1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/mm.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/task.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mman.h> 15 #include <linux/slab.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/swap.h> 18 #include <linux/vmalloc.h> 19 #include <linux/pagemap.h> 20 #include <linux/namei.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/blk-cgroup.h> 23 #include <linux/random.h> 24 #include <linux/writeback.h> 25 #include <linux/proc_fs.h> 26 #include <linux/seq_file.h> 27 #include <linux/init.h> 28 #include <linux/ksm.h> 29 #include <linux/rmap.h> 30 #include <linux/security.h> 31 #include <linux/backing-dev.h> 32 #include <linux/mutex.h> 33 #include <linux/capability.h> 34 #include <linux/syscalls.h> 35 #include <linux/memcontrol.h> 36 #include <linux/poll.h> 37 #include <linux/oom.h> 38 #include <linux/frontswap.h> 39 #include <linux/swapfile.h> 40 #include <linux/export.h> 41 #include <linux/swap_slots.h> 42 #include <linux/sort.h> 43 #include <linux/completion.h> 44 #include <linux/suspend.h> 45 46 #include <asm/tlbflush.h> 47 #include <linux/swapops.h> 48 #include <linux/swap_cgroup.h> 49 #include "swap.h" 50 51 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 52 unsigned char); 53 static void free_swap_count_continuations(struct swap_info_struct *); 54 55 static DEFINE_SPINLOCK(swap_lock); 56 static unsigned int nr_swapfiles; 57 atomic_long_t nr_swap_pages; 58 /* 59 * Some modules use swappable objects and may try to swap them out under 60 * memory pressure (via the shrinker). Before doing so, they may wish to 61 * check to see if any swap space is available. 62 */ 63 EXPORT_SYMBOL_GPL(nr_swap_pages); 64 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 65 long total_swap_pages; 66 static int least_priority = -1; 67 unsigned long swapfile_maximum_size; 68 #ifdef CONFIG_MIGRATION 69 bool swap_migration_ad_supported; 70 #endif /* CONFIG_MIGRATION */ 71 72 static const char Bad_file[] = "Bad swap file entry "; 73 static const char Unused_file[] = "Unused swap file entry "; 74 static const char Bad_offset[] = "Bad swap offset entry "; 75 static const char Unused_offset[] = "Unused swap offset entry "; 76 77 /* 78 * all active swap_info_structs 79 * protected with swap_lock, and ordered by priority. 80 */ 81 static PLIST_HEAD(swap_active_head); 82 83 /* 84 * all available (active, not full) swap_info_structs 85 * protected with swap_avail_lock, ordered by priority. 86 * This is used by folio_alloc_swap() instead of swap_active_head 87 * because swap_active_head includes all swap_info_structs, 88 * but folio_alloc_swap() doesn't need to look at full ones. 89 * This uses its own lock instead of swap_lock because when a 90 * swap_info_struct changes between not-full/full, it needs to 91 * add/remove itself to/from this list, but the swap_info_struct->lock 92 * is held and the locking order requires swap_lock to be taken 93 * before any swap_info_struct->lock. 94 */ 95 static struct plist_head *swap_avail_heads; 96 static DEFINE_SPINLOCK(swap_avail_lock); 97 98 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 99 100 static DEFINE_MUTEX(swapon_mutex); 101 102 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 103 /* Activity counter to indicate that a swapon or swapoff has occurred */ 104 static atomic_t proc_poll_event = ATOMIC_INIT(0); 105 106 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 107 108 static struct swap_info_struct *swap_type_to_swap_info(int type) 109 { 110 if (type >= MAX_SWAPFILES) 111 return NULL; 112 113 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 114 } 115 116 static inline unsigned char swap_count(unsigned char ent) 117 { 118 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 119 } 120 121 /* Reclaim the swap entry anyway if possible */ 122 #define TTRS_ANYWAY 0x1 123 /* 124 * Reclaim the swap entry if there are no more mappings of the 125 * corresponding page 126 */ 127 #define TTRS_UNMAPPED 0x2 128 /* Reclaim the swap entry if swap is getting full*/ 129 #define TTRS_FULL 0x4 130 131 /* returns 1 if swap entry is freed */ 132 static int __try_to_reclaim_swap(struct swap_info_struct *si, 133 unsigned long offset, unsigned long flags) 134 { 135 swp_entry_t entry = swp_entry(si->type, offset); 136 struct folio *folio; 137 int ret = 0; 138 139 folio = filemap_get_folio(swap_address_space(entry), offset); 140 if (IS_ERR(folio)) 141 return 0; 142 /* 143 * When this function is called from scan_swap_map_slots() and it's 144 * called by vmscan.c at reclaiming folios. So we hold a folio lock 145 * here. We have to use trylock for avoiding deadlock. This is a special 146 * case and you should use folio_free_swap() with explicit folio_lock() 147 * in usual operations. 148 */ 149 if (folio_trylock(folio)) { 150 if ((flags & TTRS_ANYWAY) || 151 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) || 152 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio))) 153 ret = folio_free_swap(folio); 154 folio_unlock(folio); 155 } 156 folio_put(folio); 157 return ret; 158 } 159 160 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 161 { 162 struct rb_node *rb = rb_first(&sis->swap_extent_root); 163 return rb_entry(rb, struct swap_extent, rb_node); 164 } 165 166 static inline struct swap_extent *next_se(struct swap_extent *se) 167 { 168 struct rb_node *rb = rb_next(&se->rb_node); 169 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 170 } 171 172 /* 173 * swapon tell device that all the old swap contents can be discarded, 174 * to allow the swap device to optimize its wear-levelling. 175 */ 176 static int discard_swap(struct swap_info_struct *si) 177 { 178 struct swap_extent *se; 179 sector_t start_block; 180 sector_t nr_blocks; 181 int err = 0; 182 183 /* Do not discard the swap header page! */ 184 se = first_se(si); 185 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 186 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 187 if (nr_blocks) { 188 err = blkdev_issue_discard(si->bdev, start_block, 189 nr_blocks, GFP_KERNEL); 190 if (err) 191 return err; 192 cond_resched(); 193 } 194 195 for (se = next_se(se); se; se = next_se(se)) { 196 start_block = se->start_block << (PAGE_SHIFT - 9); 197 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 198 199 err = blkdev_issue_discard(si->bdev, start_block, 200 nr_blocks, GFP_KERNEL); 201 if (err) 202 break; 203 204 cond_resched(); 205 } 206 return err; /* That will often be -EOPNOTSUPP */ 207 } 208 209 static struct swap_extent * 210 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 211 { 212 struct swap_extent *se; 213 struct rb_node *rb; 214 215 rb = sis->swap_extent_root.rb_node; 216 while (rb) { 217 se = rb_entry(rb, struct swap_extent, rb_node); 218 if (offset < se->start_page) 219 rb = rb->rb_left; 220 else if (offset >= se->start_page + se->nr_pages) 221 rb = rb->rb_right; 222 else 223 return se; 224 } 225 /* It *must* be present */ 226 BUG(); 227 } 228 229 sector_t swap_page_sector(struct page *page) 230 { 231 struct swap_info_struct *sis = page_swap_info(page); 232 struct swap_extent *se; 233 sector_t sector; 234 pgoff_t offset; 235 236 offset = __page_file_index(page); 237 se = offset_to_swap_extent(sis, offset); 238 sector = se->start_block + (offset - se->start_page); 239 return sector << (PAGE_SHIFT - 9); 240 } 241 242 /* 243 * swap allocation tell device that a cluster of swap can now be discarded, 244 * to allow the swap device to optimize its wear-levelling. 245 */ 246 static void discard_swap_cluster(struct swap_info_struct *si, 247 pgoff_t start_page, pgoff_t nr_pages) 248 { 249 struct swap_extent *se = offset_to_swap_extent(si, start_page); 250 251 while (nr_pages) { 252 pgoff_t offset = start_page - se->start_page; 253 sector_t start_block = se->start_block + offset; 254 sector_t nr_blocks = se->nr_pages - offset; 255 256 if (nr_blocks > nr_pages) 257 nr_blocks = nr_pages; 258 start_page += nr_blocks; 259 nr_pages -= nr_blocks; 260 261 start_block <<= PAGE_SHIFT - 9; 262 nr_blocks <<= PAGE_SHIFT - 9; 263 if (blkdev_issue_discard(si->bdev, start_block, 264 nr_blocks, GFP_NOIO)) 265 break; 266 267 se = next_se(se); 268 } 269 } 270 271 #ifdef CONFIG_THP_SWAP 272 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 273 274 #define swap_entry_size(size) (size) 275 #else 276 #define SWAPFILE_CLUSTER 256 277 278 /* 279 * Define swap_entry_size() as constant to let compiler to optimize 280 * out some code if !CONFIG_THP_SWAP 281 */ 282 #define swap_entry_size(size) 1 283 #endif 284 #define LATENCY_LIMIT 256 285 286 static inline void cluster_set_flag(struct swap_cluster_info *info, 287 unsigned int flag) 288 { 289 info->flags = flag; 290 } 291 292 static inline unsigned int cluster_count(struct swap_cluster_info *info) 293 { 294 return info->data; 295 } 296 297 static inline void cluster_set_count(struct swap_cluster_info *info, 298 unsigned int c) 299 { 300 info->data = c; 301 } 302 303 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 304 unsigned int c, unsigned int f) 305 { 306 info->flags = f; 307 info->data = c; 308 } 309 310 static inline unsigned int cluster_next(struct swap_cluster_info *info) 311 { 312 return info->data; 313 } 314 315 static inline void cluster_set_next(struct swap_cluster_info *info, 316 unsigned int n) 317 { 318 info->data = n; 319 } 320 321 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 322 unsigned int n, unsigned int f) 323 { 324 info->flags = f; 325 info->data = n; 326 } 327 328 static inline bool cluster_is_free(struct swap_cluster_info *info) 329 { 330 return info->flags & CLUSTER_FLAG_FREE; 331 } 332 333 static inline bool cluster_is_null(struct swap_cluster_info *info) 334 { 335 return info->flags & CLUSTER_FLAG_NEXT_NULL; 336 } 337 338 static inline void cluster_set_null(struct swap_cluster_info *info) 339 { 340 info->flags = CLUSTER_FLAG_NEXT_NULL; 341 info->data = 0; 342 } 343 344 static inline bool cluster_is_huge(struct swap_cluster_info *info) 345 { 346 if (IS_ENABLED(CONFIG_THP_SWAP)) 347 return info->flags & CLUSTER_FLAG_HUGE; 348 return false; 349 } 350 351 static inline void cluster_clear_huge(struct swap_cluster_info *info) 352 { 353 info->flags &= ~CLUSTER_FLAG_HUGE; 354 } 355 356 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 357 unsigned long offset) 358 { 359 struct swap_cluster_info *ci; 360 361 ci = si->cluster_info; 362 if (ci) { 363 ci += offset / SWAPFILE_CLUSTER; 364 spin_lock(&ci->lock); 365 } 366 return ci; 367 } 368 369 static inline void unlock_cluster(struct swap_cluster_info *ci) 370 { 371 if (ci) 372 spin_unlock(&ci->lock); 373 } 374 375 /* 376 * Determine the locking method in use for this device. Return 377 * swap_cluster_info if SSD-style cluster-based locking is in place. 378 */ 379 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 380 struct swap_info_struct *si, unsigned long offset) 381 { 382 struct swap_cluster_info *ci; 383 384 /* Try to use fine-grained SSD-style locking if available: */ 385 ci = lock_cluster(si, offset); 386 /* Otherwise, fall back to traditional, coarse locking: */ 387 if (!ci) 388 spin_lock(&si->lock); 389 390 return ci; 391 } 392 393 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 394 struct swap_cluster_info *ci) 395 { 396 if (ci) 397 unlock_cluster(ci); 398 else 399 spin_unlock(&si->lock); 400 } 401 402 static inline bool cluster_list_empty(struct swap_cluster_list *list) 403 { 404 return cluster_is_null(&list->head); 405 } 406 407 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 408 { 409 return cluster_next(&list->head); 410 } 411 412 static void cluster_list_init(struct swap_cluster_list *list) 413 { 414 cluster_set_null(&list->head); 415 cluster_set_null(&list->tail); 416 } 417 418 static void cluster_list_add_tail(struct swap_cluster_list *list, 419 struct swap_cluster_info *ci, 420 unsigned int idx) 421 { 422 if (cluster_list_empty(list)) { 423 cluster_set_next_flag(&list->head, idx, 0); 424 cluster_set_next_flag(&list->tail, idx, 0); 425 } else { 426 struct swap_cluster_info *ci_tail; 427 unsigned int tail = cluster_next(&list->tail); 428 429 /* 430 * Nested cluster lock, but both cluster locks are 431 * only acquired when we held swap_info_struct->lock 432 */ 433 ci_tail = ci + tail; 434 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 435 cluster_set_next(ci_tail, idx); 436 spin_unlock(&ci_tail->lock); 437 cluster_set_next_flag(&list->tail, idx, 0); 438 } 439 } 440 441 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 442 struct swap_cluster_info *ci) 443 { 444 unsigned int idx; 445 446 idx = cluster_next(&list->head); 447 if (cluster_next(&list->tail) == idx) { 448 cluster_set_null(&list->head); 449 cluster_set_null(&list->tail); 450 } else 451 cluster_set_next_flag(&list->head, 452 cluster_next(&ci[idx]), 0); 453 454 return idx; 455 } 456 457 /* Add a cluster to discard list and schedule it to do discard */ 458 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 459 unsigned int idx) 460 { 461 /* 462 * If scan_swap_map_slots() can't find a free cluster, it will check 463 * si->swap_map directly. To make sure the discarding cluster isn't 464 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied). 465 * It will be cleared after discard 466 */ 467 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 468 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 469 470 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 471 472 schedule_work(&si->discard_work); 473 } 474 475 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 476 { 477 struct swap_cluster_info *ci = si->cluster_info; 478 479 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 480 cluster_list_add_tail(&si->free_clusters, ci, idx); 481 } 482 483 /* 484 * Doing discard actually. After a cluster discard is finished, the cluster 485 * will be added to free cluster list. caller should hold si->lock. 486 */ 487 static void swap_do_scheduled_discard(struct swap_info_struct *si) 488 { 489 struct swap_cluster_info *info, *ci; 490 unsigned int idx; 491 492 info = si->cluster_info; 493 494 while (!cluster_list_empty(&si->discard_clusters)) { 495 idx = cluster_list_del_first(&si->discard_clusters, info); 496 spin_unlock(&si->lock); 497 498 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 499 SWAPFILE_CLUSTER); 500 501 spin_lock(&si->lock); 502 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 503 __free_cluster(si, idx); 504 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 505 0, SWAPFILE_CLUSTER); 506 unlock_cluster(ci); 507 } 508 } 509 510 static void swap_discard_work(struct work_struct *work) 511 { 512 struct swap_info_struct *si; 513 514 si = container_of(work, struct swap_info_struct, discard_work); 515 516 spin_lock(&si->lock); 517 swap_do_scheduled_discard(si); 518 spin_unlock(&si->lock); 519 } 520 521 static void swap_users_ref_free(struct percpu_ref *ref) 522 { 523 struct swap_info_struct *si; 524 525 si = container_of(ref, struct swap_info_struct, users); 526 complete(&si->comp); 527 } 528 529 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 530 { 531 struct swap_cluster_info *ci = si->cluster_info; 532 533 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 534 cluster_list_del_first(&si->free_clusters, ci); 535 cluster_set_count_flag(ci + idx, 0, 0); 536 } 537 538 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 539 { 540 struct swap_cluster_info *ci = si->cluster_info + idx; 541 542 VM_BUG_ON(cluster_count(ci) != 0); 543 /* 544 * If the swap is discardable, prepare discard the cluster 545 * instead of free it immediately. The cluster will be freed 546 * after discard. 547 */ 548 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 549 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 550 swap_cluster_schedule_discard(si, idx); 551 return; 552 } 553 554 __free_cluster(si, idx); 555 } 556 557 /* 558 * The cluster corresponding to page_nr will be used. The cluster will be 559 * removed from free cluster list and its usage counter will be increased. 560 */ 561 static void inc_cluster_info_page(struct swap_info_struct *p, 562 struct swap_cluster_info *cluster_info, unsigned long page_nr) 563 { 564 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 565 566 if (!cluster_info) 567 return; 568 if (cluster_is_free(&cluster_info[idx])) 569 alloc_cluster(p, idx); 570 571 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 572 cluster_set_count(&cluster_info[idx], 573 cluster_count(&cluster_info[idx]) + 1); 574 } 575 576 /* 577 * The cluster corresponding to page_nr decreases one usage. If the usage 578 * counter becomes 0, which means no page in the cluster is in using, we can 579 * optionally discard the cluster and add it to free cluster list. 580 */ 581 static void dec_cluster_info_page(struct swap_info_struct *p, 582 struct swap_cluster_info *cluster_info, unsigned long page_nr) 583 { 584 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 585 586 if (!cluster_info) 587 return; 588 589 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 590 cluster_set_count(&cluster_info[idx], 591 cluster_count(&cluster_info[idx]) - 1); 592 593 if (cluster_count(&cluster_info[idx]) == 0) 594 free_cluster(p, idx); 595 } 596 597 /* 598 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free 599 * cluster list. Avoiding such abuse to avoid list corruption. 600 */ 601 static bool 602 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 603 unsigned long offset) 604 { 605 struct percpu_cluster *percpu_cluster; 606 bool conflict; 607 608 offset /= SWAPFILE_CLUSTER; 609 conflict = !cluster_list_empty(&si->free_clusters) && 610 offset != cluster_list_first(&si->free_clusters) && 611 cluster_is_free(&si->cluster_info[offset]); 612 613 if (!conflict) 614 return false; 615 616 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 617 cluster_set_null(&percpu_cluster->index); 618 return true; 619 } 620 621 /* 622 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 623 * might involve allocating a new cluster for current CPU too. 624 */ 625 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 626 unsigned long *offset, unsigned long *scan_base) 627 { 628 struct percpu_cluster *cluster; 629 struct swap_cluster_info *ci; 630 unsigned long tmp, max; 631 632 new_cluster: 633 cluster = this_cpu_ptr(si->percpu_cluster); 634 if (cluster_is_null(&cluster->index)) { 635 if (!cluster_list_empty(&si->free_clusters)) { 636 cluster->index = si->free_clusters.head; 637 cluster->next = cluster_next(&cluster->index) * 638 SWAPFILE_CLUSTER; 639 } else if (!cluster_list_empty(&si->discard_clusters)) { 640 /* 641 * we don't have free cluster but have some clusters in 642 * discarding, do discard now and reclaim them, then 643 * reread cluster_next_cpu since we dropped si->lock 644 */ 645 swap_do_scheduled_discard(si); 646 *scan_base = this_cpu_read(*si->cluster_next_cpu); 647 *offset = *scan_base; 648 goto new_cluster; 649 } else 650 return false; 651 } 652 653 /* 654 * Other CPUs can use our cluster if they can't find a free cluster, 655 * check if there is still free entry in the cluster 656 */ 657 tmp = cluster->next; 658 max = min_t(unsigned long, si->max, 659 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 660 if (tmp < max) { 661 ci = lock_cluster(si, tmp); 662 while (tmp < max) { 663 if (!si->swap_map[tmp]) 664 break; 665 tmp++; 666 } 667 unlock_cluster(ci); 668 } 669 if (tmp >= max) { 670 cluster_set_null(&cluster->index); 671 goto new_cluster; 672 } 673 cluster->next = tmp + 1; 674 *offset = tmp; 675 *scan_base = tmp; 676 return true; 677 } 678 679 static void __del_from_avail_list(struct swap_info_struct *p) 680 { 681 int nid; 682 683 assert_spin_locked(&p->lock); 684 for_each_node(nid) 685 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 686 } 687 688 static void del_from_avail_list(struct swap_info_struct *p) 689 { 690 spin_lock(&swap_avail_lock); 691 __del_from_avail_list(p); 692 spin_unlock(&swap_avail_lock); 693 } 694 695 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 696 unsigned int nr_entries) 697 { 698 unsigned int end = offset + nr_entries - 1; 699 700 if (offset == si->lowest_bit) 701 si->lowest_bit += nr_entries; 702 if (end == si->highest_bit) 703 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries); 704 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries); 705 if (si->inuse_pages == si->pages) { 706 si->lowest_bit = si->max; 707 si->highest_bit = 0; 708 del_from_avail_list(si); 709 } 710 } 711 712 static void add_to_avail_list(struct swap_info_struct *p) 713 { 714 int nid; 715 716 spin_lock(&swap_avail_lock); 717 for_each_node(nid) { 718 WARN_ON(!plist_node_empty(&p->avail_lists[nid])); 719 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 720 } 721 spin_unlock(&swap_avail_lock); 722 } 723 724 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 725 unsigned int nr_entries) 726 { 727 unsigned long begin = offset; 728 unsigned long end = offset + nr_entries - 1; 729 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 730 731 if (offset < si->lowest_bit) 732 si->lowest_bit = offset; 733 if (end > si->highest_bit) { 734 bool was_full = !si->highest_bit; 735 736 WRITE_ONCE(si->highest_bit, end); 737 if (was_full && (si->flags & SWP_WRITEOK)) 738 add_to_avail_list(si); 739 } 740 atomic_long_add(nr_entries, &nr_swap_pages); 741 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries); 742 if (si->flags & SWP_BLKDEV) 743 swap_slot_free_notify = 744 si->bdev->bd_disk->fops->swap_slot_free_notify; 745 else 746 swap_slot_free_notify = NULL; 747 while (offset <= end) { 748 arch_swap_invalidate_page(si->type, offset); 749 frontswap_invalidate_page(si->type, offset); 750 if (swap_slot_free_notify) 751 swap_slot_free_notify(si->bdev, offset); 752 offset++; 753 } 754 clear_shadow_from_swap_cache(si->type, begin, end); 755 } 756 757 static void set_cluster_next(struct swap_info_struct *si, unsigned long next) 758 { 759 unsigned long prev; 760 761 if (!(si->flags & SWP_SOLIDSTATE)) { 762 si->cluster_next = next; 763 return; 764 } 765 766 prev = this_cpu_read(*si->cluster_next_cpu); 767 /* 768 * Cross the swap address space size aligned trunk, choose 769 * another trunk randomly to avoid lock contention on swap 770 * address space if possible. 771 */ 772 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) != 773 (next >> SWAP_ADDRESS_SPACE_SHIFT)) { 774 /* No free swap slots available */ 775 if (si->highest_bit <= si->lowest_bit) 776 return; 777 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit); 778 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES); 779 next = max_t(unsigned int, next, si->lowest_bit); 780 } 781 this_cpu_write(*si->cluster_next_cpu, next); 782 } 783 784 static bool swap_offset_available_and_locked(struct swap_info_struct *si, 785 unsigned long offset) 786 { 787 if (data_race(!si->swap_map[offset])) { 788 spin_lock(&si->lock); 789 return true; 790 } 791 792 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 793 spin_lock(&si->lock); 794 return true; 795 } 796 797 return false; 798 } 799 800 static int scan_swap_map_slots(struct swap_info_struct *si, 801 unsigned char usage, int nr, 802 swp_entry_t slots[]) 803 { 804 struct swap_cluster_info *ci; 805 unsigned long offset; 806 unsigned long scan_base; 807 unsigned long last_in_cluster = 0; 808 int latency_ration = LATENCY_LIMIT; 809 int n_ret = 0; 810 bool scanned_many = false; 811 812 /* 813 * We try to cluster swap pages by allocating them sequentially 814 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 815 * way, however, we resort to first-free allocation, starting 816 * a new cluster. This prevents us from scattering swap pages 817 * all over the entire swap partition, so that we reduce 818 * overall disk seek times between swap pages. -- sct 819 * But we do now try to find an empty cluster. -Andrea 820 * And we let swap pages go all over an SSD partition. Hugh 821 */ 822 823 si->flags += SWP_SCANNING; 824 /* 825 * Use percpu scan base for SSD to reduce lock contention on 826 * cluster and swap cache. For HDD, sequential access is more 827 * important. 828 */ 829 if (si->flags & SWP_SOLIDSTATE) 830 scan_base = this_cpu_read(*si->cluster_next_cpu); 831 else 832 scan_base = si->cluster_next; 833 offset = scan_base; 834 835 /* SSD algorithm */ 836 if (si->cluster_info) { 837 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 838 goto scan; 839 } else if (unlikely(!si->cluster_nr--)) { 840 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 841 si->cluster_nr = SWAPFILE_CLUSTER - 1; 842 goto checks; 843 } 844 845 spin_unlock(&si->lock); 846 847 /* 848 * If seek is expensive, start searching for new cluster from 849 * start of partition, to minimize the span of allocated swap. 850 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 851 * case, just handled by scan_swap_map_try_ssd_cluster() above. 852 */ 853 scan_base = offset = si->lowest_bit; 854 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 855 856 /* Locate the first empty (unaligned) cluster */ 857 for (; last_in_cluster <= si->highest_bit; offset++) { 858 if (si->swap_map[offset]) 859 last_in_cluster = offset + SWAPFILE_CLUSTER; 860 else if (offset == last_in_cluster) { 861 spin_lock(&si->lock); 862 offset -= SWAPFILE_CLUSTER - 1; 863 si->cluster_next = offset; 864 si->cluster_nr = SWAPFILE_CLUSTER - 1; 865 goto checks; 866 } 867 if (unlikely(--latency_ration < 0)) { 868 cond_resched(); 869 latency_ration = LATENCY_LIMIT; 870 } 871 } 872 873 offset = scan_base; 874 spin_lock(&si->lock); 875 si->cluster_nr = SWAPFILE_CLUSTER - 1; 876 } 877 878 checks: 879 if (si->cluster_info) { 880 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 881 /* take a break if we already got some slots */ 882 if (n_ret) 883 goto done; 884 if (!scan_swap_map_try_ssd_cluster(si, &offset, 885 &scan_base)) 886 goto scan; 887 } 888 } 889 if (!(si->flags & SWP_WRITEOK)) 890 goto no_page; 891 if (!si->highest_bit) 892 goto no_page; 893 if (offset > si->highest_bit) 894 scan_base = offset = si->lowest_bit; 895 896 ci = lock_cluster(si, offset); 897 /* reuse swap entry of cache-only swap if not busy. */ 898 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 899 int swap_was_freed; 900 unlock_cluster(ci); 901 spin_unlock(&si->lock); 902 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 903 spin_lock(&si->lock); 904 /* entry was freed successfully, try to use this again */ 905 if (swap_was_freed) 906 goto checks; 907 goto scan; /* check next one */ 908 } 909 910 if (si->swap_map[offset]) { 911 unlock_cluster(ci); 912 if (!n_ret) 913 goto scan; 914 else 915 goto done; 916 } 917 WRITE_ONCE(si->swap_map[offset], usage); 918 inc_cluster_info_page(si, si->cluster_info, offset); 919 unlock_cluster(ci); 920 921 swap_range_alloc(si, offset, 1); 922 slots[n_ret++] = swp_entry(si->type, offset); 923 924 /* got enough slots or reach max slots? */ 925 if ((n_ret == nr) || (offset >= si->highest_bit)) 926 goto done; 927 928 /* search for next available slot */ 929 930 /* time to take a break? */ 931 if (unlikely(--latency_ration < 0)) { 932 if (n_ret) 933 goto done; 934 spin_unlock(&si->lock); 935 cond_resched(); 936 spin_lock(&si->lock); 937 latency_ration = LATENCY_LIMIT; 938 } 939 940 /* try to get more slots in cluster */ 941 if (si->cluster_info) { 942 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 943 goto checks; 944 } else if (si->cluster_nr && !si->swap_map[++offset]) { 945 /* non-ssd case, still more slots in cluster? */ 946 --si->cluster_nr; 947 goto checks; 948 } 949 950 /* 951 * Even if there's no free clusters available (fragmented), 952 * try to scan a little more quickly with lock held unless we 953 * have scanned too many slots already. 954 */ 955 if (!scanned_many) { 956 unsigned long scan_limit; 957 958 if (offset < scan_base) 959 scan_limit = scan_base; 960 else 961 scan_limit = si->highest_bit; 962 for (; offset <= scan_limit && --latency_ration > 0; 963 offset++) { 964 if (!si->swap_map[offset]) 965 goto checks; 966 } 967 } 968 969 done: 970 set_cluster_next(si, offset + 1); 971 si->flags -= SWP_SCANNING; 972 return n_ret; 973 974 scan: 975 spin_unlock(&si->lock); 976 while (++offset <= READ_ONCE(si->highest_bit)) { 977 if (unlikely(--latency_ration < 0)) { 978 cond_resched(); 979 latency_ration = LATENCY_LIMIT; 980 scanned_many = true; 981 } 982 if (swap_offset_available_and_locked(si, offset)) 983 goto checks; 984 } 985 offset = si->lowest_bit; 986 while (offset < scan_base) { 987 if (unlikely(--latency_ration < 0)) { 988 cond_resched(); 989 latency_ration = LATENCY_LIMIT; 990 scanned_many = true; 991 } 992 if (swap_offset_available_and_locked(si, offset)) 993 goto checks; 994 offset++; 995 } 996 spin_lock(&si->lock); 997 998 no_page: 999 si->flags -= SWP_SCANNING; 1000 return n_ret; 1001 } 1002 1003 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 1004 { 1005 unsigned long idx; 1006 struct swap_cluster_info *ci; 1007 unsigned long offset; 1008 1009 /* 1010 * Should not even be attempting cluster allocations when huge 1011 * page swap is disabled. Warn and fail the allocation. 1012 */ 1013 if (!IS_ENABLED(CONFIG_THP_SWAP)) { 1014 VM_WARN_ON_ONCE(1); 1015 return 0; 1016 } 1017 1018 if (cluster_list_empty(&si->free_clusters)) 1019 return 0; 1020 1021 idx = cluster_list_first(&si->free_clusters); 1022 offset = idx * SWAPFILE_CLUSTER; 1023 ci = lock_cluster(si, offset); 1024 alloc_cluster(si, idx); 1025 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 1026 1027 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER); 1028 unlock_cluster(ci); 1029 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 1030 *slot = swp_entry(si->type, offset); 1031 1032 return 1; 1033 } 1034 1035 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 1036 { 1037 unsigned long offset = idx * SWAPFILE_CLUSTER; 1038 struct swap_cluster_info *ci; 1039 1040 ci = lock_cluster(si, offset); 1041 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 1042 cluster_set_count_flag(ci, 0, 0); 1043 free_cluster(si, idx); 1044 unlock_cluster(ci); 1045 swap_range_free(si, offset, SWAPFILE_CLUSTER); 1046 } 1047 1048 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) 1049 { 1050 unsigned long size = swap_entry_size(entry_size); 1051 struct swap_info_struct *si, *next; 1052 long avail_pgs; 1053 int n_ret = 0; 1054 int node; 1055 1056 /* Only single cluster request supported */ 1057 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); 1058 1059 spin_lock(&swap_avail_lock); 1060 1061 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 1062 if (avail_pgs <= 0) { 1063 spin_unlock(&swap_avail_lock); 1064 goto noswap; 1065 } 1066 1067 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); 1068 1069 atomic_long_sub(n_goal * size, &nr_swap_pages); 1070 1071 start_over: 1072 node = numa_node_id(); 1073 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1074 /* requeue si to after same-priority siblings */ 1075 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1076 spin_unlock(&swap_avail_lock); 1077 spin_lock(&si->lock); 1078 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 1079 spin_lock(&swap_avail_lock); 1080 if (plist_node_empty(&si->avail_lists[node])) { 1081 spin_unlock(&si->lock); 1082 goto nextsi; 1083 } 1084 WARN(!si->highest_bit, 1085 "swap_info %d in list but !highest_bit\n", 1086 si->type); 1087 WARN(!(si->flags & SWP_WRITEOK), 1088 "swap_info %d in list but !SWP_WRITEOK\n", 1089 si->type); 1090 __del_from_avail_list(si); 1091 spin_unlock(&si->lock); 1092 goto nextsi; 1093 } 1094 if (size == SWAPFILE_CLUSTER) { 1095 if (si->flags & SWP_BLKDEV) 1096 n_ret = swap_alloc_cluster(si, swp_entries); 1097 } else 1098 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1099 n_goal, swp_entries); 1100 spin_unlock(&si->lock); 1101 if (n_ret || size == SWAPFILE_CLUSTER) 1102 goto check_out; 1103 cond_resched(); 1104 1105 spin_lock(&swap_avail_lock); 1106 nextsi: 1107 /* 1108 * if we got here, it's likely that si was almost full before, 1109 * and since scan_swap_map_slots() can drop the si->lock, 1110 * multiple callers probably all tried to get a page from the 1111 * same si and it filled up before we could get one; or, the si 1112 * filled up between us dropping swap_avail_lock and taking 1113 * si->lock. Since we dropped the swap_avail_lock, the 1114 * swap_avail_head list may have been modified; so if next is 1115 * still in the swap_avail_head list then try it, otherwise 1116 * start over if we have not gotten any slots. 1117 */ 1118 if (plist_node_empty(&next->avail_lists[node])) 1119 goto start_over; 1120 } 1121 1122 spin_unlock(&swap_avail_lock); 1123 1124 check_out: 1125 if (n_ret < n_goal) 1126 atomic_long_add((long)(n_goal - n_ret) * size, 1127 &nr_swap_pages); 1128 noswap: 1129 return n_ret; 1130 } 1131 1132 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1133 { 1134 struct swap_info_struct *p; 1135 unsigned long offset; 1136 1137 if (!entry.val) 1138 goto out; 1139 p = swp_swap_info(entry); 1140 if (!p) 1141 goto bad_nofile; 1142 if (data_race(!(p->flags & SWP_USED))) 1143 goto bad_device; 1144 offset = swp_offset(entry); 1145 if (offset >= p->max) 1146 goto bad_offset; 1147 if (data_race(!p->swap_map[swp_offset(entry)])) 1148 goto bad_free; 1149 return p; 1150 1151 bad_free: 1152 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1153 goto out; 1154 bad_offset: 1155 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1156 goto out; 1157 bad_device: 1158 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1159 goto out; 1160 bad_nofile: 1161 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1162 out: 1163 return NULL; 1164 } 1165 1166 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1167 struct swap_info_struct *q) 1168 { 1169 struct swap_info_struct *p; 1170 1171 p = _swap_info_get(entry); 1172 1173 if (p != q) { 1174 if (q != NULL) 1175 spin_unlock(&q->lock); 1176 if (p != NULL) 1177 spin_lock(&p->lock); 1178 } 1179 return p; 1180 } 1181 1182 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1183 unsigned long offset, 1184 unsigned char usage) 1185 { 1186 unsigned char count; 1187 unsigned char has_cache; 1188 1189 count = p->swap_map[offset]; 1190 1191 has_cache = count & SWAP_HAS_CACHE; 1192 count &= ~SWAP_HAS_CACHE; 1193 1194 if (usage == SWAP_HAS_CACHE) { 1195 VM_BUG_ON(!has_cache); 1196 has_cache = 0; 1197 } else if (count == SWAP_MAP_SHMEM) { 1198 /* 1199 * Or we could insist on shmem.c using a special 1200 * swap_shmem_free() and free_shmem_swap_and_cache()... 1201 */ 1202 count = 0; 1203 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1204 if (count == COUNT_CONTINUED) { 1205 if (swap_count_continued(p, offset, count)) 1206 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1207 else 1208 count = SWAP_MAP_MAX; 1209 } else 1210 count--; 1211 } 1212 1213 usage = count | has_cache; 1214 if (usage) 1215 WRITE_ONCE(p->swap_map[offset], usage); 1216 else 1217 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE); 1218 1219 return usage; 1220 } 1221 1222 /* 1223 * When we get a swap entry, if there aren't some other ways to 1224 * prevent swapoff, such as the folio in swap cache is locked, page 1225 * table lock is held, etc., the swap entry may become invalid because 1226 * of swapoff. Then, we need to enclose all swap related functions 1227 * with get_swap_device() and put_swap_device(), unless the swap 1228 * functions call get/put_swap_device() by themselves. 1229 * 1230 * Check whether swap entry is valid in the swap device. If so, 1231 * return pointer to swap_info_struct, and keep the swap entry valid 1232 * via preventing the swap device from being swapoff, until 1233 * put_swap_device() is called. Otherwise return NULL. 1234 * 1235 * Notice that swapoff or swapoff+swapon can still happen before the 1236 * percpu_ref_tryget_live() in get_swap_device() or after the 1237 * percpu_ref_put() in put_swap_device() if there isn't any other way 1238 * to prevent swapoff. The caller must be prepared for that. For 1239 * example, the following situation is possible. 1240 * 1241 * CPU1 CPU2 1242 * do_swap_page() 1243 * ... swapoff+swapon 1244 * __read_swap_cache_async() 1245 * swapcache_prepare() 1246 * __swap_duplicate() 1247 * // check swap_map 1248 * // verify PTE not changed 1249 * 1250 * In __swap_duplicate(), the swap_map need to be checked before 1251 * changing partly because the specified swap entry may be for another 1252 * swap device which has been swapoff. And in do_swap_page(), after 1253 * the page is read from the swap device, the PTE is verified not 1254 * changed with the page table locked to check whether the swap device 1255 * has been swapoff or swapoff+swapon. 1256 */ 1257 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1258 { 1259 struct swap_info_struct *si; 1260 unsigned long offset; 1261 1262 if (!entry.val) 1263 goto out; 1264 si = swp_swap_info(entry); 1265 if (!si) 1266 goto bad_nofile; 1267 if (!percpu_ref_tryget_live(&si->users)) 1268 goto out; 1269 /* 1270 * Guarantee the si->users are checked before accessing other 1271 * fields of swap_info_struct. 1272 * 1273 * Paired with the spin_unlock() after setup_swap_info() in 1274 * enable_swap_info(). 1275 */ 1276 smp_rmb(); 1277 offset = swp_offset(entry); 1278 if (offset >= si->max) 1279 goto put_out; 1280 1281 return si; 1282 bad_nofile: 1283 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1284 out: 1285 return NULL; 1286 put_out: 1287 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1288 percpu_ref_put(&si->users); 1289 return NULL; 1290 } 1291 1292 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1293 swp_entry_t entry) 1294 { 1295 struct swap_cluster_info *ci; 1296 unsigned long offset = swp_offset(entry); 1297 unsigned char usage; 1298 1299 ci = lock_cluster_or_swap_info(p, offset); 1300 usage = __swap_entry_free_locked(p, offset, 1); 1301 unlock_cluster_or_swap_info(p, ci); 1302 if (!usage) 1303 free_swap_slot(entry); 1304 1305 return usage; 1306 } 1307 1308 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1309 { 1310 struct swap_cluster_info *ci; 1311 unsigned long offset = swp_offset(entry); 1312 unsigned char count; 1313 1314 ci = lock_cluster(p, offset); 1315 count = p->swap_map[offset]; 1316 VM_BUG_ON(count != SWAP_HAS_CACHE); 1317 p->swap_map[offset] = 0; 1318 dec_cluster_info_page(p, p->cluster_info, offset); 1319 unlock_cluster(ci); 1320 1321 mem_cgroup_uncharge_swap(entry, 1); 1322 swap_range_free(p, offset, 1); 1323 } 1324 1325 /* 1326 * Caller has made sure that the swap device corresponding to entry 1327 * is still around or has not been recycled. 1328 */ 1329 void swap_free(swp_entry_t entry) 1330 { 1331 struct swap_info_struct *p; 1332 1333 p = _swap_info_get(entry); 1334 if (p) 1335 __swap_entry_free(p, entry); 1336 } 1337 1338 /* 1339 * Called after dropping swapcache to decrease refcnt to swap entries. 1340 */ 1341 void put_swap_folio(struct folio *folio, swp_entry_t entry) 1342 { 1343 unsigned long offset = swp_offset(entry); 1344 unsigned long idx = offset / SWAPFILE_CLUSTER; 1345 struct swap_cluster_info *ci; 1346 struct swap_info_struct *si; 1347 unsigned char *map; 1348 unsigned int i, free_entries = 0; 1349 unsigned char val; 1350 int size = swap_entry_size(folio_nr_pages(folio)); 1351 1352 si = _swap_info_get(entry); 1353 if (!si) 1354 return; 1355 1356 ci = lock_cluster_or_swap_info(si, offset); 1357 if (size == SWAPFILE_CLUSTER) { 1358 VM_BUG_ON(!cluster_is_huge(ci)); 1359 map = si->swap_map + offset; 1360 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1361 val = map[i]; 1362 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1363 if (val == SWAP_HAS_CACHE) 1364 free_entries++; 1365 } 1366 cluster_clear_huge(ci); 1367 if (free_entries == SWAPFILE_CLUSTER) { 1368 unlock_cluster_or_swap_info(si, ci); 1369 spin_lock(&si->lock); 1370 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1371 swap_free_cluster(si, idx); 1372 spin_unlock(&si->lock); 1373 return; 1374 } 1375 } 1376 for (i = 0; i < size; i++, entry.val++) { 1377 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1378 unlock_cluster_or_swap_info(si, ci); 1379 free_swap_slot(entry); 1380 if (i == size - 1) 1381 return; 1382 lock_cluster_or_swap_info(si, offset); 1383 } 1384 } 1385 unlock_cluster_or_swap_info(si, ci); 1386 } 1387 1388 #ifdef CONFIG_THP_SWAP 1389 int split_swap_cluster(swp_entry_t entry) 1390 { 1391 struct swap_info_struct *si; 1392 struct swap_cluster_info *ci; 1393 unsigned long offset = swp_offset(entry); 1394 1395 si = _swap_info_get(entry); 1396 if (!si) 1397 return -EBUSY; 1398 ci = lock_cluster(si, offset); 1399 cluster_clear_huge(ci); 1400 unlock_cluster(ci); 1401 return 0; 1402 } 1403 #endif 1404 1405 static int swp_entry_cmp(const void *ent1, const void *ent2) 1406 { 1407 const swp_entry_t *e1 = ent1, *e2 = ent2; 1408 1409 return (int)swp_type(*e1) - (int)swp_type(*e2); 1410 } 1411 1412 void swapcache_free_entries(swp_entry_t *entries, int n) 1413 { 1414 struct swap_info_struct *p, *prev; 1415 int i; 1416 1417 if (n <= 0) 1418 return; 1419 1420 prev = NULL; 1421 p = NULL; 1422 1423 /* 1424 * Sort swap entries by swap device, so each lock is only taken once. 1425 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1426 * so low that it isn't necessary to optimize further. 1427 */ 1428 if (nr_swapfiles > 1) 1429 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1430 for (i = 0; i < n; ++i) { 1431 p = swap_info_get_cont(entries[i], prev); 1432 if (p) 1433 swap_entry_free(p, entries[i]); 1434 prev = p; 1435 } 1436 if (p) 1437 spin_unlock(&p->lock); 1438 } 1439 1440 int __swap_count(swp_entry_t entry) 1441 { 1442 struct swap_info_struct *si = swp_swap_info(entry); 1443 pgoff_t offset = swp_offset(entry); 1444 1445 return swap_count(si->swap_map[offset]); 1446 } 1447 1448 /* 1449 * How many references to @entry are currently swapped out? 1450 * This does not give an exact answer when swap count is continued, 1451 * but does include the high COUNT_CONTINUED flag to allow for that. 1452 */ 1453 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1454 { 1455 pgoff_t offset = swp_offset(entry); 1456 struct swap_cluster_info *ci; 1457 int count; 1458 1459 ci = lock_cluster_or_swap_info(si, offset); 1460 count = swap_count(si->swap_map[offset]); 1461 unlock_cluster_or_swap_info(si, ci); 1462 return count; 1463 } 1464 1465 /* 1466 * How many references to @entry are currently swapped out? 1467 * This considers COUNT_CONTINUED so it returns exact answer. 1468 */ 1469 int swp_swapcount(swp_entry_t entry) 1470 { 1471 int count, tmp_count, n; 1472 struct swap_info_struct *p; 1473 struct swap_cluster_info *ci; 1474 struct page *page; 1475 pgoff_t offset; 1476 unsigned char *map; 1477 1478 p = _swap_info_get(entry); 1479 if (!p) 1480 return 0; 1481 1482 offset = swp_offset(entry); 1483 1484 ci = lock_cluster_or_swap_info(p, offset); 1485 1486 count = swap_count(p->swap_map[offset]); 1487 if (!(count & COUNT_CONTINUED)) 1488 goto out; 1489 1490 count &= ~COUNT_CONTINUED; 1491 n = SWAP_MAP_MAX + 1; 1492 1493 page = vmalloc_to_page(p->swap_map + offset); 1494 offset &= ~PAGE_MASK; 1495 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1496 1497 do { 1498 page = list_next_entry(page, lru); 1499 map = kmap_atomic(page); 1500 tmp_count = map[offset]; 1501 kunmap_atomic(map); 1502 1503 count += (tmp_count & ~COUNT_CONTINUED) * n; 1504 n *= (SWAP_CONT_MAX + 1); 1505 } while (tmp_count & COUNT_CONTINUED); 1506 out: 1507 unlock_cluster_or_swap_info(p, ci); 1508 return count; 1509 } 1510 1511 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1512 swp_entry_t entry) 1513 { 1514 struct swap_cluster_info *ci; 1515 unsigned char *map = si->swap_map; 1516 unsigned long roffset = swp_offset(entry); 1517 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1518 int i; 1519 bool ret = false; 1520 1521 ci = lock_cluster_or_swap_info(si, offset); 1522 if (!ci || !cluster_is_huge(ci)) { 1523 if (swap_count(map[roffset])) 1524 ret = true; 1525 goto unlock_out; 1526 } 1527 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1528 if (swap_count(map[offset + i])) { 1529 ret = true; 1530 break; 1531 } 1532 } 1533 unlock_out: 1534 unlock_cluster_or_swap_info(si, ci); 1535 return ret; 1536 } 1537 1538 static bool folio_swapped(struct folio *folio) 1539 { 1540 swp_entry_t entry = folio_swap_entry(folio); 1541 struct swap_info_struct *si = _swap_info_get(entry); 1542 1543 if (!si) 1544 return false; 1545 1546 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio))) 1547 return swap_swapcount(si, entry) != 0; 1548 1549 return swap_page_trans_huge_swapped(si, entry); 1550 } 1551 1552 /** 1553 * folio_free_swap() - Free the swap space used for this folio. 1554 * @folio: The folio to remove. 1555 * 1556 * If swap is getting full, or if there are no more mappings of this folio, 1557 * then call folio_free_swap to free its swap space. 1558 * 1559 * Return: true if we were able to release the swap space. 1560 */ 1561 bool folio_free_swap(struct folio *folio) 1562 { 1563 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1564 1565 if (!folio_test_swapcache(folio)) 1566 return false; 1567 if (folio_test_writeback(folio)) 1568 return false; 1569 if (folio_swapped(folio)) 1570 return false; 1571 1572 /* 1573 * Once hibernation has begun to create its image of memory, 1574 * there's a danger that one of the calls to folio_free_swap() 1575 * - most probably a call from __try_to_reclaim_swap() while 1576 * hibernation is allocating its own swap pages for the image, 1577 * but conceivably even a call from memory reclaim - will free 1578 * the swap from a folio which has already been recorded in the 1579 * image as a clean swapcache folio, and then reuse its swap for 1580 * another page of the image. On waking from hibernation, the 1581 * original folio might be freed under memory pressure, then 1582 * later read back in from swap, now with the wrong data. 1583 * 1584 * Hibernation suspends storage while it is writing the image 1585 * to disk so check that here. 1586 */ 1587 if (pm_suspended_storage()) 1588 return false; 1589 1590 delete_from_swap_cache(folio); 1591 folio_set_dirty(folio); 1592 return true; 1593 } 1594 1595 /* 1596 * Free the swap entry like above, but also try to 1597 * free the page cache entry if it is the last user. 1598 */ 1599 int free_swap_and_cache(swp_entry_t entry) 1600 { 1601 struct swap_info_struct *p; 1602 unsigned char count; 1603 1604 if (non_swap_entry(entry)) 1605 return 1; 1606 1607 p = _swap_info_get(entry); 1608 if (p) { 1609 count = __swap_entry_free(p, entry); 1610 if (count == SWAP_HAS_CACHE && 1611 !swap_page_trans_huge_swapped(p, entry)) 1612 __try_to_reclaim_swap(p, swp_offset(entry), 1613 TTRS_UNMAPPED | TTRS_FULL); 1614 } 1615 return p != NULL; 1616 } 1617 1618 #ifdef CONFIG_HIBERNATION 1619 1620 swp_entry_t get_swap_page_of_type(int type) 1621 { 1622 struct swap_info_struct *si = swap_type_to_swap_info(type); 1623 swp_entry_t entry = {0}; 1624 1625 if (!si) 1626 goto fail; 1627 1628 /* This is called for allocating swap entry, not cache */ 1629 spin_lock(&si->lock); 1630 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry)) 1631 atomic_long_dec(&nr_swap_pages); 1632 spin_unlock(&si->lock); 1633 fail: 1634 return entry; 1635 } 1636 1637 /* 1638 * Find the swap type that corresponds to given device (if any). 1639 * 1640 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1641 * from 0, in which the swap header is expected to be located. 1642 * 1643 * This is needed for the suspend to disk (aka swsusp). 1644 */ 1645 int swap_type_of(dev_t device, sector_t offset) 1646 { 1647 int type; 1648 1649 if (!device) 1650 return -1; 1651 1652 spin_lock(&swap_lock); 1653 for (type = 0; type < nr_swapfiles; type++) { 1654 struct swap_info_struct *sis = swap_info[type]; 1655 1656 if (!(sis->flags & SWP_WRITEOK)) 1657 continue; 1658 1659 if (device == sis->bdev->bd_dev) { 1660 struct swap_extent *se = first_se(sis); 1661 1662 if (se->start_block == offset) { 1663 spin_unlock(&swap_lock); 1664 return type; 1665 } 1666 } 1667 } 1668 spin_unlock(&swap_lock); 1669 return -ENODEV; 1670 } 1671 1672 int find_first_swap(dev_t *device) 1673 { 1674 int type; 1675 1676 spin_lock(&swap_lock); 1677 for (type = 0; type < nr_swapfiles; type++) { 1678 struct swap_info_struct *sis = swap_info[type]; 1679 1680 if (!(sis->flags & SWP_WRITEOK)) 1681 continue; 1682 *device = sis->bdev->bd_dev; 1683 spin_unlock(&swap_lock); 1684 return type; 1685 } 1686 spin_unlock(&swap_lock); 1687 return -ENODEV; 1688 } 1689 1690 /* 1691 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1692 * corresponding to given index in swap_info (swap type). 1693 */ 1694 sector_t swapdev_block(int type, pgoff_t offset) 1695 { 1696 struct swap_info_struct *si = swap_type_to_swap_info(type); 1697 struct swap_extent *se; 1698 1699 if (!si || !(si->flags & SWP_WRITEOK)) 1700 return 0; 1701 se = offset_to_swap_extent(si, offset); 1702 return se->start_block + (offset - se->start_page); 1703 } 1704 1705 /* 1706 * Return either the total number of swap pages of given type, or the number 1707 * of free pages of that type (depending on @free) 1708 * 1709 * This is needed for software suspend 1710 */ 1711 unsigned int count_swap_pages(int type, int free) 1712 { 1713 unsigned int n = 0; 1714 1715 spin_lock(&swap_lock); 1716 if ((unsigned int)type < nr_swapfiles) { 1717 struct swap_info_struct *sis = swap_info[type]; 1718 1719 spin_lock(&sis->lock); 1720 if (sis->flags & SWP_WRITEOK) { 1721 n = sis->pages; 1722 if (free) 1723 n -= sis->inuse_pages; 1724 } 1725 spin_unlock(&sis->lock); 1726 } 1727 spin_unlock(&swap_lock); 1728 return n; 1729 } 1730 #endif /* CONFIG_HIBERNATION */ 1731 1732 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1733 { 1734 return pte_same(pte_swp_clear_flags(pte), swp_pte); 1735 } 1736 1737 /* 1738 * No need to decide whether this PTE shares the swap entry with others, 1739 * just let do_wp_page work it out if a write is requested later - to 1740 * force COW, vm_page_prot omits write permission from any private vma. 1741 */ 1742 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1743 unsigned long addr, swp_entry_t entry, struct folio *folio) 1744 { 1745 struct page *page = folio_file_page(folio, swp_offset(entry)); 1746 struct page *swapcache; 1747 spinlock_t *ptl; 1748 pte_t *pte, new_pte, old_pte; 1749 bool hwpoisoned = PageHWPoison(page); 1750 int ret = 1; 1751 1752 swapcache = page; 1753 page = ksm_might_need_to_copy(page, vma, addr); 1754 if (unlikely(!page)) 1755 return -ENOMEM; 1756 else if (unlikely(PTR_ERR(page) == -EHWPOISON)) 1757 hwpoisoned = true; 1758 1759 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1760 if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte), 1761 swp_entry_to_pte(entry)))) { 1762 ret = 0; 1763 goto out; 1764 } 1765 1766 old_pte = ptep_get(pte); 1767 1768 if (unlikely(hwpoisoned || !PageUptodate(page))) { 1769 swp_entry_t swp_entry; 1770 1771 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1772 if (hwpoisoned) { 1773 swp_entry = make_hwpoison_entry(swapcache); 1774 page = swapcache; 1775 } else { 1776 swp_entry = make_swapin_error_entry(); 1777 } 1778 new_pte = swp_entry_to_pte(swp_entry); 1779 ret = 0; 1780 goto setpte; 1781 } 1782 1783 /* See do_swap_page() */ 1784 BUG_ON(!PageAnon(page) && PageMappedToDisk(page)); 1785 BUG_ON(PageAnon(page) && PageAnonExclusive(page)); 1786 1787 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1788 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1789 get_page(page); 1790 if (page == swapcache) { 1791 rmap_t rmap_flags = RMAP_NONE; 1792 1793 /* 1794 * See do_swap_page(): PageWriteback() would be problematic. 1795 * However, we do a wait_on_page_writeback() just before this 1796 * call and have the page locked. 1797 */ 1798 VM_BUG_ON_PAGE(PageWriteback(page), page); 1799 if (pte_swp_exclusive(old_pte)) 1800 rmap_flags |= RMAP_EXCLUSIVE; 1801 1802 page_add_anon_rmap(page, vma, addr, rmap_flags); 1803 } else { /* ksm created a completely new copy */ 1804 page_add_new_anon_rmap(page, vma, addr); 1805 lru_cache_add_inactive_or_unevictable(page, vma); 1806 } 1807 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot)); 1808 if (pte_swp_soft_dirty(old_pte)) 1809 new_pte = pte_mksoft_dirty(new_pte); 1810 if (pte_swp_uffd_wp(old_pte)) 1811 new_pte = pte_mkuffd_wp(new_pte); 1812 setpte: 1813 set_pte_at(vma->vm_mm, addr, pte, new_pte); 1814 swap_free(entry); 1815 out: 1816 if (pte) 1817 pte_unmap_unlock(pte, ptl); 1818 if (page != swapcache) { 1819 unlock_page(page); 1820 put_page(page); 1821 } 1822 return ret; 1823 } 1824 1825 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1826 unsigned long addr, unsigned long end, 1827 unsigned int type) 1828 { 1829 pte_t *pte = NULL; 1830 struct swap_info_struct *si; 1831 1832 si = swap_info[type]; 1833 do { 1834 struct folio *folio; 1835 unsigned long offset; 1836 unsigned char swp_count; 1837 swp_entry_t entry; 1838 int ret; 1839 pte_t ptent; 1840 1841 if (!pte++) { 1842 pte = pte_offset_map(pmd, addr); 1843 if (!pte) 1844 break; 1845 } 1846 1847 ptent = ptep_get_lockless(pte); 1848 1849 if (!is_swap_pte(ptent)) 1850 continue; 1851 1852 entry = pte_to_swp_entry(ptent); 1853 if (swp_type(entry) != type) 1854 continue; 1855 1856 offset = swp_offset(entry); 1857 pte_unmap(pte); 1858 pte = NULL; 1859 1860 folio = swap_cache_get_folio(entry, vma, addr); 1861 if (!folio) { 1862 struct page *page; 1863 struct vm_fault vmf = { 1864 .vma = vma, 1865 .address = addr, 1866 .real_address = addr, 1867 .pmd = pmd, 1868 }; 1869 1870 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 1871 &vmf); 1872 if (page) 1873 folio = page_folio(page); 1874 } 1875 if (!folio) { 1876 swp_count = READ_ONCE(si->swap_map[offset]); 1877 if (swp_count == 0 || swp_count == SWAP_MAP_BAD) 1878 continue; 1879 return -ENOMEM; 1880 } 1881 1882 folio_lock(folio); 1883 folio_wait_writeback(folio); 1884 ret = unuse_pte(vma, pmd, addr, entry, folio); 1885 if (ret < 0) { 1886 folio_unlock(folio); 1887 folio_put(folio); 1888 return ret; 1889 } 1890 1891 folio_free_swap(folio); 1892 folio_unlock(folio); 1893 folio_put(folio); 1894 } while (addr += PAGE_SIZE, addr != end); 1895 1896 if (pte) 1897 pte_unmap(pte); 1898 return 0; 1899 } 1900 1901 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1902 unsigned long addr, unsigned long end, 1903 unsigned int type) 1904 { 1905 pmd_t *pmd; 1906 unsigned long next; 1907 int ret; 1908 1909 pmd = pmd_offset(pud, addr); 1910 do { 1911 cond_resched(); 1912 next = pmd_addr_end(addr, end); 1913 ret = unuse_pte_range(vma, pmd, addr, next, type); 1914 if (ret) 1915 return ret; 1916 } while (pmd++, addr = next, addr != end); 1917 return 0; 1918 } 1919 1920 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 1921 unsigned long addr, unsigned long end, 1922 unsigned int type) 1923 { 1924 pud_t *pud; 1925 unsigned long next; 1926 int ret; 1927 1928 pud = pud_offset(p4d, addr); 1929 do { 1930 next = pud_addr_end(addr, end); 1931 if (pud_none_or_clear_bad(pud)) 1932 continue; 1933 ret = unuse_pmd_range(vma, pud, addr, next, type); 1934 if (ret) 1935 return ret; 1936 } while (pud++, addr = next, addr != end); 1937 return 0; 1938 } 1939 1940 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 1941 unsigned long addr, unsigned long end, 1942 unsigned int type) 1943 { 1944 p4d_t *p4d; 1945 unsigned long next; 1946 int ret; 1947 1948 p4d = p4d_offset(pgd, addr); 1949 do { 1950 next = p4d_addr_end(addr, end); 1951 if (p4d_none_or_clear_bad(p4d)) 1952 continue; 1953 ret = unuse_pud_range(vma, p4d, addr, next, type); 1954 if (ret) 1955 return ret; 1956 } while (p4d++, addr = next, addr != end); 1957 return 0; 1958 } 1959 1960 static int unuse_vma(struct vm_area_struct *vma, unsigned int type) 1961 { 1962 pgd_t *pgd; 1963 unsigned long addr, end, next; 1964 int ret; 1965 1966 addr = vma->vm_start; 1967 end = vma->vm_end; 1968 1969 pgd = pgd_offset(vma->vm_mm, addr); 1970 do { 1971 next = pgd_addr_end(addr, end); 1972 if (pgd_none_or_clear_bad(pgd)) 1973 continue; 1974 ret = unuse_p4d_range(vma, pgd, addr, next, type); 1975 if (ret) 1976 return ret; 1977 } while (pgd++, addr = next, addr != end); 1978 return 0; 1979 } 1980 1981 static int unuse_mm(struct mm_struct *mm, unsigned int type) 1982 { 1983 struct vm_area_struct *vma; 1984 int ret = 0; 1985 VMA_ITERATOR(vmi, mm, 0); 1986 1987 mmap_read_lock(mm); 1988 for_each_vma(vmi, vma) { 1989 if (vma->anon_vma) { 1990 ret = unuse_vma(vma, type); 1991 if (ret) 1992 break; 1993 } 1994 1995 cond_resched(); 1996 } 1997 mmap_read_unlock(mm); 1998 return ret; 1999 } 2000 2001 /* 2002 * Scan swap_map from current position to next entry still in use. 2003 * Return 0 if there are no inuse entries after prev till end of 2004 * the map. 2005 */ 2006 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2007 unsigned int prev) 2008 { 2009 unsigned int i; 2010 unsigned char count; 2011 2012 /* 2013 * No need for swap_lock here: we're just looking 2014 * for whether an entry is in use, not modifying it; false 2015 * hits are okay, and sys_swapoff() has already prevented new 2016 * allocations from this area (while holding swap_lock). 2017 */ 2018 for (i = prev + 1; i < si->max; i++) { 2019 count = READ_ONCE(si->swap_map[i]); 2020 if (count && swap_count(count) != SWAP_MAP_BAD) 2021 break; 2022 if ((i % LATENCY_LIMIT) == 0) 2023 cond_resched(); 2024 } 2025 2026 if (i == si->max) 2027 i = 0; 2028 2029 return i; 2030 } 2031 2032 static int try_to_unuse(unsigned int type) 2033 { 2034 struct mm_struct *prev_mm; 2035 struct mm_struct *mm; 2036 struct list_head *p; 2037 int retval = 0; 2038 struct swap_info_struct *si = swap_info[type]; 2039 struct folio *folio; 2040 swp_entry_t entry; 2041 unsigned int i; 2042 2043 if (!READ_ONCE(si->inuse_pages)) 2044 return 0; 2045 2046 retry: 2047 retval = shmem_unuse(type); 2048 if (retval) 2049 return retval; 2050 2051 prev_mm = &init_mm; 2052 mmget(prev_mm); 2053 2054 spin_lock(&mmlist_lock); 2055 p = &init_mm.mmlist; 2056 while (READ_ONCE(si->inuse_pages) && 2057 !signal_pending(current) && 2058 (p = p->next) != &init_mm.mmlist) { 2059 2060 mm = list_entry(p, struct mm_struct, mmlist); 2061 if (!mmget_not_zero(mm)) 2062 continue; 2063 spin_unlock(&mmlist_lock); 2064 mmput(prev_mm); 2065 prev_mm = mm; 2066 retval = unuse_mm(mm, type); 2067 if (retval) { 2068 mmput(prev_mm); 2069 return retval; 2070 } 2071 2072 /* 2073 * Make sure that we aren't completely killing 2074 * interactive performance. 2075 */ 2076 cond_resched(); 2077 spin_lock(&mmlist_lock); 2078 } 2079 spin_unlock(&mmlist_lock); 2080 2081 mmput(prev_mm); 2082 2083 i = 0; 2084 while (READ_ONCE(si->inuse_pages) && 2085 !signal_pending(current) && 2086 (i = find_next_to_unuse(si, i)) != 0) { 2087 2088 entry = swp_entry(type, i); 2089 folio = filemap_get_folio(swap_address_space(entry), i); 2090 if (IS_ERR(folio)) 2091 continue; 2092 2093 /* 2094 * It is conceivable that a racing task removed this folio from 2095 * swap cache just before we acquired the page lock. The folio 2096 * might even be back in swap cache on another swap area. But 2097 * that is okay, folio_free_swap() only removes stale folios. 2098 */ 2099 folio_lock(folio); 2100 folio_wait_writeback(folio); 2101 folio_free_swap(folio); 2102 folio_unlock(folio); 2103 folio_put(folio); 2104 } 2105 2106 /* 2107 * Lets check again to see if there are still swap entries in the map. 2108 * If yes, we would need to do retry the unuse logic again. 2109 * Under global memory pressure, swap entries can be reinserted back 2110 * into process space after the mmlist loop above passes over them. 2111 * 2112 * Limit the number of retries? No: when mmget_not_zero() 2113 * above fails, that mm is likely to be freeing swap from 2114 * exit_mmap(), which proceeds at its own independent pace; 2115 * and even shmem_writepage() could have been preempted after 2116 * folio_alloc_swap(), temporarily hiding that swap. It's easy 2117 * and robust (though cpu-intensive) just to keep retrying. 2118 */ 2119 if (READ_ONCE(si->inuse_pages)) { 2120 if (!signal_pending(current)) 2121 goto retry; 2122 return -EINTR; 2123 } 2124 2125 return 0; 2126 } 2127 2128 /* 2129 * After a successful try_to_unuse, if no swap is now in use, we know 2130 * we can empty the mmlist. swap_lock must be held on entry and exit. 2131 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2132 * added to the mmlist just after page_duplicate - before would be racy. 2133 */ 2134 static void drain_mmlist(void) 2135 { 2136 struct list_head *p, *next; 2137 unsigned int type; 2138 2139 for (type = 0; type < nr_swapfiles; type++) 2140 if (swap_info[type]->inuse_pages) 2141 return; 2142 spin_lock(&mmlist_lock); 2143 list_for_each_safe(p, next, &init_mm.mmlist) 2144 list_del_init(p); 2145 spin_unlock(&mmlist_lock); 2146 } 2147 2148 /* 2149 * Free all of a swapdev's extent information 2150 */ 2151 static void destroy_swap_extents(struct swap_info_struct *sis) 2152 { 2153 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2154 struct rb_node *rb = sis->swap_extent_root.rb_node; 2155 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2156 2157 rb_erase(rb, &sis->swap_extent_root); 2158 kfree(se); 2159 } 2160 2161 if (sis->flags & SWP_ACTIVATED) { 2162 struct file *swap_file = sis->swap_file; 2163 struct address_space *mapping = swap_file->f_mapping; 2164 2165 sis->flags &= ~SWP_ACTIVATED; 2166 if (mapping->a_ops->swap_deactivate) 2167 mapping->a_ops->swap_deactivate(swap_file); 2168 } 2169 } 2170 2171 /* 2172 * Add a block range (and the corresponding page range) into this swapdev's 2173 * extent tree. 2174 * 2175 * This function rather assumes that it is called in ascending page order. 2176 */ 2177 int 2178 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2179 unsigned long nr_pages, sector_t start_block) 2180 { 2181 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2182 struct swap_extent *se; 2183 struct swap_extent *new_se; 2184 2185 /* 2186 * place the new node at the right most since the 2187 * function is called in ascending page order. 2188 */ 2189 while (*link) { 2190 parent = *link; 2191 link = &parent->rb_right; 2192 } 2193 2194 if (parent) { 2195 se = rb_entry(parent, struct swap_extent, rb_node); 2196 BUG_ON(se->start_page + se->nr_pages != start_page); 2197 if (se->start_block + se->nr_pages == start_block) { 2198 /* Merge it */ 2199 se->nr_pages += nr_pages; 2200 return 0; 2201 } 2202 } 2203 2204 /* No merge, insert a new extent. */ 2205 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2206 if (new_se == NULL) 2207 return -ENOMEM; 2208 new_se->start_page = start_page; 2209 new_se->nr_pages = nr_pages; 2210 new_se->start_block = start_block; 2211 2212 rb_link_node(&new_se->rb_node, parent, link); 2213 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2214 return 1; 2215 } 2216 EXPORT_SYMBOL_GPL(add_swap_extent); 2217 2218 /* 2219 * A `swap extent' is a simple thing which maps a contiguous range of pages 2220 * onto a contiguous range of disk blocks. A rbtree of swap extents is 2221 * built at swapon time and is then used at swap_writepage/swap_readpage 2222 * time for locating where on disk a page belongs. 2223 * 2224 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2225 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2226 * swap files identically. 2227 * 2228 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2229 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2230 * swapfiles are handled *identically* after swapon time. 2231 * 2232 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2233 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray 2234 * blocks are found which do not fall within the PAGE_SIZE alignment 2235 * requirements, they are simply tossed out - we will never use those blocks 2236 * for swapping. 2237 * 2238 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2239 * prevents users from writing to the swap device, which will corrupt memory. 2240 * 2241 * The amount of disk space which a single swap extent represents varies. 2242 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2243 * extents in the rbtree. - akpm. 2244 */ 2245 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2246 { 2247 struct file *swap_file = sis->swap_file; 2248 struct address_space *mapping = swap_file->f_mapping; 2249 struct inode *inode = mapping->host; 2250 int ret; 2251 2252 if (S_ISBLK(inode->i_mode)) { 2253 ret = add_swap_extent(sis, 0, sis->max, 0); 2254 *span = sis->pages; 2255 return ret; 2256 } 2257 2258 if (mapping->a_ops->swap_activate) { 2259 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2260 if (ret < 0) 2261 return ret; 2262 sis->flags |= SWP_ACTIVATED; 2263 if ((sis->flags & SWP_FS_OPS) && 2264 sio_pool_init() != 0) { 2265 destroy_swap_extents(sis); 2266 return -ENOMEM; 2267 } 2268 return ret; 2269 } 2270 2271 return generic_swapfile_activate(sis, swap_file, span); 2272 } 2273 2274 static int swap_node(struct swap_info_struct *p) 2275 { 2276 struct block_device *bdev; 2277 2278 if (p->bdev) 2279 bdev = p->bdev; 2280 else 2281 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2282 2283 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2284 } 2285 2286 static void setup_swap_info(struct swap_info_struct *p, int prio, 2287 unsigned char *swap_map, 2288 struct swap_cluster_info *cluster_info) 2289 { 2290 int i; 2291 2292 if (prio >= 0) 2293 p->prio = prio; 2294 else 2295 p->prio = --least_priority; 2296 /* 2297 * the plist prio is negated because plist ordering is 2298 * low-to-high, while swap ordering is high-to-low 2299 */ 2300 p->list.prio = -p->prio; 2301 for_each_node(i) { 2302 if (p->prio >= 0) 2303 p->avail_lists[i].prio = -p->prio; 2304 else { 2305 if (swap_node(p) == i) 2306 p->avail_lists[i].prio = 1; 2307 else 2308 p->avail_lists[i].prio = -p->prio; 2309 } 2310 } 2311 p->swap_map = swap_map; 2312 p->cluster_info = cluster_info; 2313 } 2314 2315 static void _enable_swap_info(struct swap_info_struct *p) 2316 { 2317 p->flags |= SWP_WRITEOK; 2318 atomic_long_add(p->pages, &nr_swap_pages); 2319 total_swap_pages += p->pages; 2320 2321 assert_spin_locked(&swap_lock); 2322 /* 2323 * both lists are plists, and thus priority ordered. 2324 * swap_active_head needs to be priority ordered for swapoff(), 2325 * which on removal of any swap_info_struct with an auto-assigned 2326 * (i.e. negative) priority increments the auto-assigned priority 2327 * of any lower-priority swap_info_structs. 2328 * swap_avail_head needs to be priority ordered for folio_alloc_swap(), 2329 * which allocates swap pages from the highest available priority 2330 * swap_info_struct. 2331 */ 2332 plist_add(&p->list, &swap_active_head); 2333 add_to_avail_list(p); 2334 } 2335 2336 static void enable_swap_info(struct swap_info_struct *p, int prio, 2337 unsigned char *swap_map, 2338 struct swap_cluster_info *cluster_info, 2339 unsigned long *frontswap_map) 2340 { 2341 if (IS_ENABLED(CONFIG_FRONTSWAP)) 2342 frontswap_init(p->type, frontswap_map); 2343 spin_lock(&swap_lock); 2344 spin_lock(&p->lock); 2345 setup_swap_info(p, prio, swap_map, cluster_info); 2346 spin_unlock(&p->lock); 2347 spin_unlock(&swap_lock); 2348 /* 2349 * Finished initializing swap device, now it's safe to reference it. 2350 */ 2351 percpu_ref_resurrect(&p->users); 2352 spin_lock(&swap_lock); 2353 spin_lock(&p->lock); 2354 _enable_swap_info(p); 2355 spin_unlock(&p->lock); 2356 spin_unlock(&swap_lock); 2357 } 2358 2359 static void reinsert_swap_info(struct swap_info_struct *p) 2360 { 2361 spin_lock(&swap_lock); 2362 spin_lock(&p->lock); 2363 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2364 _enable_swap_info(p); 2365 spin_unlock(&p->lock); 2366 spin_unlock(&swap_lock); 2367 } 2368 2369 bool has_usable_swap(void) 2370 { 2371 bool ret = true; 2372 2373 spin_lock(&swap_lock); 2374 if (plist_head_empty(&swap_active_head)) 2375 ret = false; 2376 spin_unlock(&swap_lock); 2377 return ret; 2378 } 2379 2380 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2381 { 2382 struct swap_info_struct *p = NULL; 2383 unsigned char *swap_map; 2384 struct swap_cluster_info *cluster_info; 2385 unsigned long *frontswap_map; 2386 struct file *swap_file, *victim; 2387 struct address_space *mapping; 2388 struct inode *inode; 2389 struct filename *pathname; 2390 int err, found = 0; 2391 unsigned int old_block_size; 2392 2393 if (!capable(CAP_SYS_ADMIN)) 2394 return -EPERM; 2395 2396 BUG_ON(!current->mm); 2397 2398 pathname = getname(specialfile); 2399 if (IS_ERR(pathname)) 2400 return PTR_ERR(pathname); 2401 2402 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2403 err = PTR_ERR(victim); 2404 if (IS_ERR(victim)) 2405 goto out; 2406 2407 mapping = victim->f_mapping; 2408 spin_lock(&swap_lock); 2409 plist_for_each_entry(p, &swap_active_head, list) { 2410 if (p->flags & SWP_WRITEOK) { 2411 if (p->swap_file->f_mapping == mapping) { 2412 found = 1; 2413 break; 2414 } 2415 } 2416 } 2417 if (!found) { 2418 err = -EINVAL; 2419 spin_unlock(&swap_lock); 2420 goto out_dput; 2421 } 2422 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2423 vm_unacct_memory(p->pages); 2424 else { 2425 err = -ENOMEM; 2426 spin_unlock(&swap_lock); 2427 goto out_dput; 2428 } 2429 spin_lock(&p->lock); 2430 del_from_avail_list(p); 2431 if (p->prio < 0) { 2432 struct swap_info_struct *si = p; 2433 int nid; 2434 2435 plist_for_each_entry_continue(si, &swap_active_head, list) { 2436 si->prio++; 2437 si->list.prio--; 2438 for_each_node(nid) { 2439 if (si->avail_lists[nid].prio != 1) 2440 si->avail_lists[nid].prio--; 2441 } 2442 } 2443 least_priority++; 2444 } 2445 plist_del(&p->list, &swap_active_head); 2446 atomic_long_sub(p->pages, &nr_swap_pages); 2447 total_swap_pages -= p->pages; 2448 p->flags &= ~SWP_WRITEOK; 2449 spin_unlock(&p->lock); 2450 spin_unlock(&swap_lock); 2451 2452 disable_swap_slots_cache_lock(); 2453 2454 set_current_oom_origin(); 2455 err = try_to_unuse(p->type); 2456 clear_current_oom_origin(); 2457 2458 if (err) { 2459 /* re-insert swap space back into swap_list */ 2460 reinsert_swap_info(p); 2461 reenable_swap_slots_cache_unlock(); 2462 goto out_dput; 2463 } 2464 2465 reenable_swap_slots_cache_unlock(); 2466 2467 /* 2468 * Wait for swap operations protected by get/put_swap_device() 2469 * to complete. 2470 * 2471 * We need synchronize_rcu() here to protect the accessing to 2472 * the swap cache data structure. 2473 */ 2474 percpu_ref_kill(&p->users); 2475 synchronize_rcu(); 2476 wait_for_completion(&p->comp); 2477 2478 flush_work(&p->discard_work); 2479 2480 destroy_swap_extents(p); 2481 if (p->flags & SWP_CONTINUED) 2482 free_swap_count_continuations(p); 2483 2484 if (!p->bdev || !bdev_nonrot(p->bdev)) 2485 atomic_dec(&nr_rotate_swap); 2486 2487 mutex_lock(&swapon_mutex); 2488 spin_lock(&swap_lock); 2489 spin_lock(&p->lock); 2490 drain_mmlist(); 2491 2492 /* wait for anyone still in scan_swap_map_slots */ 2493 p->highest_bit = 0; /* cuts scans short */ 2494 while (p->flags >= SWP_SCANNING) { 2495 spin_unlock(&p->lock); 2496 spin_unlock(&swap_lock); 2497 schedule_timeout_uninterruptible(1); 2498 spin_lock(&swap_lock); 2499 spin_lock(&p->lock); 2500 } 2501 2502 swap_file = p->swap_file; 2503 old_block_size = p->old_block_size; 2504 p->swap_file = NULL; 2505 p->max = 0; 2506 swap_map = p->swap_map; 2507 p->swap_map = NULL; 2508 cluster_info = p->cluster_info; 2509 p->cluster_info = NULL; 2510 frontswap_map = frontswap_map_get(p); 2511 spin_unlock(&p->lock); 2512 spin_unlock(&swap_lock); 2513 arch_swap_invalidate_area(p->type); 2514 frontswap_invalidate_area(p->type); 2515 frontswap_map_set(p, NULL); 2516 mutex_unlock(&swapon_mutex); 2517 free_percpu(p->percpu_cluster); 2518 p->percpu_cluster = NULL; 2519 free_percpu(p->cluster_next_cpu); 2520 p->cluster_next_cpu = NULL; 2521 vfree(swap_map); 2522 kvfree(cluster_info); 2523 kvfree(frontswap_map); 2524 /* Destroy swap account information */ 2525 swap_cgroup_swapoff(p->type); 2526 exit_swap_address_space(p->type); 2527 2528 inode = mapping->host; 2529 if (S_ISBLK(inode->i_mode)) { 2530 struct block_device *bdev = I_BDEV(inode); 2531 2532 set_blocksize(bdev, old_block_size); 2533 blkdev_put(bdev, p); 2534 } 2535 2536 inode_lock(inode); 2537 inode->i_flags &= ~S_SWAPFILE; 2538 inode_unlock(inode); 2539 filp_close(swap_file, NULL); 2540 2541 /* 2542 * Clear the SWP_USED flag after all resources are freed so that swapon 2543 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2544 * not hold p->lock after we cleared its SWP_WRITEOK. 2545 */ 2546 spin_lock(&swap_lock); 2547 p->flags = 0; 2548 spin_unlock(&swap_lock); 2549 2550 err = 0; 2551 atomic_inc(&proc_poll_event); 2552 wake_up_interruptible(&proc_poll_wait); 2553 2554 out_dput: 2555 filp_close(victim, NULL); 2556 out: 2557 putname(pathname); 2558 return err; 2559 } 2560 2561 #ifdef CONFIG_PROC_FS 2562 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2563 { 2564 struct seq_file *seq = file->private_data; 2565 2566 poll_wait(file, &proc_poll_wait, wait); 2567 2568 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2569 seq->poll_event = atomic_read(&proc_poll_event); 2570 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2571 } 2572 2573 return EPOLLIN | EPOLLRDNORM; 2574 } 2575 2576 /* iterator */ 2577 static void *swap_start(struct seq_file *swap, loff_t *pos) 2578 { 2579 struct swap_info_struct *si; 2580 int type; 2581 loff_t l = *pos; 2582 2583 mutex_lock(&swapon_mutex); 2584 2585 if (!l) 2586 return SEQ_START_TOKEN; 2587 2588 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2589 if (!(si->flags & SWP_USED) || !si->swap_map) 2590 continue; 2591 if (!--l) 2592 return si; 2593 } 2594 2595 return NULL; 2596 } 2597 2598 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2599 { 2600 struct swap_info_struct *si = v; 2601 int type; 2602 2603 if (v == SEQ_START_TOKEN) 2604 type = 0; 2605 else 2606 type = si->type + 1; 2607 2608 ++(*pos); 2609 for (; (si = swap_type_to_swap_info(type)); type++) { 2610 if (!(si->flags & SWP_USED) || !si->swap_map) 2611 continue; 2612 return si; 2613 } 2614 2615 return NULL; 2616 } 2617 2618 static void swap_stop(struct seq_file *swap, void *v) 2619 { 2620 mutex_unlock(&swapon_mutex); 2621 } 2622 2623 static int swap_show(struct seq_file *swap, void *v) 2624 { 2625 struct swap_info_struct *si = v; 2626 struct file *file; 2627 int len; 2628 unsigned long bytes, inuse; 2629 2630 if (si == SEQ_START_TOKEN) { 2631 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2632 return 0; 2633 } 2634 2635 bytes = si->pages << (PAGE_SHIFT - 10); 2636 inuse = READ_ONCE(si->inuse_pages) << (PAGE_SHIFT - 10); 2637 2638 file = si->swap_file; 2639 len = seq_file_path(swap, file, " \t\n\\"); 2640 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", 2641 len < 40 ? 40 - len : 1, " ", 2642 S_ISBLK(file_inode(file)->i_mode) ? 2643 "partition" : "file\t", 2644 bytes, bytes < 10000000 ? "\t" : "", 2645 inuse, inuse < 10000000 ? "\t" : "", 2646 si->prio); 2647 return 0; 2648 } 2649 2650 static const struct seq_operations swaps_op = { 2651 .start = swap_start, 2652 .next = swap_next, 2653 .stop = swap_stop, 2654 .show = swap_show 2655 }; 2656 2657 static int swaps_open(struct inode *inode, struct file *file) 2658 { 2659 struct seq_file *seq; 2660 int ret; 2661 2662 ret = seq_open(file, &swaps_op); 2663 if (ret) 2664 return ret; 2665 2666 seq = file->private_data; 2667 seq->poll_event = atomic_read(&proc_poll_event); 2668 return 0; 2669 } 2670 2671 static const struct proc_ops swaps_proc_ops = { 2672 .proc_flags = PROC_ENTRY_PERMANENT, 2673 .proc_open = swaps_open, 2674 .proc_read = seq_read, 2675 .proc_lseek = seq_lseek, 2676 .proc_release = seq_release, 2677 .proc_poll = swaps_poll, 2678 }; 2679 2680 static int __init procswaps_init(void) 2681 { 2682 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2683 return 0; 2684 } 2685 __initcall(procswaps_init); 2686 #endif /* CONFIG_PROC_FS */ 2687 2688 #ifdef MAX_SWAPFILES_CHECK 2689 static int __init max_swapfiles_check(void) 2690 { 2691 MAX_SWAPFILES_CHECK(); 2692 return 0; 2693 } 2694 late_initcall(max_swapfiles_check); 2695 #endif 2696 2697 static struct swap_info_struct *alloc_swap_info(void) 2698 { 2699 struct swap_info_struct *p; 2700 struct swap_info_struct *defer = NULL; 2701 unsigned int type; 2702 int i; 2703 2704 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2705 if (!p) 2706 return ERR_PTR(-ENOMEM); 2707 2708 if (percpu_ref_init(&p->users, swap_users_ref_free, 2709 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 2710 kvfree(p); 2711 return ERR_PTR(-ENOMEM); 2712 } 2713 2714 spin_lock(&swap_lock); 2715 for (type = 0; type < nr_swapfiles; type++) { 2716 if (!(swap_info[type]->flags & SWP_USED)) 2717 break; 2718 } 2719 if (type >= MAX_SWAPFILES) { 2720 spin_unlock(&swap_lock); 2721 percpu_ref_exit(&p->users); 2722 kvfree(p); 2723 return ERR_PTR(-EPERM); 2724 } 2725 if (type >= nr_swapfiles) { 2726 p->type = type; 2727 /* 2728 * Publish the swap_info_struct after initializing it. 2729 * Note that kvzalloc() above zeroes all its fields. 2730 */ 2731 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 2732 nr_swapfiles++; 2733 } else { 2734 defer = p; 2735 p = swap_info[type]; 2736 /* 2737 * Do not memset this entry: a racing procfs swap_next() 2738 * would be relying on p->type to remain valid. 2739 */ 2740 } 2741 p->swap_extent_root = RB_ROOT; 2742 plist_node_init(&p->list, 0); 2743 for_each_node(i) 2744 plist_node_init(&p->avail_lists[i], 0); 2745 p->flags = SWP_USED; 2746 spin_unlock(&swap_lock); 2747 if (defer) { 2748 percpu_ref_exit(&defer->users); 2749 kvfree(defer); 2750 } 2751 spin_lock_init(&p->lock); 2752 spin_lock_init(&p->cont_lock); 2753 init_completion(&p->comp); 2754 2755 return p; 2756 } 2757 2758 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2759 { 2760 int error; 2761 2762 if (S_ISBLK(inode->i_mode)) { 2763 p->bdev = blkdev_get_by_dev(inode->i_rdev, 2764 BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL); 2765 if (IS_ERR(p->bdev)) { 2766 error = PTR_ERR(p->bdev); 2767 p->bdev = NULL; 2768 return error; 2769 } 2770 p->old_block_size = block_size(p->bdev); 2771 error = set_blocksize(p->bdev, PAGE_SIZE); 2772 if (error < 0) 2773 return error; 2774 /* 2775 * Zoned block devices contain zones that have a sequential 2776 * write only restriction. Hence zoned block devices are not 2777 * suitable for swapping. Disallow them here. 2778 */ 2779 if (bdev_is_zoned(p->bdev)) 2780 return -EINVAL; 2781 p->flags |= SWP_BLKDEV; 2782 } else if (S_ISREG(inode->i_mode)) { 2783 p->bdev = inode->i_sb->s_bdev; 2784 } 2785 2786 return 0; 2787 } 2788 2789 2790 /* 2791 * Find out how many pages are allowed for a single swap device. There 2792 * are two limiting factors: 2793 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2794 * 2) the number of bits in the swap pte, as defined by the different 2795 * architectures. 2796 * 2797 * In order to find the largest possible bit mask, a swap entry with 2798 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2799 * decoded to a swp_entry_t again, and finally the swap offset is 2800 * extracted. 2801 * 2802 * This will mask all the bits from the initial ~0UL mask that can't 2803 * be encoded in either the swp_entry_t or the architecture definition 2804 * of a swap pte. 2805 */ 2806 unsigned long generic_max_swapfile_size(void) 2807 { 2808 return swp_offset(pte_to_swp_entry( 2809 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2810 } 2811 2812 /* Can be overridden by an architecture for additional checks. */ 2813 __weak unsigned long arch_max_swapfile_size(void) 2814 { 2815 return generic_max_swapfile_size(); 2816 } 2817 2818 static unsigned long read_swap_header(struct swap_info_struct *p, 2819 union swap_header *swap_header, 2820 struct inode *inode) 2821 { 2822 int i; 2823 unsigned long maxpages; 2824 unsigned long swapfilepages; 2825 unsigned long last_page; 2826 2827 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2828 pr_err("Unable to find swap-space signature\n"); 2829 return 0; 2830 } 2831 2832 /* swap partition endianness hack... */ 2833 if (swab32(swap_header->info.version) == 1) { 2834 swab32s(&swap_header->info.version); 2835 swab32s(&swap_header->info.last_page); 2836 swab32s(&swap_header->info.nr_badpages); 2837 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2838 return 0; 2839 for (i = 0; i < swap_header->info.nr_badpages; i++) 2840 swab32s(&swap_header->info.badpages[i]); 2841 } 2842 /* Check the swap header's sub-version */ 2843 if (swap_header->info.version != 1) { 2844 pr_warn("Unable to handle swap header version %d\n", 2845 swap_header->info.version); 2846 return 0; 2847 } 2848 2849 p->lowest_bit = 1; 2850 p->cluster_next = 1; 2851 p->cluster_nr = 0; 2852 2853 maxpages = swapfile_maximum_size; 2854 last_page = swap_header->info.last_page; 2855 if (!last_page) { 2856 pr_warn("Empty swap-file\n"); 2857 return 0; 2858 } 2859 if (last_page > maxpages) { 2860 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2861 maxpages << (PAGE_SHIFT - 10), 2862 last_page << (PAGE_SHIFT - 10)); 2863 } 2864 if (maxpages > last_page) { 2865 maxpages = last_page + 1; 2866 /* p->max is an unsigned int: don't overflow it */ 2867 if ((unsigned int)maxpages == 0) 2868 maxpages = UINT_MAX; 2869 } 2870 p->highest_bit = maxpages - 1; 2871 2872 if (!maxpages) 2873 return 0; 2874 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2875 if (swapfilepages && maxpages > swapfilepages) { 2876 pr_warn("Swap area shorter than signature indicates\n"); 2877 return 0; 2878 } 2879 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2880 return 0; 2881 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2882 return 0; 2883 2884 return maxpages; 2885 } 2886 2887 #define SWAP_CLUSTER_INFO_COLS \ 2888 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 2889 #define SWAP_CLUSTER_SPACE_COLS \ 2890 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 2891 #define SWAP_CLUSTER_COLS \ 2892 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 2893 2894 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2895 union swap_header *swap_header, 2896 unsigned char *swap_map, 2897 struct swap_cluster_info *cluster_info, 2898 unsigned long maxpages, 2899 sector_t *span) 2900 { 2901 unsigned int j, k; 2902 unsigned int nr_good_pages; 2903 int nr_extents; 2904 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2905 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 2906 unsigned long i, idx; 2907 2908 nr_good_pages = maxpages - 1; /* omit header page */ 2909 2910 cluster_list_init(&p->free_clusters); 2911 cluster_list_init(&p->discard_clusters); 2912 2913 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2914 unsigned int page_nr = swap_header->info.badpages[i]; 2915 if (page_nr == 0 || page_nr > swap_header->info.last_page) 2916 return -EINVAL; 2917 if (page_nr < maxpages) { 2918 swap_map[page_nr] = SWAP_MAP_BAD; 2919 nr_good_pages--; 2920 /* 2921 * Haven't marked the cluster free yet, no list 2922 * operation involved 2923 */ 2924 inc_cluster_info_page(p, cluster_info, page_nr); 2925 } 2926 } 2927 2928 /* Haven't marked the cluster free yet, no list operation involved */ 2929 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 2930 inc_cluster_info_page(p, cluster_info, i); 2931 2932 if (nr_good_pages) { 2933 swap_map[0] = SWAP_MAP_BAD; 2934 /* 2935 * Not mark the cluster free yet, no list 2936 * operation involved 2937 */ 2938 inc_cluster_info_page(p, cluster_info, 0); 2939 p->max = maxpages; 2940 p->pages = nr_good_pages; 2941 nr_extents = setup_swap_extents(p, span); 2942 if (nr_extents < 0) 2943 return nr_extents; 2944 nr_good_pages = p->pages; 2945 } 2946 if (!nr_good_pages) { 2947 pr_warn("Empty swap-file\n"); 2948 return -EINVAL; 2949 } 2950 2951 if (!cluster_info) 2952 return nr_extents; 2953 2954 2955 /* 2956 * Reduce false cache line sharing between cluster_info and 2957 * sharing same address space. 2958 */ 2959 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 2960 j = (k + col) % SWAP_CLUSTER_COLS; 2961 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 2962 idx = i * SWAP_CLUSTER_COLS + j; 2963 if (idx >= nr_clusters) 2964 continue; 2965 if (cluster_count(&cluster_info[idx])) 2966 continue; 2967 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 2968 cluster_list_add_tail(&p->free_clusters, cluster_info, 2969 idx); 2970 } 2971 } 2972 return nr_extents; 2973 } 2974 2975 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2976 { 2977 struct swap_info_struct *p; 2978 struct filename *name; 2979 struct file *swap_file = NULL; 2980 struct address_space *mapping; 2981 struct dentry *dentry; 2982 int prio; 2983 int error; 2984 union swap_header *swap_header; 2985 int nr_extents; 2986 sector_t span; 2987 unsigned long maxpages; 2988 unsigned char *swap_map = NULL; 2989 struct swap_cluster_info *cluster_info = NULL; 2990 unsigned long *frontswap_map = NULL; 2991 struct page *page = NULL; 2992 struct inode *inode = NULL; 2993 bool inced_nr_rotate_swap = false; 2994 2995 if (swap_flags & ~SWAP_FLAGS_VALID) 2996 return -EINVAL; 2997 2998 if (!capable(CAP_SYS_ADMIN)) 2999 return -EPERM; 3000 3001 if (!swap_avail_heads) 3002 return -ENOMEM; 3003 3004 p = alloc_swap_info(); 3005 if (IS_ERR(p)) 3006 return PTR_ERR(p); 3007 3008 INIT_WORK(&p->discard_work, swap_discard_work); 3009 3010 name = getname(specialfile); 3011 if (IS_ERR(name)) { 3012 error = PTR_ERR(name); 3013 name = NULL; 3014 goto bad_swap; 3015 } 3016 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3017 if (IS_ERR(swap_file)) { 3018 error = PTR_ERR(swap_file); 3019 swap_file = NULL; 3020 goto bad_swap; 3021 } 3022 3023 p->swap_file = swap_file; 3024 mapping = swap_file->f_mapping; 3025 dentry = swap_file->f_path.dentry; 3026 inode = mapping->host; 3027 3028 error = claim_swapfile(p, inode); 3029 if (unlikely(error)) 3030 goto bad_swap; 3031 3032 inode_lock(inode); 3033 if (d_unlinked(dentry) || cant_mount(dentry)) { 3034 error = -ENOENT; 3035 goto bad_swap_unlock_inode; 3036 } 3037 if (IS_SWAPFILE(inode)) { 3038 error = -EBUSY; 3039 goto bad_swap_unlock_inode; 3040 } 3041 3042 /* 3043 * Read the swap header. 3044 */ 3045 if (!mapping->a_ops->read_folio) { 3046 error = -EINVAL; 3047 goto bad_swap_unlock_inode; 3048 } 3049 page = read_mapping_page(mapping, 0, swap_file); 3050 if (IS_ERR(page)) { 3051 error = PTR_ERR(page); 3052 goto bad_swap_unlock_inode; 3053 } 3054 swap_header = kmap(page); 3055 3056 maxpages = read_swap_header(p, swap_header, inode); 3057 if (unlikely(!maxpages)) { 3058 error = -EINVAL; 3059 goto bad_swap_unlock_inode; 3060 } 3061 3062 /* OK, set up the swap map and apply the bad block list */ 3063 swap_map = vzalloc(maxpages); 3064 if (!swap_map) { 3065 error = -ENOMEM; 3066 goto bad_swap_unlock_inode; 3067 } 3068 3069 if (p->bdev && bdev_stable_writes(p->bdev)) 3070 p->flags |= SWP_STABLE_WRITES; 3071 3072 if (p->bdev && bdev_synchronous(p->bdev)) 3073 p->flags |= SWP_SYNCHRONOUS_IO; 3074 3075 if (p->bdev && bdev_nonrot(p->bdev)) { 3076 int cpu; 3077 unsigned long ci, nr_cluster; 3078 3079 p->flags |= SWP_SOLIDSTATE; 3080 p->cluster_next_cpu = alloc_percpu(unsigned int); 3081 if (!p->cluster_next_cpu) { 3082 error = -ENOMEM; 3083 goto bad_swap_unlock_inode; 3084 } 3085 /* 3086 * select a random position to start with to help wear leveling 3087 * SSD 3088 */ 3089 for_each_possible_cpu(cpu) { 3090 per_cpu(*p->cluster_next_cpu, cpu) = 3091 get_random_u32_inclusive(1, p->highest_bit); 3092 } 3093 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3094 3095 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3096 GFP_KERNEL); 3097 if (!cluster_info) { 3098 error = -ENOMEM; 3099 goto bad_swap_unlock_inode; 3100 } 3101 3102 for (ci = 0; ci < nr_cluster; ci++) 3103 spin_lock_init(&((cluster_info + ci)->lock)); 3104 3105 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3106 if (!p->percpu_cluster) { 3107 error = -ENOMEM; 3108 goto bad_swap_unlock_inode; 3109 } 3110 for_each_possible_cpu(cpu) { 3111 struct percpu_cluster *cluster; 3112 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3113 cluster_set_null(&cluster->index); 3114 } 3115 } else { 3116 atomic_inc(&nr_rotate_swap); 3117 inced_nr_rotate_swap = true; 3118 } 3119 3120 error = swap_cgroup_swapon(p->type, maxpages); 3121 if (error) 3122 goto bad_swap_unlock_inode; 3123 3124 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3125 cluster_info, maxpages, &span); 3126 if (unlikely(nr_extents < 0)) { 3127 error = nr_extents; 3128 goto bad_swap_unlock_inode; 3129 } 3130 /* frontswap enabled? set up bit-per-page map for frontswap */ 3131 if (IS_ENABLED(CONFIG_FRONTSWAP)) 3132 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages), 3133 sizeof(long), 3134 GFP_KERNEL); 3135 3136 if ((swap_flags & SWAP_FLAG_DISCARD) && 3137 p->bdev && bdev_max_discard_sectors(p->bdev)) { 3138 /* 3139 * When discard is enabled for swap with no particular 3140 * policy flagged, we set all swap discard flags here in 3141 * order to sustain backward compatibility with older 3142 * swapon(8) releases. 3143 */ 3144 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3145 SWP_PAGE_DISCARD); 3146 3147 /* 3148 * By flagging sys_swapon, a sysadmin can tell us to 3149 * either do single-time area discards only, or to just 3150 * perform discards for released swap page-clusters. 3151 * Now it's time to adjust the p->flags accordingly. 3152 */ 3153 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3154 p->flags &= ~SWP_PAGE_DISCARD; 3155 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3156 p->flags &= ~SWP_AREA_DISCARD; 3157 3158 /* issue a swapon-time discard if it's still required */ 3159 if (p->flags & SWP_AREA_DISCARD) { 3160 int err = discard_swap(p); 3161 if (unlikely(err)) 3162 pr_err("swapon: discard_swap(%p): %d\n", 3163 p, err); 3164 } 3165 } 3166 3167 error = init_swap_address_space(p->type, maxpages); 3168 if (error) 3169 goto bad_swap_unlock_inode; 3170 3171 /* 3172 * Flush any pending IO and dirty mappings before we start using this 3173 * swap device. 3174 */ 3175 inode->i_flags |= S_SWAPFILE; 3176 error = inode_drain_writes(inode); 3177 if (error) { 3178 inode->i_flags &= ~S_SWAPFILE; 3179 goto free_swap_address_space; 3180 } 3181 3182 mutex_lock(&swapon_mutex); 3183 prio = -1; 3184 if (swap_flags & SWAP_FLAG_PREFER) 3185 prio = 3186 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3187 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 3188 3189 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 3190 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 3191 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 3192 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3193 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3194 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3195 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 3196 (frontswap_map) ? "FS" : ""); 3197 3198 mutex_unlock(&swapon_mutex); 3199 atomic_inc(&proc_poll_event); 3200 wake_up_interruptible(&proc_poll_wait); 3201 3202 error = 0; 3203 goto out; 3204 free_swap_address_space: 3205 exit_swap_address_space(p->type); 3206 bad_swap_unlock_inode: 3207 inode_unlock(inode); 3208 bad_swap: 3209 free_percpu(p->percpu_cluster); 3210 p->percpu_cluster = NULL; 3211 free_percpu(p->cluster_next_cpu); 3212 p->cluster_next_cpu = NULL; 3213 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 3214 set_blocksize(p->bdev, p->old_block_size); 3215 blkdev_put(p->bdev, p); 3216 } 3217 inode = NULL; 3218 destroy_swap_extents(p); 3219 swap_cgroup_swapoff(p->type); 3220 spin_lock(&swap_lock); 3221 p->swap_file = NULL; 3222 p->flags = 0; 3223 spin_unlock(&swap_lock); 3224 vfree(swap_map); 3225 kvfree(cluster_info); 3226 kvfree(frontswap_map); 3227 if (inced_nr_rotate_swap) 3228 atomic_dec(&nr_rotate_swap); 3229 if (swap_file) 3230 filp_close(swap_file, NULL); 3231 out: 3232 if (page && !IS_ERR(page)) { 3233 kunmap(page); 3234 put_page(page); 3235 } 3236 if (name) 3237 putname(name); 3238 if (inode) 3239 inode_unlock(inode); 3240 if (!error) 3241 enable_swap_slots_cache(); 3242 return error; 3243 } 3244 3245 void si_swapinfo(struct sysinfo *val) 3246 { 3247 unsigned int type; 3248 unsigned long nr_to_be_unused = 0; 3249 3250 spin_lock(&swap_lock); 3251 for (type = 0; type < nr_swapfiles; type++) { 3252 struct swap_info_struct *si = swap_info[type]; 3253 3254 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3255 nr_to_be_unused += READ_ONCE(si->inuse_pages); 3256 } 3257 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3258 val->totalswap = total_swap_pages + nr_to_be_unused; 3259 spin_unlock(&swap_lock); 3260 } 3261 3262 /* 3263 * Verify that a swap entry is valid and increment its swap map count. 3264 * 3265 * Returns error code in following case. 3266 * - success -> 0 3267 * - swp_entry is invalid -> EINVAL 3268 * - swp_entry is migration entry -> EINVAL 3269 * - swap-cache reference is requested but there is already one. -> EEXIST 3270 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3271 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3272 */ 3273 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3274 { 3275 struct swap_info_struct *p; 3276 struct swap_cluster_info *ci; 3277 unsigned long offset; 3278 unsigned char count; 3279 unsigned char has_cache; 3280 int err; 3281 3282 p = swp_swap_info(entry); 3283 3284 offset = swp_offset(entry); 3285 ci = lock_cluster_or_swap_info(p, offset); 3286 3287 count = p->swap_map[offset]; 3288 3289 /* 3290 * swapin_readahead() doesn't check if a swap entry is valid, so the 3291 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3292 */ 3293 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3294 err = -ENOENT; 3295 goto unlock_out; 3296 } 3297 3298 has_cache = count & SWAP_HAS_CACHE; 3299 count &= ~SWAP_HAS_CACHE; 3300 err = 0; 3301 3302 if (usage == SWAP_HAS_CACHE) { 3303 3304 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3305 if (!has_cache && count) 3306 has_cache = SWAP_HAS_CACHE; 3307 else if (has_cache) /* someone else added cache */ 3308 err = -EEXIST; 3309 else /* no users remaining */ 3310 err = -ENOENT; 3311 3312 } else if (count || has_cache) { 3313 3314 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3315 count += usage; 3316 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3317 err = -EINVAL; 3318 else if (swap_count_continued(p, offset, count)) 3319 count = COUNT_CONTINUED; 3320 else 3321 err = -ENOMEM; 3322 } else 3323 err = -ENOENT; /* unused swap entry */ 3324 3325 WRITE_ONCE(p->swap_map[offset], count | has_cache); 3326 3327 unlock_out: 3328 unlock_cluster_or_swap_info(p, ci); 3329 return err; 3330 } 3331 3332 /* 3333 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3334 * (in which case its reference count is never incremented). 3335 */ 3336 void swap_shmem_alloc(swp_entry_t entry) 3337 { 3338 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3339 } 3340 3341 /* 3342 * Increase reference count of swap entry by 1. 3343 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3344 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3345 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3346 * might occur if a page table entry has got corrupted. 3347 */ 3348 int swap_duplicate(swp_entry_t entry) 3349 { 3350 int err = 0; 3351 3352 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3353 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3354 return err; 3355 } 3356 3357 /* 3358 * @entry: swap entry for which we allocate swap cache. 3359 * 3360 * Called when allocating swap cache for existing swap entry, 3361 * This can return error codes. Returns 0 at success. 3362 * -EEXIST means there is a swap cache. 3363 * Note: return code is different from swap_duplicate(). 3364 */ 3365 int swapcache_prepare(swp_entry_t entry) 3366 { 3367 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3368 } 3369 3370 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3371 { 3372 return swap_type_to_swap_info(swp_type(entry)); 3373 } 3374 3375 struct swap_info_struct *page_swap_info(struct page *page) 3376 { 3377 swp_entry_t entry = { .val = page_private(page) }; 3378 return swp_swap_info(entry); 3379 } 3380 3381 /* 3382 * out-of-line methods to avoid include hell. 3383 */ 3384 struct address_space *swapcache_mapping(struct folio *folio) 3385 { 3386 return page_swap_info(&folio->page)->swap_file->f_mapping; 3387 } 3388 EXPORT_SYMBOL_GPL(swapcache_mapping); 3389 3390 pgoff_t __page_file_index(struct page *page) 3391 { 3392 swp_entry_t swap = { .val = page_private(page) }; 3393 return swp_offset(swap); 3394 } 3395 EXPORT_SYMBOL_GPL(__page_file_index); 3396 3397 /* 3398 * add_swap_count_continuation - called when a swap count is duplicated 3399 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3400 * page of the original vmalloc'ed swap_map, to hold the continuation count 3401 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3402 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3403 * 3404 * These continuation pages are seldom referenced: the common paths all work 3405 * on the original swap_map, only referring to a continuation page when the 3406 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3407 * 3408 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3409 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3410 * can be called after dropping locks. 3411 */ 3412 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3413 { 3414 struct swap_info_struct *si; 3415 struct swap_cluster_info *ci; 3416 struct page *head; 3417 struct page *page; 3418 struct page *list_page; 3419 pgoff_t offset; 3420 unsigned char count; 3421 int ret = 0; 3422 3423 /* 3424 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3425 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3426 */ 3427 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3428 3429 si = get_swap_device(entry); 3430 if (!si) { 3431 /* 3432 * An acceptable race has occurred since the failing 3433 * __swap_duplicate(): the swap device may be swapoff 3434 */ 3435 goto outer; 3436 } 3437 spin_lock(&si->lock); 3438 3439 offset = swp_offset(entry); 3440 3441 ci = lock_cluster(si, offset); 3442 3443 count = swap_count(si->swap_map[offset]); 3444 3445 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3446 /* 3447 * The higher the swap count, the more likely it is that tasks 3448 * will race to add swap count continuation: we need to avoid 3449 * over-provisioning. 3450 */ 3451 goto out; 3452 } 3453 3454 if (!page) { 3455 ret = -ENOMEM; 3456 goto out; 3457 } 3458 3459 head = vmalloc_to_page(si->swap_map + offset); 3460 offset &= ~PAGE_MASK; 3461 3462 spin_lock(&si->cont_lock); 3463 /* 3464 * Page allocation does not initialize the page's lru field, 3465 * but it does always reset its private field. 3466 */ 3467 if (!page_private(head)) { 3468 BUG_ON(count & COUNT_CONTINUED); 3469 INIT_LIST_HEAD(&head->lru); 3470 set_page_private(head, SWP_CONTINUED); 3471 si->flags |= SWP_CONTINUED; 3472 } 3473 3474 list_for_each_entry(list_page, &head->lru, lru) { 3475 unsigned char *map; 3476 3477 /* 3478 * If the previous map said no continuation, but we've found 3479 * a continuation page, free our allocation and use this one. 3480 */ 3481 if (!(count & COUNT_CONTINUED)) 3482 goto out_unlock_cont; 3483 3484 map = kmap_atomic(list_page) + offset; 3485 count = *map; 3486 kunmap_atomic(map); 3487 3488 /* 3489 * If this continuation count now has some space in it, 3490 * free our allocation and use this one. 3491 */ 3492 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3493 goto out_unlock_cont; 3494 } 3495 3496 list_add_tail(&page->lru, &head->lru); 3497 page = NULL; /* now it's attached, don't free it */ 3498 out_unlock_cont: 3499 spin_unlock(&si->cont_lock); 3500 out: 3501 unlock_cluster(ci); 3502 spin_unlock(&si->lock); 3503 put_swap_device(si); 3504 outer: 3505 if (page) 3506 __free_page(page); 3507 return ret; 3508 } 3509 3510 /* 3511 * swap_count_continued - when the original swap_map count is incremented 3512 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3513 * into, carry if so, or else fail until a new continuation page is allocated; 3514 * when the original swap_map count is decremented from 0 with continuation, 3515 * borrow from the continuation and report whether it still holds more. 3516 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3517 * lock. 3518 */ 3519 static bool swap_count_continued(struct swap_info_struct *si, 3520 pgoff_t offset, unsigned char count) 3521 { 3522 struct page *head; 3523 struct page *page; 3524 unsigned char *map; 3525 bool ret; 3526 3527 head = vmalloc_to_page(si->swap_map + offset); 3528 if (page_private(head) != SWP_CONTINUED) { 3529 BUG_ON(count & COUNT_CONTINUED); 3530 return false; /* need to add count continuation */ 3531 } 3532 3533 spin_lock(&si->cont_lock); 3534 offset &= ~PAGE_MASK; 3535 page = list_next_entry(head, lru); 3536 map = kmap_atomic(page) + offset; 3537 3538 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3539 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3540 3541 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3542 /* 3543 * Think of how you add 1 to 999 3544 */ 3545 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3546 kunmap_atomic(map); 3547 page = list_next_entry(page, lru); 3548 BUG_ON(page == head); 3549 map = kmap_atomic(page) + offset; 3550 } 3551 if (*map == SWAP_CONT_MAX) { 3552 kunmap_atomic(map); 3553 page = list_next_entry(page, lru); 3554 if (page == head) { 3555 ret = false; /* add count continuation */ 3556 goto out; 3557 } 3558 map = kmap_atomic(page) + offset; 3559 init_map: *map = 0; /* we didn't zero the page */ 3560 } 3561 *map += 1; 3562 kunmap_atomic(map); 3563 while ((page = list_prev_entry(page, lru)) != head) { 3564 map = kmap_atomic(page) + offset; 3565 *map = COUNT_CONTINUED; 3566 kunmap_atomic(map); 3567 } 3568 ret = true; /* incremented */ 3569 3570 } else { /* decrementing */ 3571 /* 3572 * Think of how you subtract 1 from 1000 3573 */ 3574 BUG_ON(count != COUNT_CONTINUED); 3575 while (*map == COUNT_CONTINUED) { 3576 kunmap_atomic(map); 3577 page = list_next_entry(page, lru); 3578 BUG_ON(page == head); 3579 map = kmap_atomic(page) + offset; 3580 } 3581 BUG_ON(*map == 0); 3582 *map -= 1; 3583 if (*map == 0) 3584 count = 0; 3585 kunmap_atomic(map); 3586 while ((page = list_prev_entry(page, lru)) != head) { 3587 map = kmap_atomic(page) + offset; 3588 *map = SWAP_CONT_MAX | count; 3589 count = COUNT_CONTINUED; 3590 kunmap_atomic(map); 3591 } 3592 ret = count == COUNT_CONTINUED; 3593 } 3594 out: 3595 spin_unlock(&si->cont_lock); 3596 return ret; 3597 } 3598 3599 /* 3600 * free_swap_count_continuations - swapoff free all the continuation pages 3601 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3602 */ 3603 static void free_swap_count_continuations(struct swap_info_struct *si) 3604 { 3605 pgoff_t offset; 3606 3607 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3608 struct page *head; 3609 head = vmalloc_to_page(si->swap_map + offset); 3610 if (page_private(head)) { 3611 struct page *page, *next; 3612 3613 list_for_each_entry_safe(page, next, &head->lru, lru) { 3614 list_del(&page->lru); 3615 __free_page(page); 3616 } 3617 } 3618 } 3619 } 3620 3621 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3622 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp) 3623 { 3624 struct swap_info_struct *si, *next; 3625 int nid = folio_nid(folio); 3626 3627 if (!(gfp & __GFP_IO)) 3628 return; 3629 3630 if (!blk_cgroup_congested()) 3631 return; 3632 3633 /* 3634 * We've already scheduled a throttle, avoid taking the global swap 3635 * lock. 3636 */ 3637 if (current->throttle_disk) 3638 return; 3639 3640 spin_lock(&swap_avail_lock); 3641 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3642 avail_lists[nid]) { 3643 if (si->bdev) { 3644 blkcg_schedule_throttle(si->bdev->bd_disk, true); 3645 break; 3646 } 3647 } 3648 spin_unlock(&swap_avail_lock); 3649 } 3650 #endif 3651 3652 static int __init swapfile_init(void) 3653 { 3654 int nid; 3655 3656 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3657 GFP_KERNEL); 3658 if (!swap_avail_heads) { 3659 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3660 return -ENOMEM; 3661 } 3662 3663 for_each_node(nid) 3664 plist_head_init(&swap_avail_heads[nid]); 3665 3666 swapfile_maximum_size = arch_max_swapfile_size(); 3667 3668 #ifdef CONFIG_MIGRATION 3669 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS)) 3670 swap_migration_ad_supported = true; 3671 #endif /* CONFIG_MIGRATION */ 3672 3673 return 0; 3674 } 3675 subsys_initcall(swapfile_init); 3676