xref: /openbmc/linux/mm/swapfile.c (revision 19dc81b4017baffd6e919fd71cfc8dcbd5442e15)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blk-cgroup.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
47 
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 				 unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 
52 static DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64 
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69 
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 static PLIST_HEAD(swap_active_head);
75 
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90 
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92 
93 static DEFINE_MUTEX(swapon_mutex);
94 
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98 
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100 
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103 	if (type >= MAX_SWAPFILES)
104 		return NULL;
105 
106 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
107 }
108 
109 static inline unsigned char swap_count(unsigned char ent)
110 {
111 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
112 }
113 
114 /* Reclaim the swap entry anyway if possible */
115 #define TTRS_ANYWAY		0x1
116 /*
117  * Reclaim the swap entry if there are no more mappings of the
118  * corresponding page
119  */
120 #define TTRS_UNMAPPED		0x2
121 /* Reclaim the swap entry if swap is getting full*/
122 #define TTRS_FULL		0x4
123 
124 /* returns 1 if swap entry is freed */
125 static int __try_to_reclaim_swap(struct swap_info_struct *si,
126 				 unsigned long offset, unsigned long flags)
127 {
128 	swp_entry_t entry = swp_entry(si->type, offset);
129 	struct page *page;
130 	int ret = 0;
131 
132 	page = find_get_page(swap_address_space(entry), offset);
133 	if (!page)
134 		return 0;
135 	/*
136 	 * When this function is called from scan_swap_map_slots() and it's
137 	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
138 	 * here. We have to use trylock for avoiding deadlock. This is a special
139 	 * case and you should use try_to_free_swap() with explicit lock_page()
140 	 * in usual operations.
141 	 */
142 	if (trylock_page(page)) {
143 		if ((flags & TTRS_ANYWAY) ||
144 		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
145 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
146 			ret = try_to_free_swap(page);
147 		unlock_page(page);
148 	}
149 	put_page(page);
150 	return ret;
151 }
152 
153 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
154 {
155 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
156 	return rb_entry(rb, struct swap_extent, rb_node);
157 }
158 
159 static inline struct swap_extent *next_se(struct swap_extent *se)
160 {
161 	struct rb_node *rb = rb_next(&se->rb_node);
162 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
163 }
164 
165 /*
166  * swapon tell device that all the old swap contents can be discarded,
167  * to allow the swap device to optimize its wear-levelling.
168  */
169 static int discard_swap(struct swap_info_struct *si)
170 {
171 	struct swap_extent *se;
172 	sector_t start_block;
173 	sector_t nr_blocks;
174 	int err = 0;
175 
176 	/* Do not discard the swap header page! */
177 	se = first_se(si);
178 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
179 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
180 	if (nr_blocks) {
181 		err = blkdev_issue_discard(si->bdev, start_block,
182 				nr_blocks, GFP_KERNEL, 0);
183 		if (err)
184 			return err;
185 		cond_resched();
186 	}
187 
188 	for (se = next_se(se); se; se = next_se(se)) {
189 		start_block = se->start_block << (PAGE_SHIFT - 9);
190 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
191 
192 		err = blkdev_issue_discard(si->bdev, start_block,
193 				nr_blocks, GFP_KERNEL, 0);
194 		if (err)
195 			break;
196 
197 		cond_resched();
198 	}
199 	return err;		/* That will often be -EOPNOTSUPP */
200 }
201 
202 static struct swap_extent *
203 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
204 {
205 	struct swap_extent *se;
206 	struct rb_node *rb;
207 
208 	rb = sis->swap_extent_root.rb_node;
209 	while (rb) {
210 		se = rb_entry(rb, struct swap_extent, rb_node);
211 		if (offset < se->start_page)
212 			rb = rb->rb_left;
213 		else if (offset >= se->start_page + se->nr_pages)
214 			rb = rb->rb_right;
215 		else
216 			return se;
217 	}
218 	/* It *must* be present */
219 	BUG();
220 }
221 
222 sector_t swap_page_sector(struct page *page)
223 {
224 	struct swap_info_struct *sis = page_swap_info(page);
225 	struct swap_extent *se;
226 	sector_t sector;
227 	pgoff_t offset;
228 
229 	offset = __page_file_index(page);
230 	se = offset_to_swap_extent(sis, offset);
231 	sector = se->start_block + (offset - se->start_page);
232 	return sector << (PAGE_SHIFT - 9);
233 }
234 
235 /*
236  * swap allocation tell device that a cluster of swap can now be discarded,
237  * to allow the swap device to optimize its wear-levelling.
238  */
239 static void discard_swap_cluster(struct swap_info_struct *si,
240 				 pgoff_t start_page, pgoff_t nr_pages)
241 {
242 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
243 
244 	while (nr_pages) {
245 		pgoff_t offset = start_page - se->start_page;
246 		sector_t start_block = se->start_block + offset;
247 		sector_t nr_blocks = se->nr_pages - offset;
248 
249 		if (nr_blocks > nr_pages)
250 			nr_blocks = nr_pages;
251 		start_page += nr_blocks;
252 		nr_pages -= nr_blocks;
253 
254 		start_block <<= PAGE_SHIFT - 9;
255 		nr_blocks <<= PAGE_SHIFT - 9;
256 		if (blkdev_issue_discard(si->bdev, start_block,
257 					nr_blocks, GFP_NOIO, 0))
258 			break;
259 
260 		se = next_se(se);
261 	}
262 }
263 
264 #ifdef CONFIG_THP_SWAP
265 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
266 
267 #define swap_entry_size(size)	(size)
268 #else
269 #define SWAPFILE_CLUSTER	256
270 
271 /*
272  * Define swap_entry_size() as constant to let compiler to optimize
273  * out some code if !CONFIG_THP_SWAP
274  */
275 #define swap_entry_size(size)	1
276 #endif
277 #define LATENCY_LIMIT		256
278 
279 static inline void cluster_set_flag(struct swap_cluster_info *info,
280 	unsigned int flag)
281 {
282 	info->flags = flag;
283 }
284 
285 static inline unsigned int cluster_count(struct swap_cluster_info *info)
286 {
287 	return info->data;
288 }
289 
290 static inline void cluster_set_count(struct swap_cluster_info *info,
291 				     unsigned int c)
292 {
293 	info->data = c;
294 }
295 
296 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
297 					 unsigned int c, unsigned int f)
298 {
299 	info->flags = f;
300 	info->data = c;
301 }
302 
303 static inline unsigned int cluster_next(struct swap_cluster_info *info)
304 {
305 	return info->data;
306 }
307 
308 static inline void cluster_set_next(struct swap_cluster_info *info,
309 				    unsigned int n)
310 {
311 	info->data = n;
312 }
313 
314 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
315 					 unsigned int n, unsigned int f)
316 {
317 	info->flags = f;
318 	info->data = n;
319 }
320 
321 static inline bool cluster_is_free(struct swap_cluster_info *info)
322 {
323 	return info->flags & CLUSTER_FLAG_FREE;
324 }
325 
326 static inline bool cluster_is_null(struct swap_cluster_info *info)
327 {
328 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
329 }
330 
331 static inline void cluster_set_null(struct swap_cluster_info *info)
332 {
333 	info->flags = CLUSTER_FLAG_NEXT_NULL;
334 	info->data = 0;
335 }
336 
337 static inline bool cluster_is_huge(struct swap_cluster_info *info)
338 {
339 	if (IS_ENABLED(CONFIG_THP_SWAP))
340 		return info->flags & CLUSTER_FLAG_HUGE;
341 	return false;
342 }
343 
344 static inline void cluster_clear_huge(struct swap_cluster_info *info)
345 {
346 	info->flags &= ~CLUSTER_FLAG_HUGE;
347 }
348 
349 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
350 						     unsigned long offset)
351 {
352 	struct swap_cluster_info *ci;
353 
354 	ci = si->cluster_info;
355 	if (ci) {
356 		ci += offset / SWAPFILE_CLUSTER;
357 		spin_lock(&ci->lock);
358 	}
359 	return ci;
360 }
361 
362 static inline void unlock_cluster(struct swap_cluster_info *ci)
363 {
364 	if (ci)
365 		spin_unlock(&ci->lock);
366 }
367 
368 /*
369  * Determine the locking method in use for this device.  Return
370  * swap_cluster_info if SSD-style cluster-based locking is in place.
371  */
372 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
373 		struct swap_info_struct *si, unsigned long offset)
374 {
375 	struct swap_cluster_info *ci;
376 
377 	/* Try to use fine-grained SSD-style locking if available: */
378 	ci = lock_cluster(si, offset);
379 	/* Otherwise, fall back to traditional, coarse locking: */
380 	if (!ci)
381 		spin_lock(&si->lock);
382 
383 	return ci;
384 }
385 
386 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
387 					       struct swap_cluster_info *ci)
388 {
389 	if (ci)
390 		unlock_cluster(ci);
391 	else
392 		spin_unlock(&si->lock);
393 }
394 
395 static inline bool cluster_list_empty(struct swap_cluster_list *list)
396 {
397 	return cluster_is_null(&list->head);
398 }
399 
400 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
401 {
402 	return cluster_next(&list->head);
403 }
404 
405 static void cluster_list_init(struct swap_cluster_list *list)
406 {
407 	cluster_set_null(&list->head);
408 	cluster_set_null(&list->tail);
409 }
410 
411 static void cluster_list_add_tail(struct swap_cluster_list *list,
412 				  struct swap_cluster_info *ci,
413 				  unsigned int idx)
414 {
415 	if (cluster_list_empty(list)) {
416 		cluster_set_next_flag(&list->head, idx, 0);
417 		cluster_set_next_flag(&list->tail, idx, 0);
418 	} else {
419 		struct swap_cluster_info *ci_tail;
420 		unsigned int tail = cluster_next(&list->tail);
421 
422 		/*
423 		 * Nested cluster lock, but both cluster locks are
424 		 * only acquired when we held swap_info_struct->lock
425 		 */
426 		ci_tail = ci + tail;
427 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
428 		cluster_set_next(ci_tail, idx);
429 		spin_unlock(&ci_tail->lock);
430 		cluster_set_next_flag(&list->tail, idx, 0);
431 	}
432 }
433 
434 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
435 					   struct swap_cluster_info *ci)
436 {
437 	unsigned int idx;
438 
439 	idx = cluster_next(&list->head);
440 	if (cluster_next(&list->tail) == idx) {
441 		cluster_set_null(&list->head);
442 		cluster_set_null(&list->tail);
443 	} else
444 		cluster_set_next_flag(&list->head,
445 				      cluster_next(&ci[idx]), 0);
446 
447 	return idx;
448 }
449 
450 /* Add a cluster to discard list and schedule it to do discard */
451 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
452 		unsigned int idx)
453 {
454 	/*
455 	 * If scan_swap_map_slots() can't find a free cluster, it will check
456 	 * si->swap_map directly. To make sure the discarding cluster isn't
457 	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
458 	 * It will be cleared after discard
459 	 */
460 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
461 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
462 
463 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
464 
465 	schedule_work(&si->discard_work);
466 }
467 
468 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
469 {
470 	struct swap_cluster_info *ci = si->cluster_info;
471 
472 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
473 	cluster_list_add_tail(&si->free_clusters, ci, idx);
474 }
475 
476 /*
477  * Doing discard actually. After a cluster discard is finished, the cluster
478  * will be added to free cluster list. caller should hold si->lock.
479 */
480 static void swap_do_scheduled_discard(struct swap_info_struct *si)
481 {
482 	struct swap_cluster_info *info, *ci;
483 	unsigned int idx;
484 
485 	info = si->cluster_info;
486 
487 	while (!cluster_list_empty(&si->discard_clusters)) {
488 		idx = cluster_list_del_first(&si->discard_clusters, info);
489 		spin_unlock(&si->lock);
490 
491 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
492 				SWAPFILE_CLUSTER);
493 
494 		spin_lock(&si->lock);
495 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
496 		__free_cluster(si, idx);
497 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
498 				0, SWAPFILE_CLUSTER);
499 		unlock_cluster(ci);
500 	}
501 }
502 
503 static void swap_discard_work(struct work_struct *work)
504 {
505 	struct swap_info_struct *si;
506 
507 	si = container_of(work, struct swap_info_struct, discard_work);
508 
509 	spin_lock(&si->lock);
510 	swap_do_scheduled_discard(si);
511 	spin_unlock(&si->lock);
512 }
513 
514 static void swap_users_ref_free(struct percpu_ref *ref)
515 {
516 	struct swap_info_struct *si;
517 
518 	si = container_of(ref, struct swap_info_struct, users);
519 	complete(&si->comp);
520 }
521 
522 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
523 {
524 	struct swap_cluster_info *ci = si->cluster_info;
525 
526 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
527 	cluster_list_del_first(&si->free_clusters, ci);
528 	cluster_set_count_flag(ci + idx, 0, 0);
529 }
530 
531 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
532 {
533 	struct swap_cluster_info *ci = si->cluster_info + idx;
534 
535 	VM_BUG_ON(cluster_count(ci) != 0);
536 	/*
537 	 * If the swap is discardable, prepare discard the cluster
538 	 * instead of free it immediately. The cluster will be freed
539 	 * after discard.
540 	 */
541 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
542 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
543 		swap_cluster_schedule_discard(si, idx);
544 		return;
545 	}
546 
547 	__free_cluster(si, idx);
548 }
549 
550 /*
551  * The cluster corresponding to page_nr will be used. The cluster will be
552  * removed from free cluster list and its usage counter will be increased.
553  */
554 static void inc_cluster_info_page(struct swap_info_struct *p,
555 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
556 {
557 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558 
559 	if (!cluster_info)
560 		return;
561 	if (cluster_is_free(&cluster_info[idx]))
562 		alloc_cluster(p, idx);
563 
564 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
565 	cluster_set_count(&cluster_info[idx],
566 		cluster_count(&cluster_info[idx]) + 1);
567 }
568 
569 /*
570  * The cluster corresponding to page_nr decreases one usage. If the usage
571  * counter becomes 0, which means no page in the cluster is in using, we can
572  * optionally discard the cluster and add it to free cluster list.
573  */
574 static void dec_cluster_info_page(struct swap_info_struct *p,
575 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
576 {
577 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
578 
579 	if (!cluster_info)
580 		return;
581 
582 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
583 	cluster_set_count(&cluster_info[idx],
584 		cluster_count(&cluster_info[idx]) - 1);
585 
586 	if (cluster_count(&cluster_info[idx]) == 0)
587 		free_cluster(p, idx);
588 }
589 
590 /*
591  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
592  * cluster list. Avoiding such abuse to avoid list corruption.
593  */
594 static bool
595 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
596 	unsigned long offset)
597 {
598 	struct percpu_cluster *percpu_cluster;
599 	bool conflict;
600 
601 	offset /= SWAPFILE_CLUSTER;
602 	conflict = !cluster_list_empty(&si->free_clusters) &&
603 		offset != cluster_list_first(&si->free_clusters) &&
604 		cluster_is_free(&si->cluster_info[offset]);
605 
606 	if (!conflict)
607 		return false;
608 
609 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
610 	cluster_set_null(&percpu_cluster->index);
611 	return true;
612 }
613 
614 /*
615  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
616  * might involve allocating a new cluster for current CPU too.
617  */
618 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
619 	unsigned long *offset, unsigned long *scan_base)
620 {
621 	struct percpu_cluster *cluster;
622 	struct swap_cluster_info *ci;
623 	unsigned long tmp, max;
624 
625 new_cluster:
626 	cluster = this_cpu_ptr(si->percpu_cluster);
627 	if (cluster_is_null(&cluster->index)) {
628 		if (!cluster_list_empty(&si->free_clusters)) {
629 			cluster->index = si->free_clusters.head;
630 			cluster->next = cluster_next(&cluster->index) *
631 					SWAPFILE_CLUSTER;
632 		} else if (!cluster_list_empty(&si->discard_clusters)) {
633 			/*
634 			 * we don't have free cluster but have some clusters in
635 			 * discarding, do discard now and reclaim them, then
636 			 * reread cluster_next_cpu since we dropped si->lock
637 			 */
638 			swap_do_scheduled_discard(si);
639 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
640 			*offset = *scan_base;
641 			goto new_cluster;
642 		} else
643 			return false;
644 	}
645 
646 	/*
647 	 * Other CPUs can use our cluster if they can't find a free cluster,
648 	 * check if there is still free entry in the cluster
649 	 */
650 	tmp = cluster->next;
651 	max = min_t(unsigned long, si->max,
652 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
653 	if (tmp < max) {
654 		ci = lock_cluster(si, tmp);
655 		while (tmp < max) {
656 			if (!si->swap_map[tmp])
657 				break;
658 			tmp++;
659 		}
660 		unlock_cluster(ci);
661 	}
662 	if (tmp >= max) {
663 		cluster_set_null(&cluster->index);
664 		goto new_cluster;
665 	}
666 	cluster->next = tmp + 1;
667 	*offset = tmp;
668 	*scan_base = tmp;
669 	return true;
670 }
671 
672 static void __del_from_avail_list(struct swap_info_struct *p)
673 {
674 	int nid;
675 
676 	for_each_node(nid)
677 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
678 }
679 
680 static void del_from_avail_list(struct swap_info_struct *p)
681 {
682 	spin_lock(&swap_avail_lock);
683 	__del_from_avail_list(p);
684 	spin_unlock(&swap_avail_lock);
685 }
686 
687 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
688 			     unsigned int nr_entries)
689 {
690 	unsigned int end = offset + nr_entries - 1;
691 
692 	if (offset == si->lowest_bit)
693 		si->lowest_bit += nr_entries;
694 	if (end == si->highest_bit)
695 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
696 	si->inuse_pages += nr_entries;
697 	if (si->inuse_pages == si->pages) {
698 		si->lowest_bit = si->max;
699 		si->highest_bit = 0;
700 		del_from_avail_list(si);
701 	}
702 }
703 
704 static void add_to_avail_list(struct swap_info_struct *p)
705 {
706 	int nid;
707 
708 	spin_lock(&swap_avail_lock);
709 	for_each_node(nid) {
710 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
711 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
712 	}
713 	spin_unlock(&swap_avail_lock);
714 }
715 
716 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
717 			    unsigned int nr_entries)
718 {
719 	unsigned long begin = offset;
720 	unsigned long end = offset + nr_entries - 1;
721 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
722 
723 	if (offset < si->lowest_bit)
724 		si->lowest_bit = offset;
725 	if (end > si->highest_bit) {
726 		bool was_full = !si->highest_bit;
727 
728 		WRITE_ONCE(si->highest_bit, end);
729 		if (was_full && (si->flags & SWP_WRITEOK))
730 			add_to_avail_list(si);
731 	}
732 	atomic_long_add(nr_entries, &nr_swap_pages);
733 	si->inuse_pages -= nr_entries;
734 	if (si->flags & SWP_BLKDEV)
735 		swap_slot_free_notify =
736 			si->bdev->bd_disk->fops->swap_slot_free_notify;
737 	else
738 		swap_slot_free_notify = NULL;
739 	while (offset <= end) {
740 		arch_swap_invalidate_page(si->type, offset);
741 		frontswap_invalidate_page(si->type, offset);
742 		if (swap_slot_free_notify)
743 			swap_slot_free_notify(si->bdev, offset);
744 		offset++;
745 	}
746 	clear_shadow_from_swap_cache(si->type, begin, end);
747 }
748 
749 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
750 {
751 	unsigned long prev;
752 
753 	if (!(si->flags & SWP_SOLIDSTATE)) {
754 		si->cluster_next = next;
755 		return;
756 	}
757 
758 	prev = this_cpu_read(*si->cluster_next_cpu);
759 	/*
760 	 * Cross the swap address space size aligned trunk, choose
761 	 * another trunk randomly to avoid lock contention on swap
762 	 * address space if possible.
763 	 */
764 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
765 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
766 		/* No free swap slots available */
767 		if (si->highest_bit <= si->lowest_bit)
768 			return;
769 		next = si->lowest_bit +
770 			prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
771 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
772 		next = max_t(unsigned int, next, si->lowest_bit);
773 	}
774 	this_cpu_write(*si->cluster_next_cpu, next);
775 }
776 
777 static int scan_swap_map_slots(struct swap_info_struct *si,
778 			       unsigned char usage, int nr,
779 			       swp_entry_t slots[])
780 {
781 	struct swap_cluster_info *ci;
782 	unsigned long offset;
783 	unsigned long scan_base;
784 	unsigned long last_in_cluster = 0;
785 	int latency_ration = LATENCY_LIMIT;
786 	int n_ret = 0;
787 	bool scanned_many = false;
788 
789 	/*
790 	 * We try to cluster swap pages by allocating them sequentially
791 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
792 	 * way, however, we resort to first-free allocation, starting
793 	 * a new cluster.  This prevents us from scattering swap pages
794 	 * all over the entire swap partition, so that we reduce
795 	 * overall disk seek times between swap pages.  -- sct
796 	 * But we do now try to find an empty cluster.  -Andrea
797 	 * And we let swap pages go all over an SSD partition.  Hugh
798 	 */
799 
800 	si->flags += SWP_SCANNING;
801 	/*
802 	 * Use percpu scan base for SSD to reduce lock contention on
803 	 * cluster and swap cache.  For HDD, sequential access is more
804 	 * important.
805 	 */
806 	if (si->flags & SWP_SOLIDSTATE)
807 		scan_base = this_cpu_read(*si->cluster_next_cpu);
808 	else
809 		scan_base = si->cluster_next;
810 	offset = scan_base;
811 
812 	/* SSD algorithm */
813 	if (si->cluster_info) {
814 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
815 			goto scan;
816 	} else if (unlikely(!si->cluster_nr--)) {
817 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
818 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
819 			goto checks;
820 		}
821 
822 		spin_unlock(&si->lock);
823 
824 		/*
825 		 * If seek is expensive, start searching for new cluster from
826 		 * start of partition, to minimize the span of allocated swap.
827 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
828 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
829 		 */
830 		scan_base = offset = si->lowest_bit;
831 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
832 
833 		/* Locate the first empty (unaligned) cluster */
834 		for (; last_in_cluster <= si->highest_bit; offset++) {
835 			if (si->swap_map[offset])
836 				last_in_cluster = offset + SWAPFILE_CLUSTER;
837 			else if (offset == last_in_cluster) {
838 				spin_lock(&si->lock);
839 				offset -= SWAPFILE_CLUSTER - 1;
840 				si->cluster_next = offset;
841 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
842 				goto checks;
843 			}
844 			if (unlikely(--latency_ration < 0)) {
845 				cond_resched();
846 				latency_ration = LATENCY_LIMIT;
847 			}
848 		}
849 
850 		offset = scan_base;
851 		spin_lock(&si->lock);
852 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
853 	}
854 
855 checks:
856 	if (si->cluster_info) {
857 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
858 		/* take a break if we already got some slots */
859 			if (n_ret)
860 				goto done;
861 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
862 							&scan_base))
863 				goto scan;
864 		}
865 	}
866 	if (!(si->flags & SWP_WRITEOK))
867 		goto no_page;
868 	if (!si->highest_bit)
869 		goto no_page;
870 	if (offset > si->highest_bit)
871 		scan_base = offset = si->lowest_bit;
872 
873 	ci = lock_cluster(si, offset);
874 	/* reuse swap entry of cache-only swap if not busy. */
875 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
876 		int swap_was_freed;
877 		unlock_cluster(ci);
878 		spin_unlock(&si->lock);
879 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
880 		spin_lock(&si->lock);
881 		/* entry was freed successfully, try to use this again */
882 		if (swap_was_freed)
883 			goto checks;
884 		goto scan; /* check next one */
885 	}
886 
887 	if (si->swap_map[offset]) {
888 		unlock_cluster(ci);
889 		if (!n_ret)
890 			goto scan;
891 		else
892 			goto done;
893 	}
894 	WRITE_ONCE(si->swap_map[offset], usage);
895 	inc_cluster_info_page(si, si->cluster_info, offset);
896 	unlock_cluster(ci);
897 
898 	swap_range_alloc(si, offset, 1);
899 	slots[n_ret++] = swp_entry(si->type, offset);
900 
901 	/* got enough slots or reach max slots? */
902 	if ((n_ret == nr) || (offset >= si->highest_bit))
903 		goto done;
904 
905 	/* search for next available slot */
906 
907 	/* time to take a break? */
908 	if (unlikely(--latency_ration < 0)) {
909 		if (n_ret)
910 			goto done;
911 		spin_unlock(&si->lock);
912 		cond_resched();
913 		spin_lock(&si->lock);
914 		latency_ration = LATENCY_LIMIT;
915 	}
916 
917 	/* try to get more slots in cluster */
918 	if (si->cluster_info) {
919 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
920 			goto checks;
921 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
922 		/* non-ssd case, still more slots in cluster? */
923 		--si->cluster_nr;
924 		goto checks;
925 	}
926 
927 	/*
928 	 * Even if there's no free clusters available (fragmented),
929 	 * try to scan a little more quickly with lock held unless we
930 	 * have scanned too many slots already.
931 	 */
932 	if (!scanned_many) {
933 		unsigned long scan_limit;
934 
935 		if (offset < scan_base)
936 			scan_limit = scan_base;
937 		else
938 			scan_limit = si->highest_bit;
939 		for (; offset <= scan_limit && --latency_ration > 0;
940 		     offset++) {
941 			if (!si->swap_map[offset])
942 				goto checks;
943 		}
944 	}
945 
946 done:
947 	set_cluster_next(si, offset + 1);
948 	si->flags -= SWP_SCANNING;
949 	return n_ret;
950 
951 scan:
952 	spin_unlock(&si->lock);
953 	while (++offset <= READ_ONCE(si->highest_bit)) {
954 		if (data_race(!si->swap_map[offset])) {
955 			spin_lock(&si->lock);
956 			goto checks;
957 		}
958 		if (vm_swap_full() &&
959 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
960 			spin_lock(&si->lock);
961 			goto checks;
962 		}
963 		if (unlikely(--latency_ration < 0)) {
964 			cond_resched();
965 			latency_ration = LATENCY_LIMIT;
966 			scanned_many = true;
967 		}
968 	}
969 	offset = si->lowest_bit;
970 	while (offset < scan_base) {
971 		if (data_race(!si->swap_map[offset])) {
972 			spin_lock(&si->lock);
973 			goto checks;
974 		}
975 		if (vm_swap_full() &&
976 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
977 			spin_lock(&si->lock);
978 			goto checks;
979 		}
980 		if (unlikely(--latency_ration < 0)) {
981 			cond_resched();
982 			latency_ration = LATENCY_LIMIT;
983 			scanned_many = true;
984 		}
985 		offset++;
986 	}
987 	spin_lock(&si->lock);
988 
989 no_page:
990 	si->flags -= SWP_SCANNING;
991 	return n_ret;
992 }
993 
994 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
995 {
996 	unsigned long idx;
997 	struct swap_cluster_info *ci;
998 	unsigned long offset;
999 
1000 	/*
1001 	 * Should not even be attempting cluster allocations when huge
1002 	 * page swap is disabled.  Warn and fail the allocation.
1003 	 */
1004 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1005 		VM_WARN_ON_ONCE(1);
1006 		return 0;
1007 	}
1008 
1009 	if (cluster_list_empty(&si->free_clusters))
1010 		return 0;
1011 
1012 	idx = cluster_list_first(&si->free_clusters);
1013 	offset = idx * SWAPFILE_CLUSTER;
1014 	ci = lock_cluster(si, offset);
1015 	alloc_cluster(si, idx);
1016 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1017 
1018 	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1019 	unlock_cluster(ci);
1020 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1021 	*slot = swp_entry(si->type, offset);
1022 
1023 	return 1;
1024 }
1025 
1026 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1027 {
1028 	unsigned long offset = idx * SWAPFILE_CLUSTER;
1029 	struct swap_cluster_info *ci;
1030 
1031 	ci = lock_cluster(si, offset);
1032 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1033 	cluster_set_count_flag(ci, 0, 0);
1034 	free_cluster(si, idx);
1035 	unlock_cluster(ci);
1036 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1037 }
1038 
1039 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1040 {
1041 	unsigned long size = swap_entry_size(entry_size);
1042 	struct swap_info_struct *si, *next;
1043 	long avail_pgs;
1044 	int n_ret = 0;
1045 	int node;
1046 
1047 	/* Only single cluster request supported */
1048 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1049 
1050 	spin_lock(&swap_avail_lock);
1051 
1052 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1053 	if (avail_pgs <= 0) {
1054 		spin_unlock(&swap_avail_lock);
1055 		goto noswap;
1056 	}
1057 
1058 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1059 
1060 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1061 
1062 start_over:
1063 	node = numa_node_id();
1064 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1065 		/* requeue si to after same-priority siblings */
1066 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1067 		spin_unlock(&swap_avail_lock);
1068 		spin_lock(&si->lock);
1069 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1070 			spin_lock(&swap_avail_lock);
1071 			if (plist_node_empty(&si->avail_lists[node])) {
1072 				spin_unlock(&si->lock);
1073 				goto nextsi;
1074 			}
1075 			WARN(!si->highest_bit,
1076 			     "swap_info %d in list but !highest_bit\n",
1077 			     si->type);
1078 			WARN(!(si->flags & SWP_WRITEOK),
1079 			     "swap_info %d in list but !SWP_WRITEOK\n",
1080 			     si->type);
1081 			__del_from_avail_list(si);
1082 			spin_unlock(&si->lock);
1083 			goto nextsi;
1084 		}
1085 		if (size == SWAPFILE_CLUSTER) {
1086 			if (si->flags & SWP_BLKDEV)
1087 				n_ret = swap_alloc_cluster(si, swp_entries);
1088 		} else
1089 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1090 						    n_goal, swp_entries);
1091 		spin_unlock(&si->lock);
1092 		if (n_ret || size == SWAPFILE_CLUSTER)
1093 			goto check_out;
1094 		pr_debug("scan_swap_map of si %d failed to find offset\n",
1095 			si->type);
1096 
1097 		spin_lock(&swap_avail_lock);
1098 nextsi:
1099 		/*
1100 		 * if we got here, it's likely that si was almost full before,
1101 		 * and since scan_swap_map_slots() can drop the si->lock,
1102 		 * multiple callers probably all tried to get a page from the
1103 		 * same si and it filled up before we could get one; or, the si
1104 		 * filled up between us dropping swap_avail_lock and taking
1105 		 * si->lock. Since we dropped the swap_avail_lock, the
1106 		 * swap_avail_head list may have been modified; so if next is
1107 		 * still in the swap_avail_head list then try it, otherwise
1108 		 * start over if we have not gotten any slots.
1109 		 */
1110 		if (plist_node_empty(&next->avail_lists[node]))
1111 			goto start_over;
1112 	}
1113 
1114 	spin_unlock(&swap_avail_lock);
1115 
1116 check_out:
1117 	if (n_ret < n_goal)
1118 		atomic_long_add((long)(n_goal - n_ret) * size,
1119 				&nr_swap_pages);
1120 noswap:
1121 	return n_ret;
1122 }
1123 
1124 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1125 {
1126 	struct swap_info_struct *p;
1127 	unsigned long offset;
1128 
1129 	if (!entry.val)
1130 		goto out;
1131 	p = swp_swap_info(entry);
1132 	if (!p)
1133 		goto bad_nofile;
1134 	if (data_race(!(p->flags & SWP_USED)))
1135 		goto bad_device;
1136 	offset = swp_offset(entry);
1137 	if (offset >= p->max)
1138 		goto bad_offset;
1139 	return p;
1140 
1141 bad_offset:
1142 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1143 	goto out;
1144 bad_device:
1145 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1146 	goto out;
1147 bad_nofile:
1148 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1149 out:
1150 	return NULL;
1151 }
1152 
1153 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1154 {
1155 	struct swap_info_struct *p;
1156 
1157 	p = __swap_info_get(entry);
1158 	if (!p)
1159 		goto out;
1160 	if (data_race(!p->swap_map[swp_offset(entry)]))
1161 		goto bad_free;
1162 	return p;
1163 
1164 bad_free:
1165 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1166 out:
1167 	return NULL;
1168 }
1169 
1170 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1171 {
1172 	struct swap_info_struct *p;
1173 
1174 	p = _swap_info_get(entry);
1175 	if (p)
1176 		spin_lock(&p->lock);
1177 	return p;
1178 }
1179 
1180 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1181 					struct swap_info_struct *q)
1182 {
1183 	struct swap_info_struct *p;
1184 
1185 	p = _swap_info_get(entry);
1186 
1187 	if (p != q) {
1188 		if (q != NULL)
1189 			spin_unlock(&q->lock);
1190 		if (p != NULL)
1191 			spin_lock(&p->lock);
1192 	}
1193 	return p;
1194 }
1195 
1196 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1197 					      unsigned long offset,
1198 					      unsigned char usage)
1199 {
1200 	unsigned char count;
1201 	unsigned char has_cache;
1202 
1203 	count = p->swap_map[offset];
1204 
1205 	has_cache = count & SWAP_HAS_CACHE;
1206 	count &= ~SWAP_HAS_CACHE;
1207 
1208 	if (usage == SWAP_HAS_CACHE) {
1209 		VM_BUG_ON(!has_cache);
1210 		has_cache = 0;
1211 	} else if (count == SWAP_MAP_SHMEM) {
1212 		/*
1213 		 * Or we could insist on shmem.c using a special
1214 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1215 		 */
1216 		count = 0;
1217 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1218 		if (count == COUNT_CONTINUED) {
1219 			if (swap_count_continued(p, offset, count))
1220 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1221 			else
1222 				count = SWAP_MAP_MAX;
1223 		} else
1224 			count--;
1225 	}
1226 
1227 	usage = count | has_cache;
1228 	if (usage)
1229 		WRITE_ONCE(p->swap_map[offset], usage);
1230 	else
1231 		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1232 
1233 	return usage;
1234 }
1235 
1236 /*
1237  * Check whether swap entry is valid in the swap device.  If so,
1238  * return pointer to swap_info_struct, and keep the swap entry valid
1239  * via preventing the swap device from being swapoff, until
1240  * put_swap_device() is called.  Otherwise return NULL.
1241  *
1242  * Notice that swapoff or swapoff+swapon can still happen before the
1243  * percpu_ref_tryget_live() in get_swap_device() or after the
1244  * percpu_ref_put() in put_swap_device() if there isn't any other way
1245  * to prevent swapoff, such as page lock, page table lock, etc.  The
1246  * caller must be prepared for that.  For example, the following
1247  * situation is possible.
1248  *
1249  *   CPU1				CPU2
1250  *   do_swap_page()
1251  *     ...				swapoff+swapon
1252  *     __read_swap_cache_async()
1253  *       swapcache_prepare()
1254  *         __swap_duplicate()
1255  *           // check swap_map
1256  *     // verify PTE not changed
1257  *
1258  * In __swap_duplicate(), the swap_map need to be checked before
1259  * changing partly because the specified swap entry may be for another
1260  * swap device which has been swapoff.  And in do_swap_page(), after
1261  * the page is read from the swap device, the PTE is verified not
1262  * changed with the page table locked to check whether the swap device
1263  * has been swapoff or swapoff+swapon.
1264  */
1265 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1266 {
1267 	struct swap_info_struct *si;
1268 	unsigned long offset;
1269 
1270 	if (!entry.val)
1271 		goto out;
1272 	si = swp_swap_info(entry);
1273 	if (!si)
1274 		goto bad_nofile;
1275 	if (!percpu_ref_tryget_live(&si->users))
1276 		goto out;
1277 	/*
1278 	 * Guarantee the si->users are checked before accessing other
1279 	 * fields of swap_info_struct.
1280 	 *
1281 	 * Paired with the spin_unlock() after setup_swap_info() in
1282 	 * enable_swap_info().
1283 	 */
1284 	smp_rmb();
1285 	offset = swp_offset(entry);
1286 	if (offset >= si->max)
1287 		goto put_out;
1288 
1289 	return si;
1290 bad_nofile:
1291 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1292 out:
1293 	return NULL;
1294 put_out:
1295 	percpu_ref_put(&si->users);
1296 	return NULL;
1297 }
1298 
1299 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1300 				       swp_entry_t entry)
1301 {
1302 	struct swap_cluster_info *ci;
1303 	unsigned long offset = swp_offset(entry);
1304 	unsigned char usage;
1305 
1306 	ci = lock_cluster_or_swap_info(p, offset);
1307 	usage = __swap_entry_free_locked(p, offset, 1);
1308 	unlock_cluster_or_swap_info(p, ci);
1309 	if (!usage)
1310 		free_swap_slot(entry);
1311 
1312 	return usage;
1313 }
1314 
1315 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1316 {
1317 	struct swap_cluster_info *ci;
1318 	unsigned long offset = swp_offset(entry);
1319 	unsigned char count;
1320 
1321 	ci = lock_cluster(p, offset);
1322 	count = p->swap_map[offset];
1323 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1324 	p->swap_map[offset] = 0;
1325 	dec_cluster_info_page(p, p->cluster_info, offset);
1326 	unlock_cluster(ci);
1327 
1328 	mem_cgroup_uncharge_swap(entry, 1);
1329 	swap_range_free(p, offset, 1);
1330 }
1331 
1332 /*
1333  * Caller has made sure that the swap device corresponding to entry
1334  * is still around or has not been recycled.
1335  */
1336 void swap_free(swp_entry_t entry)
1337 {
1338 	struct swap_info_struct *p;
1339 
1340 	p = _swap_info_get(entry);
1341 	if (p)
1342 		__swap_entry_free(p, entry);
1343 }
1344 
1345 /*
1346  * Called after dropping swapcache to decrease refcnt to swap entries.
1347  */
1348 void put_swap_page(struct page *page, swp_entry_t entry)
1349 {
1350 	unsigned long offset = swp_offset(entry);
1351 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1352 	struct swap_cluster_info *ci;
1353 	struct swap_info_struct *si;
1354 	unsigned char *map;
1355 	unsigned int i, free_entries = 0;
1356 	unsigned char val;
1357 	int size = swap_entry_size(thp_nr_pages(page));
1358 
1359 	si = _swap_info_get(entry);
1360 	if (!si)
1361 		return;
1362 
1363 	ci = lock_cluster_or_swap_info(si, offset);
1364 	if (size == SWAPFILE_CLUSTER) {
1365 		VM_BUG_ON(!cluster_is_huge(ci));
1366 		map = si->swap_map + offset;
1367 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1368 			val = map[i];
1369 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1370 			if (val == SWAP_HAS_CACHE)
1371 				free_entries++;
1372 		}
1373 		cluster_clear_huge(ci);
1374 		if (free_entries == SWAPFILE_CLUSTER) {
1375 			unlock_cluster_or_swap_info(si, ci);
1376 			spin_lock(&si->lock);
1377 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1378 			swap_free_cluster(si, idx);
1379 			spin_unlock(&si->lock);
1380 			return;
1381 		}
1382 	}
1383 	for (i = 0; i < size; i++, entry.val++) {
1384 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1385 			unlock_cluster_or_swap_info(si, ci);
1386 			free_swap_slot(entry);
1387 			if (i == size - 1)
1388 				return;
1389 			lock_cluster_or_swap_info(si, offset);
1390 		}
1391 	}
1392 	unlock_cluster_or_swap_info(si, ci);
1393 }
1394 
1395 #ifdef CONFIG_THP_SWAP
1396 int split_swap_cluster(swp_entry_t entry)
1397 {
1398 	struct swap_info_struct *si;
1399 	struct swap_cluster_info *ci;
1400 	unsigned long offset = swp_offset(entry);
1401 
1402 	si = _swap_info_get(entry);
1403 	if (!si)
1404 		return -EBUSY;
1405 	ci = lock_cluster(si, offset);
1406 	cluster_clear_huge(ci);
1407 	unlock_cluster(ci);
1408 	return 0;
1409 }
1410 #endif
1411 
1412 static int swp_entry_cmp(const void *ent1, const void *ent2)
1413 {
1414 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1415 
1416 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1417 }
1418 
1419 void swapcache_free_entries(swp_entry_t *entries, int n)
1420 {
1421 	struct swap_info_struct *p, *prev;
1422 	int i;
1423 
1424 	if (n <= 0)
1425 		return;
1426 
1427 	prev = NULL;
1428 	p = NULL;
1429 
1430 	/*
1431 	 * Sort swap entries by swap device, so each lock is only taken once.
1432 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1433 	 * so low that it isn't necessary to optimize further.
1434 	 */
1435 	if (nr_swapfiles > 1)
1436 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1437 	for (i = 0; i < n; ++i) {
1438 		p = swap_info_get_cont(entries[i], prev);
1439 		if (p)
1440 			swap_entry_free(p, entries[i]);
1441 		prev = p;
1442 	}
1443 	if (p)
1444 		spin_unlock(&p->lock);
1445 }
1446 
1447 /*
1448  * How many references to page are currently swapped out?
1449  * This does not give an exact answer when swap count is continued,
1450  * but does include the high COUNT_CONTINUED flag to allow for that.
1451  */
1452 int page_swapcount(struct page *page)
1453 {
1454 	int count = 0;
1455 	struct swap_info_struct *p;
1456 	struct swap_cluster_info *ci;
1457 	swp_entry_t entry;
1458 	unsigned long offset;
1459 
1460 	entry.val = page_private(page);
1461 	p = _swap_info_get(entry);
1462 	if (p) {
1463 		offset = swp_offset(entry);
1464 		ci = lock_cluster_or_swap_info(p, offset);
1465 		count = swap_count(p->swap_map[offset]);
1466 		unlock_cluster_or_swap_info(p, ci);
1467 	}
1468 	return count;
1469 }
1470 
1471 int __swap_count(swp_entry_t entry)
1472 {
1473 	struct swap_info_struct *si;
1474 	pgoff_t offset = swp_offset(entry);
1475 	int count = 0;
1476 
1477 	si = get_swap_device(entry);
1478 	if (si) {
1479 		count = swap_count(si->swap_map[offset]);
1480 		put_swap_device(si);
1481 	}
1482 	return count;
1483 }
1484 
1485 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1486 {
1487 	int count = 0;
1488 	pgoff_t offset = swp_offset(entry);
1489 	struct swap_cluster_info *ci;
1490 
1491 	ci = lock_cluster_or_swap_info(si, offset);
1492 	count = swap_count(si->swap_map[offset]);
1493 	unlock_cluster_or_swap_info(si, ci);
1494 	return count;
1495 }
1496 
1497 /*
1498  * How many references to @entry are currently swapped out?
1499  * This does not give an exact answer when swap count is continued,
1500  * but does include the high COUNT_CONTINUED flag to allow for that.
1501  */
1502 int __swp_swapcount(swp_entry_t entry)
1503 {
1504 	int count = 0;
1505 	struct swap_info_struct *si;
1506 
1507 	si = get_swap_device(entry);
1508 	if (si) {
1509 		count = swap_swapcount(si, entry);
1510 		put_swap_device(si);
1511 	}
1512 	return count;
1513 }
1514 
1515 /*
1516  * How many references to @entry are currently swapped out?
1517  * This considers COUNT_CONTINUED so it returns exact answer.
1518  */
1519 int swp_swapcount(swp_entry_t entry)
1520 {
1521 	int count, tmp_count, n;
1522 	struct swap_info_struct *p;
1523 	struct swap_cluster_info *ci;
1524 	struct page *page;
1525 	pgoff_t offset;
1526 	unsigned char *map;
1527 
1528 	p = _swap_info_get(entry);
1529 	if (!p)
1530 		return 0;
1531 
1532 	offset = swp_offset(entry);
1533 
1534 	ci = lock_cluster_or_swap_info(p, offset);
1535 
1536 	count = swap_count(p->swap_map[offset]);
1537 	if (!(count & COUNT_CONTINUED))
1538 		goto out;
1539 
1540 	count &= ~COUNT_CONTINUED;
1541 	n = SWAP_MAP_MAX + 1;
1542 
1543 	page = vmalloc_to_page(p->swap_map + offset);
1544 	offset &= ~PAGE_MASK;
1545 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1546 
1547 	do {
1548 		page = list_next_entry(page, lru);
1549 		map = kmap_atomic(page);
1550 		tmp_count = map[offset];
1551 		kunmap_atomic(map);
1552 
1553 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1554 		n *= (SWAP_CONT_MAX + 1);
1555 	} while (tmp_count & COUNT_CONTINUED);
1556 out:
1557 	unlock_cluster_or_swap_info(p, ci);
1558 	return count;
1559 }
1560 
1561 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1562 					 swp_entry_t entry)
1563 {
1564 	struct swap_cluster_info *ci;
1565 	unsigned char *map = si->swap_map;
1566 	unsigned long roffset = swp_offset(entry);
1567 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1568 	int i;
1569 	bool ret = false;
1570 
1571 	ci = lock_cluster_or_swap_info(si, offset);
1572 	if (!ci || !cluster_is_huge(ci)) {
1573 		if (swap_count(map[roffset]))
1574 			ret = true;
1575 		goto unlock_out;
1576 	}
1577 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1578 		if (swap_count(map[offset + i])) {
1579 			ret = true;
1580 			break;
1581 		}
1582 	}
1583 unlock_out:
1584 	unlock_cluster_or_swap_info(si, ci);
1585 	return ret;
1586 }
1587 
1588 static bool page_swapped(struct page *page)
1589 {
1590 	swp_entry_t entry;
1591 	struct swap_info_struct *si;
1592 
1593 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1594 		return page_swapcount(page) != 0;
1595 
1596 	page = compound_head(page);
1597 	entry.val = page_private(page);
1598 	si = _swap_info_get(entry);
1599 	if (si)
1600 		return swap_page_trans_huge_swapped(si, entry);
1601 	return false;
1602 }
1603 
1604 static int page_trans_huge_map_swapcount(struct page *page,
1605 					 int *total_swapcount)
1606 {
1607 	int i, map_swapcount, _total_swapcount;
1608 	unsigned long offset = 0;
1609 	struct swap_info_struct *si;
1610 	struct swap_cluster_info *ci = NULL;
1611 	unsigned char *map = NULL;
1612 	int swapcount = 0;
1613 
1614 	/* hugetlbfs shouldn't call it */
1615 	VM_BUG_ON_PAGE(PageHuge(page), page);
1616 
1617 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1618 		if (PageSwapCache(page))
1619 			swapcount = page_swapcount(page);
1620 		if (total_swapcount)
1621 			*total_swapcount = swapcount;
1622 		return swapcount + page_trans_huge_mapcount(page);
1623 	}
1624 
1625 	page = compound_head(page);
1626 
1627 	_total_swapcount = map_swapcount = 0;
1628 	if (PageSwapCache(page)) {
1629 		swp_entry_t entry;
1630 
1631 		entry.val = page_private(page);
1632 		si = _swap_info_get(entry);
1633 		if (si) {
1634 			map = si->swap_map;
1635 			offset = swp_offset(entry);
1636 		}
1637 	}
1638 	if (map)
1639 		ci = lock_cluster(si, offset);
1640 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1641 		int mapcount = atomic_read(&page[i]._mapcount) + 1;
1642 		if (map) {
1643 			swapcount = swap_count(map[offset + i]);
1644 			_total_swapcount += swapcount;
1645 		}
1646 		map_swapcount = max(map_swapcount, mapcount + swapcount);
1647 	}
1648 	unlock_cluster(ci);
1649 
1650 	if (PageDoubleMap(page))
1651 		map_swapcount -= 1;
1652 
1653 	if (total_swapcount)
1654 		*total_swapcount = _total_swapcount;
1655 
1656 	return map_swapcount + compound_mapcount(page);
1657 }
1658 
1659 /*
1660  * We can write to an anon page without COW if there are no other references
1661  * to it.  And as a side-effect, free up its swap: because the old content
1662  * on disk will never be read, and seeking back there to write new content
1663  * later would only waste time away from clustering.
1664  */
1665 bool reuse_swap_page(struct page *page)
1666 {
1667 	int count, total_swapcount;
1668 
1669 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1670 	if (unlikely(PageKsm(page)))
1671 		return false;
1672 	count = page_trans_huge_map_swapcount(page, &total_swapcount);
1673 	if (count == 1 && PageSwapCache(page) &&
1674 	    (likely(!PageTransCompound(page)) ||
1675 	     /* The remaining swap count will be freed soon */
1676 	     total_swapcount == page_swapcount(page))) {
1677 		if (!PageWriteback(page)) {
1678 			page = compound_head(page);
1679 			delete_from_swap_cache(page);
1680 			SetPageDirty(page);
1681 		} else {
1682 			swp_entry_t entry;
1683 			struct swap_info_struct *p;
1684 
1685 			entry.val = page_private(page);
1686 			p = swap_info_get(entry);
1687 			if (p->flags & SWP_STABLE_WRITES) {
1688 				spin_unlock(&p->lock);
1689 				return false;
1690 			}
1691 			spin_unlock(&p->lock);
1692 		}
1693 	}
1694 
1695 	return count <= 1;
1696 }
1697 
1698 /*
1699  * If swap is getting full, or if there are no more mappings of this page,
1700  * then try_to_free_swap is called to free its swap space.
1701  */
1702 int try_to_free_swap(struct page *page)
1703 {
1704 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1705 
1706 	if (!PageSwapCache(page))
1707 		return 0;
1708 	if (PageWriteback(page))
1709 		return 0;
1710 	if (page_swapped(page))
1711 		return 0;
1712 
1713 	/*
1714 	 * Once hibernation has begun to create its image of memory,
1715 	 * there's a danger that one of the calls to try_to_free_swap()
1716 	 * - most probably a call from __try_to_reclaim_swap() while
1717 	 * hibernation is allocating its own swap pages for the image,
1718 	 * but conceivably even a call from memory reclaim - will free
1719 	 * the swap from a page which has already been recorded in the
1720 	 * image as a clean swapcache page, and then reuse its swap for
1721 	 * another page of the image.  On waking from hibernation, the
1722 	 * original page might be freed under memory pressure, then
1723 	 * later read back in from swap, now with the wrong data.
1724 	 *
1725 	 * Hibernation suspends storage while it is writing the image
1726 	 * to disk so check that here.
1727 	 */
1728 	if (pm_suspended_storage())
1729 		return 0;
1730 
1731 	page = compound_head(page);
1732 	delete_from_swap_cache(page);
1733 	SetPageDirty(page);
1734 	return 1;
1735 }
1736 
1737 /*
1738  * Free the swap entry like above, but also try to
1739  * free the page cache entry if it is the last user.
1740  */
1741 int free_swap_and_cache(swp_entry_t entry)
1742 {
1743 	struct swap_info_struct *p;
1744 	unsigned char count;
1745 
1746 	if (non_swap_entry(entry))
1747 		return 1;
1748 
1749 	p = _swap_info_get(entry);
1750 	if (p) {
1751 		count = __swap_entry_free(p, entry);
1752 		if (count == SWAP_HAS_CACHE &&
1753 		    !swap_page_trans_huge_swapped(p, entry))
1754 			__try_to_reclaim_swap(p, swp_offset(entry),
1755 					      TTRS_UNMAPPED | TTRS_FULL);
1756 	}
1757 	return p != NULL;
1758 }
1759 
1760 #ifdef CONFIG_HIBERNATION
1761 
1762 swp_entry_t get_swap_page_of_type(int type)
1763 {
1764 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1765 	swp_entry_t entry = {0};
1766 
1767 	if (!si)
1768 		goto fail;
1769 
1770 	/* This is called for allocating swap entry, not cache */
1771 	spin_lock(&si->lock);
1772 	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1773 		atomic_long_dec(&nr_swap_pages);
1774 	spin_unlock(&si->lock);
1775 fail:
1776 	return entry;
1777 }
1778 
1779 /*
1780  * Find the swap type that corresponds to given device (if any).
1781  *
1782  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1783  * from 0, in which the swap header is expected to be located.
1784  *
1785  * This is needed for the suspend to disk (aka swsusp).
1786  */
1787 int swap_type_of(dev_t device, sector_t offset)
1788 {
1789 	int type;
1790 
1791 	if (!device)
1792 		return -1;
1793 
1794 	spin_lock(&swap_lock);
1795 	for (type = 0; type < nr_swapfiles; type++) {
1796 		struct swap_info_struct *sis = swap_info[type];
1797 
1798 		if (!(sis->flags & SWP_WRITEOK))
1799 			continue;
1800 
1801 		if (device == sis->bdev->bd_dev) {
1802 			struct swap_extent *se = first_se(sis);
1803 
1804 			if (se->start_block == offset) {
1805 				spin_unlock(&swap_lock);
1806 				return type;
1807 			}
1808 		}
1809 	}
1810 	spin_unlock(&swap_lock);
1811 	return -ENODEV;
1812 }
1813 
1814 int find_first_swap(dev_t *device)
1815 {
1816 	int type;
1817 
1818 	spin_lock(&swap_lock);
1819 	for (type = 0; type < nr_swapfiles; type++) {
1820 		struct swap_info_struct *sis = swap_info[type];
1821 
1822 		if (!(sis->flags & SWP_WRITEOK))
1823 			continue;
1824 		*device = sis->bdev->bd_dev;
1825 		spin_unlock(&swap_lock);
1826 		return type;
1827 	}
1828 	spin_unlock(&swap_lock);
1829 	return -ENODEV;
1830 }
1831 
1832 /*
1833  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1834  * corresponding to given index in swap_info (swap type).
1835  */
1836 sector_t swapdev_block(int type, pgoff_t offset)
1837 {
1838 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1839 	struct swap_extent *se;
1840 
1841 	if (!si || !(si->flags & SWP_WRITEOK))
1842 		return 0;
1843 	se = offset_to_swap_extent(si, offset);
1844 	return se->start_block + (offset - se->start_page);
1845 }
1846 
1847 /*
1848  * Return either the total number of swap pages of given type, or the number
1849  * of free pages of that type (depending on @free)
1850  *
1851  * This is needed for software suspend
1852  */
1853 unsigned int count_swap_pages(int type, int free)
1854 {
1855 	unsigned int n = 0;
1856 
1857 	spin_lock(&swap_lock);
1858 	if ((unsigned int)type < nr_swapfiles) {
1859 		struct swap_info_struct *sis = swap_info[type];
1860 
1861 		spin_lock(&sis->lock);
1862 		if (sis->flags & SWP_WRITEOK) {
1863 			n = sis->pages;
1864 			if (free)
1865 				n -= sis->inuse_pages;
1866 		}
1867 		spin_unlock(&sis->lock);
1868 	}
1869 	spin_unlock(&swap_lock);
1870 	return n;
1871 }
1872 #endif /* CONFIG_HIBERNATION */
1873 
1874 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1875 {
1876 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1877 }
1878 
1879 /*
1880  * No need to decide whether this PTE shares the swap entry with others,
1881  * just let do_wp_page work it out if a write is requested later - to
1882  * force COW, vm_page_prot omits write permission from any private vma.
1883  */
1884 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1885 		unsigned long addr, swp_entry_t entry, struct page *page)
1886 {
1887 	struct page *swapcache;
1888 	spinlock_t *ptl;
1889 	pte_t *pte;
1890 	int ret = 1;
1891 
1892 	swapcache = page;
1893 	page = ksm_might_need_to_copy(page, vma, addr);
1894 	if (unlikely(!page))
1895 		return -ENOMEM;
1896 
1897 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1898 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1899 		ret = 0;
1900 		goto out;
1901 	}
1902 
1903 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1904 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1905 	get_page(page);
1906 	if (page == swapcache) {
1907 		page_add_anon_rmap(page, vma, addr, false);
1908 	} else { /* ksm created a completely new copy */
1909 		page_add_new_anon_rmap(page, vma, addr, false);
1910 		lru_cache_add_inactive_or_unevictable(page, vma);
1911 	}
1912 	set_pte_at(vma->vm_mm, addr, pte,
1913 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1914 	swap_free(entry);
1915 out:
1916 	pte_unmap_unlock(pte, ptl);
1917 	if (page != swapcache) {
1918 		unlock_page(page);
1919 		put_page(page);
1920 	}
1921 	return ret;
1922 }
1923 
1924 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1925 			unsigned long addr, unsigned long end,
1926 			unsigned int type)
1927 {
1928 	struct page *page;
1929 	swp_entry_t entry;
1930 	pte_t *pte;
1931 	struct swap_info_struct *si;
1932 	unsigned long offset;
1933 	int ret = 0;
1934 	volatile unsigned char *swap_map;
1935 
1936 	si = swap_info[type];
1937 	pte = pte_offset_map(pmd, addr);
1938 	do {
1939 		if (!is_swap_pte(*pte))
1940 			continue;
1941 
1942 		entry = pte_to_swp_entry(*pte);
1943 		if (swp_type(entry) != type)
1944 			continue;
1945 
1946 		offset = swp_offset(entry);
1947 		pte_unmap(pte);
1948 		swap_map = &si->swap_map[offset];
1949 		page = lookup_swap_cache(entry, vma, addr);
1950 		if (!page) {
1951 			struct vm_fault vmf = {
1952 				.vma = vma,
1953 				.address = addr,
1954 				.pmd = pmd,
1955 			};
1956 
1957 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1958 						&vmf);
1959 		}
1960 		if (!page) {
1961 			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1962 				goto try_next;
1963 			return -ENOMEM;
1964 		}
1965 
1966 		lock_page(page);
1967 		wait_on_page_writeback(page);
1968 		ret = unuse_pte(vma, pmd, addr, entry, page);
1969 		if (ret < 0) {
1970 			unlock_page(page);
1971 			put_page(page);
1972 			goto out;
1973 		}
1974 
1975 		try_to_free_swap(page);
1976 		unlock_page(page);
1977 		put_page(page);
1978 try_next:
1979 		pte = pte_offset_map(pmd, addr);
1980 	} while (pte++, addr += PAGE_SIZE, addr != end);
1981 	pte_unmap(pte - 1);
1982 
1983 	ret = 0;
1984 out:
1985 	return ret;
1986 }
1987 
1988 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1989 				unsigned long addr, unsigned long end,
1990 				unsigned int type)
1991 {
1992 	pmd_t *pmd;
1993 	unsigned long next;
1994 	int ret;
1995 
1996 	pmd = pmd_offset(pud, addr);
1997 	do {
1998 		cond_resched();
1999 		next = pmd_addr_end(addr, end);
2000 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2001 			continue;
2002 		ret = unuse_pte_range(vma, pmd, addr, next, type);
2003 		if (ret)
2004 			return ret;
2005 	} while (pmd++, addr = next, addr != end);
2006 	return 0;
2007 }
2008 
2009 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2010 				unsigned long addr, unsigned long end,
2011 				unsigned int type)
2012 {
2013 	pud_t *pud;
2014 	unsigned long next;
2015 	int ret;
2016 
2017 	pud = pud_offset(p4d, addr);
2018 	do {
2019 		next = pud_addr_end(addr, end);
2020 		if (pud_none_or_clear_bad(pud))
2021 			continue;
2022 		ret = unuse_pmd_range(vma, pud, addr, next, type);
2023 		if (ret)
2024 			return ret;
2025 	} while (pud++, addr = next, addr != end);
2026 	return 0;
2027 }
2028 
2029 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2030 				unsigned long addr, unsigned long end,
2031 				unsigned int type)
2032 {
2033 	p4d_t *p4d;
2034 	unsigned long next;
2035 	int ret;
2036 
2037 	p4d = p4d_offset(pgd, addr);
2038 	do {
2039 		next = p4d_addr_end(addr, end);
2040 		if (p4d_none_or_clear_bad(p4d))
2041 			continue;
2042 		ret = unuse_pud_range(vma, p4d, addr, next, type);
2043 		if (ret)
2044 			return ret;
2045 	} while (p4d++, addr = next, addr != end);
2046 	return 0;
2047 }
2048 
2049 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
2050 {
2051 	pgd_t *pgd;
2052 	unsigned long addr, end, next;
2053 	int ret;
2054 
2055 	addr = vma->vm_start;
2056 	end = vma->vm_end;
2057 
2058 	pgd = pgd_offset(vma->vm_mm, addr);
2059 	do {
2060 		next = pgd_addr_end(addr, end);
2061 		if (pgd_none_or_clear_bad(pgd))
2062 			continue;
2063 		ret = unuse_p4d_range(vma, pgd, addr, next, type);
2064 		if (ret)
2065 			return ret;
2066 	} while (pgd++, addr = next, addr != end);
2067 	return 0;
2068 }
2069 
2070 static int unuse_mm(struct mm_struct *mm, unsigned int type)
2071 {
2072 	struct vm_area_struct *vma;
2073 	int ret = 0;
2074 
2075 	mmap_read_lock(mm);
2076 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2077 		if (vma->anon_vma) {
2078 			ret = unuse_vma(vma, type);
2079 			if (ret)
2080 				break;
2081 		}
2082 		cond_resched();
2083 	}
2084 	mmap_read_unlock(mm);
2085 	return ret;
2086 }
2087 
2088 /*
2089  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2090  * from current position to next entry still in use. Return 0
2091  * if there are no inuse entries after prev till end of the map.
2092  */
2093 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2094 					unsigned int prev)
2095 {
2096 	unsigned int i;
2097 	unsigned char count;
2098 
2099 	/*
2100 	 * No need for swap_lock here: we're just looking
2101 	 * for whether an entry is in use, not modifying it; false
2102 	 * hits are okay, and sys_swapoff() has already prevented new
2103 	 * allocations from this area (while holding swap_lock).
2104 	 */
2105 	for (i = prev + 1; i < si->max; i++) {
2106 		count = READ_ONCE(si->swap_map[i]);
2107 		if (count && swap_count(count) != SWAP_MAP_BAD)
2108 			break;
2109 		if ((i % LATENCY_LIMIT) == 0)
2110 			cond_resched();
2111 	}
2112 
2113 	if (i == si->max)
2114 		i = 0;
2115 
2116 	return i;
2117 }
2118 
2119 static int try_to_unuse(unsigned int type)
2120 {
2121 	struct mm_struct *prev_mm;
2122 	struct mm_struct *mm;
2123 	struct list_head *p;
2124 	int retval = 0;
2125 	struct swap_info_struct *si = swap_info[type];
2126 	struct page *page;
2127 	swp_entry_t entry;
2128 	unsigned int i;
2129 
2130 	if (!READ_ONCE(si->inuse_pages))
2131 		return 0;
2132 
2133 retry:
2134 	retval = shmem_unuse(type);
2135 	if (retval)
2136 		return retval;
2137 
2138 	prev_mm = &init_mm;
2139 	mmget(prev_mm);
2140 
2141 	spin_lock(&mmlist_lock);
2142 	p = &init_mm.mmlist;
2143 	while (READ_ONCE(si->inuse_pages) &&
2144 	       !signal_pending(current) &&
2145 	       (p = p->next) != &init_mm.mmlist) {
2146 
2147 		mm = list_entry(p, struct mm_struct, mmlist);
2148 		if (!mmget_not_zero(mm))
2149 			continue;
2150 		spin_unlock(&mmlist_lock);
2151 		mmput(prev_mm);
2152 		prev_mm = mm;
2153 		retval = unuse_mm(mm, type);
2154 		if (retval) {
2155 			mmput(prev_mm);
2156 			return retval;
2157 		}
2158 
2159 		/*
2160 		 * Make sure that we aren't completely killing
2161 		 * interactive performance.
2162 		 */
2163 		cond_resched();
2164 		spin_lock(&mmlist_lock);
2165 	}
2166 	spin_unlock(&mmlist_lock);
2167 
2168 	mmput(prev_mm);
2169 
2170 	i = 0;
2171 	while (READ_ONCE(si->inuse_pages) &&
2172 	       !signal_pending(current) &&
2173 	       (i = find_next_to_unuse(si, i)) != 0) {
2174 
2175 		entry = swp_entry(type, i);
2176 		page = find_get_page(swap_address_space(entry), i);
2177 		if (!page)
2178 			continue;
2179 
2180 		/*
2181 		 * It is conceivable that a racing task removed this page from
2182 		 * swap cache just before we acquired the page lock. The page
2183 		 * might even be back in swap cache on another swap area. But
2184 		 * that is okay, try_to_free_swap() only removes stale pages.
2185 		 */
2186 		lock_page(page);
2187 		wait_on_page_writeback(page);
2188 		try_to_free_swap(page);
2189 		unlock_page(page);
2190 		put_page(page);
2191 	}
2192 
2193 	/*
2194 	 * Lets check again to see if there are still swap entries in the map.
2195 	 * If yes, we would need to do retry the unuse logic again.
2196 	 * Under global memory pressure, swap entries can be reinserted back
2197 	 * into process space after the mmlist loop above passes over them.
2198 	 *
2199 	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2200 	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2201 	 * at its own independent pace; and even shmem_writepage() could have
2202 	 * been preempted after get_swap_page(), temporarily hiding that swap.
2203 	 * It's easy and robust (though cpu-intensive) just to keep retrying.
2204 	 */
2205 	if (READ_ONCE(si->inuse_pages)) {
2206 		if (!signal_pending(current))
2207 			goto retry;
2208 		return -EINTR;
2209 	}
2210 
2211 	return 0;
2212 }
2213 
2214 /*
2215  * After a successful try_to_unuse, if no swap is now in use, we know
2216  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2217  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2218  * added to the mmlist just after page_duplicate - before would be racy.
2219  */
2220 static void drain_mmlist(void)
2221 {
2222 	struct list_head *p, *next;
2223 	unsigned int type;
2224 
2225 	for (type = 0; type < nr_swapfiles; type++)
2226 		if (swap_info[type]->inuse_pages)
2227 			return;
2228 	spin_lock(&mmlist_lock);
2229 	list_for_each_safe(p, next, &init_mm.mmlist)
2230 		list_del_init(p);
2231 	spin_unlock(&mmlist_lock);
2232 }
2233 
2234 /*
2235  * Free all of a swapdev's extent information
2236  */
2237 static void destroy_swap_extents(struct swap_info_struct *sis)
2238 {
2239 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2240 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2241 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2242 
2243 		rb_erase(rb, &sis->swap_extent_root);
2244 		kfree(se);
2245 	}
2246 
2247 	if (sis->flags & SWP_ACTIVATED) {
2248 		struct file *swap_file = sis->swap_file;
2249 		struct address_space *mapping = swap_file->f_mapping;
2250 
2251 		sis->flags &= ~SWP_ACTIVATED;
2252 		if (mapping->a_ops->swap_deactivate)
2253 			mapping->a_ops->swap_deactivate(swap_file);
2254 	}
2255 }
2256 
2257 /*
2258  * Add a block range (and the corresponding page range) into this swapdev's
2259  * extent tree.
2260  *
2261  * This function rather assumes that it is called in ascending page order.
2262  */
2263 int
2264 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2265 		unsigned long nr_pages, sector_t start_block)
2266 {
2267 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2268 	struct swap_extent *se;
2269 	struct swap_extent *new_se;
2270 
2271 	/*
2272 	 * place the new node at the right most since the
2273 	 * function is called in ascending page order.
2274 	 */
2275 	while (*link) {
2276 		parent = *link;
2277 		link = &parent->rb_right;
2278 	}
2279 
2280 	if (parent) {
2281 		se = rb_entry(parent, struct swap_extent, rb_node);
2282 		BUG_ON(se->start_page + se->nr_pages != start_page);
2283 		if (se->start_block + se->nr_pages == start_block) {
2284 			/* Merge it */
2285 			se->nr_pages += nr_pages;
2286 			return 0;
2287 		}
2288 	}
2289 
2290 	/* No merge, insert a new extent. */
2291 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2292 	if (new_se == NULL)
2293 		return -ENOMEM;
2294 	new_se->start_page = start_page;
2295 	new_se->nr_pages = nr_pages;
2296 	new_se->start_block = start_block;
2297 
2298 	rb_link_node(&new_se->rb_node, parent, link);
2299 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2300 	return 1;
2301 }
2302 EXPORT_SYMBOL_GPL(add_swap_extent);
2303 
2304 /*
2305  * A `swap extent' is a simple thing which maps a contiguous range of pages
2306  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2307  * is built at swapon time and is then used at swap_writepage/swap_readpage
2308  * time for locating where on disk a page belongs.
2309  *
2310  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2311  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2312  * swap files identically.
2313  *
2314  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2315  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2316  * swapfiles are handled *identically* after swapon time.
2317  *
2318  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2319  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2320  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2321  * requirements, they are simply tossed out - we will never use those blocks
2322  * for swapping.
2323  *
2324  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2325  * prevents users from writing to the swap device, which will corrupt memory.
2326  *
2327  * The amount of disk space which a single swap extent represents varies.
2328  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2329  * extents in the list.  To avoid much list walking, we cache the previous
2330  * search location in `curr_swap_extent', and start new searches from there.
2331  * This is extremely effective.  The average number of iterations in
2332  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2333  */
2334 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2335 {
2336 	struct file *swap_file = sis->swap_file;
2337 	struct address_space *mapping = swap_file->f_mapping;
2338 	struct inode *inode = mapping->host;
2339 	int ret;
2340 
2341 	if (S_ISBLK(inode->i_mode)) {
2342 		ret = add_swap_extent(sis, 0, sis->max, 0);
2343 		*span = sis->pages;
2344 		return ret;
2345 	}
2346 
2347 	if (mapping->a_ops->swap_activate) {
2348 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2349 		if (ret >= 0)
2350 			sis->flags |= SWP_ACTIVATED;
2351 		if (!ret) {
2352 			sis->flags |= SWP_FS_OPS;
2353 			ret = add_swap_extent(sis, 0, sis->max, 0);
2354 			*span = sis->pages;
2355 		}
2356 		return ret;
2357 	}
2358 
2359 	return generic_swapfile_activate(sis, swap_file, span);
2360 }
2361 
2362 static int swap_node(struct swap_info_struct *p)
2363 {
2364 	struct block_device *bdev;
2365 
2366 	if (p->bdev)
2367 		bdev = p->bdev;
2368 	else
2369 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2370 
2371 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2372 }
2373 
2374 static void setup_swap_info(struct swap_info_struct *p, int prio,
2375 			    unsigned char *swap_map,
2376 			    struct swap_cluster_info *cluster_info)
2377 {
2378 	int i;
2379 
2380 	if (prio >= 0)
2381 		p->prio = prio;
2382 	else
2383 		p->prio = --least_priority;
2384 	/*
2385 	 * the plist prio is negated because plist ordering is
2386 	 * low-to-high, while swap ordering is high-to-low
2387 	 */
2388 	p->list.prio = -p->prio;
2389 	for_each_node(i) {
2390 		if (p->prio >= 0)
2391 			p->avail_lists[i].prio = -p->prio;
2392 		else {
2393 			if (swap_node(p) == i)
2394 				p->avail_lists[i].prio = 1;
2395 			else
2396 				p->avail_lists[i].prio = -p->prio;
2397 		}
2398 	}
2399 	p->swap_map = swap_map;
2400 	p->cluster_info = cluster_info;
2401 }
2402 
2403 static void _enable_swap_info(struct swap_info_struct *p)
2404 {
2405 	p->flags |= SWP_WRITEOK;
2406 	atomic_long_add(p->pages, &nr_swap_pages);
2407 	total_swap_pages += p->pages;
2408 
2409 	assert_spin_locked(&swap_lock);
2410 	/*
2411 	 * both lists are plists, and thus priority ordered.
2412 	 * swap_active_head needs to be priority ordered for swapoff(),
2413 	 * which on removal of any swap_info_struct with an auto-assigned
2414 	 * (i.e. negative) priority increments the auto-assigned priority
2415 	 * of any lower-priority swap_info_structs.
2416 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2417 	 * which allocates swap pages from the highest available priority
2418 	 * swap_info_struct.
2419 	 */
2420 	plist_add(&p->list, &swap_active_head);
2421 	add_to_avail_list(p);
2422 }
2423 
2424 static void enable_swap_info(struct swap_info_struct *p, int prio,
2425 				unsigned char *swap_map,
2426 				struct swap_cluster_info *cluster_info,
2427 				unsigned long *frontswap_map)
2428 {
2429 	if (IS_ENABLED(CONFIG_FRONTSWAP))
2430 		frontswap_init(p->type, frontswap_map);
2431 	spin_lock(&swap_lock);
2432 	spin_lock(&p->lock);
2433 	setup_swap_info(p, prio, swap_map, cluster_info);
2434 	spin_unlock(&p->lock);
2435 	spin_unlock(&swap_lock);
2436 	/*
2437 	 * Finished initializing swap device, now it's safe to reference it.
2438 	 */
2439 	percpu_ref_resurrect(&p->users);
2440 	spin_lock(&swap_lock);
2441 	spin_lock(&p->lock);
2442 	_enable_swap_info(p);
2443 	spin_unlock(&p->lock);
2444 	spin_unlock(&swap_lock);
2445 }
2446 
2447 static void reinsert_swap_info(struct swap_info_struct *p)
2448 {
2449 	spin_lock(&swap_lock);
2450 	spin_lock(&p->lock);
2451 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2452 	_enable_swap_info(p);
2453 	spin_unlock(&p->lock);
2454 	spin_unlock(&swap_lock);
2455 }
2456 
2457 bool has_usable_swap(void)
2458 {
2459 	bool ret = true;
2460 
2461 	spin_lock(&swap_lock);
2462 	if (plist_head_empty(&swap_active_head))
2463 		ret = false;
2464 	spin_unlock(&swap_lock);
2465 	return ret;
2466 }
2467 
2468 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2469 {
2470 	struct swap_info_struct *p = NULL;
2471 	unsigned char *swap_map;
2472 	struct swap_cluster_info *cluster_info;
2473 	unsigned long *frontswap_map;
2474 	struct file *swap_file, *victim;
2475 	struct address_space *mapping;
2476 	struct inode *inode;
2477 	struct filename *pathname;
2478 	int err, found = 0;
2479 	unsigned int old_block_size;
2480 
2481 	if (!capable(CAP_SYS_ADMIN))
2482 		return -EPERM;
2483 
2484 	BUG_ON(!current->mm);
2485 
2486 	pathname = getname(specialfile);
2487 	if (IS_ERR(pathname))
2488 		return PTR_ERR(pathname);
2489 
2490 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2491 	err = PTR_ERR(victim);
2492 	if (IS_ERR(victim))
2493 		goto out;
2494 
2495 	mapping = victim->f_mapping;
2496 	spin_lock(&swap_lock);
2497 	plist_for_each_entry(p, &swap_active_head, list) {
2498 		if (p->flags & SWP_WRITEOK) {
2499 			if (p->swap_file->f_mapping == mapping) {
2500 				found = 1;
2501 				break;
2502 			}
2503 		}
2504 	}
2505 	if (!found) {
2506 		err = -EINVAL;
2507 		spin_unlock(&swap_lock);
2508 		goto out_dput;
2509 	}
2510 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2511 		vm_unacct_memory(p->pages);
2512 	else {
2513 		err = -ENOMEM;
2514 		spin_unlock(&swap_lock);
2515 		goto out_dput;
2516 	}
2517 	del_from_avail_list(p);
2518 	spin_lock(&p->lock);
2519 	if (p->prio < 0) {
2520 		struct swap_info_struct *si = p;
2521 		int nid;
2522 
2523 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2524 			si->prio++;
2525 			si->list.prio--;
2526 			for_each_node(nid) {
2527 				if (si->avail_lists[nid].prio != 1)
2528 					si->avail_lists[nid].prio--;
2529 			}
2530 		}
2531 		least_priority++;
2532 	}
2533 	plist_del(&p->list, &swap_active_head);
2534 	atomic_long_sub(p->pages, &nr_swap_pages);
2535 	total_swap_pages -= p->pages;
2536 	p->flags &= ~SWP_WRITEOK;
2537 	spin_unlock(&p->lock);
2538 	spin_unlock(&swap_lock);
2539 
2540 	disable_swap_slots_cache_lock();
2541 
2542 	set_current_oom_origin();
2543 	err = try_to_unuse(p->type);
2544 	clear_current_oom_origin();
2545 
2546 	if (err) {
2547 		/* re-insert swap space back into swap_list */
2548 		reinsert_swap_info(p);
2549 		reenable_swap_slots_cache_unlock();
2550 		goto out_dput;
2551 	}
2552 
2553 	reenable_swap_slots_cache_unlock();
2554 
2555 	/*
2556 	 * Wait for swap operations protected by get/put_swap_device()
2557 	 * to complete.
2558 	 *
2559 	 * We need synchronize_rcu() here to protect the accessing to
2560 	 * the swap cache data structure.
2561 	 */
2562 	percpu_ref_kill(&p->users);
2563 	synchronize_rcu();
2564 	wait_for_completion(&p->comp);
2565 
2566 	flush_work(&p->discard_work);
2567 
2568 	destroy_swap_extents(p);
2569 	if (p->flags & SWP_CONTINUED)
2570 		free_swap_count_continuations(p);
2571 
2572 	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2573 		atomic_dec(&nr_rotate_swap);
2574 
2575 	mutex_lock(&swapon_mutex);
2576 	spin_lock(&swap_lock);
2577 	spin_lock(&p->lock);
2578 	drain_mmlist();
2579 
2580 	/* wait for anyone still in scan_swap_map_slots */
2581 	p->highest_bit = 0;		/* cuts scans short */
2582 	while (p->flags >= SWP_SCANNING) {
2583 		spin_unlock(&p->lock);
2584 		spin_unlock(&swap_lock);
2585 		schedule_timeout_uninterruptible(1);
2586 		spin_lock(&swap_lock);
2587 		spin_lock(&p->lock);
2588 	}
2589 
2590 	swap_file = p->swap_file;
2591 	old_block_size = p->old_block_size;
2592 	p->swap_file = NULL;
2593 	p->max = 0;
2594 	swap_map = p->swap_map;
2595 	p->swap_map = NULL;
2596 	cluster_info = p->cluster_info;
2597 	p->cluster_info = NULL;
2598 	frontswap_map = frontswap_map_get(p);
2599 	spin_unlock(&p->lock);
2600 	spin_unlock(&swap_lock);
2601 	arch_swap_invalidate_area(p->type);
2602 	frontswap_invalidate_area(p->type);
2603 	frontswap_map_set(p, NULL);
2604 	mutex_unlock(&swapon_mutex);
2605 	free_percpu(p->percpu_cluster);
2606 	p->percpu_cluster = NULL;
2607 	free_percpu(p->cluster_next_cpu);
2608 	p->cluster_next_cpu = NULL;
2609 	vfree(swap_map);
2610 	kvfree(cluster_info);
2611 	kvfree(frontswap_map);
2612 	/* Destroy swap account information */
2613 	swap_cgroup_swapoff(p->type);
2614 	exit_swap_address_space(p->type);
2615 
2616 	inode = mapping->host;
2617 	if (S_ISBLK(inode->i_mode)) {
2618 		struct block_device *bdev = I_BDEV(inode);
2619 
2620 		set_blocksize(bdev, old_block_size);
2621 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2622 	}
2623 
2624 	inode_lock(inode);
2625 	inode->i_flags &= ~S_SWAPFILE;
2626 	inode_unlock(inode);
2627 	filp_close(swap_file, NULL);
2628 
2629 	/*
2630 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2631 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2632 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2633 	 */
2634 	spin_lock(&swap_lock);
2635 	p->flags = 0;
2636 	spin_unlock(&swap_lock);
2637 
2638 	err = 0;
2639 	atomic_inc(&proc_poll_event);
2640 	wake_up_interruptible(&proc_poll_wait);
2641 
2642 out_dput:
2643 	filp_close(victim, NULL);
2644 out:
2645 	putname(pathname);
2646 	return err;
2647 }
2648 
2649 #ifdef CONFIG_PROC_FS
2650 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2651 {
2652 	struct seq_file *seq = file->private_data;
2653 
2654 	poll_wait(file, &proc_poll_wait, wait);
2655 
2656 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2657 		seq->poll_event = atomic_read(&proc_poll_event);
2658 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2659 	}
2660 
2661 	return EPOLLIN | EPOLLRDNORM;
2662 }
2663 
2664 /* iterator */
2665 static void *swap_start(struct seq_file *swap, loff_t *pos)
2666 {
2667 	struct swap_info_struct *si;
2668 	int type;
2669 	loff_t l = *pos;
2670 
2671 	mutex_lock(&swapon_mutex);
2672 
2673 	if (!l)
2674 		return SEQ_START_TOKEN;
2675 
2676 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2677 		if (!(si->flags & SWP_USED) || !si->swap_map)
2678 			continue;
2679 		if (!--l)
2680 			return si;
2681 	}
2682 
2683 	return NULL;
2684 }
2685 
2686 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2687 {
2688 	struct swap_info_struct *si = v;
2689 	int type;
2690 
2691 	if (v == SEQ_START_TOKEN)
2692 		type = 0;
2693 	else
2694 		type = si->type + 1;
2695 
2696 	++(*pos);
2697 	for (; (si = swap_type_to_swap_info(type)); type++) {
2698 		if (!(si->flags & SWP_USED) || !si->swap_map)
2699 			continue;
2700 		return si;
2701 	}
2702 
2703 	return NULL;
2704 }
2705 
2706 static void swap_stop(struct seq_file *swap, void *v)
2707 {
2708 	mutex_unlock(&swapon_mutex);
2709 }
2710 
2711 static int swap_show(struct seq_file *swap, void *v)
2712 {
2713 	struct swap_info_struct *si = v;
2714 	struct file *file;
2715 	int len;
2716 	unsigned long bytes, inuse;
2717 
2718 	if (si == SEQ_START_TOKEN) {
2719 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2720 		return 0;
2721 	}
2722 
2723 	bytes = si->pages << (PAGE_SHIFT - 10);
2724 	inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2725 
2726 	file = si->swap_file;
2727 	len = seq_file_path(swap, file, " \t\n\\");
2728 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2729 			len < 40 ? 40 - len : 1, " ",
2730 			S_ISBLK(file_inode(file)->i_mode) ?
2731 				"partition" : "file\t",
2732 			bytes, bytes < 10000000 ? "\t" : "",
2733 			inuse, inuse < 10000000 ? "\t" : "",
2734 			si->prio);
2735 	return 0;
2736 }
2737 
2738 static const struct seq_operations swaps_op = {
2739 	.start =	swap_start,
2740 	.next =		swap_next,
2741 	.stop =		swap_stop,
2742 	.show =		swap_show
2743 };
2744 
2745 static int swaps_open(struct inode *inode, struct file *file)
2746 {
2747 	struct seq_file *seq;
2748 	int ret;
2749 
2750 	ret = seq_open(file, &swaps_op);
2751 	if (ret)
2752 		return ret;
2753 
2754 	seq = file->private_data;
2755 	seq->poll_event = atomic_read(&proc_poll_event);
2756 	return 0;
2757 }
2758 
2759 static const struct proc_ops swaps_proc_ops = {
2760 	.proc_flags	= PROC_ENTRY_PERMANENT,
2761 	.proc_open	= swaps_open,
2762 	.proc_read	= seq_read,
2763 	.proc_lseek	= seq_lseek,
2764 	.proc_release	= seq_release,
2765 	.proc_poll	= swaps_poll,
2766 };
2767 
2768 static int __init procswaps_init(void)
2769 {
2770 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2771 	return 0;
2772 }
2773 __initcall(procswaps_init);
2774 #endif /* CONFIG_PROC_FS */
2775 
2776 #ifdef MAX_SWAPFILES_CHECK
2777 static int __init max_swapfiles_check(void)
2778 {
2779 	MAX_SWAPFILES_CHECK();
2780 	return 0;
2781 }
2782 late_initcall(max_swapfiles_check);
2783 #endif
2784 
2785 static struct swap_info_struct *alloc_swap_info(void)
2786 {
2787 	struct swap_info_struct *p;
2788 	struct swap_info_struct *defer = NULL;
2789 	unsigned int type;
2790 	int i;
2791 
2792 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2793 	if (!p)
2794 		return ERR_PTR(-ENOMEM);
2795 
2796 	if (percpu_ref_init(&p->users, swap_users_ref_free,
2797 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2798 		kvfree(p);
2799 		return ERR_PTR(-ENOMEM);
2800 	}
2801 
2802 	spin_lock(&swap_lock);
2803 	for (type = 0; type < nr_swapfiles; type++) {
2804 		if (!(swap_info[type]->flags & SWP_USED))
2805 			break;
2806 	}
2807 	if (type >= MAX_SWAPFILES) {
2808 		spin_unlock(&swap_lock);
2809 		percpu_ref_exit(&p->users);
2810 		kvfree(p);
2811 		return ERR_PTR(-EPERM);
2812 	}
2813 	if (type >= nr_swapfiles) {
2814 		p->type = type;
2815 		/*
2816 		 * Publish the swap_info_struct after initializing it.
2817 		 * Note that kvzalloc() above zeroes all its fields.
2818 		 */
2819 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2820 		nr_swapfiles++;
2821 	} else {
2822 		defer = p;
2823 		p = swap_info[type];
2824 		/*
2825 		 * Do not memset this entry: a racing procfs swap_next()
2826 		 * would be relying on p->type to remain valid.
2827 		 */
2828 	}
2829 	p->swap_extent_root = RB_ROOT;
2830 	plist_node_init(&p->list, 0);
2831 	for_each_node(i)
2832 		plist_node_init(&p->avail_lists[i], 0);
2833 	p->flags = SWP_USED;
2834 	spin_unlock(&swap_lock);
2835 	if (defer) {
2836 		percpu_ref_exit(&defer->users);
2837 		kvfree(defer);
2838 	}
2839 	spin_lock_init(&p->lock);
2840 	spin_lock_init(&p->cont_lock);
2841 	init_completion(&p->comp);
2842 
2843 	return p;
2844 }
2845 
2846 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2847 {
2848 	int error;
2849 
2850 	if (S_ISBLK(inode->i_mode)) {
2851 		p->bdev = blkdev_get_by_dev(inode->i_rdev,
2852 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2853 		if (IS_ERR(p->bdev)) {
2854 			error = PTR_ERR(p->bdev);
2855 			p->bdev = NULL;
2856 			return error;
2857 		}
2858 		p->old_block_size = block_size(p->bdev);
2859 		error = set_blocksize(p->bdev, PAGE_SIZE);
2860 		if (error < 0)
2861 			return error;
2862 		/*
2863 		 * Zoned block devices contain zones that have a sequential
2864 		 * write only restriction.  Hence zoned block devices are not
2865 		 * suitable for swapping.  Disallow them here.
2866 		 */
2867 		if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2868 			return -EINVAL;
2869 		p->flags |= SWP_BLKDEV;
2870 	} else if (S_ISREG(inode->i_mode)) {
2871 		p->bdev = inode->i_sb->s_bdev;
2872 	}
2873 
2874 	return 0;
2875 }
2876 
2877 
2878 /*
2879  * Find out how many pages are allowed for a single swap device. There
2880  * are two limiting factors:
2881  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2882  * 2) the number of bits in the swap pte, as defined by the different
2883  * architectures.
2884  *
2885  * In order to find the largest possible bit mask, a swap entry with
2886  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2887  * decoded to a swp_entry_t again, and finally the swap offset is
2888  * extracted.
2889  *
2890  * This will mask all the bits from the initial ~0UL mask that can't
2891  * be encoded in either the swp_entry_t or the architecture definition
2892  * of a swap pte.
2893  */
2894 unsigned long generic_max_swapfile_size(void)
2895 {
2896 	return swp_offset(pte_to_swp_entry(
2897 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2898 }
2899 
2900 /* Can be overridden by an architecture for additional checks. */
2901 __weak unsigned long max_swapfile_size(void)
2902 {
2903 	return generic_max_swapfile_size();
2904 }
2905 
2906 static unsigned long read_swap_header(struct swap_info_struct *p,
2907 					union swap_header *swap_header,
2908 					struct inode *inode)
2909 {
2910 	int i;
2911 	unsigned long maxpages;
2912 	unsigned long swapfilepages;
2913 	unsigned long last_page;
2914 
2915 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2916 		pr_err("Unable to find swap-space signature\n");
2917 		return 0;
2918 	}
2919 
2920 	/* swap partition endianness hack... */
2921 	if (swab32(swap_header->info.version) == 1) {
2922 		swab32s(&swap_header->info.version);
2923 		swab32s(&swap_header->info.last_page);
2924 		swab32s(&swap_header->info.nr_badpages);
2925 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2926 			return 0;
2927 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2928 			swab32s(&swap_header->info.badpages[i]);
2929 	}
2930 	/* Check the swap header's sub-version */
2931 	if (swap_header->info.version != 1) {
2932 		pr_warn("Unable to handle swap header version %d\n",
2933 			swap_header->info.version);
2934 		return 0;
2935 	}
2936 
2937 	p->lowest_bit  = 1;
2938 	p->cluster_next = 1;
2939 	p->cluster_nr = 0;
2940 
2941 	maxpages = max_swapfile_size();
2942 	last_page = swap_header->info.last_page;
2943 	if (!last_page) {
2944 		pr_warn("Empty swap-file\n");
2945 		return 0;
2946 	}
2947 	if (last_page > maxpages) {
2948 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2949 			maxpages << (PAGE_SHIFT - 10),
2950 			last_page << (PAGE_SHIFT - 10));
2951 	}
2952 	if (maxpages > last_page) {
2953 		maxpages = last_page + 1;
2954 		/* p->max is an unsigned int: don't overflow it */
2955 		if ((unsigned int)maxpages == 0)
2956 			maxpages = UINT_MAX;
2957 	}
2958 	p->highest_bit = maxpages - 1;
2959 
2960 	if (!maxpages)
2961 		return 0;
2962 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2963 	if (swapfilepages && maxpages > swapfilepages) {
2964 		pr_warn("Swap area shorter than signature indicates\n");
2965 		return 0;
2966 	}
2967 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2968 		return 0;
2969 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2970 		return 0;
2971 
2972 	return maxpages;
2973 }
2974 
2975 #define SWAP_CLUSTER_INFO_COLS						\
2976 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2977 #define SWAP_CLUSTER_SPACE_COLS						\
2978 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2979 #define SWAP_CLUSTER_COLS						\
2980 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2981 
2982 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2983 					union swap_header *swap_header,
2984 					unsigned char *swap_map,
2985 					struct swap_cluster_info *cluster_info,
2986 					unsigned long maxpages,
2987 					sector_t *span)
2988 {
2989 	unsigned int j, k;
2990 	unsigned int nr_good_pages;
2991 	int nr_extents;
2992 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2993 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2994 	unsigned long i, idx;
2995 
2996 	nr_good_pages = maxpages - 1;	/* omit header page */
2997 
2998 	cluster_list_init(&p->free_clusters);
2999 	cluster_list_init(&p->discard_clusters);
3000 
3001 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3002 		unsigned int page_nr = swap_header->info.badpages[i];
3003 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3004 			return -EINVAL;
3005 		if (page_nr < maxpages) {
3006 			swap_map[page_nr] = SWAP_MAP_BAD;
3007 			nr_good_pages--;
3008 			/*
3009 			 * Haven't marked the cluster free yet, no list
3010 			 * operation involved
3011 			 */
3012 			inc_cluster_info_page(p, cluster_info, page_nr);
3013 		}
3014 	}
3015 
3016 	/* Haven't marked the cluster free yet, no list operation involved */
3017 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3018 		inc_cluster_info_page(p, cluster_info, i);
3019 
3020 	if (nr_good_pages) {
3021 		swap_map[0] = SWAP_MAP_BAD;
3022 		/*
3023 		 * Not mark the cluster free yet, no list
3024 		 * operation involved
3025 		 */
3026 		inc_cluster_info_page(p, cluster_info, 0);
3027 		p->max = maxpages;
3028 		p->pages = nr_good_pages;
3029 		nr_extents = setup_swap_extents(p, span);
3030 		if (nr_extents < 0)
3031 			return nr_extents;
3032 		nr_good_pages = p->pages;
3033 	}
3034 	if (!nr_good_pages) {
3035 		pr_warn("Empty swap-file\n");
3036 		return -EINVAL;
3037 	}
3038 
3039 	if (!cluster_info)
3040 		return nr_extents;
3041 
3042 
3043 	/*
3044 	 * Reduce false cache line sharing between cluster_info and
3045 	 * sharing same address space.
3046 	 */
3047 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3048 		j = (k + col) % SWAP_CLUSTER_COLS;
3049 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3050 			idx = i * SWAP_CLUSTER_COLS + j;
3051 			if (idx >= nr_clusters)
3052 				continue;
3053 			if (cluster_count(&cluster_info[idx]))
3054 				continue;
3055 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3056 			cluster_list_add_tail(&p->free_clusters, cluster_info,
3057 					      idx);
3058 		}
3059 	}
3060 	return nr_extents;
3061 }
3062 
3063 /*
3064  * Helper to sys_swapon determining if a given swap
3065  * backing device queue supports DISCARD operations.
3066  */
3067 static bool swap_discardable(struct swap_info_struct *si)
3068 {
3069 	struct request_queue *q = bdev_get_queue(si->bdev);
3070 
3071 	if (!blk_queue_discard(q))
3072 		return false;
3073 
3074 	return true;
3075 }
3076 
3077 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3078 {
3079 	struct swap_info_struct *p;
3080 	struct filename *name;
3081 	struct file *swap_file = NULL;
3082 	struct address_space *mapping;
3083 	struct dentry *dentry;
3084 	int prio;
3085 	int error;
3086 	union swap_header *swap_header;
3087 	int nr_extents;
3088 	sector_t span;
3089 	unsigned long maxpages;
3090 	unsigned char *swap_map = NULL;
3091 	struct swap_cluster_info *cluster_info = NULL;
3092 	unsigned long *frontswap_map = NULL;
3093 	struct page *page = NULL;
3094 	struct inode *inode = NULL;
3095 	bool inced_nr_rotate_swap = false;
3096 
3097 	if (swap_flags & ~SWAP_FLAGS_VALID)
3098 		return -EINVAL;
3099 
3100 	if (!capable(CAP_SYS_ADMIN))
3101 		return -EPERM;
3102 
3103 	if (!swap_avail_heads)
3104 		return -ENOMEM;
3105 
3106 	p = alloc_swap_info();
3107 	if (IS_ERR(p))
3108 		return PTR_ERR(p);
3109 
3110 	INIT_WORK(&p->discard_work, swap_discard_work);
3111 
3112 	name = getname(specialfile);
3113 	if (IS_ERR(name)) {
3114 		error = PTR_ERR(name);
3115 		name = NULL;
3116 		goto bad_swap;
3117 	}
3118 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3119 	if (IS_ERR(swap_file)) {
3120 		error = PTR_ERR(swap_file);
3121 		swap_file = NULL;
3122 		goto bad_swap;
3123 	}
3124 
3125 	p->swap_file = swap_file;
3126 	mapping = swap_file->f_mapping;
3127 	dentry = swap_file->f_path.dentry;
3128 	inode = mapping->host;
3129 
3130 	error = claim_swapfile(p, inode);
3131 	if (unlikely(error))
3132 		goto bad_swap;
3133 
3134 	inode_lock(inode);
3135 	if (d_unlinked(dentry) || cant_mount(dentry)) {
3136 		error = -ENOENT;
3137 		goto bad_swap_unlock_inode;
3138 	}
3139 	if (IS_SWAPFILE(inode)) {
3140 		error = -EBUSY;
3141 		goto bad_swap_unlock_inode;
3142 	}
3143 
3144 	/*
3145 	 * Read the swap header.
3146 	 */
3147 	if (!mapping->a_ops->readpage) {
3148 		error = -EINVAL;
3149 		goto bad_swap_unlock_inode;
3150 	}
3151 	page = read_mapping_page(mapping, 0, swap_file);
3152 	if (IS_ERR(page)) {
3153 		error = PTR_ERR(page);
3154 		goto bad_swap_unlock_inode;
3155 	}
3156 	swap_header = kmap(page);
3157 
3158 	maxpages = read_swap_header(p, swap_header, inode);
3159 	if (unlikely(!maxpages)) {
3160 		error = -EINVAL;
3161 		goto bad_swap_unlock_inode;
3162 	}
3163 
3164 	/* OK, set up the swap map and apply the bad block list */
3165 	swap_map = vzalloc(maxpages);
3166 	if (!swap_map) {
3167 		error = -ENOMEM;
3168 		goto bad_swap_unlock_inode;
3169 	}
3170 
3171 	if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3172 		p->flags |= SWP_STABLE_WRITES;
3173 
3174 	if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3175 		p->flags |= SWP_SYNCHRONOUS_IO;
3176 
3177 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3178 		int cpu;
3179 		unsigned long ci, nr_cluster;
3180 
3181 		p->flags |= SWP_SOLIDSTATE;
3182 		p->cluster_next_cpu = alloc_percpu(unsigned int);
3183 		if (!p->cluster_next_cpu) {
3184 			error = -ENOMEM;
3185 			goto bad_swap_unlock_inode;
3186 		}
3187 		/*
3188 		 * select a random position to start with to help wear leveling
3189 		 * SSD
3190 		 */
3191 		for_each_possible_cpu(cpu) {
3192 			per_cpu(*p->cluster_next_cpu, cpu) =
3193 				1 + prandom_u32_max(p->highest_bit);
3194 		}
3195 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3196 
3197 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3198 					GFP_KERNEL);
3199 		if (!cluster_info) {
3200 			error = -ENOMEM;
3201 			goto bad_swap_unlock_inode;
3202 		}
3203 
3204 		for (ci = 0; ci < nr_cluster; ci++)
3205 			spin_lock_init(&((cluster_info + ci)->lock));
3206 
3207 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3208 		if (!p->percpu_cluster) {
3209 			error = -ENOMEM;
3210 			goto bad_swap_unlock_inode;
3211 		}
3212 		for_each_possible_cpu(cpu) {
3213 			struct percpu_cluster *cluster;
3214 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3215 			cluster_set_null(&cluster->index);
3216 		}
3217 	} else {
3218 		atomic_inc(&nr_rotate_swap);
3219 		inced_nr_rotate_swap = true;
3220 	}
3221 
3222 	error = swap_cgroup_swapon(p->type, maxpages);
3223 	if (error)
3224 		goto bad_swap_unlock_inode;
3225 
3226 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3227 		cluster_info, maxpages, &span);
3228 	if (unlikely(nr_extents < 0)) {
3229 		error = nr_extents;
3230 		goto bad_swap_unlock_inode;
3231 	}
3232 	/* frontswap enabled? set up bit-per-page map for frontswap */
3233 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3234 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3235 					 sizeof(long),
3236 					 GFP_KERNEL);
3237 
3238 	if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3239 		/*
3240 		 * When discard is enabled for swap with no particular
3241 		 * policy flagged, we set all swap discard flags here in
3242 		 * order to sustain backward compatibility with older
3243 		 * swapon(8) releases.
3244 		 */
3245 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3246 			     SWP_PAGE_DISCARD);
3247 
3248 		/*
3249 		 * By flagging sys_swapon, a sysadmin can tell us to
3250 		 * either do single-time area discards only, or to just
3251 		 * perform discards for released swap page-clusters.
3252 		 * Now it's time to adjust the p->flags accordingly.
3253 		 */
3254 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3255 			p->flags &= ~SWP_PAGE_DISCARD;
3256 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3257 			p->flags &= ~SWP_AREA_DISCARD;
3258 
3259 		/* issue a swapon-time discard if it's still required */
3260 		if (p->flags & SWP_AREA_DISCARD) {
3261 			int err = discard_swap(p);
3262 			if (unlikely(err))
3263 				pr_err("swapon: discard_swap(%p): %d\n",
3264 					p, err);
3265 		}
3266 	}
3267 
3268 	error = init_swap_address_space(p->type, maxpages);
3269 	if (error)
3270 		goto bad_swap_unlock_inode;
3271 
3272 	/*
3273 	 * Flush any pending IO and dirty mappings before we start using this
3274 	 * swap device.
3275 	 */
3276 	inode->i_flags |= S_SWAPFILE;
3277 	error = inode_drain_writes(inode);
3278 	if (error) {
3279 		inode->i_flags &= ~S_SWAPFILE;
3280 		goto free_swap_address_space;
3281 	}
3282 
3283 	mutex_lock(&swapon_mutex);
3284 	prio = -1;
3285 	if (swap_flags & SWAP_FLAG_PREFER)
3286 		prio =
3287 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3288 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3289 
3290 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3291 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3292 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3293 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3294 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3295 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3296 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3297 		(frontswap_map) ? "FS" : "");
3298 
3299 	mutex_unlock(&swapon_mutex);
3300 	atomic_inc(&proc_poll_event);
3301 	wake_up_interruptible(&proc_poll_wait);
3302 
3303 	error = 0;
3304 	goto out;
3305 free_swap_address_space:
3306 	exit_swap_address_space(p->type);
3307 bad_swap_unlock_inode:
3308 	inode_unlock(inode);
3309 bad_swap:
3310 	free_percpu(p->percpu_cluster);
3311 	p->percpu_cluster = NULL;
3312 	free_percpu(p->cluster_next_cpu);
3313 	p->cluster_next_cpu = NULL;
3314 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3315 		set_blocksize(p->bdev, p->old_block_size);
3316 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3317 	}
3318 	inode = NULL;
3319 	destroy_swap_extents(p);
3320 	swap_cgroup_swapoff(p->type);
3321 	spin_lock(&swap_lock);
3322 	p->swap_file = NULL;
3323 	p->flags = 0;
3324 	spin_unlock(&swap_lock);
3325 	vfree(swap_map);
3326 	kvfree(cluster_info);
3327 	kvfree(frontswap_map);
3328 	if (inced_nr_rotate_swap)
3329 		atomic_dec(&nr_rotate_swap);
3330 	if (swap_file)
3331 		filp_close(swap_file, NULL);
3332 out:
3333 	if (page && !IS_ERR(page)) {
3334 		kunmap(page);
3335 		put_page(page);
3336 	}
3337 	if (name)
3338 		putname(name);
3339 	if (inode)
3340 		inode_unlock(inode);
3341 	if (!error)
3342 		enable_swap_slots_cache();
3343 	return error;
3344 }
3345 
3346 void si_swapinfo(struct sysinfo *val)
3347 {
3348 	unsigned int type;
3349 	unsigned long nr_to_be_unused = 0;
3350 
3351 	spin_lock(&swap_lock);
3352 	for (type = 0; type < nr_swapfiles; type++) {
3353 		struct swap_info_struct *si = swap_info[type];
3354 
3355 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3356 			nr_to_be_unused += si->inuse_pages;
3357 	}
3358 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3359 	val->totalswap = total_swap_pages + nr_to_be_unused;
3360 	spin_unlock(&swap_lock);
3361 }
3362 
3363 /*
3364  * Verify that a swap entry is valid and increment its swap map count.
3365  *
3366  * Returns error code in following case.
3367  * - success -> 0
3368  * - swp_entry is invalid -> EINVAL
3369  * - swp_entry is migration entry -> EINVAL
3370  * - swap-cache reference is requested but there is already one. -> EEXIST
3371  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3372  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3373  */
3374 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3375 {
3376 	struct swap_info_struct *p;
3377 	struct swap_cluster_info *ci;
3378 	unsigned long offset;
3379 	unsigned char count;
3380 	unsigned char has_cache;
3381 	int err;
3382 
3383 	p = get_swap_device(entry);
3384 	if (!p)
3385 		return -EINVAL;
3386 
3387 	offset = swp_offset(entry);
3388 	ci = lock_cluster_or_swap_info(p, offset);
3389 
3390 	count = p->swap_map[offset];
3391 
3392 	/*
3393 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3394 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3395 	 */
3396 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3397 		err = -ENOENT;
3398 		goto unlock_out;
3399 	}
3400 
3401 	has_cache = count & SWAP_HAS_CACHE;
3402 	count &= ~SWAP_HAS_CACHE;
3403 	err = 0;
3404 
3405 	if (usage == SWAP_HAS_CACHE) {
3406 
3407 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3408 		if (!has_cache && count)
3409 			has_cache = SWAP_HAS_CACHE;
3410 		else if (has_cache)		/* someone else added cache */
3411 			err = -EEXIST;
3412 		else				/* no users remaining */
3413 			err = -ENOENT;
3414 
3415 	} else if (count || has_cache) {
3416 
3417 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3418 			count += usage;
3419 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3420 			err = -EINVAL;
3421 		else if (swap_count_continued(p, offset, count))
3422 			count = COUNT_CONTINUED;
3423 		else
3424 			err = -ENOMEM;
3425 	} else
3426 		err = -ENOENT;			/* unused swap entry */
3427 
3428 	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3429 
3430 unlock_out:
3431 	unlock_cluster_or_swap_info(p, ci);
3432 	if (p)
3433 		put_swap_device(p);
3434 	return err;
3435 }
3436 
3437 /*
3438  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3439  * (in which case its reference count is never incremented).
3440  */
3441 void swap_shmem_alloc(swp_entry_t entry)
3442 {
3443 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3444 }
3445 
3446 /*
3447  * Increase reference count of swap entry by 1.
3448  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3449  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3450  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3451  * might occur if a page table entry has got corrupted.
3452  */
3453 int swap_duplicate(swp_entry_t entry)
3454 {
3455 	int err = 0;
3456 
3457 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3458 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3459 	return err;
3460 }
3461 
3462 /*
3463  * @entry: swap entry for which we allocate swap cache.
3464  *
3465  * Called when allocating swap cache for existing swap entry,
3466  * This can return error codes. Returns 0 at success.
3467  * -EEXIST means there is a swap cache.
3468  * Note: return code is different from swap_duplicate().
3469  */
3470 int swapcache_prepare(swp_entry_t entry)
3471 {
3472 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3473 }
3474 
3475 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3476 {
3477 	return swap_type_to_swap_info(swp_type(entry));
3478 }
3479 
3480 struct swap_info_struct *page_swap_info(struct page *page)
3481 {
3482 	swp_entry_t entry = { .val = page_private(page) };
3483 	return swp_swap_info(entry);
3484 }
3485 
3486 /*
3487  * out-of-line methods to avoid include hell.
3488  */
3489 struct address_space *swapcache_mapping(struct folio *folio)
3490 {
3491 	return page_swap_info(&folio->page)->swap_file->f_mapping;
3492 }
3493 EXPORT_SYMBOL_GPL(swapcache_mapping);
3494 
3495 pgoff_t __page_file_index(struct page *page)
3496 {
3497 	swp_entry_t swap = { .val = page_private(page) };
3498 	return swp_offset(swap);
3499 }
3500 EXPORT_SYMBOL_GPL(__page_file_index);
3501 
3502 /*
3503  * add_swap_count_continuation - called when a swap count is duplicated
3504  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3505  * page of the original vmalloc'ed swap_map, to hold the continuation count
3506  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3507  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3508  *
3509  * These continuation pages are seldom referenced: the common paths all work
3510  * on the original swap_map, only referring to a continuation page when the
3511  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3512  *
3513  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3514  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3515  * can be called after dropping locks.
3516  */
3517 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3518 {
3519 	struct swap_info_struct *si;
3520 	struct swap_cluster_info *ci;
3521 	struct page *head;
3522 	struct page *page;
3523 	struct page *list_page;
3524 	pgoff_t offset;
3525 	unsigned char count;
3526 	int ret = 0;
3527 
3528 	/*
3529 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3530 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3531 	 */
3532 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3533 
3534 	si = get_swap_device(entry);
3535 	if (!si) {
3536 		/*
3537 		 * An acceptable race has occurred since the failing
3538 		 * __swap_duplicate(): the swap device may be swapoff
3539 		 */
3540 		goto outer;
3541 	}
3542 	spin_lock(&si->lock);
3543 
3544 	offset = swp_offset(entry);
3545 
3546 	ci = lock_cluster(si, offset);
3547 
3548 	count = swap_count(si->swap_map[offset]);
3549 
3550 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3551 		/*
3552 		 * The higher the swap count, the more likely it is that tasks
3553 		 * will race to add swap count continuation: we need to avoid
3554 		 * over-provisioning.
3555 		 */
3556 		goto out;
3557 	}
3558 
3559 	if (!page) {
3560 		ret = -ENOMEM;
3561 		goto out;
3562 	}
3563 
3564 	/*
3565 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3566 	 * no architecture is using highmem pages for kernel page tables: so it
3567 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3568 	 */
3569 	head = vmalloc_to_page(si->swap_map + offset);
3570 	offset &= ~PAGE_MASK;
3571 
3572 	spin_lock(&si->cont_lock);
3573 	/*
3574 	 * Page allocation does not initialize the page's lru field,
3575 	 * but it does always reset its private field.
3576 	 */
3577 	if (!page_private(head)) {
3578 		BUG_ON(count & COUNT_CONTINUED);
3579 		INIT_LIST_HEAD(&head->lru);
3580 		set_page_private(head, SWP_CONTINUED);
3581 		si->flags |= SWP_CONTINUED;
3582 	}
3583 
3584 	list_for_each_entry(list_page, &head->lru, lru) {
3585 		unsigned char *map;
3586 
3587 		/*
3588 		 * If the previous map said no continuation, but we've found
3589 		 * a continuation page, free our allocation and use this one.
3590 		 */
3591 		if (!(count & COUNT_CONTINUED))
3592 			goto out_unlock_cont;
3593 
3594 		map = kmap_atomic(list_page) + offset;
3595 		count = *map;
3596 		kunmap_atomic(map);
3597 
3598 		/*
3599 		 * If this continuation count now has some space in it,
3600 		 * free our allocation and use this one.
3601 		 */
3602 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3603 			goto out_unlock_cont;
3604 	}
3605 
3606 	list_add_tail(&page->lru, &head->lru);
3607 	page = NULL;			/* now it's attached, don't free it */
3608 out_unlock_cont:
3609 	spin_unlock(&si->cont_lock);
3610 out:
3611 	unlock_cluster(ci);
3612 	spin_unlock(&si->lock);
3613 	put_swap_device(si);
3614 outer:
3615 	if (page)
3616 		__free_page(page);
3617 	return ret;
3618 }
3619 
3620 /*
3621  * swap_count_continued - when the original swap_map count is incremented
3622  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3623  * into, carry if so, or else fail until a new continuation page is allocated;
3624  * when the original swap_map count is decremented from 0 with continuation,
3625  * borrow from the continuation and report whether it still holds more.
3626  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3627  * lock.
3628  */
3629 static bool swap_count_continued(struct swap_info_struct *si,
3630 				 pgoff_t offset, unsigned char count)
3631 {
3632 	struct page *head;
3633 	struct page *page;
3634 	unsigned char *map;
3635 	bool ret;
3636 
3637 	head = vmalloc_to_page(si->swap_map + offset);
3638 	if (page_private(head) != SWP_CONTINUED) {
3639 		BUG_ON(count & COUNT_CONTINUED);
3640 		return false;		/* need to add count continuation */
3641 	}
3642 
3643 	spin_lock(&si->cont_lock);
3644 	offset &= ~PAGE_MASK;
3645 	page = list_next_entry(head, lru);
3646 	map = kmap_atomic(page) + offset;
3647 
3648 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3649 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3650 
3651 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3652 		/*
3653 		 * Think of how you add 1 to 999
3654 		 */
3655 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3656 			kunmap_atomic(map);
3657 			page = list_next_entry(page, lru);
3658 			BUG_ON(page == head);
3659 			map = kmap_atomic(page) + offset;
3660 		}
3661 		if (*map == SWAP_CONT_MAX) {
3662 			kunmap_atomic(map);
3663 			page = list_next_entry(page, lru);
3664 			if (page == head) {
3665 				ret = false;	/* add count continuation */
3666 				goto out;
3667 			}
3668 			map = kmap_atomic(page) + offset;
3669 init_map:		*map = 0;		/* we didn't zero the page */
3670 		}
3671 		*map += 1;
3672 		kunmap_atomic(map);
3673 		while ((page = list_prev_entry(page, lru)) != head) {
3674 			map = kmap_atomic(page) + offset;
3675 			*map = COUNT_CONTINUED;
3676 			kunmap_atomic(map);
3677 		}
3678 		ret = true;			/* incremented */
3679 
3680 	} else {				/* decrementing */
3681 		/*
3682 		 * Think of how you subtract 1 from 1000
3683 		 */
3684 		BUG_ON(count != COUNT_CONTINUED);
3685 		while (*map == COUNT_CONTINUED) {
3686 			kunmap_atomic(map);
3687 			page = list_next_entry(page, lru);
3688 			BUG_ON(page == head);
3689 			map = kmap_atomic(page) + offset;
3690 		}
3691 		BUG_ON(*map == 0);
3692 		*map -= 1;
3693 		if (*map == 0)
3694 			count = 0;
3695 		kunmap_atomic(map);
3696 		while ((page = list_prev_entry(page, lru)) != head) {
3697 			map = kmap_atomic(page) + offset;
3698 			*map = SWAP_CONT_MAX | count;
3699 			count = COUNT_CONTINUED;
3700 			kunmap_atomic(map);
3701 		}
3702 		ret = count == COUNT_CONTINUED;
3703 	}
3704 out:
3705 	spin_unlock(&si->cont_lock);
3706 	return ret;
3707 }
3708 
3709 /*
3710  * free_swap_count_continuations - swapoff free all the continuation pages
3711  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3712  */
3713 static void free_swap_count_continuations(struct swap_info_struct *si)
3714 {
3715 	pgoff_t offset;
3716 
3717 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3718 		struct page *head;
3719 		head = vmalloc_to_page(si->swap_map + offset);
3720 		if (page_private(head)) {
3721 			struct page *page, *next;
3722 
3723 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3724 				list_del(&page->lru);
3725 				__free_page(page);
3726 			}
3727 		}
3728 	}
3729 }
3730 
3731 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3732 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3733 {
3734 	struct swap_info_struct *si, *next;
3735 	int nid = page_to_nid(page);
3736 
3737 	if (!(gfp_mask & __GFP_IO))
3738 		return;
3739 
3740 	if (!blk_cgroup_congested())
3741 		return;
3742 
3743 	/*
3744 	 * We've already scheduled a throttle, avoid taking the global swap
3745 	 * lock.
3746 	 */
3747 	if (current->throttle_queue)
3748 		return;
3749 
3750 	spin_lock(&swap_avail_lock);
3751 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3752 				  avail_lists[nid]) {
3753 		if (si->bdev) {
3754 			blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3755 			break;
3756 		}
3757 	}
3758 	spin_unlock(&swap_avail_lock);
3759 }
3760 #endif
3761 
3762 static int __init swapfile_init(void)
3763 {
3764 	int nid;
3765 
3766 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3767 					 GFP_KERNEL);
3768 	if (!swap_avail_heads) {
3769 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3770 		return -ENOMEM;
3771 	}
3772 
3773 	for_each_node(nid)
3774 		plist_head_init(&swap_avail_heads[nid]);
3775 
3776 	return 0;
3777 }
3778 subsys_initcall(swapfile_init);
3779