 1941 spin_unlock(&swap_lock); 1942 frontswap_invalidate_area(p->type); 1943 frontswap_map_set(p, NULL); 1944 mutex_unlock(&swapon_mutex); 1945 free_percpu(p->percpu_cluster); 1946 p->percpu_cluster = NULL; 1947 vfree(swap_map); 1948 vfree(cluster_info); 1949 vfree(frontswap_map); 1950 /* Destroy swap account information */ 1951 swap_cgroup_swapoff(p->type); 1952 1953 inode = mapping->host; 1954 if (S_ISBLK(inode->i_mode)) { 1955 struct block_device *bdev = I_BDEV(inode); 1956 set_blocksize(bdev, old_block_size); 1957 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 1958 } else { 1959 inode_lock(inode); 1960 inode->i_flags &= ~S_SWAPFILE; 1961 inode_unlock(inode); 1962 } 1963 filp_close(swap_file, NULL); 1964 1965 /* 1966 * Clear the SWP_USED flag after all resources are freed so that swapon 1967 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 1968 * not hold p->lock after we cleared its SWP_WRITEOK. 1969 */ 1970 spin_lock(&swap_lock); 1971 p->flags = 0; 1972 spin_unlock(&swap_lock); 1973 1974 err = 0; 1975 atomic_inc(&proc_poll_event); 1976 wake_up_interruptible(&proc_poll_wait); 1977 1978 out_dput: 1979 filp_close(victim, NULL); 1980 out: 1981 putname(pathname); 1982 return err; 1983 } 1984 1985 #ifdef CONFIG_PROC_FS 1986 static unsigned swaps_poll(struct file *file, poll_table *wait) 1987 { 1988 struct seq_file *seq = file->private_data; 1989 1990 poll_wait(file, &proc_poll_wait, wait); 1991 1992 if (seq->poll_event != atomic_read(&proc_poll_event)) { 1993 seq->poll_event = atomic_read(&proc_poll_event); 1994 return POLLIN | POLLRDNORM | POLLERR | POLLPRI; 1995 } 1996 1997 return POLLIN | POLLRDNORM; 1998 } 1999 2000 /* iterator */ 2001 static void *swap_start(struct seq_file *swap, loff_t *pos) 2002 { 2003 struct swap_info_struct *si; 2004 int type; 2005 loff_t l = *pos; 2006 2007 mutex_lock(&swapon_mutex); 2008 2009 if (!l) 2010 return SEQ_START_TOKEN; 2011 2012 for (type = 0; type < nr_swapfiles; type++) { 2013 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2014 si = swap_info[type]; 2015 if (!(si->flags & SWP_USED) || !si->swap_map) 2016 continue; 2017 if (!--l) 2018 return si; 2019 } 2020 2021 return NULL; 2022 } 2023 2024 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2025 { 2026 struct swap_info_struct *si = v; 2027 int type; 2028 2029 if (v == SEQ_START_TOKEN) 2030 type = 0; 2031 else 2032 type = si->type + 1; 2033 2034 for (; type < nr_swapfiles; type++) { 2035 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2036 si = swap_info[type]; 2037 if (!(si->flags & SWP_USED) || !si->swap_map) 2038 continue; 2039 ++*pos; 2040 return si; 2041 } 2042 2043 return NULL; 2044 } 2045 2046 static void swap_stop(struct seq_file *swap, void *v) 2047 { 2048 mutex_unlock(&swapon_mutex); 2049 } 2050 2051 static int swap_show(struct seq_file *swap, void *v) 2052 { 2053 struct swap_info_struct *si = v; 2054 struct file *file; 2055 int len; 2056 2057 if (si == SEQ_START_TOKEN) { 2058 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 2059 return 0; 2060 } 2061 2062 file = si->swap_file; 2063 len = seq_file_path(swap, file, " \t\n\\"); 2064 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 2065 len < 40 ? 40 - len : 1, " ", 2066 S_ISBLK(file_inode(file)->i_mode) ? 2067 "partition" : "file\t", 2068 si->pages << (PAGE_SHIFT - 10), 2069 si->inuse_pages << (PAGE_SHIFT - 10), 2070 si->prio); 2071 return 0; 2072 } 2073 2074 static const struct seq_operations swaps_op = { 2075 .start = swap_start, 2076 .next = swap_next, 2077 .stop = swap_stop, 2078 .show = swap_show 2079 }; 2080 2081 static int swaps_open(struct inode *inode, struct file *file) 2082 { 2083 struct seq_file *seq; 2084 int ret; 2085 2086 ret = seq_open(file, &swaps_op); 2087 if (ret) 2088 return ret; 2089 2090 seq = file->private_data; 2091 seq->poll_event = atomic_read(&proc_poll_event); 2092 return 0; 2093 } 2094 2095 static const struct file_operations proc_swaps_operations = { 2096 .open = swaps_open, 2097 .read = seq_read, 2098 .llseek = seq_lseek, 2099 .release = seq_release, 2100 .poll = swaps_poll, 2101 }; 2102 2103 static int __init procswaps_init(void) 2104 { 2105 proc_create("swaps", 0, NULL, &proc_swaps_operations); 2106 return 0; 2107 } 2108 __initcall(procswaps_init); 2109 #endif /* CONFIG_PROC_FS */ 2110 2111 #ifdef MAX_SWAPFILES_CHECK 2112 static int __init max_swapfiles_check(void) 2113 { 2114 MAX_SWAPFILES_CHECK(); 2115 return 0; 2116 } 2117 late_initcall(max_swapfiles_check); 2118 #endif 2119 2120 static struct swap_info_struct *alloc_swap_info(void) 2121 { 2122 struct swap_info_struct *p; 2123 unsigned int type; 2124 2125 p = kzalloc(sizeof(*p), GFP_KERNEL); 2126 if (!p) 2127 return ERR_PTR(-ENOMEM); 2128 2129 spin_lock(&swap_lock); 2130 for (type = 0; type < nr_swapfiles; type++) { 2131 if (!(swap_info[type]->flags & SWP_USED)) 2132 break; 2133 } 2134 if (type >= MAX_SWAPFILES) { 2135 spin_unlock(&swap_lock); 2136 kfree(p); 2137 return ERR_PTR(-EPERM); 2138 } 2139 if (type >= nr_swapfiles) { 2140 p->type = type; 2141 swap_info[type] = p; 2142 /* 2143 * Write swap_info[type] before nr_swapfiles, in case a 2144 * racing procfs swap_start() or swap_next() is reading them. 2145 * (We never shrink nr_swapfiles, we never free this entry.) 2146 */ 2147 smp_wmb(); 2148 nr_swapfiles++; 2149 } else { 2150 kfree(p); 2151 p = swap_info[type]; 2152 /* 2153 * Do not memset this entry: a racing procfs swap_next() 2154 * would be relying on p->type to remain valid. 2155 */ 2156 } 2157 INIT_LIST_HEAD(&p->first_swap_extent.list); 2158 plist_node_init(&p->list, 0); 2159 plist_node_init(&p->avail_list, 0); 2160 p->flags = SWP_USED; 2161 spin_unlock(&swap_lock); 2162 spin_lock_init(&p->lock); 2163 2164 return p; 2165 } 2166 2167 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2168 { 2169 int error; 2170 2171 if (S_ISBLK(inode->i_mode)) { 2172 p->bdev = bdgrab(I_BDEV(inode)); 2173 error = blkdev_get(p->bdev, 2174 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2175 if (error < 0) { 2176 p->bdev = NULL; 2177 return error; 2178 } 2179 p->old_block_size = block_size(p->bdev); 2180 error = set_blocksize(p->bdev, PAGE_SIZE); 2181 if (error < 0) 2182 return error; 2183 p->flags |= SWP_BLKDEV; 2184 } else if (S_ISREG(inode->i_mode)) { 2185 p->bdev = inode->i_sb->s_bdev; 2186 inode_lock(inode); 2187 if (IS_SWAPFILE(inode)) 2188 return -EBUSY; 2189 } else 2190 return -EINVAL; 2191 2192 return 0; 2193 } 2194 2195 static unsigned long read_swap_header(struct swap_info_struct *p, 2196 union swap_header *swap_header, 2197 struct inode *inode) 2198 { 2199 int i; 2200 unsigned long maxpages; 2201 unsigned long swapfilepages; 2202 unsigned long last_page; 2203 2204 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2205 pr_err("Unable to find swap-space signature\n"); 2206 return 0; 2207 } 2208 2209 /* swap partition endianess hack... */ 2210 if (swab32(swap_header->info.version) == 1) { 2211 swab32s(&swap_header->info.version); 2212 swab32s(&swap_header->info.last_page); 2213 swab32s(&swap_header->info.nr_badpages); 2214 for (i = 0; i < swap_header->info.nr_badpages; i++) 2215 swab32s(&swap_header->info.badpages[i]); 2216 } 2217 /* Check the swap header's sub-version */ 2218 if (swap_header->info.version != 1) { 2219 pr_warn("Unable to handle swap header version %d\n", 2220 swap_header->info.version); 2221 return 0; 2222 } 2223 2224 p->lowest_bit = 1; 2225 p->cluster_next = 1; 2226 p->cluster_nr = 0; 2227 2228 /* 2229 * Find out how many pages are allowed for a single swap 2230 * device. There are two limiting factors: 1) the number 2231 * of bits for the swap offset in the swp_entry_t type, and 2232 * 2) the number of bits in the swap pte as defined by the 2233 * different architectures. In order to find the 2234 * largest possible bit mask, a swap entry with swap type 0 2235 * and swap offset ~0UL is created, encoded to a swap pte, 2236 * decoded to a swp_entry_t again, and finally the swap 2237 * offset is extracted. This will mask all the bits from 2238 * the initial ~0UL mask that can't be encoded in either 2239 * the swp_entry_t or the architecture definition of a 2240 * swap pte. 2241 */ 2242 maxpages = swp_offset(pte_to_swp_entry( 2243 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2244 last_page = swap_header->info.last_page; 2245 if (last_page > maxpages) { 2246 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2247 maxpages << (PAGE_SHIFT - 10), 2248 last_page << (PAGE_SHIFT - 10)); 2249 } 2250 if (maxpages > last_page) { 2251 maxpages = last_page + 1; 2252 /* p->max is an unsigned int: don't overflow it */ 2253 if ((unsigned int)maxpages == 0) 2254 maxpages = UINT_MAX; 2255 } 2256 p->highest_bit = maxpages - 1; 2257 2258 if (!maxpages) 2259 return 0; 2260 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2261 if (swapfilepages && maxpages > swapfilepages) { 2262 pr_warn("Swap area shorter than signature indicates\n"); 2263 return 0; 2264 } 2265 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2266 return 0; 2267 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2268 return 0; 2269 2270 return maxpages; 2271 } 2272 2273 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2274 union swap_header *swap_header, 2275 unsigned char *swap_map, 2276 struct swap_cluster_info *cluster_info, 2277 unsigned long maxpages, 2278 sector_t *span) 2279 { 2280 int i; 2281 unsigned int nr_good_pages; 2282 int nr_extents; 2283 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2284 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER; 2285 2286 nr_good_pages = maxpages - 1; /* omit header page */ 2287 2288 cluster_set_null(&p->free_cluster_head); 2289 cluster_set_null(&p->free_cluster_tail); 2290 cluster_set_null(&p->discard_cluster_head); 2291 cluster_set_null(&p->discard_cluster_tail); 2292 2293 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2294 unsigned int page_nr = swap_header->info.badpages[i]; 2295 if (page_nr == 0 || page_nr > swap_header->info.last_page) 2296 return -EINVAL; 2297 if (page_nr < maxpages) { 2298 swap_map[page_nr] = SWAP_MAP_BAD; 2299 nr_good_pages--; 2300 /* 2301 * Haven't marked the cluster free yet, no list 2302 * operation involved 2303 */ 2304 inc_cluster_info_page(p, cluster_info, page_nr); 2305 } 2306 } 2307 2308 /* Haven't marked the cluster free yet, no list operation involved */ 2309 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 2310 inc_cluster_info_page(p, cluster_info, i); 2311 2312 if (nr_good_pages) { 2313 swap_map[0] = SWAP_MAP_BAD; 2314 /* 2315 * Not mark the cluster free yet, no list 2316 * operation involved 2317 */ 2318 inc_cluster_info_page(p, cluster_info, 0); 2319 p->max = maxpages; 2320 p->pages = nr_good_pages; 2321 nr_extents = setup_swap_extents(p, span); 2322 if (nr_extents < 0) 2323 return nr_extents; 2324 nr_good_pages = p->pages; 2325 } 2326 if (!nr_good_pages) { 2327 pr_warn("Empty swap-file\n"); 2328 return -EINVAL; 2329 } 2330 2331 if (!cluster_info) 2332 return nr_extents; 2333 2334 for (i = 0; i < nr_clusters; i++) { 2335 if (!cluster_count(&cluster_info[idx])) { 2336 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 2337 if (cluster_is_null(&p->free_cluster_head)) { 2338 cluster_set_next_flag(&p->free_cluster_head, 2339 idx, 0); 2340 cluster_set_next_flag(&p->free_cluster_tail, 2341 idx, 0); 2342 } else { 2343 unsigned int tail; 2344 2345 tail = cluster_next(&p->free_cluster_tail); 2346 cluster_set_next(&cluster_info[tail], idx); 2347 cluster_set_next_flag(&p->free_cluster_tail, 2348 idx, 0); 2349 } 2350 } 2351 idx++; 2352 if (idx == nr_clusters) 2353 idx = 0; 2354 } 2355 return nr_extents; 2356 } 2357 2358 /* 2359 * Helper to sys_swapon determining if a given swap 2360 * backing device queue supports DISCARD operations. 2361 */ 2362 static bool swap_discardable(struct swap_info_struct *si) 2363 { 2364 struct request_queue *q = bdev_get_queue(si->bdev); 2365 2366 if (!q || !blk_queue_discard(q)) 2367 return false; 2368 2369 return true; 2370 } 2371 2372 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2373 { 2374 struct swap_info_struct *p; 2375 struct filename *name; 2376 struct file *swap_file = NULL; 2377 struct address_space *mapping; 2378 int prio; 2379 int error; 2380 union swap_header *swap_header; 2381 int nr_extents; 2382 sector_t span; 2383 unsigned long maxpages; 2384 unsigned char *swap_map = NULL; 2385 struct swap_cluster_info *cluster_info = NULL; 2386 unsigned long *frontswap_map = NULL; 2387 struct page *page = NULL; 2388 struct inode *inode = NULL; 2389 2390 if (swap_flags & ~SWAP_FLAGS_VALID) 2391 return -EINVAL; 2392 2393 if (!capable(CAP_SYS_ADMIN)) 2394 return -EPERM; 2395 2396 p = alloc_swap_info(); 2397 if (IS_ERR(p)) 2398 return PTR_ERR(p); 2399 2400 INIT_WORK(&p->discard_work, swap_discard_work); 2401 2402 name = getname(specialfile); 2403 if (IS_ERR(name)) { 2404 error = PTR_ERR(name); 2405 name = NULL; 2406 goto bad_swap; 2407 } 2408 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 2409 if (IS_ERR(swap_file)) { 2410 error = PTR_ERR(swap_file); 2411 swap_file = NULL; 2412 goto bad_swap; 2413 } 2414 2415 p->swap_file = swap_file; 2416 mapping = swap_file->f_mapping; 2417 inode = mapping->host; 2418 2419 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */ 2420 error = claim_swapfile(p, inode); 2421 if (unlikely(error)) 2422 goto bad_swap; 2423 2424 /* 2425 * Read the swap header. 2426 */ 2427 if (!mapping->a_ops->readpage) { 2428 error = -EINVAL; 2429 goto bad_swap; 2430 } 2431 page = read_mapping_page(mapping, 0, swap_file); 2432 if (IS_ERR(page)) { 2433 error = PTR_ERR(page); 2434 goto bad_swap; 2435 } 2436 swap_header = kmap(page); 2437 2438 maxpages = read_swap_header(p, swap_header, inode); 2439 if (unlikely(!maxpages)) { 2440 error = -EINVAL; 2441 goto bad_swap; 2442 } 2443 2444 /* OK, set up the swap map and apply the bad block list */ 2445 swap_map = vzalloc(maxpages); 2446 if (!swap_map) { 2447 error = -ENOMEM; 2448 goto bad_swap; 2449 } 2450 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 2451 int cpu; 2452 2453 p->flags |= SWP_SOLIDSTATE; 2454 /* 2455 * select a random position to start with to help wear leveling 2456 * SSD 2457 */ 2458 p->cluster_next = 1 + (prandom_u32() % p->highest_bit); 2459 2460 cluster_info = vzalloc(DIV_ROUND_UP(maxpages, 2461 SWAPFILE_CLUSTER) * sizeof(*cluster_info)); 2462 if (!cluster_info) { 2463 error = -ENOMEM; 2464 goto bad_swap; 2465 } 2466 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 2467 if (!p->percpu_cluster) { 2468 error = -ENOMEM; 2469 goto bad_swap; 2470 } 2471 for_each_possible_cpu(cpu) { 2472 struct percpu_cluster *cluster; 2473 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 2474 cluster_set_null(&cluster->index); 2475 } 2476 } 2477 2478 error = swap_cgroup_swapon(p->type, maxpages); 2479 if (error) 2480 goto bad_swap; 2481 2482 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 2483 cluster_info, maxpages, &span); 2484 if (unlikely(nr_extents < 0)) { 2485 error = nr_extents; 2486 goto bad_swap; 2487 } 2488 /* frontswap enabled? set up bit-per-page map for frontswap */ 2489 if (frontswap_enabled) 2490 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long)); 2491 2492 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 2493 /* 2494 * When discard is enabled for swap with no particular 2495 * policy flagged, we set all swap discard flags here in 2496 * order to sustain backward compatibility with older 2497 * swapon(8) releases. 2498 */ 2499 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 2500 SWP_PAGE_DISCARD); 2501 2502 /* 2503 * By flagging sys_swapon, a sysadmin can tell us to 2504 * either do single-time area discards only, or to just 2505 * perform discards for released swap page-clusters. 2506 * Now it's time to adjust the p->flags accordingly. 2507 */ 2508 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 2509 p->flags &= ~SWP_PAGE_DISCARD; 2510 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 2511 p->flags &= ~SWP_AREA_DISCARD; 2512 2513 /* issue a swapon-time discard if it's still required */ 2514 if (p->flags & SWP_AREA_DISCARD) { 2515 int err = discard_swap(p); 2516 if (unlikely(err)) 2517 pr_err("swapon: discard_swap(%p): %d\n", 2518 p, err); 2519 } 2520 } 2521 2522 mutex_lock(&swapon_mutex); 2523 prio = -1; 2524 if (swap_flags & SWAP_FLAG_PREFER) 2525 prio = 2526 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 2527 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 2528 2529 pr_info("Adding %uk swap on %s. " 2530 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 2531 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 2532 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 2533 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 2534 (p->flags & SWP_DISCARDABLE) ? "D" : "", 2535 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 2536 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 2537 (frontswap_map) ? "FS" : ""); 2538 2539 mutex_unlock(&swapon_mutex); 2540 atomic_inc(&proc_poll_event); 2541 wake_up_interruptible(&proc_poll_wait); 2542 2543 if (S_ISREG(inode->i_mode)) 2544 inode->i_flags |= S_SWAPFILE; 2545 error = 0; 2546 goto out; 2547 bad_swap: 2548 free_percpu(p->percpu_cluster); 2549 p->percpu_cluster = NULL; 2550 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 2551 set_blocksize(p->bdev, p->old_block_size); 2552 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2553 } 2554 destroy_swap_extents(p); 2555 swap_cgroup_swapoff(p->type); 2556 spin_lock(&swap_lock); 2557 p->swap_file = NULL; 2558 p->flags = 0; 2559 spin_unlock(&swap_lock); 2560 vfree(swap_map); 2561 vfree(cluster_info); 2562 if (swap_file) { 2563 if (inode && S_ISREG(inode->i_mode)) { 2564 inode_unlock(inode); 2565 inode = NULL; 2566 } 2567 filp_close(swap_file, NULL); 2568 } 2569 out: 2570 if (page && !IS_ERR(page)) { 2571 kunmap(page); 2572 page_cache_release(page); 2573 } 2574 if (name) 2575 putname(name); 2576 if (inode && S_ISREG(inode->i_mode)) 2577 inode_unlock(inode); 2578 return error; 2579 } 2580 2581 void si_swapinfo(struct sysinfo *val) 2582 { 2583 unsigned int type; 2584 unsigned long nr_to_be_unused = 0; 2585 2586 spin_lock(&swap_lock); 2587 for (type = 0; type < nr_swapfiles; type++) { 2588 struct swap_info_struct *si = swap_info[type]; 2589 2590 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 2591 nr_to_be_unused += si->inuse_pages; 2592 } 2593 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 2594 val->totalswap = total_swap_pages + nr_to_be_unused; 2595 spin_unlock(&swap_lock); 2596 } 2597 2598 /* 2599 * Verify that a swap entry is valid and increment its swap map count. 2600 * 2601 * Returns error code in following case. 2602 * - success -> 0 2603 * - swp_entry is invalid -> EINVAL 2604 * - swp_entry is migration entry -> EINVAL 2605 * - swap-cache reference is requested but there is already one. -> EEXIST 2606 * - swap-cache reference is requested but the entry is not used. -> ENOENT 2607 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 2608 */ 2609 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 2610 { 2611 struct swap_info_struct *p; 2612 unsigned long offset, type; 2613 unsigned char count; 2614 unsigned char has_cache; 2615 int err = -EINVAL; 2616 2617 if (non_swap_entry(entry)) 2618 goto out; 2619 2620 type = swp_type(entry); 2621 if (type >= nr_swapfiles) 2622 goto bad_file; 2623 p = swap_info[type]; 2624 offset = swp_offset(entry); 2625 2626 spin_lock(&p->lock); 2627 if (unlikely(offset >= p->max)) 2628 goto unlock_out; 2629 2630 count = p->swap_map[offset]; 2631 2632 /* 2633 * swapin_readahead() doesn't check if a swap entry is valid, so the 2634 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 2635 */ 2636 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 2637 err = -ENOENT; 2638 goto unlock_out; 2639 } 2640 2641 has_cache = count & SWAP_HAS_CACHE; 2642 count &= ~SWAP_HAS_CACHE; 2643 err = 0; 2644 2645 if (usage == SWAP_HAS_CACHE) { 2646 2647 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 2648 if (!has_cache && count) 2649 has_cache = SWAP_HAS_CACHE; 2650 else if (has_cache) /* someone else added cache */ 2651 err = -EEXIST; 2652 else /* no users remaining */ 2653 err = -ENOENT; 2654 2655 } else if (count || has_cache) { 2656 2657 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 2658 count += usage; 2659 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 2660 err = -EINVAL; 2661 else if (swap_count_continued(p, offset, count)) 2662 count = COUNT_CONTINUED; 2663 else 2664 err = -ENOMEM; 2665 } else 2666 err = -ENOENT; /* unused swap entry */ 2667 2668 p->swap_map[offset] = count | has_cache; 2669 2670 unlock_out: 2671 spin_unlock(&p->lock); 2672 out: 2673 return err; 2674 2675 bad_file: 2676 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val); 2677 goto out; 2678 } 2679 2680 /* 2681 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 2682 * (in which case its reference count is never incremented). 2683 */ 2684 void swap_shmem_alloc(swp_entry_t entry) 2685 { 2686 __swap_duplicate(entry, SWAP_MAP_SHMEM); 2687 } 2688 2689 /* 2690 * Increase reference count of swap entry by 1. 2691 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 2692 * but could not be atomically allocated. Returns 0, just as if it succeeded, 2693 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 2694 * might occur if a page table entry has got corrupted. 2695 */ 2696 int swap_duplicate(swp_entry_t entry) 2697 { 2698 int err = 0; 2699 2700 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 2701 err = add_swap_count_continuation(entry, GFP_ATOMIC); 2702 return err; 2703 } 2704 2705 /* 2706 * @entry: swap entry for which we allocate swap cache. 2707 * 2708 * Called when allocating swap cache for existing swap entry, 2709 * This can return error codes. Returns 0 at success. 2710 * -EBUSY means there is a swap cache. 2711 * Note: return code is different from swap_duplicate(). 2712 */ 2713 int swapcache_prepare(swp_entry_t entry) 2714 { 2715 return __swap_duplicate(entry, SWAP_HAS_CACHE); 2716 } 2717 2718 struct swap_info_struct *page_swap_info(struct page *page) 2719 { 2720 swp_entry_t swap = { .val = page_private(page) }; 2721 BUG_ON(!PageSwapCache(page)); 2722 return swap_info[swp_type(swap)]; 2723 } 2724 2725 /* 2726 * out-of-line __page_file_ methods to avoid include hell. 2727 */ 2728 struct address_space *__page_file_mapping(struct page *page) 2729 { 2730 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 2731 return page_swap_info(page)->swap_file->f_mapping; 2732 } 2733 EXPORT_SYMBOL_GPL(__page_file_mapping); 2734 2735 pgoff_t __page_file_index(struct page *page) 2736 { 2737 swp_entry_t swap = { .val = page_private(page) }; 2738 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 2739 return swp_offset(swap); 2740 } 2741 EXPORT_SYMBOL_GPL(__page_file_index); 2742 2743 /* 2744 * add_swap_count_continuation - called when a swap count is duplicated 2745 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 2746 * page of the original vmalloc'ed swap_map, to hold the continuation count 2747 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 2748 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 2749 * 2750 * These continuation pages are seldom referenced: the common paths all work 2751 * on the original swap_map, only referring to a continuation page when the 2752 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 2753 * 2754 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 2755 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 2756 * can be called after dropping locks. 2757 */ 2758 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 2759 { 2760 struct swap_info_struct *si; 2761 struct page *head; 2762 struct page *page; 2763 struct page *list_page; 2764 pgoff_t offset; 2765 unsigned char count; 2766 2767 /* 2768 * When debugging, it's easier to use __GFP_ZERO here; but it's better 2769 * for latency not to zero a page while GFP_ATOMIC and holding locks. 2770 */ 2771 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 2772 2773 si = swap_info_get(entry); 2774 if (!si) { 2775 /* 2776 * An acceptable race has occurred since the failing 2777 * __swap_duplicate(): the swap entry has been freed, 2778 * perhaps even the whole swap_map cleared for swapoff. 2779 */ 2780 goto outer; 2781 } 2782 2783 offset = swp_offset(entry); 2784 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 2785 2786 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 2787 /* 2788 * The higher the swap count, the more likely it is that tasks 2789 * will race to add swap count continuation: we need to avoid 2790 * over-provisioning. 2791 */ 2792 goto out; 2793 } 2794 2795 if (!page) { 2796 spin_unlock(&si->lock); 2797 return -ENOMEM; 2798 } 2799 2800 /* 2801 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 2802 * no architecture is using highmem pages for kernel page tables: so it 2803 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 2804 */ 2805 head = vmalloc_to_page(si->swap_map + offset); 2806 offset &= ~PAGE_MASK; 2807 2808 /* 2809 * Page allocation does not initialize the page's lru field, 2810 * but it does always reset its private field. 2811 */ 2812 if (!page_private(head)) { 2813 BUG_ON(count & COUNT_CONTINUED); 2814 INIT_LIST_HEAD(&head->lru); 2815 set_page_private(head, SWP_CONTINUED); 2816 si->flags |= SWP_CONTINUED; 2817 } 2818 2819 list_for_each_entry(list_page, &head->lru, lru) { 2820 unsigned char *map; 2821 2822 /* 2823 * If the previous map said no continuation, but we've found 2824 * a continuation page, free our allocation and use this one. 2825 */ 2826 if (!(count & COUNT_CONTINUED)) 2827 goto out; 2828 2829 map = kmap_atomic(list_page) + offset; 2830 count = *map; 2831 kunmap_atomic(map); 2832 2833 /* 2834 * If this continuation count now has some space in it, 2835 * free our allocation and use this one. 2836 */ 2837 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 2838 goto out; 2839 } 2840 2841 list_add_tail(&page->lru, &head->lru); 2842 page = NULL; /* now it's attached, don't free it */ 2843 out: 2844 spin_unlock(&si->lock); 2845 outer: 2846 if (page) 2847 __free_page(page); 2848 return 0; 2849 } 2850 2851 /* 2852 * swap_count_continued - when the original swap_map count is incremented 2853 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 2854 * into, carry if so, or else fail until a new continuation page is allocated; 2855 * when the original swap_map count is decremented from 0 with continuation, 2856 * borrow from the continuation and report whether it still holds more. 2857 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock. 2858 */ 2859 static bool swap_count_continued(struct swap_info_struct *si, 2860 pgoff_t offset, unsigned char count) 2861 { 2862 struct page *head; 2863 struct page *page; 2864 unsigned char *map; 2865 2866 head = vmalloc_to_page(si->swap_map + offset); 2867 if (page_private(head) != SWP_CONTINUED) { 2868 BUG_ON(count & COUNT_CONTINUED); 2869 return false; /* need to add count continuation */ 2870 } 2871 2872 offset &= ~PAGE_MASK; 2873 page = list_entry(head->lru.next, struct page, lru); 2874 map = kmap_atomic(page) + offset; 2875 2876 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 2877 goto init_map; /* jump over SWAP_CONT_MAX checks */ 2878 2879 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 2880 /* 2881 * Think of how you add 1 to 999 2882 */ 2883 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 2884 kunmap_atomic(map); 2885 page = list_entry(page->lru.next, struct page, lru); 2886 BUG_ON(page == head); 2887 map = kmap_atomic(page) + offset; 2888 } 2889 if (*map == SWAP_CONT_MAX) { 2890 kunmap_atomic(map); 2891 page = list_entry(page->lru.next, struct page, lru); 2892 if (page == head) 2893 return false; /* add count continuation */ 2894 map = kmap_atomic(page) + offset; 2895 init_map: *map = 0; /* we didn't zero the page */ 2896 } 2897 *map += 1; 2898 kunmap_atomic(map); 2899 page = list_entry(page->lru.prev, struct page, lru); 2900 while (page != head) { 2901 map = kmap_atomic(page) + offset; 2902 *map = COUNT_CONTINUED; 2903 kunmap_atomic(map); 2904 page = list_entry(page->lru.prev, struct page, lru); 2905 } 2906 return true; /* incremented */ 2907 2908 } else { /* decrementing */ 2909 /* 2910 * Think of how you subtract 1 from 1000 2911 */ 2912 BUG_ON(count != COUNT_CONTINUED); 2913 while (*map == COUNT_CONTINUED) { 2914 kunmap_atomic(map); 2915 page = list_entry(page->lru.next, struct page, lru); 2916 BUG_ON(page == head); 2917 map = kmap_atomic(page) + offset; 2918 } 2919 BUG_ON(*map == 0); 2920 *map -= 1; 2921 if (*map == 0) 2922 count = 0; 2923 kunmap_atomic(map); 2924 page = list_entry(page->lru.prev, struct page, lru); 2925 while (page != head) { 2926 map = kmap_atomic(page) + offset; 2927 *map = SWAP_CONT_MAX | count; 2928 count = COUNT_CONTINUED; 2929 kunmap_atomic(map); 2930 page = list_entry(page->lru.prev, struct page, lru); 2931 } 2932 return count == COUNT_CONTINUED; 2933 } 2934 } 2935 2936 /* 2937 * free_swap_count_continuations - swapoff free all the continuation pages 2938 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 2939 */ 2940 static void free_swap_count_continuations(struct swap_info_struct *si) 2941 { 2942 pgoff_t offset; 2943 2944 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 2945 struct page *head; 2946 head = vmalloc_to_page(si->swap_map + offset); 2947 if (page_private(head)) { 2948 struct page *page, *next; 2949 2950 list_for_each_entry_safe(page, next, &head->lru, lru) { 2951 list_del(&page->lru); 2952 __free_page(page); 2953 } 2954 } 2955 } 2956 } 2957