1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/mm.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/task.h> 12 #include <linux/hugetlb.h> 13 #include <linux/mman.h> 14 #include <linux/slab.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/swap.h> 17 #include <linux/vmalloc.h> 18 #include <linux/pagemap.h> 19 #include <linux/namei.h> 20 #include <linux/shmem_fs.h> 21 #include <linux/blk-cgroup.h> 22 #include <linux/random.h> 23 #include <linux/writeback.h> 24 #include <linux/proc_fs.h> 25 #include <linux/seq_file.h> 26 #include <linux/init.h> 27 #include <linux/ksm.h> 28 #include <linux/rmap.h> 29 #include <linux/security.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mutex.h> 32 #include <linux/capability.h> 33 #include <linux/syscalls.h> 34 #include <linux/memcontrol.h> 35 #include <linux/poll.h> 36 #include <linux/oom.h> 37 #include <linux/frontswap.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/swap_slots.h> 41 #include <linux/sort.h> 42 #include <linux/completion.h> 43 44 #include <asm/tlbflush.h> 45 #include <linux/swapops.h> 46 #include <linux/swap_cgroup.h> 47 48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 49 unsigned char); 50 static void free_swap_count_continuations(struct swap_info_struct *); 51 52 DEFINE_SPINLOCK(swap_lock); 53 static unsigned int nr_swapfiles; 54 atomic_long_t nr_swap_pages; 55 /* 56 * Some modules use swappable objects and may try to swap them out under 57 * memory pressure (via the shrinker). Before doing so, they may wish to 58 * check to see if any swap space is available. 59 */ 60 EXPORT_SYMBOL_GPL(nr_swap_pages); 61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 62 long total_swap_pages; 63 static int least_priority = -1; 64 65 static const char Bad_file[] = "Bad swap file entry "; 66 static const char Unused_file[] = "Unused swap file entry "; 67 static const char Bad_offset[] = "Bad swap offset entry "; 68 static const char Unused_offset[] = "Unused swap offset entry "; 69 70 /* 71 * all active swap_info_structs 72 * protected with swap_lock, and ordered by priority. 73 */ 74 PLIST_HEAD(swap_active_head); 75 76 /* 77 * all available (active, not full) swap_info_structs 78 * protected with swap_avail_lock, ordered by priority. 79 * This is used by get_swap_page() instead of swap_active_head 80 * because swap_active_head includes all swap_info_structs, 81 * but get_swap_page() doesn't need to look at full ones. 82 * This uses its own lock instead of swap_lock because when a 83 * swap_info_struct changes between not-full/full, it needs to 84 * add/remove itself to/from this list, but the swap_info_struct->lock 85 * is held and the locking order requires swap_lock to be taken 86 * before any swap_info_struct->lock. 87 */ 88 static struct plist_head *swap_avail_heads; 89 static DEFINE_SPINLOCK(swap_avail_lock); 90 91 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 92 93 static DEFINE_MUTEX(swapon_mutex); 94 95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 96 /* Activity counter to indicate that a swapon or swapoff has occurred */ 97 static atomic_t proc_poll_event = ATOMIC_INIT(0); 98 99 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 100 101 static struct swap_info_struct *swap_type_to_swap_info(int type) 102 { 103 if (type >= MAX_SWAPFILES) 104 return NULL; 105 106 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 107 } 108 109 static inline unsigned char swap_count(unsigned char ent) 110 { 111 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 112 } 113 114 /* Reclaim the swap entry anyway if possible */ 115 #define TTRS_ANYWAY 0x1 116 /* 117 * Reclaim the swap entry if there are no more mappings of the 118 * corresponding page 119 */ 120 #define TTRS_UNMAPPED 0x2 121 /* Reclaim the swap entry if swap is getting full*/ 122 #define TTRS_FULL 0x4 123 124 /* returns 1 if swap entry is freed */ 125 static int __try_to_reclaim_swap(struct swap_info_struct *si, 126 unsigned long offset, unsigned long flags) 127 { 128 swp_entry_t entry = swp_entry(si->type, offset); 129 struct page *page; 130 int ret = 0; 131 132 page = find_get_page(swap_address_space(entry), offset); 133 if (!page) 134 return 0; 135 /* 136 * When this function is called from scan_swap_map_slots() and it's 137 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page, 138 * here. We have to use trylock for avoiding deadlock. This is a special 139 * case and you should use try_to_free_swap() with explicit lock_page() 140 * in usual operations. 141 */ 142 if (trylock_page(page)) { 143 if ((flags & TTRS_ANYWAY) || 144 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) || 145 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page))) 146 ret = try_to_free_swap(page); 147 unlock_page(page); 148 } 149 put_page(page); 150 return ret; 151 } 152 153 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 154 { 155 struct rb_node *rb = rb_first(&sis->swap_extent_root); 156 return rb_entry(rb, struct swap_extent, rb_node); 157 } 158 159 static inline struct swap_extent *next_se(struct swap_extent *se) 160 { 161 struct rb_node *rb = rb_next(&se->rb_node); 162 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 163 } 164 165 /* 166 * swapon tell device that all the old swap contents can be discarded, 167 * to allow the swap device to optimize its wear-levelling. 168 */ 169 static int discard_swap(struct swap_info_struct *si) 170 { 171 struct swap_extent *se; 172 sector_t start_block; 173 sector_t nr_blocks; 174 int err = 0; 175 176 /* Do not discard the swap header page! */ 177 se = first_se(si); 178 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 179 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 180 if (nr_blocks) { 181 err = blkdev_issue_discard(si->bdev, start_block, 182 nr_blocks, GFP_KERNEL, 0); 183 if (err) 184 return err; 185 cond_resched(); 186 } 187 188 for (se = next_se(se); se; se = next_se(se)) { 189 start_block = se->start_block << (PAGE_SHIFT - 9); 190 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 191 192 err = blkdev_issue_discard(si->bdev, start_block, 193 nr_blocks, GFP_KERNEL, 0); 194 if (err) 195 break; 196 197 cond_resched(); 198 } 199 return err; /* That will often be -EOPNOTSUPP */ 200 } 201 202 static struct swap_extent * 203 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 204 { 205 struct swap_extent *se; 206 struct rb_node *rb; 207 208 rb = sis->swap_extent_root.rb_node; 209 while (rb) { 210 se = rb_entry(rb, struct swap_extent, rb_node); 211 if (offset < se->start_page) 212 rb = rb->rb_left; 213 else if (offset >= se->start_page + se->nr_pages) 214 rb = rb->rb_right; 215 else 216 return se; 217 } 218 /* It *must* be present */ 219 BUG(); 220 } 221 222 sector_t swap_page_sector(struct page *page) 223 { 224 struct swap_info_struct *sis = page_swap_info(page); 225 struct swap_extent *se; 226 sector_t sector; 227 pgoff_t offset; 228 229 offset = __page_file_index(page); 230 se = offset_to_swap_extent(sis, offset); 231 sector = se->start_block + (offset - se->start_page); 232 return sector << (PAGE_SHIFT - 9); 233 } 234 235 /* 236 * swap allocation tell device that a cluster of swap can now be discarded, 237 * to allow the swap device to optimize its wear-levelling. 238 */ 239 static void discard_swap_cluster(struct swap_info_struct *si, 240 pgoff_t start_page, pgoff_t nr_pages) 241 { 242 struct swap_extent *se = offset_to_swap_extent(si, start_page); 243 244 while (nr_pages) { 245 pgoff_t offset = start_page - se->start_page; 246 sector_t start_block = se->start_block + offset; 247 sector_t nr_blocks = se->nr_pages - offset; 248 249 if (nr_blocks > nr_pages) 250 nr_blocks = nr_pages; 251 start_page += nr_blocks; 252 nr_pages -= nr_blocks; 253 254 start_block <<= PAGE_SHIFT - 9; 255 nr_blocks <<= PAGE_SHIFT - 9; 256 if (blkdev_issue_discard(si->bdev, start_block, 257 nr_blocks, GFP_NOIO, 0)) 258 break; 259 260 se = next_se(se); 261 } 262 } 263 264 #ifdef CONFIG_THP_SWAP 265 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 266 267 #define swap_entry_size(size) (size) 268 #else 269 #define SWAPFILE_CLUSTER 256 270 271 /* 272 * Define swap_entry_size() as constant to let compiler to optimize 273 * out some code if !CONFIG_THP_SWAP 274 */ 275 #define swap_entry_size(size) 1 276 #endif 277 #define LATENCY_LIMIT 256 278 279 static inline void cluster_set_flag(struct swap_cluster_info *info, 280 unsigned int flag) 281 { 282 info->flags = flag; 283 } 284 285 static inline unsigned int cluster_count(struct swap_cluster_info *info) 286 { 287 return info->data; 288 } 289 290 static inline void cluster_set_count(struct swap_cluster_info *info, 291 unsigned int c) 292 { 293 info->data = c; 294 } 295 296 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 297 unsigned int c, unsigned int f) 298 { 299 info->flags = f; 300 info->data = c; 301 } 302 303 static inline unsigned int cluster_next(struct swap_cluster_info *info) 304 { 305 return info->data; 306 } 307 308 static inline void cluster_set_next(struct swap_cluster_info *info, 309 unsigned int n) 310 { 311 info->data = n; 312 } 313 314 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 315 unsigned int n, unsigned int f) 316 { 317 info->flags = f; 318 info->data = n; 319 } 320 321 static inline bool cluster_is_free(struct swap_cluster_info *info) 322 { 323 return info->flags & CLUSTER_FLAG_FREE; 324 } 325 326 static inline bool cluster_is_null(struct swap_cluster_info *info) 327 { 328 return info->flags & CLUSTER_FLAG_NEXT_NULL; 329 } 330 331 static inline void cluster_set_null(struct swap_cluster_info *info) 332 { 333 info->flags = CLUSTER_FLAG_NEXT_NULL; 334 info->data = 0; 335 } 336 337 static inline bool cluster_is_huge(struct swap_cluster_info *info) 338 { 339 if (IS_ENABLED(CONFIG_THP_SWAP)) 340 return info->flags & CLUSTER_FLAG_HUGE; 341 return false; 342 } 343 344 static inline void cluster_clear_huge(struct swap_cluster_info *info) 345 { 346 info->flags &= ~CLUSTER_FLAG_HUGE; 347 } 348 349 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 350 unsigned long offset) 351 { 352 struct swap_cluster_info *ci; 353 354 ci = si->cluster_info; 355 if (ci) { 356 ci += offset / SWAPFILE_CLUSTER; 357 spin_lock(&ci->lock); 358 } 359 return ci; 360 } 361 362 static inline void unlock_cluster(struct swap_cluster_info *ci) 363 { 364 if (ci) 365 spin_unlock(&ci->lock); 366 } 367 368 /* 369 * Determine the locking method in use for this device. Return 370 * swap_cluster_info if SSD-style cluster-based locking is in place. 371 */ 372 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 373 struct swap_info_struct *si, unsigned long offset) 374 { 375 struct swap_cluster_info *ci; 376 377 /* Try to use fine-grained SSD-style locking if available: */ 378 ci = lock_cluster(si, offset); 379 /* Otherwise, fall back to traditional, coarse locking: */ 380 if (!ci) 381 spin_lock(&si->lock); 382 383 return ci; 384 } 385 386 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 387 struct swap_cluster_info *ci) 388 { 389 if (ci) 390 unlock_cluster(ci); 391 else 392 spin_unlock(&si->lock); 393 } 394 395 static inline bool cluster_list_empty(struct swap_cluster_list *list) 396 { 397 return cluster_is_null(&list->head); 398 } 399 400 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 401 { 402 return cluster_next(&list->head); 403 } 404 405 static void cluster_list_init(struct swap_cluster_list *list) 406 { 407 cluster_set_null(&list->head); 408 cluster_set_null(&list->tail); 409 } 410 411 static void cluster_list_add_tail(struct swap_cluster_list *list, 412 struct swap_cluster_info *ci, 413 unsigned int idx) 414 { 415 if (cluster_list_empty(list)) { 416 cluster_set_next_flag(&list->head, idx, 0); 417 cluster_set_next_flag(&list->tail, idx, 0); 418 } else { 419 struct swap_cluster_info *ci_tail; 420 unsigned int tail = cluster_next(&list->tail); 421 422 /* 423 * Nested cluster lock, but both cluster locks are 424 * only acquired when we held swap_info_struct->lock 425 */ 426 ci_tail = ci + tail; 427 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 428 cluster_set_next(ci_tail, idx); 429 spin_unlock(&ci_tail->lock); 430 cluster_set_next_flag(&list->tail, idx, 0); 431 } 432 } 433 434 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 435 struct swap_cluster_info *ci) 436 { 437 unsigned int idx; 438 439 idx = cluster_next(&list->head); 440 if (cluster_next(&list->tail) == idx) { 441 cluster_set_null(&list->head); 442 cluster_set_null(&list->tail); 443 } else 444 cluster_set_next_flag(&list->head, 445 cluster_next(&ci[idx]), 0); 446 447 return idx; 448 } 449 450 /* Add a cluster to discard list and schedule it to do discard */ 451 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 452 unsigned int idx) 453 { 454 /* 455 * If scan_swap_map_slots() can't find a free cluster, it will check 456 * si->swap_map directly. To make sure the discarding cluster isn't 457 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied). 458 * It will be cleared after discard 459 */ 460 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 461 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 462 463 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 464 465 schedule_work(&si->discard_work); 466 } 467 468 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 469 { 470 struct swap_cluster_info *ci = si->cluster_info; 471 472 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 473 cluster_list_add_tail(&si->free_clusters, ci, idx); 474 } 475 476 /* 477 * Doing discard actually. After a cluster discard is finished, the cluster 478 * will be added to free cluster list. caller should hold si->lock. 479 */ 480 static void swap_do_scheduled_discard(struct swap_info_struct *si) 481 { 482 struct swap_cluster_info *info, *ci; 483 unsigned int idx; 484 485 info = si->cluster_info; 486 487 while (!cluster_list_empty(&si->discard_clusters)) { 488 idx = cluster_list_del_first(&si->discard_clusters, info); 489 spin_unlock(&si->lock); 490 491 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 492 SWAPFILE_CLUSTER); 493 494 spin_lock(&si->lock); 495 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 496 __free_cluster(si, idx); 497 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 498 0, SWAPFILE_CLUSTER); 499 unlock_cluster(ci); 500 } 501 } 502 503 static void swap_discard_work(struct work_struct *work) 504 { 505 struct swap_info_struct *si; 506 507 si = container_of(work, struct swap_info_struct, discard_work); 508 509 spin_lock(&si->lock); 510 swap_do_scheduled_discard(si); 511 spin_unlock(&si->lock); 512 } 513 514 static void swap_users_ref_free(struct percpu_ref *ref) 515 { 516 struct swap_info_struct *si; 517 518 si = container_of(ref, struct swap_info_struct, users); 519 complete(&si->comp); 520 } 521 522 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 523 { 524 struct swap_cluster_info *ci = si->cluster_info; 525 526 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 527 cluster_list_del_first(&si->free_clusters, ci); 528 cluster_set_count_flag(ci + idx, 0, 0); 529 } 530 531 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 532 { 533 struct swap_cluster_info *ci = si->cluster_info + idx; 534 535 VM_BUG_ON(cluster_count(ci) != 0); 536 /* 537 * If the swap is discardable, prepare discard the cluster 538 * instead of free it immediately. The cluster will be freed 539 * after discard. 540 */ 541 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 542 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 543 swap_cluster_schedule_discard(si, idx); 544 return; 545 } 546 547 __free_cluster(si, idx); 548 } 549 550 /* 551 * The cluster corresponding to page_nr will be used. The cluster will be 552 * removed from free cluster list and its usage counter will be increased. 553 */ 554 static void inc_cluster_info_page(struct swap_info_struct *p, 555 struct swap_cluster_info *cluster_info, unsigned long page_nr) 556 { 557 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 558 559 if (!cluster_info) 560 return; 561 if (cluster_is_free(&cluster_info[idx])) 562 alloc_cluster(p, idx); 563 564 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 565 cluster_set_count(&cluster_info[idx], 566 cluster_count(&cluster_info[idx]) + 1); 567 } 568 569 /* 570 * The cluster corresponding to page_nr decreases one usage. If the usage 571 * counter becomes 0, which means no page in the cluster is in using, we can 572 * optionally discard the cluster and add it to free cluster list. 573 */ 574 static void dec_cluster_info_page(struct swap_info_struct *p, 575 struct swap_cluster_info *cluster_info, unsigned long page_nr) 576 { 577 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 578 579 if (!cluster_info) 580 return; 581 582 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 583 cluster_set_count(&cluster_info[idx], 584 cluster_count(&cluster_info[idx]) - 1); 585 586 if (cluster_count(&cluster_info[idx]) == 0) 587 free_cluster(p, idx); 588 } 589 590 /* 591 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free 592 * cluster list. Avoiding such abuse to avoid list corruption. 593 */ 594 static bool 595 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 596 unsigned long offset) 597 { 598 struct percpu_cluster *percpu_cluster; 599 bool conflict; 600 601 offset /= SWAPFILE_CLUSTER; 602 conflict = !cluster_list_empty(&si->free_clusters) && 603 offset != cluster_list_first(&si->free_clusters) && 604 cluster_is_free(&si->cluster_info[offset]); 605 606 if (!conflict) 607 return false; 608 609 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 610 cluster_set_null(&percpu_cluster->index); 611 return true; 612 } 613 614 /* 615 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 616 * might involve allocating a new cluster for current CPU too. 617 */ 618 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 619 unsigned long *offset, unsigned long *scan_base) 620 { 621 struct percpu_cluster *cluster; 622 struct swap_cluster_info *ci; 623 unsigned long tmp, max; 624 625 new_cluster: 626 cluster = this_cpu_ptr(si->percpu_cluster); 627 if (cluster_is_null(&cluster->index)) { 628 if (!cluster_list_empty(&si->free_clusters)) { 629 cluster->index = si->free_clusters.head; 630 cluster->next = cluster_next(&cluster->index) * 631 SWAPFILE_CLUSTER; 632 } else if (!cluster_list_empty(&si->discard_clusters)) { 633 /* 634 * we don't have free cluster but have some clusters in 635 * discarding, do discard now and reclaim them, then 636 * reread cluster_next_cpu since we dropped si->lock 637 */ 638 swap_do_scheduled_discard(si); 639 *scan_base = this_cpu_read(*si->cluster_next_cpu); 640 *offset = *scan_base; 641 goto new_cluster; 642 } else 643 return false; 644 } 645 646 /* 647 * Other CPUs can use our cluster if they can't find a free cluster, 648 * check if there is still free entry in the cluster 649 */ 650 tmp = cluster->next; 651 max = min_t(unsigned long, si->max, 652 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 653 if (tmp < max) { 654 ci = lock_cluster(si, tmp); 655 while (tmp < max) { 656 if (!si->swap_map[tmp]) 657 break; 658 tmp++; 659 } 660 unlock_cluster(ci); 661 } 662 if (tmp >= max) { 663 cluster_set_null(&cluster->index); 664 goto new_cluster; 665 } 666 cluster->next = tmp + 1; 667 *offset = tmp; 668 *scan_base = tmp; 669 return true; 670 } 671 672 static void __del_from_avail_list(struct swap_info_struct *p) 673 { 674 int nid; 675 676 for_each_node(nid) 677 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 678 } 679 680 static void del_from_avail_list(struct swap_info_struct *p) 681 { 682 spin_lock(&swap_avail_lock); 683 __del_from_avail_list(p); 684 spin_unlock(&swap_avail_lock); 685 } 686 687 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 688 unsigned int nr_entries) 689 { 690 unsigned int end = offset + nr_entries - 1; 691 692 if (offset == si->lowest_bit) 693 si->lowest_bit += nr_entries; 694 if (end == si->highest_bit) 695 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries); 696 si->inuse_pages += nr_entries; 697 if (si->inuse_pages == si->pages) { 698 si->lowest_bit = si->max; 699 si->highest_bit = 0; 700 del_from_avail_list(si); 701 } 702 } 703 704 static void add_to_avail_list(struct swap_info_struct *p) 705 { 706 int nid; 707 708 spin_lock(&swap_avail_lock); 709 for_each_node(nid) { 710 WARN_ON(!plist_node_empty(&p->avail_lists[nid])); 711 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 712 } 713 spin_unlock(&swap_avail_lock); 714 } 715 716 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 717 unsigned int nr_entries) 718 { 719 unsigned long begin = offset; 720 unsigned long end = offset + nr_entries - 1; 721 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 722 723 if (offset < si->lowest_bit) 724 si->lowest_bit = offset; 725 if (end > si->highest_bit) { 726 bool was_full = !si->highest_bit; 727 728 WRITE_ONCE(si->highest_bit, end); 729 if (was_full && (si->flags & SWP_WRITEOK)) 730 add_to_avail_list(si); 731 } 732 atomic_long_add(nr_entries, &nr_swap_pages); 733 si->inuse_pages -= nr_entries; 734 if (si->flags & SWP_BLKDEV) 735 swap_slot_free_notify = 736 si->bdev->bd_disk->fops->swap_slot_free_notify; 737 else 738 swap_slot_free_notify = NULL; 739 while (offset <= end) { 740 arch_swap_invalidate_page(si->type, offset); 741 frontswap_invalidate_page(si->type, offset); 742 if (swap_slot_free_notify) 743 swap_slot_free_notify(si->bdev, offset); 744 offset++; 745 } 746 clear_shadow_from_swap_cache(si->type, begin, end); 747 } 748 749 static void set_cluster_next(struct swap_info_struct *si, unsigned long next) 750 { 751 unsigned long prev; 752 753 if (!(si->flags & SWP_SOLIDSTATE)) { 754 si->cluster_next = next; 755 return; 756 } 757 758 prev = this_cpu_read(*si->cluster_next_cpu); 759 /* 760 * Cross the swap address space size aligned trunk, choose 761 * another trunk randomly to avoid lock contention on swap 762 * address space if possible. 763 */ 764 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) != 765 (next >> SWAP_ADDRESS_SPACE_SHIFT)) { 766 /* No free swap slots available */ 767 if (si->highest_bit <= si->lowest_bit) 768 return; 769 next = si->lowest_bit + 770 prandom_u32_max(si->highest_bit - si->lowest_bit + 1); 771 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES); 772 next = max_t(unsigned int, next, si->lowest_bit); 773 } 774 this_cpu_write(*si->cluster_next_cpu, next); 775 } 776 777 static int scan_swap_map_slots(struct swap_info_struct *si, 778 unsigned char usage, int nr, 779 swp_entry_t slots[]) 780 { 781 struct swap_cluster_info *ci; 782 unsigned long offset; 783 unsigned long scan_base; 784 unsigned long last_in_cluster = 0; 785 int latency_ration = LATENCY_LIMIT; 786 int n_ret = 0; 787 bool scanned_many = false; 788 789 /* 790 * We try to cluster swap pages by allocating them sequentially 791 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 792 * way, however, we resort to first-free allocation, starting 793 * a new cluster. This prevents us from scattering swap pages 794 * all over the entire swap partition, so that we reduce 795 * overall disk seek times between swap pages. -- sct 796 * But we do now try to find an empty cluster. -Andrea 797 * And we let swap pages go all over an SSD partition. Hugh 798 */ 799 800 si->flags += SWP_SCANNING; 801 /* 802 * Use percpu scan base for SSD to reduce lock contention on 803 * cluster and swap cache. For HDD, sequential access is more 804 * important. 805 */ 806 if (si->flags & SWP_SOLIDSTATE) 807 scan_base = this_cpu_read(*si->cluster_next_cpu); 808 else 809 scan_base = si->cluster_next; 810 offset = scan_base; 811 812 /* SSD algorithm */ 813 if (si->cluster_info) { 814 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 815 goto scan; 816 } else if (unlikely(!si->cluster_nr--)) { 817 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 818 si->cluster_nr = SWAPFILE_CLUSTER - 1; 819 goto checks; 820 } 821 822 spin_unlock(&si->lock); 823 824 /* 825 * If seek is expensive, start searching for new cluster from 826 * start of partition, to minimize the span of allocated swap. 827 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 828 * case, just handled by scan_swap_map_try_ssd_cluster() above. 829 */ 830 scan_base = offset = si->lowest_bit; 831 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 832 833 /* Locate the first empty (unaligned) cluster */ 834 for (; last_in_cluster <= si->highest_bit; offset++) { 835 if (si->swap_map[offset]) 836 last_in_cluster = offset + SWAPFILE_CLUSTER; 837 else if (offset == last_in_cluster) { 838 spin_lock(&si->lock); 839 offset -= SWAPFILE_CLUSTER - 1; 840 si->cluster_next = offset; 841 si->cluster_nr = SWAPFILE_CLUSTER - 1; 842 goto checks; 843 } 844 if (unlikely(--latency_ration < 0)) { 845 cond_resched(); 846 latency_ration = LATENCY_LIMIT; 847 } 848 } 849 850 offset = scan_base; 851 spin_lock(&si->lock); 852 si->cluster_nr = SWAPFILE_CLUSTER - 1; 853 } 854 855 checks: 856 if (si->cluster_info) { 857 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 858 /* take a break if we already got some slots */ 859 if (n_ret) 860 goto done; 861 if (!scan_swap_map_try_ssd_cluster(si, &offset, 862 &scan_base)) 863 goto scan; 864 } 865 } 866 if (!(si->flags & SWP_WRITEOK)) 867 goto no_page; 868 if (!si->highest_bit) 869 goto no_page; 870 if (offset > si->highest_bit) 871 scan_base = offset = si->lowest_bit; 872 873 ci = lock_cluster(si, offset); 874 /* reuse swap entry of cache-only swap if not busy. */ 875 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 876 int swap_was_freed; 877 unlock_cluster(ci); 878 spin_unlock(&si->lock); 879 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 880 spin_lock(&si->lock); 881 /* entry was freed successfully, try to use this again */ 882 if (swap_was_freed) 883 goto checks; 884 goto scan; /* check next one */ 885 } 886 887 if (si->swap_map[offset]) { 888 unlock_cluster(ci); 889 if (!n_ret) 890 goto scan; 891 else 892 goto done; 893 } 894 WRITE_ONCE(si->swap_map[offset], usage); 895 inc_cluster_info_page(si, si->cluster_info, offset); 896 unlock_cluster(ci); 897 898 swap_range_alloc(si, offset, 1); 899 slots[n_ret++] = swp_entry(si->type, offset); 900 901 /* got enough slots or reach max slots? */ 902 if ((n_ret == nr) || (offset >= si->highest_bit)) 903 goto done; 904 905 /* search for next available slot */ 906 907 /* time to take a break? */ 908 if (unlikely(--latency_ration < 0)) { 909 if (n_ret) 910 goto done; 911 spin_unlock(&si->lock); 912 cond_resched(); 913 spin_lock(&si->lock); 914 latency_ration = LATENCY_LIMIT; 915 } 916 917 /* try to get more slots in cluster */ 918 if (si->cluster_info) { 919 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 920 goto checks; 921 } else if (si->cluster_nr && !si->swap_map[++offset]) { 922 /* non-ssd case, still more slots in cluster? */ 923 --si->cluster_nr; 924 goto checks; 925 } 926 927 /* 928 * Even if there's no free clusters available (fragmented), 929 * try to scan a little more quickly with lock held unless we 930 * have scanned too many slots already. 931 */ 932 if (!scanned_many) { 933 unsigned long scan_limit; 934 935 if (offset < scan_base) 936 scan_limit = scan_base; 937 else 938 scan_limit = si->highest_bit; 939 for (; offset <= scan_limit && --latency_ration > 0; 940 offset++) { 941 if (!si->swap_map[offset]) 942 goto checks; 943 } 944 } 945 946 done: 947 set_cluster_next(si, offset + 1); 948 si->flags -= SWP_SCANNING; 949 return n_ret; 950 951 scan: 952 spin_unlock(&si->lock); 953 while (++offset <= READ_ONCE(si->highest_bit)) { 954 if (data_race(!si->swap_map[offset])) { 955 spin_lock(&si->lock); 956 goto checks; 957 } 958 if (vm_swap_full() && 959 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 960 spin_lock(&si->lock); 961 goto checks; 962 } 963 if (unlikely(--latency_ration < 0)) { 964 cond_resched(); 965 latency_ration = LATENCY_LIMIT; 966 scanned_many = true; 967 } 968 } 969 offset = si->lowest_bit; 970 while (offset < scan_base) { 971 if (data_race(!si->swap_map[offset])) { 972 spin_lock(&si->lock); 973 goto checks; 974 } 975 if (vm_swap_full() && 976 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 977 spin_lock(&si->lock); 978 goto checks; 979 } 980 if (unlikely(--latency_ration < 0)) { 981 cond_resched(); 982 latency_ration = LATENCY_LIMIT; 983 scanned_many = true; 984 } 985 offset++; 986 } 987 spin_lock(&si->lock); 988 989 no_page: 990 si->flags -= SWP_SCANNING; 991 return n_ret; 992 } 993 994 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 995 { 996 unsigned long idx; 997 struct swap_cluster_info *ci; 998 unsigned long offset; 999 1000 /* 1001 * Should not even be attempting cluster allocations when huge 1002 * page swap is disabled. Warn and fail the allocation. 1003 */ 1004 if (!IS_ENABLED(CONFIG_THP_SWAP)) { 1005 VM_WARN_ON_ONCE(1); 1006 return 0; 1007 } 1008 1009 if (cluster_list_empty(&si->free_clusters)) 1010 return 0; 1011 1012 idx = cluster_list_first(&si->free_clusters); 1013 offset = idx * SWAPFILE_CLUSTER; 1014 ci = lock_cluster(si, offset); 1015 alloc_cluster(si, idx); 1016 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 1017 1018 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER); 1019 unlock_cluster(ci); 1020 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 1021 *slot = swp_entry(si->type, offset); 1022 1023 return 1; 1024 } 1025 1026 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 1027 { 1028 unsigned long offset = idx * SWAPFILE_CLUSTER; 1029 struct swap_cluster_info *ci; 1030 1031 ci = lock_cluster(si, offset); 1032 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 1033 cluster_set_count_flag(ci, 0, 0); 1034 free_cluster(si, idx); 1035 unlock_cluster(ci); 1036 swap_range_free(si, offset, SWAPFILE_CLUSTER); 1037 } 1038 1039 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) 1040 { 1041 unsigned long size = swap_entry_size(entry_size); 1042 struct swap_info_struct *si, *next; 1043 long avail_pgs; 1044 int n_ret = 0; 1045 int node; 1046 1047 /* Only single cluster request supported */ 1048 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); 1049 1050 spin_lock(&swap_avail_lock); 1051 1052 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 1053 if (avail_pgs <= 0) { 1054 spin_unlock(&swap_avail_lock); 1055 goto noswap; 1056 } 1057 1058 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); 1059 1060 atomic_long_sub(n_goal * size, &nr_swap_pages); 1061 1062 start_over: 1063 node = numa_node_id(); 1064 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1065 /* requeue si to after same-priority siblings */ 1066 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1067 spin_unlock(&swap_avail_lock); 1068 spin_lock(&si->lock); 1069 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 1070 spin_lock(&swap_avail_lock); 1071 if (plist_node_empty(&si->avail_lists[node])) { 1072 spin_unlock(&si->lock); 1073 goto nextsi; 1074 } 1075 WARN(!si->highest_bit, 1076 "swap_info %d in list but !highest_bit\n", 1077 si->type); 1078 WARN(!(si->flags & SWP_WRITEOK), 1079 "swap_info %d in list but !SWP_WRITEOK\n", 1080 si->type); 1081 __del_from_avail_list(si); 1082 spin_unlock(&si->lock); 1083 goto nextsi; 1084 } 1085 if (size == SWAPFILE_CLUSTER) { 1086 if (si->flags & SWP_BLKDEV) 1087 n_ret = swap_alloc_cluster(si, swp_entries); 1088 } else 1089 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1090 n_goal, swp_entries); 1091 spin_unlock(&si->lock); 1092 if (n_ret || size == SWAPFILE_CLUSTER) 1093 goto check_out; 1094 pr_debug("scan_swap_map of si %d failed to find offset\n", 1095 si->type); 1096 1097 spin_lock(&swap_avail_lock); 1098 nextsi: 1099 /* 1100 * if we got here, it's likely that si was almost full before, 1101 * and since scan_swap_map_slots() can drop the si->lock, 1102 * multiple callers probably all tried to get a page from the 1103 * same si and it filled up before we could get one; or, the si 1104 * filled up between us dropping swap_avail_lock and taking 1105 * si->lock. Since we dropped the swap_avail_lock, the 1106 * swap_avail_head list may have been modified; so if next is 1107 * still in the swap_avail_head list then try it, otherwise 1108 * start over if we have not gotten any slots. 1109 */ 1110 if (plist_node_empty(&next->avail_lists[node])) 1111 goto start_over; 1112 } 1113 1114 spin_unlock(&swap_avail_lock); 1115 1116 check_out: 1117 if (n_ret < n_goal) 1118 atomic_long_add((long)(n_goal - n_ret) * size, 1119 &nr_swap_pages); 1120 noswap: 1121 return n_ret; 1122 } 1123 1124 static struct swap_info_struct *__swap_info_get(swp_entry_t entry) 1125 { 1126 struct swap_info_struct *p; 1127 unsigned long offset; 1128 1129 if (!entry.val) 1130 goto out; 1131 p = swp_swap_info(entry); 1132 if (!p) 1133 goto bad_nofile; 1134 if (data_race(!(p->flags & SWP_USED))) 1135 goto bad_device; 1136 offset = swp_offset(entry); 1137 if (offset >= p->max) 1138 goto bad_offset; 1139 return p; 1140 1141 bad_offset: 1142 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1143 goto out; 1144 bad_device: 1145 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1146 goto out; 1147 bad_nofile: 1148 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1149 out: 1150 return NULL; 1151 } 1152 1153 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1154 { 1155 struct swap_info_struct *p; 1156 1157 p = __swap_info_get(entry); 1158 if (!p) 1159 goto out; 1160 if (data_race(!p->swap_map[swp_offset(entry)])) 1161 goto bad_free; 1162 return p; 1163 1164 bad_free: 1165 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1166 out: 1167 return NULL; 1168 } 1169 1170 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 1171 { 1172 struct swap_info_struct *p; 1173 1174 p = _swap_info_get(entry); 1175 if (p) 1176 spin_lock(&p->lock); 1177 return p; 1178 } 1179 1180 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1181 struct swap_info_struct *q) 1182 { 1183 struct swap_info_struct *p; 1184 1185 p = _swap_info_get(entry); 1186 1187 if (p != q) { 1188 if (q != NULL) 1189 spin_unlock(&q->lock); 1190 if (p != NULL) 1191 spin_lock(&p->lock); 1192 } 1193 return p; 1194 } 1195 1196 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1197 unsigned long offset, 1198 unsigned char usage) 1199 { 1200 unsigned char count; 1201 unsigned char has_cache; 1202 1203 count = p->swap_map[offset]; 1204 1205 has_cache = count & SWAP_HAS_CACHE; 1206 count &= ~SWAP_HAS_CACHE; 1207 1208 if (usage == SWAP_HAS_CACHE) { 1209 VM_BUG_ON(!has_cache); 1210 has_cache = 0; 1211 } else if (count == SWAP_MAP_SHMEM) { 1212 /* 1213 * Or we could insist on shmem.c using a special 1214 * swap_shmem_free() and free_shmem_swap_and_cache()... 1215 */ 1216 count = 0; 1217 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1218 if (count == COUNT_CONTINUED) { 1219 if (swap_count_continued(p, offset, count)) 1220 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1221 else 1222 count = SWAP_MAP_MAX; 1223 } else 1224 count--; 1225 } 1226 1227 usage = count | has_cache; 1228 if (usage) 1229 WRITE_ONCE(p->swap_map[offset], usage); 1230 else 1231 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE); 1232 1233 return usage; 1234 } 1235 1236 /* 1237 * Check whether swap entry is valid in the swap device. If so, 1238 * return pointer to swap_info_struct, and keep the swap entry valid 1239 * via preventing the swap device from being swapoff, until 1240 * put_swap_device() is called. Otherwise return NULL. 1241 * 1242 * Notice that swapoff or swapoff+swapon can still happen before the 1243 * percpu_ref_tryget_live() in get_swap_device() or after the 1244 * percpu_ref_put() in put_swap_device() if there isn't any other way 1245 * to prevent swapoff, such as page lock, page table lock, etc. The 1246 * caller must be prepared for that. For example, the following 1247 * situation is possible. 1248 * 1249 * CPU1 CPU2 1250 * do_swap_page() 1251 * ... swapoff+swapon 1252 * __read_swap_cache_async() 1253 * swapcache_prepare() 1254 * __swap_duplicate() 1255 * // check swap_map 1256 * // verify PTE not changed 1257 * 1258 * In __swap_duplicate(), the swap_map need to be checked before 1259 * changing partly because the specified swap entry may be for another 1260 * swap device which has been swapoff. And in do_swap_page(), after 1261 * the page is read from the swap device, the PTE is verified not 1262 * changed with the page table locked to check whether the swap device 1263 * has been swapoff or swapoff+swapon. 1264 */ 1265 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1266 { 1267 struct swap_info_struct *si; 1268 unsigned long offset; 1269 1270 if (!entry.val) 1271 goto out; 1272 si = swp_swap_info(entry); 1273 if (!si) 1274 goto bad_nofile; 1275 if (!percpu_ref_tryget_live(&si->users)) 1276 goto out; 1277 /* 1278 * Guarantee the si->users are checked before accessing other 1279 * fields of swap_info_struct. 1280 * 1281 * Paired with the spin_unlock() after setup_swap_info() in 1282 * enable_swap_info(). 1283 */ 1284 smp_rmb(); 1285 offset = swp_offset(entry); 1286 if (offset >= si->max) 1287 goto put_out; 1288 1289 return si; 1290 bad_nofile: 1291 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1292 out: 1293 return NULL; 1294 put_out: 1295 percpu_ref_put(&si->users); 1296 return NULL; 1297 } 1298 1299 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1300 swp_entry_t entry) 1301 { 1302 struct swap_cluster_info *ci; 1303 unsigned long offset = swp_offset(entry); 1304 unsigned char usage; 1305 1306 ci = lock_cluster_or_swap_info(p, offset); 1307 usage = __swap_entry_free_locked(p, offset, 1); 1308 unlock_cluster_or_swap_info(p, ci); 1309 if (!usage) 1310 free_swap_slot(entry); 1311 1312 return usage; 1313 } 1314 1315 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1316 { 1317 struct swap_cluster_info *ci; 1318 unsigned long offset = swp_offset(entry); 1319 unsigned char count; 1320 1321 ci = lock_cluster(p, offset); 1322 count = p->swap_map[offset]; 1323 VM_BUG_ON(count != SWAP_HAS_CACHE); 1324 p->swap_map[offset] = 0; 1325 dec_cluster_info_page(p, p->cluster_info, offset); 1326 unlock_cluster(ci); 1327 1328 mem_cgroup_uncharge_swap(entry, 1); 1329 swap_range_free(p, offset, 1); 1330 } 1331 1332 /* 1333 * Caller has made sure that the swap device corresponding to entry 1334 * is still around or has not been recycled. 1335 */ 1336 void swap_free(swp_entry_t entry) 1337 { 1338 struct swap_info_struct *p; 1339 1340 p = _swap_info_get(entry); 1341 if (p) 1342 __swap_entry_free(p, entry); 1343 } 1344 1345 /* 1346 * Called after dropping swapcache to decrease refcnt to swap entries. 1347 */ 1348 void put_swap_page(struct page *page, swp_entry_t entry) 1349 { 1350 unsigned long offset = swp_offset(entry); 1351 unsigned long idx = offset / SWAPFILE_CLUSTER; 1352 struct swap_cluster_info *ci; 1353 struct swap_info_struct *si; 1354 unsigned char *map; 1355 unsigned int i, free_entries = 0; 1356 unsigned char val; 1357 int size = swap_entry_size(thp_nr_pages(page)); 1358 1359 si = _swap_info_get(entry); 1360 if (!si) 1361 return; 1362 1363 ci = lock_cluster_or_swap_info(si, offset); 1364 if (size == SWAPFILE_CLUSTER) { 1365 VM_BUG_ON(!cluster_is_huge(ci)); 1366 map = si->swap_map + offset; 1367 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1368 val = map[i]; 1369 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1370 if (val == SWAP_HAS_CACHE) 1371 free_entries++; 1372 } 1373 cluster_clear_huge(ci); 1374 if (free_entries == SWAPFILE_CLUSTER) { 1375 unlock_cluster_or_swap_info(si, ci); 1376 spin_lock(&si->lock); 1377 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1378 swap_free_cluster(si, idx); 1379 spin_unlock(&si->lock); 1380 return; 1381 } 1382 } 1383 for (i = 0; i < size; i++, entry.val++) { 1384 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1385 unlock_cluster_or_swap_info(si, ci); 1386 free_swap_slot(entry); 1387 if (i == size - 1) 1388 return; 1389 lock_cluster_or_swap_info(si, offset); 1390 } 1391 } 1392 unlock_cluster_or_swap_info(si, ci); 1393 } 1394 1395 #ifdef CONFIG_THP_SWAP 1396 int split_swap_cluster(swp_entry_t entry) 1397 { 1398 struct swap_info_struct *si; 1399 struct swap_cluster_info *ci; 1400 unsigned long offset = swp_offset(entry); 1401 1402 si = _swap_info_get(entry); 1403 if (!si) 1404 return -EBUSY; 1405 ci = lock_cluster(si, offset); 1406 cluster_clear_huge(ci); 1407 unlock_cluster(ci); 1408 return 0; 1409 } 1410 #endif 1411 1412 static int swp_entry_cmp(const void *ent1, const void *ent2) 1413 { 1414 const swp_entry_t *e1 = ent1, *e2 = ent2; 1415 1416 return (int)swp_type(*e1) - (int)swp_type(*e2); 1417 } 1418 1419 void swapcache_free_entries(swp_entry_t *entries, int n) 1420 { 1421 struct swap_info_struct *p, *prev; 1422 int i; 1423 1424 if (n <= 0) 1425 return; 1426 1427 prev = NULL; 1428 p = NULL; 1429 1430 /* 1431 * Sort swap entries by swap device, so each lock is only taken once. 1432 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1433 * so low that it isn't necessary to optimize further. 1434 */ 1435 if (nr_swapfiles > 1) 1436 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1437 for (i = 0; i < n; ++i) { 1438 p = swap_info_get_cont(entries[i], prev); 1439 if (p) 1440 swap_entry_free(p, entries[i]); 1441 prev = p; 1442 } 1443 if (p) 1444 spin_unlock(&p->lock); 1445 } 1446 1447 /* 1448 * How many references to page are currently swapped out? 1449 * This does not give an exact answer when swap count is continued, 1450 * but does include the high COUNT_CONTINUED flag to allow for that. 1451 */ 1452 int page_swapcount(struct page *page) 1453 { 1454 int count = 0; 1455 struct swap_info_struct *p; 1456 struct swap_cluster_info *ci; 1457 swp_entry_t entry; 1458 unsigned long offset; 1459 1460 entry.val = page_private(page); 1461 p = _swap_info_get(entry); 1462 if (p) { 1463 offset = swp_offset(entry); 1464 ci = lock_cluster_or_swap_info(p, offset); 1465 count = swap_count(p->swap_map[offset]); 1466 unlock_cluster_or_swap_info(p, ci); 1467 } 1468 return count; 1469 } 1470 1471 int __swap_count(swp_entry_t entry) 1472 { 1473 struct swap_info_struct *si; 1474 pgoff_t offset = swp_offset(entry); 1475 int count = 0; 1476 1477 si = get_swap_device(entry); 1478 if (si) { 1479 count = swap_count(si->swap_map[offset]); 1480 put_swap_device(si); 1481 } 1482 return count; 1483 } 1484 1485 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1486 { 1487 int count = 0; 1488 pgoff_t offset = swp_offset(entry); 1489 struct swap_cluster_info *ci; 1490 1491 ci = lock_cluster_or_swap_info(si, offset); 1492 count = swap_count(si->swap_map[offset]); 1493 unlock_cluster_or_swap_info(si, ci); 1494 return count; 1495 } 1496 1497 /* 1498 * How many references to @entry are currently swapped out? 1499 * This does not give an exact answer when swap count is continued, 1500 * but does include the high COUNT_CONTINUED flag to allow for that. 1501 */ 1502 int __swp_swapcount(swp_entry_t entry) 1503 { 1504 int count = 0; 1505 struct swap_info_struct *si; 1506 1507 si = get_swap_device(entry); 1508 if (si) { 1509 count = swap_swapcount(si, entry); 1510 put_swap_device(si); 1511 } 1512 return count; 1513 } 1514 1515 /* 1516 * How many references to @entry are currently swapped out? 1517 * This considers COUNT_CONTINUED so it returns exact answer. 1518 */ 1519 int swp_swapcount(swp_entry_t entry) 1520 { 1521 int count, tmp_count, n; 1522 struct swap_info_struct *p; 1523 struct swap_cluster_info *ci; 1524 struct page *page; 1525 pgoff_t offset; 1526 unsigned char *map; 1527 1528 p = _swap_info_get(entry); 1529 if (!p) 1530 return 0; 1531 1532 offset = swp_offset(entry); 1533 1534 ci = lock_cluster_or_swap_info(p, offset); 1535 1536 count = swap_count(p->swap_map[offset]); 1537 if (!(count & COUNT_CONTINUED)) 1538 goto out; 1539 1540 count &= ~COUNT_CONTINUED; 1541 n = SWAP_MAP_MAX + 1; 1542 1543 page = vmalloc_to_page(p->swap_map + offset); 1544 offset &= ~PAGE_MASK; 1545 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1546 1547 do { 1548 page = list_next_entry(page, lru); 1549 map = kmap_atomic(page); 1550 tmp_count = map[offset]; 1551 kunmap_atomic(map); 1552 1553 count += (tmp_count & ~COUNT_CONTINUED) * n; 1554 n *= (SWAP_CONT_MAX + 1); 1555 } while (tmp_count & COUNT_CONTINUED); 1556 out: 1557 unlock_cluster_or_swap_info(p, ci); 1558 return count; 1559 } 1560 1561 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1562 swp_entry_t entry) 1563 { 1564 struct swap_cluster_info *ci; 1565 unsigned char *map = si->swap_map; 1566 unsigned long roffset = swp_offset(entry); 1567 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1568 int i; 1569 bool ret = false; 1570 1571 ci = lock_cluster_or_swap_info(si, offset); 1572 if (!ci || !cluster_is_huge(ci)) { 1573 if (swap_count(map[roffset])) 1574 ret = true; 1575 goto unlock_out; 1576 } 1577 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1578 if (swap_count(map[offset + i])) { 1579 ret = true; 1580 break; 1581 } 1582 } 1583 unlock_out: 1584 unlock_cluster_or_swap_info(si, ci); 1585 return ret; 1586 } 1587 1588 static bool page_swapped(struct page *page) 1589 { 1590 swp_entry_t entry; 1591 struct swap_info_struct *si; 1592 1593 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) 1594 return page_swapcount(page) != 0; 1595 1596 page = compound_head(page); 1597 entry.val = page_private(page); 1598 si = _swap_info_get(entry); 1599 if (si) 1600 return swap_page_trans_huge_swapped(si, entry); 1601 return false; 1602 } 1603 1604 static int page_trans_huge_map_swapcount(struct page *page, 1605 int *total_swapcount) 1606 { 1607 int i, map_swapcount, _total_swapcount; 1608 unsigned long offset = 0; 1609 struct swap_info_struct *si; 1610 struct swap_cluster_info *ci = NULL; 1611 unsigned char *map = NULL; 1612 int swapcount = 0; 1613 1614 /* hugetlbfs shouldn't call it */ 1615 VM_BUG_ON_PAGE(PageHuge(page), page); 1616 1617 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) { 1618 if (PageSwapCache(page)) 1619 swapcount = page_swapcount(page); 1620 if (total_swapcount) 1621 *total_swapcount = swapcount; 1622 return swapcount + page_trans_huge_mapcount(page); 1623 } 1624 1625 page = compound_head(page); 1626 1627 _total_swapcount = map_swapcount = 0; 1628 if (PageSwapCache(page)) { 1629 swp_entry_t entry; 1630 1631 entry.val = page_private(page); 1632 si = _swap_info_get(entry); 1633 if (si) { 1634 map = si->swap_map; 1635 offset = swp_offset(entry); 1636 } 1637 } 1638 if (map) 1639 ci = lock_cluster(si, offset); 1640 for (i = 0; i < HPAGE_PMD_NR; i++) { 1641 int mapcount = atomic_read(&page[i]._mapcount) + 1; 1642 if (map) { 1643 swapcount = swap_count(map[offset + i]); 1644 _total_swapcount += swapcount; 1645 } 1646 map_swapcount = max(map_swapcount, mapcount + swapcount); 1647 } 1648 unlock_cluster(ci); 1649 1650 if (PageDoubleMap(page)) 1651 map_swapcount -= 1; 1652 1653 if (total_swapcount) 1654 *total_swapcount = _total_swapcount; 1655 1656 return map_swapcount + compound_mapcount(page); 1657 } 1658 1659 /* 1660 * We can write to an anon page without COW if there are no other references 1661 * to it. And as a side-effect, free up its swap: because the old content 1662 * on disk will never be read, and seeking back there to write new content 1663 * later would only waste time away from clustering. 1664 */ 1665 bool reuse_swap_page(struct page *page) 1666 { 1667 int count, total_swapcount; 1668 1669 VM_BUG_ON_PAGE(!PageLocked(page), page); 1670 if (unlikely(PageKsm(page))) 1671 return false; 1672 count = page_trans_huge_map_swapcount(page, &total_swapcount); 1673 if (count == 1 && PageSwapCache(page) && 1674 (likely(!PageTransCompound(page)) || 1675 /* The remaining swap count will be freed soon */ 1676 total_swapcount == page_swapcount(page))) { 1677 if (!PageWriteback(page)) { 1678 page = compound_head(page); 1679 delete_from_swap_cache(page); 1680 SetPageDirty(page); 1681 } else { 1682 swp_entry_t entry; 1683 struct swap_info_struct *p; 1684 1685 entry.val = page_private(page); 1686 p = swap_info_get(entry); 1687 if (p->flags & SWP_STABLE_WRITES) { 1688 spin_unlock(&p->lock); 1689 return false; 1690 } 1691 spin_unlock(&p->lock); 1692 } 1693 } 1694 1695 return count <= 1; 1696 } 1697 1698 /* 1699 * If swap is getting full, or if there are no more mappings of this page, 1700 * then try_to_free_swap is called to free its swap space. 1701 */ 1702 int try_to_free_swap(struct page *page) 1703 { 1704 VM_BUG_ON_PAGE(!PageLocked(page), page); 1705 1706 if (!PageSwapCache(page)) 1707 return 0; 1708 if (PageWriteback(page)) 1709 return 0; 1710 if (page_swapped(page)) 1711 return 0; 1712 1713 /* 1714 * Once hibernation has begun to create its image of memory, 1715 * there's a danger that one of the calls to try_to_free_swap() 1716 * - most probably a call from __try_to_reclaim_swap() while 1717 * hibernation is allocating its own swap pages for the image, 1718 * but conceivably even a call from memory reclaim - will free 1719 * the swap from a page which has already been recorded in the 1720 * image as a clean swapcache page, and then reuse its swap for 1721 * another page of the image. On waking from hibernation, the 1722 * original page might be freed under memory pressure, then 1723 * later read back in from swap, now with the wrong data. 1724 * 1725 * Hibernation suspends storage while it is writing the image 1726 * to disk so check that here. 1727 */ 1728 if (pm_suspended_storage()) 1729 return 0; 1730 1731 page = compound_head(page); 1732 delete_from_swap_cache(page); 1733 SetPageDirty(page); 1734 return 1; 1735 } 1736 1737 /* 1738 * Free the swap entry like above, but also try to 1739 * free the page cache entry if it is the last user. 1740 */ 1741 int free_swap_and_cache(swp_entry_t entry) 1742 { 1743 struct swap_info_struct *p; 1744 unsigned char count; 1745 1746 if (non_swap_entry(entry)) 1747 return 1; 1748 1749 p = _swap_info_get(entry); 1750 if (p) { 1751 count = __swap_entry_free(p, entry); 1752 if (count == SWAP_HAS_CACHE && 1753 !swap_page_trans_huge_swapped(p, entry)) 1754 __try_to_reclaim_swap(p, swp_offset(entry), 1755 TTRS_UNMAPPED | TTRS_FULL); 1756 } 1757 return p != NULL; 1758 } 1759 1760 #ifdef CONFIG_HIBERNATION 1761 1762 swp_entry_t get_swap_page_of_type(int type) 1763 { 1764 struct swap_info_struct *si = swap_type_to_swap_info(type); 1765 swp_entry_t entry = {0}; 1766 1767 if (!si) 1768 goto fail; 1769 1770 /* This is called for allocating swap entry, not cache */ 1771 spin_lock(&si->lock); 1772 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry)) 1773 atomic_long_dec(&nr_swap_pages); 1774 spin_unlock(&si->lock); 1775 fail: 1776 return entry; 1777 } 1778 1779 /* 1780 * Find the swap type that corresponds to given device (if any). 1781 * 1782 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1783 * from 0, in which the swap header is expected to be located. 1784 * 1785 * This is needed for the suspend to disk (aka swsusp). 1786 */ 1787 int swap_type_of(dev_t device, sector_t offset) 1788 { 1789 int type; 1790 1791 if (!device) 1792 return -1; 1793 1794 spin_lock(&swap_lock); 1795 for (type = 0; type < nr_swapfiles; type++) { 1796 struct swap_info_struct *sis = swap_info[type]; 1797 1798 if (!(sis->flags & SWP_WRITEOK)) 1799 continue; 1800 1801 if (device == sis->bdev->bd_dev) { 1802 struct swap_extent *se = first_se(sis); 1803 1804 if (se->start_block == offset) { 1805 spin_unlock(&swap_lock); 1806 return type; 1807 } 1808 } 1809 } 1810 spin_unlock(&swap_lock); 1811 return -ENODEV; 1812 } 1813 1814 int find_first_swap(dev_t *device) 1815 { 1816 int type; 1817 1818 spin_lock(&swap_lock); 1819 for (type = 0; type < nr_swapfiles; type++) { 1820 struct swap_info_struct *sis = swap_info[type]; 1821 1822 if (!(sis->flags & SWP_WRITEOK)) 1823 continue; 1824 *device = sis->bdev->bd_dev; 1825 spin_unlock(&swap_lock); 1826 return type; 1827 } 1828 spin_unlock(&swap_lock); 1829 return -ENODEV; 1830 } 1831 1832 /* 1833 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1834 * corresponding to given index in swap_info (swap type). 1835 */ 1836 sector_t swapdev_block(int type, pgoff_t offset) 1837 { 1838 struct swap_info_struct *si = swap_type_to_swap_info(type); 1839 struct swap_extent *se; 1840 1841 if (!si || !(si->flags & SWP_WRITEOK)) 1842 return 0; 1843 se = offset_to_swap_extent(si, offset); 1844 return se->start_block + (offset - se->start_page); 1845 } 1846 1847 /* 1848 * Return either the total number of swap pages of given type, or the number 1849 * of free pages of that type (depending on @free) 1850 * 1851 * This is needed for software suspend 1852 */ 1853 unsigned int count_swap_pages(int type, int free) 1854 { 1855 unsigned int n = 0; 1856 1857 spin_lock(&swap_lock); 1858 if ((unsigned int)type < nr_swapfiles) { 1859 struct swap_info_struct *sis = swap_info[type]; 1860 1861 spin_lock(&sis->lock); 1862 if (sis->flags & SWP_WRITEOK) { 1863 n = sis->pages; 1864 if (free) 1865 n -= sis->inuse_pages; 1866 } 1867 spin_unlock(&sis->lock); 1868 } 1869 spin_unlock(&swap_lock); 1870 return n; 1871 } 1872 #endif /* CONFIG_HIBERNATION */ 1873 1874 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1875 { 1876 return pte_same(pte_swp_clear_flags(pte), swp_pte); 1877 } 1878 1879 /* 1880 * No need to decide whether this PTE shares the swap entry with others, 1881 * just let do_wp_page work it out if a write is requested later - to 1882 * force COW, vm_page_prot omits write permission from any private vma. 1883 */ 1884 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1885 unsigned long addr, swp_entry_t entry, struct page *page) 1886 { 1887 struct page *swapcache; 1888 spinlock_t *ptl; 1889 pte_t *pte; 1890 int ret = 1; 1891 1892 swapcache = page; 1893 page = ksm_might_need_to_copy(page, vma, addr); 1894 if (unlikely(!page)) 1895 return -ENOMEM; 1896 1897 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1898 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1899 ret = 0; 1900 goto out; 1901 } 1902 1903 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1904 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1905 get_page(page); 1906 if (page == swapcache) { 1907 page_add_anon_rmap(page, vma, addr, false); 1908 } else { /* ksm created a completely new copy */ 1909 page_add_new_anon_rmap(page, vma, addr, false); 1910 lru_cache_add_inactive_or_unevictable(page, vma); 1911 } 1912 set_pte_at(vma->vm_mm, addr, pte, 1913 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1914 swap_free(entry); 1915 out: 1916 pte_unmap_unlock(pte, ptl); 1917 if (page != swapcache) { 1918 unlock_page(page); 1919 put_page(page); 1920 } 1921 return ret; 1922 } 1923 1924 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1925 unsigned long addr, unsigned long end, 1926 unsigned int type, bool frontswap, 1927 unsigned long *fs_pages_to_unuse) 1928 { 1929 struct page *page; 1930 swp_entry_t entry; 1931 pte_t *pte; 1932 struct swap_info_struct *si; 1933 unsigned long offset; 1934 int ret = 0; 1935 volatile unsigned char *swap_map; 1936 1937 si = swap_info[type]; 1938 pte = pte_offset_map(pmd, addr); 1939 do { 1940 if (!is_swap_pte(*pte)) 1941 continue; 1942 1943 entry = pte_to_swp_entry(*pte); 1944 if (swp_type(entry) != type) 1945 continue; 1946 1947 offset = swp_offset(entry); 1948 if (frontswap && !frontswap_test(si, offset)) 1949 continue; 1950 1951 pte_unmap(pte); 1952 swap_map = &si->swap_map[offset]; 1953 page = lookup_swap_cache(entry, vma, addr); 1954 if (!page) { 1955 struct vm_fault vmf = { 1956 .vma = vma, 1957 .address = addr, 1958 .pmd = pmd, 1959 }; 1960 1961 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 1962 &vmf); 1963 } 1964 if (!page) { 1965 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD) 1966 goto try_next; 1967 return -ENOMEM; 1968 } 1969 1970 lock_page(page); 1971 wait_on_page_writeback(page); 1972 ret = unuse_pte(vma, pmd, addr, entry, page); 1973 if (ret < 0) { 1974 unlock_page(page); 1975 put_page(page); 1976 goto out; 1977 } 1978 1979 try_to_free_swap(page); 1980 unlock_page(page); 1981 put_page(page); 1982 1983 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) { 1984 ret = FRONTSWAP_PAGES_UNUSED; 1985 goto out; 1986 } 1987 try_next: 1988 pte = pte_offset_map(pmd, addr); 1989 } while (pte++, addr += PAGE_SIZE, addr != end); 1990 pte_unmap(pte - 1); 1991 1992 ret = 0; 1993 out: 1994 return ret; 1995 } 1996 1997 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1998 unsigned long addr, unsigned long end, 1999 unsigned int type, bool frontswap, 2000 unsigned long *fs_pages_to_unuse) 2001 { 2002 pmd_t *pmd; 2003 unsigned long next; 2004 int ret; 2005 2006 pmd = pmd_offset(pud, addr); 2007 do { 2008 cond_resched(); 2009 next = pmd_addr_end(addr, end); 2010 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 2011 continue; 2012 ret = unuse_pte_range(vma, pmd, addr, next, type, 2013 frontswap, fs_pages_to_unuse); 2014 if (ret) 2015 return ret; 2016 } while (pmd++, addr = next, addr != end); 2017 return 0; 2018 } 2019 2020 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 2021 unsigned long addr, unsigned long end, 2022 unsigned int type, bool frontswap, 2023 unsigned long *fs_pages_to_unuse) 2024 { 2025 pud_t *pud; 2026 unsigned long next; 2027 int ret; 2028 2029 pud = pud_offset(p4d, addr); 2030 do { 2031 next = pud_addr_end(addr, end); 2032 if (pud_none_or_clear_bad(pud)) 2033 continue; 2034 ret = unuse_pmd_range(vma, pud, addr, next, type, 2035 frontswap, fs_pages_to_unuse); 2036 if (ret) 2037 return ret; 2038 } while (pud++, addr = next, addr != end); 2039 return 0; 2040 } 2041 2042 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 2043 unsigned long addr, unsigned long end, 2044 unsigned int type, bool frontswap, 2045 unsigned long *fs_pages_to_unuse) 2046 { 2047 p4d_t *p4d; 2048 unsigned long next; 2049 int ret; 2050 2051 p4d = p4d_offset(pgd, addr); 2052 do { 2053 next = p4d_addr_end(addr, end); 2054 if (p4d_none_or_clear_bad(p4d)) 2055 continue; 2056 ret = unuse_pud_range(vma, p4d, addr, next, type, 2057 frontswap, fs_pages_to_unuse); 2058 if (ret) 2059 return ret; 2060 } while (p4d++, addr = next, addr != end); 2061 return 0; 2062 } 2063 2064 static int unuse_vma(struct vm_area_struct *vma, unsigned int type, 2065 bool frontswap, unsigned long *fs_pages_to_unuse) 2066 { 2067 pgd_t *pgd; 2068 unsigned long addr, end, next; 2069 int ret; 2070 2071 addr = vma->vm_start; 2072 end = vma->vm_end; 2073 2074 pgd = pgd_offset(vma->vm_mm, addr); 2075 do { 2076 next = pgd_addr_end(addr, end); 2077 if (pgd_none_or_clear_bad(pgd)) 2078 continue; 2079 ret = unuse_p4d_range(vma, pgd, addr, next, type, 2080 frontswap, fs_pages_to_unuse); 2081 if (ret) 2082 return ret; 2083 } while (pgd++, addr = next, addr != end); 2084 return 0; 2085 } 2086 2087 static int unuse_mm(struct mm_struct *mm, unsigned int type, 2088 bool frontswap, unsigned long *fs_pages_to_unuse) 2089 { 2090 struct vm_area_struct *vma; 2091 int ret = 0; 2092 2093 mmap_read_lock(mm); 2094 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2095 if (vma->anon_vma) { 2096 ret = unuse_vma(vma, type, frontswap, 2097 fs_pages_to_unuse); 2098 if (ret) 2099 break; 2100 } 2101 cond_resched(); 2102 } 2103 mmap_read_unlock(mm); 2104 return ret; 2105 } 2106 2107 /* 2108 * Scan swap_map (or frontswap_map if frontswap parameter is true) 2109 * from current position to next entry still in use. Return 0 2110 * if there are no inuse entries after prev till end of the map. 2111 */ 2112 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2113 unsigned int prev, bool frontswap) 2114 { 2115 unsigned int i; 2116 unsigned char count; 2117 2118 /* 2119 * No need for swap_lock here: we're just looking 2120 * for whether an entry is in use, not modifying it; false 2121 * hits are okay, and sys_swapoff() has already prevented new 2122 * allocations from this area (while holding swap_lock). 2123 */ 2124 for (i = prev + 1; i < si->max; i++) { 2125 count = READ_ONCE(si->swap_map[i]); 2126 if (count && swap_count(count) != SWAP_MAP_BAD) 2127 if (!frontswap || frontswap_test(si, i)) 2128 break; 2129 if ((i % LATENCY_LIMIT) == 0) 2130 cond_resched(); 2131 } 2132 2133 if (i == si->max) 2134 i = 0; 2135 2136 return i; 2137 } 2138 2139 /* 2140 * If the boolean frontswap is true, only unuse pages_to_unuse pages; 2141 * pages_to_unuse==0 means all pages; ignored if frontswap is false 2142 */ 2143 int try_to_unuse(unsigned int type, bool frontswap, 2144 unsigned long pages_to_unuse) 2145 { 2146 struct mm_struct *prev_mm; 2147 struct mm_struct *mm; 2148 struct list_head *p; 2149 int retval = 0; 2150 struct swap_info_struct *si = swap_info[type]; 2151 struct page *page; 2152 swp_entry_t entry; 2153 unsigned int i; 2154 2155 if (!READ_ONCE(si->inuse_pages)) 2156 return 0; 2157 2158 if (!frontswap) 2159 pages_to_unuse = 0; 2160 2161 retry: 2162 retval = shmem_unuse(type, frontswap, &pages_to_unuse); 2163 if (retval) 2164 goto out; 2165 2166 prev_mm = &init_mm; 2167 mmget(prev_mm); 2168 2169 spin_lock(&mmlist_lock); 2170 p = &init_mm.mmlist; 2171 while (READ_ONCE(si->inuse_pages) && 2172 !signal_pending(current) && 2173 (p = p->next) != &init_mm.mmlist) { 2174 2175 mm = list_entry(p, struct mm_struct, mmlist); 2176 if (!mmget_not_zero(mm)) 2177 continue; 2178 spin_unlock(&mmlist_lock); 2179 mmput(prev_mm); 2180 prev_mm = mm; 2181 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse); 2182 2183 if (retval) { 2184 mmput(prev_mm); 2185 goto out; 2186 } 2187 2188 /* 2189 * Make sure that we aren't completely killing 2190 * interactive performance. 2191 */ 2192 cond_resched(); 2193 spin_lock(&mmlist_lock); 2194 } 2195 spin_unlock(&mmlist_lock); 2196 2197 mmput(prev_mm); 2198 2199 i = 0; 2200 while (READ_ONCE(si->inuse_pages) && 2201 !signal_pending(current) && 2202 (i = find_next_to_unuse(si, i, frontswap)) != 0) { 2203 2204 entry = swp_entry(type, i); 2205 page = find_get_page(swap_address_space(entry), i); 2206 if (!page) 2207 continue; 2208 2209 /* 2210 * It is conceivable that a racing task removed this page from 2211 * swap cache just before we acquired the page lock. The page 2212 * might even be back in swap cache on another swap area. But 2213 * that is okay, try_to_free_swap() only removes stale pages. 2214 */ 2215 lock_page(page); 2216 wait_on_page_writeback(page); 2217 try_to_free_swap(page); 2218 unlock_page(page); 2219 put_page(page); 2220 2221 /* 2222 * For frontswap, we just need to unuse pages_to_unuse, if 2223 * it was specified. Need not check frontswap again here as 2224 * we already zeroed out pages_to_unuse if not frontswap. 2225 */ 2226 if (pages_to_unuse && --pages_to_unuse == 0) 2227 goto out; 2228 } 2229 2230 /* 2231 * Lets check again to see if there are still swap entries in the map. 2232 * If yes, we would need to do retry the unuse logic again. 2233 * Under global memory pressure, swap entries can be reinserted back 2234 * into process space after the mmlist loop above passes over them. 2235 * 2236 * Limit the number of retries? No: when mmget_not_zero() above fails, 2237 * that mm is likely to be freeing swap from exit_mmap(), which proceeds 2238 * at its own independent pace; and even shmem_writepage() could have 2239 * been preempted after get_swap_page(), temporarily hiding that swap. 2240 * It's easy and robust (though cpu-intensive) just to keep retrying. 2241 */ 2242 if (READ_ONCE(si->inuse_pages)) { 2243 if (!signal_pending(current)) 2244 goto retry; 2245 retval = -EINTR; 2246 } 2247 out: 2248 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval; 2249 } 2250 2251 /* 2252 * After a successful try_to_unuse, if no swap is now in use, we know 2253 * we can empty the mmlist. swap_lock must be held on entry and exit. 2254 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2255 * added to the mmlist just after page_duplicate - before would be racy. 2256 */ 2257 static void drain_mmlist(void) 2258 { 2259 struct list_head *p, *next; 2260 unsigned int type; 2261 2262 for (type = 0; type < nr_swapfiles; type++) 2263 if (swap_info[type]->inuse_pages) 2264 return; 2265 spin_lock(&mmlist_lock); 2266 list_for_each_safe(p, next, &init_mm.mmlist) 2267 list_del_init(p); 2268 spin_unlock(&mmlist_lock); 2269 } 2270 2271 /* 2272 * Free all of a swapdev's extent information 2273 */ 2274 static void destroy_swap_extents(struct swap_info_struct *sis) 2275 { 2276 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2277 struct rb_node *rb = sis->swap_extent_root.rb_node; 2278 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2279 2280 rb_erase(rb, &sis->swap_extent_root); 2281 kfree(se); 2282 } 2283 2284 if (sis->flags & SWP_ACTIVATED) { 2285 struct file *swap_file = sis->swap_file; 2286 struct address_space *mapping = swap_file->f_mapping; 2287 2288 sis->flags &= ~SWP_ACTIVATED; 2289 if (mapping->a_ops->swap_deactivate) 2290 mapping->a_ops->swap_deactivate(swap_file); 2291 } 2292 } 2293 2294 /* 2295 * Add a block range (and the corresponding page range) into this swapdev's 2296 * extent tree. 2297 * 2298 * This function rather assumes that it is called in ascending page order. 2299 */ 2300 int 2301 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2302 unsigned long nr_pages, sector_t start_block) 2303 { 2304 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2305 struct swap_extent *se; 2306 struct swap_extent *new_se; 2307 2308 /* 2309 * place the new node at the right most since the 2310 * function is called in ascending page order. 2311 */ 2312 while (*link) { 2313 parent = *link; 2314 link = &parent->rb_right; 2315 } 2316 2317 if (parent) { 2318 se = rb_entry(parent, struct swap_extent, rb_node); 2319 BUG_ON(se->start_page + se->nr_pages != start_page); 2320 if (se->start_block + se->nr_pages == start_block) { 2321 /* Merge it */ 2322 se->nr_pages += nr_pages; 2323 return 0; 2324 } 2325 } 2326 2327 /* No merge, insert a new extent. */ 2328 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2329 if (new_se == NULL) 2330 return -ENOMEM; 2331 new_se->start_page = start_page; 2332 new_se->nr_pages = nr_pages; 2333 new_se->start_block = start_block; 2334 2335 rb_link_node(&new_se->rb_node, parent, link); 2336 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2337 return 1; 2338 } 2339 EXPORT_SYMBOL_GPL(add_swap_extent); 2340 2341 /* 2342 * A `swap extent' is a simple thing which maps a contiguous range of pages 2343 * onto a contiguous range of disk blocks. An ordered list of swap extents 2344 * is built at swapon time and is then used at swap_writepage/swap_readpage 2345 * time for locating where on disk a page belongs. 2346 * 2347 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2348 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2349 * swap files identically. 2350 * 2351 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2352 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2353 * swapfiles are handled *identically* after swapon time. 2354 * 2355 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2356 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 2357 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 2358 * requirements, they are simply tossed out - we will never use those blocks 2359 * for swapping. 2360 * 2361 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2362 * prevents users from writing to the swap device, which will corrupt memory. 2363 * 2364 * The amount of disk space which a single swap extent represents varies. 2365 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2366 * extents in the list. To avoid much list walking, we cache the previous 2367 * search location in `curr_swap_extent', and start new searches from there. 2368 * This is extremely effective. The average number of iterations in 2369 * map_swap_page() has been measured at about 0.3 per page. - akpm. 2370 */ 2371 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2372 { 2373 struct file *swap_file = sis->swap_file; 2374 struct address_space *mapping = swap_file->f_mapping; 2375 struct inode *inode = mapping->host; 2376 int ret; 2377 2378 if (S_ISBLK(inode->i_mode)) { 2379 ret = add_swap_extent(sis, 0, sis->max, 0); 2380 *span = sis->pages; 2381 return ret; 2382 } 2383 2384 if (mapping->a_ops->swap_activate) { 2385 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2386 if (ret >= 0) 2387 sis->flags |= SWP_ACTIVATED; 2388 if (!ret) { 2389 sis->flags |= SWP_FS_OPS; 2390 ret = add_swap_extent(sis, 0, sis->max, 0); 2391 *span = sis->pages; 2392 } 2393 return ret; 2394 } 2395 2396 return generic_swapfile_activate(sis, swap_file, span); 2397 } 2398 2399 static int swap_node(struct swap_info_struct *p) 2400 { 2401 struct block_device *bdev; 2402 2403 if (p->bdev) 2404 bdev = p->bdev; 2405 else 2406 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2407 2408 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2409 } 2410 2411 static void setup_swap_info(struct swap_info_struct *p, int prio, 2412 unsigned char *swap_map, 2413 struct swap_cluster_info *cluster_info) 2414 { 2415 int i; 2416 2417 if (prio >= 0) 2418 p->prio = prio; 2419 else 2420 p->prio = --least_priority; 2421 /* 2422 * the plist prio is negated because plist ordering is 2423 * low-to-high, while swap ordering is high-to-low 2424 */ 2425 p->list.prio = -p->prio; 2426 for_each_node(i) { 2427 if (p->prio >= 0) 2428 p->avail_lists[i].prio = -p->prio; 2429 else { 2430 if (swap_node(p) == i) 2431 p->avail_lists[i].prio = 1; 2432 else 2433 p->avail_lists[i].prio = -p->prio; 2434 } 2435 } 2436 p->swap_map = swap_map; 2437 p->cluster_info = cluster_info; 2438 } 2439 2440 static void _enable_swap_info(struct swap_info_struct *p) 2441 { 2442 p->flags |= SWP_WRITEOK; 2443 atomic_long_add(p->pages, &nr_swap_pages); 2444 total_swap_pages += p->pages; 2445 2446 assert_spin_locked(&swap_lock); 2447 /* 2448 * both lists are plists, and thus priority ordered. 2449 * swap_active_head needs to be priority ordered for swapoff(), 2450 * which on removal of any swap_info_struct with an auto-assigned 2451 * (i.e. negative) priority increments the auto-assigned priority 2452 * of any lower-priority swap_info_structs. 2453 * swap_avail_head needs to be priority ordered for get_swap_page(), 2454 * which allocates swap pages from the highest available priority 2455 * swap_info_struct. 2456 */ 2457 plist_add(&p->list, &swap_active_head); 2458 add_to_avail_list(p); 2459 } 2460 2461 static void enable_swap_info(struct swap_info_struct *p, int prio, 2462 unsigned char *swap_map, 2463 struct swap_cluster_info *cluster_info, 2464 unsigned long *frontswap_map) 2465 { 2466 frontswap_init(p->type, frontswap_map); 2467 spin_lock(&swap_lock); 2468 spin_lock(&p->lock); 2469 setup_swap_info(p, prio, swap_map, cluster_info); 2470 spin_unlock(&p->lock); 2471 spin_unlock(&swap_lock); 2472 /* 2473 * Finished initializing swap device, now it's safe to reference it. 2474 */ 2475 percpu_ref_resurrect(&p->users); 2476 spin_lock(&swap_lock); 2477 spin_lock(&p->lock); 2478 _enable_swap_info(p); 2479 spin_unlock(&p->lock); 2480 spin_unlock(&swap_lock); 2481 } 2482 2483 static void reinsert_swap_info(struct swap_info_struct *p) 2484 { 2485 spin_lock(&swap_lock); 2486 spin_lock(&p->lock); 2487 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2488 _enable_swap_info(p); 2489 spin_unlock(&p->lock); 2490 spin_unlock(&swap_lock); 2491 } 2492 2493 bool has_usable_swap(void) 2494 { 2495 bool ret = true; 2496 2497 spin_lock(&swap_lock); 2498 if (plist_head_empty(&swap_active_head)) 2499 ret = false; 2500 spin_unlock(&swap_lock); 2501 return ret; 2502 } 2503 2504 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2505 { 2506 struct swap_info_struct *p = NULL; 2507 unsigned char *swap_map; 2508 struct swap_cluster_info *cluster_info; 2509 unsigned long *frontswap_map; 2510 struct file *swap_file, *victim; 2511 struct address_space *mapping; 2512 struct inode *inode; 2513 struct filename *pathname; 2514 int err, found = 0; 2515 unsigned int old_block_size; 2516 2517 if (!capable(CAP_SYS_ADMIN)) 2518 return -EPERM; 2519 2520 BUG_ON(!current->mm); 2521 2522 pathname = getname(specialfile); 2523 if (IS_ERR(pathname)) 2524 return PTR_ERR(pathname); 2525 2526 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2527 err = PTR_ERR(victim); 2528 if (IS_ERR(victim)) 2529 goto out; 2530 2531 mapping = victim->f_mapping; 2532 spin_lock(&swap_lock); 2533 plist_for_each_entry(p, &swap_active_head, list) { 2534 if (p->flags & SWP_WRITEOK) { 2535 if (p->swap_file->f_mapping == mapping) { 2536 found = 1; 2537 break; 2538 } 2539 } 2540 } 2541 if (!found) { 2542 err = -EINVAL; 2543 spin_unlock(&swap_lock); 2544 goto out_dput; 2545 } 2546 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2547 vm_unacct_memory(p->pages); 2548 else { 2549 err = -ENOMEM; 2550 spin_unlock(&swap_lock); 2551 goto out_dput; 2552 } 2553 del_from_avail_list(p); 2554 spin_lock(&p->lock); 2555 if (p->prio < 0) { 2556 struct swap_info_struct *si = p; 2557 int nid; 2558 2559 plist_for_each_entry_continue(si, &swap_active_head, list) { 2560 si->prio++; 2561 si->list.prio--; 2562 for_each_node(nid) { 2563 if (si->avail_lists[nid].prio != 1) 2564 si->avail_lists[nid].prio--; 2565 } 2566 } 2567 least_priority++; 2568 } 2569 plist_del(&p->list, &swap_active_head); 2570 atomic_long_sub(p->pages, &nr_swap_pages); 2571 total_swap_pages -= p->pages; 2572 p->flags &= ~SWP_WRITEOK; 2573 spin_unlock(&p->lock); 2574 spin_unlock(&swap_lock); 2575 2576 disable_swap_slots_cache_lock(); 2577 2578 set_current_oom_origin(); 2579 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ 2580 clear_current_oom_origin(); 2581 2582 if (err) { 2583 /* re-insert swap space back into swap_list */ 2584 reinsert_swap_info(p); 2585 reenable_swap_slots_cache_unlock(); 2586 goto out_dput; 2587 } 2588 2589 reenable_swap_slots_cache_unlock(); 2590 2591 /* 2592 * Wait for swap operations protected by get/put_swap_device() 2593 * to complete. 2594 * 2595 * We need synchronize_rcu() here to protect the accessing to 2596 * the swap cache data structure. 2597 */ 2598 percpu_ref_kill(&p->users); 2599 synchronize_rcu(); 2600 wait_for_completion(&p->comp); 2601 2602 flush_work(&p->discard_work); 2603 2604 destroy_swap_extents(p); 2605 if (p->flags & SWP_CONTINUED) 2606 free_swap_count_continuations(p); 2607 2608 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev))) 2609 atomic_dec(&nr_rotate_swap); 2610 2611 mutex_lock(&swapon_mutex); 2612 spin_lock(&swap_lock); 2613 spin_lock(&p->lock); 2614 drain_mmlist(); 2615 2616 /* wait for anyone still in scan_swap_map_slots */ 2617 p->highest_bit = 0; /* cuts scans short */ 2618 while (p->flags >= SWP_SCANNING) { 2619 spin_unlock(&p->lock); 2620 spin_unlock(&swap_lock); 2621 schedule_timeout_uninterruptible(1); 2622 spin_lock(&swap_lock); 2623 spin_lock(&p->lock); 2624 } 2625 2626 swap_file = p->swap_file; 2627 old_block_size = p->old_block_size; 2628 p->swap_file = NULL; 2629 p->max = 0; 2630 swap_map = p->swap_map; 2631 p->swap_map = NULL; 2632 cluster_info = p->cluster_info; 2633 p->cluster_info = NULL; 2634 frontswap_map = frontswap_map_get(p); 2635 spin_unlock(&p->lock); 2636 spin_unlock(&swap_lock); 2637 arch_swap_invalidate_area(p->type); 2638 frontswap_invalidate_area(p->type); 2639 frontswap_map_set(p, NULL); 2640 mutex_unlock(&swapon_mutex); 2641 free_percpu(p->percpu_cluster); 2642 p->percpu_cluster = NULL; 2643 free_percpu(p->cluster_next_cpu); 2644 p->cluster_next_cpu = NULL; 2645 vfree(swap_map); 2646 kvfree(cluster_info); 2647 kvfree(frontswap_map); 2648 /* Destroy swap account information */ 2649 swap_cgroup_swapoff(p->type); 2650 exit_swap_address_space(p->type); 2651 2652 inode = mapping->host; 2653 if (S_ISBLK(inode->i_mode)) { 2654 struct block_device *bdev = I_BDEV(inode); 2655 2656 set_blocksize(bdev, old_block_size); 2657 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2658 } 2659 2660 inode_lock(inode); 2661 inode->i_flags &= ~S_SWAPFILE; 2662 inode_unlock(inode); 2663 filp_close(swap_file, NULL); 2664 2665 /* 2666 * Clear the SWP_USED flag after all resources are freed so that swapon 2667 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2668 * not hold p->lock after we cleared its SWP_WRITEOK. 2669 */ 2670 spin_lock(&swap_lock); 2671 p->flags = 0; 2672 spin_unlock(&swap_lock); 2673 2674 err = 0; 2675 atomic_inc(&proc_poll_event); 2676 wake_up_interruptible(&proc_poll_wait); 2677 2678 out_dput: 2679 filp_close(victim, NULL); 2680 out: 2681 putname(pathname); 2682 return err; 2683 } 2684 2685 #ifdef CONFIG_PROC_FS 2686 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2687 { 2688 struct seq_file *seq = file->private_data; 2689 2690 poll_wait(file, &proc_poll_wait, wait); 2691 2692 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2693 seq->poll_event = atomic_read(&proc_poll_event); 2694 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2695 } 2696 2697 return EPOLLIN | EPOLLRDNORM; 2698 } 2699 2700 /* iterator */ 2701 static void *swap_start(struct seq_file *swap, loff_t *pos) 2702 { 2703 struct swap_info_struct *si; 2704 int type; 2705 loff_t l = *pos; 2706 2707 mutex_lock(&swapon_mutex); 2708 2709 if (!l) 2710 return SEQ_START_TOKEN; 2711 2712 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2713 if (!(si->flags & SWP_USED) || !si->swap_map) 2714 continue; 2715 if (!--l) 2716 return si; 2717 } 2718 2719 return NULL; 2720 } 2721 2722 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2723 { 2724 struct swap_info_struct *si = v; 2725 int type; 2726 2727 if (v == SEQ_START_TOKEN) 2728 type = 0; 2729 else 2730 type = si->type + 1; 2731 2732 ++(*pos); 2733 for (; (si = swap_type_to_swap_info(type)); type++) { 2734 if (!(si->flags & SWP_USED) || !si->swap_map) 2735 continue; 2736 return si; 2737 } 2738 2739 return NULL; 2740 } 2741 2742 static void swap_stop(struct seq_file *swap, void *v) 2743 { 2744 mutex_unlock(&swapon_mutex); 2745 } 2746 2747 static int swap_show(struct seq_file *swap, void *v) 2748 { 2749 struct swap_info_struct *si = v; 2750 struct file *file; 2751 int len; 2752 unsigned long bytes, inuse; 2753 2754 if (si == SEQ_START_TOKEN) { 2755 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2756 return 0; 2757 } 2758 2759 bytes = si->pages << (PAGE_SHIFT - 10); 2760 inuse = si->inuse_pages << (PAGE_SHIFT - 10); 2761 2762 file = si->swap_file; 2763 len = seq_file_path(swap, file, " \t\n\\"); 2764 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", 2765 len < 40 ? 40 - len : 1, " ", 2766 S_ISBLK(file_inode(file)->i_mode) ? 2767 "partition" : "file\t", 2768 bytes, bytes < 10000000 ? "\t" : "", 2769 inuse, inuse < 10000000 ? "\t" : "", 2770 si->prio); 2771 return 0; 2772 } 2773 2774 static const struct seq_operations swaps_op = { 2775 .start = swap_start, 2776 .next = swap_next, 2777 .stop = swap_stop, 2778 .show = swap_show 2779 }; 2780 2781 static int swaps_open(struct inode *inode, struct file *file) 2782 { 2783 struct seq_file *seq; 2784 int ret; 2785 2786 ret = seq_open(file, &swaps_op); 2787 if (ret) 2788 return ret; 2789 2790 seq = file->private_data; 2791 seq->poll_event = atomic_read(&proc_poll_event); 2792 return 0; 2793 } 2794 2795 static const struct proc_ops swaps_proc_ops = { 2796 .proc_flags = PROC_ENTRY_PERMANENT, 2797 .proc_open = swaps_open, 2798 .proc_read = seq_read, 2799 .proc_lseek = seq_lseek, 2800 .proc_release = seq_release, 2801 .proc_poll = swaps_poll, 2802 }; 2803 2804 static int __init procswaps_init(void) 2805 { 2806 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2807 return 0; 2808 } 2809 __initcall(procswaps_init); 2810 #endif /* CONFIG_PROC_FS */ 2811 2812 #ifdef MAX_SWAPFILES_CHECK 2813 static int __init max_swapfiles_check(void) 2814 { 2815 MAX_SWAPFILES_CHECK(); 2816 return 0; 2817 } 2818 late_initcall(max_swapfiles_check); 2819 #endif 2820 2821 static struct swap_info_struct *alloc_swap_info(void) 2822 { 2823 struct swap_info_struct *p; 2824 struct swap_info_struct *defer = NULL; 2825 unsigned int type; 2826 int i; 2827 2828 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2829 if (!p) 2830 return ERR_PTR(-ENOMEM); 2831 2832 if (percpu_ref_init(&p->users, swap_users_ref_free, 2833 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 2834 kvfree(p); 2835 return ERR_PTR(-ENOMEM); 2836 } 2837 2838 spin_lock(&swap_lock); 2839 for (type = 0; type < nr_swapfiles; type++) { 2840 if (!(swap_info[type]->flags & SWP_USED)) 2841 break; 2842 } 2843 if (type >= MAX_SWAPFILES) { 2844 spin_unlock(&swap_lock); 2845 percpu_ref_exit(&p->users); 2846 kvfree(p); 2847 return ERR_PTR(-EPERM); 2848 } 2849 if (type >= nr_swapfiles) { 2850 p->type = type; 2851 /* 2852 * Publish the swap_info_struct after initializing it. 2853 * Note that kvzalloc() above zeroes all its fields. 2854 */ 2855 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 2856 nr_swapfiles++; 2857 } else { 2858 defer = p; 2859 p = swap_info[type]; 2860 /* 2861 * Do not memset this entry: a racing procfs swap_next() 2862 * would be relying on p->type to remain valid. 2863 */ 2864 } 2865 p->swap_extent_root = RB_ROOT; 2866 plist_node_init(&p->list, 0); 2867 for_each_node(i) 2868 plist_node_init(&p->avail_lists[i], 0); 2869 p->flags = SWP_USED; 2870 spin_unlock(&swap_lock); 2871 if (defer) { 2872 percpu_ref_exit(&defer->users); 2873 kvfree(defer); 2874 } 2875 spin_lock_init(&p->lock); 2876 spin_lock_init(&p->cont_lock); 2877 init_completion(&p->comp); 2878 2879 return p; 2880 } 2881 2882 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2883 { 2884 int error; 2885 2886 if (S_ISBLK(inode->i_mode)) { 2887 p->bdev = blkdev_get_by_dev(inode->i_rdev, 2888 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2889 if (IS_ERR(p->bdev)) { 2890 error = PTR_ERR(p->bdev); 2891 p->bdev = NULL; 2892 return error; 2893 } 2894 p->old_block_size = block_size(p->bdev); 2895 error = set_blocksize(p->bdev, PAGE_SIZE); 2896 if (error < 0) 2897 return error; 2898 /* 2899 * Zoned block devices contain zones that have a sequential 2900 * write only restriction. Hence zoned block devices are not 2901 * suitable for swapping. Disallow them here. 2902 */ 2903 if (blk_queue_is_zoned(p->bdev->bd_disk->queue)) 2904 return -EINVAL; 2905 p->flags |= SWP_BLKDEV; 2906 } else if (S_ISREG(inode->i_mode)) { 2907 p->bdev = inode->i_sb->s_bdev; 2908 } 2909 2910 return 0; 2911 } 2912 2913 2914 /* 2915 * Find out how many pages are allowed for a single swap device. There 2916 * are two limiting factors: 2917 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2918 * 2) the number of bits in the swap pte, as defined by the different 2919 * architectures. 2920 * 2921 * In order to find the largest possible bit mask, a swap entry with 2922 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2923 * decoded to a swp_entry_t again, and finally the swap offset is 2924 * extracted. 2925 * 2926 * This will mask all the bits from the initial ~0UL mask that can't 2927 * be encoded in either the swp_entry_t or the architecture definition 2928 * of a swap pte. 2929 */ 2930 unsigned long generic_max_swapfile_size(void) 2931 { 2932 return swp_offset(pte_to_swp_entry( 2933 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2934 } 2935 2936 /* Can be overridden by an architecture for additional checks. */ 2937 __weak unsigned long max_swapfile_size(void) 2938 { 2939 return generic_max_swapfile_size(); 2940 } 2941 2942 static unsigned long read_swap_header(struct swap_info_struct *p, 2943 union swap_header *swap_header, 2944 struct inode *inode) 2945 { 2946 int i; 2947 unsigned long maxpages; 2948 unsigned long swapfilepages; 2949 unsigned long last_page; 2950 2951 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2952 pr_err("Unable to find swap-space signature\n"); 2953 return 0; 2954 } 2955 2956 /* swap partition endianness hack... */ 2957 if (swab32(swap_header->info.version) == 1) { 2958 swab32s(&swap_header->info.version); 2959 swab32s(&swap_header->info.last_page); 2960 swab32s(&swap_header->info.nr_badpages); 2961 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2962 return 0; 2963 for (i = 0; i < swap_header->info.nr_badpages; i++) 2964 swab32s(&swap_header->info.badpages[i]); 2965 } 2966 /* Check the swap header's sub-version */ 2967 if (swap_header->info.version != 1) { 2968 pr_warn("Unable to handle swap header version %d\n", 2969 swap_header->info.version); 2970 return 0; 2971 } 2972 2973 p->lowest_bit = 1; 2974 p->cluster_next = 1; 2975 p->cluster_nr = 0; 2976 2977 maxpages = max_swapfile_size(); 2978 last_page = swap_header->info.last_page; 2979 if (!last_page) { 2980 pr_warn("Empty swap-file\n"); 2981 return 0; 2982 } 2983 if (last_page > maxpages) { 2984 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2985 maxpages << (PAGE_SHIFT - 10), 2986 last_page << (PAGE_SHIFT - 10)); 2987 } 2988 if (maxpages > last_page) { 2989 maxpages = last_page + 1; 2990 /* p->max is an unsigned int: don't overflow it */ 2991 if ((unsigned int)maxpages == 0) 2992 maxpages = UINT_MAX; 2993 } 2994 p->highest_bit = maxpages - 1; 2995 2996 if (!maxpages) 2997 return 0; 2998 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2999 if (swapfilepages && maxpages > swapfilepages) { 3000 pr_warn("Swap area shorter than signature indicates\n"); 3001 return 0; 3002 } 3003 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 3004 return 0; 3005 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3006 return 0; 3007 3008 return maxpages; 3009 } 3010 3011 #define SWAP_CLUSTER_INFO_COLS \ 3012 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 3013 #define SWAP_CLUSTER_SPACE_COLS \ 3014 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 3015 #define SWAP_CLUSTER_COLS \ 3016 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 3017 3018 static int setup_swap_map_and_extents(struct swap_info_struct *p, 3019 union swap_header *swap_header, 3020 unsigned char *swap_map, 3021 struct swap_cluster_info *cluster_info, 3022 unsigned long maxpages, 3023 sector_t *span) 3024 { 3025 unsigned int j, k; 3026 unsigned int nr_good_pages; 3027 int nr_extents; 3028 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3029 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 3030 unsigned long i, idx; 3031 3032 nr_good_pages = maxpages - 1; /* omit header page */ 3033 3034 cluster_list_init(&p->free_clusters); 3035 cluster_list_init(&p->discard_clusters); 3036 3037 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3038 unsigned int page_nr = swap_header->info.badpages[i]; 3039 if (page_nr == 0 || page_nr > swap_header->info.last_page) 3040 return -EINVAL; 3041 if (page_nr < maxpages) { 3042 swap_map[page_nr] = SWAP_MAP_BAD; 3043 nr_good_pages--; 3044 /* 3045 * Haven't marked the cluster free yet, no list 3046 * operation involved 3047 */ 3048 inc_cluster_info_page(p, cluster_info, page_nr); 3049 } 3050 } 3051 3052 /* Haven't marked the cluster free yet, no list operation involved */ 3053 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 3054 inc_cluster_info_page(p, cluster_info, i); 3055 3056 if (nr_good_pages) { 3057 swap_map[0] = SWAP_MAP_BAD; 3058 /* 3059 * Not mark the cluster free yet, no list 3060 * operation involved 3061 */ 3062 inc_cluster_info_page(p, cluster_info, 0); 3063 p->max = maxpages; 3064 p->pages = nr_good_pages; 3065 nr_extents = setup_swap_extents(p, span); 3066 if (nr_extents < 0) 3067 return nr_extents; 3068 nr_good_pages = p->pages; 3069 } 3070 if (!nr_good_pages) { 3071 pr_warn("Empty swap-file\n"); 3072 return -EINVAL; 3073 } 3074 3075 if (!cluster_info) 3076 return nr_extents; 3077 3078 3079 /* 3080 * Reduce false cache line sharing between cluster_info and 3081 * sharing same address space. 3082 */ 3083 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 3084 j = (k + col) % SWAP_CLUSTER_COLS; 3085 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 3086 idx = i * SWAP_CLUSTER_COLS + j; 3087 if (idx >= nr_clusters) 3088 continue; 3089 if (cluster_count(&cluster_info[idx])) 3090 continue; 3091 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 3092 cluster_list_add_tail(&p->free_clusters, cluster_info, 3093 idx); 3094 } 3095 } 3096 return nr_extents; 3097 } 3098 3099 /* 3100 * Helper to sys_swapon determining if a given swap 3101 * backing device queue supports DISCARD operations. 3102 */ 3103 static bool swap_discardable(struct swap_info_struct *si) 3104 { 3105 struct request_queue *q = bdev_get_queue(si->bdev); 3106 3107 if (!blk_queue_discard(q)) 3108 return false; 3109 3110 return true; 3111 } 3112 3113 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 3114 { 3115 struct swap_info_struct *p; 3116 struct filename *name; 3117 struct file *swap_file = NULL; 3118 struct address_space *mapping; 3119 struct dentry *dentry; 3120 int prio; 3121 int error; 3122 union swap_header *swap_header; 3123 int nr_extents; 3124 sector_t span; 3125 unsigned long maxpages; 3126 unsigned char *swap_map = NULL; 3127 struct swap_cluster_info *cluster_info = NULL; 3128 unsigned long *frontswap_map = NULL; 3129 struct page *page = NULL; 3130 struct inode *inode = NULL; 3131 bool inced_nr_rotate_swap = false; 3132 3133 if (swap_flags & ~SWAP_FLAGS_VALID) 3134 return -EINVAL; 3135 3136 if (!capable(CAP_SYS_ADMIN)) 3137 return -EPERM; 3138 3139 if (!swap_avail_heads) 3140 return -ENOMEM; 3141 3142 p = alloc_swap_info(); 3143 if (IS_ERR(p)) 3144 return PTR_ERR(p); 3145 3146 INIT_WORK(&p->discard_work, swap_discard_work); 3147 3148 name = getname(specialfile); 3149 if (IS_ERR(name)) { 3150 error = PTR_ERR(name); 3151 name = NULL; 3152 goto bad_swap; 3153 } 3154 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3155 if (IS_ERR(swap_file)) { 3156 error = PTR_ERR(swap_file); 3157 swap_file = NULL; 3158 goto bad_swap; 3159 } 3160 3161 p->swap_file = swap_file; 3162 mapping = swap_file->f_mapping; 3163 dentry = swap_file->f_path.dentry; 3164 inode = mapping->host; 3165 3166 error = claim_swapfile(p, inode); 3167 if (unlikely(error)) 3168 goto bad_swap; 3169 3170 inode_lock(inode); 3171 if (d_unlinked(dentry) || cant_mount(dentry)) { 3172 error = -ENOENT; 3173 goto bad_swap_unlock_inode; 3174 } 3175 if (IS_SWAPFILE(inode)) { 3176 error = -EBUSY; 3177 goto bad_swap_unlock_inode; 3178 } 3179 3180 /* 3181 * Read the swap header. 3182 */ 3183 if (!mapping->a_ops->readpage) { 3184 error = -EINVAL; 3185 goto bad_swap_unlock_inode; 3186 } 3187 page = read_mapping_page(mapping, 0, swap_file); 3188 if (IS_ERR(page)) { 3189 error = PTR_ERR(page); 3190 goto bad_swap_unlock_inode; 3191 } 3192 swap_header = kmap(page); 3193 3194 maxpages = read_swap_header(p, swap_header, inode); 3195 if (unlikely(!maxpages)) { 3196 error = -EINVAL; 3197 goto bad_swap_unlock_inode; 3198 } 3199 3200 /* OK, set up the swap map and apply the bad block list */ 3201 swap_map = vzalloc(maxpages); 3202 if (!swap_map) { 3203 error = -ENOMEM; 3204 goto bad_swap_unlock_inode; 3205 } 3206 3207 if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue)) 3208 p->flags |= SWP_STABLE_WRITES; 3209 3210 if (p->bdev && p->bdev->bd_disk->fops->rw_page) 3211 p->flags |= SWP_SYNCHRONOUS_IO; 3212 3213 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 3214 int cpu; 3215 unsigned long ci, nr_cluster; 3216 3217 p->flags |= SWP_SOLIDSTATE; 3218 p->cluster_next_cpu = alloc_percpu(unsigned int); 3219 if (!p->cluster_next_cpu) { 3220 error = -ENOMEM; 3221 goto bad_swap_unlock_inode; 3222 } 3223 /* 3224 * select a random position to start with to help wear leveling 3225 * SSD 3226 */ 3227 for_each_possible_cpu(cpu) { 3228 per_cpu(*p->cluster_next_cpu, cpu) = 3229 1 + prandom_u32_max(p->highest_bit); 3230 } 3231 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3232 3233 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3234 GFP_KERNEL); 3235 if (!cluster_info) { 3236 error = -ENOMEM; 3237 goto bad_swap_unlock_inode; 3238 } 3239 3240 for (ci = 0; ci < nr_cluster; ci++) 3241 spin_lock_init(&((cluster_info + ci)->lock)); 3242 3243 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3244 if (!p->percpu_cluster) { 3245 error = -ENOMEM; 3246 goto bad_swap_unlock_inode; 3247 } 3248 for_each_possible_cpu(cpu) { 3249 struct percpu_cluster *cluster; 3250 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3251 cluster_set_null(&cluster->index); 3252 } 3253 } else { 3254 atomic_inc(&nr_rotate_swap); 3255 inced_nr_rotate_swap = true; 3256 } 3257 3258 error = swap_cgroup_swapon(p->type, maxpages); 3259 if (error) 3260 goto bad_swap_unlock_inode; 3261 3262 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3263 cluster_info, maxpages, &span); 3264 if (unlikely(nr_extents < 0)) { 3265 error = nr_extents; 3266 goto bad_swap_unlock_inode; 3267 } 3268 /* frontswap enabled? set up bit-per-page map for frontswap */ 3269 if (IS_ENABLED(CONFIG_FRONTSWAP)) 3270 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages), 3271 sizeof(long), 3272 GFP_KERNEL); 3273 3274 if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 3275 /* 3276 * When discard is enabled for swap with no particular 3277 * policy flagged, we set all swap discard flags here in 3278 * order to sustain backward compatibility with older 3279 * swapon(8) releases. 3280 */ 3281 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3282 SWP_PAGE_DISCARD); 3283 3284 /* 3285 * By flagging sys_swapon, a sysadmin can tell us to 3286 * either do single-time area discards only, or to just 3287 * perform discards for released swap page-clusters. 3288 * Now it's time to adjust the p->flags accordingly. 3289 */ 3290 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3291 p->flags &= ~SWP_PAGE_DISCARD; 3292 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3293 p->flags &= ~SWP_AREA_DISCARD; 3294 3295 /* issue a swapon-time discard if it's still required */ 3296 if (p->flags & SWP_AREA_DISCARD) { 3297 int err = discard_swap(p); 3298 if (unlikely(err)) 3299 pr_err("swapon: discard_swap(%p): %d\n", 3300 p, err); 3301 } 3302 } 3303 3304 error = init_swap_address_space(p->type, maxpages); 3305 if (error) 3306 goto bad_swap_unlock_inode; 3307 3308 /* 3309 * Flush any pending IO and dirty mappings before we start using this 3310 * swap device. 3311 */ 3312 inode->i_flags |= S_SWAPFILE; 3313 error = inode_drain_writes(inode); 3314 if (error) { 3315 inode->i_flags &= ~S_SWAPFILE; 3316 goto free_swap_address_space; 3317 } 3318 3319 mutex_lock(&swapon_mutex); 3320 prio = -1; 3321 if (swap_flags & SWAP_FLAG_PREFER) 3322 prio = 3323 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3324 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 3325 3326 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 3327 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 3328 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 3329 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3330 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3331 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3332 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 3333 (frontswap_map) ? "FS" : ""); 3334 3335 mutex_unlock(&swapon_mutex); 3336 atomic_inc(&proc_poll_event); 3337 wake_up_interruptible(&proc_poll_wait); 3338 3339 error = 0; 3340 goto out; 3341 free_swap_address_space: 3342 exit_swap_address_space(p->type); 3343 bad_swap_unlock_inode: 3344 inode_unlock(inode); 3345 bad_swap: 3346 free_percpu(p->percpu_cluster); 3347 p->percpu_cluster = NULL; 3348 free_percpu(p->cluster_next_cpu); 3349 p->cluster_next_cpu = NULL; 3350 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 3351 set_blocksize(p->bdev, p->old_block_size); 3352 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 3353 } 3354 inode = NULL; 3355 destroy_swap_extents(p); 3356 swap_cgroup_swapoff(p->type); 3357 spin_lock(&swap_lock); 3358 p->swap_file = NULL; 3359 p->flags = 0; 3360 spin_unlock(&swap_lock); 3361 vfree(swap_map); 3362 kvfree(cluster_info); 3363 kvfree(frontswap_map); 3364 if (inced_nr_rotate_swap) 3365 atomic_dec(&nr_rotate_swap); 3366 if (swap_file) 3367 filp_close(swap_file, NULL); 3368 out: 3369 if (page && !IS_ERR(page)) { 3370 kunmap(page); 3371 put_page(page); 3372 } 3373 if (name) 3374 putname(name); 3375 if (inode) 3376 inode_unlock(inode); 3377 if (!error) 3378 enable_swap_slots_cache(); 3379 return error; 3380 } 3381 3382 void si_swapinfo(struct sysinfo *val) 3383 { 3384 unsigned int type; 3385 unsigned long nr_to_be_unused = 0; 3386 3387 spin_lock(&swap_lock); 3388 for (type = 0; type < nr_swapfiles; type++) { 3389 struct swap_info_struct *si = swap_info[type]; 3390 3391 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3392 nr_to_be_unused += si->inuse_pages; 3393 } 3394 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3395 val->totalswap = total_swap_pages + nr_to_be_unused; 3396 spin_unlock(&swap_lock); 3397 } 3398 3399 /* 3400 * Verify that a swap entry is valid and increment its swap map count. 3401 * 3402 * Returns error code in following case. 3403 * - success -> 0 3404 * - swp_entry is invalid -> EINVAL 3405 * - swp_entry is migration entry -> EINVAL 3406 * - swap-cache reference is requested but there is already one. -> EEXIST 3407 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3408 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3409 */ 3410 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3411 { 3412 struct swap_info_struct *p; 3413 struct swap_cluster_info *ci; 3414 unsigned long offset; 3415 unsigned char count; 3416 unsigned char has_cache; 3417 int err; 3418 3419 p = get_swap_device(entry); 3420 if (!p) 3421 return -EINVAL; 3422 3423 offset = swp_offset(entry); 3424 ci = lock_cluster_or_swap_info(p, offset); 3425 3426 count = p->swap_map[offset]; 3427 3428 /* 3429 * swapin_readahead() doesn't check if a swap entry is valid, so the 3430 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3431 */ 3432 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3433 err = -ENOENT; 3434 goto unlock_out; 3435 } 3436 3437 has_cache = count & SWAP_HAS_CACHE; 3438 count &= ~SWAP_HAS_CACHE; 3439 err = 0; 3440 3441 if (usage == SWAP_HAS_CACHE) { 3442 3443 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3444 if (!has_cache && count) 3445 has_cache = SWAP_HAS_CACHE; 3446 else if (has_cache) /* someone else added cache */ 3447 err = -EEXIST; 3448 else /* no users remaining */ 3449 err = -ENOENT; 3450 3451 } else if (count || has_cache) { 3452 3453 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3454 count += usage; 3455 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3456 err = -EINVAL; 3457 else if (swap_count_continued(p, offset, count)) 3458 count = COUNT_CONTINUED; 3459 else 3460 err = -ENOMEM; 3461 } else 3462 err = -ENOENT; /* unused swap entry */ 3463 3464 WRITE_ONCE(p->swap_map[offset], count | has_cache); 3465 3466 unlock_out: 3467 unlock_cluster_or_swap_info(p, ci); 3468 if (p) 3469 put_swap_device(p); 3470 return err; 3471 } 3472 3473 /* 3474 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3475 * (in which case its reference count is never incremented). 3476 */ 3477 void swap_shmem_alloc(swp_entry_t entry) 3478 { 3479 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3480 } 3481 3482 /* 3483 * Increase reference count of swap entry by 1. 3484 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3485 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3486 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3487 * might occur if a page table entry has got corrupted. 3488 */ 3489 int swap_duplicate(swp_entry_t entry) 3490 { 3491 int err = 0; 3492 3493 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3494 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3495 return err; 3496 } 3497 3498 /* 3499 * @entry: swap entry for which we allocate swap cache. 3500 * 3501 * Called when allocating swap cache for existing swap entry, 3502 * This can return error codes. Returns 0 at success. 3503 * -EEXIST means there is a swap cache. 3504 * Note: return code is different from swap_duplicate(). 3505 */ 3506 int swapcache_prepare(swp_entry_t entry) 3507 { 3508 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3509 } 3510 3511 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3512 { 3513 return swap_type_to_swap_info(swp_type(entry)); 3514 } 3515 3516 struct swap_info_struct *page_swap_info(struct page *page) 3517 { 3518 swp_entry_t entry = { .val = page_private(page) }; 3519 return swp_swap_info(entry); 3520 } 3521 3522 /* 3523 * out-of-line methods to avoid include hell. 3524 */ 3525 struct address_space *swapcache_mapping(struct folio *folio) 3526 { 3527 return page_swap_info(&folio->page)->swap_file->f_mapping; 3528 } 3529 EXPORT_SYMBOL_GPL(swapcache_mapping); 3530 3531 pgoff_t __page_file_index(struct page *page) 3532 { 3533 swp_entry_t swap = { .val = page_private(page) }; 3534 return swp_offset(swap); 3535 } 3536 EXPORT_SYMBOL_GPL(__page_file_index); 3537 3538 /* 3539 * add_swap_count_continuation - called when a swap count is duplicated 3540 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3541 * page of the original vmalloc'ed swap_map, to hold the continuation count 3542 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3543 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3544 * 3545 * These continuation pages are seldom referenced: the common paths all work 3546 * on the original swap_map, only referring to a continuation page when the 3547 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3548 * 3549 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3550 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3551 * can be called after dropping locks. 3552 */ 3553 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3554 { 3555 struct swap_info_struct *si; 3556 struct swap_cluster_info *ci; 3557 struct page *head; 3558 struct page *page; 3559 struct page *list_page; 3560 pgoff_t offset; 3561 unsigned char count; 3562 int ret = 0; 3563 3564 /* 3565 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3566 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3567 */ 3568 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3569 3570 si = get_swap_device(entry); 3571 if (!si) { 3572 /* 3573 * An acceptable race has occurred since the failing 3574 * __swap_duplicate(): the swap device may be swapoff 3575 */ 3576 goto outer; 3577 } 3578 spin_lock(&si->lock); 3579 3580 offset = swp_offset(entry); 3581 3582 ci = lock_cluster(si, offset); 3583 3584 count = swap_count(si->swap_map[offset]); 3585 3586 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3587 /* 3588 * The higher the swap count, the more likely it is that tasks 3589 * will race to add swap count continuation: we need to avoid 3590 * over-provisioning. 3591 */ 3592 goto out; 3593 } 3594 3595 if (!page) { 3596 ret = -ENOMEM; 3597 goto out; 3598 } 3599 3600 /* 3601 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 3602 * no architecture is using highmem pages for kernel page tables: so it 3603 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 3604 */ 3605 head = vmalloc_to_page(si->swap_map + offset); 3606 offset &= ~PAGE_MASK; 3607 3608 spin_lock(&si->cont_lock); 3609 /* 3610 * Page allocation does not initialize the page's lru field, 3611 * but it does always reset its private field. 3612 */ 3613 if (!page_private(head)) { 3614 BUG_ON(count & COUNT_CONTINUED); 3615 INIT_LIST_HEAD(&head->lru); 3616 set_page_private(head, SWP_CONTINUED); 3617 si->flags |= SWP_CONTINUED; 3618 } 3619 3620 list_for_each_entry(list_page, &head->lru, lru) { 3621 unsigned char *map; 3622 3623 /* 3624 * If the previous map said no continuation, but we've found 3625 * a continuation page, free our allocation and use this one. 3626 */ 3627 if (!(count & COUNT_CONTINUED)) 3628 goto out_unlock_cont; 3629 3630 map = kmap_atomic(list_page) + offset; 3631 count = *map; 3632 kunmap_atomic(map); 3633 3634 /* 3635 * If this continuation count now has some space in it, 3636 * free our allocation and use this one. 3637 */ 3638 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3639 goto out_unlock_cont; 3640 } 3641 3642 list_add_tail(&page->lru, &head->lru); 3643 page = NULL; /* now it's attached, don't free it */ 3644 out_unlock_cont: 3645 spin_unlock(&si->cont_lock); 3646 out: 3647 unlock_cluster(ci); 3648 spin_unlock(&si->lock); 3649 put_swap_device(si); 3650 outer: 3651 if (page) 3652 __free_page(page); 3653 return ret; 3654 } 3655 3656 /* 3657 * swap_count_continued - when the original swap_map count is incremented 3658 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3659 * into, carry if so, or else fail until a new continuation page is allocated; 3660 * when the original swap_map count is decremented from 0 with continuation, 3661 * borrow from the continuation and report whether it still holds more. 3662 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3663 * lock. 3664 */ 3665 static bool swap_count_continued(struct swap_info_struct *si, 3666 pgoff_t offset, unsigned char count) 3667 { 3668 struct page *head; 3669 struct page *page; 3670 unsigned char *map; 3671 bool ret; 3672 3673 head = vmalloc_to_page(si->swap_map + offset); 3674 if (page_private(head) != SWP_CONTINUED) { 3675 BUG_ON(count & COUNT_CONTINUED); 3676 return false; /* need to add count continuation */ 3677 } 3678 3679 spin_lock(&si->cont_lock); 3680 offset &= ~PAGE_MASK; 3681 page = list_next_entry(head, lru); 3682 map = kmap_atomic(page) + offset; 3683 3684 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3685 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3686 3687 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3688 /* 3689 * Think of how you add 1 to 999 3690 */ 3691 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3692 kunmap_atomic(map); 3693 page = list_next_entry(page, lru); 3694 BUG_ON(page == head); 3695 map = kmap_atomic(page) + offset; 3696 } 3697 if (*map == SWAP_CONT_MAX) { 3698 kunmap_atomic(map); 3699 page = list_next_entry(page, lru); 3700 if (page == head) { 3701 ret = false; /* add count continuation */ 3702 goto out; 3703 } 3704 map = kmap_atomic(page) + offset; 3705 init_map: *map = 0; /* we didn't zero the page */ 3706 } 3707 *map += 1; 3708 kunmap_atomic(map); 3709 while ((page = list_prev_entry(page, lru)) != head) { 3710 map = kmap_atomic(page) + offset; 3711 *map = COUNT_CONTINUED; 3712 kunmap_atomic(map); 3713 } 3714 ret = true; /* incremented */ 3715 3716 } else { /* decrementing */ 3717 /* 3718 * Think of how you subtract 1 from 1000 3719 */ 3720 BUG_ON(count != COUNT_CONTINUED); 3721 while (*map == COUNT_CONTINUED) { 3722 kunmap_atomic(map); 3723 page = list_next_entry(page, lru); 3724 BUG_ON(page == head); 3725 map = kmap_atomic(page) + offset; 3726 } 3727 BUG_ON(*map == 0); 3728 *map -= 1; 3729 if (*map == 0) 3730 count = 0; 3731 kunmap_atomic(map); 3732 while ((page = list_prev_entry(page, lru)) != head) { 3733 map = kmap_atomic(page) + offset; 3734 *map = SWAP_CONT_MAX | count; 3735 count = COUNT_CONTINUED; 3736 kunmap_atomic(map); 3737 } 3738 ret = count == COUNT_CONTINUED; 3739 } 3740 out: 3741 spin_unlock(&si->cont_lock); 3742 return ret; 3743 } 3744 3745 /* 3746 * free_swap_count_continuations - swapoff free all the continuation pages 3747 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3748 */ 3749 static void free_swap_count_continuations(struct swap_info_struct *si) 3750 { 3751 pgoff_t offset; 3752 3753 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3754 struct page *head; 3755 head = vmalloc_to_page(si->swap_map + offset); 3756 if (page_private(head)) { 3757 struct page *page, *next; 3758 3759 list_for_each_entry_safe(page, next, &head->lru, lru) { 3760 list_del(&page->lru); 3761 __free_page(page); 3762 } 3763 } 3764 } 3765 } 3766 3767 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3768 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask) 3769 { 3770 struct swap_info_struct *si, *next; 3771 int nid = page_to_nid(page); 3772 3773 if (!(gfp_mask & __GFP_IO)) 3774 return; 3775 3776 if (!blk_cgroup_congested()) 3777 return; 3778 3779 /* 3780 * We've already scheduled a throttle, avoid taking the global swap 3781 * lock. 3782 */ 3783 if (current->throttle_queue) 3784 return; 3785 3786 spin_lock(&swap_avail_lock); 3787 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3788 avail_lists[nid]) { 3789 if (si->bdev) { 3790 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true); 3791 break; 3792 } 3793 } 3794 spin_unlock(&swap_avail_lock); 3795 } 3796 #endif 3797 3798 static int __init swapfile_init(void) 3799 { 3800 int nid; 3801 3802 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3803 GFP_KERNEL); 3804 if (!swap_avail_heads) { 3805 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3806 return -ENOMEM; 3807 } 3808 3809 for_each_node(nid) 3810 plist_head_init(&swap_avail_heads[nid]); 3811 3812 return 0; 3813 } 3814 subsys_initcall(swapfile_init); 3815