xref: /openbmc/linux/mm/swapfile.c (revision 1fa0a7dc)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46 
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 				 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51 
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64 
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69 
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75 
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90 
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92 
93 static DEFINE_MUTEX(swapon_mutex);
94 
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98 
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100 
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103 	if (type >= READ_ONCE(nr_swapfiles))
104 		return NULL;
105 
106 	smp_rmb();	/* Pairs with smp_wmb in alloc_swap_info. */
107 	return READ_ONCE(swap_info[type]);
108 }
109 
110 static inline unsigned char swap_count(unsigned char ent)
111 {
112 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
113 }
114 
115 /* Reclaim the swap entry anyway if possible */
116 #define TTRS_ANYWAY		0x1
117 /*
118  * Reclaim the swap entry if there are no more mappings of the
119  * corresponding page
120  */
121 #define TTRS_UNMAPPED		0x2
122 /* Reclaim the swap entry if swap is getting full*/
123 #define TTRS_FULL		0x4
124 
125 /* returns 1 if swap entry is freed */
126 static int __try_to_reclaim_swap(struct swap_info_struct *si,
127 				 unsigned long offset, unsigned long flags)
128 {
129 	swp_entry_t entry = swp_entry(si->type, offset);
130 	struct page *page;
131 	int ret = 0;
132 
133 	page = find_get_page(swap_address_space(entry), offset);
134 	if (!page)
135 		return 0;
136 	/*
137 	 * When this function is called from scan_swap_map_slots() and it's
138 	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139 	 * here. We have to use trylock for avoiding deadlock. This is a special
140 	 * case and you should use try_to_free_swap() with explicit lock_page()
141 	 * in usual operations.
142 	 */
143 	if (trylock_page(page)) {
144 		if ((flags & TTRS_ANYWAY) ||
145 		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147 			ret = try_to_free_swap(page);
148 		unlock_page(page);
149 	}
150 	put_page(page);
151 	return ret;
152 }
153 
154 /*
155  * swapon tell device that all the old swap contents can be discarded,
156  * to allow the swap device to optimize its wear-levelling.
157  */
158 static int discard_swap(struct swap_info_struct *si)
159 {
160 	struct swap_extent *se;
161 	sector_t start_block;
162 	sector_t nr_blocks;
163 	int err = 0;
164 
165 	/* Do not discard the swap header page! */
166 	se = &si->first_swap_extent;
167 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
168 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
169 	if (nr_blocks) {
170 		err = blkdev_issue_discard(si->bdev, start_block,
171 				nr_blocks, GFP_KERNEL, 0);
172 		if (err)
173 			return err;
174 		cond_resched();
175 	}
176 
177 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
178 		start_block = se->start_block << (PAGE_SHIFT - 9);
179 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
180 
181 		err = blkdev_issue_discard(si->bdev, start_block,
182 				nr_blocks, GFP_KERNEL, 0);
183 		if (err)
184 			break;
185 
186 		cond_resched();
187 	}
188 	return err;		/* That will often be -EOPNOTSUPP */
189 }
190 
191 /*
192  * swap allocation tell device that a cluster of swap can now be discarded,
193  * to allow the swap device to optimize its wear-levelling.
194  */
195 static void discard_swap_cluster(struct swap_info_struct *si,
196 				 pgoff_t start_page, pgoff_t nr_pages)
197 {
198 	struct swap_extent *se = si->curr_swap_extent;
199 	int found_extent = 0;
200 
201 	while (nr_pages) {
202 		if (se->start_page <= start_page &&
203 		    start_page < se->start_page + se->nr_pages) {
204 			pgoff_t offset = start_page - se->start_page;
205 			sector_t start_block = se->start_block + offset;
206 			sector_t nr_blocks = se->nr_pages - offset;
207 
208 			if (nr_blocks > nr_pages)
209 				nr_blocks = nr_pages;
210 			start_page += nr_blocks;
211 			nr_pages -= nr_blocks;
212 
213 			if (!found_extent++)
214 				si->curr_swap_extent = se;
215 
216 			start_block <<= PAGE_SHIFT - 9;
217 			nr_blocks <<= PAGE_SHIFT - 9;
218 			if (blkdev_issue_discard(si->bdev, start_block,
219 				    nr_blocks, GFP_NOIO, 0))
220 				break;
221 		}
222 
223 		se = list_next_entry(se, list);
224 	}
225 }
226 
227 #ifdef CONFIG_THP_SWAP
228 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
229 
230 #define swap_entry_size(size)	(size)
231 #else
232 #define SWAPFILE_CLUSTER	256
233 
234 /*
235  * Define swap_entry_size() as constant to let compiler to optimize
236  * out some code if !CONFIG_THP_SWAP
237  */
238 #define swap_entry_size(size)	1
239 #endif
240 #define LATENCY_LIMIT		256
241 
242 static inline void cluster_set_flag(struct swap_cluster_info *info,
243 	unsigned int flag)
244 {
245 	info->flags = flag;
246 }
247 
248 static inline unsigned int cluster_count(struct swap_cluster_info *info)
249 {
250 	return info->data;
251 }
252 
253 static inline void cluster_set_count(struct swap_cluster_info *info,
254 				     unsigned int c)
255 {
256 	info->data = c;
257 }
258 
259 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
260 					 unsigned int c, unsigned int f)
261 {
262 	info->flags = f;
263 	info->data = c;
264 }
265 
266 static inline unsigned int cluster_next(struct swap_cluster_info *info)
267 {
268 	return info->data;
269 }
270 
271 static inline void cluster_set_next(struct swap_cluster_info *info,
272 				    unsigned int n)
273 {
274 	info->data = n;
275 }
276 
277 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
278 					 unsigned int n, unsigned int f)
279 {
280 	info->flags = f;
281 	info->data = n;
282 }
283 
284 static inline bool cluster_is_free(struct swap_cluster_info *info)
285 {
286 	return info->flags & CLUSTER_FLAG_FREE;
287 }
288 
289 static inline bool cluster_is_null(struct swap_cluster_info *info)
290 {
291 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
292 }
293 
294 static inline void cluster_set_null(struct swap_cluster_info *info)
295 {
296 	info->flags = CLUSTER_FLAG_NEXT_NULL;
297 	info->data = 0;
298 }
299 
300 static inline bool cluster_is_huge(struct swap_cluster_info *info)
301 {
302 	if (IS_ENABLED(CONFIG_THP_SWAP))
303 		return info->flags & CLUSTER_FLAG_HUGE;
304 	return false;
305 }
306 
307 static inline void cluster_clear_huge(struct swap_cluster_info *info)
308 {
309 	info->flags &= ~CLUSTER_FLAG_HUGE;
310 }
311 
312 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
313 						     unsigned long offset)
314 {
315 	struct swap_cluster_info *ci;
316 
317 	ci = si->cluster_info;
318 	if (ci) {
319 		ci += offset / SWAPFILE_CLUSTER;
320 		spin_lock(&ci->lock);
321 	}
322 	return ci;
323 }
324 
325 static inline void unlock_cluster(struct swap_cluster_info *ci)
326 {
327 	if (ci)
328 		spin_unlock(&ci->lock);
329 }
330 
331 /*
332  * Determine the locking method in use for this device.  Return
333  * swap_cluster_info if SSD-style cluster-based locking is in place.
334  */
335 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
336 		struct swap_info_struct *si, unsigned long offset)
337 {
338 	struct swap_cluster_info *ci;
339 
340 	/* Try to use fine-grained SSD-style locking if available: */
341 	ci = lock_cluster(si, offset);
342 	/* Otherwise, fall back to traditional, coarse locking: */
343 	if (!ci)
344 		spin_lock(&si->lock);
345 
346 	return ci;
347 }
348 
349 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
350 					       struct swap_cluster_info *ci)
351 {
352 	if (ci)
353 		unlock_cluster(ci);
354 	else
355 		spin_unlock(&si->lock);
356 }
357 
358 static inline bool cluster_list_empty(struct swap_cluster_list *list)
359 {
360 	return cluster_is_null(&list->head);
361 }
362 
363 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
364 {
365 	return cluster_next(&list->head);
366 }
367 
368 static void cluster_list_init(struct swap_cluster_list *list)
369 {
370 	cluster_set_null(&list->head);
371 	cluster_set_null(&list->tail);
372 }
373 
374 static void cluster_list_add_tail(struct swap_cluster_list *list,
375 				  struct swap_cluster_info *ci,
376 				  unsigned int idx)
377 {
378 	if (cluster_list_empty(list)) {
379 		cluster_set_next_flag(&list->head, idx, 0);
380 		cluster_set_next_flag(&list->tail, idx, 0);
381 	} else {
382 		struct swap_cluster_info *ci_tail;
383 		unsigned int tail = cluster_next(&list->tail);
384 
385 		/*
386 		 * Nested cluster lock, but both cluster locks are
387 		 * only acquired when we held swap_info_struct->lock
388 		 */
389 		ci_tail = ci + tail;
390 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
391 		cluster_set_next(ci_tail, idx);
392 		spin_unlock(&ci_tail->lock);
393 		cluster_set_next_flag(&list->tail, idx, 0);
394 	}
395 }
396 
397 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
398 					   struct swap_cluster_info *ci)
399 {
400 	unsigned int idx;
401 
402 	idx = cluster_next(&list->head);
403 	if (cluster_next(&list->tail) == idx) {
404 		cluster_set_null(&list->head);
405 		cluster_set_null(&list->tail);
406 	} else
407 		cluster_set_next_flag(&list->head,
408 				      cluster_next(&ci[idx]), 0);
409 
410 	return idx;
411 }
412 
413 /* Add a cluster to discard list and schedule it to do discard */
414 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
415 		unsigned int idx)
416 {
417 	/*
418 	 * If scan_swap_map() can't find a free cluster, it will check
419 	 * si->swap_map directly. To make sure the discarding cluster isn't
420 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
421 	 * will be cleared after discard
422 	 */
423 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
424 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
425 
426 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
427 
428 	schedule_work(&si->discard_work);
429 }
430 
431 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
432 {
433 	struct swap_cluster_info *ci = si->cluster_info;
434 
435 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
436 	cluster_list_add_tail(&si->free_clusters, ci, idx);
437 }
438 
439 /*
440  * Doing discard actually. After a cluster discard is finished, the cluster
441  * will be added to free cluster list. caller should hold si->lock.
442 */
443 static void swap_do_scheduled_discard(struct swap_info_struct *si)
444 {
445 	struct swap_cluster_info *info, *ci;
446 	unsigned int idx;
447 
448 	info = si->cluster_info;
449 
450 	while (!cluster_list_empty(&si->discard_clusters)) {
451 		idx = cluster_list_del_first(&si->discard_clusters, info);
452 		spin_unlock(&si->lock);
453 
454 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
455 				SWAPFILE_CLUSTER);
456 
457 		spin_lock(&si->lock);
458 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
459 		__free_cluster(si, idx);
460 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
461 				0, SWAPFILE_CLUSTER);
462 		unlock_cluster(ci);
463 	}
464 }
465 
466 static void swap_discard_work(struct work_struct *work)
467 {
468 	struct swap_info_struct *si;
469 
470 	si = container_of(work, struct swap_info_struct, discard_work);
471 
472 	spin_lock(&si->lock);
473 	swap_do_scheduled_discard(si);
474 	spin_unlock(&si->lock);
475 }
476 
477 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
478 {
479 	struct swap_cluster_info *ci = si->cluster_info;
480 
481 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
482 	cluster_list_del_first(&si->free_clusters, ci);
483 	cluster_set_count_flag(ci + idx, 0, 0);
484 }
485 
486 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
487 {
488 	struct swap_cluster_info *ci = si->cluster_info + idx;
489 
490 	VM_BUG_ON(cluster_count(ci) != 0);
491 	/*
492 	 * If the swap is discardable, prepare discard the cluster
493 	 * instead of free it immediately. The cluster will be freed
494 	 * after discard.
495 	 */
496 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
497 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
498 		swap_cluster_schedule_discard(si, idx);
499 		return;
500 	}
501 
502 	__free_cluster(si, idx);
503 }
504 
505 /*
506  * The cluster corresponding to page_nr will be used. The cluster will be
507  * removed from free cluster list and its usage counter will be increased.
508  */
509 static void inc_cluster_info_page(struct swap_info_struct *p,
510 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
511 {
512 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
513 
514 	if (!cluster_info)
515 		return;
516 	if (cluster_is_free(&cluster_info[idx]))
517 		alloc_cluster(p, idx);
518 
519 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
520 	cluster_set_count(&cluster_info[idx],
521 		cluster_count(&cluster_info[idx]) + 1);
522 }
523 
524 /*
525  * The cluster corresponding to page_nr decreases one usage. If the usage
526  * counter becomes 0, which means no page in the cluster is in using, we can
527  * optionally discard the cluster and add it to free cluster list.
528  */
529 static void dec_cluster_info_page(struct swap_info_struct *p,
530 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
531 {
532 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
533 
534 	if (!cluster_info)
535 		return;
536 
537 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
538 	cluster_set_count(&cluster_info[idx],
539 		cluster_count(&cluster_info[idx]) - 1);
540 
541 	if (cluster_count(&cluster_info[idx]) == 0)
542 		free_cluster(p, idx);
543 }
544 
545 /*
546  * It's possible scan_swap_map() uses a free cluster in the middle of free
547  * cluster list. Avoiding such abuse to avoid list corruption.
548  */
549 static bool
550 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
551 	unsigned long offset)
552 {
553 	struct percpu_cluster *percpu_cluster;
554 	bool conflict;
555 
556 	offset /= SWAPFILE_CLUSTER;
557 	conflict = !cluster_list_empty(&si->free_clusters) &&
558 		offset != cluster_list_first(&si->free_clusters) &&
559 		cluster_is_free(&si->cluster_info[offset]);
560 
561 	if (!conflict)
562 		return false;
563 
564 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
565 	cluster_set_null(&percpu_cluster->index);
566 	return true;
567 }
568 
569 /*
570  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
571  * might involve allocating a new cluster for current CPU too.
572  */
573 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
574 	unsigned long *offset, unsigned long *scan_base)
575 {
576 	struct percpu_cluster *cluster;
577 	struct swap_cluster_info *ci;
578 	bool found_free;
579 	unsigned long tmp, max;
580 
581 new_cluster:
582 	cluster = this_cpu_ptr(si->percpu_cluster);
583 	if (cluster_is_null(&cluster->index)) {
584 		if (!cluster_list_empty(&si->free_clusters)) {
585 			cluster->index = si->free_clusters.head;
586 			cluster->next = cluster_next(&cluster->index) *
587 					SWAPFILE_CLUSTER;
588 		} else if (!cluster_list_empty(&si->discard_clusters)) {
589 			/*
590 			 * we don't have free cluster but have some clusters in
591 			 * discarding, do discard now and reclaim them
592 			 */
593 			swap_do_scheduled_discard(si);
594 			*scan_base = *offset = si->cluster_next;
595 			goto new_cluster;
596 		} else
597 			return false;
598 	}
599 
600 	found_free = false;
601 
602 	/*
603 	 * Other CPUs can use our cluster if they can't find a free cluster,
604 	 * check if there is still free entry in the cluster
605 	 */
606 	tmp = cluster->next;
607 	max = min_t(unsigned long, si->max,
608 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
609 	if (tmp >= max) {
610 		cluster_set_null(&cluster->index);
611 		goto new_cluster;
612 	}
613 	ci = lock_cluster(si, tmp);
614 	while (tmp < max) {
615 		if (!si->swap_map[tmp]) {
616 			found_free = true;
617 			break;
618 		}
619 		tmp++;
620 	}
621 	unlock_cluster(ci);
622 	if (!found_free) {
623 		cluster_set_null(&cluster->index);
624 		goto new_cluster;
625 	}
626 	cluster->next = tmp + 1;
627 	*offset = tmp;
628 	*scan_base = tmp;
629 	return found_free;
630 }
631 
632 static void __del_from_avail_list(struct swap_info_struct *p)
633 {
634 	int nid;
635 
636 	for_each_node(nid)
637 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
638 }
639 
640 static void del_from_avail_list(struct swap_info_struct *p)
641 {
642 	spin_lock(&swap_avail_lock);
643 	__del_from_avail_list(p);
644 	spin_unlock(&swap_avail_lock);
645 }
646 
647 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
648 			     unsigned int nr_entries)
649 {
650 	unsigned int end = offset + nr_entries - 1;
651 
652 	if (offset == si->lowest_bit)
653 		si->lowest_bit += nr_entries;
654 	if (end == si->highest_bit)
655 		si->highest_bit -= nr_entries;
656 	si->inuse_pages += nr_entries;
657 	if (si->inuse_pages == si->pages) {
658 		si->lowest_bit = si->max;
659 		si->highest_bit = 0;
660 		del_from_avail_list(si);
661 	}
662 }
663 
664 static void add_to_avail_list(struct swap_info_struct *p)
665 {
666 	int nid;
667 
668 	spin_lock(&swap_avail_lock);
669 	for_each_node(nid) {
670 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
671 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
672 	}
673 	spin_unlock(&swap_avail_lock);
674 }
675 
676 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
677 			    unsigned int nr_entries)
678 {
679 	unsigned long end = offset + nr_entries - 1;
680 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
681 
682 	if (offset < si->lowest_bit)
683 		si->lowest_bit = offset;
684 	if (end > si->highest_bit) {
685 		bool was_full = !si->highest_bit;
686 
687 		si->highest_bit = end;
688 		if (was_full && (si->flags & SWP_WRITEOK))
689 			add_to_avail_list(si);
690 	}
691 	atomic_long_add(nr_entries, &nr_swap_pages);
692 	si->inuse_pages -= nr_entries;
693 	if (si->flags & SWP_BLKDEV)
694 		swap_slot_free_notify =
695 			si->bdev->bd_disk->fops->swap_slot_free_notify;
696 	else
697 		swap_slot_free_notify = NULL;
698 	while (offset <= end) {
699 		frontswap_invalidate_page(si->type, offset);
700 		if (swap_slot_free_notify)
701 			swap_slot_free_notify(si->bdev, offset);
702 		offset++;
703 	}
704 }
705 
706 static int scan_swap_map_slots(struct swap_info_struct *si,
707 			       unsigned char usage, int nr,
708 			       swp_entry_t slots[])
709 {
710 	struct swap_cluster_info *ci;
711 	unsigned long offset;
712 	unsigned long scan_base;
713 	unsigned long last_in_cluster = 0;
714 	int latency_ration = LATENCY_LIMIT;
715 	int n_ret = 0;
716 
717 	if (nr > SWAP_BATCH)
718 		nr = SWAP_BATCH;
719 
720 	/*
721 	 * We try to cluster swap pages by allocating them sequentially
722 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
723 	 * way, however, we resort to first-free allocation, starting
724 	 * a new cluster.  This prevents us from scattering swap pages
725 	 * all over the entire swap partition, so that we reduce
726 	 * overall disk seek times between swap pages.  -- sct
727 	 * But we do now try to find an empty cluster.  -Andrea
728 	 * And we let swap pages go all over an SSD partition.  Hugh
729 	 */
730 
731 	si->flags += SWP_SCANNING;
732 	scan_base = offset = si->cluster_next;
733 
734 	/* SSD algorithm */
735 	if (si->cluster_info) {
736 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
737 			goto checks;
738 		else
739 			goto scan;
740 	}
741 
742 	if (unlikely(!si->cluster_nr--)) {
743 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
744 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
745 			goto checks;
746 		}
747 
748 		spin_unlock(&si->lock);
749 
750 		/*
751 		 * If seek is expensive, start searching for new cluster from
752 		 * start of partition, to minimize the span of allocated swap.
753 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
754 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
755 		 */
756 		scan_base = offset = si->lowest_bit;
757 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
758 
759 		/* Locate the first empty (unaligned) cluster */
760 		for (; last_in_cluster <= si->highest_bit; offset++) {
761 			if (si->swap_map[offset])
762 				last_in_cluster = offset + SWAPFILE_CLUSTER;
763 			else if (offset == last_in_cluster) {
764 				spin_lock(&si->lock);
765 				offset -= SWAPFILE_CLUSTER - 1;
766 				si->cluster_next = offset;
767 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
768 				goto checks;
769 			}
770 			if (unlikely(--latency_ration < 0)) {
771 				cond_resched();
772 				latency_ration = LATENCY_LIMIT;
773 			}
774 		}
775 
776 		offset = scan_base;
777 		spin_lock(&si->lock);
778 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
779 	}
780 
781 checks:
782 	if (si->cluster_info) {
783 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
784 		/* take a break if we already got some slots */
785 			if (n_ret)
786 				goto done;
787 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
788 							&scan_base))
789 				goto scan;
790 		}
791 	}
792 	if (!(si->flags & SWP_WRITEOK))
793 		goto no_page;
794 	if (!si->highest_bit)
795 		goto no_page;
796 	if (offset > si->highest_bit)
797 		scan_base = offset = si->lowest_bit;
798 
799 	ci = lock_cluster(si, offset);
800 	/* reuse swap entry of cache-only swap if not busy. */
801 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
802 		int swap_was_freed;
803 		unlock_cluster(ci);
804 		spin_unlock(&si->lock);
805 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
806 		spin_lock(&si->lock);
807 		/* entry was freed successfully, try to use this again */
808 		if (swap_was_freed)
809 			goto checks;
810 		goto scan; /* check next one */
811 	}
812 
813 	if (si->swap_map[offset]) {
814 		unlock_cluster(ci);
815 		if (!n_ret)
816 			goto scan;
817 		else
818 			goto done;
819 	}
820 	si->swap_map[offset] = usage;
821 	inc_cluster_info_page(si, si->cluster_info, offset);
822 	unlock_cluster(ci);
823 
824 	swap_range_alloc(si, offset, 1);
825 	si->cluster_next = offset + 1;
826 	slots[n_ret++] = swp_entry(si->type, offset);
827 
828 	/* got enough slots or reach max slots? */
829 	if ((n_ret == nr) || (offset >= si->highest_bit))
830 		goto done;
831 
832 	/* search for next available slot */
833 
834 	/* time to take a break? */
835 	if (unlikely(--latency_ration < 0)) {
836 		if (n_ret)
837 			goto done;
838 		spin_unlock(&si->lock);
839 		cond_resched();
840 		spin_lock(&si->lock);
841 		latency_ration = LATENCY_LIMIT;
842 	}
843 
844 	/* try to get more slots in cluster */
845 	if (si->cluster_info) {
846 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
847 			goto checks;
848 		else
849 			goto done;
850 	}
851 	/* non-ssd case */
852 	++offset;
853 
854 	/* non-ssd case, still more slots in cluster? */
855 	if (si->cluster_nr && !si->swap_map[offset]) {
856 		--si->cluster_nr;
857 		goto checks;
858 	}
859 
860 done:
861 	si->flags -= SWP_SCANNING;
862 	return n_ret;
863 
864 scan:
865 	spin_unlock(&si->lock);
866 	while (++offset <= si->highest_bit) {
867 		if (!si->swap_map[offset]) {
868 			spin_lock(&si->lock);
869 			goto checks;
870 		}
871 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
872 			spin_lock(&si->lock);
873 			goto checks;
874 		}
875 		if (unlikely(--latency_ration < 0)) {
876 			cond_resched();
877 			latency_ration = LATENCY_LIMIT;
878 		}
879 	}
880 	offset = si->lowest_bit;
881 	while (offset < scan_base) {
882 		if (!si->swap_map[offset]) {
883 			spin_lock(&si->lock);
884 			goto checks;
885 		}
886 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
887 			spin_lock(&si->lock);
888 			goto checks;
889 		}
890 		if (unlikely(--latency_ration < 0)) {
891 			cond_resched();
892 			latency_ration = LATENCY_LIMIT;
893 		}
894 		offset++;
895 	}
896 	spin_lock(&si->lock);
897 
898 no_page:
899 	si->flags -= SWP_SCANNING;
900 	return n_ret;
901 }
902 
903 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
904 {
905 	unsigned long idx;
906 	struct swap_cluster_info *ci;
907 	unsigned long offset, i;
908 	unsigned char *map;
909 
910 	/*
911 	 * Should not even be attempting cluster allocations when huge
912 	 * page swap is disabled.  Warn and fail the allocation.
913 	 */
914 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
915 		VM_WARN_ON_ONCE(1);
916 		return 0;
917 	}
918 
919 	if (cluster_list_empty(&si->free_clusters))
920 		return 0;
921 
922 	idx = cluster_list_first(&si->free_clusters);
923 	offset = idx * SWAPFILE_CLUSTER;
924 	ci = lock_cluster(si, offset);
925 	alloc_cluster(si, idx);
926 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
927 
928 	map = si->swap_map + offset;
929 	for (i = 0; i < SWAPFILE_CLUSTER; i++)
930 		map[i] = SWAP_HAS_CACHE;
931 	unlock_cluster(ci);
932 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
933 	*slot = swp_entry(si->type, offset);
934 
935 	return 1;
936 }
937 
938 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
939 {
940 	unsigned long offset = idx * SWAPFILE_CLUSTER;
941 	struct swap_cluster_info *ci;
942 
943 	ci = lock_cluster(si, offset);
944 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
945 	cluster_set_count_flag(ci, 0, 0);
946 	free_cluster(si, idx);
947 	unlock_cluster(ci);
948 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
949 }
950 
951 static unsigned long scan_swap_map(struct swap_info_struct *si,
952 				   unsigned char usage)
953 {
954 	swp_entry_t entry;
955 	int n_ret;
956 
957 	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
958 
959 	if (n_ret)
960 		return swp_offset(entry);
961 	else
962 		return 0;
963 
964 }
965 
966 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
967 {
968 	unsigned long size = swap_entry_size(entry_size);
969 	struct swap_info_struct *si, *next;
970 	long avail_pgs;
971 	int n_ret = 0;
972 	int node;
973 
974 	/* Only single cluster request supported */
975 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
976 
977 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
978 	if (avail_pgs <= 0)
979 		goto noswap;
980 
981 	if (n_goal > SWAP_BATCH)
982 		n_goal = SWAP_BATCH;
983 
984 	if (n_goal > avail_pgs)
985 		n_goal = avail_pgs;
986 
987 	atomic_long_sub(n_goal * size, &nr_swap_pages);
988 
989 	spin_lock(&swap_avail_lock);
990 
991 start_over:
992 	node = numa_node_id();
993 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
994 		/* requeue si to after same-priority siblings */
995 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
996 		spin_unlock(&swap_avail_lock);
997 		spin_lock(&si->lock);
998 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
999 			spin_lock(&swap_avail_lock);
1000 			if (plist_node_empty(&si->avail_lists[node])) {
1001 				spin_unlock(&si->lock);
1002 				goto nextsi;
1003 			}
1004 			WARN(!si->highest_bit,
1005 			     "swap_info %d in list but !highest_bit\n",
1006 			     si->type);
1007 			WARN(!(si->flags & SWP_WRITEOK),
1008 			     "swap_info %d in list but !SWP_WRITEOK\n",
1009 			     si->type);
1010 			__del_from_avail_list(si);
1011 			spin_unlock(&si->lock);
1012 			goto nextsi;
1013 		}
1014 		if (size == SWAPFILE_CLUSTER) {
1015 			if (!(si->flags & SWP_FS))
1016 				n_ret = swap_alloc_cluster(si, swp_entries);
1017 		} else
1018 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1019 						    n_goal, swp_entries);
1020 		spin_unlock(&si->lock);
1021 		if (n_ret || size == SWAPFILE_CLUSTER)
1022 			goto check_out;
1023 		pr_debug("scan_swap_map of si %d failed to find offset\n",
1024 			si->type);
1025 
1026 		spin_lock(&swap_avail_lock);
1027 nextsi:
1028 		/*
1029 		 * if we got here, it's likely that si was almost full before,
1030 		 * and since scan_swap_map() can drop the si->lock, multiple
1031 		 * callers probably all tried to get a page from the same si
1032 		 * and it filled up before we could get one; or, the si filled
1033 		 * up between us dropping swap_avail_lock and taking si->lock.
1034 		 * Since we dropped the swap_avail_lock, the swap_avail_head
1035 		 * list may have been modified; so if next is still in the
1036 		 * swap_avail_head list then try it, otherwise start over
1037 		 * if we have not gotten any slots.
1038 		 */
1039 		if (plist_node_empty(&next->avail_lists[node]))
1040 			goto start_over;
1041 	}
1042 
1043 	spin_unlock(&swap_avail_lock);
1044 
1045 check_out:
1046 	if (n_ret < n_goal)
1047 		atomic_long_add((long)(n_goal - n_ret) * size,
1048 				&nr_swap_pages);
1049 noswap:
1050 	return n_ret;
1051 }
1052 
1053 /* The only caller of this function is now suspend routine */
1054 swp_entry_t get_swap_page_of_type(int type)
1055 {
1056 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1057 	pgoff_t offset;
1058 
1059 	if (!si)
1060 		goto fail;
1061 
1062 	spin_lock(&si->lock);
1063 	if (si->flags & SWP_WRITEOK) {
1064 		atomic_long_dec(&nr_swap_pages);
1065 		/* This is called for allocating swap entry, not cache */
1066 		offset = scan_swap_map(si, 1);
1067 		if (offset) {
1068 			spin_unlock(&si->lock);
1069 			return swp_entry(type, offset);
1070 		}
1071 		atomic_long_inc(&nr_swap_pages);
1072 	}
1073 	spin_unlock(&si->lock);
1074 fail:
1075 	return (swp_entry_t) {0};
1076 }
1077 
1078 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1079 {
1080 	struct swap_info_struct *p;
1081 	unsigned long offset, type;
1082 
1083 	if (!entry.val)
1084 		goto out;
1085 	type = swp_type(entry);
1086 	p = swap_type_to_swap_info(type);
1087 	if (!p)
1088 		goto bad_nofile;
1089 	if (!(p->flags & SWP_USED))
1090 		goto bad_device;
1091 	offset = swp_offset(entry);
1092 	if (offset >= p->max)
1093 		goto bad_offset;
1094 	return p;
1095 
1096 bad_offset:
1097 	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1098 	goto out;
1099 bad_device:
1100 	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1101 	goto out;
1102 bad_nofile:
1103 	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1104 out:
1105 	return NULL;
1106 }
1107 
1108 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1109 {
1110 	struct swap_info_struct *p;
1111 
1112 	p = __swap_info_get(entry);
1113 	if (!p)
1114 		goto out;
1115 	if (!p->swap_map[swp_offset(entry)])
1116 		goto bad_free;
1117 	return p;
1118 
1119 bad_free:
1120 	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1121 	goto out;
1122 out:
1123 	return NULL;
1124 }
1125 
1126 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1127 {
1128 	struct swap_info_struct *p;
1129 
1130 	p = _swap_info_get(entry);
1131 	if (p)
1132 		spin_lock(&p->lock);
1133 	return p;
1134 }
1135 
1136 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1137 					struct swap_info_struct *q)
1138 {
1139 	struct swap_info_struct *p;
1140 
1141 	p = _swap_info_get(entry);
1142 
1143 	if (p != q) {
1144 		if (q != NULL)
1145 			spin_unlock(&q->lock);
1146 		if (p != NULL)
1147 			spin_lock(&p->lock);
1148 	}
1149 	return p;
1150 }
1151 
1152 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1153 					      unsigned long offset,
1154 					      unsigned char usage)
1155 {
1156 	unsigned char count;
1157 	unsigned char has_cache;
1158 
1159 	count = p->swap_map[offset];
1160 
1161 	has_cache = count & SWAP_HAS_CACHE;
1162 	count &= ~SWAP_HAS_CACHE;
1163 
1164 	if (usage == SWAP_HAS_CACHE) {
1165 		VM_BUG_ON(!has_cache);
1166 		has_cache = 0;
1167 	} else if (count == SWAP_MAP_SHMEM) {
1168 		/*
1169 		 * Or we could insist on shmem.c using a special
1170 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1171 		 */
1172 		count = 0;
1173 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1174 		if (count == COUNT_CONTINUED) {
1175 			if (swap_count_continued(p, offset, count))
1176 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1177 			else
1178 				count = SWAP_MAP_MAX;
1179 		} else
1180 			count--;
1181 	}
1182 
1183 	usage = count | has_cache;
1184 	p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1185 
1186 	return usage;
1187 }
1188 
1189 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1190 				       swp_entry_t entry, unsigned char usage)
1191 {
1192 	struct swap_cluster_info *ci;
1193 	unsigned long offset = swp_offset(entry);
1194 
1195 	ci = lock_cluster_or_swap_info(p, offset);
1196 	usage = __swap_entry_free_locked(p, offset, usage);
1197 	unlock_cluster_or_swap_info(p, ci);
1198 	if (!usage)
1199 		free_swap_slot(entry);
1200 
1201 	return usage;
1202 }
1203 
1204 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1205 {
1206 	struct swap_cluster_info *ci;
1207 	unsigned long offset = swp_offset(entry);
1208 	unsigned char count;
1209 
1210 	ci = lock_cluster(p, offset);
1211 	count = p->swap_map[offset];
1212 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1213 	p->swap_map[offset] = 0;
1214 	dec_cluster_info_page(p, p->cluster_info, offset);
1215 	unlock_cluster(ci);
1216 
1217 	mem_cgroup_uncharge_swap(entry, 1);
1218 	swap_range_free(p, offset, 1);
1219 }
1220 
1221 /*
1222  * Caller has made sure that the swap device corresponding to entry
1223  * is still around or has not been recycled.
1224  */
1225 void swap_free(swp_entry_t entry)
1226 {
1227 	struct swap_info_struct *p;
1228 
1229 	p = _swap_info_get(entry);
1230 	if (p)
1231 		__swap_entry_free(p, entry, 1);
1232 }
1233 
1234 /*
1235  * Called after dropping swapcache to decrease refcnt to swap entries.
1236  */
1237 void put_swap_page(struct page *page, swp_entry_t entry)
1238 {
1239 	unsigned long offset = swp_offset(entry);
1240 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1241 	struct swap_cluster_info *ci;
1242 	struct swap_info_struct *si;
1243 	unsigned char *map;
1244 	unsigned int i, free_entries = 0;
1245 	unsigned char val;
1246 	int size = swap_entry_size(hpage_nr_pages(page));
1247 
1248 	si = _swap_info_get(entry);
1249 	if (!si)
1250 		return;
1251 
1252 	ci = lock_cluster_or_swap_info(si, offset);
1253 	if (size == SWAPFILE_CLUSTER) {
1254 		VM_BUG_ON(!cluster_is_huge(ci));
1255 		map = si->swap_map + offset;
1256 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1257 			val = map[i];
1258 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1259 			if (val == SWAP_HAS_CACHE)
1260 				free_entries++;
1261 		}
1262 		cluster_clear_huge(ci);
1263 		if (free_entries == SWAPFILE_CLUSTER) {
1264 			unlock_cluster_or_swap_info(si, ci);
1265 			spin_lock(&si->lock);
1266 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1267 			swap_free_cluster(si, idx);
1268 			spin_unlock(&si->lock);
1269 			return;
1270 		}
1271 	}
1272 	for (i = 0; i < size; i++, entry.val++) {
1273 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1274 			unlock_cluster_or_swap_info(si, ci);
1275 			free_swap_slot(entry);
1276 			if (i == size - 1)
1277 				return;
1278 			lock_cluster_or_swap_info(si, offset);
1279 		}
1280 	}
1281 	unlock_cluster_or_swap_info(si, ci);
1282 }
1283 
1284 #ifdef CONFIG_THP_SWAP
1285 int split_swap_cluster(swp_entry_t entry)
1286 {
1287 	struct swap_info_struct *si;
1288 	struct swap_cluster_info *ci;
1289 	unsigned long offset = swp_offset(entry);
1290 
1291 	si = _swap_info_get(entry);
1292 	if (!si)
1293 		return -EBUSY;
1294 	ci = lock_cluster(si, offset);
1295 	cluster_clear_huge(ci);
1296 	unlock_cluster(ci);
1297 	return 0;
1298 }
1299 #endif
1300 
1301 static int swp_entry_cmp(const void *ent1, const void *ent2)
1302 {
1303 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1304 
1305 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1306 }
1307 
1308 void swapcache_free_entries(swp_entry_t *entries, int n)
1309 {
1310 	struct swap_info_struct *p, *prev;
1311 	int i;
1312 
1313 	if (n <= 0)
1314 		return;
1315 
1316 	prev = NULL;
1317 	p = NULL;
1318 
1319 	/*
1320 	 * Sort swap entries by swap device, so each lock is only taken once.
1321 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1322 	 * so low that it isn't necessary to optimize further.
1323 	 */
1324 	if (nr_swapfiles > 1)
1325 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1326 	for (i = 0; i < n; ++i) {
1327 		p = swap_info_get_cont(entries[i], prev);
1328 		if (p)
1329 			swap_entry_free(p, entries[i]);
1330 		prev = p;
1331 	}
1332 	if (p)
1333 		spin_unlock(&p->lock);
1334 }
1335 
1336 /*
1337  * How many references to page are currently swapped out?
1338  * This does not give an exact answer when swap count is continued,
1339  * but does include the high COUNT_CONTINUED flag to allow for that.
1340  */
1341 int page_swapcount(struct page *page)
1342 {
1343 	int count = 0;
1344 	struct swap_info_struct *p;
1345 	struct swap_cluster_info *ci;
1346 	swp_entry_t entry;
1347 	unsigned long offset;
1348 
1349 	entry.val = page_private(page);
1350 	p = _swap_info_get(entry);
1351 	if (p) {
1352 		offset = swp_offset(entry);
1353 		ci = lock_cluster_or_swap_info(p, offset);
1354 		count = swap_count(p->swap_map[offset]);
1355 		unlock_cluster_or_swap_info(p, ci);
1356 	}
1357 	return count;
1358 }
1359 
1360 int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1361 {
1362 	pgoff_t offset = swp_offset(entry);
1363 
1364 	return swap_count(si->swap_map[offset]);
1365 }
1366 
1367 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1368 {
1369 	int count = 0;
1370 	pgoff_t offset = swp_offset(entry);
1371 	struct swap_cluster_info *ci;
1372 
1373 	ci = lock_cluster_or_swap_info(si, offset);
1374 	count = swap_count(si->swap_map[offset]);
1375 	unlock_cluster_or_swap_info(si, ci);
1376 	return count;
1377 }
1378 
1379 /*
1380  * How many references to @entry are currently swapped out?
1381  * This does not give an exact answer when swap count is continued,
1382  * but does include the high COUNT_CONTINUED flag to allow for that.
1383  */
1384 int __swp_swapcount(swp_entry_t entry)
1385 {
1386 	int count = 0;
1387 	struct swap_info_struct *si;
1388 
1389 	si = __swap_info_get(entry);
1390 	if (si)
1391 		count = swap_swapcount(si, entry);
1392 	return count;
1393 }
1394 
1395 /*
1396  * How many references to @entry are currently swapped out?
1397  * This considers COUNT_CONTINUED so it returns exact answer.
1398  */
1399 int swp_swapcount(swp_entry_t entry)
1400 {
1401 	int count, tmp_count, n;
1402 	struct swap_info_struct *p;
1403 	struct swap_cluster_info *ci;
1404 	struct page *page;
1405 	pgoff_t offset;
1406 	unsigned char *map;
1407 
1408 	p = _swap_info_get(entry);
1409 	if (!p)
1410 		return 0;
1411 
1412 	offset = swp_offset(entry);
1413 
1414 	ci = lock_cluster_or_swap_info(p, offset);
1415 
1416 	count = swap_count(p->swap_map[offset]);
1417 	if (!(count & COUNT_CONTINUED))
1418 		goto out;
1419 
1420 	count &= ~COUNT_CONTINUED;
1421 	n = SWAP_MAP_MAX + 1;
1422 
1423 	page = vmalloc_to_page(p->swap_map + offset);
1424 	offset &= ~PAGE_MASK;
1425 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1426 
1427 	do {
1428 		page = list_next_entry(page, lru);
1429 		map = kmap_atomic(page);
1430 		tmp_count = map[offset];
1431 		kunmap_atomic(map);
1432 
1433 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1434 		n *= (SWAP_CONT_MAX + 1);
1435 	} while (tmp_count & COUNT_CONTINUED);
1436 out:
1437 	unlock_cluster_or_swap_info(p, ci);
1438 	return count;
1439 }
1440 
1441 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1442 					 swp_entry_t entry)
1443 {
1444 	struct swap_cluster_info *ci;
1445 	unsigned char *map = si->swap_map;
1446 	unsigned long roffset = swp_offset(entry);
1447 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1448 	int i;
1449 	bool ret = false;
1450 
1451 	ci = lock_cluster_or_swap_info(si, offset);
1452 	if (!ci || !cluster_is_huge(ci)) {
1453 		if (swap_count(map[roffset]))
1454 			ret = true;
1455 		goto unlock_out;
1456 	}
1457 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1458 		if (swap_count(map[offset + i])) {
1459 			ret = true;
1460 			break;
1461 		}
1462 	}
1463 unlock_out:
1464 	unlock_cluster_or_swap_info(si, ci);
1465 	return ret;
1466 }
1467 
1468 static bool page_swapped(struct page *page)
1469 {
1470 	swp_entry_t entry;
1471 	struct swap_info_struct *si;
1472 
1473 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1474 		return page_swapcount(page) != 0;
1475 
1476 	page = compound_head(page);
1477 	entry.val = page_private(page);
1478 	si = _swap_info_get(entry);
1479 	if (si)
1480 		return swap_page_trans_huge_swapped(si, entry);
1481 	return false;
1482 }
1483 
1484 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1485 					 int *total_swapcount)
1486 {
1487 	int i, map_swapcount, _total_mapcount, _total_swapcount;
1488 	unsigned long offset = 0;
1489 	struct swap_info_struct *si;
1490 	struct swap_cluster_info *ci = NULL;
1491 	unsigned char *map = NULL;
1492 	int mapcount, swapcount = 0;
1493 
1494 	/* hugetlbfs shouldn't call it */
1495 	VM_BUG_ON_PAGE(PageHuge(page), page);
1496 
1497 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1498 		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1499 		if (PageSwapCache(page))
1500 			swapcount = page_swapcount(page);
1501 		if (total_swapcount)
1502 			*total_swapcount = swapcount;
1503 		return mapcount + swapcount;
1504 	}
1505 
1506 	page = compound_head(page);
1507 
1508 	_total_mapcount = _total_swapcount = map_swapcount = 0;
1509 	if (PageSwapCache(page)) {
1510 		swp_entry_t entry;
1511 
1512 		entry.val = page_private(page);
1513 		si = _swap_info_get(entry);
1514 		if (si) {
1515 			map = si->swap_map;
1516 			offset = swp_offset(entry);
1517 		}
1518 	}
1519 	if (map)
1520 		ci = lock_cluster(si, offset);
1521 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1522 		mapcount = atomic_read(&page[i]._mapcount) + 1;
1523 		_total_mapcount += mapcount;
1524 		if (map) {
1525 			swapcount = swap_count(map[offset + i]);
1526 			_total_swapcount += swapcount;
1527 		}
1528 		map_swapcount = max(map_swapcount, mapcount + swapcount);
1529 	}
1530 	unlock_cluster(ci);
1531 	if (PageDoubleMap(page)) {
1532 		map_swapcount -= 1;
1533 		_total_mapcount -= HPAGE_PMD_NR;
1534 	}
1535 	mapcount = compound_mapcount(page);
1536 	map_swapcount += mapcount;
1537 	_total_mapcount += mapcount;
1538 	if (total_mapcount)
1539 		*total_mapcount = _total_mapcount;
1540 	if (total_swapcount)
1541 		*total_swapcount = _total_swapcount;
1542 
1543 	return map_swapcount;
1544 }
1545 
1546 /*
1547  * We can write to an anon page without COW if there are no other references
1548  * to it.  And as a side-effect, free up its swap: because the old content
1549  * on disk will never be read, and seeking back there to write new content
1550  * later would only waste time away from clustering.
1551  *
1552  * NOTE: total_map_swapcount should not be relied upon by the caller if
1553  * reuse_swap_page() returns false, but it may be always overwritten
1554  * (see the other implementation for CONFIG_SWAP=n).
1555  */
1556 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1557 {
1558 	int count, total_mapcount, total_swapcount;
1559 
1560 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1561 	if (unlikely(PageKsm(page)))
1562 		return false;
1563 	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1564 					      &total_swapcount);
1565 	if (total_map_swapcount)
1566 		*total_map_swapcount = total_mapcount + total_swapcount;
1567 	if (count == 1 && PageSwapCache(page) &&
1568 	    (likely(!PageTransCompound(page)) ||
1569 	     /* The remaining swap count will be freed soon */
1570 	     total_swapcount == page_swapcount(page))) {
1571 		if (!PageWriteback(page)) {
1572 			page = compound_head(page);
1573 			delete_from_swap_cache(page);
1574 			SetPageDirty(page);
1575 		} else {
1576 			swp_entry_t entry;
1577 			struct swap_info_struct *p;
1578 
1579 			entry.val = page_private(page);
1580 			p = swap_info_get(entry);
1581 			if (p->flags & SWP_STABLE_WRITES) {
1582 				spin_unlock(&p->lock);
1583 				return false;
1584 			}
1585 			spin_unlock(&p->lock);
1586 		}
1587 	}
1588 
1589 	return count <= 1;
1590 }
1591 
1592 /*
1593  * If swap is getting full, or if there are no more mappings of this page,
1594  * then try_to_free_swap is called to free its swap space.
1595  */
1596 int try_to_free_swap(struct page *page)
1597 {
1598 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1599 
1600 	if (!PageSwapCache(page))
1601 		return 0;
1602 	if (PageWriteback(page))
1603 		return 0;
1604 	if (page_swapped(page))
1605 		return 0;
1606 
1607 	/*
1608 	 * Once hibernation has begun to create its image of memory,
1609 	 * there's a danger that one of the calls to try_to_free_swap()
1610 	 * - most probably a call from __try_to_reclaim_swap() while
1611 	 * hibernation is allocating its own swap pages for the image,
1612 	 * but conceivably even a call from memory reclaim - will free
1613 	 * the swap from a page which has already been recorded in the
1614 	 * image as a clean swapcache page, and then reuse its swap for
1615 	 * another page of the image.  On waking from hibernation, the
1616 	 * original page might be freed under memory pressure, then
1617 	 * later read back in from swap, now with the wrong data.
1618 	 *
1619 	 * Hibernation suspends storage while it is writing the image
1620 	 * to disk so check that here.
1621 	 */
1622 	if (pm_suspended_storage())
1623 		return 0;
1624 
1625 	page = compound_head(page);
1626 	delete_from_swap_cache(page);
1627 	SetPageDirty(page);
1628 	return 1;
1629 }
1630 
1631 /*
1632  * Free the swap entry like above, but also try to
1633  * free the page cache entry if it is the last user.
1634  */
1635 int free_swap_and_cache(swp_entry_t entry)
1636 {
1637 	struct swap_info_struct *p;
1638 	unsigned char count;
1639 
1640 	if (non_swap_entry(entry))
1641 		return 1;
1642 
1643 	p = _swap_info_get(entry);
1644 	if (p) {
1645 		count = __swap_entry_free(p, entry, 1);
1646 		if (count == SWAP_HAS_CACHE &&
1647 		    !swap_page_trans_huge_swapped(p, entry))
1648 			__try_to_reclaim_swap(p, swp_offset(entry),
1649 					      TTRS_UNMAPPED | TTRS_FULL);
1650 	}
1651 	return p != NULL;
1652 }
1653 
1654 #ifdef CONFIG_HIBERNATION
1655 /*
1656  * Find the swap type that corresponds to given device (if any).
1657  *
1658  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1659  * from 0, in which the swap header is expected to be located.
1660  *
1661  * This is needed for the suspend to disk (aka swsusp).
1662  */
1663 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1664 {
1665 	struct block_device *bdev = NULL;
1666 	int type;
1667 
1668 	if (device)
1669 		bdev = bdget(device);
1670 
1671 	spin_lock(&swap_lock);
1672 	for (type = 0; type < nr_swapfiles; type++) {
1673 		struct swap_info_struct *sis = swap_info[type];
1674 
1675 		if (!(sis->flags & SWP_WRITEOK))
1676 			continue;
1677 
1678 		if (!bdev) {
1679 			if (bdev_p)
1680 				*bdev_p = bdgrab(sis->bdev);
1681 
1682 			spin_unlock(&swap_lock);
1683 			return type;
1684 		}
1685 		if (bdev == sis->bdev) {
1686 			struct swap_extent *se = &sis->first_swap_extent;
1687 
1688 			if (se->start_block == offset) {
1689 				if (bdev_p)
1690 					*bdev_p = bdgrab(sis->bdev);
1691 
1692 				spin_unlock(&swap_lock);
1693 				bdput(bdev);
1694 				return type;
1695 			}
1696 		}
1697 	}
1698 	spin_unlock(&swap_lock);
1699 	if (bdev)
1700 		bdput(bdev);
1701 
1702 	return -ENODEV;
1703 }
1704 
1705 /*
1706  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1707  * corresponding to given index in swap_info (swap type).
1708  */
1709 sector_t swapdev_block(int type, pgoff_t offset)
1710 {
1711 	struct block_device *bdev;
1712 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1713 
1714 	if (!si || !(si->flags & SWP_WRITEOK))
1715 		return 0;
1716 	return map_swap_entry(swp_entry(type, offset), &bdev);
1717 }
1718 
1719 /*
1720  * Return either the total number of swap pages of given type, or the number
1721  * of free pages of that type (depending on @free)
1722  *
1723  * This is needed for software suspend
1724  */
1725 unsigned int count_swap_pages(int type, int free)
1726 {
1727 	unsigned int n = 0;
1728 
1729 	spin_lock(&swap_lock);
1730 	if ((unsigned int)type < nr_swapfiles) {
1731 		struct swap_info_struct *sis = swap_info[type];
1732 
1733 		spin_lock(&sis->lock);
1734 		if (sis->flags & SWP_WRITEOK) {
1735 			n = sis->pages;
1736 			if (free)
1737 				n -= sis->inuse_pages;
1738 		}
1739 		spin_unlock(&sis->lock);
1740 	}
1741 	spin_unlock(&swap_lock);
1742 	return n;
1743 }
1744 #endif /* CONFIG_HIBERNATION */
1745 
1746 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1747 {
1748 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1749 }
1750 
1751 /*
1752  * No need to decide whether this PTE shares the swap entry with others,
1753  * just let do_wp_page work it out if a write is requested later - to
1754  * force COW, vm_page_prot omits write permission from any private vma.
1755  */
1756 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1757 		unsigned long addr, swp_entry_t entry, struct page *page)
1758 {
1759 	struct page *swapcache;
1760 	struct mem_cgroup *memcg;
1761 	spinlock_t *ptl;
1762 	pte_t *pte;
1763 	int ret = 1;
1764 
1765 	swapcache = page;
1766 	page = ksm_might_need_to_copy(page, vma, addr);
1767 	if (unlikely(!page))
1768 		return -ENOMEM;
1769 
1770 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1771 				&memcg, false)) {
1772 		ret = -ENOMEM;
1773 		goto out_nolock;
1774 	}
1775 
1776 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1777 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1778 		mem_cgroup_cancel_charge(page, memcg, false);
1779 		ret = 0;
1780 		goto out;
1781 	}
1782 
1783 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1784 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1785 	get_page(page);
1786 	set_pte_at(vma->vm_mm, addr, pte,
1787 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1788 	if (page == swapcache) {
1789 		page_add_anon_rmap(page, vma, addr, false);
1790 		mem_cgroup_commit_charge(page, memcg, true, false);
1791 	} else { /* ksm created a completely new copy */
1792 		page_add_new_anon_rmap(page, vma, addr, false);
1793 		mem_cgroup_commit_charge(page, memcg, false, false);
1794 		lru_cache_add_active_or_unevictable(page, vma);
1795 	}
1796 	swap_free(entry);
1797 	/*
1798 	 * Move the page to the active list so it is not
1799 	 * immediately swapped out again after swapon.
1800 	 */
1801 	activate_page(page);
1802 out:
1803 	pte_unmap_unlock(pte, ptl);
1804 out_nolock:
1805 	if (page != swapcache) {
1806 		unlock_page(page);
1807 		put_page(page);
1808 	}
1809 	return ret;
1810 }
1811 
1812 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1813 			unsigned long addr, unsigned long end,
1814 			unsigned int type, bool frontswap,
1815 			unsigned long *fs_pages_to_unuse)
1816 {
1817 	struct page *page;
1818 	swp_entry_t entry;
1819 	pte_t *pte;
1820 	struct swap_info_struct *si;
1821 	unsigned long offset;
1822 	int ret = 0;
1823 	volatile unsigned char *swap_map;
1824 
1825 	si = swap_info[type];
1826 	pte = pte_offset_map(pmd, addr);
1827 	do {
1828 		struct vm_fault vmf;
1829 
1830 		if (!is_swap_pte(*pte))
1831 			continue;
1832 
1833 		entry = pte_to_swp_entry(*pte);
1834 		if (swp_type(entry) != type)
1835 			continue;
1836 
1837 		offset = swp_offset(entry);
1838 		if (frontswap && !frontswap_test(si, offset))
1839 			continue;
1840 
1841 		pte_unmap(pte);
1842 		swap_map = &si->swap_map[offset];
1843 		vmf.vma = vma;
1844 		vmf.address = addr;
1845 		vmf.pmd = pmd;
1846 		page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, &vmf);
1847 		if (!page) {
1848 			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1849 				goto try_next;
1850 			return -ENOMEM;
1851 		}
1852 
1853 		lock_page(page);
1854 		wait_on_page_writeback(page);
1855 		ret = unuse_pte(vma, pmd, addr, entry, page);
1856 		if (ret < 0) {
1857 			unlock_page(page);
1858 			put_page(page);
1859 			goto out;
1860 		}
1861 
1862 		try_to_free_swap(page);
1863 		unlock_page(page);
1864 		put_page(page);
1865 
1866 		if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1867 			ret = FRONTSWAP_PAGES_UNUSED;
1868 			goto out;
1869 		}
1870 try_next:
1871 		pte = pte_offset_map(pmd, addr);
1872 	} while (pte++, addr += PAGE_SIZE, addr != end);
1873 	pte_unmap(pte - 1);
1874 
1875 	ret = 0;
1876 out:
1877 	return ret;
1878 }
1879 
1880 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1881 				unsigned long addr, unsigned long end,
1882 				unsigned int type, bool frontswap,
1883 				unsigned long *fs_pages_to_unuse)
1884 {
1885 	pmd_t *pmd;
1886 	unsigned long next;
1887 	int ret;
1888 
1889 	pmd = pmd_offset(pud, addr);
1890 	do {
1891 		cond_resched();
1892 		next = pmd_addr_end(addr, end);
1893 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1894 			continue;
1895 		ret = unuse_pte_range(vma, pmd, addr, next, type,
1896 				      frontswap, fs_pages_to_unuse);
1897 		if (ret)
1898 			return ret;
1899 	} while (pmd++, addr = next, addr != end);
1900 	return 0;
1901 }
1902 
1903 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1904 				unsigned long addr, unsigned long end,
1905 				unsigned int type, bool frontswap,
1906 				unsigned long *fs_pages_to_unuse)
1907 {
1908 	pud_t *pud;
1909 	unsigned long next;
1910 	int ret;
1911 
1912 	pud = pud_offset(p4d, addr);
1913 	do {
1914 		next = pud_addr_end(addr, end);
1915 		if (pud_none_or_clear_bad(pud))
1916 			continue;
1917 		ret = unuse_pmd_range(vma, pud, addr, next, type,
1918 				      frontswap, fs_pages_to_unuse);
1919 		if (ret)
1920 			return ret;
1921 	} while (pud++, addr = next, addr != end);
1922 	return 0;
1923 }
1924 
1925 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1926 				unsigned long addr, unsigned long end,
1927 				unsigned int type, bool frontswap,
1928 				unsigned long *fs_pages_to_unuse)
1929 {
1930 	p4d_t *p4d;
1931 	unsigned long next;
1932 	int ret;
1933 
1934 	p4d = p4d_offset(pgd, addr);
1935 	do {
1936 		next = p4d_addr_end(addr, end);
1937 		if (p4d_none_or_clear_bad(p4d))
1938 			continue;
1939 		ret = unuse_pud_range(vma, p4d, addr, next, type,
1940 				      frontswap, fs_pages_to_unuse);
1941 		if (ret)
1942 			return ret;
1943 	} while (p4d++, addr = next, addr != end);
1944 	return 0;
1945 }
1946 
1947 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
1948 		     bool frontswap, unsigned long *fs_pages_to_unuse)
1949 {
1950 	pgd_t *pgd;
1951 	unsigned long addr, end, next;
1952 	int ret;
1953 
1954 	addr = vma->vm_start;
1955 	end = vma->vm_end;
1956 
1957 	pgd = pgd_offset(vma->vm_mm, addr);
1958 	do {
1959 		next = pgd_addr_end(addr, end);
1960 		if (pgd_none_or_clear_bad(pgd))
1961 			continue;
1962 		ret = unuse_p4d_range(vma, pgd, addr, next, type,
1963 				      frontswap, fs_pages_to_unuse);
1964 		if (ret)
1965 			return ret;
1966 	} while (pgd++, addr = next, addr != end);
1967 	return 0;
1968 }
1969 
1970 static int unuse_mm(struct mm_struct *mm, unsigned int type,
1971 		    bool frontswap, unsigned long *fs_pages_to_unuse)
1972 {
1973 	struct vm_area_struct *vma;
1974 	int ret = 0;
1975 
1976 	down_read(&mm->mmap_sem);
1977 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1978 		if (vma->anon_vma) {
1979 			ret = unuse_vma(vma, type, frontswap,
1980 					fs_pages_to_unuse);
1981 			if (ret)
1982 				break;
1983 		}
1984 		cond_resched();
1985 	}
1986 	up_read(&mm->mmap_sem);
1987 	return ret;
1988 }
1989 
1990 /*
1991  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1992  * from current position to next entry still in use. Return 0
1993  * if there are no inuse entries after prev till end of the map.
1994  */
1995 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1996 					unsigned int prev, bool frontswap)
1997 {
1998 	unsigned int i;
1999 	unsigned char count;
2000 
2001 	/*
2002 	 * No need for swap_lock here: we're just looking
2003 	 * for whether an entry is in use, not modifying it; false
2004 	 * hits are okay, and sys_swapoff() has already prevented new
2005 	 * allocations from this area (while holding swap_lock).
2006 	 */
2007 	for (i = prev + 1; i < si->max; i++) {
2008 		count = READ_ONCE(si->swap_map[i]);
2009 		if (count && swap_count(count) != SWAP_MAP_BAD)
2010 			if (!frontswap || frontswap_test(si, i))
2011 				break;
2012 		if ((i % LATENCY_LIMIT) == 0)
2013 			cond_resched();
2014 	}
2015 
2016 	if (i == si->max)
2017 		i = 0;
2018 
2019 	return i;
2020 }
2021 
2022 /*
2023  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2024  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2025  */
2026 int try_to_unuse(unsigned int type, bool frontswap,
2027 		 unsigned long pages_to_unuse)
2028 {
2029 	struct mm_struct *prev_mm;
2030 	struct mm_struct *mm;
2031 	struct list_head *p;
2032 	int retval = 0;
2033 	struct swap_info_struct *si = swap_info[type];
2034 	struct page *page;
2035 	swp_entry_t entry;
2036 	unsigned int i;
2037 
2038 	if (!si->inuse_pages)
2039 		return 0;
2040 
2041 	if (!frontswap)
2042 		pages_to_unuse = 0;
2043 
2044 retry:
2045 	retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2046 	if (retval)
2047 		goto out;
2048 
2049 	prev_mm = &init_mm;
2050 	mmget(prev_mm);
2051 
2052 	spin_lock(&mmlist_lock);
2053 	p = &init_mm.mmlist;
2054 	while (si->inuse_pages &&
2055 	       !signal_pending(current) &&
2056 	       (p = p->next) != &init_mm.mmlist) {
2057 
2058 		mm = list_entry(p, struct mm_struct, mmlist);
2059 		if (!mmget_not_zero(mm))
2060 			continue;
2061 		spin_unlock(&mmlist_lock);
2062 		mmput(prev_mm);
2063 		prev_mm = mm;
2064 		retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2065 
2066 		if (retval) {
2067 			mmput(prev_mm);
2068 			goto out;
2069 		}
2070 
2071 		/*
2072 		 * Make sure that we aren't completely killing
2073 		 * interactive performance.
2074 		 */
2075 		cond_resched();
2076 		spin_lock(&mmlist_lock);
2077 	}
2078 	spin_unlock(&mmlist_lock);
2079 
2080 	mmput(prev_mm);
2081 
2082 	i = 0;
2083 	while (si->inuse_pages &&
2084 	       !signal_pending(current) &&
2085 	       (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2086 
2087 		entry = swp_entry(type, i);
2088 		page = find_get_page(swap_address_space(entry), i);
2089 		if (!page)
2090 			continue;
2091 
2092 		/*
2093 		 * It is conceivable that a racing task removed this page from
2094 		 * swap cache just before we acquired the page lock. The page
2095 		 * might even be back in swap cache on another swap area. But
2096 		 * that is okay, try_to_free_swap() only removes stale pages.
2097 		 */
2098 		lock_page(page);
2099 		wait_on_page_writeback(page);
2100 		try_to_free_swap(page);
2101 		unlock_page(page);
2102 		put_page(page);
2103 
2104 		/*
2105 		 * For frontswap, we just need to unuse pages_to_unuse, if
2106 		 * it was specified. Need not check frontswap again here as
2107 		 * we already zeroed out pages_to_unuse if not frontswap.
2108 		 */
2109 		if (pages_to_unuse && --pages_to_unuse == 0)
2110 			goto out;
2111 	}
2112 
2113 	/*
2114 	 * Lets check again to see if there are still swap entries in the map.
2115 	 * If yes, we would need to do retry the unuse logic again.
2116 	 * Under global memory pressure, swap entries can be reinserted back
2117 	 * into process space after the mmlist loop above passes over them.
2118 	 *
2119 	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2120 	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2121 	 * at its own independent pace; and even shmem_writepage() could have
2122 	 * been preempted after get_swap_page(), temporarily hiding that swap.
2123 	 * It's easy and robust (though cpu-intensive) just to keep retrying.
2124 	 */
2125 	if (si->inuse_pages) {
2126 		if (!signal_pending(current))
2127 			goto retry;
2128 		retval = -EINTR;
2129 	}
2130 out:
2131 	return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2132 }
2133 
2134 /*
2135  * After a successful try_to_unuse, if no swap is now in use, we know
2136  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2137  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2138  * added to the mmlist just after page_duplicate - before would be racy.
2139  */
2140 static void drain_mmlist(void)
2141 {
2142 	struct list_head *p, *next;
2143 	unsigned int type;
2144 
2145 	for (type = 0; type < nr_swapfiles; type++)
2146 		if (swap_info[type]->inuse_pages)
2147 			return;
2148 	spin_lock(&mmlist_lock);
2149 	list_for_each_safe(p, next, &init_mm.mmlist)
2150 		list_del_init(p);
2151 	spin_unlock(&mmlist_lock);
2152 }
2153 
2154 /*
2155  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2156  * corresponds to page offset for the specified swap entry.
2157  * Note that the type of this function is sector_t, but it returns page offset
2158  * into the bdev, not sector offset.
2159  */
2160 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2161 {
2162 	struct swap_info_struct *sis;
2163 	struct swap_extent *start_se;
2164 	struct swap_extent *se;
2165 	pgoff_t offset;
2166 
2167 	sis = swp_swap_info(entry);
2168 	*bdev = sis->bdev;
2169 
2170 	offset = swp_offset(entry);
2171 	start_se = sis->curr_swap_extent;
2172 	se = start_se;
2173 
2174 	for ( ; ; ) {
2175 		if (se->start_page <= offset &&
2176 				offset < (se->start_page + se->nr_pages)) {
2177 			return se->start_block + (offset - se->start_page);
2178 		}
2179 		se = list_next_entry(se, list);
2180 		sis->curr_swap_extent = se;
2181 		BUG_ON(se == start_se);		/* It *must* be present */
2182 	}
2183 }
2184 
2185 /*
2186  * Returns the page offset into bdev for the specified page's swap entry.
2187  */
2188 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2189 {
2190 	swp_entry_t entry;
2191 	entry.val = page_private(page);
2192 	return map_swap_entry(entry, bdev);
2193 }
2194 
2195 /*
2196  * Free all of a swapdev's extent information
2197  */
2198 static void destroy_swap_extents(struct swap_info_struct *sis)
2199 {
2200 	while (!list_empty(&sis->first_swap_extent.list)) {
2201 		struct swap_extent *se;
2202 
2203 		se = list_first_entry(&sis->first_swap_extent.list,
2204 				struct swap_extent, list);
2205 		list_del(&se->list);
2206 		kfree(se);
2207 	}
2208 
2209 	if (sis->flags & SWP_ACTIVATED) {
2210 		struct file *swap_file = sis->swap_file;
2211 		struct address_space *mapping = swap_file->f_mapping;
2212 
2213 		sis->flags &= ~SWP_ACTIVATED;
2214 		if (mapping->a_ops->swap_deactivate)
2215 			mapping->a_ops->swap_deactivate(swap_file);
2216 	}
2217 }
2218 
2219 /*
2220  * Add a block range (and the corresponding page range) into this swapdev's
2221  * extent list.  The extent list is kept sorted in page order.
2222  *
2223  * This function rather assumes that it is called in ascending page order.
2224  */
2225 int
2226 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2227 		unsigned long nr_pages, sector_t start_block)
2228 {
2229 	struct swap_extent *se;
2230 	struct swap_extent *new_se;
2231 	struct list_head *lh;
2232 
2233 	if (start_page == 0) {
2234 		se = &sis->first_swap_extent;
2235 		sis->curr_swap_extent = se;
2236 		se->start_page = 0;
2237 		se->nr_pages = nr_pages;
2238 		se->start_block = start_block;
2239 		return 1;
2240 	} else {
2241 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
2242 		se = list_entry(lh, struct swap_extent, list);
2243 		BUG_ON(se->start_page + se->nr_pages != start_page);
2244 		if (se->start_block + se->nr_pages == start_block) {
2245 			/* Merge it */
2246 			se->nr_pages += nr_pages;
2247 			return 0;
2248 		}
2249 	}
2250 
2251 	/*
2252 	 * No merge.  Insert a new extent, preserving ordering.
2253 	 */
2254 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2255 	if (new_se == NULL)
2256 		return -ENOMEM;
2257 	new_se->start_page = start_page;
2258 	new_se->nr_pages = nr_pages;
2259 	new_se->start_block = start_block;
2260 
2261 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2262 	return 1;
2263 }
2264 EXPORT_SYMBOL_GPL(add_swap_extent);
2265 
2266 /*
2267  * A `swap extent' is a simple thing which maps a contiguous range of pages
2268  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2269  * is built at swapon time and is then used at swap_writepage/swap_readpage
2270  * time for locating where on disk a page belongs.
2271  *
2272  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2273  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2274  * swap files identically.
2275  *
2276  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2277  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2278  * swapfiles are handled *identically* after swapon time.
2279  *
2280  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2281  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2282  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2283  * requirements, they are simply tossed out - we will never use those blocks
2284  * for swapping.
2285  *
2286  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2287  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2288  * which will scribble on the fs.
2289  *
2290  * The amount of disk space which a single swap extent represents varies.
2291  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2292  * extents in the list.  To avoid much list walking, we cache the previous
2293  * search location in `curr_swap_extent', and start new searches from there.
2294  * This is extremely effective.  The average number of iterations in
2295  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2296  */
2297 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2298 {
2299 	struct file *swap_file = sis->swap_file;
2300 	struct address_space *mapping = swap_file->f_mapping;
2301 	struct inode *inode = mapping->host;
2302 	int ret;
2303 
2304 	if (S_ISBLK(inode->i_mode)) {
2305 		ret = add_swap_extent(sis, 0, sis->max, 0);
2306 		*span = sis->pages;
2307 		return ret;
2308 	}
2309 
2310 	if (mapping->a_ops->swap_activate) {
2311 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2312 		if (ret >= 0)
2313 			sis->flags |= SWP_ACTIVATED;
2314 		if (!ret) {
2315 			sis->flags |= SWP_FS;
2316 			ret = add_swap_extent(sis, 0, sis->max, 0);
2317 			*span = sis->pages;
2318 		}
2319 		return ret;
2320 	}
2321 
2322 	return generic_swapfile_activate(sis, swap_file, span);
2323 }
2324 
2325 static int swap_node(struct swap_info_struct *p)
2326 {
2327 	struct block_device *bdev;
2328 
2329 	if (p->bdev)
2330 		bdev = p->bdev;
2331 	else
2332 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2333 
2334 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2335 }
2336 
2337 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2338 				unsigned char *swap_map,
2339 				struct swap_cluster_info *cluster_info)
2340 {
2341 	int i;
2342 
2343 	if (prio >= 0)
2344 		p->prio = prio;
2345 	else
2346 		p->prio = --least_priority;
2347 	/*
2348 	 * the plist prio is negated because plist ordering is
2349 	 * low-to-high, while swap ordering is high-to-low
2350 	 */
2351 	p->list.prio = -p->prio;
2352 	for_each_node(i) {
2353 		if (p->prio >= 0)
2354 			p->avail_lists[i].prio = -p->prio;
2355 		else {
2356 			if (swap_node(p) == i)
2357 				p->avail_lists[i].prio = 1;
2358 			else
2359 				p->avail_lists[i].prio = -p->prio;
2360 		}
2361 	}
2362 	p->swap_map = swap_map;
2363 	p->cluster_info = cluster_info;
2364 	p->flags |= SWP_WRITEOK;
2365 	atomic_long_add(p->pages, &nr_swap_pages);
2366 	total_swap_pages += p->pages;
2367 
2368 	assert_spin_locked(&swap_lock);
2369 	/*
2370 	 * both lists are plists, and thus priority ordered.
2371 	 * swap_active_head needs to be priority ordered for swapoff(),
2372 	 * which on removal of any swap_info_struct with an auto-assigned
2373 	 * (i.e. negative) priority increments the auto-assigned priority
2374 	 * of any lower-priority swap_info_structs.
2375 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2376 	 * which allocates swap pages from the highest available priority
2377 	 * swap_info_struct.
2378 	 */
2379 	plist_add(&p->list, &swap_active_head);
2380 	add_to_avail_list(p);
2381 }
2382 
2383 static void enable_swap_info(struct swap_info_struct *p, int prio,
2384 				unsigned char *swap_map,
2385 				struct swap_cluster_info *cluster_info,
2386 				unsigned long *frontswap_map)
2387 {
2388 	frontswap_init(p->type, frontswap_map);
2389 	spin_lock(&swap_lock);
2390 	spin_lock(&p->lock);
2391 	 _enable_swap_info(p, prio, swap_map, cluster_info);
2392 	spin_unlock(&p->lock);
2393 	spin_unlock(&swap_lock);
2394 }
2395 
2396 static void reinsert_swap_info(struct swap_info_struct *p)
2397 {
2398 	spin_lock(&swap_lock);
2399 	spin_lock(&p->lock);
2400 	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2401 	spin_unlock(&p->lock);
2402 	spin_unlock(&swap_lock);
2403 }
2404 
2405 bool has_usable_swap(void)
2406 {
2407 	bool ret = true;
2408 
2409 	spin_lock(&swap_lock);
2410 	if (plist_head_empty(&swap_active_head))
2411 		ret = false;
2412 	spin_unlock(&swap_lock);
2413 	return ret;
2414 }
2415 
2416 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2417 {
2418 	struct swap_info_struct *p = NULL;
2419 	unsigned char *swap_map;
2420 	struct swap_cluster_info *cluster_info;
2421 	unsigned long *frontswap_map;
2422 	struct file *swap_file, *victim;
2423 	struct address_space *mapping;
2424 	struct inode *inode;
2425 	struct filename *pathname;
2426 	int err, found = 0;
2427 	unsigned int old_block_size;
2428 
2429 	if (!capable(CAP_SYS_ADMIN))
2430 		return -EPERM;
2431 
2432 	BUG_ON(!current->mm);
2433 
2434 	pathname = getname(specialfile);
2435 	if (IS_ERR(pathname))
2436 		return PTR_ERR(pathname);
2437 
2438 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2439 	err = PTR_ERR(victim);
2440 	if (IS_ERR(victim))
2441 		goto out;
2442 
2443 	mapping = victim->f_mapping;
2444 	spin_lock(&swap_lock);
2445 	plist_for_each_entry(p, &swap_active_head, list) {
2446 		if (p->flags & SWP_WRITEOK) {
2447 			if (p->swap_file->f_mapping == mapping) {
2448 				found = 1;
2449 				break;
2450 			}
2451 		}
2452 	}
2453 	if (!found) {
2454 		err = -EINVAL;
2455 		spin_unlock(&swap_lock);
2456 		goto out_dput;
2457 	}
2458 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2459 		vm_unacct_memory(p->pages);
2460 	else {
2461 		err = -ENOMEM;
2462 		spin_unlock(&swap_lock);
2463 		goto out_dput;
2464 	}
2465 	del_from_avail_list(p);
2466 	spin_lock(&p->lock);
2467 	if (p->prio < 0) {
2468 		struct swap_info_struct *si = p;
2469 		int nid;
2470 
2471 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2472 			si->prio++;
2473 			si->list.prio--;
2474 			for_each_node(nid) {
2475 				if (si->avail_lists[nid].prio != 1)
2476 					si->avail_lists[nid].prio--;
2477 			}
2478 		}
2479 		least_priority++;
2480 	}
2481 	plist_del(&p->list, &swap_active_head);
2482 	atomic_long_sub(p->pages, &nr_swap_pages);
2483 	total_swap_pages -= p->pages;
2484 	p->flags &= ~SWP_WRITEOK;
2485 	spin_unlock(&p->lock);
2486 	spin_unlock(&swap_lock);
2487 
2488 	disable_swap_slots_cache_lock();
2489 
2490 	set_current_oom_origin();
2491 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2492 	clear_current_oom_origin();
2493 
2494 	if (err) {
2495 		/* re-insert swap space back into swap_list */
2496 		reinsert_swap_info(p);
2497 		reenable_swap_slots_cache_unlock();
2498 		goto out_dput;
2499 	}
2500 
2501 	reenable_swap_slots_cache_unlock();
2502 
2503 	flush_work(&p->discard_work);
2504 
2505 	destroy_swap_extents(p);
2506 	if (p->flags & SWP_CONTINUED)
2507 		free_swap_count_continuations(p);
2508 
2509 	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2510 		atomic_dec(&nr_rotate_swap);
2511 
2512 	mutex_lock(&swapon_mutex);
2513 	spin_lock(&swap_lock);
2514 	spin_lock(&p->lock);
2515 	drain_mmlist();
2516 
2517 	/* wait for anyone still in scan_swap_map */
2518 	p->highest_bit = 0;		/* cuts scans short */
2519 	while (p->flags >= SWP_SCANNING) {
2520 		spin_unlock(&p->lock);
2521 		spin_unlock(&swap_lock);
2522 		schedule_timeout_uninterruptible(1);
2523 		spin_lock(&swap_lock);
2524 		spin_lock(&p->lock);
2525 	}
2526 
2527 	swap_file = p->swap_file;
2528 	old_block_size = p->old_block_size;
2529 	p->swap_file = NULL;
2530 	p->max = 0;
2531 	swap_map = p->swap_map;
2532 	p->swap_map = NULL;
2533 	cluster_info = p->cluster_info;
2534 	p->cluster_info = NULL;
2535 	frontswap_map = frontswap_map_get(p);
2536 	spin_unlock(&p->lock);
2537 	spin_unlock(&swap_lock);
2538 	frontswap_invalidate_area(p->type);
2539 	frontswap_map_set(p, NULL);
2540 	mutex_unlock(&swapon_mutex);
2541 	free_percpu(p->percpu_cluster);
2542 	p->percpu_cluster = NULL;
2543 	vfree(swap_map);
2544 	kvfree(cluster_info);
2545 	kvfree(frontswap_map);
2546 	/* Destroy swap account information */
2547 	swap_cgroup_swapoff(p->type);
2548 	exit_swap_address_space(p->type);
2549 
2550 	inode = mapping->host;
2551 	if (S_ISBLK(inode->i_mode)) {
2552 		struct block_device *bdev = I_BDEV(inode);
2553 		set_blocksize(bdev, old_block_size);
2554 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2555 	} else {
2556 		inode_lock(inode);
2557 		inode->i_flags &= ~S_SWAPFILE;
2558 		inode_unlock(inode);
2559 	}
2560 	filp_close(swap_file, NULL);
2561 
2562 	/*
2563 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2564 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2565 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2566 	 */
2567 	spin_lock(&swap_lock);
2568 	p->flags = 0;
2569 	spin_unlock(&swap_lock);
2570 
2571 	err = 0;
2572 	atomic_inc(&proc_poll_event);
2573 	wake_up_interruptible(&proc_poll_wait);
2574 
2575 out_dput:
2576 	filp_close(victim, NULL);
2577 out:
2578 	putname(pathname);
2579 	return err;
2580 }
2581 
2582 #ifdef CONFIG_PROC_FS
2583 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2584 {
2585 	struct seq_file *seq = file->private_data;
2586 
2587 	poll_wait(file, &proc_poll_wait, wait);
2588 
2589 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2590 		seq->poll_event = atomic_read(&proc_poll_event);
2591 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2592 	}
2593 
2594 	return EPOLLIN | EPOLLRDNORM;
2595 }
2596 
2597 /* iterator */
2598 static void *swap_start(struct seq_file *swap, loff_t *pos)
2599 {
2600 	struct swap_info_struct *si;
2601 	int type;
2602 	loff_t l = *pos;
2603 
2604 	mutex_lock(&swapon_mutex);
2605 
2606 	if (!l)
2607 		return SEQ_START_TOKEN;
2608 
2609 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2610 		if (!(si->flags & SWP_USED) || !si->swap_map)
2611 			continue;
2612 		if (!--l)
2613 			return si;
2614 	}
2615 
2616 	return NULL;
2617 }
2618 
2619 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2620 {
2621 	struct swap_info_struct *si = v;
2622 	int type;
2623 
2624 	if (v == SEQ_START_TOKEN)
2625 		type = 0;
2626 	else
2627 		type = si->type + 1;
2628 
2629 	for (; (si = swap_type_to_swap_info(type)); type++) {
2630 		if (!(si->flags & SWP_USED) || !si->swap_map)
2631 			continue;
2632 		++*pos;
2633 		return si;
2634 	}
2635 
2636 	return NULL;
2637 }
2638 
2639 static void swap_stop(struct seq_file *swap, void *v)
2640 {
2641 	mutex_unlock(&swapon_mutex);
2642 }
2643 
2644 static int swap_show(struct seq_file *swap, void *v)
2645 {
2646 	struct swap_info_struct *si = v;
2647 	struct file *file;
2648 	int len;
2649 
2650 	if (si == SEQ_START_TOKEN) {
2651 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2652 		return 0;
2653 	}
2654 
2655 	file = si->swap_file;
2656 	len = seq_file_path(swap, file, " \t\n\\");
2657 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2658 			len < 40 ? 40 - len : 1, " ",
2659 			S_ISBLK(file_inode(file)->i_mode) ?
2660 				"partition" : "file\t",
2661 			si->pages << (PAGE_SHIFT - 10),
2662 			si->inuse_pages << (PAGE_SHIFT - 10),
2663 			si->prio);
2664 	return 0;
2665 }
2666 
2667 static const struct seq_operations swaps_op = {
2668 	.start =	swap_start,
2669 	.next =		swap_next,
2670 	.stop =		swap_stop,
2671 	.show =		swap_show
2672 };
2673 
2674 static int swaps_open(struct inode *inode, struct file *file)
2675 {
2676 	struct seq_file *seq;
2677 	int ret;
2678 
2679 	ret = seq_open(file, &swaps_op);
2680 	if (ret)
2681 		return ret;
2682 
2683 	seq = file->private_data;
2684 	seq->poll_event = atomic_read(&proc_poll_event);
2685 	return 0;
2686 }
2687 
2688 static const struct file_operations proc_swaps_operations = {
2689 	.open		= swaps_open,
2690 	.read		= seq_read,
2691 	.llseek		= seq_lseek,
2692 	.release	= seq_release,
2693 	.poll		= swaps_poll,
2694 };
2695 
2696 static int __init procswaps_init(void)
2697 {
2698 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2699 	return 0;
2700 }
2701 __initcall(procswaps_init);
2702 #endif /* CONFIG_PROC_FS */
2703 
2704 #ifdef MAX_SWAPFILES_CHECK
2705 static int __init max_swapfiles_check(void)
2706 {
2707 	MAX_SWAPFILES_CHECK();
2708 	return 0;
2709 }
2710 late_initcall(max_swapfiles_check);
2711 #endif
2712 
2713 static struct swap_info_struct *alloc_swap_info(void)
2714 {
2715 	struct swap_info_struct *p;
2716 	unsigned int type;
2717 	int i;
2718 
2719 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2720 	if (!p)
2721 		return ERR_PTR(-ENOMEM);
2722 
2723 	spin_lock(&swap_lock);
2724 	for (type = 0; type < nr_swapfiles; type++) {
2725 		if (!(swap_info[type]->flags & SWP_USED))
2726 			break;
2727 	}
2728 	if (type >= MAX_SWAPFILES) {
2729 		spin_unlock(&swap_lock);
2730 		kvfree(p);
2731 		return ERR_PTR(-EPERM);
2732 	}
2733 	if (type >= nr_swapfiles) {
2734 		p->type = type;
2735 		WRITE_ONCE(swap_info[type], p);
2736 		/*
2737 		 * Write swap_info[type] before nr_swapfiles, in case a
2738 		 * racing procfs swap_start() or swap_next() is reading them.
2739 		 * (We never shrink nr_swapfiles, we never free this entry.)
2740 		 */
2741 		smp_wmb();
2742 		WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2743 	} else {
2744 		kvfree(p);
2745 		p = swap_info[type];
2746 		/*
2747 		 * Do not memset this entry: a racing procfs swap_next()
2748 		 * would be relying on p->type to remain valid.
2749 		 */
2750 	}
2751 	INIT_LIST_HEAD(&p->first_swap_extent.list);
2752 	plist_node_init(&p->list, 0);
2753 	for_each_node(i)
2754 		plist_node_init(&p->avail_lists[i], 0);
2755 	p->flags = SWP_USED;
2756 	spin_unlock(&swap_lock);
2757 	spin_lock_init(&p->lock);
2758 	spin_lock_init(&p->cont_lock);
2759 
2760 	return p;
2761 }
2762 
2763 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2764 {
2765 	int error;
2766 
2767 	if (S_ISBLK(inode->i_mode)) {
2768 		p->bdev = bdgrab(I_BDEV(inode));
2769 		error = blkdev_get(p->bdev,
2770 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2771 		if (error < 0) {
2772 			p->bdev = NULL;
2773 			return error;
2774 		}
2775 		p->old_block_size = block_size(p->bdev);
2776 		error = set_blocksize(p->bdev, PAGE_SIZE);
2777 		if (error < 0)
2778 			return error;
2779 		p->flags |= SWP_BLKDEV;
2780 	} else if (S_ISREG(inode->i_mode)) {
2781 		p->bdev = inode->i_sb->s_bdev;
2782 		inode_lock(inode);
2783 		if (IS_SWAPFILE(inode))
2784 			return -EBUSY;
2785 	} else
2786 		return -EINVAL;
2787 
2788 	return 0;
2789 }
2790 
2791 
2792 /*
2793  * Find out how many pages are allowed for a single swap device. There
2794  * are two limiting factors:
2795  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2796  * 2) the number of bits in the swap pte, as defined by the different
2797  * architectures.
2798  *
2799  * In order to find the largest possible bit mask, a swap entry with
2800  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2801  * decoded to a swp_entry_t again, and finally the swap offset is
2802  * extracted.
2803  *
2804  * This will mask all the bits from the initial ~0UL mask that can't
2805  * be encoded in either the swp_entry_t or the architecture definition
2806  * of a swap pte.
2807  */
2808 unsigned long generic_max_swapfile_size(void)
2809 {
2810 	return swp_offset(pte_to_swp_entry(
2811 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2812 }
2813 
2814 /* Can be overridden by an architecture for additional checks. */
2815 __weak unsigned long max_swapfile_size(void)
2816 {
2817 	return generic_max_swapfile_size();
2818 }
2819 
2820 static unsigned long read_swap_header(struct swap_info_struct *p,
2821 					union swap_header *swap_header,
2822 					struct inode *inode)
2823 {
2824 	int i;
2825 	unsigned long maxpages;
2826 	unsigned long swapfilepages;
2827 	unsigned long last_page;
2828 
2829 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2830 		pr_err("Unable to find swap-space signature\n");
2831 		return 0;
2832 	}
2833 
2834 	/* swap partition endianess hack... */
2835 	if (swab32(swap_header->info.version) == 1) {
2836 		swab32s(&swap_header->info.version);
2837 		swab32s(&swap_header->info.last_page);
2838 		swab32s(&swap_header->info.nr_badpages);
2839 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2840 			return 0;
2841 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2842 			swab32s(&swap_header->info.badpages[i]);
2843 	}
2844 	/* Check the swap header's sub-version */
2845 	if (swap_header->info.version != 1) {
2846 		pr_warn("Unable to handle swap header version %d\n",
2847 			swap_header->info.version);
2848 		return 0;
2849 	}
2850 
2851 	p->lowest_bit  = 1;
2852 	p->cluster_next = 1;
2853 	p->cluster_nr = 0;
2854 
2855 	maxpages = max_swapfile_size();
2856 	last_page = swap_header->info.last_page;
2857 	if (!last_page) {
2858 		pr_warn("Empty swap-file\n");
2859 		return 0;
2860 	}
2861 	if (last_page > maxpages) {
2862 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2863 			maxpages << (PAGE_SHIFT - 10),
2864 			last_page << (PAGE_SHIFT - 10));
2865 	}
2866 	if (maxpages > last_page) {
2867 		maxpages = last_page + 1;
2868 		/* p->max is an unsigned int: don't overflow it */
2869 		if ((unsigned int)maxpages == 0)
2870 			maxpages = UINT_MAX;
2871 	}
2872 	p->highest_bit = maxpages - 1;
2873 
2874 	if (!maxpages)
2875 		return 0;
2876 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2877 	if (swapfilepages && maxpages > swapfilepages) {
2878 		pr_warn("Swap area shorter than signature indicates\n");
2879 		return 0;
2880 	}
2881 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2882 		return 0;
2883 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2884 		return 0;
2885 
2886 	return maxpages;
2887 }
2888 
2889 #define SWAP_CLUSTER_INFO_COLS						\
2890 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2891 #define SWAP_CLUSTER_SPACE_COLS						\
2892 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2893 #define SWAP_CLUSTER_COLS						\
2894 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2895 
2896 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2897 					union swap_header *swap_header,
2898 					unsigned char *swap_map,
2899 					struct swap_cluster_info *cluster_info,
2900 					unsigned long maxpages,
2901 					sector_t *span)
2902 {
2903 	unsigned int j, k;
2904 	unsigned int nr_good_pages;
2905 	int nr_extents;
2906 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2907 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2908 	unsigned long i, idx;
2909 
2910 	nr_good_pages = maxpages - 1;	/* omit header page */
2911 
2912 	cluster_list_init(&p->free_clusters);
2913 	cluster_list_init(&p->discard_clusters);
2914 
2915 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2916 		unsigned int page_nr = swap_header->info.badpages[i];
2917 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2918 			return -EINVAL;
2919 		if (page_nr < maxpages) {
2920 			swap_map[page_nr] = SWAP_MAP_BAD;
2921 			nr_good_pages--;
2922 			/*
2923 			 * Haven't marked the cluster free yet, no list
2924 			 * operation involved
2925 			 */
2926 			inc_cluster_info_page(p, cluster_info, page_nr);
2927 		}
2928 	}
2929 
2930 	/* Haven't marked the cluster free yet, no list operation involved */
2931 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2932 		inc_cluster_info_page(p, cluster_info, i);
2933 
2934 	if (nr_good_pages) {
2935 		swap_map[0] = SWAP_MAP_BAD;
2936 		/*
2937 		 * Not mark the cluster free yet, no list
2938 		 * operation involved
2939 		 */
2940 		inc_cluster_info_page(p, cluster_info, 0);
2941 		p->max = maxpages;
2942 		p->pages = nr_good_pages;
2943 		nr_extents = setup_swap_extents(p, span);
2944 		if (nr_extents < 0)
2945 			return nr_extents;
2946 		nr_good_pages = p->pages;
2947 	}
2948 	if (!nr_good_pages) {
2949 		pr_warn("Empty swap-file\n");
2950 		return -EINVAL;
2951 	}
2952 
2953 	if (!cluster_info)
2954 		return nr_extents;
2955 
2956 
2957 	/*
2958 	 * Reduce false cache line sharing between cluster_info and
2959 	 * sharing same address space.
2960 	 */
2961 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2962 		j = (k + col) % SWAP_CLUSTER_COLS;
2963 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2964 			idx = i * SWAP_CLUSTER_COLS + j;
2965 			if (idx >= nr_clusters)
2966 				continue;
2967 			if (cluster_count(&cluster_info[idx]))
2968 				continue;
2969 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2970 			cluster_list_add_tail(&p->free_clusters, cluster_info,
2971 					      idx);
2972 		}
2973 	}
2974 	return nr_extents;
2975 }
2976 
2977 /*
2978  * Helper to sys_swapon determining if a given swap
2979  * backing device queue supports DISCARD operations.
2980  */
2981 static bool swap_discardable(struct swap_info_struct *si)
2982 {
2983 	struct request_queue *q = bdev_get_queue(si->bdev);
2984 
2985 	if (!q || !blk_queue_discard(q))
2986 		return false;
2987 
2988 	return true;
2989 }
2990 
2991 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2992 {
2993 	struct swap_info_struct *p;
2994 	struct filename *name;
2995 	struct file *swap_file = NULL;
2996 	struct address_space *mapping;
2997 	int prio;
2998 	int error;
2999 	union swap_header *swap_header;
3000 	int nr_extents;
3001 	sector_t span;
3002 	unsigned long maxpages;
3003 	unsigned char *swap_map = NULL;
3004 	struct swap_cluster_info *cluster_info = NULL;
3005 	unsigned long *frontswap_map = NULL;
3006 	struct page *page = NULL;
3007 	struct inode *inode = NULL;
3008 	bool inced_nr_rotate_swap = false;
3009 
3010 	if (swap_flags & ~SWAP_FLAGS_VALID)
3011 		return -EINVAL;
3012 
3013 	if (!capable(CAP_SYS_ADMIN))
3014 		return -EPERM;
3015 
3016 	if (!swap_avail_heads)
3017 		return -ENOMEM;
3018 
3019 	p = alloc_swap_info();
3020 	if (IS_ERR(p))
3021 		return PTR_ERR(p);
3022 
3023 	INIT_WORK(&p->discard_work, swap_discard_work);
3024 
3025 	name = getname(specialfile);
3026 	if (IS_ERR(name)) {
3027 		error = PTR_ERR(name);
3028 		name = NULL;
3029 		goto bad_swap;
3030 	}
3031 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3032 	if (IS_ERR(swap_file)) {
3033 		error = PTR_ERR(swap_file);
3034 		swap_file = NULL;
3035 		goto bad_swap;
3036 	}
3037 
3038 	p->swap_file = swap_file;
3039 	mapping = swap_file->f_mapping;
3040 	inode = mapping->host;
3041 
3042 	/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3043 	error = claim_swapfile(p, inode);
3044 	if (unlikely(error))
3045 		goto bad_swap;
3046 
3047 	/*
3048 	 * Read the swap header.
3049 	 */
3050 	if (!mapping->a_ops->readpage) {
3051 		error = -EINVAL;
3052 		goto bad_swap;
3053 	}
3054 	page = read_mapping_page(mapping, 0, swap_file);
3055 	if (IS_ERR(page)) {
3056 		error = PTR_ERR(page);
3057 		goto bad_swap;
3058 	}
3059 	swap_header = kmap(page);
3060 
3061 	maxpages = read_swap_header(p, swap_header, inode);
3062 	if (unlikely(!maxpages)) {
3063 		error = -EINVAL;
3064 		goto bad_swap;
3065 	}
3066 
3067 	/* OK, set up the swap map and apply the bad block list */
3068 	swap_map = vzalloc(maxpages);
3069 	if (!swap_map) {
3070 		error = -ENOMEM;
3071 		goto bad_swap;
3072 	}
3073 
3074 	if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3075 		p->flags |= SWP_STABLE_WRITES;
3076 
3077 	if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3078 		p->flags |= SWP_SYNCHRONOUS_IO;
3079 
3080 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3081 		int cpu;
3082 		unsigned long ci, nr_cluster;
3083 
3084 		p->flags |= SWP_SOLIDSTATE;
3085 		/*
3086 		 * select a random position to start with to help wear leveling
3087 		 * SSD
3088 		 */
3089 		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3090 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3091 
3092 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3093 					GFP_KERNEL);
3094 		if (!cluster_info) {
3095 			error = -ENOMEM;
3096 			goto bad_swap;
3097 		}
3098 
3099 		for (ci = 0; ci < nr_cluster; ci++)
3100 			spin_lock_init(&((cluster_info + ci)->lock));
3101 
3102 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3103 		if (!p->percpu_cluster) {
3104 			error = -ENOMEM;
3105 			goto bad_swap;
3106 		}
3107 		for_each_possible_cpu(cpu) {
3108 			struct percpu_cluster *cluster;
3109 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3110 			cluster_set_null(&cluster->index);
3111 		}
3112 	} else {
3113 		atomic_inc(&nr_rotate_swap);
3114 		inced_nr_rotate_swap = true;
3115 	}
3116 
3117 	error = swap_cgroup_swapon(p->type, maxpages);
3118 	if (error)
3119 		goto bad_swap;
3120 
3121 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3122 		cluster_info, maxpages, &span);
3123 	if (unlikely(nr_extents < 0)) {
3124 		error = nr_extents;
3125 		goto bad_swap;
3126 	}
3127 	/* frontswap enabled? set up bit-per-page map for frontswap */
3128 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3129 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3130 					 sizeof(long),
3131 					 GFP_KERNEL);
3132 
3133 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3134 		/*
3135 		 * When discard is enabled for swap with no particular
3136 		 * policy flagged, we set all swap discard flags here in
3137 		 * order to sustain backward compatibility with older
3138 		 * swapon(8) releases.
3139 		 */
3140 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3141 			     SWP_PAGE_DISCARD);
3142 
3143 		/*
3144 		 * By flagging sys_swapon, a sysadmin can tell us to
3145 		 * either do single-time area discards only, or to just
3146 		 * perform discards for released swap page-clusters.
3147 		 * Now it's time to adjust the p->flags accordingly.
3148 		 */
3149 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3150 			p->flags &= ~SWP_PAGE_DISCARD;
3151 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3152 			p->flags &= ~SWP_AREA_DISCARD;
3153 
3154 		/* issue a swapon-time discard if it's still required */
3155 		if (p->flags & SWP_AREA_DISCARD) {
3156 			int err = discard_swap(p);
3157 			if (unlikely(err))
3158 				pr_err("swapon: discard_swap(%p): %d\n",
3159 					p, err);
3160 		}
3161 	}
3162 
3163 	error = init_swap_address_space(p->type, maxpages);
3164 	if (error)
3165 		goto bad_swap;
3166 
3167 	mutex_lock(&swapon_mutex);
3168 	prio = -1;
3169 	if (swap_flags & SWAP_FLAG_PREFER)
3170 		prio =
3171 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3172 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3173 
3174 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3175 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3176 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3177 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3178 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3179 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3180 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3181 		(frontswap_map) ? "FS" : "");
3182 
3183 	mutex_unlock(&swapon_mutex);
3184 	atomic_inc(&proc_poll_event);
3185 	wake_up_interruptible(&proc_poll_wait);
3186 
3187 	if (S_ISREG(inode->i_mode))
3188 		inode->i_flags |= S_SWAPFILE;
3189 	error = 0;
3190 	goto out;
3191 bad_swap:
3192 	free_percpu(p->percpu_cluster);
3193 	p->percpu_cluster = NULL;
3194 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3195 		set_blocksize(p->bdev, p->old_block_size);
3196 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3197 	}
3198 	destroy_swap_extents(p);
3199 	swap_cgroup_swapoff(p->type);
3200 	spin_lock(&swap_lock);
3201 	p->swap_file = NULL;
3202 	p->flags = 0;
3203 	spin_unlock(&swap_lock);
3204 	vfree(swap_map);
3205 	kvfree(cluster_info);
3206 	kvfree(frontswap_map);
3207 	if (inced_nr_rotate_swap)
3208 		atomic_dec(&nr_rotate_swap);
3209 	if (swap_file) {
3210 		if (inode && S_ISREG(inode->i_mode)) {
3211 			inode_unlock(inode);
3212 			inode = NULL;
3213 		}
3214 		filp_close(swap_file, NULL);
3215 	}
3216 out:
3217 	if (page && !IS_ERR(page)) {
3218 		kunmap(page);
3219 		put_page(page);
3220 	}
3221 	if (name)
3222 		putname(name);
3223 	if (inode && S_ISREG(inode->i_mode))
3224 		inode_unlock(inode);
3225 	if (!error)
3226 		enable_swap_slots_cache();
3227 	return error;
3228 }
3229 
3230 void si_swapinfo(struct sysinfo *val)
3231 {
3232 	unsigned int type;
3233 	unsigned long nr_to_be_unused = 0;
3234 
3235 	spin_lock(&swap_lock);
3236 	for (type = 0; type < nr_swapfiles; type++) {
3237 		struct swap_info_struct *si = swap_info[type];
3238 
3239 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3240 			nr_to_be_unused += si->inuse_pages;
3241 	}
3242 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3243 	val->totalswap = total_swap_pages + nr_to_be_unused;
3244 	spin_unlock(&swap_lock);
3245 }
3246 
3247 /*
3248  * Verify that a swap entry is valid and increment its swap map count.
3249  *
3250  * Returns error code in following case.
3251  * - success -> 0
3252  * - swp_entry is invalid -> EINVAL
3253  * - swp_entry is migration entry -> EINVAL
3254  * - swap-cache reference is requested but there is already one. -> EEXIST
3255  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3256  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3257  */
3258 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3259 {
3260 	struct swap_info_struct *p;
3261 	struct swap_cluster_info *ci;
3262 	unsigned long offset;
3263 	unsigned char count;
3264 	unsigned char has_cache;
3265 	int err = -EINVAL;
3266 
3267 	if (non_swap_entry(entry))
3268 		goto out;
3269 
3270 	p = swp_swap_info(entry);
3271 	if (!p)
3272 		goto bad_file;
3273 
3274 	offset = swp_offset(entry);
3275 	if (unlikely(offset >= p->max))
3276 		goto out;
3277 
3278 	ci = lock_cluster_or_swap_info(p, offset);
3279 
3280 	count = p->swap_map[offset];
3281 
3282 	/*
3283 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3284 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3285 	 */
3286 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3287 		err = -ENOENT;
3288 		goto unlock_out;
3289 	}
3290 
3291 	has_cache = count & SWAP_HAS_CACHE;
3292 	count &= ~SWAP_HAS_CACHE;
3293 	err = 0;
3294 
3295 	if (usage == SWAP_HAS_CACHE) {
3296 
3297 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3298 		if (!has_cache && count)
3299 			has_cache = SWAP_HAS_CACHE;
3300 		else if (has_cache)		/* someone else added cache */
3301 			err = -EEXIST;
3302 		else				/* no users remaining */
3303 			err = -ENOENT;
3304 
3305 	} else if (count || has_cache) {
3306 
3307 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3308 			count += usage;
3309 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3310 			err = -EINVAL;
3311 		else if (swap_count_continued(p, offset, count))
3312 			count = COUNT_CONTINUED;
3313 		else
3314 			err = -ENOMEM;
3315 	} else
3316 		err = -ENOENT;			/* unused swap entry */
3317 
3318 	p->swap_map[offset] = count | has_cache;
3319 
3320 unlock_out:
3321 	unlock_cluster_or_swap_info(p, ci);
3322 out:
3323 	return err;
3324 
3325 bad_file:
3326 	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3327 	goto out;
3328 }
3329 
3330 /*
3331  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3332  * (in which case its reference count is never incremented).
3333  */
3334 void swap_shmem_alloc(swp_entry_t entry)
3335 {
3336 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3337 }
3338 
3339 /*
3340  * Increase reference count of swap entry by 1.
3341  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3342  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3343  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3344  * might occur if a page table entry has got corrupted.
3345  */
3346 int swap_duplicate(swp_entry_t entry)
3347 {
3348 	int err = 0;
3349 
3350 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3351 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3352 	return err;
3353 }
3354 
3355 /*
3356  * @entry: swap entry for which we allocate swap cache.
3357  *
3358  * Called when allocating swap cache for existing swap entry,
3359  * This can return error codes. Returns 0 at success.
3360  * -EBUSY means there is a swap cache.
3361  * Note: return code is different from swap_duplicate().
3362  */
3363 int swapcache_prepare(swp_entry_t entry)
3364 {
3365 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3366 }
3367 
3368 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3369 {
3370 	return swap_type_to_swap_info(swp_type(entry));
3371 }
3372 
3373 struct swap_info_struct *page_swap_info(struct page *page)
3374 {
3375 	swp_entry_t entry = { .val = page_private(page) };
3376 	return swp_swap_info(entry);
3377 }
3378 
3379 /*
3380  * out-of-line __page_file_ methods to avoid include hell.
3381  */
3382 struct address_space *__page_file_mapping(struct page *page)
3383 {
3384 	return page_swap_info(page)->swap_file->f_mapping;
3385 }
3386 EXPORT_SYMBOL_GPL(__page_file_mapping);
3387 
3388 pgoff_t __page_file_index(struct page *page)
3389 {
3390 	swp_entry_t swap = { .val = page_private(page) };
3391 	return swp_offset(swap);
3392 }
3393 EXPORT_SYMBOL_GPL(__page_file_index);
3394 
3395 /*
3396  * add_swap_count_continuation - called when a swap count is duplicated
3397  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3398  * page of the original vmalloc'ed swap_map, to hold the continuation count
3399  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3400  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3401  *
3402  * These continuation pages are seldom referenced: the common paths all work
3403  * on the original swap_map, only referring to a continuation page when the
3404  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3405  *
3406  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3407  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3408  * can be called after dropping locks.
3409  */
3410 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3411 {
3412 	struct swap_info_struct *si;
3413 	struct swap_cluster_info *ci;
3414 	struct page *head;
3415 	struct page *page;
3416 	struct page *list_page;
3417 	pgoff_t offset;
3418 	unsigned char count;
3419 
3420 	/*
3421 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3422 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3423 	 */
3424 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3425 
3426 	si = swap_info_get(entry);
3427 	if (!si) {
3428 		/*
3429 		 * An acceptable race has occurred since the failing
3430 		 * __swap_duplicate(): the swap entry has been freed,
3431 		 * perhaps even the whole swap_map cleared for swapoff.
3432 		 */
3433 		goto outer;
3434 	}
3435 
3436 	offset = swp_offset(entry);
3437 
3438 	ci = lock_cluster(si, offset);
3439 
3440 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3441 
3442 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3443 		/*
3444 		 * The higher the swap count, the more likely it is that tasks
3445 		 * will race to add swap count continuation: we need to avoid
3446 		 * over-provisioning.
3447 		 */
3448 		goto out;
3449 	}
3450 
3451 	if (!page) {
3452 		unlock_cluster(ci);
3453 		spin_unlock(&si->lock);
3454 		return -ENOMEM;
3455 	}
3456 
3457 	/*
3458 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3459 	 * no architecture is using highmem pages for kernel page tables: so it
3460 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3461 	 */
3462 	head = vmalloc_to_page(si->swap_map + offset);
3463 	offset &= ~PAGE_MASK;
3464 
3465 	spin_lock(&si->cont_lock);
3466 	/*
3467 	 * Page allocation does not initialize the page's lru field,
3468 	 * but it does always reset its private field.
3469 	 */
3470 	if (!page_private(head)) {
3471 		BUG_ON(count & COUNT_CONTINUED);
3472 		INIT_LIST_HEAD(&head->lru);
3473 		set_page_private(head, SWP_CONTINUED);
3474 		si->flags |= SWP_CONTINUED;
3475 	}
3476 
3477 	list_for_each_entry(list_page, &head->lru, lru) {
3478 		unsigned char *map;
3479 
3480 		/*
3481 		 * If the previous map said no continuation, but we've found
3482 		 * a continuation page, free our allocation and use this one.
3483 		 */
3484 		if (!(count & COUNT_CONTINUED))
3485 			goto out_unlock_cont;
3486 
3487 		map = kmap_atomic(list_page) + offset;
3488 		count = *map;
3489 		kunmap_atomic(map);
3490 
3491 		/*
3492 		 * If this continuation count now has some space in it,
3493 		 * free our allocation and use this one.
3494 		 */
3495 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3496 			goto out_unlock_cont;
3497 	}
3498 
3499 	list_add_tail(&page->lru, &head->lru);
3500 	page = NULL;			/* now it's attached, don't free it */
3501 out_unlock_cont:
3502 	spin_unlock(&si->cont_lock);
3503 out:
3504 	unlock_cluster(ci);
3505 	spin_unlock(&si->lock);
3506 outer:
3507 	if (page)
3508 		__free_page(page);
3509 	return 0;
3510 }
3511 
3512 /*
3513  * swap_count_continued - when the original swap_map count is incremented
3514  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3515  * into, carry if so, or else fail until a new continuation page is allocated;
3516  * when the original swap_map count is decremented from 0 with continuation,
3517  * borrow from the continuation and report whether it still holds more.
3518  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3519  * lock.
3520  */
3521 static bool swap_count_continued(struct swap_info_struct *si,
3522 				 pgoff_t offset, unsigned char count)
3523 {
3524 	struct page *head;
3525 	struct page *page;
3526 	unsigned char *map;
3527 	bool ret;
3528 
3529 	head = vmalloc_to_page(si->swap_map + offset);
3530 	if (page_private(head) != SWP_CONTINUED) {
3531 		BUG_ON(count & COUNT_CONTINUED);
3532 		return false;		/* need to add count continuation */
3533 	}
3534 
3535 	spin_lock(&si->cont_lock);
3536 	offset &= ~PAGE_MASK;
3537 	page = list_entry(head->lru.next, struct page, lru);
3538 	map = kmap_atomic(page) + offset;
3539 
3540 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3541 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3542 
3543 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3544 		/*
3545 		 * Think of how you add 1 to 999
3546 		 */
3547 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3548 			kunmap_atomic(map);
3549 			page = list_entry(page->lru.next, struct page, lru);
3550 			BUG_ON(page == head);
3551 			map = kmap_atomic(page) + offset;
3552 		}
3553 		if (*map == SWAP_CONT_MAX) {
3554 			kunmap_atomic(map);
3555 			page = list_entry(page->lru.next, struct page, lru);
3556 			if (page == head) {
3557 				ret = false;	/* add count continuation */
3558 				goto out;
3559 			}
3560 			map = kmap_atomic(page) + offset;
3561 init_map:		*map = 0;		/* we didn't zero the page */
3562 		}
3563 		*map += 1;
3564 		kunmap_atomic(map);
3565 		page = list_entry(page->lru.prev, struct page, lru);
3566 		while (page != head) {
3567 			map = kmap_atomic(page) + offset;
3568 			*map = COUNT_CONTINUED;
3569 			kunmap_atomic(map);
3570 			page = list_entry(page->lru.prev, struct page, lru);
3571 		}
3572 		ret = true;			/* incremented */
3573 
3574 	} else {				/* decrementing */
3575 		/*
3576 		 * Think of how you subtract 1 from 1000
3577 		 */
3578 		BUG_ON(count != COUNT_CONTINUED);
3579 		while (*map == COUNT_CONTINUED) {
3580 			kunmap_atomic(map);
3581 			page = list_entry(page->lru.next, struct page, lru);
3582 			BUG_ON(page == head);
3583 			map = kmap_atomic(page) + offset;
3584 		}
3585 		BUG_ON(*map == 0);
3586 		*map -= 1;
3587 		if (*map == 0)
3588 			count = 0;
3589 		kunmap_atomic(map);
3590 		page = list_entry(page->lru.prev, struct page, lru);
3591 		while (page != head) {
3592 			map = kmap_atomic(page) + offset;
3593 			*map = SWAP_CONT_MAX | count;
3594 			count = COUNT_CONTINUED;
3595 			kunmap_atomic(map);
3596 			page = list_entry(page->lru.prev, struct page, lru);
3597 		}
3598 		ret = count == COUNT_CONTINUED;
3599 	}
3600 out:
3601 	spin_unlock(&si->cont_lock);
3602 	return ret;
3603 }
3604 
3605 /*
3606  * free_swap_count_continuations - swapoff free all the continuation pages
3607  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3608  */
3609 static void free_swap_count_continuations(struct swap_info_struct *si)
3610 {
3611 	pgoff_t offset;
3612 
3613 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3614 		struct page *head;
3615 		head = vmalloc_to_page(si->swap_map + offset);
3616 		if (page_private(head)) {
3617 			struct page *page, *next;
3618 
3619 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3620 				list_del(&page->lru);
3621 				__free_page(page);
3622 			}
3623 		}
3624 	}
3625 }
3626 
3627 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3628 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3629 				  gfp_t gfp_mask)
3630 {
3631 	struct swap_info_struct *si, *next;
3632 	if (!(gfp_mask & __GFP_IO) || !memcg)
3633 		return;
3634 
3635 	if (!blk_cgroup_congested())
3636 		return;
3637 
3638 	/*
3639 	 * We've already scheduled a throttle, avoid taking the global swap
3640 	 * lock.
3641 	 */
3642 	if (current->throttle_queue)
3643 		return;
3644 
3645 	spin_lock(&swap_avail_lock);
3646 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3647 				  avail_lists[node]) {
3648 		if (si->bdev) {
3649 			blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3650 						true);
3651 			break;
3652 		}
3653 	}
3654 	spin_unlock(&swap_avail_lock);
3655 }
3656 #endif
3657 
3658 static int __init swapfile_init(void)
3659 {
3660 	int nid;
3661 
3662 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3663 					 GFP_KERNEL);
3664 	if (!swap_avail_heads) {
3665 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3666 		return -ENOMEM;
3667 	}
3668 
3669 	for_each_node(nid)
3670 		plist_head_init(&swap_avail_heads[nid]);
3671 
3672 	return 0;
3673 }
3674 subsys_initcall(swapfile_init);
3675