1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/sched/mm.h> 10 #include <linux/sched/task.h> 11 #include <linux/hugetlb.h> 12 #include <linux/mman.h> 13 #include <linux/slab.h> 14 #include <linux/kernel_stat.h> 15 #include <linux/swap.h> 16 #include <linux/vmalloc.h> 17 #include <linux/pagemap.h> 18 #include <linux/namei.h> 19 #include <linux/shmem_fs.h> 20 #include <linux/blkdev.h> 21 #include <linux/random.h> 22 #include <linux/writeback.h> 23 #include <linux/proc_fs.h> 24 #include <linux/seq_file.h> 25 #include <linux/init.h> 26 #include <linux/ksm.h> 27 #include <linux/rmap.h> 28 #include <linux/security.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mutex.h> 31 #include <linux/capability.h> 32 #include <linux/syscalls.h> 33 #include <linux/memcontrol.h> 34 #include <linux/poll.h> 35 #include <linux/oom.h> 36 #include <linux/frontswap.h> 37 #include <linux/swapfile.h> 38 #include <linux/export.h> 39 #include <linux/swap_slots.h> 40 #include <linux/sort.h> 41 42 #include <asm/pgtable.h> 43 #include <asm/tlbflush.h> 44 #include <linux/swapops.h> 45 #include <linux/swap_cgroup.h> 46 47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 48 unsigned char); 49 static void free_swap_count_continuations(struct swap_info_struct *); 50 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 51 52 DEFINE_SPINLOCK(swap_lock); 53 static unsigned int nr_swapfiles; 54 atomic_long_t nr_swap_pages; 55 /* 56 * Some modules use swappable objects and may try to swap them out under 57 * memory pressure (via the shrinker). Before doing so, they may wish to 58 * check to see if any swap space is available. 59 */ 60 EXPORT_SYMBOL_GPL(nr_swap_pages); 61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 62 long total_swap_pages; 63 static int least_priority = -1; 64 65 static const char Bad_file[] = "Bad swap file entry "; 66 static const char Unused_file[] = "Unused swap file entry "; 67 static const char Bad_offset[] = "Bad swap offset entry "; 68 static const char Unused_offset[] = "Unused swap offset entry "; 69 70 /* 71 * all active swap_info_structs 72 * protected with swap_lock, and ordered by priority. 73 */ 74 PLIST_HEAD(swap_active_head); 75 76 /* 77 * all available (active, not full) swap_info_structs 78 * protected with swap_avail_lock, ordered by priority. 79 * This is used by get_swap_page() instead of swap_active_head 80 * because swap_active_head includes all swap_info_structs, 81 * but get_swap_page() doesn't need to look at full ones. 82 * This uses its own lock instead of swap_lock because when a 83 * swap_info_struct changes between not-full/full, it needs to 84 * add/remove itself to/from this list, but the swap_info_struct->lock 85 * is held and the locking order requires swap_lock to be taken 86 * before any swap_info_struct->lock. 87 */ 88 struct plist_head *swap_avail_heads; 89 static DEFINE_SPINLOCK(swap_avail_lock); 90 91 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 92 93 static DEFINE_MUTEX(swapon_mutex); 94 95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 96 /* Activity counter to indicate that a swapon or swapoff has occurred */ 97 static atomic_t proc_poll_event = ATOMIC_INIT(0); 98 99 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 100 101 static inline unsigned char swap_count(unsigned char ent) 102 { 103 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ 104 } 105 106 /* returns 1 if swap entry is freed */ 107 static int 108 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) 109 { 110 swp_entry_t entry = swp_entry(si->type, offset); 111 struct page *page; 112 int ret = 0; 113 114 page = find_get_page(swap_address_space(entry), swp_offset(entry)); 115 if (!page) 116 return 0; 117 /* 118 * This function is called from scan_swap_map() and it's called 119 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. 120 * We have to use trylock for avoiding deadlock. This is a special 121 * case and you should use try_to_free_swap() with explicit lock_page() 122 * in usual operations. 123 */ 124 if (trylock_page(page)) { 125 ret = try_to_free_swap(page); 126 unlock_page(page); 127 } 128 put_page(page); 129 return ret; 130 } 131 132 /* 133 * swapon tell device that all the old swap contents can be discarded, 134 * to allow the swap device to optimize its wear-levelling. 135 */ 136 static int discard_swap(struct swap_info_struct *si) 137 { 138 struct swap_extent *se; 139 sector_t start_block; 140 sector_t nr_blocks; 141 int err = 0; 142 143 /* Do not discard the swap header page! */ 144 se = &si->first_swap_extent; 145 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 146 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 147 if (nr_blocks) { 148 err = blkdev_issue_discard(si->bdev, start_block, 149 nr_blocks, GFP_KERNEL, 0); 150 if (err) 151 return err; 152 cond_resched(); 153 } 154 155 list_for_each_entry(se, &si->first_swap_extent.list, list) { 156 start_block = se->start_block << (PAGE_SHIFT - 9); 157 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 158 159 err = blkdev_issue_discard(si->bdev, start_block, 160 nr_blocks, GFP_KERNEL, 0); 161 if (err) 162 break; 163 164 cond_resched(); 165 } 166 return err; /* That will often be -EOPNOTSUPP */ 167 } 168 169 /* 170 * swap allocation tell device that a cluster of swap can now be discarded, 171 * to allow the swap device to optimize its wear-levelling. 172 */ 173 static void discard_swap_cluster(struct swap_info_struct *si, 174 pgoff_t start_page, pgoff_t nr_pages) 175 { 176 struct swap_extent *se = si->curr_swap_extent; 177 int found_extent = 0; 178 179 while (nr_pages) { 180 if (se->start_page <= start_page && 181 start_page < se->start_page + se->nr_pages) { 182 pgoff_t offset = start_page - se->start_page; 183 sector_t start_block = se->start_block + offset; 184 sector_t nr_blocks = se->nr_pages - offset; 185 186 if (nr_blocks > nr_pages) 187 nr_blocks = nr_pages; 188 start_page += nr_blocks; 189 nr_pages -= nr_blocks; 190 191 if (!found_extent++) 192 si->curr_swap_extent = se; 193 194 start_block <<= PAGE_SHIFT - 9; 195 nr_blocks <<= PAGE_SHIFT - 9; 196 if (blkdev_issue_discard(si->bdev, start_block, 197 nr_blocks, GFP_NOIO, 0)) 198 break; 199 } 200 201 se = list_next_entry(se, list); 202 } 203 } 204 205 #ifdef CONFIG_THP_SWAP 206 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 207 #else 208 #define SWAPFILE_CLUSTER 256 209 #endif 210 #define LATENCY_LIMIT 256 211 212 static inline void cluster_set_flag(struct swap_cluster_info *info, 213 unsigned int flag) 214 { 215 info->flags = flag; 216 } 217 218 static inline unsigned int cluster_count(struct swap_cluster_info *info) 219 { 220 return info->data; 221 } 222 223 static inline void cluster_set_count(struct swap_cluster_info *info, 224 unsigned int c) 225 { 226 info->data = c; 227 } 228 229 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 230 unsigned int c, unsigned int f) 231 { 232 info->flags = f; 233 info->data = c; 234 } 235 236 static inline unsigned int cluster_next(struct swap_cluster_info *info) 237 { 238 return info->data; 239 } 240 241 static inline void cluster_set_next(struct swap_cluster_info *info, 242 unsigned int n) 243 { 244 info->data = n; 245 } 246 247 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 248 unsigned int n, unsigned int f) 249 { 250 info->flags = f; 251 info->data = n; 252 } 253 254 static inline bool cluster_is_free(struct swap_cluster_info *info) 255 { 256 return info->flags & CLUSTER_FLAG_FREE; 257 } 258 259 static inline bool cluster_is_null(struct swap_cluster_info *info) 260 { 261 return info->flags & CLUSTER_FLAG_NEXT_NULL; 262 } 263 264 static inline void cluster_set_null(struct swap_cluster_info *info) 265 { 266 info->flags = CLUSTER_FLAG_NEXT_NULL; 267 info->data = 0; 268 } 269 270 static inline bool cluster_is_huge(struct swap_cluster_info *info) 271 { 272 return info->flags & CLUSTER_FLAG_HUGE; 273 } 274 275 static inline void cluster_clear_huge(struct swap_cluster_info *info) 276 { 277 info->flags &= ~CLUSTER_FLAG_HUGE; 278 } 279 280 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 281 unsigned long offset) 282 { 283 struct swap_cluster_info *ci; 284 285 ci = si->cluster_info; 286 if (ci) { 287 ci += offset / SWAPFILE_CLUSTER; 288 spin_lock(&ci->lock); 289 } 290 return ci; 291 } 292 293 static inline void unlock_cluster(struct swap_cluster_info *ci) 294 { 295 if (ci) 296 spin_unlock(&ci->lock); 297 } 298 299 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 300 struct swap_info_struct *si, 301 unsigned long offset) 302 { 303 struct swap_cluster_info *ci; 304 305 ci = lock_cluster(si, offset); 306 if (!ci) 307 spin_lock(&si->lock); 308 309 return ci; 310 } 311 312 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 313 struct swap_cluster_info *ci) 314 { 315 if (ci) 316 unlock_cluster(ci); 317 else 318 spin_unlock(&si->lock); 319 } 320 321 static inline bool cluster_list_empty(struct swap_cluster_list *list) 322 { 323 return cluster_is_null(&list->head); 324 } 325 326 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 327 { 328 return cluster_next(&list->head); 329 } 330 331 static void cluster_list_init(struct swap_cluster_list *list) 332 { 333 cluster_set_null(&list->head); 334 cluster_set_null(&list->tail); 335 } 336 337 static void cluster_list_add_tail(struct swap_cluster_list *list, 338 struct swap_cluster_info *ci, 339 unsigned int idx) 340 { 341 if (cluster_list_empty(list)) { 342 cluster_set_next_flag(&list->head, idx, 0); 343 cluster_set_next_flag(&list->tail, idx, 0); 344 } else { 345 struct swap_cluster_info *ci_tail; 346 unsigned int tail = cluster_next(&list->tail); 347 348 /* 349 * Nested cluster lock, but both cluster locks are 350 * only acquired when we held swap_info_struct->lock 351 */ 352 ci_tail = ci + tail; 353 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 354 cluster_set_next(ci_tail, idx); 355 spin_unlock(&ci_tail->lock); 356 cluster_set_next_flag(&list->tail, idx, 0); 357 } 358 } 359 360 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 361 struct swap_cluster_info *ci) 362 { 363 unsigned int idx; 364 365 idx = cluster_next(&list->head); 366 if (cluster_next(&list->tail) == idx) { 367 cluster_set_null(&list->head); 368 cluster_set_null(&list->tail); 369 } else 370 cluster_set_next_flag(&list->head, 371 cluster_next(&ci[idx]), 0); 372 373 return idx; 374 } 375 376 /* Add a cluster to discard list and schedule it to do discard */ 377 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 378 unsigned int idx) 379 { 380 /* 381 * If scan_swap_map() can't find a free cluster, it will check 382 * si->swap_map directly. To make sure the discarding cluster isn't 383 * taken by scan_swap_map(), mark the swap entries bad (occupied). It 384 * will be cleared after discard 385 */ 386 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 387 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 388 389 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 390 391 schedule_work(&si->discard_work); 392 } 393 394 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 395 { 396 struct swap_cluster_info *ci = si->cluster_info; 397 398 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 399 cluster_list_add_tail(&si->free_clusters, ci, idx); 400 } 401 402 /* 403 * Doing discard actually. After a cluster discard is finished, the cluster 404 * will be added to free cluster list. caller should hold si->lock. 405 */ 406 static void swap_do_scheduled_discard(struct swap_info_struct *si) 407 { 408 struct swap_cluster_info *info, *ci; 409 unsigned int idx; 410 411 info = si->cluster_info; 412 413 while (!cluster_list_empty(&si->discard_clusters)) { 414 idx = cluster_list_del_first(&si->discard_clusters, info); 415 spin_unlock(&si->lock); 416 417 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 418 SWAPFILE_CLUSTER); 419 420 spin_lock(&si->lock); 421 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 422 __free_cluster(si, idx); 423 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 424 0, SWAPFILE_CLUSTER); 425 unlock_cluster(ci); 426 } 427 } 428 429 static void swap_discard_work(struct work_struct *work) 430 { 431 struct swap_info_struct *si; 432 433 si = container_of(work, struct swap_info_struct, discard_work); 434 435 spin_lock(&si->lock); 436 swap_do_scheduled_discard(si); 437 spin_unlock(&si->lock); 438 } 439 440 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 441 { 442 struct swap_cluster_info *ci = si->cluster_info; 443 444 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 445 cluster_list_del_first(&si->free_clusters, ci); 446 cluster_set_count_flag(ci + idx, 0, 0); 447 } 448 449 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 450 { 451 struct swap_cluster_info *ci = si->cluster_info + idx; 452 453 VM_BUG_ON(cluster_count(ci) != 0); 454 /* 455 * If the swap is discardable, prepare discard the cluster 456 * instead of free it immediately. The cluster will be freed 457 * after discard. 458 */ 459 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 460 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 461 swap_cluster_schedule_discard(si, idx); 462 return; 463 } 464 465 __free_cluster(si, idx); 466 } 467 468 /* 469 * The cluster corresponding to page_nr will be used. The cluster will be 470 * removed from free cluster list and its usage counter will be increased. 471 */ 472 static void inc_cluster_info_page(struct swap_info_struct *p, 473 struct swap_cluster_info *cluster_info, unsigned long page_nr) 474 { 475 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 476 477 if (!cluster_info) 478 return; 479 if (cluster_is_free(&cluster_info[idx])) 480 alloc_cluster(p, idx); 481 482 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 483 cluster_set_count(&cluster_info[idx], 484 cluster_count(&cluster_info[idx]) + 1); 485 } 486 487 /* 488 * The cluster corresponding to page_nr decreases one usage. If the usage 489 * counter becomes 0, which means no page in the cluster is in using, we can 490 * optionally discard the cluster and add it to free cluster list. 491 */ 492 static void dec_cluster_info_page(struct swap_info_struct *p, 493 struct swap_cluster_info *cluster_info, unsigned long page_nr) 494 { 495 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 496 497 if (!cluster_info) 498 return; 499 500 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 501 cluster_set_count(&cluster_info[idx], 502 cluster_count(&cluster_info[idx]) - 1); 503 504 if (cluster_count(&cluster_info[idx]) == 0) 505 free_cluster(p, idx); 506 } 507 508 /* 509 * It's possible scan_swap_map() uses a free cluster in the middle of free 510 * cluster list. Avoiding such abuse to avoid list corruption. 511 */ 512 static bool 513 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 514 unsigned long offset) 515 { 516 struct percpu_cluster *percpu_cluster; 517 bool conflict; 518 519 offset /= SWAPFILE_CLUSTER; 520 conflict = !cluster_list_empty(&si->free_clusters) && 521 offset != cluster_list_first(&si->free_clusters) && 522 cluster_is_free(&si->cluster_info[offset]); 523 524 if (!conflict) 525 return false; 526 527 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 528 cluster_set_null(&percpu_cluster->index); 529 return true; 530 } 531 532 /* 533 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 534 * might involve allocating a new cluster for current CPU too. 535 */ 536 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 537 unsigned long *offset, unsigned long *scan_base) 538 { 539 struct percpu_cluster *cluster; 540 struct swap_cluster_info *ci; 541 bool found_free; 542 unsigned long tmp, max; 543 544 new_cluster: 545 cluster = this_cpu_ptr(si->percpu_cluster); 546 if (cluster_is_null(&cluster->index)) { 547 if (!cluster_list_empty(&si->free_clusters)) { 548 cluster->index = si->free_clusters.head; 549 cluster->next = cluster_next(&cluster->index) * 550 SWAPFILE_CLUSTER; 551 } else if (!cluster_list_empty(&si->discard_clusters)) { 552 /* 553 * we don't have free cluster but have some clusters in 554 * discarding, do discard now and reclaim them 555 */ 556 swap_do_scheduled_discard(si); 557 *scan_base = *offset = si->cluster_next; 558 goto new_cluster; 559 } else 560 return false; 561 } 562 563 found_free = false; 564 565 /* 566 * Other CPUs can use our cluster if they can't find a free cluster, 567 * check if there is still free entry in the cluster 568 */ 569 tmp = cluster->next; 570 max = min_t(unsigned long, si->max, 571 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 572 if (tmp >= max) { 573 cluster_set_null(&cluster->index); 574 goto new_cluster; 575 } 576 ci = lock_cluster(si, tmp); 577 while (tmp < max) { 578 if (!si->swap_map[tmp]) { 579 found_free = true; 580 break; 581 } 582 tmp++; 583 } 584 unlock_cluster(ci); 585 if (!found_free) { 586 cluster_set_null(&cluster->index); 587 goto new_cluster; 588 } 589 cluster->next = tmp + 1; 590 *offset = tmp; 591 *scan_base = tmp; 592 return found_free; 593 } 594 595 static void __del_from_avail_list(struct swap_info_struct *p) 596 { 597 int nid; 598 599 for_each_node(nid) 600 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 601 } 602 603 static void del_from_avail_list(struct swap_info_struct *p) 604 { 605 spin_lock(&swap_avail_lock); 606 __del_from_avail_list(p); 607 spin_unlock(&swap_avail_lock); 608 } 609 610 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 611 unsigned int nr_entries) 612 { 613 unsigned int end = offset + nr_entries - 1; 614 615 if (offset == si->lowest_bit) 616 si->lowest_bit += nr_entries; 617 if (end == si->highest_bit) 618 si->highest_bit -= nr_entries; 619 si->inuse_pages += nr_entries; 620 if (si->inuse_pages == si->pages) { 621 si->lowest_bit = si->max; 622 si->highest_bit = 0; 623 del_from_avail_list(si); 624 } 625 } 626 627 static void add_to_avail_list(struct swap_info_struct *p) 628 { 629 int nid; 630 631 spin_lock(&swap_avail_lock); 632 for_each_node(nid) { 633 WARN_ON(!plist_node_empty(&p->avail_lists[nid])); 634 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 635 } 636 spin_unlock(&swap_avail_lock); 637 } 638 639 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 640 unsigned int nr_entries) 641 { 642 unsigned long end = offset + nr_entries - 1; 643 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 644 645 if (offset < si->lowest_bit) 646 si->lowest_bit = offset; 647 if (end > si->highest_bit) { 648 bool was_full = !si->highest_bit; 649 650 si->highest_bit = end; 651 if (was_full && (si->flags & SWP_WRITEOK)) 652 add_to_avail_list(si); 653 } 654 atomic_long_add(nr_entries, &nr_swap_pages); 655 si->inuse_pages -= nr_entries; 656 if (si->flags & SWP_BLKDEV) 657 swap_slot_free_notify = 658 si->bdev->bd_disk->fops->swap_slot_free_notify; 659 else 660 swap_slot_free_notify = NULL; 661 while (offset <= end) { 662 frontswap_invalidate_page(si->type, offset); 663 if (swap_slot_free_notify) 664 swap_slot_free_notify(si->bdev, offset); 665 offset++; 666 } 667 } 668 669 static int scan_swap_map_slots(struct swap_info_struct *si, 670 unsigned char usage, int nr, 671 swp_entry_t slots[]) 672 { 673 struct swap_cluster_info *ci; 674 unsigned long offset; 675 unsigned long scan_base; 676 unsigned long last_in_cluster = 0; 677 int latency_ration = LATENCY_LIMIT; 678 int n_ret = 0; 679 680 if (nr > SWAP_BATCH) 681 nr = SWAP_BATCH; 682 683 /* 684 * We try to cluster swap pages by allocating them sequentially 685 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 686 * way, however, we resort to first-free allocation, starting 687 * a new cluster. This prevents us from scattering swap pages 688 * all over the entire swap partition, so that we reduce 689 * overall disk seek times between swap pages. -- sct 690 * But we do now try to find an empty cluster. -Andrea 691 * And we let swap pages go all over an SSD partition. Hugh 692 */ 693 694 si->flags += SWP_SCANNING; 695 scan_base = offset = si->cluster_next; 696 697 /* SSD algorithm */ 698 if (si->cluster_info) { 699 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 700 goto checks; 701 else 702 goto scan; 703 } 704 705 if (unlikely(!si->cluster_nr--)) { 706 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 707 si->cluster_nr = SWAPFILE_CLUSTER - 1; 708 goto checks; 709 } 710 711 spin_unlock(&si->lock); 712 713 /* 714 * If seek is expensive, start searching for new cluster from 715 * start of partition, to minimize the span of allocated swap. 716 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 717 * case, just handled by scan_swap_map_try_ssd_cluster() above. 718 */ 719 scan_base = offset = si->lowest_bit; 720 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 721 722 /* Locate the first empty (unaligned) cluster */ 723 for (; last_in_cluster <= si->highest_bit; offset++) { 724 if (si->swap_map[offset]) 725 last_in_cluster = offset + SWAPFILE_CLUSTER; 726 else if (offset == last_in_cluster) { 727 spin_lock(&si->lock); 728 offset -= SWAPFILE_CLUSTER - 1; 729 si->cluster_next = offset; 730 si->cluster_nr = SWAPFILE_CLUSTER - 1; 731 goto checks; 732 } 733 if (unlikely(--latency_ration < 0)) { 734 cond_resched(); 735 latency_ration = LATENCY_LIMIT; 736 } 737 } 738 739 offset = scan_base; 740 spin_lock(&si->lock); 741 si->cluster_nr = SWAPFILE_CLUSTER - 1; 742 } 743 744 checks: 745 if (si->cluster_info) { 746 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 747 /* take a break if we already got some slots */ 748 if (n_ret) 749 goto done; 750 if (!scan_swap_map_try_ssd_cluster(si, &offset, 751 &scan_base)) 752 goto scan; 753 } 754 } 755 if (!(si->flags & SWP_WRITEOK)) 756 goto no_page; 757 if (!si->highest_bit) 758 goto no_page; 759 if (offset > si->highest_bit) 760 scan_base = offset = si->lowest_bit; 761 762 ci = lock_cluster(si, offset); 763 /* reuse swap entry of cache-only swap if not busy. */ 764 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 765 int swap_was_freed; 766 unlock_cluster(ci); 767 spin_unlock(&si->lock); 768 swap_was_freed = __try_to_reclaim_swap(si, offset); 769 spin_lock(&si->lock); 770 /* entry was freed successfully, try to use this again */ 771 if (swap_was_freed) 772 goto checks; 773 goto scan; /* check next one */ 774 } 775 776 if (si->swap_map[offset]) { 777 unlock_cluster(ci); 778 if (!n_ret) 779 goto scan; 780 else 781 goto done; 782 } 783 si->swap_map[offset] = usage; 784 inc_cluster_info_page(si, si->cluster_info, offset); 785 unlock_cluster(ci); 786 787 swap_range_alloc(si, offset, 1); 788 si->cluster_next = offset + 1; 789 slots[n_ret++] = swp_entry(si->type, offset); 790 791 /* got enough slots or reach max slots? */ 792 if ((n_ret == nr) || (offset >= si->highest_bit)) 793 goto done; 794 795 /* search for next available slot */ 796 797 /* time to take a break? */ 798 if (unlikely(--latency_ration < 0)) { 799 if (n_ret) 800 goto done; 801 spin_unlock(&si->lock); 802 cond_resched(); 803 spin_lock(&si->lock); 804 latency_ration = LATENCY_LIMIT; 805 } 806 807 /* try to get more slots in cluster */ 808 if (si->cluster_info) { 809 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 810 goto checks; 811 else 812 goto done; 813 } 814 /* non-ssd case */ 815 ++offset; 816 817 /* non-ssd case, still more slots in cluster? */ 818 if (si->cluster_nr && !si->swap_map[offset]) { 819 --si->cluster_nr; 820 goto checks; 821 } 822 823 done: 824 si->flags -= SWP_SCANNING; 825 return n_ret; 826 827 scan: 828 spin_unlock(&si->lock); 829 while (++offset <= si->highest_bit) { 830 if (!si->swap_map[offset]) { 831 spin_lock(&si->lock); 832 goto checks; 833 } 834 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 835 spin_lock(&si->lock); 836 goto checks; 837 } 838 if (unlikely(--latency_ration < 0)) { 839 cond_resched(); 840 latency_ration = LATENCY_LIMIT; 841 } 842 } 843 offset = si->lowest_bit; 844 while (offset < scan_base) { 845 if (!si->swap_map[offset]) { 846 spin_lock(&si->lock); 847 goto checks; 848 } 849 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 850 spin_lock(&si->lock); 851 goto checks; 852 } 853 if (unlikely(--latency_ration < 0)) { 854 cond_resched(); 855 latency_ration = LATENCY_LIMIT; 856 } 857 offset++; 858 } 859 spin_lock(&si->lock); 860 861 no_page: 862 si->flags -= SWP_SCANNING; 863 return n_ret; 864 } 865 866 #ifdef CONFIG_THP_SWAP 867 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 868 { 869 unsigned long idx; 870 struct swap_cluster_info *ci; 871 unsigned long offset, i; 872 unsigned char *map; 873 874 if (cluster_list_empty(&si->free_clusters)) 875 return 0; 876 877 idx = cluster_list_first(&si->free_clusters); 878 offset = idx * SWAPFILE_CLUSTER; 879 ci = lock_cluster(si, offset); 880 alloc_cluster(si, idx); 881 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 882 883 map = si->swap_map + offset; 884 for (i = 0; i < SWAPFILE_CLUSTER; i++) 885 map[i] = SWAP_HAS_CACHE; 886 unlock_cluster(ci); 887 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 888 *slot = swp_entry(si->type, offset); 889 890 return 1; 891 } 892 893 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 894 { 895 unsigned long offset = idx * SWAPFILE_CLUSTER; 896 struct swap_cluster_info *ci; 897 898 ci = lock_cluster(si, offset); 899 cluster_set_count_flag(ci, 0, 0); 900 free_cluster(si, idx); 901 unlock_cluster(ci); 902 swap_range_free(si, offset, SWAPFILE_CLUSTER); 903 } 904 #else 905 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 906 { 907 VM_WARN_ON_ONCE(1); 908 return 0; 909 } 910 #endif /* CONFIG_THP_SWAP */ 911 912 static unsigned long scan_swap_map(struct swap_info_struct *si, 913 unsigned char usage) 914 { 915 swp_entry_t entry; 916 int n_ret; 917 918 n_ret = scan_swap_map_slots(si, usage, 1, &entry); 919 920 if (n_ret) 921 return swp_offset(entry); 922 else 923 return 0; 924 925 } 926 927 int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[]) 928 { 929 unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1; 930 struct swap_info_struct *si, *next; 931 long avail_pgs; 932 int n_ret = 0; 933 int node; 934 935 /* Only single cluster request supported */ 936 WARN_ON_ONCE(n_goal > 1 && cluster); 937 938 avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages; 939 if (avail_pgs <= 0) 940 goto noswap; 941 942 if (n_goal > SWAP_BATCH) 943 n_goal = SWAP_BATCH; 944 945 if (n_goal > avail_pgs) 946 n_goal = avail_pgs; 947 948 atomic_long_sub(n_goal * nr_pages, &nr_swap_pages); 949 950 spin_lock(&swap_avail_lock); 951 952 start_over: 953 node = numa_node_id(); 954 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 955 /* requeue si to after same-priority siblings */ 956 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 957 spin_unlock(&swap_avail_lock); 958 spin_lock(&si->lock); 959 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 960 spin_lock(&swap_avail_lock); 961 if (plist_node_empty(&si->avail_lists[node])) { 962 spin_unlock(&si->lock); 963 goto nextsi; 964 } 965 WARN(!si->highest_bit, 966 "swap_info %d in list but !highest_bit\n", 967 si->type); 968 WARN(!(si->flags & SWP_WRITEOK), 969 "swap_info %d in list but !SWP_WRITEOK\n", 970 si->type); 971 __del_from_avail_list(si); 972 spin_unlock(&si->lock); 973 goto nextsi; 974 } 975 if (cluster) { 976 if (!(si->flags & SWP_FILE)) 977 n_ret = swap_alloc_cluster(si, swp_entries); 978 } else 979 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 980 n_goal, swp_entries); 981 spin_unlock(&si->lock); 982 if (n_ret || cluster) 983 goto check_out; 984 pr_debug("scan_swap_map of si %d failed to find offset\n", 985 si->type); 986 987 spin_lock(&swap_avail_lock); 988 nextsi: 989 /* 990 * if we got here, it's likely that si was almost full before, 991 * and since scan_swap_map() can drop the si->lock, multiple 992 * callers probably all tried to get a page from the same si 993 * and it filled up before we could get one; or, the si filled 994 * up between us dropping swap_avail_lock and taking si->lock. 995 * Since we dropped the swap_avail_lock, the swap_avail_head 996 * list may have been modified; so if next is still in the 997 * swap_avail_head list then try it, otherwise start over 998 * if we have not gotten any slots. 999 */ 1000 if (plist_node_empty(&next->avail_lists[node])) 1001 goto start_over; 1002 } 1003 1004 spin_unlock(&swap_avail_lock); 1005 1006 check_out: 1007 if (n_ret < n_goal) 1008 atomic_long_add((long)(n_goal - n_ret) * nr_pages, 1009 &nr_swap_pages); 1010 noswap: 1011 return n_ret; 1012 } 1013 1014 /* The only caller of this function is now suspend routine */ 1015 swp_entry_t get_swap_page_of_type(int type) 1016 { 1017 struct swap_info_struct *si; 1018 pgoff_t offset; 1019 1020 si = swap_info[type]; 1021 spin_lock(&si->lock); 1022 if (si && (si->flags & SWP_WRITEOK)) { 1023 atomic_long_dec(&nr_swap_pages); 1024 /* This is called for allocating swap entry, not cache */ 1025 offset = scan_swap_map(si, 1); 1026 if (offset) { 1027 spin_unlock(&si->lock); 1028 return swp_entry(type, offset); 1029 } 1030 atomic_long_inc(&nr_swap_pages); 1031 } 1032 spin_unlock(&si->lock); 1033 return (swp_entry_t) {0}; 1034 } 1035 1036 static struct swap_info_struct *__swap_info_get(swp_entry_t entry) 1037 { 1038 struct swap_info_struct *p; 1039 unsigned long offset, type; 1040 1041 if (!entry.val) 1042 goto out; 1043 type = swp_type(entry); 1044 if (type >= nr_swapfiles) 1045 goto bad_nofile; 1046 p = swap_info[type]; 1047 if (!(p->flags & SWP_USED)) 1048 goto bad_device; 1049 offset = swp_offset(entry); 1050 if (offset >= p->max) 1051 goto bad_offset; 1052 return p; 1053 1054 bad_offset: 1055 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val); 1056 goto out; 1057 bad_device: 1058 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val); 1059 goto out; 1060 bad_nofile: 1061 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val); 1062 out: 1063 return NULL; 1064 } 1065 1066 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1067 { 1068 struct swap_info_struct *p; 1069 1070 p = __swap_info_get(entry); 1071 if (!p) 1072 goto out; 1073 if (!p->swap_map[swp_offset(entry)]) 1074 goto bad_free; 1075 return p; 1076 1077 bad_free: 1078 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val); 1079 goto out; 1080 out: 1081 return NULL; 1082 } 1083 1084 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 1085 { 1086 struct swap_info_struct *p; 1087 1088 p = _swap_info_get(entry); 1089 if (p) 1090 spin_lock(&p->lock); 1091 return p; 1092 } 1093 1094 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1095 struct swap_info_struct *q) 1096 { 1097 struct swap_info_struct *p; 1098 1099 p = _swap_info_get(entry); 1100 1101 if (p != q) { 1102 if (q != NULL) 1103 spin_unlock(&q->lock); 1104 if (p != NULL) 1105 spin_lock(&p->lock); 1106 } 1107 return p; 1108 } 1109 1110 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1111 swp_entry_t entry, unsigned char usage) 1112 { 1113 struct swap_cluster_info *ci; 1114 unsigned long offset = swp_offset(entry); 1115 unsigned char count; 1116 unsigned char has_cache; 1117 1118 ci = lock_cluster_or_swap_info(p, offset); 1119 1120 count = p->swap_map[offset]; 1121 1122 has_cache = count & SWAP_HAS_CACHE; 1123 count &= ~SWAP_HAS_CACHE; 1124 1125 if (usage == SWAP_HAS_CACHE) { 1126 VM_BUG_ON(!has_cache); 1127 has_cache = 0; 1128 } else if (count == SWAP_MAP_SHMEM) { 1129 /* 1130 * Or we could insist on shmem.c using a special 1131 * swap_shmem_free() and free_shmem_swap_and_cache()... 1132 */ 1133 count = 0; 1134 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1135 if (count == COUNT_CONTINUED) { 1136 if (swap_count_continued(p, offset, count)) 1137 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1138 else 1139 count = SWAP_MAP_MAX; 1140 } else 1141 count--; 1142 } 1143 1144 usage = count | has_cache; 1145 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE; 1146 1147 unlock_cluster_or_swap_info(p, ci); 1148 1149 return usage; 1150 } 1151 1152 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1153 { 1154 struct swap_cluster_info *ci; 1155 unsigned long offset = swp_offset(entry); 1156 unsigned char count; 1157 1158 ci = lock_cluster(p, offset); 1159 count = p->swap_map[offset]; 1160 VM_BUG_ON(count != SWAP_HAS_CACHE); 1161 p->swap_map[offset] = 0; 1162 dec_cluster_info_page(p, p->cluster_info, offset); 1163 unlock_cluster(ci); 1164 1165 mem_cgroup_uncharge_swap(entry, 1); 1166 swap_range_free(p, offset, 1); 1167 } 1168 1169 /* 1170 * Caller has made sure that the swap device corresponding to entry 1171 * is still around or has not been recycled. 1172 */ 1173 void swap_free(swp_entry_t entry) 1174 { 1175 struct swap_info_struct *p; 1176 1177 p = _swap_info_get(entry); 1178 if (p) { 1179 if (!__swap_entry_free(p, entry, 1)) 1180 free_swap_slot(entry); 1181 } 1182 } 1183 1184 /* 1185 * Called after dropping swapcache to decrease refcnt to swap entries. 1186 */ 1187 static void swapcache_free(swp_entry_t entry) 1188 { 1189 struct swap_info_struct *p; 1190 1191 p = _swap_info_get(entry); 1192 if (p) { 1193 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE)) 1194 free_swap_slot(entry); 1195 } 1196 } 1197 1198 #ifdef CONFIG_THP_SWAP 1199 static void swapcache_free_cluster(swp_entry_t entry) 1200 { 1201 unsigned long offset = swp_offset(entry); 1202 unsigned long idx = offset / SWAPFILE_CLUSTER; 1203 struct swap_cluster_info *ci; 1204 struct swap_info_struct *si; 1205 unsigned char *map; 1206 unsigned int i, free_entries = 0; 1207 unsigned char val; 1208 1209 si = _swap_info_get(entry); 1210 if (!si) 1211 return; 1212 1213 ci = lock_cluster(si, offset); 1214 VM_BUG_ON(!cluster_is_huge(ci)); 1215 map = si->swap_map + offset; 1216 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1217 val = map[i]; 1218 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1219 if (val == SWAP_HAS_CACHE) 1220 free_entries++; 1221 } 1222 if (!free_entries) { 1223 for (i = 0; i < SWAPFILE_CLUSTER; i++) 1224 map[i] &= ~SWAP_HAS_CACHE; 1225 } 1226 cluster_clear_huge(ci); 1227 unlock_cluster(ci); 1228 if (free_entries == SWAPFILE_CLUSTER) { 1229 spin_lock(&si->lock); 1230 ci = lock_cluster(si, offset); 1231 memset(map, 0, SWAPFILE_CLUSTER); 1232 unlock_cluster(ci); 1233 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1234 swap_free_cluster(si, idx); 1235 spin_unlock(&si->lock); 1236 } else if (free_entries) { 1237 for (i = 0; i < SWAPFILE_CLUSTER; i++, entry.val++) { 1238 if (!__swap_entry_free(si, entry, SWAP_HAS_CACHE)) 1239 free_swap_slot(entry); 1240 } 1241 } 1242 } 1243 1244 int split_swap_cluster(swp_entry_t entry) 1245 { 1246 struct swap_info_struct *si; 1247 struct swap_cluster_info *ci; 1248 unsigned long offset = swp_offset(entry); 1249 1250 si = _swap_info_get(entry); 1251 if (!si) 1252 return -EBUSY; 1253 ci = lock_cluster(si, offset); 1254 cluster_clear_huge(ci); 1255 unlock_cluster(ci); 1256 return 0; 1257 } 1258 #else 1259 static inline void swapcache_free_cluster(swp_entry_t entry) 1260 { 1261 } 1262 #endif /* CONFIG_THP_SWAP */ 1263 1264 void put_swap_page(struct page *page, swp_entry_t entry) 1265 { 1266 if (!PageTransHuge(page)) 1267 swapcache_free(entry); 1268 else 1269 swapcache_free_cluster(entry); 1270 } 1271 1272 static int swp_entry_cmp(const void *ent1, const void *ent2) 1273 { 1274 const swp_entry_t *e1 = ent1, *e2 = ent2; 1275 1276 return (int)swp_type(*e1) - (int)swp_type(*e2); 1277 } 1278 1279 void swapcache_free_entries(swp_entry_t *entries, int n) 1280 { 1281 struct swap_info_struct *p, *prev; 1282 int i; 1283 1284 if (n <= 0) 1285 return; 1286 1287 prev = NULL; 1288 p = NULL; 1289 1290 /* 1291 * Sort swap entries by swap device, so each lock is only taken once. 1292 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1293 * so low that it isn't necessary to optimize further. 1294 */ 1295 if (nr_swapfiles > 1) 1296 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1297 for (i = 0; i < n; ++i) { 1298 p = swap_info_get_cont(entries[i], prev); 1299 if (p) 1300 swap_entry_free(p, entries[i]); 1301 prev = p; 1302 } 1303 if (p) 1304 spin_unlock(&p->lock); 1305 } 1306 1307 /* 1308 * How many references to page are currently swapped out? 1309 * This does not give an exact answer when swap count is continued, 1310 * but does include the high COUNT_CONTINUED flag to allow for that. 1311 */ 1312 int page_swapcount(struct page *page) 1313 { 1314 int count = 0; 1315 struct swap_info_struct *p; 1316 struct swap_cluster_info *ci; 1317 swp_entry_t entry; 1318 unsigned long offset; 1319 1320 entry.val = page_private(page); 1321 p = _swap_info_get(entry); 1322 if (p) { 1323 offset = swp_offset(entry); 1324 ci = lock_cluster_or_swap_info(p, offset); 1325 count = swap_count(p->swap_map[offset]); 1326 unlock_cluster_or_swap_info(p, ci); 1327 } 1328 return count; 1329 } 1330 1331 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1332 { 1333 int count = 0; 1334 pgoff_t offset = swp_offset(entry); 1335 struct swap_cluster_info *ci; 1336 1337 ci = lock_cluster_or_swap_info(si, offset); 1338 count = swap_count(si->swap_map[offset]); 1339 unlock_cluster_or_swap_info(si, ci); 1340 return count; 1341 } 1342 1343 /* 1344 * How many references to @entry are currently swapped out? 1345 * This does not give an exact answer when swap count is continued, 1346 * but does include the high COUNT_CONTINUED flag to allow for that. 1347 */ 1348 int __swp_swapcount(swp_entry_t entry) 1349 { 1350 int count = 0; 1351 struct swap_info_struct *si; 1352 1353 si = __swap_info_get(entry); 1354 if (si) 1355 count = swap_swapcount(si, entry); 1356 return count; 1357 } 1358 1359 /* 1360 * How many references to @entry are currently swapped out? 1361 * This considers COUNT_CONTINUED so it returns exact answer. 1362 */ 1363 int swp_swapcount(swp_entry_t entry) 1364 { 1365 int count, tmp_count, n; 1366 struct swap_info_struct *p; 1367 struct swap_cluster_info *ci; 1368 struct page *page; 1369 pgoff_t offset; 1370 unsigned char *map; 1371 1372 p = _swap_info_get(entry); 1373 if (!p) 1374 return 0; 1375 1376 offset = swp_offset(entry); 1377 1378 ci = lock_cluster_or_swap_info(p, offset); 1379 1380 count = swap_count(p->swap_map[offset]); 1381 if (!(count & COUNT_CONTINUED)) 1382 goto out; 1383 1384 count &= ~COUNT_CONTINUED; 1385 n = SWAP_MAP_MAX + 1; 1386 1387 page = vmalloc_to_page(p->swap_map + offset); 1388 offset &= ~PAGE_MASK; 1389 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1390 1391 do { 1392 page = list_next_entry(page, lru); 1393 map = kmap_atomic(page); 1394 tmp_count = map[offset]; 1395 kunmap_atomic(map); 1396 1397 count += (tmp_count & ~COUNT_CONTINUED) * n; 1398 n *= (SWAP_CONT_MAX + 1); 1399 } while (tmp_count & COUNT_CONTINUED); 1400 out: 1401 unlock_cluster_or_swap_info(p, ci); 1402 return count; 1403 } 1404 1405 #ifdef CONFIG_THP_SWAP 1406 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1407 swp_entry_t entry) 1408 { 1409 struct swap_cluster_info *ci; 1410 unsigned char *map = si->swap_map; 1411 unsigned long roffset = swp_offset(entry); 1412 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1413 int i; 1414 bool ret = false; 1415 1416 ci = lock_cluster_or_swap_info(si, offset); 1417 if (!ci || !cluster_is_huge(ci)) { 1418 if (map[roffset] != SWAP_HAS_CACHE) 1419 ret = true; 1420 goto unlock_out; 1421 } 1422 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1423 if (map[offset + i] != SWAP_HAS_CACHE) { 1424 ret = true; 1425 break; 1426 } 1427 } 1428 unlock_out: 1429 unlock_cluster_or_swap_info(si, ci); 1430 return ret; 1431 } 1432 1433 static bool page_swapped(struct page *page) 1434 { 1435 swp_entry_t entry; 1436 struct swap_info_struct *si; 1437 1438 if (likely(!PageTransCompound(page))) 1439 return page_swapcount(page) != 0; 1440 1441 page = compound_head(page); 1442 entry.val = page_private(page); 1443 si = _swap_info_get(entry); 1444 if (si) 1445 return swap_page_trans_huge_swapped(si, entry); 1446 return false; 1447 } 1448 1449 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount, 1450 int *total_swapcount) 1451 { 1452 int i, map_swapcount, _total_mapcount, _total_swapcount; 1453 unsigned long offset = 0; 1454 struct swap_info_struct *si; 1455 struct swap_cluster_info *ci = NULL; 1456 unsigned char *map = NULL; 1457 int mapcount, swapcount = 0; 1458 1459 /* hugetlbfs shouldn't call it */ 1460 VM_BUG_ON_PAGE(PageHuge(page), page); 1461 1462 if (likely(!PageTransCompound(page))) { 1463 mapcount = atomic_read(&page->_mapcount) + 1; 1464 if (total_mapcount) 1465 *total_mapcount = mapcount; 1466 if (PageSwapCache(page)) 1467 swapcount = page_swapcount(page); 1468 if (total_swapcount) 1469 *total_swapcount = swapcount; 1470 return mapcount + swapcount; 1471 } 1472 1473 page = compound_head(page); 1474 1475 _total_mapcount = _total_swapcount = map_swapcount = 0; 1476 if (PageSwapCache(page)) { 1477 swp_entry_t entry; 1478 1479 entry.val = page_private(page); 1480 si = _swap_info_get(entry); 1481 if (si) { 1482 map = si->swap_map; 1483 offset = swp_offset(entry); 1484 } 1485 } 1486 if (map) 1487 ci = lock_cluster(si, offset); 1488 for (i = 0; i < HPAGE_PMD_NR; i++) { 1489 mapcount = atomic_read(&page[i]._mapcount) + 1; 1490 _total_mapcount += mapcount; 1491 if (map) { 1492 swapcount = swap_count(map[offset + i]); 1493 _total_swapcount += swapcount; 1494 } 1495 map_swapcount = max(map_swapcount, mapcount + swapcount); 1496 } 1497 unlock_cluster(ci); 1498 if (PageDoubleMap(page)) { 1499 map_swapcount -= 1; 1500 _total_mapcount -= HPAGE_PMD_NR; 1501 } 1502 mapcount = compound_mapcount(page); 1503 map_swapcount += mapcount; 1504 _total_mapcount += mapcount; 1505 if (total_mapcount) 1506 *total_mapcount = _total_mapcount; 1507 if (total_swapcount) 1508 *total_swapcount = _total_swapcount; 1509 1510 return map_swapcount; 1511 } 1512 #else 1513 #define swap_page_trans_huge_swapped(si, entry) swap_swapcount(si, entry) 1514 #define page_swapped(page) (page_swapcount(page) != 0) 1515 1516 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount, 1517 int *total_swapcount) 1518 { 1519 int mapcount, swapcount = 0; 1520 1521 /* hugetlbfs shouldn't call it */ 1522 VM_BUG_ON_PAGE(PageHuge(page), page); 1523 1524 mapcount = page_trans_huge_mapcount(page, total_mapcount); 1525 if (PageSwapCache(page)) 1526 swapcount = page_swapcount(page); 1527 if (total_swapcount) 1528 *total_swapcount = swapcount; 1529 return mapcount + swapcount; 1530 } 1531 #endif 1532 1533 /* 1534 * We can write to an anon page without COW if there are no other references 1535 * to it. And as a side-effect, free up its swap: because the old content 1536 * on disk will never be read, and seeking back there to write new content 1537 * later would only waste time away from clustering. 1538 * 1539 * NOTE: total_map_swapcount should not be relied upon by the caller if 1540 * reuse_swap_page() returns false, but it may be always overwritten 1541 * (see the other implementation for CONFIG_SWAP=n). 1542 */ 1543 bool reuse_swap_page(struct page *page, int *total_map_swapcount) 1544 { 1545 int count, total_mapcount, total_swapcount; 1546 1547 VM_BUG_ON_PAGE(!PageLocked(page), page); 1548 if (unlikely(PageKsm(page))) 1549 return false; 1550 count = page_trans_huge_map_swapcount(page, &total_mapcount, 1551 &total_swapcount); 1552 if (total_map_swapcount) 1553 *total_map_swapcount = total_mapcount + total_swapcount; 1554 if (count == 1 && PageSwapCache(page) && 1555 (likely(!PageTransCompound(page)) || 1556 /* The remaining swap count will be freed soon */ 1557 total_swapcount == page_swapcount(page))) { 1558 if (!PageWriteback(page)) { 1559 page = compound_head(page); 1560 delete_from_swap_cache(page); 1561 SetPageDirty(page); 1562 } else { 1563 swp_entry_t entry; 1564 struct swap_info_struct *p; 1565 1566 entry.val = page_private(page); 1567 p = swap_info_get(entry); 1568 if (p->flags & SWP_STABLE_WRITES) { 1569 spin_unlock(&p->lock); 1570 return false; 1571 } 1572 spin_unlock(&p->lock); 1573 } 1574 } 1575 1576 return count <= 1; 1577 } 1578 1579 /* 1580 * If swap is getting full, or if there are no more mappings of this page, 1581 * then try_to_free_swap is called to free its swap space. 1582 */ 1583 int try_to_free_swap(struct page *page) 1584 { 1585 VM_BUG_ON_PAGE(!PageLocked(page), page); 1586 1587 if (!PageSwapCache(page)) 1588 return 0; 1589 if (PageWriteback(page)) 1590 return 0; 1591 if (page_swapped(page)) 1592 return 0; 1593 1594 /* 1595 * Once hibernation has begun to create its image of memory, 1596 * there's a danger that one of the calls to try_to_free_swap() 1597 * - most probably a call from __try_to_reclaim_swap() while 1598 * hibernation is allocating its own swap pages for the image, 1599 * but conceivably even a call from memory reclaim - will free 1600 * the swap from a page which has already been recorded in the 1601 * image as a clean swapcache page, and then reuse its swap for 1602 * another page of the image. On waking from hibernation, the 1603 * original page might be freed under memory pressure, then 1604 * later read back in from swap, now with the wrong data. 1605 * 1606 * Hibernation suspends storage while it is writing the image 1607 * to disk so check that here. 1608 */ 1609 if (pm_suspended_storage()) 1610 return 0; 1611 1612 page = compound_head(page); 1613 delete_from_swap_cache(page); 1614 SetPageDirty(page); 1615 return 1; 1616 } 1617 1618 /* 1619 * Free the swap entry like above, but also try to 1620 * free the page cache entry if it is the last user. 1621 */ 1622 int free_swap_and_cache(swp_entry_t entry) 1623 { 1624 struct swap_info_struct *p; 1625 struct page *page = NULL; 1626 unsigned char count; 1627 1628 if (non_swap_entry(entry)) 1629 return 1; 1630 1631 p = _swap_info_get(entry); 1632 if (p) { 1633 count = __swap_entry_free(p, entry, 1); 1634 if (count == SWAP_HAS_CACHE && 1635 !swap_page_trans_huge_swapped(p, entry)) { 1636 page = find_get_page(swap_address_space(entry), 1637 swp_offset(entry)); 1638 if (page && !trylock_page(page)) { 1639 put_page(page); 1640 page = NULL; 1641 } 1642 } else if (!count) 1643 free_swap_slot(entry); 1644 } 1645 if (page) { 1646 /* 1647 * Not mapped elsewhere, or swap space full? Free it! 1648 * Also recheck PageSwapCache now page is locked (above). 1649 */ 1650 if (PageSwapCache(page) && !PageWriteback(page) && 1651 (!page_mapped(page) || mem_cgroup_swap_full(page)) && 1652 !swap_page_trans_huge_swapped(p, entry)) { 1653 page = compound_head(page); 1654 delete_from_swap_cache(page); 1655 SetPageDirty(page); 1656 } 1657 unlock_page(page); 1658 put_page(page); 1659 } 1660 return p != NULL; 1661 } 1662 1663 #ifdef CONFIG_HIBERNATION 1664 /* 1665 * Find the swap type that corresponds to given device (if any). 1666 * 1667 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1668 * from 0, in which the swap header is expected to be located. 1669 * 1670 * This is needed for the suspend to disk (aka swsusp). 1671 */ 1672 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 1673 { 1674 struct block_device *bdev = NULL; 1675 int type; 1676 1677 if (device) 1678 bdev = bdget(device); 1679 1680 spin_lock(&swap_lock); 1681 for (type = 0; type < nr_swapfiles; type++) { 1682 struct swap_info_struct *sis = swap_info[type]; 1683 1684 if (!(sis->flags & SWP_WRITEOK)) 1685 continue; 1686 1687 if (!bdev) { 1688 if (bdev_p) 1689 *bdev_p = bdgrab(sis->bdev); 1690 1691 spin_unlock(&swap_lock); 1692 return type; 1693 } 1694 if (bdev == sis->bdev) { 1695 struct swap_extent *se = &sis->first_swap_extent; 1696 1697 if (se->start_block == offset) { 1698 if (bdev_p) 1699 *bdev_p = bdgrab(sis->bdev); 1700 1701 spin_unlock(&swap_lock); 1702 bdput(bdev); 1703 return type; 1704 } 1705 } 1706 } 1707 spin_unlock(&swap_lock); 1708 if (bdev) 1709 bdput(bdev); 1710 1711 return -ENODEV; 1712 } 1713 1714 /* 1715 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1716 * corresponding to given index in swap_info (swap type). 1717 */ 1718 sector_t swapdev_block(int type, pgoff_t offset) 1719 { 1720 struct block_device *bdev; 1721 1722 if ((unsigned int)type >= nr_swapfiles) 1723 return 0; 1724 if (!(swap_info[type]->flags & SWP_WRITEOK)) 1725 return 0; 1726 return map_swap_entry(swp_entry(type, offset), &bdev); 1727 } 1728 1729 /* 1730 * Return either the total number of swap pages of given type, or the number 1731 * of free pages of that type (depending on @free) 1732 * 1733 * This is needed for software suspend 1734 */ 1735 unsigned int count_swap_pages(int type, int free) 1736 { 1737 unsigned int n = 0; 1738 1739 spin_lock(&swap_lock); 1740 if ((unsigned int)type < nr_swapfiles) { 1741 struct swap_info_struct *sis = swap_info[type]; 1742 1743 spin_lock(&sis->lock); 1744 if (sis->flags & SWP_WRITEOK) { 1745 n = sis->pages; 1746 if (free) 1747 n -= sis->inuse_pages; 1748 } 1749 spin_unlock(&sis->lock); 1750 } 1751 spin_unlock(&swap_lock); 1752 return n; 1753 } 1754 #endif /* CONFIG_HIBERNATION */ 1755 1756 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1757 { 1758 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte); 1759 } 1760 1761 /* 1762 * No need to decide whether this PTE shares the swap entry with others, 1763 * just let do_wp_page work it out if a write is requested later - to 1764 * force COW, vm_page_prot omits write permission from any private vma. 1765 */ 1766 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1767 unsigned long addr, swp_entry_t entry, struct page *page) 1768 { 1769 struct page *swapcache; 1770 struct mem_cgroup *memcg; 1771 spinlock_t *ptl; 1772 pte_t *pte; 1773 int ret = 1; 1774 1775 swapcache = page; 1776 page = ksm_might_need_to_copy(page, vma, addr); 1777 if (unlikely(!page)) 1778 return -ENOMEM; 1779 1780 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, 1781 &memcg, false)) { 1782 ret = -ENOMEM; 1783 goto out_nolock; 1784 } 1785 1786 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1787 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1788 mem_cgroup_cancel_charge(page, memcg, false); 1789 ret = 0; 1790 goto out; 1791 } 1792 1793 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1794 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1795 get_page(page); 1796 set_pte_at(vma->vm_mm, addr, pte, 1797 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1798 if (page == swapcache) { 1799 page_add_anon_rmap(page, vma, addr, false); 1800 mem_cgroup_commit_charge(page, memcg, true, false); 1801 } else { /* ksm created a completely new copy */ 1802 page_add_new_anon_rmap(page, vma, addr, false); 1803 mem_cgroup_commit_charge(page, memcg, false, false); 1804 lru_cache_add_active_or_unevictable(page, vma); 1805 } 1806 swap_free(entry); 1807 /* 1808 * Move the page to the active list so it is not 1809 * immediately swapped out again after swapon. 1810 */ 1811 activate_page(page); 1812 out: 1813 pte_unmap_unlock(pte, ptl); 1814 out_nolock: 1815 if (page != swapcache) { 1816 unlock_page(page); 1817 put_page(page); 1818 } 1819 return ret; 1820 } 1821 1822 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1823 unsigned long addr, unsigned long end, 1824 swp_entry_t entry, struct page *page) 1825 { 1826 pte_t swp_pte = swp_entry_to_pte(entry); 1827 pte_t *pte; 1828 int ret = 0; 1829 1830 /* 1831 * We don't actually need pte lock while scanning for swp_pte: since 1832 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 1833 * page table while we're scanning; though it could get zapped, and on 1834 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 1835 * of unmatched parts which look like swp_pte, so unuse_pte must 1836 * recheck under pte lock. Scanning without pte lock lets it be 1837 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 1838 */ 1839 pte = pte_offset_map(pmd, addr); 1840 do { 1841 /* 1842 * swapoff spends a _lot_ of time in this loop! 1843 * Test inline before going to call unuse_pte. 1844 */ 1845 if (unlikely(pte_same_as_swp(*pte, swp_pte))) { 1846 pte_unmap(pte); 1847 ret = unuse_pte(vma, pmd, addr, entry, page); 1848 if (ret) 1849 goto out; 1850 pte = pte_offset_map(pmd, addr); 1851 } 1852 } while (pte++, addr += PAGE_SIZE, addr != end); 1853 pte_unmap(pte - 1); 1854 out: 1855 return ret; 1856 } 1857 1858 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1859 unsigned long addr, unsigned long end, 1860 swp_entry_t entry, struct page *page) 1861 { 1862 pmd_t *pmd; 1863 unsigned long next; 1864 int ret; 1865 1866 pmd = pmd_offset(pud, addr); 1867 do { 1868 cond_resched(); 1869 next = pmd_addr_end(addr, end); 1870 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1871 continue; 1872 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 1873 if (ret) 1874 return ret; 1875 } while (pmd++, addr = next, addr != end); 1876 return 0; 1877 } 1878 1879 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 1880 unsigned long addr, unsigned long end, 1881 swp_entry_t entry, struct page *page) 1882 { 1883 pud_t *pud; 1884 unsigned long next; 1885 int ret; 1886 1887 pud = pud_offset(p4d, addr); 1888 do { 1889 next = pud_addr_end(addr, end); 1890 if (pud_none_or_clear_bad(pud)) 1891 continue; 1892 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 1893 if (ret) 1894 return ret; 1895 } while (pud++, addr = next, addr != end); 1896 return 0; 1897 } 1898 1899 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 1900 unsigned long addr, unsigned long end, 1901 swp_entry_t entry, struct page *page) 1902 { 1903 p4d_t *p4d; 1904 unsigned long next; 1905 int ret; 1906 1907 p4d = p4d_offset(pgd, addr); 1908 do { 1909 next = p4d_addr_end(addr, end); 1910 if (p4d_none_or_clear_bad(p4d)) 1911 continue; 1912 ret = unuse_pud_range(vma, p4d, addr, next, entry, page); 1913 if (ret) 1914 return ret; 1915 } while (p4d++, addr = next, addr != end); 1916 return 0; 1917 } 1918 1919 static int unuse_vma(struct vm_area_struct *vma, 1920 swp_entry_t entry, struct page *page) 1921 { 1922 pgd_t *pgd; 1923 unsigned long addr, end, next; 1924 int ret; 1925 1926 if (page_anon_vma(page)) { 1927 addr = page_address_in_vma(page, vma); 1928 if (addr == -EFAULT) 1929 return 0; 1930 else 1931 end = addr + PAGE_SIZE; 1932 } else { 1933 addr = vma->vm_start; 1934 end = vma->vm_end; 1935 } 1936 1937 pgd = pgd_offset(vma->vm_mm, addr); 1938 do { 1939 next = pgd_addr_end(addr, end); 1940 if (pgd_none_or_clear_bad(pgd)) 1941 continue; 1942 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page); 1943 if (ret) 1944 return ret; 1945 } while (pgd++, addr = next, addr != end); 1946 return 0; 1947 } 1948 1949 static int unuse_mm(struct mm_struct *mm, 1950 swp_entry_t entry, struct page *page) 1951 { 1952 struct vm_area_struct *vma; 1953 int ret = 0; 1954 1955 if (!down_read_trylock(&mm->mmap_sem)) { 1956 /* 1957 * Activate page so shrink_inactive_list is unlikely to unmap 1958 * its ptes while lock is dropped, so swapoff can make progress. 1959 */ 1960 activate_page(page); 1961 unlock_page(page); 1962 down_read(&mm->mmap_sem); 1963 lock_page(page); 1964 } 1965 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1966 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 1967 break; 1968 cond_resched(); 1969 } 1970 up_read(&mm->mmap_sem); 1971 return (ret < 0)? ret: 0; 1972 } 1973 1974 /* 1975 * Scan swap_map (or frontswap_map if frontswap parameter is true) 1976 * from current position to next entry still in use. 1977 * Recycle to start on reaching the end, returning 0 when empty. 1978 */ 1979 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1980 unsigned int prev, bool frontswap) 1981 { 1982 unsigned int max = si->max; 1983 unsigned int i = prev; 1984 unsigned char count; 1985 1986 /* 1987 * No need for swap_lock here: we're just looking 1988 * for whether an entry is in use, not modifying it; false 1989 * hits are okay, and sys_swapoff() has already prevented new 1990 * allocations from this area (while holding swap_lock). 1991 */ 1992 for (;;) { 1993 if (++i >= max) { 1994 if (!prev) { 1995 i = 0; 1996 break; 1997 } 1998 /* 1999 * No entries in use at top of swap_map, 2000 * loop back to start and recheck there. 2001 */ 2002 max = prev + 1; 2003 prev = 0; 2004 i = 1; 2005 } 2006 count = READ_ONCE(si->swap_map[i]); 2007 if (count && swap_count(count) != SWAP_MAP_BAD) 2008 if (!frontswap || frontswap_test(si, i)) 2009 break; 2010 if ((i % LATENCY_LIMIT) == 0) 2011 cond_resched(); 2012 } 2013 return i; 2014 } 2015 2016 /* 2017 * We completely avoid races by reading each swap page in advance, 2018 * and then search for the process using it. All the necessary 2019 * page table adjustments can then be made atomically. 2020 * 2021 * if the boolean frontswap is true, only unuse pages_to_unuse pages; 2022 * pages_to_unuse==0 means all pages; ignored if frontswap is false 2023 */ 2024 int try_to_unuse(unsigned int type, bool frontswap, 2025 unsigned long pages_to_unuse) 2026 { 2027 struct swap_info_struct *si = swap_info[type]; 2028 struct mm_struct *start_mm; 2029 volatile unsigned char *swap_map; /* swap_map is accessed without 2030 * locking. Mark it as volatile 2031 * to prevent compiler doing 2032 * something odd. 2033 */ 2034 unsigned char swcount; 2035 struct page *page; 2036 swp_entry_t entry; 2037 unsigned int i = 0; 2038 int retval = 0; 2039 2040 /* 2041 * When searching mms for an entry, a good strategy is to 2042 * start at the first mm we freed the previous entry from 2043 * (though actually we don't notice whether we or coincidence 2044 * freed the entry). Initialize this start_mm with a hold. 2045 * 2046 * A simpler strategy would be to start at the last mm we 2047 * freed the previous entry from; but that would take less 2048 * advantage of mmlist ordering, which clusters forked mms 2049 * together, child after parent. If we race with dup_mmap(), we 2050 * prefer to resolve parent before child, lest we miss entries 2051 * duplicated after we scanned child: using last mm would invert 2052 * that. 2053 */ 2054 start_mm = &init_mm; 2055 mmget(&init_mm); 2056 2057 /* 2058 * Keep on scanning until all entries have gone. Usually, 2059 * one pass through swap_map is enough, but not necessarily: 2060 * there are races when an instance of an entry might be missed. 2061 */ 2062 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) { 2063 if (signal_pending(current)) { 2064 retval = -EINTR; 2065 break; 2066 } 2067 2068 /* 2069 * Get a page for the entry, using the existing swap 2070 * cache page if there is one. Otherwise, get a clean 2071 * page and read the swap into it. 2072 */ 2073 swap_map = &si->swap_map[i]; 2074 entry = swp_entry(type, i); 2075 page = read_swap_cache_async(entry, 2076 GFP_HIGHUSER_MOVABLE, NULL, 0, false); 2077 if (!page) { 2078 /* 2079 * Either swap_duplicate() failed because entry 2080 * has been freed independently, and will not be 2081 * reused since sys_swapoff() already disabled 2082 * allocation from here, or alloc_page() failed. 2083 */ 2084 swcount = *swap_map; 2085 /* 2086 * We don't hold lock here, so the swap entry could be 2087 * SWAP_MAP_BAD (when the cluster is discarding). 2088 * Instead of fail out, We can just skip the swap 2089 * entry because swapoff will wait for discarding 2090 * finish anyway. 2091 */ 2092 if (!swcount || swcount == SWAP_MAP_BAD) 2093 continue; 2094 retval = -ENOMEM; 2095 break; 2096 } 2097 2098 /* 2099 * Don't hold on to start_mm if it looks like exiting. 2100 */ 2101 if (atomic_read(&start_mm->mm_users) == 1) { 2102 mmput(start_mm); 2103 start_mm = &init_mm; 2104 mmget(&init_mm); 2105 } 2106 2107 /* 2108 * Wait for and lock page. When do_swap_page races with 2109 * try_to_unuse, do_swap_page can handle the fault much 2110 * faster than try_to_unuse can locate the entry. This 2111 * apparently redundant "wait_on_page_locked" lets try_to_unuse 2112 * defer to do_swap_page in such a case - in some tests, 2113 * do_swap_page and try_to_unuse repeatedly compete. 2114 */ 2115 wait_on_page_locked(page); 2116 wait_on_page_writeback(page); 2117 lock_page(page); 2118 wait_on_page_writeback(page); 2119 2120 /* 2121 * Remove all references to entry. 2122 */ 2123 swcount = *swap_map; 2124 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 2125 retval = shmem_unuse(entry, page); 2126 /* page has already been unlocked and released */ 2127 if (retval < 0) 2128 break; 2129 continue; 2130 } 2131 if (swap_count(swcount) && start_mm != &init_mm) 2132 retval = unuse_mm(start_mm, entry, page); 2133 2134 if (swap_count(*swap_map)) { 2135 int set_start_mm = (*swap_map >= swcount); 2136 struct list_head *p = &start_mm->mmlist; 2137 struct mm_struct *new_start_mm = start_mm; 2138 struct mm_struct *prev_mm = start_mm; 2139 struct mm_struct *mm; 2140 2141 mmget(new_start_mm); 2142 mmget(prev_mm); 2143 spin_lock(&mmlist_lock); 2144 while (swap_count(*swap_map) && !retval && 2145 (p = p->next) != &start_mm->mmlist) { 2146 mm = list_entry(p, struct mm_struct, mmlist); 2147 if (!mmget_not_zero(mm)) 2148 continue; 2149 spin_unlock(&mmlist_lock); 2150 mmput(prev_mm); 2151 prev_mm = mm; 2152 2153 cond_resched(); 2154 2155 swcount = *swap_map; 2156 if (!swap_count(swcount)) /* any usage ? */ 2157 ; 2158 else if (mm == &init_mm) 2159 set_start_mm = 1; 2160 else 2161 retval = unuse_mm(mm, entry, page); 2162 2163 if (set_start_mm && *swap_map < swcount) { 2164 mmput(new_start_mm); 2165 mmget(mm); 2166 new_start_mm = mm; 2167 set_start_mm = 0; 2168 } 2169 spin_lock(&mmlist_lock); 2170 } 2171 spin_unlock(&mmlist_lock); 2172 mmput(prev_mm); 2173 mmput(start_mm); 2174 start_mm = new_start_mm; 2175 } 2176 if (retval) { 2177 unlock_page(page); 2178 put_page(page); 2179 break; 2180 } 2181 2182 /* 2183 * If a reference remains (rare), we would like to leave 2184 * the page in the swap cache; but try_to_unmap could 2185 * then re-duplicate the entry once we drop page lock, 2186 * so we might loop indefinitely; also, that page could 2187 * not be swapped out to other storage meanwhile. So: 2188 * delete from cache even if there's another reference, 2189 * after ensuring that the data has been saved to disk - 2190 * since if the reference remains (rarer), it will be 2191 * read from disk into another page. Splitting into two 2192 * pages would be incorrect if swap supported "shared 2193 * private" pages, but they are handled by tmpfs files. 2194 * 2195 * Given how unuse_vma() targets one particular offset 2196 * in an anon_vma, once the anon_vma has been determined, 2197 * this splitting happens to be just what is needed to 2198 * handle where KSM pages have been swapped out: re-reading 2199 * is unnecessarily slow, but we can fix that later on. 2200 */ 2201 if (swap_count(*swap_map) && 2202 PageDirty(page) && PageSwapCache(page)) { 2203 struct writeback_control wbc = { 2204 .sync_mode = WB_SYNC_NONE, 2205 }; 2206 2207 swap_writepage(compound_head(page), &wbc); 2208 lock_page(page); 2209 wait_on_page_writeback(page); 2210 } 2211 2212 /* 2213 * It is conceivable that a racing task removed this page from 2214 * swap cache just before we acquired the page lock at the top, 2215 * or while we dropped it in unuse_mm(). The page might even 2216 * be back in swap cache on another swap area: that we must not 2217 * delete, since it may not have been written out to swap yet. 2218 */ 2219 if (PageSwapCache(page) && 2220 likely(page_private(page) == entry.val) && 2221 !page_swapped(page)) 2222 delete_from_swap_cache(compound_head(page)); 2223 2224 /* 2225 * So we could skip searching mms once swap count went 2226 * to 1, we did not mark any present ptes as dirty: must 2227 * mark page dirty so shrink_page_list will preserve it. 2228 */ 2229 SetPageDirty(page); 2230 unlock_page(page); 2231 put_page(page); 2232 2233 /* 2234 * Make sure that we aren't completely killing 2235 * interactive performance. 2236 */ 2237 cond_resched(); 2238 if (frontswap && pages_to_unuse > 0) { 2239 if (!--pages_to_unuse) 2240 break; 2241 } 2242 } 2243 2244 mmput(start_mm); 2245 return retval; 2246 } 2247 2248 /* 2249 * After a successful try_to_unuse, if no swap is now in use, we know 2250 * we can empty the mmlist. swap_lock must be held on entry and exit. 2251 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2252 * added to the mmlist just after page_duplicate - before would be racy. 2253 */ 2254 static void drain_mmlist(void) 2255 { 2256 struct list_head *p, *next; 2257 unsigned int type; 2258 2259 for (type = 0; type < nr_swapfiles; type++) 2260 if (swap_info[type]->inuse_pages) 2261 return; 2262 spin_lock(&mmlist_lock); 2263 list_for_each_safe(p, next, &init_mm.mmlist) 2264 list_del_init(p); 2265 spin_unlock(&mmlist_lock); 2266 } 2267 2268 /* 2269 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 2270 * corresponds to page offset for the specified swap entry. 2271 * Note that the type of this function is sector_t, but it returns page offset 2272 * into the bdev, not sector offset. 2273 */ 2274 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 2275 { 2276 struct swap_info_struct *sis; 2277 struct swap_extent *start_se; 2278 struct swap_extent *se; 2279 pgoff_t offset; 2280 2281 sis = swap_info[swp_type(entry)]; 2282 *bdev = sis->bdev; 2283 2284 offset = swp_offset(entry); 2285 start_se = sis->curr_swap_extent; 2286 se = start_se; 2287 2288 for ( ; ; ) { 2289 if (se->start_page <= offset && 2290 offset < (se->start_page + se->nr_pages)) { 2291 return se->start_block + (offset - se->start_page); 2292 } 2293 se = list_next_entry(se, list); 2294 sis->curr_swap_extent = se; 2295 BUG_ON(se == start_se); /* It *must* be present */ 2296 } 2297 } 2298 2299 /* 2300 * Returns the page offset into bdev for the specified page's swap entry. 2301 */ 2302 sector_t map_swap_page(struct page *page, struct block_device **bdev) 2303 { 2304 swp_entry_t entry; 2305 entry.val = page_private(page); 2306 return map_swap_entry(entry, bdev); 2307 } 2308 2309 /* 2310 * Free all of a swapdev's extent information 2311 */ 2312 static void destroy_swap_extents(struct swap_info_struct *sis) 2313 { 2314 while (!list_empty(&sis->first_swap_extent.list)) { 2315 struct swap_extent *se; 2316 2317 se = list_first_entry(&sis->first_swap_extent.list, 2318 struct swap_extent, list); 2319 list_del(&se->list); 2320 kfree(se); 2321 } 2322 2323 if (sis->flags & SWP_FILE) { 2324 struct file *swap_file = sis->swap_file; 2325 struct address_space *mapping = swap_file->f_mapping; 2326 2327 sis->flags &= ~SWP_FILE; 2328 mapping->a_ops->swap_deactivate(swap_file); 2329 } 2330 } 2331 2332 /* 2333 * Add a block range (and the corresponding page range) into this swapdev's 2334 * extent list. The extent list is kept sorted in page order. 2335 * 2336 * This function rather assumes that it is called in ascending page order. 2337 */ 2338 int 2339 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2340 unsigned long nr_pages, sector_t start_block) 2341 { 2342 struct swap_extent *se; 2343 struct swap_extent *new_se; 2344 struct list_head *lh; 2345 2346 if (start_page == 0) { 2347 se = &sis->first_swap_extent; 2348 sis->curr_swap_extent = se; 2349 se->start_page = 0; 2350 se->nr_pages = nr_pages; 2351 se->start_block = start_block; 2352 return 1; 2353 } else { 2354 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 2355 se = list_entry(lh, struct swap_extent, list); 2356 BUG_ON(se->start_page + se->nr_pages != start_page); 2357 if (se->start_block + se->nr_pages == start_block) { 2358 /* Merge it */ 2359 se->nr_pages += nr_pages; 2360 return 0; 2361 } 2362 } 2363 2364 /* 2365 * No merge. Insert a new extent, preserving ordering. 2366 */ 2367 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2368 if (new_se == NULL) 2369 return -ENOMEM; 2370 new_se->start_page = start_page; 2371 new_se->nr_pages = nr_pages; 2372 new_se->start_block = start_block; 2373 2374 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 2375 return 1; 2376 } 2377 2378 /* 2379 * A `swap extent' is a simple thing which maps a contiguous range of pages 2380 * onto a contiguous range of disk blocks. An ordered list of swap extents 2381 * is built at swapon time and is then used at swap_writepage/swap_readpage 2382 * time for locating where on disk a page belongs. 2383 * 2384 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2385 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2386 * swap files identically. 2387 * 2388 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2389 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2390 * swapfiles are handled *identically* after swapon time. 2391 * 2392 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2393 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 2394 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 2395 * requirements, they are simply tossed out - we will never use those blocks 2396 * for swapping. 2397 * 2398 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 2399 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 2400 * which will scribble on the fs. 2401 * 2402 * The amount of disk space which a single swap extent represents varies. 2403 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2404 * extents in the list. To avoid much list walking, we cache the previous 2405 * search location in `curr_swap_extent', and start new searches from there. 2406 * This is extremely effective. The average number of iterations in 2407 * map_swap_page() has been measured at about 0.3 per page. - akpm. 2408 */ 2409 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2410 { 2411 struct file *swap_file = sis->swap_file; 2412 struct address_space *mapping = swap_file->f_mapping; 2413 struct inode *inode = mapping->host; 2414 int ret; 2415 2416 if (S_ISBLK(inode->i_mode)) { 2417 ret = add_swap_extent(sis, 0, sis->max, 0); 2418 *span = sis->pages; 2419 return ret; 2420 } 2421 2422 if (mapping->a_ops->swap_activate) { 2423 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2424 if (!ret) { 2425 sis->flags |= SWP_FILE; 2426 ret = add_swap_extent(sis, 0, sis->max, 0); 2427 *span = sis->pages; 2428 } 2429 return ret; 2430 } 2431 2432 return generic_swapfile_activate(sis, swap_file, span); 2433 } 2434 2435 static int swap_node(struct swap_info_struct *p) 2436 { 2437 struct block_device *bdev; 2438 2439 if (p->bdev) 2440 bdev = p->bdev; 2441 else 2442 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2443 2444 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2445 } 2446 2447 static void _enable_swap_info(struct swap_info_struct *p, int prio, 2448 unsigned char *swap_map, 2449 struct swap_cluster_info *cluster_info) 2450 { 2451 int i; 2452 2453 if (prio >= 0) 2454 p->prio = prio; 2455 else 2456 p->prio = --least_priority; 2457 /* 2458 * the plist prio is negated because plist ordering is 2459 * low-to-high, while swap ordering is high-to-low 2460 */ 2461 p->list.prio = -p->prio; 2462 for_each_node(i) { 2463 if (p->prio >= 0) 2464 p->avail_lists[i].prio = -p->prio; 2465 else { 2466 if (swap_node(p) == i) 2467 p->avail_lists[i].prio = 1; 2468 else 2469 p->avail_lists[i].prio = -p->prio; 2470 } 2471 } 2472 p->swap_map = swap_map; 2473 p->cluster_info = cluster_info; 2474 p->flags |= SWP_WRITEOK; 2475 atomic_long_add(p->pages, &nr_swap_pages); 2476 total_swap_pages += p->pages; 2477 2478 assert_spin_locked(&swap_lock); 2479 /* 2480 * both lists are plists, and thus priority ordered. 2481 * swap_active_head needs to be priority ordered for swapoff(), 2482 * which on removal of any swap_info_struct with an auto-assigned 2483 * (i.e. negative) priority increments the auto-assigned priority 2484 * of any lower-priority swap_info_structs. 2485 * swap_avail_head needs to be priority ordered for get_swap_page(), 2486 * which allocates swap pages from the highest available priority 2487 * swap_info_struct. 2488 */ 2489 plist_add(&p->list, &swap_active_head); 2490 add_to_avail_list(p); 2491 } 2492 2493 static void enable_swap_info(struct swap_info_struct *p, int prio, 2494 unsigned char *swap_map, 2495 struct swap_cluster_info *cluster_info, 2496 unsigned long *frontswap_map) 2497 { 2498 frontswap_init(p->type, frontswap_map); 2499 spin_lock(&swap_lock); 2500 spin_lock(&p->lock); 2501 _enable_swap_info(p, prio, swap_map, cluster_info); 2502 spin_unlock(&p->lock); 2503 spin_unlock(&swap_lock); 2504 } 2505 2506 static void reinsert_swap_info(struct swap_info_struct *p) 2507 { 2508 spin_lock(&swap_lock); 2509 spin_lock(&p->lock); 2510 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2511 spin_unlock(&p->lock); 2512 spin_unlock(&swap_lock); 2513 } 2514 2515 bool has_usable_swap(void) 2516 { 2517 bool ret = true; 2518 2519 spin_lock(&swap_lock); 2520 if (plist_head_empty(&swap_active_head)) 2521 ret = false; 2522 spin_unlock(&swap_lock); 2523 return ret; 2524 } 2525 2526 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2527 { 2528 struct swap_info_struct *p = NULL; 2529 unsigned char *swap_map; 2530 struct swap_cluster_info *cluster_info; 2531 unsigned long *frontswap_map; 2532 struct file *swap_file, *victim; 2533 struct address_space *mapping; 2534 struct inode *inode; 2535 struct filename *pathname; 2536 int err, found = 0; 2537 unsigned int old_block_size; 2538 2539 if (!capable(CAP_SYS_ADMIN)) 2540 return -EPERM; 2541 2542 BUG_ON(!current->mm); 2543 2544 pathname = getname(specialfile); 2545 if (IS_ERR(pathname)) 2546 return PTR_ERR(pathname); 2547 2548 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2549 err = PTR_ERR(victim); 2550 if (IS_ERR(victim)) 2551 goto out; 2552 2553 mapping = victim->f_mapping; 2554 spin_lock(&swap_lock); 2555 plist_for_each_entry(p, &swap_active_head, list) { 2556 if (p->flags & SWP_WRITEOK) { 2557 if (p->swap_file->f_mapping == mapping) { 2558 found = 1; 2559 break; 2560 } 2561 } 2562 } 2563 if (!found) { 2564 err = -EINVAL; 2565 spin_unlock(&swap_lock); 2566 goto out_dput; 2567 } 2568 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2569 vm_unacct_memory(p->pages); 2570 else { 2571 err = -ENOMEM; 2572 spin_unlock(&swap_lock); 2573 goto out_dput; 2574 } 2575 del_from_avail_list(p); 2576 spin_lock(&p->lock); 2577 if (p->prio < 0) { 2578 struct swap_info_struct *si = p; 2579 int nid; 2580 2581 plist_for_each_entry_continue(si, &swap_active_head, list) { 2582 si->prio++; 2583 si->list.prio--; 2584 for_each_node(nid) { 2585 if (si->avail_lists[nid].prio != 1) 2586 si->avail_lists[nid].prio--; 2587 } 2588 } 2589 least_priority++; 2590 } 2591 plist_del(&p->list, &swap_active_head); 2592 atomic_long_sub(p->pages, &nr_swap_pages); 2593 total_swap_pages -= p->pages; 2594 p->flags &= ~SWP_WRITEOK; 2595 spin_unlock(&p->lock); 2596 spin_unlock(&swap_lock); 2597 2598 disable_swap_slots_cache_lock(); 2599 2600 set_current_oom_origin(); 2601 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ 2602 clear_current_oom_origin(); 2603 2604 if (err) { 2605 /* re-insert swap space back into swap_list */ 2606 reinsert_swap_info(p); 2607 reenable_swap_slots_cache_unlock(); 2608 goto out_dput; 2609 } 2610 2611 reenable_swap_slots_cache_unlock(); 2612 2613 flush_work(&p->discard_work); 2614 2615 destroy_swap_extents(p); 2616 if (p->flags & SWP_CONTINUED) 2617 free_swap_count_continuations(p); 2618 2619 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev))) 2620 atomic_dec(&nr_rotate_swap); 2621 2622 mutex_lock(&swapon_mutex); 2623 spin_lock(&swap_lock); 2624 spin_lock(&p->lock); 2625 drain_mmlist(); 2626 2627 /* wait for anyone still in scan_swap_map */ 2628 p->highest_bit = 0; /* cuts scans short */ 2629 while (p->flags >= SWP_SCANNING) { 2630 spin_unlock(&p->lock); 2631 spin_unlock(&swap_lock); 2632 schedule_timeout_uninterruptible(1); 2633 spin_lock(&swap_lock); 2634 spin_lock(&p->lock); 2635 } 2636 2637 swap_file = p->swap_file; 2638 old_block_size = p->old_block_size; 2639 p->swap_file = NULL; 2640 p->max = 0; 2641 swap_map = p->swap_map; 2642 p->swap_map = NULL; 2643 cluster_info = p->cluster_info; 2644 p->cluster_info = NULL; 2645 frontswap_map = frontswap_map_get(p); 2646 spin_unlock(&p->lock); 2647 spin_unlock(&swap_lock); 2648 frontswap_invalidate_area(p->type); 2649 frontswap_map_set(p, NULL); 2650 mutex_unlock(&swapon_mutex); 2651 free_percpu(p->percpu_cluster); 2652 p->percpu_cluster = NULL; 2653 vfree(swap_map); 2654 kvfree(cluster_info); 2655 kvfree(frontswap_map); 2656 /* Destroy swap account information */ 2657 swap_cgroup_swapoff(p->type); 2658 exit_swap_address_space(p->type); 2659 2660 inode = mapping->host; 2661 if (S_ISBLK(inode->i_mode)) { 2662 struct block_device *bdev = I_BDEV(inode); 2663 set_blocksize(bdev, old_block_size); 2664 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2665 } else { 2666 inode_lock(inode); 2667 inode->i_flags &= ~S_SWAPFILE; 2668 inode_unlock(inode); 2669 } 2670 filp_close(swap_file, NULL); 2671 2672 /* 2673 * Clear the SWP_USED flag after all resources are freed so that swapon 2674 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2675 * not hold p->lock after we cleared its SWP_WRITEOK. 2676 */ 2677 spin_lock(&swap_lock); 2678 p->flags = 0; 2679 spin_unlock(&swap_lock); 2680 2681 err = 0; 2682 atomic_inc(&proc_poll_event); 2683 wake_up_interruptible(&proc_poll_wait); 2684 2685 out_dput: 2686 filp_close(victim, NULL); 2687 out: 2688 putname(pathname); 2689 return err; 2690 } 2691 2692 #ifdef CONFIG_PROC_FS 2693 static unsigned swaps_poll(struct file *file, poll_table *wait) 2694 { 2695 struct seq_file *seq = file->private_data; 2696 2697 poll_wait(file, &proc_poll_wait, wait); 2698 2699 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2700 seq->poll_event = atomic_read(&proc_poll_event); 2701 return POLLIN | POLLRDNORM | POLLERR | POLLPRI; 2702 } 2703 2704 return POLLIN | POLLRDNORM; 2705 } 2706 2707 /* iterator */ 2708 static void *swap_start(struct seq_file *swap, loff_t *pos) 2709 { 2710 struct swap_info_struct *si; 2711 int type; 2712 loff_t l = *pos; 2713 2714 mutex_lock(&swapon_mutex); 2715 2716 if (!l) 2717 return SEQ_START_TOKEN; 2718 2719 for (type = 0; type < nr_swapfiles; type++) { 2720 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2721 si = swap_info[type]; 2722 if (!(si->flags & SWP_USED) || !si->swap_map) 2723 continue; 2724 if (!--l) 2725 return si; 2726 } 2727 2728 return NULL; 2729 } 2730 2731 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2732 { 2733 struct swap_info_struct *si = v; 2734 int type; 2735 2736 if (v == SEQ_START_TOKEN) 2737 type = 0; 2738 else 2739 type = si->type + 1; 2740 2741 for (; type < nr_swapfiles; type++) { 2742 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2743 si = swap_info[type]; 2744 if (!(si->flags & SWP_USED) || !si->swap_map) 2745 continue; 2746 ++*pos; 2747 return si; 2748 } 2749 2750 return NULL; 2751 } 2752 2753 static void swap_stop(struct seq_file *swap, void *v) 2754 { 2755 mutex_unlock(&swapon_mutex); 2756 } 2757 2758 static int swap_show(struct seq_file *swap, void *v) 2759 { 2760 struct swap_info_struct *si = v; 2761 struct file *file; 2762 int len; 2763 2764 if (si == SEQ_START_TOKEN) { 2765 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 2766 return 0; 2767 } 2768 2769 file = si->swap_file; 2770 len = seq_file_path(swap, file, " \t\n\\"); 2771 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 2772 len < 40 ? 40 - len : 1, " ", 2773 S_ISBLK(file_inode(file)->i_mode) ? 2774 "partition" : "file\t", 2775 si->pages << (PAGE_SHIFT - 10), 2776 si->inuse_pages << (PAGE_SHIFT - 10), 2777 si->prio); 2778 return 0; 2779 } 2780 2781 static const struct seq_operations swaps_op = { 2782 .start = swap_start, 2783 .next = swap_next, 2784 .stop = swap_stop, 2785 .show = swap_show 2786 }; 2787 2788 static int swaps_open(struct inode *inode, struct file *file) 2789 { 2790 struct seq_file *seq; 2791 int ret; 2792 2793 ret = seq_open(file, &swaps_op); 2794 if (ret) 2795 return ret; 2796 2797 seq = file->private_data; 2798 seq->poll_event = atomic_read(&proc_poll_event); 2799 return 0; 2800 } 2801 2802 static const struct file_operations proc_swaps_operations = { 2803 .open = swaps_open, 2804 .read = seq_read, 2805 .llseek = seq_lseek, 2806 .release = seq_release, 2807 .poll = swaps_poll, 2808 }; 2809 2810 static int __init procswaps_init(void) 2811 { 2812 proc_create("swaps", 0, NULL, &proc_swaps_operations); 2813 return 0; 2814 } 2815 __initcall(procswaps_init); 2816 #endif /* CONFIG_PROC_FS */ 2817 2818 #ifdef MAX_SWAPFILES_CHECK 2819 static int __init max_swapfiles_check(void) 2820 { 2821 MAX_SWAPFILES_CHECK(); 2822 return 0; 2823 } 2824 late_initcall(max_swapfiles_check); 2825 #endif 2826 2827 static struct swap_info_struct *alloc_swap_info(void) 2828 { 2829 struct swap_info_struct *p; 2830 unsigned int type; 2831 int i; 2832 2833 p = kzalloc(sizeof(*p), GFP_KERNEL); 2834 if (!p) 2835 return ERR_PTR(-ENOMEM); 2836 2837 spin_lock(&swap_lock); 2838 for (type = 0; type < nr_swapfiles; type++) { 2839 if (!(swap_info[type]->flags & SWP_USED)) 2840 break; 2841 } 2842 if (type >= MAX_SWAPFILES) { 2843 spin_unlock(&swap_lock); 2844 kfree(p); 2845 return ERR_PTR(-EPERM); 2846 } 2847 if (type >= nr_swapfiles) { 2848 p->type = type; 2849 swap_info[type] = p; 2850 /* 2851 * Write swap_info[type] before nr_swapfiles, in case a 2852 * racing procfs swap_start() or swap_next() is reading them. 2853 * (We never shrink nr_swapfiles, we never free this entry.) 2854 */ 2855 smp_wmb(); 2856 nr_swapfiles++; 2857 } else { 2858 kfree(p); 2859 p = swap_info[type]; 2860 /* 2861 * Do not memset this entry: a racing procfs swap_next() 2862 * would be relying on p->type to remain valid. 2863 */ 2864 } 2865 INIT_LIST_HEAD(&p->first_swap_extent.list); 2866 plist_node_init(&p->list, 0); 2867 for_each_node(i) 2868 plist_node_init(&p->avail_lists[i], 0); 2869 p->flags = SWP_USED; 2870 spin_unlock(&swap_lock); 2871 spin_lock_init(&p->lock); 2872 2873 return p; 2874 } 2875 2876 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2877 { 2878 int error; 2879 2880 if (S_ISBLK(inode->i_mode)) { 2881 p->bdev = bdgrab(I_BDEV(inode)); 2882 error = blkdev_get(p->bdev, 2883 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2884 if (error < 0) { 2885 p->bdev = NULL; 2886 return error; 2887 } 2888 p->old_block_size = block_size(p->bdev); 2889 error = set_blocksize(p->bdev, PAGE_SIZE); 2890 if (error < 0) 2891 return error; 2892 p->flags |= SWP_BLKDEV; 2893 } else if (S_ISREG(inode->i_mode)) { 2894 p->bdev = inode->i_sb->s_bdev; 2895 inode_lock(inode); 2896 if (IS_SWAPFILE(inode)) 2897 return -EBUSY; 2898 } else 2899 return -EINVAL; 2900 2901 return 0; 2902 } 2903 2904 static unsigned long read_swap_header(struct swap_info_struct *p, 2905 union swap_header *swap_header, 2906 struct inode *inode) 2907 { 2908 int i; 2909 unsigned long maxpages; 2910 unsigned long swapfilepages; 2911 unsigned long last_page; 2912 2913 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2914 pr_err("Unable to find swap-space signature\n"); 2915 return 0; 2916 } 2917 2918 /* swap partition endianess hack... */ 2919 if (swab32(swap_header->info.version) == 1) { 2920 swab32s(&swap_header->info.version); 2921 swab32s(&swap_header->info.last_page); 2922 swab32s(&swap_header->info.nr_badpages); 2923 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2924 return 0; 2925 for (i = 0; i < swap_header->info.nr_badpages; i++) 2926 swab32s(&swap_header->info.badpages[i]); 2927 } 2928 /* Check the swap header's sub-version */ 2929 if (swap_header->info.version != 1) { 2930 pr_warn("Unable to handle swap header version %d\n", 2931 swap_header->info.version); 2932 return 0; 2933 } 2934 2935 p->lowest_bit = 1; 2936 p->cluster_next = 1; 2937 p->cluster_nr = 0; 2938 2939 /* 2940 * Find out how many pages are allowed for a single swap 2941 * device. There are two limiting factors: 1) the number 2942 * of bits for the swap offset in the swp_entry_t type, and 2943 * 2) the number of bits in the swap pte as defined by the 2944 * different architectures. In order to find the 2945 * largest possible bit mask, a swap entry with swap type 0 2946 * and swap offset ~0UL is created, encoded to a swap pte, 2947 * decoded to a swp_entry_t again, and finally the swap 2948 * offset is extracted. This will mask all the bits from 2949 * the initial ~0UL mask that can't be encoded in either 2950 * the swp_entry_t or the architecture definition of a 2951 * swap pte. 2952 */ 2953 maxpages = swp_offset(pte_to_swp_entry( 2954 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2955 last_page = swap_header->info.last_page; 2956 if (last_page > maxpages) { 2957 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2958 maxpages << (PAGE_SHIFT - 10), 2959 last_page << (PAGE_SHIFT - 10)); 2960 } 2961 if (maxpages > last_page) { 2962 maxpages = last_page + 1; 2963 /* p->max is an unsigned int: don't overflow it */ 2964 if ((unsigned int)maxpages == 0) 2965 maxpages = UINT_MAX; 2966 } 2967 p->highest_bit = maxpages - 1; 2968 2969 if (!maxpages) 2970 return 0; 2971 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2972 if (swapfilepages && maxpages > swapfilepages) { 2973 pr_warn("Swap area shorter than signature indicates\n"); 2974 return 0; 2975 } 2976 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2977 return 0; 2978 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2979 return 0; 2980 2981 return maxpages; 2982 } 2983 2984 #define SWAP_CLUSTER_INFO_COLS \ 2985 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 2986 #define SWAP_CLUSTER_SPACE_COLS \ 2987 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 2988 #define SWAP_CLUSTER_COLS \ 2989 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 2990 2991 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2992 union swap_header *swap_header, 2993 unsigned char *swap_map, 2994 struct swap_cluster_info *cluster_info, 2995 unsigned long maxpages, 2996 sector_t *span) 2997 { 2998 unsigned int j, k; 2999 unsigned int nr_good_pages; 3000 int nr_extents; 3001 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3002 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 3003 unsigned long i, idx; 3004 3005 nr_good_pages = maxpages - 1; /* omit header page */ 3006 3007 cluster_list_init(&p->free_clusters); 3008 cluster_list_init(&p->discard_clusters); 3009 3010 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3011 unsigned int page_nr = swap_header->info.badpages[i]; 3012 if (page_nr == 0 || page_nr > swap_header->info.last_page) 3013 return -EINVAL; 3014 if (page_nr < maxpages) { 3015 swap_map[page_nr] = SWAP_MAP_BAD; 3016 nr_good_pages--; 3017 /* 3018 * Haven't marked the cluster free yet, no list 3019 * operation involved 3020 */ 3021 inc_cluster_info_page(p, cluster_info, page_nr); 3022 } 3023 } 3024 3025 /* Haven't marked the cluster free yet, no list operation involved */ 3026 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 3027 inc_cluster_info_page(p, cluster_info, i); 3028 3029 if (nr_good_pages) { 3030 swap_map[0] = SWAP_MAP_BAD; 3031 /* 3032 * Not mark the cluster free yet, no list 3033 * operation involved 3034 */ 3035 inc_cluster_info_page(p, cluster_info, 0); 3036 p->max = maxpages; 3037 p->pages = nr_good_pages; 3038 nr_extents = setup_swap_extents(p, span); 3039 if (nr_extents < 0) 3040 return nr_extents; 3041 nr_good_pages = p->pages; 3042 } 3043 if (!nr_good_pages) { 3044 pr_warn("Empty swap-file\n"); 3045 return -EINVAL; 3046 } 3047 3048 if (!cluster_info) 3049 return nr_extents; 3050 3051 3052 /* 3053 * Reduce false cache line sharing between cluster_info and 3054 * sharing same address space. 3055 */ 3056 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 3057 j = (k + col) % SWAP_CLUSTER_COLS; 3058 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 3059 idx = i * SWAP_CLUSTER_COLS + j; 3060 if (idx >= nr_clusters) 3061 continue; 3062 if (cluster_count(&cluster_info[idx])) 3063 continue; 3064 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 3065 cluster_list_add_tail(&p->free_clusters, cluster_info, 3066 idx); 3067 } 3068 } 3069 return nr_extents; 3070 } 3071 3072 /* 3073 * Helper to sys_swapon determining if a given swap 3074 * backing device queue supports DISCARD operations. 3075 */ 3076 static bool swap_discardable(struct swap_info_struct *si) 3077 { 3078 struct request_queue *q = bdev_get_queue(si->bdev); 3079 3080 if (!q || !blk_queue_discard(q)) 3081 return false; 3082 3083 return true; 3084 } 3085 3086 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 3087 { 3088 struct swap_info_struct *p; 3089 struct filename *name; 3090 struct file *swap_file = NULL; 3091 struct address_space *mapping; 3092 int prio; 3093 int error; 3094 union swap_header *swap_header; 3095 int nr_extents; 3096 sector_t span; 3097 unsigned long maxpages; 3098 unsigned char *swap_map = NULL; 3099 struct swap_cluster_info *cluster_info = NULL; 3100 unsigned long *frontswap_map = NULL; 3101 struct page *page = NULL; 3102 struct inode *inode = NULL; 3103 3104 if (swap_flags & ~SWAP_FLAGS_VALID) 3105 return -EINVAL; 3106 3107 if (!capable(CAP_SYS_ADMIN)) 3108 return -EPERM; 3109 3110 if (!swap_avail_heads) 3111 return -ENOMEM; 3112 3113 p = alloc_swap_info(); 3114 if (IS_ERR(p)) 3115 return PTR_ERR(p); 3116 3117 INIT_WORK(&p->discard_work, swap_discard_work); 3118 3119 name = getname(specialfile); 3120 if (IS_ERR(name)) { 3121 error = PTR_ERR(name); 3122 name = NULL; 3123 goto bad_swap; 3124 } 3125 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3126 if (IS_ERR(swap_file)) { 3127 error = PTR_ERR(swap_file); 3128 swap_file = NULL; 3129 goto bad_swap; 3130 } 3131 3132 p->swap_file = swap_file; 3133 mapping = swap_file->f_mapping; 3134 inode = mapping->host; 3135 3136 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */ 3137 error = claim_swapfile(p, inode); 3138 if (unlikely(error)) 3139 goto bad_swap; 3140 3141 /* 3142 * Read the swap header. 3143 */ 3144 if (!mapping->a_ops->readpage) { 3145 error = -EINVAL; 3146 goto bad_swap; 3147 } 3148 page = read_mapping_page(mapping, 0, swap_file); 3149 if (IS_ERR(page)) { 3150 error = PTR_ERR(page); 3151 goto bad_swap; 3152 } 3153 swap_header = kmap(page); 3154 3155 maxpages = read_swap_header(p, swap_header, inode); 3156 if (unlikely(!maxpages)) { 3157 error = -EINVAL; 3158 goto bad_swap; 3159 } 3160 3161 /* OK, set up the swap map and apply the bad block list */ 3162 swap_map = vzalloc(maxpages); 3163 if (!swap_map) { 3164 error = -ENOMEM; 3165 goto bad_swap; 3166 } 3167 3168 if (bdi_cap_stable_pages_required(inode_to_bdi(inode))) 3169 p->flags |= SWP_STABLE_WRITES; 3170 3171 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 3172 int cpu; 3173 unsigned long ci, nr_cluster; 3174 3175 p->flags |= SWP_SOLIDSTATE; 3176 /* 3177 * select a random position to start with to help wear leveling 3178 * SSD 3179 */ 3180 p->cluster_next = 1 + (prandom_u32() % p->highest_bit); 3181 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3182 3183 cluster_info = kvzalloc(nr_cluster * sizeof(*cluster_info), 3184 GFP_KERNEL); 3185 if (!cluster_info) { 3186 error = -ENOMEM; 3187 goto bad_swap; 3188 } 3189 3190 for (ci = 0; ci < nr_cluster; ci++) 3191 spin_lock_init(&((cluster_info + ci)->lock)); 3192 3193 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3194 if (!p->percpu_cluster) { 3195 error = -ENOMEM; 3196 goto bad_swap; 3197 } 3198 for_each_possible_cpu(cpu) { 3199 struct percpu_cluster *cluster; 3200 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3201 cluster_set_null(&cluster->index); 3202 } 3203 } else 3204 atomic_inc(&nr_rotate_swap); 3205 3206 error = swap_cgroup_swapon(p->type, maxpages); 3207 if (error) 3208 goto bad_swap; 3209 3210 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3211 cluster_info, maxpages, &span); 3212 if (unlikely(nr_extents < 0)) { 3213 error = nr_extents; 3214 goto bad_swap; 3215 } 3216 /* frontswap enabled? set up bit-per-page map for frontswap */ 3217 if (IS_ENABLED(CONFIG_FRONTSWAP)) 3218 frontswap_map = kvzalloc(BITS_TO_LONGS(maxpages) * sizeof(long), 3219 GFP_KERNEL); 3220 3221 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 3222 /* 3223 * When discard is enabled for swap with no particular 3224 * policy flagged, we set all swap discard flags here in 3225 * order to sustain backward compatibility with older 3226 * swapon(8) releases. 3227 */ 3228 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3229 SWP_PAGE_DISCARD); 3230 3231 /* 3232 * By flagging sys_swapon, a sysadmin can tell us to 3233 * either do single-time area discards only, or to just 3234 * perform discards for released swap page-clusters. 3235 * Now it's time to adjust the p->flags accordingly. 3236 */ 3237 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3238 p->flags &= ~SWP_PAGE_DISCARD; 3239 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3240 p->flags &= ~SWP_AREA_DISCARD; 3241 3242 /* issue a swapon-time discard if it's still required */ 3243 if (p->flags & SWP_AREA_DISCARD) { 3244 int err = discard_swap(p); 3245 if (unlikely(err)) 3246 pr_err("swapon: discard_swap(%p): %d\n", 3247 p, err); 3248 } 3249 } 3250 3251 error = init_swap_address_space(p->type, maxpages); 3252 if (error) 3253 goto bad_swap; 3254 3255 mutex_lock(&swapon_mutex); 3256 prio = -1; 3257 if (swap_flags & SWAP_FLAG_PREFER) 3258 prio = 3259 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3260 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 3261 3262 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 3263 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 3264 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 3265 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3266 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3267 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3268 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 3269 (frontswap_map) ? "FS" : ""); 3270 3271 mutex_unlock(&swapon_mutex); 3272 atomic_inc(&proc_poll_event); 3273 wake_up_interruptible(&proc_poll_wait); 3274 3275 if (S_ISREG(inode->i_mode)) 3276 inode->i_flags |= S_SWAPFILE; 3277 error = 0; 3278 goto out; 3279 bad_swap: 3280 free_percpu(p->percpu_cluster); 3281 p->percpu_cluster = NULL; 3282 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 3283 set_blocksize(p->bdev, p->old_block_size); 3284 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 3285 } 3286 destroy_swap_extents(p); 3287 swap_cgroup_swapoff(p->type); 3288 spin_lock(&swap_lock); 3289 p->swap_file = NULL; 3290 p->flags = 0; 3291 spin_unlock(&swap_lock); 3292 vfree(swap_map); 3293 kvfree(cluster_info); 3294 kvfree(frontswap_map); 3295 if (swap_file) { 3296 if (inode && S_ISREG(inode->i_mode)) { 3297 inode_unlock(inode); 3298 inode = NULL; 3299 } 3300 filp_close(swap_file, NULL); 3301 } 3302 out: 3303 if (page && !IS_ERR(page)) { 3304 kunmap(page); 3305 put_page(page); 3306 } 3307 if (name) 3308 putname(name); 3309 if (inode && S_ISREG(inode->i_mode)) 3310 inode_unlock(inode); 3311 if (!error) 3312 enable_swap_slots_cache(); 3313 return error; 3314 } 3315 3316 void si_swapinfo(struct sysinfo *val) 3317 { 3318 unsigned int type; 3319 unsigned long nr_to_be_unused = 0; 3320 3321 spin_lock(&swap_lock); 3322 for (type = 0; type < nr_swapfiles; type++) { 3323 struct swap_info_struct *si = swap_info[type]; 3324 3325 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3326 nr_to_be_unused += si->inuse_pages; 3327 } 3328 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3329 val->totalswap = total_swap_pages + nr_to_be_unused; 3330 spin_unlock(&swap_lock); 3331 } 3332 3333 /* 3334 * Verify that a swap entry is valid and increment its swap map count. 3335 * 3336 * Returns error code in following case. 3337 * - success -> 0 3338 * - swp_entry is invalid -> EINVAL 3339 * - swp_entry is migration entry -> EINVAL 3340 * - swap-cache reference is requested but there is already one. -> EEXIST 3341 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3342 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3343 */ 3344 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3345 { 3346 struct swap_info_struct *p; 3347 struct swap_cluster_info *ci; 3348 unsigned long offset, type; 3349 unsigned char count; 3350 unsigned char has_cache; 3351 int err = -EINVAL; 3352 3353 if (non_swap_entry(entry)) 3354 goto out; 3355 3356 type = swp_type(entry); 3357 if (type >= nr_swapfiles) 3358 goto bad_file; 3359 p = swap_info[type]; 3360 offset = swp_offset(entry); 3361 if (unlikely(offset >= p->max)) 3362 goto out; 3363 3364 ci = lock_cluster_or_swap_info(p, offset); 3365 3366 count = p->swap_map[offset]; 3367 3368 /* 3369 * swapin_readahead() doesn't check if a swap entry is valid, so the 3370 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3371 */ 3372 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3373 err = -ENOENT; 3374 goto unlock_out; 3375 } 3376 3377 has_cache = count & SWAP_HAS_CACHE; 3378 count &= ~SWAP_HAS_CACHE; 3379 err = 0; 3380 3381 if (usage == SWAP_HAS_CACHE) { 3382 3383 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3384 if (!has_cache && count) 3385 has_cache = SWAP_HAS_CACHE; 3386 else if (has_cache) /* someone else added cache */ 3387 err = -EEXIST; 3388 else /* no users remaining */ 3389 err = -ENOENT; 3390 3391 } else if (count || has_cache) { 3392 3393 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3394 count += usage; 3395 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3396 err = -EINVAL; 3397 else if (swap_count_continued(p, offset, count)) 3398 count = COUNT_CONTINUED; 3399 else 3400 err = -ENOMEM; 3401 } else 3402 err = -ENOENT; /* unused swap entry */ 3403 3404 p->swap_map[offset] = count | has_cache; 3405 3406 unlock_out: 3407 unlock_cluster_or_swap_info(p, ci); 3408 out: 3409 return err; 3410 3411 bad_file: 3412 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val); 3413 goto out; 3414 } 3415 3416 /* 3417 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3418 * (in which case its reference count is never incremented). 3419 */ 3420 void swap_shmem_alloc(swp_entry_t entry) 3421 { 3422 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3423 } 3424 3425 /* 3426 * Increase reference count of swap entry by 1. 3427 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3428 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3429 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3430 * might occur if a page table entry has got corrupted. 3431 */ 3432 int swap_duplicate(swp_entry_t entry) 3433 { 3434 int err = 0; 3435 3436 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3437 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3438 return err; 3439 } 3440 3441 /* 3442 * @entry: swap entry for which we allocate swap cache. 3443 * 3444 * Called when allocating swap cache for existing swap entry, 3445 * This can return error codes. Returns 0 at success. 3446 * -EBUSY means there is a swap cache. 3447 * Note: return code is different from swap_duplicate(). 3448 */ 3449 int swapcache_prepare(swp_entry_t entry) 3450 { 3451 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3452 } 3453 3454 struct swap_info_struct *page_swap_info(struct page *page) 3455 { 3456 swp_entry_t swap = { .val = page_private(page) }; 3457 return swap_info[swp_type(swap)]; 3458 } 3459 3460 /* 3461 * out-of-line __page_file_ methods to avoid include hell. 3462 */ 3463 struct address_space *__page_file_mapping(struct page *page) 3464 { 3465 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 3466 return page_swap_info(page)->swap_file->f_mapping; 3467 } 3468 EXPORT_SYMBOL_GPL(__page_file_mapping); 3469 3470 pgoff_t __page_file_index(struct page *page) 3471 { 3472 swp_entry_t swap = { .val = page_private(page) }; 3473 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 3474 return swp_offset(swap); 3475 } 3476 EXPORT_SYMBOL_GPL(__page_file_index); 3477 3478 /* 3479 * add_swap_count_continuation - called when a swap count is duplicated 3480 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3481 * page of the original vmalloc'ed swap_map, to hold the continuation count 3482 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3483 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3484 * 3485 * These continuation pages are seldom referenced: the common paths all work 3486 * on the original swap_map, only referring to a continuation page when the 3487 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3488 * 3489 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3490 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3491 * can be called after dropping locks. 3492 */ 3493 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3494 { 3495 struct swap_info_struct *si; 3496 struct swap_cluster_info *ci; 3497 struct page *head; 3498 struct page *page; 3499 struct page *list_page; 3500 pgoff_t offset; 3501 unsigned char count; 3502 3503 /* 3504 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3505 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3506 */ 3507 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3508 3509 si = swap_info_get(entry); 3510 if (!si) { 3511 /* 3512 * An acceptable race has occurred since the failing 3513 * __swap_duplicate(): the swap entry has been freed, 3514 * perhaps even the whole swap_map cleared for swapoff. 3515 */ 3516 goto outer; 3517 } 3518 3519 offset = swp_offset(entry); 3520 3521 ci = lock_cluster(si, offset); 3522 3523 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 3524 3525 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3526 /* 3527 * The higher the swap count, the more likely it is that tasks 3528 * will race to add swap count continuation: we need to avoid 3529 * over-provisioning. 3530 */ 3531 goto out; 3532 } 3533 3534 if (!page) { 3535 unlock_cluster(ci); 3536 spin_unlock(&si->lock); 3537 return -ENOMEM; 3538 } 3539 3540 /* 3541 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 3542 * no architecture is using highmem pages for kernel page tables: so it 3543 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 3544 */ 3545 head = vmalloc_to_page(si->swap_map + offset); 3546 offset &= ~PAGE_MASK; 3547 3548 /* 3549 * Page allocation does not initialize the page's lru field, 3550 * but it does always reset its private field. 3551 */ 3552 if (!page_private(head)) { 3553 BUG_ON(count & COUNT_CONTINUED); 3554 INIT_LIST_HEAD(&head->lru); 3555 set_page_private(head, SWP_CONTINUED); 3556 si->flags |= SWP_CONTINUED; 3557 } 3558 3559 list_for_each_entry(list_page, &head->lru, lru) { 3560 unsigned char *map; 3561 3562 /* 3563 * If the previous map said no continuation, but we've found 3564 * a continuation page, free our allocation and use this one. 3565 */ 3566 if (!(count & COUNT_CONTINUED)) 3567 goto out; 3568 3569 map = kmap_atomic(list_page) + offset; 3570 count = *map; 3571 kunmap_atomic(map); 3572 3573 /* 3574 * If this continuation count now has some space in it, 3575 * free our allocation and use this one. 3576 */ 3577 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3578 goto out; 3579 } 3580 3581 list_add_tail(&page->lru, &head->lru); 3582 page = NULL; /* now it's attached, don't free it */ 3583 out: 3584 unlock_cluster(ci); 3585 spin_unlock(&si->lock); 3586 outer: 3587 if (page) 3588 __free_page(page); 3589 return 0; 3590 } 3591 3592 /* 3593 * swap_count_continued - when the original swap_map count is incremented 3594 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3595 * into, carry if so, or else fail until a new continuation page is allocated; 3596 * when the original swap_map count is decremented from 0 with continuation, 3597 * borrow from the continuation and report whether it still holds more. 3598 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3599 * lock. 3600 */ 3601 static bool swap_count_continued(struct swap_info_struct *si, 3602 pgoff_t offset, unsigned char count) 3603 { 3604 struct page *head; 3605 struct page *page; 3606 unsigned char *map; 3607 3608 head = vmalloc_to_page(si->swap_map + offset); 3609 if (page_private(head) != SWP_CONTINUED) { 3610 BUG_ON(count & COUNT_CONTINUED); 3611 return false; /* need to add count continuation */ 3612 } 3613 3614 offset &= ~PAGE_MASK; 3615 page = list_entry(head->lru.next, struct page, lru); 3616 map = kmap_atomic(page) + offset; 3617 3618 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3619 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3620 3621 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3622 /* 3623 * Think of how you add 1 to 999 3624 */ 3625 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3626 kunmap_atomic(map); 3627 page = list_entry(page->lru.next, struct page, lru); 3628 BUG_ON(page == head); 3629 map = kmap_atomic(page) + offset; 3630 } 3631 if (*map == SWAP_CONT_MAX) { 3632 kunmap_atomic(map); 3633 page = list_entry(page->lru.next, struct page, lru); 3634 if (page == head) 3635 return false; /* add count continuation */ 3636 map = kmap_atomic(page) + offset; 3637 init_map: *map = 0; /* we didn't zero the page */ 3638 } 3639 *map += 1; 3640 kunmap_atomic(map); 3641 page = list_entry(page->lru.prev, struct page, lru); 3642 while (page != head) { 3643 map = kmap_atomic(page) + offset; 3644 *map = COUNT_CONTINUED; 3645 kunmap_atomic(map); 3646 page = list_entry(page->lru.prev, struct page, lru); 3647 } 3648 return true; /* incremented */ 3649 3650 } else { /* decrementing */ 3651 /* 3652 * Think of how you subtract 1 from 1000 3653 */ 3654 BUG_ON(count != COUNT_CONTINUED); 3655 while (*map == COUNT_CONTINUED) { 3656 kunmap_atomic(map); 3657 page = list_entry(page->lru.next, struct page, lru); 3658 BUG_ON(page == head); 3659 map = kmap_atomic(page) + offset; 3660 } 3661 BUG_ON(*map == 0); 3662 *map -= 1; 3663 if (*map == 0) 3664 count = 0; 3665 kunmap_atomic(map); 3666 page = list_entry(page->lru.prev, struct page, lru); 3667 while (page != head) { 3668 map = kmap_atomic(page) + offset; 3669 *map = SWAP_CONT_MAX | count; 3670 count = COUNT_CONTINUED; 3671 kunmap_atomic(map); 3672 page = list_entry(page->lru.prev, struct page, lru); 3673 } 3674 return count == COUNT_CONTINUED; 3675 } 3676 } 3677 3678 /* 3679 * free_swap_count_continuations - swapoff free all the continuation pages 3680 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3681 */ 3682 static void free_swap_count_continuations(struct swap_info_struct *si) 3683 { 3684 pgoff_t offset; 3685 3686 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3687 struct page *head; 3688 head = vmalloc_to_page(si->swap_map + offset); 3689 if (page_private(head)) { 3690 struct page *page, *next; 3691 3692 list_for_each_entry_safe(page, next, &head->lru, lru) { 3693 list_del(&page->lru); 3694 __free_page(page); 3695 } 3696 } 3697 } 3698 } 3699 3700 static int __init swapfile_init(void) 3701 { 3702 int nid; 3703 3704 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3705 GFP_KERNEL); 3706 if (!swap_avail_heads) { 3707 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3708 return -ENOMEM; 3709 } 3710 3711 for_each_node(nid) 3712 plist_head_init(&swap_avail_heads[nid]); 3713 3714 return 0; 3715 } 3716 subsys_initcall(swapfile_init); 3717