xref: /openbmc/linux/mm/swapfile.c (revision 31e67366)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46 
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 				 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 
51 DEFINE_SPINLOCK(swap_lock);
52 static unsigned int nr_swapfiles;
53 atomic_long_t nr_swap_pages;
54 /*
55  * Some modules use swappable objects and may try to swap them out under
56  * memory pressure (via the shrinker). Before doing so, they may wish to
57  * check to see if any swap space is available.
58  */
59 EXPORT_SYMBOL_GPL(nr_swap_pages);
60 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
61 long total_swap_pages;
62 static int least_priority = -1;
63 
64 static const char Bad_file[] = "Bad swap file entry ";
65 static const char Unused_file[] = "Unused swap file entry ";
66 static const char Bad_offset[] = "Bad swap offset entry ";
67 static const char Unused_offset[] = "Unused swap offset entry ";
68 
69 /*
70  * all active swap_info_structs
71  * protected with swap_lock, and ordered by priority.
72  */
73 PLIST_HEAD(swap_active_head);
74 
75 /*
76  * all available (active, not full) swap_info_structs
77  * protected with swap_avail_lock, ordered by priority.
78  * This is used by get_swap_page() instead of swap_active_head
79  * because swap_active_head includes all swap_info_structs,
80  * but get_swap_page() doesn't need to look at full ones.
81  * This uses its own lock instead of swap_lock because when a
82  * swap_info_struct changes between not-full/full, it needs to
83  * add/remove itself to/from this list, but the swap_info_struct->lock
84  * is held and the locking order requires swap_lock to be taken
85  * before any swap_info_struct->lock.
86  */
87 static struct plist_head *swap_avail_heads;
88 static DEFINE_SPINLOCK(swap_avail_lock);
89 
90 struct swap_info_struct *swap_info[MAX_SWAPFILES];
91 
92 static DEFINE_MUTEX(swapon_mutex);
93 
94 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
95 /* Activity counter to indicate that a swapon or swapoff has occurred */
96 static atomic_t proc_poll_event = ATOMIC_INIT(0);
97 
98 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
99 
100 static struct swap_info_struct *swap_type_to_swap_info(int type)
101 {
102 	if (type >= READ_ONCE(nr_swapfiles))
103 		return NULL;
104 
105 	smp_rmb();	/* Pairs with smp_wmb in alloc_swap_info. */
106 	return READ_ONCE(swap_info[type]);
107 }
108 
109 static inline unsigned char swap_count(unsigned char ent)
110 {
111 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
112 }
113 
114 /* Reclaim the swap entry anyway if possible */
115 #define TTRS_ANYWAY		0x1
116 /*
117  * Reclaim the swap entry if there are no more mappings of the
118  * corresponding page
119  */
120 #define TTRS_UNMAPPED		0x2
121 /* Reclaim the swap entry if swap is getting full*/
122 #define TTRS_FULL		0x4
123 
124 /* returns 1 if swap entry is freed */
125 static int __try_to_reclaim_swap(struct swap_info_struct *si,
126 				 unsigned long offset, unsigned long flags)
127 {
128 	swp_entry_t entry = swp_entry(si->type, offset);
129 	struct page *page;
130 	int ret = 0;
131 
132 	page = find_get_page(swap_address_space(entry), offset);
133 	if (!page)
134 		return 0;
135 	/*
136 	 * When this function is called from scan_swap_map_slots() and it's
137 	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
138 	 * here. We have to use trylock for avoiding deadlock. This is a special
139 	 * case and you should use try_to_free_swap() with explicit lock_page()
140 	 * in usual operations.
141 	 */
142 	if (trylock_page(page)) {
143 		if ((flags & TTRS_ANYWAY) ||
144 		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
145 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
146 			ret = try_to_free_swap(page);
147 		unlock_page(page);
148 	}
149 	put_page(page);
150 	return ret;
151 }
152 
153 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
154 {
155 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
156 	return rb_entry(rb, struct swap_extent, rb_node);
157 }
158 
159 static inline struct swap_extent *next_se(struct swap_extent *se)
160 {
161 	struct rb_node *rb = rb_next(&se->rb_node);
162 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
163 }
164 
165 /*
166  * swapon tell device that all the old swap contents can be discarded,
167  * to allow the swap device to optimize its wear-levelling.
168  */
169 static int discard_swap(struct swap_info_struct *si)
170 {
171 	struct swap_extent *se;
172 	sector_t start_block;
173 	sector_t nr_blocks;
174 	int err = 0;
175 
176 	/* Do not discard the swap header page! */
177 	se = first_se(si);
178 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
179 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
180 	if (nr_blocks) {
181 		err = blkdev_issue_discard(si->bdev, start_block,
182 				nr_blocks, GFP_KERNEL, 0);
183 		if (err)
184 			return err;
185 		cond_resched();
186 	}
187 
188 	for (se = next_se(se); se; se = next_se(se)) {
189 		start_block = se->start_block << (PAGE_SHIFT - 9);
190 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
191 
192 		err = blkdev_issue_discard(si->bdev, start_block,
193 				nr_blocks, GFP_KERNEL, 0);
194 		if (err)
195 			break;
196 
197 		cond_resched();
198 	}
199 	return err;		/* That will often be -EOPNOTSUPP */
200 }
201 
202 static struct swap_extent *
203 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
204 {
205 	struct swap_extent *se;
206 	struct rb_node *rb;
207 
208 	rb = sis->swap_extent_root.rb_node;
209 	while (rb) {
210 		se = rb_entry(rb, struct swap_extent, rb_node);
211 		if (offset < se->start_page)
212 			rb = rb->rb_left;
213 		else if (offset >= se->start_page + se->nr_pages)
214 			rb = rb->rb_right;
215 		else
216 			return se;
217 	}
218 	/* It *must* be present */
219 	BUG();
220 }
221 
222 sector_t swap_page_sector(struct page *page)
223 {
224 	struct swap_info_struct *sis = page_swap_info(page);
225 	struct swap_extent *se;
226 	sector_t sector;
227 	pgoff_t offset;
228 
229 	offset = __page_file_index(page);
230 	se = offset_to_swap_extent(sis, offset);
231 	sector = se->start_block + (offset - se->start_page);
232 	return sector << (PAGE_SHIFT - 9);
233 }
234 
235 /*
236  * swap allocation tell device that a cluster of swap can now be discarded,
237  * to allow the swap device to optimize its wear-levelling.
238  */
239 static void discard_swap_cluster(struct swap_info_struct *si,
240 				 pgoff_t start_page, pgoff_t nr_pages)
241 {
242 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
243 
244 	while (nr_pages) {
245 		pgoff_t offset = start_page - se->start_page;
246 		sector_t start_block = se->start_block + offset;
247 		sector_t nr_blocks = se->nr_pages - offset;
248 
249 		if (nr_blocks > nr_pages)
250 			nr_blocks = nr_pages;
251 		start_page += nr_blocks;
252 		nr_pages -= nr_blocks;
253 
254 		start_block <<= PAGE_SHIFT - 9;
255 		nr_blocks <<= PAGE_SHIFT - 9;
256 		if (blkdev_issue_discard(si->bdev, start_block,
257 					nr_blocks, GFP_NOIO, 0))
258 			break;
259 
260 		se = next_se(se);
261 	}
262 }
263 
264 #ifdef CONFIG_THP_SWAP
265 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
266 
267 #define swap_entry_size(size)	(size)
268 #else
269 #define SWAPFILE_CLUSTER	256
270 
271 /*
272  * Define swap_entry_size() as constant to let compiler to optimize
273  * out some code if !CONFIG_THP_SWAP
274  */
275 #define swap_entry_size(size)	1
276 #endif
277 #define LATENCY_LIMIT		256
278 
279 static inline void cluster_set_flag(struct swap_cluster_info *info,
280 	unsigned int flag)
281 {
282 	info->flags = flag;
283 }
284 
285 static inline unsigned int cluster_count(struct swap_cluster_info *info)
286 {
287 	return info->data;
288 }
289 
290 static inline void cluster_set_count(struct swap_cluster_info *info,
291 				     unsigned int c)
292 {
293 	info->data = c;
294 }
295 
296 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
297 					 unsigned int c, unsigned int f)
298 {
299 	info->flags = f;
300 	info->data = c;
301 }
302 
303 static inline unsigned int cluster_next(struct swap_cluster_info *info)
304 {
305 	return info->data;
306 }
307 
308 static inline void cluster_set_next(struct swap_cluster_info *info,
309 				    unsigned int n)
310 {
311 	info->data = n;
312 }
313 
314 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
315 					 unsigned int n, unsigned int f)
316 {
317 	info->flags = f;
318 	info->data = n;
319 }
320 
321 static inline bool cluster_is_free(struct swap_cluster_info *info)
322 {
323 	return info->flags & CLUSTER_FLAG_FREE;
324 }
325 
326 static inline bool cluster_is_null(struct swap_cluster_info *info)
327 {
328 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
329 }
330 
331 static inline void cluster_set_null(struct swap_cluster_info *info)
332 {
333 	info->flags = CLUSTER_FLAG_NEXT_NULL;
334 	info->data = 0;
335 }
336 
337 static inline bool cluster_is_huge(struct swap_cluster_info *info)
338 {
339 	if (IS_ENABLED(CONFIG_THP_SWAP))
340 		return info->flags & CLUSTER_FLAG_HUGE;
341 	return false;
342 }
343 
344 static inline void cluster_clear_huge(struct swap_cluster_info *info)
345 {
346 	info->flags &= ~CLUSTER_FLAG_HUGE;
347 }
348 
349 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
350 						     unsigned long offset)
351 {
352 	struct swap_cluster_info *ci;
353 
354 	ci = si->cluster_info;
355 	if (ci) {
356 		ci += offset / SWAPFILE_CLUSTER;
357 		spin_lock(&ci->lock);
358 	}
359 	return ci;
360 }
361 
362 static inline void unlock_cluster(struct swap_cluster_info *ci)
363 {
364 	if (ci)
365 		spin_unlock(&ci->lock);
366 }
367 
368 /*
369  * Determine the locking method in use for this device.  Return
370  * swap_cluster_info if SSD-style cluster-based locking is in place.
371  */
372 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
373 		struct swap_info_struct *si, unsigned long offset)
374 {
375 	struct swap_cluster_info *ci;
376 
377 	/* Try to use fine-grained SSD-style locking if available: */
378 	ci = lock_cluster(si, offset);
379 	/* Otherwise, fall back to traditional, coarse locking: */
380 	if (!ci)
381 		spin_lock(&si->lock);
382 
383 	return ci;
384 }
385 
386 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
387 					       struct swap_cluster_info *ci)
388 {
389 	if (ci)
390 		unlock_cluster(ci);
391 	else
392 		spin_unlock(&si->lock);
393 }
394 
395 static inline bool cluster_list_empty(struct swap_cluster_list *list)
396 {
397 	return cluster_is_null(&list->head);
398 }
399 
400 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
401 {
402 	return cluster_next(&list->head);
403 }
404 
405 static void cluster_list_init(struct swap_cluster_list *list)
406 {
407 	cluster_set_null(&list->head);
408 	cluster_set_null(&list->tail);
409 }
410 
411 static void cluster_list_add_tail(struct swap_cluster_list *list,
412 				  struct swap_cluster_info *ci,
413 				  unsigned int idx)
414 {
415 	if (cluster_list_empty(list)) {
416 		cluster_set_next_flag(&list->head, idx, 0);
417 		cluster_set_next_flag(&list->tail, idx, 0);
418 	} else {
419 		struct swap_cluster_info *ci_tail;
420 		unsigned int tail = cluster_next(&list->tail);
421 
422 		/*
423 		 * Nested cluster lock, but both cluster locks are
424 		 * only acquired when we held swap_info_struct->lock
425 		 */
426 		ci_tail = ci + tail;
427 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
428 		cluster_set_next(ci_tail, idx);
429 		spin_unlock(&ci_tail->lock);
430 		cluster_set_next_flag(&list->tail, idx, 0);
431 	}
432 }
433 
434 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
435 					   struct swap_cluster_info *ci)
436 {
437 	unsigned int idx;
438 
439 	idx = cluster_next(&list->head);
440 	if (cluster_next(&list->tail) == idx) {
441 		cluster_set_null(&list->head);
442 		cluster_set_null(&list->tail);
443 	} else
444 		cluster_set_next_flag(&list->head,
445 				      cluster_next(&ci[idx]), 0);
446 
447 	return idx;
448 }
449 
450 /* Add a cluster to discard list and schedule it to do discard */
451 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
452 		unsigned int idx)
453 {
454 	/*
455 	 * If scan_swap_map() can't find a free cluster, it will check
456 	 * si->swap_map directly. To make sure the discarding cluster isn't
457 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
458 	 * will be cleared after discard
459 	 */
460 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
461 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
462 
463 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
464 
465 	schedule_work(&si->discard_work);
466 }
467 
468 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
469 {
470 	struct swap_cluster_info *ci = si->cluster_info;
471 
472 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
473 	cluster_list_add_tail(&si->free_clusters, ci, idx);
474 }
475 
476 /*
477  * Doing discard actually. After a cluster discard is finished, the cluster
478  * will be added to free cluster list. caller should hold si->lock.
479 */
480 static void swap_do_scheduled_discard(struct swap_info_struct *si)
481 {
482 	struct swap_cluster_info *info, *ci;
483 	unsigned int idx;
484 
485 	info = si->cluster_info;
486 
487 	while (!cluster_list_empty(&si->discard_clusters)) {
488 		idx = cluster_list_del_first(&si->discard_clusters, info);
489 		spin_unlock(&si->lock);
490 
491 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
492 				SWAPFILE_CLUSTER);
493 
494 		spin_lock(&si->lock);
495 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
496 		__free_cluster(si, idx);
497 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
498 				0, SWAPFILE_CLUSTER);
499 		unlock_cluster(ci);
500 	}
501 }
502 
503 static void swap_discard_work(struct work_struct *work)
504 {
505 	struct swap_info_struct *si;
506 
507 	si = container_of(work, struct swap_info_struct, discard_work);
508 
509 	spin_lock(&si->lock);
510 	swap_do_scheduled_discard(si);
511 	spin_unlock(&si->lock);
512 }
513 
514 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
515 {
516 	struct swap_cluster_info *ci = si->cluster_info;
517 
518 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
519 	cluster_list_del_first(&si->free_clusters, ci);
520 	cluster_set_count_flag(ci + idx, 0, 0);
521 }
522 
523 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
524 {
525 	struct swap_cluster_info *ci = si->cluster_info + idx;
526 
527 	VM_BUG_ON(cluster_count(ci) != 0);
528 	/*
529 	 * If the swap is discardable, prepare discard the cluster
530 	 * instead of free it immediately. The cluster will be freed
531 	 * after discard.
532 	 */
533 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
534 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
535 		swap_cluster_schedule_discard(si, idx);
536 		return;
537 	}
538 
539 	__free_cluster(si, idx);
540 }
541 
542 /*
543  * The cluster corresponding to page_nr will be used. The cluster will be
544  * removed from free cluster list and its usage counter will be increased.
545  */
546 static void inc_cluster_info_page(struct swap_info_struct *p,
547 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
548 {
549 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
550 
551 	if (!cluster_info)
552 		return;
553 	if (cluster_is_free(&cluster_info[idx]))
554 		alloc_cluster(p, idx);
555 
556 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
557 	cluster_set_count(&cluster_info[idx],
558 		cluster_count(&cluster_info[idx]) + 1);
559 }
560 
561 /*
562  * The cluster corresponding to page_nr decreases one usage. If the usage
563  * counter becomes 0, which means no page in the cluster is in using, we can
564  * optionally discard the cluster and add it to free cluster list.
565  */
566 static void dec_cluster_info_page(struct swap_info_struct *p,
567 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
568 {
569 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
570 
571 	if (!cluster_info)
572 		return;
573 
574 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
575 	cluster_set_count(&cluster_info[idx],
576 		cluster_count(&cluster_info[idx]) - 1);
577 
578 	if (cluster_count(&cluster_info[idx]) == 0)
579 		free_cluster(p, idx);
580 }
581 
582 /*
583  * It's possible scan_swap_map() uses a free cluster in the middle of free
584  * cluster list. Avoiding such abuse to avoid list corruption.
585  */
586 static bool
587 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
588 	unsigned long offset)
589 {
590 	struct percpu_cluster *percpu_cluster;
591 	bool conflict;
592 
593 	offset /= SWAPFILE_CLUSTER;
594 	conflict = !cluster_list_empty(&si->free_clusters) &&
595 		offset != cluster_list_first(&si->free_clusters) &&
596 		cluster_is_free(&si->cluster_info[offset]);
597 
598 	if (!conflict)
599 		return false;
600 
601 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
602 	cluster_set_null(&percpu_cluster->index);
603 	return true;
604 }
605 
606 /*
607  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
608  * might involve allocating a new cluster for current CPU too.
609  */
610 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
611 	unsigned long *offset, unsigned long *scan_base)
612 {
613 	struct percpu_cluster *cluster;
614 	struct swap_cluster_info *ci;
615 	unsigned long tmp, max;
616 
617 new_cluster:
618 	cluster = this_cpu_ptr(si->percpu_cluster);
619 	if (cluster_is_null(&cluster->index)) {
620 		if (!cluster_list_empty(&si->free_clusters)) {
621 			cluster->index = si->free_clusters.head;
622 			cluster->next = cluster_next(&cluster->index) *
623 					SWAPFILE_CLUSTER;
624 		} else if (!cluster_list_empty(&si->discard_clusters)) {
625 			/*
626 			 * we don't have free cluster but have some clusters in
627 			 * discarding, do discard now and reclaim them, then
628 			 * reread cluster_next_cpu since we dropped si->lock
629 			 */
630 			swap_do_scheduled_discard(si);
631 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
632 			*offset = *scan_base;
633 			goto new_cluster;
634 		} else
635 			return false;
636 	}
637 
638 	/*
639 	 * Other CPUs can use our cluster if they can't find a free cluster,
640 	 * check if there is still free entry in the cluster
641 	 */
642 	tmp = cluster->next;
643 	max = min_t(unsigned long, si->max,
644 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
645 	if (tmp < max) {
646 		ci = lock_cluster(si, tmp);
647 		while (tmp < max) {
648 			if (!si->swap_map[tmp])
649 				break;
650 			tmp++;
651 		}
652 		unlock_cluster(ci);
653 	}
654 	if (tmp >= max) {
655 		cluster_set_null(&cluster->index);
656 		goto new_cluster;
657 	}
658 	cluster->next = tmp + 1;
659 	*offset = tmp;
660 	*scan_base = tmp;
661 	return true;
662 }
663 
664 static void __del_from_avail_list(struct swap_info_struct *p)
665 {
666 	int nid;
667 
668 	for_each_node(nid)
669 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
670 }
671 
672 static void del_from_avail_list(struct swap_info_struct *p)
673 {
674 	spin_lock(&swap_avail_lock);
675 	__del_from_avail_list(p);
676 	spin_unlock(&swap_avail_lock);
677 }
678 
679 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
680 			     unsigned int nr_entries)
681 {
682 	unsigned int end = offset + nr_entries - 1;
683 
684 	if (offset == si->lowest_bit)
685 		si->lowest_bit += nr_entries;
686 	if (end == si->highest_bit)
687 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
688 	si->inuse_pages += nr_entries;
689 	if (si->inuse_pages == si->pages) {
690 		si->lowest_bit = si->max;
691 		si->highest_bit = 0;
692 		del_from_avail_list(si);
693 	}
694 }
695 
696 static void add_to_avail_list(struct swap_info_struct *p)
697 {
698 	int nid;
699 
700 	spin_lock(&swap_avail_lock);
701 	for_each_node(nid) {
702 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
703 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
704 	}
705 	spin_unlock(&swap_avail_lock);
706 }
707 
708 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
709 			    unsigned int nr_entries)
710 {
711 	unsigned long begin = offset;
712 	unsigned long end = offset + nr_entries - 1;
713 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
714 
715 	if (offset < si->lowest_bit)
716 		si->lowest_bit = offset;
717 	if (end > si->highest_bit) {
718 		bool was_full = !si->highest_bit;
719 
720 		WRITE_ONCE(si->highest_bit, end);
721 		if (was_full && (si->flags & SWP_WRITEOK))
722 			add_to_avail_list(si);
723 	}
724 	atomic_long_add(nr_entries, &nr_swap_pages);
725 	si->inuse_pages -= nr_entries;
726 	if (si->flags & SWP_BLKDEV)
727 		swap_slot_free_notify =
728 			si->bdev->bd_disk->fops->swap_slot_free_notify;
729 	else
730 		swap_slot_free_notify = NULL;
731 	while (offset <= end) {
732 		arch_swap_invalidate_page(si->type, offset);
733 		frontswap_invalidate_page(si->type, offset);
734 		if (swap_slot_free_notify)
735 			swap_slot_free_notify(si->bdev, offset);
736 		offset++;
737 	}
738 	clear_shadow_from_swap_cache(si->type, begin, end);
739 }
740 
741 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
742 {
743 	unsigned long prev;
744 
745 	if (!(si->flags & SWP_SOLIDSTATE)) {
746 		si->cluster_next = next;
747 		return;
748 	}
749 
750 	prev = this_cpu_read(*si->cluster_next_cpu);
751 	/*
752 	 * Cross the swap address space size aligned trunk, choose
753 	 * another trunk randomly to avoid lock contention on swap
754 	 * address space if possible.
755 	 */
756 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
757 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
758 		/* No free swap slots available */
759 		if (si->highest_bit <= si->lowest_bit)
760 			return;
761 		next = si->lowest_bit +
762 			prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
763 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
764 		next = max_t(unsigned int, next, si->lowest_bit);
765 	}
766 	this_cpu_write(*si->cluster_next_cpu, next);
767 }
768 
769 static int scan_swap_map_slots(struct swap_info_struct *si,
770 			       unsigned char usage, int nr,
771 			       swp_entry_t slots[])
772 {
773 	struct swap_cluster_info *ci;
774 	unsigned long offset;
775 	unsigned long scan_base;
776 	unsigned long last_in_cluster = 0;
777 	int latency_ration = LATENCY_LIMIT;
778 	int n_ret = 0;
779 	bool scanned_many = false;
780 
781 	/*
782 	 * We try to cluster swap pages by allocating them sequentially
783 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
784 	 * way, however, we resort to first-free allocation, starting
785 	 * a new cluster.  This prevents us from scattering swap pages
786 	 * all over the entire swap partition, so that we reduce
787 	 * overall disk seek times between swap pages.  -- sct
788 	 * But we do now try to find an empty cluster.  -Andrea
789 	 * And we let swap pages go all over an SSD partition.  Hugh
790 	 */
791 
792 	si->flags += SWP_SCANNING;
793 	/*
794 	 * Use percpu scan base for SSD to reduce lock contention on
795 	 * cluster and swap cache.  For HDD, sequential access is more
796 	 * important.
797 	 */
798 	if (si->flags & SWP_SOLIDSTATE)
799 		scan_base = this_cpu_read(*si->cluster_next_cpu);
800 	else
801 		scan_base = si->cluster_next;
802 	offset = scan_base;
803 
804 	/* SSD algorithm */
805 	if (si->cluster_info) {
806 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
807 			goto scan;
808 	} else if (unlikely(!si->cluster_nr--)) {
809 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
810 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
811 			goto checks;
812 		}
813 
814 		spin_unlock(&si->lock);
815 
816 		/*
817 		 * If seek is expensive, start searching for new cluster from
818 		 * start of partition, to minimize the span of allocated swap.
819 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
820 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
821 		 */
822 		scan_base = offset = si->lowest_bit;
823 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
824 
825 		/* Locate the first empty (unaligned) cluster */
826 		for (; last_in_cluster <= si->highest_bit; offset++) {
827 			if (si->swap_map[offset])
828 				last_in_cluster = offset + SWAPFILE_CLUSTER;
829 			else if (offset == last_in_cluster) {
830 				spin_lock(&si->lock);
831 				offset -= SWAPFILE_CLUSTER - 1;
832 				si->cluster_next = offset;
833 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
834 				goto checks;
835 			}
836 			if (unlikely(--latency_ration < 0)) {
837 				cond_resched();
838 				latency_ration = LATENCY_LIMIT;
839 			}
840 		}
841 
842 		offset = scan_base;
843 		spin_lock(&si->lock);
844 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
845 	}
846 
847 checks:
848 	if (si->cluster_info) {
849 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
850 		/* take a break if we already got some slots */
851 			if (n_ret)
852 				goto done;
853 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
854 							&scan_base))
855 				goto scan;
856 		}
857 	}
858 	if (!(si->flags & SWP_WRITEOK))
859 		goto no_page;
860 	if (!si->highest_bit)
861 		goto no_page;
862 	if (offset > si->highest_bit)
863 		scan_base = offset = si->lowest_bit;
864 
865 	ci = lock_cluster(si, offset);
866 	/* reuse swap entry of cache-only swap if not busy. */
867 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
868 		int swap_was_freed;
869 		unlock_cluster(ci);
870 		spin_unlock(&si->lock);
871 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
872 		spin_lock(&si->lock);
873 		/* entry was freed successfully, try to use this again */
874 		if (swap_was_freed)
875 			goto checks;
876 		goto scan; /* check next one */
877 	}
878 
879 	if (si->swap_map[offset]) {
880 		unlock_cluster(ci);
881 		if (!n_ret)
882 			goto scan;
883 		else
884 			goto done;
885 	}
886 	WRITE_ONCE(si->swap_map[offset], usage);
887 	inc_cluster_info_page(si, si->cluster_info, offset);
888 	unlock_cluster(ci);
889 
890 	swap_range_alloc(si, offset, 1);
891 	slots[n_ret++] = swp_entry(si->type, offset);
892 
893 	/* got enough slots or reach max slots? */
894 	if ((n_ret == nr) || (offset >= si->highest_bit))
895 		goto done;
896 
897 	/* search for next available slot */
898 
899 	/* time to take a break? */
900 	if (unlikely(--latency_ration < 0)) {
901 		if (n_ret)
902 			goto done;
903 		spin_unlock(&si->lock);
904 		cond_resched();
905 		spin_lock(&si->lock);
906 		latency_ration = LATENCY_LIMIT;
907 	}
908 
909 	/* try to get more slots in cluster */
910 	if (si->cluster_info) {
911 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
912 			goto checks;
913 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
914 		/* non-ssd case, still more slots in cluster? */
915 		--si->cluster_nr;
916 		goto checks;
917 	}
918 
919 	/*
920 	 * Even if there's no free clusters available (fragmented),
921 	 * try to scan a little more quickly with lock held unless we
922 	 * have scanned too many slots already.
923 	 */
924 	if (!scanned_many) {
925 		unsigned long scan_limit;
926 
927 		if (offset < scan_base)
928 			scan_limit = scan_base;
929 		else
930 			scan_limit = si->highest_bit;
931 		for (; offset <= scan_limit && --latency_ration > 0;
932 		     offset++) {
933 			if (!si->swap_map[offset])
934 				goto checks;
935 		}
936 	}
937 
938 done:
939 	set_cluster_next(si, offset + 1);
940 	si->flags -= SWP_SCANNING;
941 	return n_ret;
942 
943 scan:
944 	spin_unlock(&si->lock);
945 	while (++offset <= READ_ONCE(si->highest_bit)) {
946 		if (data_race(!si->swap_map[offset])) {
947 			spin_lock(&si->lock);
948 			goto checks;
949 		}
950 		if (vm_swap_full() &&
951 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
952 			spin_lock(&si->lock);
953 			goto checks;
954 		}
955 		if (unlikely(--latency_ration < 0)) {
956 			cond_resched();
957 			latency_ration = LATENCY_LIMIT;
958 			scanned_many = true;
959 		}
960 	}
961 	offset = si->lowest_bit;
962 	while (offset < scan_base) {
963 		if (data_race(!si->swap_map[offset])) {
964 			spin_lock(&si->lock);
965 			goto checks;
966 		}
967 		if (vm_swap_full() &&
968 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
969 			spin_lock(&si->lock);
970 			goto checks;
971 		}
972 		if (unlikely(--latency_ration < 0)) {
973 			cond_resched();
974 			latency_ration = LATENCY_LIMIT;
975 			scanned_many = true;
976 		}
977 		offset++;
978 	}
979 	spin_lock(&si->lock);
980 
981 no_page:
982 	si->flags -= SWP_SCANNING;
983 	return n_ret;
984 }
985 
986 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
987 {
988 	unsigned long idx;
989 	struct swap_cluster_info *ci;
990 	unsigned long offset;
991 
992 	/*
993 	 * Should not even be attempting cluster allocations when huge
994 	 * page swap is disabled.  Warn and fail the allocation.
995 	 */
996 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
997 		VM_WARN_ON_ONCE(1);
998 		return 0;
999 	}
1000 
1001 	if (cluster_list_empty(&si->free_clusters))
1002 		return 0;
1003 
1004 	idx = cluster_list_first(&si->free_clusters);
1005 	offset = idx * SWAPFILE_CLUSTER;
1006 	ci = lock_cluster(si, offset);
1007 	alloc_cluster(si, idx);
1008 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1009 
1010 	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1011 	unlock_cluster(ci);
1012 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1013 	*slot = swp_entry(si->type, offset);
1014 
1015 	return 1;
1016 }
1017 
1018 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1019 {
1020 	unsigned long offset = idx * SWAPFILE_CLUSTER;
1021 	struct swap_cluster_info *ci;
1022 
1023 	ci = lock_cluster(si, offset);
1024 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1025 	cluster_set_count_flag(ci, 0, 0);
1026 	free_cluster(si, idx);
1027 	unlock_cluster(ci);
1028 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1029 }
1030 
1031 static unsigned long scan_swap_map(struct swap_info_struct *si,
1032 				   unsigned char usage)
1033 {
1034 	swp_entry_t entry;
1035 	int n_ret;
1036 
1037 	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1038 
1039 	if (n_ret)
1040 		return swp_offset(entry);
1041 	else
1042 		return 0;
1043 
1044 }
1045 
1046 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1047 {
1048 	unsigned long size = swap_entry_size(entry_size);
1049 	struct swap_info_struct *si, *next;
1050 	long avail_pgs;
1051 	int n_ret = 0;
1052 	int node;
1053 
1054 	/* Only single cluster request supported */
1055 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1056 
1057 	spin_lock(&swap_avail_lock);
1058 
1059 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1060 	if (avail_pgs <= 0) {
1061 		spin_unlock(&swap_avail_lock);
1062 		goto noswap;
1063 	}
1064 
1065 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1066 
1067 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1068 
1069 start_over:
1070 	node = numa_node_id();
1071 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1072 		/* requeue si to after same-priority siblings */
1073 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1074 		spin_unlock(&swap_avail_lock);
1075 		spin_lock(&si->lock);
1076 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1077 			spin_lock(&swap_avail_lock);
1078 			if (plist_node_empty(&si->avail_lists[node])) {
1079 				spin_unlock(&si->lock);
1080 				goto nextsi;
1081 			}
1082 			WARN(!si->highest_bit,
1083 			     "swap_info %d in list but !highest_bit\n",
1084 			     si->type);
1085 			WARN(!(si->flags & SWP_WRITEOK),
1086 			     "swap_info %d in list but !SWP_WRITEOK\n",
1087 			     si->type);
1088 			__del_from_avail_list(si);
1089 			spin_unlock(&si->lock);
1090 			goto nextsi;
1091 		}
1092 		if (size == SWAPFILE_CLUSTER) {
1093 			if (si->flags & SWP_BLKDEV)
1094 				n_ret = swap_alloc_cluster(si, swp_entries);
1095 		} else
1096 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1097 						    n_goal, swp_entries);
1098 		spin_unlock(&si->lock);
1099 		if (n_ret || size == SWAPFILE_CLUSTER)
1100 			goto check_out;
1101 		pr_debug("scan_swap_map of si %d failed to find offset\n",
1102 			si->type);
1103 
1104 		spin_lock(&swap_avail_lock);
1105 nextsi:
1106 		/*
1107 		 * if we got here, it's likely that si was almost full before,
1108 		 * and since scan_swap_map() can drop the si->lock, multiple
1109 		 * callers probably all tried to get a page from the same si
1110 		 * and it filled up before we could get one; or, the si filled
1111 		 * up between us dropping swap_avail_lock and taking si->lock.
1112 		 * Since we dropped the swap_avail_lock, the swap_avail_head
1113 		 * list may have been modified; so if next is still in the
1114 		 * swap_avail_head list then try it, otherwise start over
1115 		 * if we have not gotten any slots.
1116 		 */
1117 		if (plist_node_empty(&next->avail_lists[node]))
1118 			goto start_over;
1119 	}
1120 
1121 	spin_unlock(&swap_avail_lock);
1122 
1123 check_out:
1124 	if (n_ret < n_goal)
1125 		atomic_long_add((long)(n_goal - n_ret) * size,
1126 				&nr_swap_pages);
1127 noswap:
1128 	return n_ret;
1129 }
1130 
1131 /* The only caller of this function is now suspend routine */
1132 swp_entry_t get_swap_page_of_type(int type)
1133 {
1134 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1135 	pgoff_t offset;
1136 
1137 	if (!si)
1138 		goto fail;
1139 
1140 	spin_lock(&si->lock);
1141 	if (si->flags & SWP_WRITEOK) {
1142 		/* This is called for allocating swap entry, not cache */
1143 		offset = scan_swap_map(si, 1);
1144 		if (offset) {
1145 			atomic_long_dec(&nr_swap_pages);
1146 			spin_unlock(&si->lock);
1147 			return swp_entry(type, offset);
1148 		}
1149 	}
1150 	spin_unlock(&si->lock);
1151 fail:
1152 	return (swp_entry_t) {0};
1153 }
1154 
1155 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1156 {
1157 	struct swap_info_struct *p;
1158 	unsigned long offset;
1159 
1160 	if (!entry.val)
1161 		goto out;
1162 	p = swp_swap_info(entry);
1163 	if (!p)
1164 		goto bad_nofile;
1165 	if (data_race(!(p->flags & SWP_USED)))
1166 		goto bad_device;
1167 	offset = swp_offset(entry);
1168 	if (offset >= p->max)
1169 		goto bad_offset;
1170 	return p;
1171 
1172 bad_offset:
1173 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1174 	goto out;
1175 bad_device:
1176 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1177 	goto out;
1178 bad_nofile:
1179 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1180 out:
1181 	return NULL;
1182 }
1183 
1184 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1185 {
1186 	struct swap_info_struct *p;
1187 
1188 	p = __swap_info_get(entry);
1189 	if (!p)
1190 		goto out;
1191 	if (data_race(!p->swap_map[swp_offset(entry)]))
1192 		goto bad_free;
1193 	return p;
1194 
1195 bad_free:
1196 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1197 out:
1198 	return NULL;
1199 }
1200 
1201 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1202 {
1203 	struct swap_info_struct *p;
1204 
1205 	p = _swap_info_get(entry);
1206 	if (p)
1207 		spin_lock(&p->lock);
1208 	return p;
1209 }
1210 
1211 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1212 					struct swap_info_struct *q)
1213 {
1214 	struct swap_info_struct *p;
1215 
1216 	p = _swap_info_get(entry);
1217 
1218 	if (p != q) {
1219 		if (q != NULL)
1220 			spin_unlock(&q->lock);
1221 		if (p != NULL)
1222 			spin_lock(&p->lock);
1223 	}
1224 	return p;
1225 }
1226 
1227 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1228 					      unsigned long offset,
1229 					      unsigned char usage)
1230 {
1231 	unsigned char count;
1232 	unsigned char has_cache;
1233 
1234 	count = p->swap_map[offset];
1235 
1236 	has_cache = count & SWAP_HAS_CACHE;
1237 	count &= ~SWAP_HAS_CACHE;
1238 
1239 	if (usage == SWAP_HAS_CACHE) {
1240 		VM_BUG_ON(!has_cache);
1241 		has_cache = 0;
1242 	} else if (count == SWAP_MAP_SHMEM) {
1243 		/*
1244 		 * Or we could insist on shmem.c using a special
1245 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1246 		 */
1247 		count = 0;
1248 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1249 		if (count == COUNT_CONTINUED) {
1250 			if (swap_count_continued(p, offset, count))
1251 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1252 			else
1253 				count = SWAP_MAP_MAX;
1254 		} else
1255 			count--;
1256 	}
1257 
1258 	usage = count | has_cache;
1259 	if (usage)
1260 		WRITE_ONCE(p->swap_map[offset], usage);
1261 	else
1262 		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1263 
1264 	return usage;
1265 }
1266 
1267 /*
1268  * Check whether swap entry is valid in the swap device.  If so,
1269  * return pointer to swap_info_struct, and keep the swap entry valid
1270  * via preventing the swap device from being swapoff, until
1271  * put_swap_device() is called.  Otherwise return NULL.
1272  *
1273  * The entirety of the RCU read critical section must come before the
1274  * return from or after the call to synchronize_rcu() in
1275  * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1276  * true, the si->map, si->cluster_info, etc. must be valid in the
1277  * critical section.
1278  *
1279  * Notice that swapoff or swapoff+swapon can still happen before the
1280  * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1281  * in put_swap_device() if there isn't any other way to prevent
1282  * swapoff, such as page lock, page table lock, etc.  The caller must
1283  * be prepared for that.  For example, the following situation is
1284  * possible.
1285  *
1286  *   CPU1				CPU2
1287  *   do_swap_page()
1288  *     ...				swapoff+swapon
1289  *     __read_swap_cache_async()
1290  *       swapcache_prepare()
1291  *         __swap_duplicate()
1292  *           // check swap_map
1293  *     // verify PTE not changed
1294  *
1295  * In __swap_duplicate(), the swap_map need to be checked before
1296  * changing partly because the specified swap entry may be for another
1297  * swap device which has been swapoff.  And in do_swap_page(), after
1298  * the page is read from the swap device, the PTE is verified not
1299  * changed with the page table locked to check whether the swap device
1300  * has been swapoff or swapoff+swapon.
1301  */
1302 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1303 {
1304 	struct swap_info_struct *si;
1305 	unsigned long offset;
1306 
1307 	if (!entry.val)
1308 		goto out;
1309 	si = swp_swap_info(entry);
1310 	if (!si)
1311 		goto bad_nofile;
1312 
1313 	rcu_read_lock();
1314 	if (data_race(!(si->flags & SWP_VALID)))
1315 		goto unlock_out;
1316 	offset = swp_offset(entry);
1317 	if (offset >= si->max)
1318 		goto unlock_out;
1319 
1320 	return si;
1321 bad_nofile:
1322 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1323 out:
1324 	return NULL;
1325 unlock_out:
1326 	rcu_read_unlock();
1327 	return NULL;
1328 }
1329 
1330 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1331 				       swp_entry_t entry)
1332 {
1333 	struct swap_cluster_info *ci;
1334 	unsigned long offset = swp_offset(entry);
1335 	unsigned char usage;
1336 
1337 	ci = lock_cluster_or_swap_info(p, offset);
1338 	usage = __swap_entry_free_locked(p, offset, 1);
1339 	unlock_cluster_or_swap_info(p, ci);
1340 	if (!usage)
1341 		free_swap_slot(entry);
1342 
1343 	return usage;
1344 }
1345 
1346 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1347 {
1348 	struct swap_cluster_info *ci;
1349 	unsigned long offset = swp_offset(entry);
1350 	unsigned char count;
1351 
1352 	ci = lock_cluster(p, offset);
1353 	count = p->swap_map[offset];
1354 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1355 	p->swap_map[offset] = 0;
1356 	dec_cluster_info_page(p, p->cluster_info, offset);
1357 	unlock_cluster(ci);
1358 
1359 	mem_cgroup_uncharge_swap(entry, 1);
1360 	swap_range_free(p, offset, 1);
1361 }
1362 
1363 /*
1364  * Caller has made sure that the swap device corresponding to entry
1365  * is still around or has not been recycled.
1366  */
1367 void swap_free(swp_entry_t entry)
1368 {
1369 	struct swap_info_struct *p;
1370 
1371 	p = _swap_info_get(entry);
1372 	if (p)
1373 		__swap_entry_free(p, entry);
1374 }
1375 
1376 /*
1377  * Called after dropping swapcache to decrease refcnt to swap entries.
1378  */
1379 void put_swap_page(struct page *page, swp_entry_t entry)
1380 {
1381 	unsigned long offset = swp_offset(entry);
1382 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1383 	struct swap_cluster_info *ci;
1384 	struct swap_info_struct *si;
1385 	unsigned char *map;
1386 	unsigned int i, free_entries = 0;
1387 	unsigned char val;
1388 	int size = swap_entry_size(thp_nr_pages(page));
1389 
1390 	si = _swap_info_get(entry);
1391 	if (!si)
1392 		return;
1393 
1394 	ci = lock_cluster_or_swap_info(si, offset);
1395 	if (size == SWAPFILE_CLUSTER) {
1396 		VM_BUG_ON(!cluster_is_huge(ci));
1397 		map = si->swap_map + offset;
1398 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1399 			val = map[i];
1400 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1401 			if (val == SWAP_HAS_CACHE)
1402 				free_entries++;
1403 		}
1404 		cluster_clear_huge(ci);
1405 		if (free_entries == SWAPFILE_CLUSTER) {
1406 			unlock_cluster_or_swap_info(si, ci);
1407 			spin_lock(&si->lock);
1408 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1409 			swap_free_cluster(si, idx);
1410 			spin_unlock(&si->lock);
1411 			return;
1412 		}
1413 	}
1414 	for (i = 0; i < size; i++, entry.val++) {
1415 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1416 			unlock_cluster_or_swap_info(si, ci);
1417 			free_swap_slot(entry);
1418 			if (i == size - 1)
1419 				return;
1420 			lock_cluster_or_swap_info(si, offset);
1421 		}
1422 	}
1423 	unlock_cluster_or_swap_info(si, ci);
1424 }
1425 
1426 #ifdef CONFIG_THP_SWAP
1427 int split_swap_cluster(swp_entry_t entry)
1428 {
1429 	struct swap_info_struct *si;
1430 	struct swap_cluster_info *ci;
1431 	unsigned long offset = swp_offset(entry);
1432 
1433 	si = _swap_info_get(entry);
1434 	if (!si)
1435 		return -EBUSY;
1436 	ci = lock_cluster(si, offset);
1437 	cluster_clear_huge(ci);
1438 	unlock_cluster(ci);
1439 	return 0;
1440 }
1441 #endif
1442 
1443 static int swp_entry_cmp(const void *ent1, const void *ent2)
1444 {
1445 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1446 
1447 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1448 }
1449 
1450 void swapcache_free_entries(swp_entry_t *entries, int n)
1451 {
1452 	struct swap_info_struct *p, *prev;
1453 	int i;
1454 
1455 	if (n <= 0)
1456 		return;
1457 
1458 	prev = NULL;
1459 	p = NULL;
1460 
1461 	/*
1462 	 * Sort swap entries by swap device, so each lock is only taken once.
1463 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1464 	 * so low that it isn't necessary to optimize further.
1465 	 */
1466 	if (nr_swapfiles > 1)
1467 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1468 	for (i = 0; i < n; ++i) {
1469 		p = swap_info_get_cont(entries[i], prev);
1470 		if (p)
1471 			swap_entry_free(p, entries[i]);
1472 		prev = p;
1473 	}
1474 	if (p)
1475 		spin_unlock(&p->lock);
1476 }
1477 
1478 /*
1479  * How many references to page are currently swapped out?
1480  * This does not give an exact answer when swap count is continued,
1481  * but does include the high COUNT_CONTINUED flag to allow for that.
1482  */
1483 int page_swapcount(struct page *page)
1484 {
1485 	int count = 0;
1486 	struct swap_info_struct *p;
1487 	struct swap_cluster_info *ci;
1488 	swp_entry_t entry;
1489 	unsigned long offset;
1490 
1491 	entry.val = page_private(page);
1492 	p = _swap_info_get(entry);
1493 	if (p) {
1494 		offset = swp_offset(entry);
1495 		ci = lock_cluster_or_swap_info(p, offset);
1496 		count = swap_count(p->swap_map[offset]);
1497 		unlock_cluster_or_swap_info(p, ci);
1498 	}
1499 	return count;
1500 }
1501 
1502 int __swap_count(swp_entry_t entry)
1503 {
1504 	struct swap_info_struct *si;
1505 	pgoff_t offset = swp_offset(entry);
1506 	int count = 0;
1507 
1508 	si = get_swap_device(entry);
1509 	if (si) {
1510 		count = swap_count(si->swap_map[offset]);
1511 		put_swap_device(si);
1512 	}
1513 	return count;
1514 }
1515 
1516 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1517 {
1518 	int count = 0;
1519 	pgoff_t offset = swp_offset(entry);
1520 	struct swap_cluster_info *ci;
1521 
1522 	ci = lock_cluster_or_swap_info(si, offset);
1523 	count = swap_count(si->swap_map[offset]);
1524 	unlock_cluster_or_swap_info(si, ci);
1525 	return count;
1526 }
1527 
1528 /*
1529  * How many references to @entry are currently swapped out?
1530  * This does not give an exact answer when swap count is continued,
1531  * but does include the high COUNT_CONTINUED flag to allow for that.
1532  */
1533 int __swp_swapcount(swp_entry_t entry)
1534 {
1535 	int count = 0;
1536 	struct swap_info_struct *si;
1537 
1538 	si = get_swap_device(entry);
1539 	if (si) {
1540 		count = swap_swapcount(si, entry);
1541 		put_swap_device(si);
1542 	}
1543 	return count;
1544 }
1545 
1546 /*
1547  * How many references to @entry are currently swapped out?
1548  * This considers COUNT_CONTINUED so it returns exact answer.
1549  */
1550 int swp_swapcount(swp_entry_t entry)
1551 {
1552 	int count, tmp_count, n;
1553 	struct swap_info_struct *p;
1554 	struct swap_cluster_info *ci;
1555 	struct page *page;
1556 	pgoff_t offset;
1557 	unsigned char *map;
1558 
1559 	p = _swap_info_get(entry);
1560 	if (!p)
1561 		return 0;
1562 
1563 	offset = swp_offset(entry);
1564 
1565 	ci = lock_cluster_or_swap_info(p, offset);
1566 
1567 	count = swap_count(p->swap_map[offset]);
1568 	if (!(count & COUNT_CONTINUED))
1569 		goto out;
1570 
1571 	count &= ~COUNT_CONTINUED;
1572 	n = SWAP_MAP_MAX + 1;
1573 
1574 	page = vmalloc_to_page(p->swap_map + offset);
1575 	offset &= ~PAGE_MASK;
1576 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1577 
1578 	do {
1579 		page = list_next_entry(page, lru);
1580 		map = kmap_atomic(page);
1581 		tmp_count = map[offset];
1582 		kunmap_atomic(map);
1583 
1584 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1585 		n *= (SWAP_CONT_MAX + 1);
1586 	} while (tmp_count & COUNT_CONTINUED);
1587 out:
1588 	unlock_cluster_or_swap_info(p, ci);
1589 	return count;
1590 }
1591 
1592 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1593 					 swp_entry_t entry)
1594 {
1595 	struct swap_cluster_info *ci;
1596 	unsigned char *map = si->swap_map;
1597 	unsigned long roffset = swp_offset(entry);
1598 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1599 	int i;
1600 	bool ret = false;
1601 
1602 	ci = lock_cluster_or_swap_info(si, offset);
1603 	if (!ci || !cluster_is_huge(ci)) {
1604 		if (swap_count(map[roffset]))
1605 			ret = true;
1606 		goto unlock_out;
1607 	}
1608 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1609 		if (swap_count(map[offset + i])) {
1610 			ret = true;
1611 			break;
1612 		}
1613 	}
1614 unlock_out:
1615 	unlock_cluster_or_swap_info(si, ci);
1616 	return ret;
1617 }
1618 
1619 static bool page_swapped(struct page *page)
1620 {
1621 	swp_entry_t entry;
1622 	struct swap_info_struct *si;
1623 
1624 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1625 		return page_swapcount(page) != 0;
1626 
1627 	page = compound_head(page);
1628 	entry.val = page_private(page);
1629 	si = _swap_info_get(entry);
1630 	if (si)
1631 		return swap_page_trans_huge_swapped(si, entry);
1632 	return false;
1633 }
1634 
1635 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1636 					 int *total_swapcount)
1637 {
1638 	int i, map_swapcount, _total_mapcount, _total_swapcount;
1639 	unsigned long offset = 0;
1640 	struct swap_info_struct *si;
1641 	struct swap_cluster_info *ci = NULL;
1642 	unsigned char *map = NULL;
1643 	int mapcount, swapcount = 0;
1644 
1645 	/* hugetlbfs shouldn't call it */
1646 	VM_BUG_ON_PAGE(PageHuge(page), page);
1647 
1648 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1649 		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1650 		if (PageSwapCache(page))
1651 			swapcount = page_swapcount(page);
1652 		if (total_swapcount)
1653 			*total_swapcount = swapcount;
1654 		return mapcount + swapcount;
1655 	}
1656 
1657 	page = compound_head(page);
1658 
1659 	_total_mapcount = _total_swapcount = map_swapcount = 0;
1660 	if (PageSwapCache(page)) {
1661 		swp_entry_t entry;
1662 
1663 		entry.val = page_private(page);
1664 		si = _swap_info_get(entry);
1665 		if (si) {
1666 			map = si->swap_map;
1667 			offset = swp_offset(entry);
1668 		}
1669 	}
1670 	if (map)
1671 		ci = lock_cluster(si, offset);
1672 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1673 		mapcount = atomic_read(&page[i]._mapcount) + 1;
1674 		_total_mapcount += mapcount;
1675 		if (map) {
1676 			swapcount = swap_count(map[offset + i]);
1677 			_total_swapcount += swapcount;
1678 		}
1679 		map_swapcount = max(map_swapcount, mapcount + swapcount);
1680 	}
1681 	unlock_cluster(ci);
1682 	if (PageDoubleMap(page)) {
1683 		map_swapcount -= 1;
1684 		_total_mapcount -= HPAGE_PMD_NR;
1685 	}
1686 	mapcount = compound_mapcount(page);
1687 	map_swapcount += mapcount;
1688 	_total_mapcount += mapcount;
1689 	if (total_mapcount)
1690 		*total_mapcount = _total_mapcount;
1691 	if (total_swapcount)
1692 		*total_swapcount = _total_swapcount;
1693 
1694 	return map_swapcount;
1695 }
1696 
1697 /*
1698  * We can write to an anon page without COW if there are no other references
1699  * to it.  And as a side-effect, free up its swap: because the old content
1700  * on disk will never be read, and seeking back there to write new content
1701  * later would only waste time away from clustering.
1702  *
1703  * NOTE: total_map_swapcount should not be relied upon by the caller if
1704  * reuse_swap_page() returns false, but it may be always overwritten
1705  * (see the other implementation for CONFIG_SWAP=n).
1706  */
1707 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1708 {
1709 	int count, total_mapcount, total_swapcount;
1710 
1711 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1712 	if (unlikely(PageKsm(page)))
1713 		return false;
1714 	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1715 					      &total_swapcount);
1716 	if (total_map_swapcount)
1717 		*total_map_swapcount = total_mapcount + total_swapcount;
1718 	if (count == 1 && PageSwapCache(page) &&
1719 	    (likely(!PageTransCompound(page)) ||
1720 	     /* The remaining swap count will be freed soon */
1721 	     total_swapcount == page_swapcount(page))) {
1722 		if (!PageWriteback(page)) {
1723 			page = compound_head(page);
1724 			delete_from_swap_cache(page);
1725 			SetPageDirty(page);
1726 		} else {
1727 			swp_entry_t entry;
1728 			struct swap_info_struct *p;
1729 
1730 			entry.val = page_private(page);
1731 			p = swap_info_get(entry);
1732 			if (p->flags & SWP_STABLE_WRITES) {
1733 				spin_unlock(&p->lock);
1734 				return false;
1735 			}
1736 			spin_unlock(&p->lock);
1737 		}
1738 	}
1739 
1740 	return count <= 1;
1741 }
1742 
1743 /*
1744  * If swap is getting full, or if there are no more mappings of this page,
1745  * then try_to_free_swap is called to free its swap space.
1746  */
1747 int try_to_free_swap(struct page *page)
1748 {
1749 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1750 
1751 	if (!PageSwapCache(page))
1752 		return 0;
1753 	if (PageWriteback(page))
1754 		return 0;
1755 	if (page_swapped(page))
1756 		return 0;
1757 
1758 	/*
1759 	 * Once hibernation has begun to create its image of memory,
1760 	 * there's a danger that one of the calls to try_to_free_swap()
1761 	 * - most probably a call from __try_to_reclaim_swap() while
1762 	 * hibernation is allocating its own swap pages for the image,
1763 	 * but conceivably even a call from memory reclaim - will free
1764 	 * the swap from a page which has already been recorded in the
1765 	 * image as a clean swapcache page, and then reuse its swap for
1766 	 * another page of the image.  On waking from hibernation, the
1767 	 * original page might be freed under memory pressure, then
1768 	 * later read back in from swap, now with the wrong data.
1769 	 *
1770 	 * Hibernation suspends storage while it is writing the image
1771 	 * to disk so check that here.
1772 	 */
1773 	if (pm_suspended_storage())
1774 		return 0;
1775 
1776 	page = compound_head(page);
1777 	delete_from_swap_cache(page);
1778 	SetPageDirty(page);
1779 	return 1;
1780 }
1781 
1782 /*
1783  * Free the swap entry like above, but also try to
1784  * free the page cache entry if it is the last user.
1785  */
1786 int free_swap_and_cache(swp_entry_t entry)
1787 {
1788 	struct swap_info_struct *p;
1789 	unsigned char count;
1790 
1791 	if (non_swap_entry(entry))
1792 		return 1;
1793 
1794 	p = _swap_info_get(entry);
1795 	if (p) {
1796 		count = __swap_entry_free(p, entry);
1797 		if (count == SWAP_HAS_CACHE &&
1798 		    !swap_page_trans_huge_swapped(p, entry))
1799 			__try_to_reclaim_swap(p, swp_offset(entry),
1800 					      TTRS_UNMAPPED | TTRS_FULL);
1801 	}
1802 	return p != NULL;
1803 }
1804 
1805 #ifdef CONFIG_HIBERNATION
1806 /*
1807  * Find the swap type that corresponds to given device (if any).
1808  *
1809  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1810  * from 0, in which the swap header is expected to be located.
1811  *
1812  * This is needed for the suspend to disk (aka swsusp).
1813  */
1814 int swap_type_of(dev_t device, sector_t offset)
1815 {
1816 	int type;
1817 
1818 	if (!device)
1819 		return -1;
1820 
1821 	spin_lock(&swap_lock);
1822 	for (type = 0; type < nr_swapfiles; type++) {
1823 		struct swap_info_struct *sis = swap_info[type];
1824 
1825 		if (!(sis->flags & SWP_WRITEOK))
1826 			continue;
1827 
1828 		if (device == sis->bdev->bd_dev) {
1829 			struct swap_extent *se = first_se(sis);
1830 
1831 			if (se->start_block == offset) {
1832 				spin_unlock(&swap_lock);
1833 				return type;
1834 			}
1835 		}
1836 	}
1837 	spin_unlock(&swap_lock);
1838 	return -ENODEV;
1839 }
1840 
1841 int find_first_swap(dev_t *device)
1842 {
1843 	int type;
1844 
1845 	spin_lock(&swap_lock);
1846 	for (type = 0; type < nr_swapfiles; type++) {
1847 		struct swap_info_struct *sis = swap_info[type];
1848 
1849 		if (!(sis->flags & SWP_WRITEOK))
1850 			continue;
1851 		*device = sis->bdev->bd_dev;
1852 		spin_unlock(&swap_lock);
1853 		return type;
1854 	}
1855 	spin_unlock(&swap_lock);
1856 	return -ENODEV;
1857 }
1858 
1859 /*
1860  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1861  * corresponding to given index in swap_info (swap type).
1862  */
1863 sector_t swapdev_block(int type, pgoff_t offset)
1864 {
1865 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1866 	struct swap_extent *se;
1867 
1868 	if (!si || !(si->flags & SWP_WRITEOK))
1869 		return 0;
1870 	se = offset_to_swap_extent(si, offset);
1871 	return se->start_block + (offset - se->start_page);
1872 }
1873 
1874 /*
1875  * Return either the total number of swap pages of given type, or the number
1876  * of free pages of that type (depending on @free)
1877  *
1878  * This is needed for software suspend
1879  */
1880 unsigned int count_swap_pages(int type, int free)
1881 {
1882 	unsigned int n = 0;
1883 
1884 	spin_lock(&swap_lock);
1885 	if ((unsigned int)type < nr_swapfiles) {
1886 		struct swap_info_struct *sis = swap_info[type];
1887 
1888 		spin_lock(&sis->lock);
1889 		if (sis->flags & SWP_WRITEOK) {
1890 			n = sis->pages;
1891 			if (free)
1892 				n -= sis->inuse_pages;
1893 		}
1894 		spin_unlock(&sis->lock);
1895 	}
1896 	spin_unlock(&swap_lock);
1897 	return n;
1898 }
1899 #endif /* CONFIG_HIBERNATION */
1900 
1901 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1902 {
1903 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1904 }
1905 
1906 /*
1907  * No need to decide whether this PTE shares the swap entry with others,
1908  * just let do_wp_page work it out if a write is requested later - to
1909  * force COW, vm_page_prot omits write permission from any private vma.
1910  */
1911 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1912 		unsigned long addr, swp_entry_t entry, struct page *page)
1913 {
1914 	struct page *swapcache;
1915 	spinlock_t *ptl;
1916 	pte_t *pte;
1917 	int ret = 1;
1918 
1919 	swapcache = page;
1920 	page = ksm_might_need_to_copy(page, vma, addr);
1921 	if (unlikely(!page))
1922 		return -ENOMEM;
1923 
1924 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1925 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1926 		ret = 0;
1927 		goto out;
1928 	}
1929 
1930 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1931 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1932 	get_page(page);
1933 	set_pte_at(vma->vm_mm, addr, pte,
1934 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1935 	if (page == swapcache) {
1936 		page_add_anon_rmap(page, vma, addr, false);
1937 	} else { /* ksm created a completely new copy */
1938 		page_add_new_anon_rmap(page, vma, addr, false);
1939 		lru_cache_add_inactive_or_unevictable(page, vma);
1940 	}
1941 	swap_free(entry);
1942 out:
1943 	pte_unmap_unlock(pte, ptl);
1944 	if (page != swapcache) {
1945 		unlock_page(page);
1946 		put_page(page);
1947 	}
1948 	return ret;
1949 }
1950 
1951 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1952 			unsigned long addr, unsigned long end,
1953 			unsigned int type, bool frontswap,
1954 			unsigned long *fs_pages_to_unuse)
1955 {
1956 	struct page *page;
1957 	swp_entry_t entry;
1958 	pte_t *pte;
1959 	struct swap_info_struct *si;
1960 	unsigned long offset;
1961 	int ret = 0;
1962 	volatile unsigned char *swap_map;
1963 
1964 	si = swap_info[type];
1965 	pte = pte_offset_map(pmd, addr);
1966 	do {
1967 		if (!is_swap_pte(*pte))
1968 			continue;
1969 
1970 		entry = pte_to_swp_entry(*pte);
1971 		if (swp_type(entry) != type)
1972 			continue;
1973 
1974 		offset = swp_offset(entry);
1975 		if (frontswap && !frontswap_test(si, offset))
1976 			continue;
1977 
1978 		pte_unmap(pte);
1979 		swap_map = &si->swap_map[offset];
1980 		page = lookup_swap_cache(entry, vma, addr);
1981 		if (!page) {
1982 			struct vm_fault vmf = {
1983 				.vma = vma,
1984 				.address = addr,
1985 				.pmd = pmd,
1986 			};
1987 
1988 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1989 						&vmf);
1990 		}
1991 		if (!page) {
1992 			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1993 				goto try_next;
1994 			return -ENOMEM;
1995 		}
1996 
1997 		lock_page(page);
1998 		wait_on_page_writeback(page);
1999 		ret = unuse_pte(vma, pmd, addr, entry, page);
2000 		if (ret < 0) {
2001 			unlock_page(page);
2002 			put_page(page);
2003 			goto out;
2004 		}
2005 
2006 		try_to_free_swap(page);
2007 		unlock_page(page);
2008 		put_page(page);
2009 
2010 		if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
2011 			ret = FRONTSWAP_PAGES_UNUSED;
2012 			goto out;
2013 		}
2014 try_next:
2015 		pte = pte_offset_map(pmd, addr);
2016 	} while (pte++, addr += PAGE_SIZE, addr != end);
2017 	pte_unmap(pte - 1);
2018 
2019 	ret = 0;
2020 out:
2021 	return ret;
2022 }
2023 
2024 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2025 				unsigned long addr, unsigned long end,
2026 				unsigned int type, bool frontswap,
2027 				unsigned long *fs_pages_to_unuse)
2028 {
2029 	pmd_t *pmd;
2030 	unsigned long next;
2031 	int ret;
2032 
2033 	pmd = pmd_offset(pud, addr);
2034 	do {
2035 		cond_resched();
2036 		next = pmd_addr_end(addr, end);
2037 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2038 			continue;
2039 		ret = unuse_pte_range(vma, pmd, addr, next, type,
2040 				      frontswap, fs_pages_to_unuse);
2041 		if (ret)
2042 			return ret;
2043 	} while (pmd++, addr = next, addr != end);
2044 	return 0;
2045 }
2046 
2047 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2048 				unsigned long addr, unsigned long end,
2049 				unsigned int type, bool frontswap,
2050 				unsigned long *fs_pages_to_unuse)
2051 {
2052 	pud_t *pud;
2053 	unsigned long next;
2054 	int ret;
2055 
2056 	pud = pud_offset(p4d, addr);
2057 	do {
2058 		next = pud_addr_end(addr, end);
2059 		if (pud_none_or_clear_bad(pud))
2060 			continue;
2061 		ret = unuse_pmd_range(vma, pud, addr, next, type,
2062 				      frontswap, fs_pages_to_unuse);
2063 		if (ret)
2064 			return ret;
2065 	} while (pud++, addr = next, addr != end);
2066 	return 0;
2067 }
2068 
2069 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2070 				unsigned long addr, unsigned long end,
2071 				unsigned int type, bool frontswap,
2072 				unsigned long *fs_pages_to_unuse)
2073 {
2074 	p4d_t *p4d;
2075 	unsigned long next;
2076 	int ret;
2077 
2078 	p4d = p4d_offset(pgd, addr);
2079 	do {
2080 		next = p4d_addr_end(addr, end);
2081 		if (p4d_none_or_clear_bad(p4d))
2082 			continue;
2083 		ret = unuse_pud_range(vma, p4d, addr, next, type,
2084 				      frontswap, fs_pages_to_unuse);
2085 		if (ret)
2086 			return ret;
2087 	} while (p4d++, addr = next, addr != end);
2088 	return 0;
2089 }
2090 
2091 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2092 		     bool frontswap, unsigned long *fs_pages_to_unuse)
2093 {
2094 	pgd_t *pgd;
2095 	unsigned long addr, end, next;
2096 	int ret;
2097 
2098 	addr = vma->vm_start;
2099 	end = vma->vm_end;
2100 
2101 	pgd = pgd_offset(vma->vm_mm, addr);
2102 	do {
2103 		next = pgd_addr_end(addr, end);
2104 		if (pgd_none_or_clear_bad(pgd))
2105 			continue;
2106 		ret = unuse_p4d_range(vma, pgd, addr, next, type,
2107 				      frontswap, fs_pages_to_unuse);
2108 		if (ret)
2109 			return ret;
2110 	} while (pgd++, addr = next, addr != end);
2111 	return 0;
2112 }
2113 
2114 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2115 		    bool frontswap, unsigned long *fs_pages_to_unuse)
2116 {
2117 	struct vm_area_struct *vma;
2118 	int ret = 0;
2119 
2120 	mmap_read_lock(mm);
2121 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2122 		if (vma->anon_vma) {
2123 			ret = unuse_vma(vma, type, frontswap,
2124 					fs_pages_to_unuse);
2125 			if (ret)
2126 				break;
2127 		}
2128 		cond_resched();
2129 	}
2130 	mmap_read_unlock(mm);
2131 	return ret;
2132 }
2133 
2134 /*
2135  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2136  * from current position to next entry still in use. Return 0
2137  * if there are no inuse entries after prev till end of the map.
2138  */
2139 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2140 					unsigned int prev, bool frontswap)
2141 {
2142 	unsigned int i;
2143 	unsigned char count;
2144 
2145 	/*
2146 	 * No need for swap_lock here: we're just looking
2147 	 * for whether an entry is in use, not modifying it; false
2148 	 * hits are okay, and sys_swapoff() has already prevented new
2149 	 * allocations from this area (while holding swap_lock).
2150 	 */
2151 	for (i = prev + 1; i < si->max; i++) {
2152 		count = READ_ONCE(si->swap_map[i]);
2153 		if (count && swap_count(count) != SWAP_MAP_BAD)
2154 			if (!frontswap || frontswap_test(si, i))
2155 				break;
2156 		if ((i % LATENCY_LIMIT) == 0)
2157 			cond_resched();
2158 	}
2159 
2160 	if (i == si->max)
2161 		i = 0;
2162 
2163 	return i;
2164 }
2165 
2166 /*
2167  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2168  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2169  */
2170 int try_to_unuse(unsigned int type, bool frontswap,
2171 		 unsigned long pages_to_unuse)
2172 {
2173 	struct mm_struct *prev_mm;
2174 	struct mm_struct *mm;
2175 	struct list_head *p;
2176 	int retval = 0;
2177 	struct swap_info_struct *si = swap_info[type];
2178 	struct page *page;
2179 	swp_entry_t entry;
2180 	unsigned int i;
2181 
2182 	if (!READ_ONCE(si->inuse_pages))
2183 		return 0;
2184 
2185 	if (!frontswap)
2186 		pages_to_unuse = 0;
2187 
2188 retry:
2189 	retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2190 	if (retval)
2191 		goto out;
2192 
2193 	prev_mm = &init_mm;
2194 	mmget(prev_mm);
2195 
2196 	spin_lock(&mmlist_lock);
2197 	p = &init_mm.mmlist;
2198 	while (READ_ONCE(si->inuse_pages) &&
2199 	       !signal_pending(current) &&
2200 	       (p = p->next) != &init_mm.mmlist) {
2201 
2202 		mm = list_entry(p, struct mm_struct, mmlist);
2203 		if (!mmget_not_zero(mm))
2204 			continue;
2205 		spin_unlock(&mmlist_lock);
2206 		mmput(prev_mm);
2207 		prev_mm = mm;
2208 		retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2209 
2210 		if (retval) {
2211 			mmput(prev_mm);
2212 			goto out;
2213 		}
2214 
2215 		/*
2216 		 * Make sure that we aren't completely killing
2217 		 * interactive performance.
2218 		 */
2219 		cond_resched();
2220 		spin_lock(&mmlist_lock);
2221 	}
2222 	spin_unlock(&mmlist_lock);
2223 
2224 	mmput(prev_mm);
2225 
2226 	i = 0;
2227 	while (READ_ONCE(si->inuse_pages) &&
2228 	       !signal_pending(current) &&
2229 	       (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2230 
2231 		entry = swp_entry(type, i);
2232 		page = find_get_page(swap_address_space(entry), i);
2233 		if (!page)
2234 			continue;
2235 
2236 		/*
2237 		 * It is conceivable that a racing task removed this page from
2238 		 * swap cache just before we acquired the page lock. The page
2239 		 * might even be back in swap cache on another swap area. But
2240 		 * that is okay, try_to_free_swap() only removes stale pages.
2241 		 */
2242 		lock_page(page);
2243 		wait_on_page_writeback(page);
2244 		try_to_free_swap(page);
2245 		unlock_page(page);
2246 		put_page(page);
2247 
2248 		/*
2249 		 * For frontswap, we just need to unuse pages_to_unuse, if
2250 		 * it was specified. Need not check frontswap again here as
2251 		 * we already zeroed out pages_to_unuse if not frontswap.
2252 		 */
2253 		if (pages_to_unuse && --pages_to_unuse == 0)
2254 			goto out;
2255 	}
2256 
2257 	/*
2258 	 * Lets check again to see if there are still swap entries in the map.
2259 	 * If yes, we would need to do retry the unuse logic again.
2260 	 * Under global memory pressure, swap entries can be reinserted back
2261 	 * into process space after the mmlist loop above passes over them.
2262 	 *
2263 	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2264 	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2265 	 * at its own independent pace; and even shmem_writepage() could have
2266 	 * been preempted after get_swap_page(), temporarily hiding that swap.
2267 	 * It's easy and robust (though cpu-intensive) just to keep retrying.
2268 	 */
2269 	if (READ_ONCE(si->inuse_pages)) {
2270 		if (!signal_pending(current))
2271 			goto retry;
2272 		retval = -EINTR;
2273 	}
2274 out:
2275 	return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2276 }
2277 
2278 /*
2279  * After a successful try_to_unuse, if no swap is now in use, we know
2280  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2281  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2282  * added to the mmlist just after page_duplicate - before would be racy.
2283  */
2284 static void drain_mmlist(void)
2285 {
2286 	struct list_head *p, *next;
2287 	unsigned int type;
2288 
2289 	for (type = 0; type < nr_swapfiles; type++)
2290 		if (swap_info[type]->inuse_pages)
2291 			return;
2292 	spin_lock(&mmlist_lock);
2293 	list_for_each_safe(p, next, &init_mm.mmlist)
2294 		list_del_init(p);
2295 	spin_unlock(&mmlist_lock);
2296 }
2297 
2298 /*
2299  * Free all of a swapdev's extent information
2300  */
2301 static void destroy_swap_extents(struct swap_info_struct *sis)
2302 {
2303 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2304 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2305 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2306 
2307 		rb_erase(rb, &sis->swap_extent_root);
2308 		kfree(se);
2309 	}
2310 
2311 	if (sis->flags & SWP_ACTIVATED) {
2312 		struct file *swap_file = sis->swap_file;
2313 		struct address_space *mapping = swap_file->f_mapping;
2314 
2315 		sis->flags &= ~SWP_ACTIVATED;
2316 		if (mapping->a_ops->swap_deactivate)
2317 			mapping->a_ops->swap_deactivate(swap_file);
2318 	}
2319 }
2320 
2321 /*
2322  * Add a block range (and the corresponding page range) into this swapdev's
2323  * extent tree.
2324  *
2325  * This function rather assumes that it is called in ascending page order.
2326  */
2327 int
2328 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2329 		unsigned long nr_pages, sector_t start_block)
2330 {
2331 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2332 	struct swap_extent *se;
2333 	struct swap_extent *new_se;
2334 
2335 	/*
2336 	 * place the new node at the right most since the
2337 	 * function is called in ascending page order.
2338 	 */
2339 	while (*link) {
2340 		parent = *link;
2341 		link = &parent->rb_right;
2342 	}
2343 
2344 	if (parent) {
2345 		se = rb_entry(parent, struct swap_extent, rb_node);
2346 		BUG_ON(se->start_page + se->nr_pages != start_page);
2347 		if (se->start_block + se->nr_pages == start_block) {
2348 			/* Merge it */
2349 			se->nr_pages += nr_pages;
2350 			return 0;
2351 		}
2352 	}
2353 
2354 	/* No merge, insert a new extent. */
2355 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2356 	if (new_se == NULL)
2357 		return -ENOMEM;
2358 	new_se->start_page = start_page;
2359 	new_se->nr_pages = nr_pages;
2360 	new_se->start_block = start_block;
2361 
2362 	rb_link_node(&new_se->rb_node, parent, link);
2363 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2364 	return 1;
2365 }
2366 EXPORT_SYMBOL_GPL(add_swap_extent);
2367 
2368 /*
2369  * A `swap extent' is a simple thing which maps a contiguous range of pages
2370  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2371  * is built at swapon time and is then used at swap_writepage/swap_readpage
2372  * time for locating where on disk a page belongs.
2373  *
2374  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2375  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2376  * swap files identically.
2377  *
2378  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2379  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2380  * swapfiles are handled *identically* after swapon time.
2381  *
2382  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2383  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2384  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2385  * requirements, they are simply tossed out - we will never use those blocks
2386  * for swapping.
2387  *
2388  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2389  * prevents users from writing to the swap device, which will corrupt memory.
2390  *
2391  * The amount of disk space which a single swap extent represents varies.
2392  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2393  * extents in the list.  To avoid much list walking, we cache the previous
2394  * search location in `curr_swap_extent', and start new searches from there.
2395  * This is extremely effective.  The average number of iterations in
2396  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2397  */
2398 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2399 {
2400 	struct file *swap_file = sis->swap_file;
2401 	struct address_space *mapping = swap_file->f_mapping;
2402 	struct inode *inode = mapping->host;
2403 	int ret;
2404 
2405 	if (S_ISBLK(inode->i_mode)) {
2406 		ret = add_swap_extent(sis, 0, sis->max, 0);
2407 		*span = sis->pages;
2408 		return ret;
2409 	}
2410 
2411 	if (mapping->a_ops->swap_activate) {
2412 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2413 		if (ret >= 0)
2414 			sis->flags |= SWP_ACTIVATED;
2415 		if (!ret) {
2416 			sis->flags |= SWP_FS_OPS;
2417 			ret = add_swap_extent(sis, 0, sis->max, 0);
2418 			*span = sis->pages;
2419 		}
2420 		return ret;
2421 	}
2422 
2423 	return generic_swapfile_activate(sis, swap_file, span);
2424 }
2425 
2426 static int swap_node(struct swap_info_struct *p)
2427 {
2428 	struct block_device *bdev;
2429 
2430 	if (p->bdev)
2431 		bdev = p->bdev;
2432 	else
2433 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2434 
2435 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2436 }
2437 
2438 static void setup_swap_info(struct swap_info_struct *p, int prio,
2439 			    unsigned char *swap_map,
2440 			    struct swap_cluster_info *cluster_info)
2441 {
2442 	int i;
2443 
2444 	if (prio >= 0)
2445 		p->prio = prio;
2446 	else
2447 		p->prio = --least_priority;
2448 	/*
2449 	 * the plist prio is negated because plist ordering is
2450 	 * low-to-high, while swap ordering is high-to-low
2451 	 */
2452 	p->list.prio = -p->prio;
2453 	for_each_node(i) {
2454 		if (p->prio >= 0)
2455 			p->avail_lists[i].prio = -p->prio;
2456 		else {
2457 			if (swap_node(p) == i)
2458 				p->avail_lists[i].prio = 1;
2459 			else
2460 				p->avail_lists[i].prio = -p->prio;
2461 		}
2462 	}
2463 	p->swap_map = swap_map;
2464 	p->cluster_info = cluster_info;
2465 }
2466 
2467 static void _enable_swap_info(struct swap_info_struct *p)
2468 {
2469 	p->flags |= SWP_WRITEOK | SWP_VALID;
2470 	atomic_long_add(p->pages, &nr_swap_pages);
2471 	total_swap_pages += p->pages;
2472 
2473 	assert_spin_locked(&swap_lock);
2474 	/*
2475 	 * both lists are plists, and thus priority ordered.
2476 	 * swap_active_head needs to be priority ordered for swapoff(),
2477 	 * which on removal of any swap_info_struct with an auto-assigned
2478 	 * (i.e. negative) priority increments the auto-assigned priority
2479 	 * of any lower-priority swap_info_structs.
2480 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2481 	 * which allocates swap pages from the highest available priority
2482 	 * swap_info_struct.
2483 	 */
2484 	plist_add(&p->list, &swap_active_head);
2485 	add_to_avail_list(p);
2486 }
2487 
2488 static void enable_swap_info(struct swap_info_struct *p, int prio,
2489 				unsigned char *swap_map,
2490 				struct swap_cluster_info *cluster_info,
2491 				unsigned long *frontswap_map)
2492 {
2493 	frontswap_init(p->type, frontswap_map);
2494 	spin_lock(&swap_lock);
2495 	spin_lock(&p->lock);
2496 	setup_swap_info(p, prio, swap_map, cluster_info);
2497 	spin_unlock(&p->lock);
2498 	spin_unlock(&swap_lock);
2499 	/*
2500 	 * Guarantee swap_map, cluster_info, etc. fields are valid
2501 	 * between get/put_swap_device() if SWP_VALID bit is set
2502 	 */
2503 	synchronize_rcu();
2504 	spin_lock(&swap_lock);
2505 	spin_lock(&p->lock);
2506 	_enable_swap_info(p);
2507 	spin_unlock(&p->lock);
2508 	spin_unlock(&swap_lock);
2509 }
2510 
2511 static void reinsert_swap_info(struct swap_info_struct *p)
2512 {
2513 	spin_lock(&swap_lock);
2514 	spin_lock(&p->lock);
2515 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2516 	_enable_swap_info(p);
2517 	spin_unlock(&p->lock);
2518 	spin_unlock(&swap_lock);
2519 }
2520 
2521 bool has_usable_swap(void)
2522 {
2523 	bool ret = true;
2524 
2525 	spin_lock(&swap_lock);
2526 	if (plist_head_empty(&swap_active_head))
2527 		ret = false;
2528 	spin_unlock(&swap_lock);
2529 	return ret;
2530 }
2531 
2532 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2533 {
2534 	struct swap_info_struct *p = NULL;
2535 	unsigned char *swap_map;
2536 	struct swap_cluster_info *cluster_info;
2537 	unsigned long *frontswap_map;
2538 	struct file *swap_file, *victim;
2539 	struct address_space *mapping;
2540 	struct inode *inode;
2541 	struct filename *pathname;
2542 	int err, found = 0;
2543 	unsigned int old_block_size;
2544 
2545 	if (!capable(CAP_SYS_ADMIN))
2546 		return -EPERM;
2547 
2548 	BUG_ON(!current->mm);
2549 
2550 	pathname = getname(specialfile);
2551 	if (IS_ERR(pathname))
2552 		return PTR_ERR(pathname);
2553 
2554 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2555 	err = PTR_ERR(victim);
2556 	if (IS_ERR(victim))
2557 		goto out;
2558 
2559 	mapping = victim->f_mapping;
2560 	spin_lock(&swap_lock);
2561 	plist_for_each_entry(p, &swap_active_head, list) {
2562 		if (p->flags & SWP_WRITEOK) {
2563 			if (p->swap_file->f_mapping == mapping) {
2564 				found = 1;
2565 				break;
2566 			}
2567 		}
2568 	}
2569 	if (!found) {
2570 		err = -EINVAL;
2571 		spin_unlock(&swap_lock);
2572 		goto out_dput;
2573 	}
2574 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2575 		vm_unacct_memory(p->pages);
2576 	else {
2577 		err = -ENOMEM;
2578 		spin_unlock(&swap_lock);
2579 		goto out_dput;
2580 	}
2581 	del_from_avail_list(p);
2582 	spin_lock(&p->lock);
2583 	if (p->prio < 0) {
2584 		struct swap_info_struct *si = p;
2585 		int nid;
2586 
2587 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2588 			si->prio++;
2589 			si->list.prio--;
2590 			for_each_node(nid) {
2591 				if (si->avail_lists[nid].prio != 1)
2592 					si->avail_lists[nid].prio--;
2593 			}
2594 		}
2595 		least_priority++;
2596 	}
2597 	plist_del(&p->list, &swap_active_head);
2598 	atomic_long_sub(p->pages, &nr_swap_pages);
2599 	total_swap_pages -= p->pages;
2600 	p->flags &= ~SWP_WRITEOK;
2601 	spin_unlock(&p->lock);
2602 	spin_unlock(&swap_lock);
2603 
2604 	disable_swap_slots_cache_lock();
2605 
2606 	set_current_oom_origin();
2607 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2608 	clear_current_oom_origin();
2609 
2610 	if (err) {
2611 		/* re-insert swap space back into swap_list */
2612 		reinsert_swap_info(p);
2613 		reenable_swap_slots_cache_unlock();
2614 		goto out_dput;
2615 	}
2616 
2617 	reenable_swap_slots_cache_unlock();
2618 
2619 	spin_lock(&swap_lock);
2620 	spin_lock(&p->lock);
2621 	p->flags &= ~SWP_VALID;		/* mark swap device as invalid */
2622 	spin_unlock(&p->lock);
2623 	spin_unlock(&swap_lock);
2624 	/*
2625 	 * wait for swap operations protected by get/put_swap_device()
2626 	 * to complete
2627 	 */
2628 	synchronize_rcu();
2629 
2630 	flush_work(&p->discard_work);
2631 
2632 	destroy_swap_extents(p);
2633 	if (p->flags & SWP_CONTINUED)
2634 		free_swap_count_continuations(p);
2635 
2636 	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2637 		atomic_dec(&nr_rotate_swap);
2638 
2639 	mutex_lock(&swapon_mutex);
2640 	spin_lock(&swap_lock);
2641 	spin_lock(&p->lock);
2642 	drain_mmlist();
2643 
2644 	/* wait for anyone still in scan_swap_map */
2645 	p->highest_bit = 0;		/* cuts scans short */
2646 	while (p->flags >= SWP_SCANNING) {
2647 		spin_unlock(&p->lock);
2648 		spin_unlock(&swap_lock);
2649 		schedule_timeout_uninterruptible(1);
2650 		spin_lock(&swap_lock);
2651 		spin_lock(&p->lock);
2652 	}
2653 
2654 	swap_file = p->swap_file;
2655 	old_block_size = p->old_block_size;
2656 	p->swap_file = NULL;
2657 	p->max = 0;
2658 	swap_map = p->swap_map;
2659 	p->swap_map = NULL;
2660 	cluster_info = p->cluster_info;
2661 	p->cluster_info = NULL;
2662 	frontswap_map = frontswap_map_get(p);
2663 	spin_unlock(&p->lock);
2664 	spin_unlock(&swap_lock);
2665 	arch_swap_invalidate_area(p->type);
2666 	frontswap_invalidate_area(p->type);
2667 	frontswap_map_set(p, NULL);
2668 	mutex_unlock(&swapon_mutex);
2669 	free_percpu(p->percpu_cluster);
2670 	p->percpu_cluster = NULL;
2671 	free_percpu(p->cluster_next_cpu);
2672 	p->cluster_next_cpu = NULL;
2673 	vfree(swap_map);
2674 	kvfree(cluster_info);
2675 	kvfree(frontswap_map);
2676 	/* Destroy swap account information */
2677 	swap_cgroup_swapoff(p->type);
2678 	exit_swap_address_space(p->type);
2679 
2680 	inode = mapping->host;
2681 	if (S_ISBLK(inode->i_mode)) {
2682 		struct block_device *bdev = I_BDEV(inode);
2683 
2684 		set_blocksize(bdev, old_block_size);
2685 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2686 	}
2687 
2688 	inode_lock(inode);
2689 	inode->i_flags &= ~S_SWAPFILE;
2690 	inode_unlock(inode);
2691 	filp_close(swap_file, NULL);
2692 
2693 	/*
2694 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2695 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2696 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2697 	 */
2698 	spin_lock(&swap_lock);
2699 	p->flags = 0;
2700 	spin_unlock(&swap_lock);
2701 
2702 	err = 0;
2703 	atomic_inc(&proc_poll_event);
2704 	wake_up_interruptible(&proc_poll_wait);
2705 
2706 out_dput:
2707 	filp_close(victim, NULL);
2708 out:
2709 	putname(pathname);
2710 	return err;
2711 }
2712 
2713 #ifdef CONFIG_PROC_FS
2714 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2715 {
2716 	struct seq_file *seq = file->private_data;
2717 
2718 	poll_wait(file, &proc_poll_wait, wait);
2719 
2720 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2721 		seq->poll_event = atomic_read(&proc_poll_event);
2722 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2723 	}
2724 
2725 	return EPOLLIN | EPOLLRDNORM;
2726 }
2727 
2728 /* iterator */
2729 static void *swap_start(struct seq_file *swap, loff_t *pos)
2730 {
2731 	struct swap_info_struct *si;
2732 	int type;
2733 	loff_t l = *pos;
2734 
2735 	mutex_lock(&swapon_mutex);
2736 
2737 	if (!l)
2738 		return SEQ_START_TOKEN;
2739 
2740 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2741 		if (!(si->flags & SWP_USED) || !si->swap_map)
2742 			continue;
2743 		if (!--l)
2744 			return si;
2745 	}
2746 
2747 	return NULL;
2748 }
2749 
2750 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2751 {
2752 	struct swap_info_struct *si = v;
2753 	int type;
2754 
2755 	if (v == SEQ_START_TOKEN)
2756 		type = 0;
2757 	else
2758 		type = si->type + 1;
2759 
2760 	++(*pos);
2761 	for (; (si = swap_type_to_swap_info(type)); type++) {
2762 		if (!(si->flags & SWP_USED) || !si->swap_map)
2763 			continue;
2764 		return si;
2765 	}
2766 
2767 	return NULL;
2768 }
2769 
2770 static void swap_stop(struct seq_file *swap, void *v)
2771 {
2772 	mutex_unlock(&swapon_mutex);
2773 }
2774 
2775 static int swap_show(struct seq_file *swap, void *v)
2776 {
2777 	struct swap_info_struct *si = v;
2778 	struct file *file;
2779 	int len;
2780 	unsigned int bytes, inuse;
2781 
2782 	if (si == SEQ_START_TOKEN) {
2783 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2784 		return 0;
2785 	}
2786 
2787 	bytes = si->pages << (PAGE_SHIFT - 10);
2788 	inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2789 
2790 	file = si->swap_file;
2791 	len = seq_file_path(swap, file, " \t\n\\");
2792 	seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2793 			len < 40 ? 40 - len : 1, " ",
2794 			S_ISBLK(file_inode(file)->i_mode) ?
2795 				"partition" : "file\t",
2796 			bytes, bytes < 10000000 ? "\t" : "",
2797 			inuse, inuse < 10000000 ? "\t" : "",
2798 			si->prio);
2799 	return 0;
2800 }
2801 
2802 static const struct seq_operations swaps_op = {
2803 	.start =	swap_start,
2804 	.next =		swap_next,
2805 	.stop =		swap_stop,
2806 	.show =		swap_show
2807 };
2808 
2809 static int swaps_open(struct inode *inode, struct file *file)
2810 {
2811 	struct seq_file *seq;
2812 	int ret;
2813 
2814 	ret = seq_open(file, &swaps_op);
2815 	if (ret)
2816 		return ret;
2817 
2818 	seq = file->private_data;
2819 	seq->poll_event = atomic_read(&proc_poll_event);
2820 	return 0;
2821 }
2822 
2823 static const struct proc_ops swaps_proc_ops = {
2824 	.proc_flags	= PROC_ENTRY_PERMANENT,
2825 	.proc_open	= swaps_open,
2826 	.proc_read	= seq_read,
2827 	.proc_lseek	= seq_lseek,
2828 	.proc_release	= seq_release,
2829 	.proc_poll	= swaps_poll,
2830 };
2831 
2832 static int __init procswaps_init(void)
2833 {
2834 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2835 	return 0;
2836 }
2837 __initcall(procswaps_init);
2838 #endif /* CONFIG_PROC_FS */
2839 
2840 #ifdef MAX_SWAPFILES_CHECK
2841 static int __init max_swapfiles_check(void)
2842 {
2843 	MAX_SWAPFILES_CHECK();
2844 	return 0;
2845 }
2846 late_initcall(max_swapfiles_check);
2847 #endif
2848 
2849 static struct swap_info_struct *alloc_swap_info(void)
2850 {
2851 	struct swap_info_struct *p;
2852 	struct swap_info_struct *defer = NULL;
2853 	unsigned int type;
2854 	int i;
2855 
2856 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2857 	if (!p)
2858 		return ERR_PTR(-ENOMEM);
2859 
2860 	spin_lock(&swap_lock);
2861 	for (type = 0; type < nr_swapfiles; type++) {
2862 		if (!(swap_info[type]->flags & SWP_USED))
2863 			break;
2864 	}
2865 	if (type >= MAX_SWAPFILES) {
2866 		spin_unlock(&swap_lock);
2867 		kvfree(p);
2868 		return ERR_PTR(-EPERM);
2869 	}
2870 	if (type >= nr_swapfiles) {
2871 		p->type = type;
2872 		WRITE_ONCE(swap_info[type], p);
2873 		/*
2874 		 * Write swap_info[type] before nr_swapfiles, in case a
2875 		 * racing procfs swap_start() or swap_next() is reading them.
2876 		 * (We never shrink nr_swapfiles, we never free this entry.)
2877 		 */
2878 		smp_wmb();
2879 		WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2880 	} else {
2881 		defer = p;
2882 		p = swap_info[type];
2883 		/*
2884 		 * Do not memset this entry: a racing procfs swap_next()
2885 		 * would be relying on p->type to remain valid.
2886 		 */
2887 	}
2888 	p->swap_extent_root = RB_ROOT;
2889 	plist_node_init(&p->list, 0);
2890 	for_each_node(i)
2891 		plist_node_init(&p->avail_lists[i], 0);
2892 	p->flags = SWP_USED;
2893 	spin_unlock(&swap_lock);
2894 	kvfree(defer);
2895 	spin_lock_init(&p->lock);
2896 	spin_lock_init(&p->cont_lock);
2897 
2898 	return p;
2899 }
2900 
2901 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2902 {
2903 	int error;
2904 
2905 	if (S_ISBLK(inode->i_mode)) {
2906 		p->bdev = blkdev_get_by_dev(inode->i_rdev,
2907 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2908 		if (IS_ERR(p->bdev)) {
2909 			error = PTR_ERR(p->bdev);
2910 			p->bdev = NULL;
2911 			return error;
2912 		}
2913 		p->old_block_size = block_size(p->bdev);
2914 		error = set_blocksize(p->bdev, PAGE_SIZE);
2915 		if (error < 0)
2916 			return error;
2917 		/*
2918 		 * Zoned block devices contain zones that have a sequential
2919 		 * write only restriction.  Hence zoned block devices are not
2920 		 * suitable for swapping.  Disallow them here.
2921 		 */
2922 		if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2923 			return -EINVAL;
2924 		p->flags |= SWP_BLKDEV;
2925 	} else if (S_ISREG(inode->i_mode)) {
2926 		p->bdev = inode->i_sb->s_bdev;
2927 	}
2928 
2929 	return 0;
2930 }
2931 
2932 
2933 /*
2934  * Find out how many pages are allowed for a single swap device. There
2935  * are two limiting factors:
2936  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2937  * 2) the number of bits in the swap pte, as defined by the different
2938  * architectures.
2939  *
2940  * In order to find the largest possible bit mask, a swap entry with
2941  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2942  * decoded to a swp_entry_t again, and finally the swap offset is
2943  * extracted.
2944  *
2945  * This will mask all the bits from the initial ~0UL mask that can't
2946  * be encoded in either the swp_entry_t or the architecture definition
2947  * of a swap pte.
2948  */
2949 unsigned long generic_max_swapfile_size(void)
2950 {
2951 	return swp_offset(pte_to_swp_entry(
2952 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2953 }
2954 
2955 /* Can be overridden by an architecture for additional checks. */
2956 __weak unsigned long max_swapfile_size(void)
2957 {
2958 	return generic_max_swapfile_size();
2959 }
2960 
2961 static unsigned long read_swap_header(struct swap_info_struct *p,
2962 					union swap_header *swap_header,
2963 					struct inode *inode)
2964 {
2965 	int i;
2966 	unsigned long maxpages;
2967 	unsigned long swapfilepages;
2968 	unsigned long last_page;
2969 
2970 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2971 		pr_err("Unable to find swap-space signature\n");
2972 		return 0;
2973 	}
2974 
2975 	/* swap partition endianess hack... */
2976 	if (swab32(swap_header->info.version) == 1) {
2977 		swab32s(&swap_header->info.version);
2978 		swab32s(&swap_header->info.last_page);
2979 		swab32s(&swap_header->info.nr_badpages);
2980 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2981 			return 0;
2982 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2983 			swab32s(&swap_header->info.badpages[i]);
2984 	}
2985 	/* Check the swap header's sub-version */
2986 	if (swap_header->info.version != 1) {
2987 		pr_warn("Unable to handle swap header version %d\n",
2988 			swap_header->info.version);
2989 		return 0;
2990 	}
2991 
2992 	p->lowest_bit  = 1;
2993 	p->cluster_next = 1;
2994 	p->cluster_nr = 0;
2995 
2996 	maxpages = max_swapfile_size();
2997 	last_page = swap_header->info.last_page;
2998 	if (!last_page) {
2999 		pr_warn("Empty swap-file\n");
3000 		return 0;
3001 	}
3002 	if (last_page > maxpages) {
3003 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3004 			maxpages << (PAGE_SHIFT - 10),
3005 			last_page << (PAGE_SHIFT - 10));
3006 	}
3007 	if (maxpages > last_page) {
3008 		maxpages = last_page + 1;
3009 		/* p->max is an unsigned int: don't overflow it */
3010 		if ((unsigned int)maxpages == 0)
3011 			maxpages = UINT_MAX;
3012 	}
3013 	p->highest_bit = maxpages - 1;
3014 
3015 	if (!maxpages)
3016 		return 0;
3017 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3018 	if (swapfilepages && maxpages > swapfilepages) {
3019 		pr_warn("Swap area shorter than signature indicates\n");
3020 		return 0;
3021 	}
3022 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3023 		return 0;
3024 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3025 		return 0;
3026 
3027 	return maxpages;
3028 }
3029 
3030 #define SWAP_CLUSTER_INFO_COLS						\
3031 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3032 #define SWAP_CLUSTER_SPACE_COLS						\
3033 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3034 #define SWAP_CLUSTER_COLS						\
3035 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3036 
3037 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3038 					union swap_header *swap_header,
3039 					unsigned char *swap_map,
3040 					struct swap_cluster_info *cluster_info,
3041 					unsigned long maxpages,
3042 					sector_t *span)
3043 {
3044 	unsigned int j, k;
3045 	unsigned int nr_good_pages;
3046 	int nr_extents;
3047 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3048 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3049 	unsigned long i, idx;
3050 
3051 	nr_good_pages = maxpages - 1;	/* omit header page */
3052 
3053 	cluster_list_init(&p->free_clusters);
3054 	cluster_list_init(&p->discard_clusters);
3055 
3056 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3057 		unsigned int page_nr = swap_header->info.badpages[i];
3058 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3059 			return -EINVAL;
3060 		if (page_nr < maxpages) {
3061 			swap_map[page_nr] = SWAP_MAP_BAD;
3062 			nr_good_pages--;
3063 			/*
3064 			 * Haven't marked the cluster free yet, no list
3065 			 * operation involved
3066 			 */
3067 			inc_cluster_info_page(p, cluster_info, page_nr);
3068 		}
3069 	}
3070 
3071 	/* Haven't marked the cluster free yet, no list operation involved */
3072 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3073 		inc_cluster_info_page(p, cluster_info, i);
3074 
3075 	if (nr_good_pages) {
3076 		swap_map[0] = SWAP_MAP_BAD;
3077 		/*
3078 		 * Not mark the cluster free yet, no list
3079 		 * operation involved
3080 		 */
3081 		inc_cluster_info_page(p, cluster_info, 0);
3082 		p->max = maxpages;
3083 		p->pages = nr_good_pages;
3084 		nr_extents = setup_swap_extents(p, span);
3085 		if (nr_extents < 0)
3086 			return nr_extents;
3087 		nr_good_pages = p->pages;
3088 	}
3089 	if (!nr_good_pages) {
3090 		pr_warn("Empty swap-file\n");
3091 		return -EINVAL;
3092 	}
3093 
3094 	if (!cluster_info)
3095 		return nr_extents;
3096 
3097 
3098 	/*
3099 	 * Reduce false cache line sharing between cluster_info and
3100 	 * sharing same address space.
3101 	 */
3102 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3103 		j = (k + col) % SWAP_CLUSTER_COLS;
3104 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3105 			idx = i * SWAP_CLUSTER_COLS + j;
3106 			if (idx >= nr_clusters)
3107 				continue;
3108 			if (cluster_count(&cluster_info[idx]))
3109 				continue;
3110 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3111 			cluster_list_add_tail(&p->free_clusters, cluster_info,
3112 					      idx);
3113 		}
3114 	}
3115 	return nr_extents;
3116 }
3117 
3118 /*
3119  * Helper to sys_swapon determining if a given swap
3120  * backing device queue supports DISCARD operations.
3121  */
3122 static bool swap_discardable(struct swap_info_struct *si)
3123 {
3124 	struct request_queue *q = bdev_get_queue(si->bdev);
3125 
3126 	if (!q || !blk_queue_discard(q))
3127 		return false;
3128 
3129 	return true;
3130 }
3131 
3132 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3133 {
3134 	struct swap_info_struct *p;
3135 	struct filename *name;
3136 	struct file *swap_file = NULL;
3137 	struct address_space *mapping;
3138 	int prio;
3139 	int error;
3140 	union swap_header *swap_header;
3141 	int nr_extents;
3142 	sector_t span;
3143 	unsigned long maxpages;
3144 	unsigned char *swap_map = NULL;
3145 	struct swap_cluster_info *cluster_info = NULL;
3146 	unsigned long *frontswap_map = NULL;
3147 	struct page *page = NULL;
3148 	struct inode *inode = NULL;
3149 	bool inced_nr_rotate_swap = false;
3150 
3151 	if (swap_flags & ~SWAP_FLAGS_VALID)
3152 		return -EINVAL;
3153 
3154 	if (!capable(CAP_SYS_ADMIN))
3155 		return -EPERM;
3156 
3157 	if (!swap_avail_heads)
3158 		return -ENOMEM;
3159 
3160 	p = alloc_swap_info();
3161 	if (IS_ERR(p))
3162 		return PTR_ERR(p);
3163 
3164 	INIT_WORK(&p->discard_work, swap_discard_work);
3165 
3166 	name = getname(specialfile);
3167 	if (IS_ERR(name)) {
3168 		error = PTR_ERR(name);
3169 		name = NULL;
3170 		goto bad_swap;
3171 	}
3172 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3173 	if (IS_ERR(swap_file)) {
3174 		error = PTR_ERR(swap_file);
3175 		swap_file = NULL;
3176 		goto bad_swap;
3177 	}
3178 
3179 	p->swap_file = swap_file;
3180 	mapping = swap_file->f_mapping;
3181 	inode = mapping->host;
3182 
3183 	error = claim_swapfile(p, inode);
3184 	if (unlikely(error))
3185 		goto bad_swap;
3186 
3187 	inode_lock(inode);
3188 	if (IS_SWAPFILE(inode)) {
3189 		error = -EBUSY;
3190 		goto bad_swap_unlock_inode;
3191 	}
3192 
3193 	/*
3194 	 * Read the swap header.
3195 	 */
3196 	if (!mapping->a_ops->readpage) {
3197 		error = -EINVAL;
3198 		goto bad_swap_unlock_inode;
3199 	}
3200 	page = read_mapping_page(mapping, 0, swap_file);
3201 	if (IS_ERR(page)) {
3202 		error = PTR_ERR(page);
3203 		goto bad_swap_unlock_inode;
3204 	}
3205 	swap_header = kmap(page);
3206 
3207 	maxpages = read_swap_header(p, swap_header, inode);
3208 	if (unlikely(!maxpages)) {
3209 		error = -EINVAL;
3210 		goto bad_swap_unlock_inode;
3211 	}
3212 
3213 	/* OK, set up the swap map and apply the bad block list */
3214 	swap_map = vzalloc(maxpages);
3215 	if (!swap_map) {
3216 		error = -ENOMEM;
3217 		goto bad_swap_unlock_inode;
3218 	}
3219 
3220 	if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3221 		p->flags |= SWP_STABLE_WRITES;
3222 
3223 	if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3224 		p->flags |= SWP_SYNCHRONOUS_IO;
3225 
3226 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3227 		int cpu;
3228 		unsigned long ci, nr_cluster;
3229 
3230 		p->flags |= SWP_SOLIDSTATE;
3231 		p->cluster_next_cpu = alloc_percpu(unsigned int);
3232 		if (!p->cluster_next_cpu) {
3233 			error = -ENOMEM;
3234 			goto bad_swap_unlock_inode;
3235 		}
3236 		/*
3237 		 * select a random position to start with to help wear leveling
3238 		 * SSD
3239 		 */
3240 		for_each_possible_cpu(cpu) {
3241 			per_cpu(*p->cluster_next_cpu, cpu) =
3242 				1 + prandom_u32_max(p->highest_bit);
3243 		}
3244 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3245 
3246 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3247 					GFP_KERNEL);
3248 		if (!cluster_info) {
3249 			error = -ENOMEM;
3250 			goto bad_swap_unlock_inode;
3251 		}
3252 
3253 		for (ci = 0; ci < nr_cluster; ci++)
3254 			spin_lock_init(&((cluster_info + ci)->lock));
3255 
3256 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3257 		if (!p->percpu_cluster) {
3258 			error = -ENOMEM;
3259 			goto bad_swap_unlock_inode;
3260 		}
3261 		for_each_possible_cpu(cpu) {
3262 			struct percpu_cluster *cluster;
3263 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3264 			cluster_set_null(&cluster->index);
3265 		}
3266 	} else {
3267 		atomic_inc(&nr_rotate_swap);
3268 		inced_nr_rotate_swap = true;
3269 	}
3270 
3271 	error = swap_cgroup_swapon(p->type, maxpages);
3272 	if (error)
3273 		goto bad_swap_unlock_inode;
3274 
3275 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3276 		cluster_info, maxpages, &span);
3277 	if (unlikely(nr_extents < 0)) {
3278 		error = nr_extents;
3279 		goto bad_swap_unlock_inode;
3280 	}
3281 	/* frontswap enabled? set up bit-per-page map for frontswap */
3282 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3283 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3284 					 sizeof(long),
3285 					 GFP_KERNEL);
3286 
3287 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3288 		/*
3289 		 * When discard is enabled for swap with no particular
3290 		 * policy flagged, we set all swap discard flags here in
3291 		 * order to sustain backward compatibility with older
3292 		 * swapon(8) releases.
3293 		 */
3294 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3295 			     SWP_PAGE_DISCARD);
3296 
3297 		/*
3298 		 * By flagging sys_swapon, a sysadmin can tell us to
3299 		 * either do single-time area discards only, or to just
3300 		 * perform discards for released swap page-clusters.
3301 		 * Now it's time to adjust the p->flags accordingly.
3302 		 */
3303 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3304 			p->flags &= ~SWP_PAGE_DISCARD;
3305 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3306 			p->flags &= ~SWP_AREA_DISCARD;
3307 
3308 		/* issue a swapon-time discard if it's still required */
3309 		if (p->flags & SWP_AREA_DISCARD) {
3310 			int err = discard_swap(p);
3311 			if (unlikely(err))
3312 				pr_err("swapon: discard_swap(%p): %d\n",
3313 					p, err);
3314 		}
3315 	}
3316 
3317 	error = init_swap_address_space(p->type, maxpages);
3318 	if (error)
3319 		goto bad_swap_unlock_inode;
3320 
3321 	/*
3322 	 * Flush any pending IO and dirty mappings before we start using this
3323 	 * swap device.
3324 	 */
3325 	inode->i_flags |= S_SWAPFILE;
3326 	error = inode_drain_writes(inode);
3327 	if (error) {
3328 		inode->i_flags &= ~S_SWAPFILE;
3329 		goto free_swap_address_space;
3330 	}
3331 
3332 	mutex_lock(&swapon_mutex);
3333 	prio = -1;
3334 	if (swap_flags & SWAP_FLAG_PREFER)
3335 		prio =
3336 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3337 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3338 
3339 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3340 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3341 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3342 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3343 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3344 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3345 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3346 		(frontswap_map) ? "FS" : "");
3347 
3348 	mutex_unlock(&swapon_mutex);
3349 	atomic_inc(&proc_poll_event);
3350 	wake_up_interruptible(&proc_poll_wait);
3351 
3352 	error = 0;
3353 	goto out;
3354 free_swap_address_space:
3355 	exit_swap_address_space(p->type);
3356 bad_swap_unlock_inode:
3357 	inode_unlock(inode);
3358 bad_swap:
3359 	free_percpu(p->percpu_cluster);
3360 	p->percpu_cluster = NULL;
3361 	free_percpu(p->cluster_next_cpu);
3362 	p->cluster_next_cpu = NULL;
3363 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3364 		set_blocksize(p->bdev, p->old_block_size);
3365 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3366 	}
3367 	inode = NULL;
3368 	destroy_swap_extents(p);
3369 	swap_cgroup_swapoff(p->type);
3370 	spin_lock(&swap_lock);
3371 	p->swap_file = NULL;
3372 	p->flags = 0;
3373 	spin_unlock(&swap_lock);
3374 	vfree(swap_map);
3375 	kvfree(cluster_info);
3376 	kvfree(frontswap_map);
3377 	if (inced_nr_rotate_swap)
3378 		atomic_dec(&nr_rotate_swap);
3379 	if (swap_file)
3380 		filp_close(swap_file, NULL);
3381 out:
3382 	if (page && !IS_ERR(page)) {
3383 		kunmap(page);
3384 		put_page(page);
3385 	}
3386 	if (name)
3387 		putname(name);
3388 	if (inode)
3389 		inode_unlock(inode);
3390 	if (!error)
3391 		enable_swap_slots_cache();
3392 	return error;
3393 }
3394 
3395 void si_swapinfo(struct sysinfo *val)
3396 {
3397 	unsigned int type;
3398 	unsigned long nr_to_be_unused = 0;
3399 
3400 	spin_lock(&swap_lock);
3401 	for (type = 0; type < nr_swapfiles; type++) {
3402 		struct swap_info_struct *si = swap_info[type];
3403 
3404 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3405 			nr_to_be_unused += si->inuse_pages;
3406 	}
3407 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3408 	val->totalswap = total_swap_pages + nr_to_be_unused;
3409 	spin_unlock(&swap_lock);
3410 }
3411 
3412 /*
3413  * Verify that a swap entry is valid and increment its swap map count.
3414  *
3415  * Returns error code in following case.
3416  * - success -> 0
3417  * - swp_entry is invalid -> EINVAL
3418  * - swp_entry is migration entry -> EINVAL
3419  * - swap-cache reference is requested but there is already one. -> EEXIST
3420  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3421  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3422  */
3423 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3424 {
3425 	struct swap_info_struct *p;
3426 	struct swap_cluster_info *ci;
3427 	unsigned long offset;
3428 	unsigned char count;
3429 	unsigned char has_cache;
3430 	int err;
3431 
3432 	p = get_swap_device(entry);
3433 	if (!p)
3434 		return -EINVAL;
3435 
3436 	offset = swp_offset(entry);
3437 	ci = lock_cluster_or_swap_info(p, offset);
3438 
3439 	count = p->swap_map[offset];
3440 
3441 	/*
3442 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3443 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3444 	 */
3445 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3446 		err = -ENOENT;
3447 		goto unlock_out;
3448 	}
3449 
3450 	has_cache = count & SWAP_HAS_CACHE;
3451 	count &= ~SWAP_HAS_CACHE;
3452 	err = 0;
3453 
3454 	if (usage == SWAP_HAS_CACHE) {
3455 
3456 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3457 		if (!has_cache && count)
3458 			has_cache = SWAP_HAS_CACHE;
3459 		else if (has_cache)		/* someone else added cache */
3460 			err = -EEXIST;
3461 		else				/* no users remaining */
3462 			err = -ENOENT;
3463 
3464 	} else if (count || has_cache) {
3465 
3466 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3467 			count += usage;
3468 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3469 			err = -EINVAL;
3470 		else if (swap_count_continued(p, offset, count))
3471 			count = COUNT_CONTINUED;
3472 		else
3473 			err = -ENOMEM;
3474 	} else
3475 		err = -ENOENT;			/* unused swap entry */
3476 
3477 	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3478 
3479 unlock_out:
3480 	unlock_cluster_or_swap_info(p, ci);
3481 	if (p)
3482 		put_swap_device(p);
3483 	return err;
3484 }
3485 
3486 /*
3487  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3488  * (in which case its reference count is never incremented).
3489  */
3490 void swap_shmem_alloc(swp_entry_t entry)
3491 {
3492 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3493 }
3494 
3495 /*
3496  * Increase reference count of swap entry by 1.
3497  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3498  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3499  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3500  * might occur if a page table entry has got corrupted.
3501  */
3502 int swap_duplicate(swp_entry_t entry)
3503 {
3504 	int err = 0;
3505 
3506 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3507 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3508 	return err;
3509 }
3510 
3511 /*
3512  * @entry: swap entry for which we allocate swap cache.
3513  *
3514  * Called when allocating swap cache for existing swap entry,
3515  * This can return error codes. Returns 0 at success.
3516  * -EEXIST means there is a swap cache.
3517  * Note: return code is different from swap_duplicate().
3518  */
3519 int swapcache_prepare(swp_entry_t entry)
3520 {
3521 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3522 }
3523 
3524 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3525 {
3526 	return swap_type_to_swap_info(swp_type(entry));
3527 }
3528 
3529 struct swap_info_struct *page_swap_info(struct page *page)
3530 {
3531 	swp_entry_t entry = { .val = page_private(page) };
3532 	return swp_swap_info(entry);
3533 }
3534 
3535 /*
3536  * out-of-line __page_file_ methods to avoid include hell.
3537  */
3538 struct address_space *__page_file_mapping(struct page *page)
3539 {
3540 	return page_swap_info(page)->swap_file->f_mapping;
3541 }
3542 EXPORT_SYMBOL_GPL(__page_file_mapping);
3543 
3544 pgoff_t __page_file_index(struct page *page)
3545 {
3546 	swp_entry_t swap = { .val = page_private(page) };
3547 	return swp_offset(swap);
3548 }
3549 EXPORT_SYMBOL_GPL(__page_file_index);
3550 
3551 /*
3552  * add_swap_count_continuation - called when a swap count is duplicated
3553  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3554  * page of the original vmalloc'ed swap_map, to hold the continuation count
3555  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3556  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3557  *
3558  * These continuation pages are seldom referenced: the common paths all work
3559  * on the original swap_map, only referring to a continuation page when the
3560  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3561  *
3562  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3563  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3564  * can be called after dropping locks.
3565  */
3566 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3567 {
3568 	struct swap_info_struct *si;
3569 	struct swap_cluster_info *ci;
3570 	struct page *head;
3571 	struct page *page;
3572 	struct page *list_page;
3573 	pgoff_t offset;
3574 	unsigned char count;
3575 	int ret = 0;
3576 
3577 	/*
3578 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3579 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3580 	 */
3581 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3582 
3583 	si = get_swap_device(entry);
3584 	if (!si) {
3585 		/*
3586 		 * An acceptable race has occurred since the failing
3587 		 * __swap_duplicate(): the swap device may be swapoff
3588 		 */
3589 		goto outer;
3590 	}
3591 	spin_lock(&si->lock);
3592 
3593 	offset = swp_offset(entry);
3594 
3595 	ci = lock_cluster(si, offset);
3596 
3597 	count = swap_count(si->swap_map[offset]);
3598 
3599 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3600 		/*
3601 		 * The higher the swap count, the more likely it is that tasks
3602 		 * will race to add swap count continuation: we need to avoid
3603 		 * over-provisioning.
3604 		 */
3605 		goto out;
3606 	}
3607 
3608 	if (!page) {
3609 		ret = -ENOMEM;
3610 		goto out;
3611 	}
3612 
3613 	/*
3614 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3615 	 * no architecture is using highmem pages for kernel page tables: so it
3616 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3617 	 */
3618 	head = vmalloc_to_page(si->swap_map + offset);
3619 	offset &= ~PAGE_MASK;
3620 
3621 	spin_lock(&si->cont_lock);
3622 	/*
3623 	 * Page allocation does not initialize the page's lru field,
3624 	 * but it does always reset its private field.
3625 	 */
3626 	if (!page_private(head)) {
3627 		BUG_ON(count & COUNT_CONTINUED);
3628 		INIT_LIST_HEAD(&head->lru);
3629 		set_page_private(head, SWP_CONTINUED);
3630 		si->flags |= SWP_CONTINUED;
3631 	}
3632 
3633 	list_for_each_entry(list_page, &head->lru, lru) {
3634 		unsigned char *map;
3635 
3636 		/*
3637 		 * If the previous map said no continuation, but we've found
3638 		 * a continuation page, free our allocation and use this one.
3639 		 */
3640 		if (!(count & COUNT_CONTINUED))
3641 			goto out_unlock_cont;
3642 
3643 		map = kmap_atomic(list_page) + offset;
3644 		count = *map;
3645 		kunmap_atomic(map);
3646 
3647 		/*
3648 		 * If this continuation count now has some space in it,
3649 		 * free our allocation and use this one.
3650 		 */
3651 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3652 			goto out_unlock_cont;
3653 	}
3654 
3655 	list_add_tail(&page->lru, &head->lru);
3656 	page = NULL;			/* now it's attached, don't free it */
3657 out_unlock_cont:
3658 	spin_unlock(&si->cont_lock);
3659 out:
3660 	unlock_cluster(ci);
3661 	spin_unlock(&si->lock);
3662 	put_swap_device(si);
3663 outer:
3664 	if (page)
3665 		__free_page(page);
3666 	return ret;
3667 }
3668 
3669 /*
3670  * swap_count_continued - when the original swap_map count is incremented
3671  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3672  * into, carry if so, or else fail until a new continuation page is allocated;
3673  * when the original swap_map count is decremented from 0 with continuation,
3674  * borrow from the continuation and report whether it still holds more.
3675  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3676  * lock.
3677  */
3678 static bool swap_count_continued(struct swap_info_struct *si,
3679 				 pgoff_t offset, unsigned char count)
3680 {
3681 	struct page *head;
3682 	struct page *page;
3683 	unsigned char *map;
3684 	bool ret;
3685 
3686 	head = vmalloc_to_page(si->swap_map + offset);
3687 	if (page_private(head) != SWP_CONTINUED) {
3688 		BUG_ON(count & COUNT_CONTINUED);
3689 		return false;		/* need to add count continuation */
3690 	}
3691 
3692 	spin_lock(&si->cont_lock);
3693 	offset &= ~PAGE_MASK;
3694 	page = list_next_entry(head, lru);
3695 	map = kmap_atomic(page) + offset;
3696 
3697 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3698 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3699 
3700 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3701 		/*
3702 		 * Think of how you add 1 to 999
3703 		 */
3704 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3705 			kunmap_atomic(map);
3706 			page = list_next_entry(page, lru);
3707 			BUG_ON(page == head);
3708 			map = kmap_atomic(page) + offset;
3709 		}
3710 		if (*map == SWAP_CONT_MAX) {
3711 			kunmap_atomic(map);
3712 			page = list_next_entry(page, lru);
3713 			if (page == head) {
3714 				ret = false;	/* add count continuation */
3715 				goto out;
3716 			}
3717 			map = kmap_atomic(page) + offset;
3718 init_map:		*map = 0;		/* we didn't zero the page */
3719 		}
3720 		*map += 1;
3721 		kunmap_atomic(map);
3722 		while ((page = list_prev_entry(page, lru)) != head) {
3723 			map = kmap_atomic(page) + offset;
3724 			*map = COUNT_CONTINUED;
3725 			kunmap_atomic(map);
3726 		}
3727 		ret = true;			/* incremented */
3728 
3729 	} else {				/* decrementing */
3730 		/*
3731 		 * Think of how you subtract 1 from 1000
3732 		 */
3733 		BUG_ON(count != COUNT_CONTINUED);
3734 		while (*map == COUNT_CONTINUED) {
3735 			kunmap_atomic(map);
3736 			page = list_next_entry(page, lru);
3737 			BUG_ON(page == head);
3738 			map = kmap_atomic(page) + offset;
3739 		}
3740 		BUG_ON(*map == 0);
3741 		*map -= 1;
3742 		if (*map == 0)
3743 			count = 0;
3744 		kunmap_atomic(map);
3745 		while ((page = list_prev_entry(page, lru)) != head) {
3746 			map = kmap_atomic(page) + offset;
3747 			*map = SWAP_CONT_MAX | count;
3748 			count = COUNT_CONTINUED;
3749 			kunmap_atomic(map);
3750 		}
3751 		ret = count == COUNT_CONTINUED;
3752 	}
3753 out:
3754 	spin_unlock(&si->cont_lock);
3755 	return ret;
3756 }
3757 
3758 /*
3759  * free_swap_count_continuations - swapoff free all the continuation pages
3760  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3761  */
3762 static void free_swap_count_continuations(struct swap_info_struct *si)
3763 {
3764 	pgoff_t offset;
3765 
3766 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3767 		struct page *head;
3768 		head = vmalloc_to_page(si->swap_map + offset);
3769 		if (page_private(head)) {
3770 			struct page *page, *next;
3771 
3772 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3773 				list_del(&page->lru);
3774 				__free_page(page);
3775 			}
3776 		}
3777 	}
3778 }
3779 
3780 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3781 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3782 {
3783 	struct swap_info_struct *si, *next;
3784 	int nid = page_to_nid(page);
3785 
3786 	if (!(gfp_mask & __GFP_IO))
3787 		return;
3788 
3789 	if (!blk_cgroup_congested())
3790 		return;
3791 
3792 	/*
3793 	 * We've already scheduled a throttle, avoid taking the global swap
3794 	 * lock.
3795 	 */
3796 	if (current->throttle_queue)
3797 		return;
3798 
3799 	spin_lock(&swap_avail_lock);
3800 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3801 				  avail_lists[nid]) {
3802 		if (si->bdev) {
3803 			blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3804 			break;
3805 		}
3806 	}
3807 	spin_unlock(&swap_avail_lock);
3808 }
3809 #endif
3810 
3811 static int __init swapfile_init(void)
3812 {
3813 	int nid;
3814 
3815 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3816 					 GFP_KERNEL);
3817 	if (!swap_avail_heads) {
3818 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3819 		return -ENOMEM;
3820 	}
3821 
3822 	for_each_node(nid)
3823 		plist_head_init(&swap_avail_heads[nid]);
3824 
3825 	return 0;
3826 }
3827 subsys_initcall(swapfile_init);
3828