xref: /openbmc/linux/mm/swapfile.c (revision 19add7e1)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
33 
34 #include <asm/pgtable.h>
35 #include <asm/tlbflush.h>
36 #include <linux/swapops.h>
37 #include <linux/page_cgroup.h>
38 
39 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
40 				 unsigned char);
41 static void free_swap_count_continuations(struct swap_info_struct *);
42 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
43 
44 static DEFINE_SPINLOCK(swap_lock);
45 static unsigned int nr_swapfiles;
46 long nr_swap_pages;
47 long total_swap_pages;
48 static int least_priority;
49 
50 static const char Bad_file[] = "Bad swap file entry ";
51 static const char Unused_file[] = "Unused swap file entry ";
52 static const char Bad_offset[] = "Bad swap offset entry ";
53 static const char Unused_offset[] = "Unused swap offset entry ";
54 
55 static struct swap_list_t swap_list = {-1, -1};
56 
57 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
58 
59 static DEFINE_MUTEX(swapon_mutex);
60 
61 static inline unsigned char swap_count(unsigned char ent)
62 {
63 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
64 }
65 
66 /* returns 1 if swap entry is freed */
67 static int
68 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
69 {
70 	swp_entry_t entry = swp_entry(si->type, offset);
71 	struct page *page;
72 	int ret = 0;
73 
74 	page = find_get_page(&swapper_space, entry.val);
75 	if (!page)
76 		return 0;
77 	/*
78 	 * This function is called from scan_swap_map() and it's called
79 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
80 	 * We have to use trylock for avoiding deadlock. This is a special
81 	 * case and you should use try_to_free_swap() with explicit lock_page()
82 	 * in usual operations.
83 	 */
84 	if (trylock_page(page)) {
85 		ret = try_to_free_swap(page);
86 		unlock_page(page);
87 	}
88 	page_cache_release(page);
89 	return ret;
90 }
91 
92 /*
93  * We need this because the bdev->unplug_fn can sleep and we cannot
94  * hold swap_lock while calling the unplug_fn. And swap_lock
95  * cannot be turned into a mutex.
96  */
97 static DECLARE_RWSEM(swap_unplug_sem);
98 
99 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
100 {
101 	swp_entry_t entry;
102 
103 	down_read(&swap_unplug_sem);
104 	entry.val = page_private(page);
105 	if (PageSwapCache(page)) {
106 		struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
107 		struct backing_dev_info *bdi;
108 
109 		/*
110 		 * If the page is removed from swapcache from under us (with a
111 		 * racy try_to_unuse/swapoff) we need an additional reference
112 		 * count to avoid reading garbage from page_private(page) above.
113 		 * If the WARN_ON triggers during a swapoff it maybe the race
114 		 * condition and it's harmless. However if it triggers without
115 		 * swapoff it signals a problem.
116 		 */
117 		WARN_ON(page_count(page) <= 1);
118 
119 		bdi = bdev->bd_inode->i_mapping->backing_dev_info;
120 		blk_run_backing_dev(bdi, page);
121 	}
122 	up_read(&swap_unplug_sem);
123 }
124 
125 /*
126  * swapon tell device that all the old swap contents can be discarded,
127  * to allow the swap device to optimize its wear-levelling.
128  */
129 static int discard_swap(struct swap_info_struct *si)
130 {
131 	struct swap_extent *se;
132 	sector_t start_block;
133 	sector_t nr_blocks;
134 	int err = 0;
135 
136 	/* Do not discard the swap header page! */
137 	se = &si->first_swap_extent;
138 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
139 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
140 	if (nr_blocks) {
141 		err = blkdev_issue_discard(si->bdev, start_block,
142 				nr_blocks, GFP_KERNEL, 0);
143 		if (err)
144 			return err;
145 		cond_resched();
146 	}
147 
148 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
149 		start_block = se->start_block << (PAGE_SHIFT - 9);
150 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
151 
152 		err = blkdev_issue_discard(si->bdev, start_block,
153 				nr_blocks, GFP_KERNEL, 0);
154 		if (err)
155 			break;
156 
157 		cond_resched();
158 	}
159 	return err;		/* That will often be -EOPNOTSUPP */
160 }
161 
162 /*
163  * swap allocation tell device that a cluster of swap can now be discarded,
164  * to allow the swap device to optimize its wear-levelling.
165  */
166 static void discard_swap_cluster(struct swap_info_struct *si,
167 				 pgoff_t start_page, pgoff_t nr_pages)
168 {
169 	struct swap_extent *se = si->curr_swap_extent;
170 	int found_extent = 0;
171 
172 	while (nr_pages) {
173 		struct list_head *lh;
174 
175 		if (se->start_page <= start_page &&
176 		    start_page < se->start_page + se->nr_pages) {
177 			pgoff_t offset = start_page - se->start_page;
178 			sector_t start_block = se->start_block + offset;
179 			sector_t nr_blocks = se->nr_pages - offset;
180 
181 			if (nr_blocks > nr_pages)
182 				nr_blocks = nr_pages;
183 			start_page += nr_blocks;
184 			nr_pages -= nr_blocks;
185 
186 			if (!found_extent++)
187 				si->curr_swap_extent = se;
188 
189 			start_block <<= PAGE_SHIFT - 9;
190 			nr_blocks <<= PAGE_SHIFT - 9;
191 			if (blkdev_issue_discard(si->bdev, start_block,
192 				    nr_blocks, GFP_NOIO, 0))
193 				break;
194 		}
195 
196 		lh = se->list.next;
197 		se = list_entry(lh, struct swap_extent, list);
198 	}
199 }
200 
201 static int wait_for_discard(void *word)
202 {
203 	schedule();
204 	return 0;
205 }
206 
207 #define SWAPFILE_CLUSTER	256
208 #define LATENCY_LIMIT		256
209 
210 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
211 					  unsigned char usage)
212 {
213 	unsigned long offset;
214 	unsigned long scan_base;
215 	unsigned long last_in_cluster = 0;
216 	int latency_ration = LATENCY_LIMIT;
217 	int found_free_cluster = 0;
218 
219 	/*
220 	 * We try to cluster swap pages by allocating them sequentially
221 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
222 	 * way, however, we resort to first-free allocation, starting
223 	 * a new cluster.  This prevents us from scattering swap pages
224 	 * all over the entire swap partition, so that we reduce
225 	 * overall disk seek times between swap pages.  -- sct
226 	 * But we do now try to find an empty cluster.  -Andrea
227 	 * And we let swap pages go all over an SSD partition.  Hugh
228 	 */
229 
230 	si->flags += SWP_SCANNING;
231 	scan_base = offset = si->cluster_next;
232 
233 	if (unlikely(!si->cluster_nr--)) {
234 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
235 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
236 			goto checks;
237 		}
238 		if (si->flags & SWP_DISCARDABLE) {
239 			/*
240 			 * Start range check on racing allocations, in case
241 			 * they overlap the cluster we eventually decide on
242 			 * (we scan without swap_lock to allow preemption).
243 			 * It's hardly conceivable that cluster_nr could be
244 			 * wrapped during our scan, but don't depend on it.
245 			 */
246 			if (si->lowest_alloc)
247 				goto checks;
248 			si->lowest_alloc = si->max;
249 			si->highest_alloc = 0;
250 		}
251 		spin_unlock(&swap_lock);
252 
253 		/*
254 		 * If seek is expensive, start searching for new cluster from
255 		 * start of partition, to minimize the span of allocated swap.
256 		 * But if seek is cheap, search from our current position, so
257 		 * that swap is allocated from all over the partition: if the
258 		 * Flash Translation Layer only remaps within limited zones,
259 		 * we don't want to wear out the first zone too quickly.
260 		 */
261 		if (!(si->flags & SWP_SOLIDSTATE))
262 			scan_base = offset = si->lowest_bit;
263 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
264 
265 		/* Locate the first empty (unaligned) cluster */
266 		for (; last_in_cluster <= si->highest_bit; offset++) {
267 			if (si->swap_map[offset])
268 				last_in_cluster = offset + SWAPFILE_CLUSTER;
269 			else if (offset == last_in_cluster) {
270 				spin_lock(&swap_lock);
271 				offset -= SWAPFILE_CLUSTER - 1;
272 				si->cluster_next = offset;
273 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
274 				found_free_cluster = 1;
275 				goto checks;
276 			}
277 			if (unlikely(--latency_ration < 0)) {
278 				cond_resched();
279 				latency_ration = LATENCY_LIMIT;
280 			}
281 		}
282 
283 		offset = si->lowest_bit;
284 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
285 
286 		/* Locate the first empty (unaligned) cluster */
287 		for (; last_in_cluster < scan_base; offset++) {
288 			if (si->swap_map[offset])
289 				last_in_cluster = offset + SWAPFILE_CLUSTER;
290 			else if (offset == last_in_cluster) {
291 				spin_lock(&swap_lock);
292 				offset -= SWAPFILE_CLUSTER - 1;
293 				si->cluster_next = offset;
294 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
295 				found_free_cluster = 1;
296 				goto checks;
297 			}
298 			if (unlikely(--latency_ration < 0)) {
299 				cond_resched();
300 				latency_ration = LATENCY_LIMIT;
301 			}
302 		}
303 
304 		offset = scan_base;
305 		spin_lock(&swap_lock);
306 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
307 		si->lowest_alloc = 0;
308 	}
309 
310 checks:
311 	if (!(si->flags & SWP_WRITEOK))
312 		goto no_page;
313 	if (!si->highest_bit)
314 		goto no_page;
315 	if (offset > si->highest_bit)
316 		scan_base = offset = si->lowest_bit;
317 
318 	/* reuse swap entry of cache-only swap if not busy. */
319 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
320 		int swap_was_freed;
321 		spin_unlock(&swap_lock);
322 		swap_was_freed = __try_to_reclaim_swap(si, offset);
323 		spin_lock(&swap_lock);
324 		/* entry was freed successfully, try to use this again */
325 		if (swap_was_freed)
326 			goto checks;
327 		goto scan; /* check next one */
328 	}
329 
330 	if (si->swap_map[offset])
331 		goto scan;
332 
333 	if (offset == si->lowest_bit)
334 		si->lowest_bit++;
335 	if (offset == si->highest_bit)
336 		si->highest_bit--;
337 	si->inuse_pages++;
338 	if (si->inuse_pages == si->pages) {
339 		si->lowest_bit = si->max;
340 		si->highest_bit = 0;
341 	}
342 	si->swap_map[offset] = usage;
343 	si->cluster_next = offset + 1;
344 	si->flags -= SWP_SCANNING;
345 
346 	if (si->lowest_alloc) {
347 		/*
348 		 * Only set when SWP_DISCARDABLE, and there's a scan
349 		 * for a free cluster in progress or just completed.
350 		 */
351 		if (found_free_cluster) {
352 			/*
353 			 * To optimize wear-levelling, discard the
354 			 * old data of the cluster, taking care not to
355 			 * discard any of its pages that have already
356 			 * been allocated by racing tasks (offset has
357 			 * already stepped over any at the beginning).
358 			 */
359 			if (offset < si->highest_alloc &&
360 			    si->lowest_alloc <= last_in_cluster)
361 				last_in_cluster = si->lowest_alloc - 1;
362 			si->flags |= SWP_DISCARDING;
363 			spin_unlock(&swap_lock);
364 
365 			if (offset < last_in_cluster)
366 				discard_swap_cluster(si, offset,
367 					last_in_cluster - offset + 1);
368 
369 			spin_lock(&swap_lock);
370 			si->lowest_alloc = 0;
371 			si->flags &= ~SWP_DISCARDING;
372 
373 			smp_mb();	/* wake_up_bit advises this */
374 			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
375 
376 		} else if (si->flags & SWP_DISCARDING) {
377 			/*
378 			 * Delay using pages allocated by racing tasks
379 			 * until the whole discard has been issued. We
380 			 * could defer that delay until swap_writepage,
381 			 * but it's easier to keep this self-contained.
382 			 */
383 			spin_unlock(&swap_lock);
384 			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
385 				wait_for_discard, TASK_UNINTERRUPTIBLE);
386 			spin_lock(&swap_lock);
387 		} else {
388 			/*
389 			 * Note pages allocated by racing tasks while
390 			 * scan for a free cluster is in progress, so
391 			 * that its final discard can exclude them.
392 			 */
393 			if (offset < si->lowest_alloc)
394 				si->lowest_alloc = offset;
395 			if (offset > si->highest_alloc)
396 				si->highest_alloc = offset;
397 		}
398 	}
399 	return offset;
400 
401 scan:
402 	spin_unlock(&swap_lock);
403 	while (++offset <= si->highest_bit) {
404 		if (!si->swap_map[offset]) {
405 			spin_lock(&swap_lock);
406 			goto checks;
407 		}
408 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
409 			spin_lock(&swap_lock);
410 			goto checks;
411 		}
412 		if (unlikely(--latency_ration < 0)) {
413 			cond_resched();
414 			latency_ration = LATENCY_LIMIT;
415 		}
416 	}
417 	offset = si->lowest_bit;
418 	while (++offset < scan_base) {
419 		if (!si->swap_map[offset]) {
420 			spin_lock(&swap_lock);
421 			goto checks;
422 		}
423 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
424 			spin_lock(&swap_lock);
425 			goto checks;
426 		}
427 		if (unlikely(--latency_ration < 0)) {
428 			cond_resched();
429 			latency_ration = LATENCY_LIMIT;
430 		}
431 	}
432 	spin_lock(&swap_lock);
433 
434 no_page:
435 	si->flags -= SWP_SCANNING;
436 	return 0;
437 }
438 
439 swp_entry_t get_swap_page(void)
440 {
441 	struct swap_info_struct *si;
442 	pgoff_t offset;
443 	int type, next;
444 	int wrapped = 0;
445 
446 	spin_lock(&swap_lock);
447 	if (nr_swap_pages <= 0)
448 		goto noswap;
449 	nr_swap_pages--;
450 
451 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
452 		si = swap_info[type];
453 		next = si->next;
454 		if (next < 0 ||
455 		    (!wrapped && si->prio != swap_info[next]->prio)) {
456 			next = swap_list.head;
457 			wrapped++;
458 		}
459 
460 		if (!si->highest_bit)
461 			continue;
462 		if (!(si->flags & SWP_WRITEOK))
463 			continue;
464 
465 		swap_list.next = next;
466 		/* This is called for allocating swap entry for cache */
467 		offset = scan_swap_map(si, SWAP_HAS_CACHE);
468 		if (offset) {
469 			spin_unlock(&swap_lock);
470 			return swp_entry(type, offset);
471 		}
472 		next = swap_list.next;
473 	}
474 
475 	nr_swap_pages++;
476 noswap:
477 	spin_unlock(&swap_lock);
478 	return (swp_entry_t) {0};
479 }
480 
481 /* The only caller of this function is now susupend routine */
482 swp_entry_t get_swap_page_of_type(int type)
483 {
484 	struct swap_info_struct *si;
485 	pgoff_t offset;
486 
487 	spin_lock(&swap_lock);
488 	si = swap_info[type];
489 	if (si && (si->flags & SWP_WRITEOK)) {
490 		nr_swap_pages--;
491 		/* This is called for allocating swap entry, not cache */
492 		offset = scan_swap_map(si, 1);
493 		if (offset) {
494 			spin_unlock(&swap_lock);
495 			return swp_entry(type, offset);
496 		}
497 		nr_swap_pages++;
498 	}
499 	spin_unlock(&swap_lock);
500 	return (swp_entry_t) {0};
501 }
502 
503 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
504 {
505 	struct swap_info_struct *p;
506 	unsigned long offset, type;
507 
508 	if (!entry.val)
509 		goto out;
510 	type = swp_type(entry);
511 	if (type >= nr_swapfiles)
512 		goto bad_nofile;
513 	p = swap_info[type];
514 	if (!(p->flags & SWP_USED))
515 		goto bad_device;
516 	offset = swp_offset(entry);
517 	if (offset >= p->max)
518 		goto bad_offset;
519 	if (!p->swap_map[offset])
520 		goto bad_free;
521 	spin_lock(&swap_lock);
522 	return p;
523 
524 bad_free:
525 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
526 	goto out;
527 bad_offset:
528 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
529 	goto out;
530 bad_device:
531 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
532 	goto out;
533 bad_nofile:
534 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
535 out:
536 	return NULL;
537 }
538 
539 static unsigned char swap_entry_free(struct swap_info_struct *p,
540 				     swp_entry_t entry, unsigned char usage)
541 {
542 	unsigned long offset = swp_offset(entry);
543 	unsigned char count;
544 	unsigned char has_cache;
545 
546 	count = p->swap_map[offset];
547 	has_cache = count & SWAP_HAS_CACHE;
548 	count &= ~SWAP_HAS_CACHE;
549 
550 	if (usage == SWAP_HAS_CACHE) {
551 		VM_BUG_ON(!has_cache);
552 		has_cache = 0;
553 	} else if (count == SWAP_MAP_SHMEM) {
554 		/*
555 		 * Or we could insist on shmem.c using a special
556 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
557 		 */
558 		count = 0;
559 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
560 		if (count == COUNT_CONTINUED) {
561 			if (swap_count_continued(p, offset, count))
562 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
563 			else
564 				count = SWAP_MAP_MAX;
565 		} else
566 			count--;
567 	}
568 
569 	if (!count)
570 		mem_cgroup_uncharge_swap(entry);
571 
572 	usage = count | has_cache;
573 	p->swap_map[offset] = usage;
574 
575 	/* free if no reference */
576 	if (!usage) {
577 		struct gendisk *disk = p->bdev->bd_disk;
578 		if (offset < p->lowest_bit)
579 			p->lowest_bit = offset;
580 		if (offset > p->highest_bit)
581 			p->highest_bit = offset;
582 		if (swap_list.next >= 0 &&
583 		    p->prio > swap_info[swap_list.next]->prio)
584 			swap_list.next = p->type;
585 		nr_swap_pages++;
586 		p->inuse_pages--;
587 		if ((p->flags & SWP_BLKDEV) &&
588 				disk->fops->swap_slot_free_notify)
589 			disk->fops->swap_slot_free_notify(p->bdev, offset);
590 	}
591 
592 	return usage;
593 }
594 
595 /*
596  * Caller has made sure that the swapdevice corresponding to entry
597  * is still around or has not been recycled.
598  */
599 void swap_free(swp_entry_t entry)
600 {
601 	struct swap_info_struct *p;
602 
603 	p = swap_info_get(entry);
604 	if (p) {
605 		swap_entry_free(p, entry, 1);
606 		spin_unlock(&swap_lock);
607 	}
608 }
609 
610 /*
611  * Called after dropping swapcache to decrease refcnt to swap entries.
612  */
613 void swapcache_free(swp_entry_t entry, struct page *page)
614 {
615 	struct swap_info_struct *p;
616 	unsigned char count;
617 
618 	p = swap_info_get(entry);
619 	if (p) {
620 		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
621 		if (page)
622 			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
623 		spin_unlock(&swap_lock);
624 	}
625 }
626 
627 /*
628  * How many references to page are currently swapped out?
629  * This does not give an exact answer when swap count is continued,
630  * but does include the high COUNT_CONTINUED flag to allow for that.
631  */
632 static inline int page_swapcount(struct page *page)
633 {
634 	int count = 0;
635 	struct swap_info_struct *p;
636 	swp_entry_t entry;
637 
638 	entry.val = page_private(page);
639 	p = swap_info_get(entry);
640 	if (p) {
641 		count = swap_count(p->swap_map[swp_offset(entry)]);
642 		spin_unlock(&swap_lock);
643 	}
644 	return count;
645 }
646 
647 /*
648  * We can write to an anon page without COW if there are no other references
649  * to it.  And as a side-effect, free up its swap: because the old content
650  * on disk will never be read, and seeking back there to write new content
651  * later would only waste time away from clustering.
652  */
653 int reuse_swap_page(struct page *page)
654 {
655 	int count;
656 
657 	VM_BUG_ON(!PageLocked(page));
658 	if (unlikely(PageKsm(page)))
659 		return 0;
660 	count = page_mapcount(page);
661 	if (count <= 1 && PageSwapCache(page)) {
662 		count += page_swapcount(page);
663 		if (count == 1 && !PageWriteback(page)) {
664 			delete_from_swap_cache(page);
665 			SetPageDirty(page);
666 		}
667 	}
668 	return count <= 1;
669 }
670 
671 /*
672  * If swap is getting full, or if there are no more mappings of this page,
673  * then try_to_free_swap is called to free its swap space.
674  */
675 int try_to_free_swap(struct page *page)
676 {
677 	VM_BUG_ON(!PageLocked(page));
678 
679 	if (!PageSwapCache(page))
680 		return 0;
681 	if (PageWriteback(page))
682 		return 0;
683 	if (page_swapcount(page))
684 		return 0;
685 
686 	/*
687 	 * Once hibernation has begun to create its image of memory,
688 	 * there's a danger that one of the calls to try_to_free_swap()
689 	 * - most probably a call from __try_to_reclaim_swap() while
690 	 * hibernation is allocating its own swap pages for the image,
691 	 * but conceivably even a call from memory reclaim - will free
692 	 * the swap from a page which has already been recorded in the
693 	 * image as a clean swapcache page, and then reuse its swap for
694 	 * another page of the image.  On waking from hibernation, the
695 	 * original page might be freed under memory pressure, then
696 	 * later read back in from swap, now with the wrong data.
697 	 *
698 	 * Hibernation clears bits from gfp_allowed_mask to prevent
699 	 * memory reclaim from writing to disk, so check that here.
700 	 */
701 	if (!(gfp_allowed_mask & __GFP_IO))
702 		return 0;
703 
704 	delete_from_swap_cache(page);
705 	SetPageDirty(page);
706 	return 1;
707 }
708 
709 /*
710  * Free the swap entry like above, but also try to
711  * free the page cache entry if it is the last user.
712  */
713 int free_swap_and_cache(swp_entry_t entry)
714 {
715 	struct swap_info_struct *p;
716 	struct page *page = NULL;
717 
718 	if (non_swap_entry(entry))
719 		return 1;
720 
721 	p = swap_info_get(entry);
722 	if (p) {
723 		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
724 			page = find_get_page(&swapper_space, entry.val);
725 			if (page && !trylock_page(page)) {
726 				page_cache_release(page);
727 				page = NULL;
728 			}
729 		}
730 		spin_unlock(&swap_lock);
731 	}
732 	if (page) {
733 		/*
734 		 * Not mapped elsewhere, or swap space full? Free it!
735 		 * Also recheck PageSwapCache now page is locked (above).
736 		 */
737 		if (PageSwapCache(page) && !PageWriteback(page) &&
738 				(!page_mapped(page) || vm_swap_full())) {
739 			delete_from_swap_cache(page);
740 			SetPageDirty(page);
741 		}
742 		unlock_page(page);
743 		page_cache_release(page);
744 	}
745 	return p != NULL;
746 }
747 
748 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
749 /**
750  * mem_cgroup_count_swap_user - count the user of a swap entry
751  * @ent: the swap entry to be checked
752  * @pagep: the pointer for the swap cache page of the entry to be stored
753  *
754  * Returns the number of the user of the swap entry. The number is valid only
755  * for swaps of anonymous pages.
756  * If the entry is found on swap cache, the page is stored to pagep with
757  * refcount of it being incremented.
758  */
759 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
760 {
761 	struct page *page;
762 	struct swap_info_struct *p;
763 	int count = 0;
764 
765 	page = find_get_page(&swapper_space, ent.val);
766 	if (page)
767 		count += page_mapcount(page);
768 	p = swap_info_get(ent);
769 	if (p) {
770 		count += swap_count(p->swap_map[swp_offset(ent)]);
771 		spin_unlock(&swap_lock);
772 	}
773 
774 	*pagep = page;
775 	return count;
776 }
777 #endif
778 
779 #ifdef CONFIG_HIBERNATION
780 /*
781  * Find the swap type that corresponds to given device (if any).
782  *
783  * @offset - number of the PAGE_SIZE-sized block of the device, starting
784  * from 0, in which the swap header is expected to be located.
785  *
786  * This is needed for the suspend to disk (aka swsusp).
787  */
788 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
789 {
790 	struct block_device *bdev = NULL;
791 	int type;
792 
793 	if (device)
794 		bdev = bdget(device);
795 
796 	spin_lock(&swap_lock);
797 	for (type = 0; type < nr_swapfiles; type++) {
798 		struct swap_info_struct *sis = swap_info[type];
799 
800 		if (!(sis->flags & SWP_WRITEOK))
801 			continue;
802 
803 		if (!bdev) {
804 			if (bdev_p)
805 				*bdev_p = bdgrab(sis->bdev);
806 
807 			spin_unlock(&swap_lock);
808 			return type;
809 		}
810 		if (bdev == sis->bdev) {
811 			struct swap_extent *se = &sis->first_swap_extent;
812 
813 			if (se->start_block == offset) {
814 				if (bdev_p)
815 					*bdev_p = bdgrab(sis->bdev);
816 
817 				spin_unlock(&swap_lock);
818 				bdput(bdev);
819 				return type;
820 			}
821 		}
822 	}
823 	spin_unlock(&swap_lock);
824 	if (bdev)
825 		bdput(bdev);
826 
827 	return -ENODEV;
828 }
829 
830 /*
831  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
832  * corresponding to given index in swap_info (swap type).
833  */
834 sector_t swapdev_block(int type, pgoff_t offset)
835 {
836 	struct block_device *bdev;
837 
838 	if ((unsigned int)type >= nr_swapfiles)
839 		return 0;
840 	if (!(swap_info[type]->flags & SWP_WRITEOK))
841 		return 0;
842 	return map_swap_entry(swp_entry(type, offset), &bdev);
843 }
844 
845 /*
846  * Return either the total number of swap pages of given type, or the number
847  * of free pages of that type (depending on @free)
848  *
849  * This is needed for software suspend
850  */
851 unsigned int count_swap_pages(int type, int free)
852 {
853 	unsigned int n = 0;
854 
855 	spin_lock(&swap_lock);
856 	if ((unsigned int)type < nr_swapfiles) {
857 		struct swap_info_struct *sis = swap_info[type];
858 
859 		if (sis->flags & SWP_WRITEOK) {
860 			n = sis->pages;
861 			if (free)
862 				n -= sis->inuse_pages;
863 		}
864 	}
865 	spin_unlock(&swap_lock);
866 	return n;
867 }
868 #endif /* CONFIG_HIBERNATION */
869 
870 /*
871  * No need to decide whether this PTE shares the swap entry with others,
872  * just let do_wp_page work it out if a write is requested later - to
873  * force COW, vm_page_prot omits write permission from any private vma.
874  */
875 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
876 		unsigned long addr, swp_entry_t entry, struct page *page)
877 {
878 	struct mem_cgroup *ptr = NULL;
879 	spinlock_t *ptl;
880 	pte_t *pte;
881 	int ret = 1;
882 
883 	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
884 		ret = -ENOMEM;
885 		goto out_nolock;
886 	}
887 
888 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
889 	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
890 		if (ret > 0)
891 			mem_cgroup_cancel_charge_swapin(ptr);
892 		ret = 0;
893 		goto out;
894 	}
895 
896 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
897 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
898 	get_page(page);
899 	set_pte_at(vma->vm_mm, addr, pte,
900 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
901 	page_add_anon_rmap(page, vma, addr);
902 	mem_cgroup_commit_charge_swapin(page, ptr);
903 	swap_free(entry);
904 	/*
905 	 * Move the page to the active list so it is not
906 	 * immediately swapped out again after swapon.
907 	 */
908 	activate_page(page);
909 out:
910 	pte_unmap_unlock(pte, ptl);
911 out_nolock:
912 	return ret;
913 }
914 
915 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
916 				unsigned long addr, unsigned long end,
917 				swp_entry_t entry, struct page *page)
918 {
919 	pte_t swp_pte = swp_entry_to_pte(entry);
920 	pte_t *pte;
921 	int ret = 0;
922 
923 	/*
924 	 * We don't actually need pte lock while scanning for swp_pte: since
925 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
926 	 * page table while we're scanning; though it could get zapped, and on
927 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
928 	 * of unmatched parts which look like swp_pte, so unuse_pte must
929 	 * recheck under pte lock.  Scanning without pte lock lets it be
930 	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
931 	 */
932 	pte = pte_offset_map(pmd, addr);
933 	do {
934 		/*
935 		 * swapoff spends a _lot_ of time in this loop!
936 		 * Test inline before going to call unuse_pte.
937 		 */
938 		if (unlikely(pte_same(*pte, swp_pte))) {
939 			pte_unmap(pte);
940 			ret = unuse_pte(vma, pmd, addr, entry, page);
941 			if (ret)
942 				goto out;
943 			pte = pte_offset_map(pmd, addr);
944 		}
945 	} while (pte++, addr += PAGE_SIZE, addr != end);
946 	pte_unmap(pte - 1);
947 out:
948 	return ret;
949 }
950 
951 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
952 				unsigned long addr, unsigned long end,
953 				swp_entry_t entry, struct page *page)
954 {
955 	pmd_t *pmd;
956 	unsigned long next;
957 	int ret;
958 
959 	pmd = pmd_offset(pud, addr);
960 	do {
961 		next = pmd_addr_end(addr, end);
962 		if (pmd_none_or_clear_bad(pmd))
963 			continue;
964 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
965 		if (ret)
966 			return ret;
967 	} while (pmd++, addr = next, addr != end);
968 	return 0;
969 }
970 
971 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
972 				unsigned long addr, unsigned long end,
973 				swp_entry_t entry, struct page *page)
974 {
975 	pud_t *pud;
976 	unsigned long next;
977 	int ret;
978 
979 	pud = pud_offset(pgd, addr);
980 	do {
981 		next = pud_addr_end(addr, end);
982 		if (pud_none_or_clear_bad(pud))
983 			continue;
984 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
985 		if (ret)
986 			return ret;
987 	} while (pud++, addr = next, addr != end);
988 	return 0;
989 }
990 
991 static int unuse_vma(struct vm_area_struct *vma,
992 				swp_entry_t entry, struct page *page)
993 {
994 	pgd_t *pgd;
995 	unsigned long addr, end, next;
996 	int ret;
997 
998 	if (page_anon_vma(page)) {
999 		addr = page_address_in_vma(page, vma);
1000 		if (addr == -EFAULT)
1001 			return 0;
1002 		else
1003 			end = addr + PAGE_SIZE;
1004 	} else {
1005 		addr = vma->vm_start;
1006 		end = vma->vm_end;
1007 	}
1008 
1009 	pgd = pgd_offset(vma->vm_mm, addr);
1010 	do {
1011 		next = pgd_addr_end(addr, end);
1012 		if (pgd_none_or_clear_bad(pgd))
1013 			continue;
1014 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1015 		if (ret)
1016 			return ret;
1017 	} while (pgd++, addr = next, addr != end);
1018 	return 0;
1019 }
1020 
1021 static int unuse_mm(struct mm_struct *mm,
1022 				swp_entry_t entry, struct page *page)
1023 {
1024 	struct vm_area_struct *vma;
1025 	int ret = 0;
1026 
1027 	if (!down_read_trylock(&mm->mmap_sem)) {
1028 		/*
1029 		 * Activate page so shrink_inactive_list is unlikely to unmap
1030 		 * its ptes while lock is dropped, so swapoff can make progress.
1031 		 */
1032 		activate_page(page);
1033 		unlock_page(page);
1034 		down_read(&mm->mmap_sem);
1035 		lock_page(page);
1036 	}
1037 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1038 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1039 			break;
1040 	}
1041 	up_read(&mm->mmap_sem);
1042 	return (ret < 0)? ret: 0;
1043 }
1044 
1045 /*
1046  * Scan swap_map from current position to next entry still in use.
1047  * Recycle to start on reaching the end, returning 0 when empty.
1048  */
1049 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1050 					unsigned int prev)
1051 {
1052 	unsigned int max = si->max;
1053 	unsigned int i = prev;
1054 	unsigned char count;
1055 
1056 	/*
1057 	 * No need for swap_lock here: we're just looking
1058 	 * for whether an entry is in use, not modifying it; false
1059 	 * hits are okay, and sys_swapoff() has already prevented new
1060 	 * allocations from this area (while holding swap_lock).
1061 	 */
1062 	for (;;) {
1063 		if (++i >= max) {
1064 			if (!prev) {
1065 				i = 0;
1066 				break;
1067 			}
1068 			/*
1069 			 * No entries in use at top of swap_map,
1070 			 * loop back to start and recheck there.
1071 			 */
1072 			max = prev + 1;
1073 			prev = 0;
1074 			i = 1;
1075 		}
1076 		count = si->swap_map[i];
1077 		if (count && swap_count(count) != SWAP_MAP_BAD)
1078 			break;
1079 	}
1080 	return i;
1081 }
1082 
1083 /*
1084  * We completely avoid races by reading each swap page in advance,
1085  * and then search for the process using it.  All the necessary
1086  * page table adjustments can then be made atomically.
1087  */
1088 static int try_to_unuse(unsigned int type)
1089 {
1090 	struct swap_info_struct *si = swap_info[type];
1091 	struct mm_struct *start_mm;
1092 	unsigned char *swap_map;
1093 	unsigned char swcount;
1094 	struct page *page;
1095 	swp_entry_t entry;
1096 	unsigned int i = 0;
1097 	int retval = 0;
1098 
1099 	/*
1100 	 * When searching mms for an entry, a good strategy is to
1101 	 * start at the first mm we freed the previous entry from
1102 	 * (though actually we don't notice whether we or coincidence
1103 	 * freed the entry).  Initialize this start_mm with a hold.
1104 	 *
1105 	 * A simpler strategy would be to start at the last mm we
1106 	 * freed the previous entry from; but that would take less
1107 	 * advantage of mmlist ordering, which clusters forked mms
1108 	 * together, child after parent.  If we race with dup_mmap(), we
1109 	 * prefer to resolve parent before child, lest we miss entries
1110 	 * duplicated after we scanned child: using last mm would invert
1111 	 * that.
1112 	 */
1113 	start_mm = &init_mm;
1114 	atomic_inc(&init_mm.mm_users);
1115 
1116 	/*
1117 	 * Keep on scanning until all entries have gone.  Usually,
1118 	 * one pass through swap_map is enough, but not necessarily:
1119 	 * there are races when an instance of an entry might be missed.
1120 	 */
1121 	while ((i = find_next_to_unuse(si, i)) != 0) {
1122 		if (signal_pending(current)) {
1123 			retval = -EINTR;
1124 			break;
1125 		}
1126 
1127 		/*
1128 		 * Get a page for the entry, using the existing swap
1129 		 * cache page if there is one.  Otherwise, get a clean
1130 		 * page and read the swap into it.
1131 		 */
1132 		swap_map = &si->swap_map[i];
1133 		entry = swp_entry(type, i);
1134 		page = read_swap_cache_async(entry,
1135 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1136 		if (!page) {
1137 			/*
1138 			 * Either swap_duplicate() failed because entry
1139 			 * has been freed independently, and will not be
1140 			 * reused since sys_swapoff() already disabled
1141 			 * allocation from here, or alloc_page() failed.
1142 			 */
1143 			if (!*swap_map)
1144 				continue;
1145 			retval = -ENOMEM;
1146 			break;
1147 		}
1148 
1149 		/*
1150 		 * Don't hold on to start_mm if it looks like exiting.
1151 		 */
1152 		if (atomic_read(&start_mm->mm_users) == 1) {
1153 			mmput(start_mm);
1154 			start_mm = &init_mm;
1155 			atomic_inc(&init_mm.mm_users);
1156 		}
1157 
1158 		/*
1159 		 * Wait for and lock page.  When do_swap_page races with
1160 		 * try_to_unuse, do_swap_page can handle the fault much
1161 		 * faster than try_to_unuse can locate the entry.  This
1162 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1163 		 * defer to do_swap_page in such a case - in some tests,
1164 		 * do_swap_page and try_to_unuse repeatedly compete.
1165 		 */
1166 		wait_on_page_locked(page);
1167 		wait_on_page_writeback(page);
1168 		lock_page(page);
1169 		wait_on_page_writeback(page);
1170 
1171 		/*
1172 		 * Remove all references to entry.
1173 		 */
1174 		swcount = *swap_map;
1175 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1176 			retval = shmem_unuse(entry, page);
1177 			/* page has already been unlocked and released */
1178 			if (retval < 0)
1179 				break;
1180 			continue;
1181 		}
1182 		if (swap_count(swcount) && start_mm != &init_mm)
1183 			retval = unuse_mm(start_mm, entry, page);
1184 
1185 		if (swap_count(*swap_map)) {
1186 			int set_start_mm = (*swap_map >= swcount);
1187 			struct list_head *p = &start_mm->mmlist;
1188 			struct mm_struct *new_start_mm = start_mm;
1189 			struct mm_struct *prev_mm = start_mm;
1190 			struct mm_struct *mm;
1191 
1192 			atomic_inc(&new_start_mm->mm_users);
1193 			atomic_inc(&prev_mm->mm_users);
1194 			spin_lock(&mmlist_lock);
1195 			while (swap_count(*swap_map) && !retval &&
1196 					(p = p->next) != &start_mm->mmlist) {
1197 				mm = list_entry(p, struct mm_struct, mmlist);
1198 				if (!atomic_inc_not_zero(&mm->mm_users))
1199 					continue;
1200 				spin_unlock(&mmlist_lock);
1201 				mmput(prev_mm);
1202 				prev_mm = mm;
1203 
1204 				cond_resched();
1205 
1206 				swcount = *swap_map;
1207 				if (!swap_count(swcount)) /* any usage ? */
1208 					;
1209 				else if (mm == &init_mm)
1210 					set_start_mm = 1;
1211 				else
1212 					retval = unuse_mm(mm, entry, page);
1213 
1214 				if (set_start_mm && *swap_map < swcount) {
1215 					mmput(new_start_mm);
1216 					atomic_inc(&mm->mm_users);
1217 					new_start_mm = mm;
1218 					set_start_mm = 0;
1219 				}
1220 				spin_lock(&mmlist_lock);
1221 			}
1222 			spin_unlock(&mmlist_lock);
1223 			mmput(prev_mm);
1224 			mmput(start_mm);
1225 			start_mm = new_start_mm;
1226 		}
1227 		if (retval) {
1228 			unlock_page(page);
1229 			page_cache_release(page);
1230 			break;
1231 		}
1232 
1233 		/*
1234 		 * If a reference remains (rare), we would like to leave
1235 		 * the page in the swap cache; but try_to_unmap could
1236 		 * then re-duplicate the entry once we drop page lock,
1237 		 * so we might loop indefinitely; also, that page could
1238 		 * not be swapped out to other storage meanwhile.  So:
1239 		 * delete from cache even if there's another reference,
1240 		 * after ensuring that the data has been saved to disk -
1241 		 * since if the reference remains (rarer), it will be
1242 		 * read from disk into another page.  Splitting into two
1243 		 * pages would be incorrect if swap supported "shared
1244 		 * private" pages, but they are handled by tmpfs files.
1245 		 *
1246 		 * Given how unuse_vma() targets one particular offset
1247 		 * in an anon_vma, once the anon_vma has been determined,
1248 		 * this splitting happens to be just what is needed to
1249 		 * handle where KSM pages have been swapped out: re-reading
1250 		 * is unnecessarily slow, but we can fix that later on.
1251 		 */
1252 		if (swap_count(*swap_map) &&
1253 		     PageDirty(page) && PageSwapCache(page)) {
1254 			struct writeback_control wbc = {
1255 				.sync_mode = WB_SYNC_NONE,
1256 			};
1257 
1258 			swap_writepage(page, &wbc);
1259 			lock_page(page);
1260 			wait_on_page_writeback(page);
1261 		}
1262 
1263 		/*
1264 		 * It is conceivable that a racing task removed this page from
1265 		 * swap cache just before we acquired the page lock at the top,
1266 		 * or while we dropped it in unuse_mm().  The page might even
1267 		 * be back in swap cache on another swap area: that we must not
1268 		 * delete, since it may not have been written out to swap yet.
1269 		 */
1270 		if (PageSwapCache(page) &&
1271 		    likely(page_private(page) == entry.val))
1272 			delete_from_swap_cache(page);
1273 
1274 		/*
1275 		 * So we could skip searching mms once swap count went
1276 		 * to 1, we did not mark any present ptes as dirty: must
1277 		 * mark page dirty so shrink_page_list will preserve it.
1278 		 */
1279 		SetPageDirty(page);
1280 		unlock_page(page);
1281 		page_cache_release(page);
1282 
1283 		/*
1284 		 * Make sure that we aren't completely killing
1285 		 * interactive performance.
1286 		 */
1287 		cond_resched();
1288 	}
1289 
1290 	mmput(start_mm);
1291 	return retval;
1292 }
1293 
1294 /*
1295  * After a successful try_to_unuse, if no swap is now in use, we know
1296  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1297  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1298  * added to the mmlist just after page_duplicate - before would be racy.
1299  */
1300 static void drain_mmlist(void)
1301 {
1302 	struct list_head *p, *next;
1303 	unsigned int type;
1304 
1305 	for (type = 0; type < nr_swapfiles; type++)
1306 		if (swap_info[type]->inuse_pages)
1307 			return;
1308 	spin_lock(&mmlist_lock);
1309 	list_for_each_safe(p, next, &init_mm.mmlist)
1310 		list_del_init(p);
1311 	spin_unlock(&mmlist_lock);
1312 }
1313 
1314 /*
1315  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1316  * corresponds to page offset for the specified swap entry.
1317  * Note that the type of this function is sector_t, but it returns page offset
1318  * into the bdev, not sector offset.
1319  */
1320 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1321 {
1322 	struct swap_info_struct *sis;
1323 	struct swap_extent *start_se;
1324 	struct swap_extent *se;
1325 	pgoff_t offset;
1326 
1327 	sis = swap_info[swp_type(entry)];
1328 	*bdev = sis->bdev;
1329 
1330 	offset = swp_offset(entry);
1331 	start_se = sis->curr_swap_extent;
1332 	se = start_se;
1333 
1334 	for ( ; ; ) {
1335 		struct list_head *lh;
1336 
1337 		if (se->start_page <= offset &&
1338 				offset < (se->start_page + se->nr_pages)) {
1339 			return se->start_block + (offset - se->start_page);
1340 		}
1341 		lh = se->list.next;
1342 		se = list_entry(lh, struct swap_extent, list);
1343 		sis->curr_swap_extent = se;
1344 		BUG_ON(se == start_se);		/* It *must* be present */
1345 	}
1346 }
1347 
1348 /*
1349  * Returns the page offset into bdev for the specified page's swap entry.
1350  */
1351 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1352 {
1353 	swp_entry_t entry;
1354 	entry.val = page_private(page);
1355 	return map_swap_entry(entry, bdev);
1356 }
1357 
1358 /*
1359  * Free all of a swapdev's extent information
1360  */
1361 static void destroy_swap_extents(struct swap_info_struct *sis)
1362 {
1363 	while (!list_empty(&sis->first_swap_extent.list)) {
1364 		struct swap_extent *se;
1365 
1366 		se = list_entry(sis->first_swap_extent.list.next,
1367 				struct swap_extent, list);
1368 		list_del(&se->list);
1369 		kfree(se);
1370 	}
1371 }
1372 
1373 /*
1374  * Add a block range (and the corresponding page range) into this swapdev's
1375  * extent list.  The extent list is kept sorted in page order.
1376  *
1377  * This function rather assumes that it is called in ascending page order.
1378  */
1379 static int
1380 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1381 		unsigned long nr_pages, sector_t start_block)
1382 {
1383 	struct swap_extent *se;
1384 	struct swap_extent *new_se;
1385 	struct list_head *lh;
1386 
1387 	if (start_page == 0) {
1388 		se = &sis->first_swap_extent;
1389 		sis->curr_swap_extent = se;
1390 		se->start_page = 0;
1391 		se->nr_pages = nr_pages;
1392 		se->start_block = start_block;
1393 		return 1;
1394 	} else {
1395 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1396 		se = list_entry(lh, struct swap_extent, list);
1397 		BUG_ON(se->start_page + se->nr_pages != start_page);
1398 		if (se->start_block + se->nr_pages == start_block) {
1399 			/* Merge it */
1400 			se->nr_pages += nr_pages;
1401 			return 0;
1402 		}
1403 	}
1404 
1405 	/*
1406 	 * No merge.  Insert a new extent, preserving ordering.
1407 	 */
1408 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1409 	if (new_se == NULL)
1410 		return -ENOMEM;
1411 	new_se->start_page = start_page;
1412 	new_se->nr_pages = nr_pages;
1413 	new_se->start_block = start_block;
1414 
1415 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1416 	return 1;
1417 }
1418 
1419 /*
1420  * A `swap extent' is a simple thing which maps a contiguous range of pages
1421  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1422  * is built at swapon time and is then used at swap_writepage/swap_readpage
1423  * time for locating where on disk a page belongs.
1424  *
1425  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1426  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1427  * swap files identically.
1428  *
1429  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1430  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1431  * swapfiles are handled *identically* after swapon time.
1432  *
1433  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1434  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1435  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1436  * requirements, they are simply tossed out - we will never use those blocks
1437  * for swapping.
1438  *
1439  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1440  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1441  * which will scribble on the fs.
1442  *
1443  * The amount of disk space which a single swap extent represents varies.
1444  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1445  * extents in the list.  To avoid much list walking, we cache the previous
1446  * search location in `curr_swap_extent', and start new searches from there.
1447  * This is extremely effective.  The average number of iterations in
1448  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1449  */
1450 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1451 {
1452 	struct inode *inode;
1453 	unsigned blocks_per_page;
1454 	unsigned long page_no;
1455 	unsigned blkbits;
1456 	sector_t probe_block;
1457 	sector_t last_block;
1458 	sector_t lowest_block = -1;
1459 	sector_t highest_block = 0;
1460 	int nr_extents = 0;
1461 	int ret;
1462 
1463 	inode = sis->swap_file->f_mapping->host;
1464 	if (S_ISBLK(inode->i_mode)) {
1465 		ret = add_swap_extent(sis, 0, sis->max, 0);
1466 		*span = sis->pages;
1467 		goto out;
1468 	}
1469 
1470 	blkbits = inode->i_blkbits;
1471 	blocks_per_page = PAGE_SIZE >> blkbits;
1472 
1473 	/*
1474 	 * Map all the blocks into the extent list.  This code doesn't try
1475 	 * to be very smart.
1476 	 */
1477 	probe_block = 0;
1478 	page_no = 0;
1479 	last_block = i_size_read(inode) >> blkbits;
1480 	while ((probe_block + blocks_per_page) <= last_block &&
1481 			page_no < sis->max) {
1482 		unsigned block_in_page;
1483 		sector_t first_block;
1484 
1485 		first_block = bmap(inode, probe_block);
1486 		if (first_block == 0)
1487 			goto bad_bmap;
1488 
1489 		/*
1490 		 * It must be PAGE_SIZE aligned on-disk
1491 		 */
1492 		if (first_block & (blocks_per_page - 1)) {
1493 			probe_block++;
1494 			goto reprobe;
1495 		}
1496 
1497 		for (block_in_page = 1; block_in_page < blocks_per_page;
1498 					block_in_page++) {
1499 			sector_t block;
1500 
1501 			block = bmap(inode, probe_block + block_in_page);
1502 			if (block == 0)
1503 				goto bad_bmap;
1504 			if (block != first_block + block_in_page) {
1505 				/* Discontiguity */
1506 				probe_block++;
1507 				goto reprobe;
1508 			}
1509 		}
1510 
1511 		first_block >>= (PAGE_SHIFT - blkbits);
1512 		if (page_no) {	/* exclude the header page */
1513 			if (first_block < lowest_block)
1514 				lowest_block = first_block;
1515 			if (first_block > highest_block)
1516 				highest_block = first_block;
1517 		}
1518 
1519 		/*
1520 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1521 		 */
1522 		ret = add_swap_extent(sis, page_no, 1, first_block);
1523 		if (ret < 0)
1524 			goto out;
1525 		nr_extents += ret;
1526 		page_no++;
1527 		probe_block += blocks_per_page;
1528 reprobe:
1529 		continue;
1530 	}
1531 	ret = nr_extents;
1532 	*span = 1 + highest_block - lowest_block;
1533 	if (page_no == 0)
1534 		page_no = 1;	/* force Empty message */
1535 	sis->max = page_no;
1536 	sis->pages = page_no - 1;
1537 	sis->highest_bit = page_no - 1;
1538 out:
1539 	return ret;
1540 bad_bmap:
1541 	printk(KERN_ERR "swapon: swapfile has holes\n");
1542 	ret = -EINVAL;
1543 	goto out;
1544 }
1545 
1546 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1547 {
1548 	struct swap_info_struct *p = NULL;
1549 	unsigned char *swap_map;
1550 	struct file *swap_file, *victim;
1551 	struct address_space *mapping;
1552 	struct inode *inode;
1553 	char *pathname;
1554 	int i, type, prev;
1555 	int err;
1556 
1557 	if (!capable(CAP_SYS_ADMIN))
1558 		return -EPERM;
1559 
1560 	pathname = getname(specialfile);
1561 	err = PTR_ERR(pathname);
1562 	if (IS_ERR(pathname))
1563 		goto out;
1564 
1565 	victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1566 	putname(pathname);
1567 	err = PTR_ERR(victim);
1568 	if (IS_ERR(victim))
1569 		goto out;
1570 
1571 	mapping = victim->f_mapping;
1572 	prev = -1;
1573 	spin_lock(&swap_lock);
1574 	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1575 		p = swap_info[type];
1576 		if (p->flags & SWP_WRITEOK) {
1577 			if (p->swap_file->f_mapping == mapping)
1578 				break;
1579 		}
1580 		prev = type;
1581 	}
1582 	if (type < 0) {
1583 		err = -EINVAL;
1584 		spin_unlock(&swap_lock);
1585 		goto out_dput;
1586 	}
1587 	if (!security_vm_enough_memory(p->pages))
1588 		vm_unacct_memory(p->pages);
1589 	else {
1590 		err = -ENOMEM;
1591 		spin_unlock(&swap_lock);
1592 		goto out_dput;
1593 	}
1594 	if (prev < 0)
1595 		swap_list.head = p->next;
1596 	else
1597 		swap_info[prev]->next = p->next;
1598 	if (type == swap_list.next) {
1599 		/* just pick something that's safe... */
1600 		swap_list.next = swap_list.head;
1601 	}
1602 	if (p->prio < 0) {
1603 		for (i = p->next; i >= 0; i = swap_info[i]->next)
1604 			swap_info[i]->prio = p->prio--;
1605 		least_priority++;
1606 	}
1607 	nr_swap_pages -= p->pages;
1608 	total_swap_pages -= p->pages;
1609 	p->flags &= ~SWP_WRITEOK;
1610 	spin_unlock(&swap_lock);
1611 
1612 	current->flags |= PF_OOM_ORIGIN;
1613 	err = try_to_unuse(type);
1614 	current->flags &= ~PF_OOM_ORIGIN;
1615 
1616 	if (err) {
1617 		/* re-insert swap space back into swap_list */
1618 		spin_lock(&swap_lock);
1619 		if (p->prio < 0)
1620 			p->prio = --least_priority;
1621 		prev = -1;
1622 		for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1623 			if (p->prio >= swap_info[i]->prio)
1624 				break;
1625 			prev = i;
1626 		}
1627 		p->next = i;
1628 		if (prev < 0)
1629 			swap_list.head = swap_list.next = type;
1630 		else
1631 			swap_info[prev]->next = type;
1632 		nr_swap_pages += p->pages;
1633 		total_swap_pages += p->pages;
1634 		p->flags |= SWP_WRITEOK;
1635 		spin_unlock(&swap_lock);
1636 		goto out_dput;
1637 	}
1638 
1639 	/* wait for any unplug function to finish */
1640 	down_write(&swap_unplug_sem);
1641 	up_write(&swap_unplug_sem);
1642 
1643 	destroy_swap_extents(p);
1644 	if (p->flags & SWP_CONTINUED)
1645 		free_swap_count_continuations(p);
1646 
1647 	mutex_lock(&swapon_mutex);
1648 	spin_lock(&swap_lock);
1649 	drain_mmlist();
1650 
1651 	/* wait for anyone still in scan_swap_map */
1652 	p->highest_bit = 0;		/* cuts scans short */
1653 	while (p->flags >= SWP_SCANNING) {
1654 		spin_unlock(&swap_lock);
1655 		schedule_timeout_uninterruptible(1);
1656 		spin_lock(&swap_lock);
1657 	}
1658 
1659 	swap_file = p->swap_file;
1660 	p->swap_file = NULL;
1661 	p->max = 0;
1662 	swap_map = p->swap_map;
1663 	p->swap_map = NULL;
1664 	p->flags = 0;
1665 	spin_unlock(&swap_lock);
1666 	mutex_unlock(&swapon_mutex);
1667 	vfree(swap_map);
1668 	/* Destroy swap account informatin */
1669 	swap_cgroup_swapoff(type);
1670 
1671 	inode = mapping->host;
1672 	if (S_ISBLK(inode->i_mode)) {
1673 		struct block_device *bdev = I_BDEV(inode);
1674 		set_blocksize(bdev, p->old_block_size);
1675 		bd_release(bdev);
1676 	} else {
1677 		mutex_lock(&inode->i_mutex);
1678 		inode->i_flags &= ~S_SWAPFILE;
1679 		mutex_unlock(&inode->i_mutex);
1680 	}
1681 	filp_close(swap_file, NULL);
1682 	err = 0;
1683 
1684 out_dput:
1685 	filp_close(victim, NULL);
1686 out:
1687 	return err;
1688 }
1689 
1690 #ifdef CONFIG_PROC_FS
1691 /* iterator */
1692 static void *swap_start(struct seq_file *swap, loff_t *pos)
1693 {
1694 	struct swap_info_struct *si;
1695 	int type;
1696 	loff_t l = *pos;
1697 
1698 	mutex_lock(&swapon_mutex);
1699 
1700 	if (!l)
1701 		return SEQ_START_TOKEN;
1702 
1703 	for (type = 0; type < nr_swapfiles; type++) {
1704 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1705 		si = swap_info[type];
1706 		if (!(si->flags & SWP_USED) || !si->swap_map)
1707 			continue;
1708 		if (!--l)
1709 			return si;
1710 	}
1711 
1712 	return NULL;
1713 }
1714 
1715 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1716 {
1717 	struct swap_info_struct *si = v;
1718 	int type;
1719 
1720 	if (v == SEQ_START_TOKEN)
1721 		type = 0;
1722 	else
1723 		type = si->type + 1;
1724 
1725 	for (; type < nr_swapfiles; type++) {
1726 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1727 		si = swap_info[type];
1728 		if (!(si->flags & SWP_USED) || !si->swap_map)
1729 			continue;
1730 		++*pos;
1731 		return si;
1732 	}
1733 
1734 	return NULL;
1735 }
1736 
1737 static void swap_stop(struct seq_file *swap, void *v)
1738 {
1739 	mutex_unlock(&swapon_mutex);
1740 }
1741 
1742 static int swap_show(struct seq_file *swap, void *v)
1743 {
1744 	struct swap_info_struct *si = v;
1745 	struct file *file;
1746 	int len;
1747 
1748 	if (si == SEQ_START_TOKEN) {
1749 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1750 		return 0;
1751 	}
1752 
1753 	file = si->swap_file;
1754 	len = seq_path(swap, &file->f_path, " \t\n\\");
1755 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1756 			len < 40 ? 40 - len : 1, " ",
1757 			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1758 				"partition" : "file\t",
1759 			si->pages << (PAGE_SHIFT - 10),
1760 			si->inuse_pages << (PAGE_SHIFT - 10),
1761 			si->prio);
1762 	return 0;
1763 }
1764 
1765 static const struct seq_operations swaps_op = {
1766 	.start =	swap_start,
1767 	.next =		swap_next,
1768 	.stop =		swap_stop,
1769 	.show =		swap_show
1770 };
1771 
1772 static int swaps_open(struct inode *inode, struct file *file)
1773 {
1774 	return seq_open(file, &swaps_op);
1775 }
1776 
1777 static const struct file_operations proc_swaps_operations = {
1778 	.open		= swaps_open,
1779 	.read		= seq_read,
1780 	.llseek		= seq_lseek,
1781 	.release	= seq_release,
1782 };
1783 
1784 static int __init procswaps_init(void)
1785 {
1786 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1787 	return 0;
1788 }
1789 __initcall(procswaps_init);
1790 #endif /* CONFIG_PROC_FS */
1791 
1792 #ifdef MAX_SWAPFILES_CHECK
1793 static int __init max_swapfiles_check(void)
1794 {
1795 	MAX_SWAPFILES_CHECK();
1796 	return 0;
1797 }
1798 late_initcall(max_swapfiles_check);
1799 #endif
1800 
1801 /*
1802  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1803  *
1804  * The swapon system call
1805  */
1806 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1807 {
1808 	struct swap_info_struct *p;
1809 	char *name = NULL;
1810 	struct block_device *bdev = NULL;
1811 	struct file *swap_file = NULL;
1812 	struct address_space *mapping;
1813 	unsigned int type;
1814 	int i, prev;
1815 	int error;
1816 	union swap_header *swap_header;
1817 	unsigned int nr_good_pages;
1818 	int nr_extents = 0;
1819 	sector_t span;
1820 	unsigned long maxpages;
1821 	unsigned long swapfilepages;
1822 	unsigned char *swap_map = NULL;
1823 	struct page *page = NULL;
1824 	struct inode *inode = NULL;
1825 	int did_down = 0;
1826 
1827 	if (!capable(CAP_SYS_ADMIN))
1828 		return -EPERM;
1829 
1830 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1831 	if (!p)
1832 		return -ENOMEM;
1833 
1834 	spin_lock(&swap_lock);
1835 	for (type = 0; type < nr_swapfiles; type++) {
1836 		if (!(swap_info[type]->flags & SWP_USED))
1837 			break;
1838 	}
1839 	error = -EPERM;
1840 	if (type >= MAX_SWAPFILES) {
1841 		spin_unlock(&swap_lock);
1842 		kfree(p);
1843 		goto out;
1844 	}
1845 	if (type >= nr_swapfiles) {
1846 		p->type = type;
1847 		swap_info[type] = p;
1848 		/*
1849 		 * Write swap_info[type] before nr_swapfiles, in case a
1850 		 * racing procfs swap_start() or swap_next() is reading them.
1851 		 * (We never shrink nr_swapfiles, we never free this entry.)
1852 		 */
1853 		smp_wmb();
1854 		nr_swapfiles++;
1855 	} else {
1856 		kfree(p);
1857 		p = swap_info[type];
1858 		/*
1859 		 * Do not memset this entry: a racing procfs swap_next()
1860 		 * would be relying on p->type to remain valid.
1861 		 */
1862 	}
1863 	INIT_LIST_HEAD(&p->first_swap_extent.list);
1864 	p->flags = SWP_USED;
1865 	p->next = -1;
1866 	spin_unlock(&swap_lock);
1867 
1868 	name = getname(specialfile);
1869 	error = PTR_ERR(name);
1870 	if (IS_ERR(name)) {
1871 		name = NULL;
1872 		goto bad_swap_2;
1873 	}
1874 	swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1875 	error = PTR_ERR(swap_file);
1876 	if (IS_ERR(swap_file)) {
1877 		swap_file = NULL;
1878 		goto bad_swap_2;
1879 	}
1880 
1881 	p->swap_file = swap_file;
1882 	mapping = swap_file->f_mapping;
1883 	inode = mapping->host;
1884 
1885 	error = -EBUSY;
1886 	for (i = 0; i < nr_swapfiles; i++) {
1887 		struct swap_info_struct *q = swap_info[i];
1888 
1889 		if (i == type || !q->swap_file)
1890 			continue;
1891 		if (mapping == q->swap_file->f_mapping)
1892 			goto bad_swap;
1893 	}
1894 
1895 	error = -EINVAL;
1896 	if (S_ISBLK(inode->i_mode)) {
1897 		bdev = I_BDEV(inode);
1898 		error = bd_claim(bdev, sys_swapon);
1899 		if (error < 0) {
1900 			bdev = NULL;
1901 			error = -EINVAL;
1902 			goto bad_swap;
1903 		}
1904 		p->old_block_size = block_size(bdev);
1905 		error = set_blocksize(bdev, PAGE_SIZE);
1906 		if (error < 0)
1907 			goto bad_swap;
1908 		p->bdev = bdev;
1909 		p->flags |= SWP_BLKDEV;
1910 	} else if (S_ISREG(inode->i_mode)) {
1911 		p->bdev = inode->i_sb->s_bdev;
1912 		mutex_lock(&inode->i_mutex);
1913 		did_down = 1;
1914 		if (IS_SWAPFILE(inode)) {
1915 			error = -EBUSY;
1916 			goto bad_swap;
1917 		}
1918 	} else {
1919 		goto bad_swap;
1920 	}
1921 
1922 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1923 
1924 	/*
1925 	 * Read the swap header.
1926 	 */
1927 	if (!mapping->a_ops->readpage) {
1928 		error = -EINVAL;
1929 		goto bad_swap;
1930 	}
1931 	page = read_mapping_page(mapping, 0, swap_file);
1932 	if (IS_ERR(page)) {
1933 		error = PTR_ERR(page);
1934 		goto bad_swap;
1935 	}
1936 	swap_header = kmap(page);
1937 
1938 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1939 		printk(KERN_ERR "Unable to find swap-space signature\n");
1940 		error = -EINVAL;
1941 		goto bad_swap;
1942 	}
1943 
1944 	/* swap partition endianess hack... */
1945 	if (swab32(swap_header->info.version) == 1) {
1946 		swab32s(&swap_header->info.version);
1947 		swab32s(&swap_header->info.last_page);
1948 		swab32s(&swap_header->info.nr_badpages);
1949 		for (i = 0; i < swap_header->info.nr_badpages; i++)
1950 			swab32s(&swap_header->info.badpages[i]);
1951 	}
1952 	/* Check the swap header's sub-version */
1953 	if (swap_header->info.version != 1) {
1954 		printk(KERN_WARNING
1955 		       "Unable to handle swap header version %d\n",
1956 		       swap_header->info.version);
1957 		error = -EINVAL;
1958 		goto bad_swap;
1959 	}
1960 
1961 	p->lowest_bit  = 1;
1962 	p->cluster_next = 1;
1963 	p->cluster_nr = 0;
1964 
1965 	/*
1966 	 * Find out how many pages are allowed for a single swap
1967 	 * device. There are two limiting factors: 1) the number of
1968 	 * bits for the swap offset in the swp_entry_t type and
1969 	 * 2) the number of bits in the a swap pte as defined by
1970 	 * the different architectures. In order to find the
1971 	 * largest possible bit mask a swap entry with swap type 0
1972 	 * and swap offset ~0UL is created, encoded to a swap pte,
1973 	 * decoded to a swp_entry_t again and finally the swap
1974 	 * offset is extracted. This will mask all the bits from
1975 	 * the initial ~0UL mask that can't be encoded in either
1976 	 * the swp_entry_t or the architecture definition of a
1977 	 * swap pte.
1978 	 */
1979 	maxpages = swp_offset(pte_to_swp_entry(
1980 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1981 	if (maxpages > swap_header->info.last_page) {
1982 		maxpages = swap_header->info.last_page + 1;
1983 		/* p->max is an unsigned int: don't overflow it */
1984 		if ((unsigned int)maxpages == 0)
1985 			maxpages = UINT_MAX;
1986 	}
1987 	p->highest_bit = maxpages - 1;
1988 
1989 	error = -EINVAL;
1990 	if (!maxpages)
1991 		goto bad_swap;
1992 	if (swapfilepages && maxpages > swapfilepages) {
1993 		printk(KERN_WARNING
1994 		       "Swap area shorter than signature indicates\n");
1995 		goto bad_swap;
1996 	}
1997 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1998 		goto bad_swap;
1999 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2000 		goto bad_swap;
2001 
2002 	/* OK, set up the swap map and apply the bad block list */
2003 	swap_map = vmalloc(maxpages);
2004 	if (!swap_map) {
2005 		error = -ENOMEM;
2006 		goto bad_swap;
2007 	}
2008 
2009 	memset(swap_map, 0, maxpages);
2010 	nr_good_pages = maxpages - 1;	/* omit header page */
2011 
2012 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2013 		unsigned int page_nr = swap_header->info.badpages[i];
2014 		if (page_nr == 0 || page_nr > swap_header->info.last_page) {
2015 			error = -EINVAL;
2016 			goto bad_swap;
2017 		}
2018 		if (page_nr < maxpages) {
2019 			swap_map[page_nr] = SWAP_MAP_BAD;
2020 			nr_good_pages--;
2021 		}
2022 	}
2023 
2024 	error = swap_cgroup_swapon(type, maxpages);
2025 	if (error)
2026 		goto bad_swap;
2027 
2028 	if (nr_good_pages) {
2029 		swap_map[0] = SWAP_MAP_BAD;
2030 		p->max = maxpages;
2031 		p->pages = nr_good_pages;
2032 		nr_extents = setup_swap_extents(p, &span);
2033 		if (nr_extents < 0) {
2034 			error = nr_extents;
2035 			goto bad_swap;
2036 		}
2037 		nr_good_pages = p->pages;
2038 	}
2039 	if (!nr_good_pages) {
2040 		printk(KERN_WARNING "Empty swap-file\n");
2041 		error = -EINVAL;
2042 		goto bad_swap;
2043 	}
2044 
2045 	if (p->bdev) {
2046 		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2047 			p->flags |= SWP_SOLIDSTATE;
2048 			p->cluster_next = 1 + (random32() % p->highest_bit);
2049 		}
2050 		if (discard_swap(p) == 0 && (swap_flags & SWAP_FLAG_DISCARD))
2051 			p->flags |= SWP_DISCARDABLE;
2052 	}
2053 
2054 	mutex_lock(&swapon_mutex);
2055 	spin_lock(&swap_lock);
2056 	if (swap_flags & SWAP_FLAG_PREFER)
2057 		p->prio =
2058 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2059 	else
2060 		p->prio = --least_priority;
2061 	p->swap_map = swap_map;
2062 	p->flags |= SWP_WRITEOK;
2063 	nr_swap_pages += nr_good_pages;
2064 	total_swap_pages += nr_good_pages;
2065 
2066 	printk(KERN_INFO "Adding %uk swap on %s.  "
2067 			"Priority:%d extents:%d across:%lluk %s%s\n",
2068 		nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2069 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2070 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2071 		(p->flags & SWP_DISCARDABLE) ? "D" : "");
2072 
2073 	/* insert swap space into swap_list: */
2074 	prev = -1;
2075 	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2076 		if (p->prio >= swap_info[i]->prio)
2077 			break;
2078 		prev = i;
2079 	}
2080 	p->next = i;
2081 	if (prev < 0)
2082 		swap_list.head = swap_list.next = type;
2083 	else
2084 		swap_info[prev]->next = type;
2085 	spin_unlock(&swap_lock);
2086 	mutex_unlock(&swapon_mutex);
2087 	error = 0;
2088 	goto out;
2089 bad_swap:
2090 	if (bdev) {
2091 		set_blocksize(bdev, p->old_block_size);
2092 		bd_release(bdev);
2093 	}
2094 	destroy_swap_extents(p);
2095 	swap_cgroup_swapoff(type);
2096 bad_swap_2:
2097 	spin_lock(&swap_lock);
2098 	p->swap_file = NULL;
2099 	p->flags = 0;
2100 	spin_unlock(&swap_lock);
2101 	vfree(swap_map);
2102 	if (swap_file)
2103 		filp_close(swap_file, NULL);
2104 out:
2105 	if (page && !IS_ERR(page)) {
2106 		kunmap(page);
2107 		page_cache_release(page);
2108 	}
2109 	if (name)
2110 		putname(name);
2111 	if (did_down) {
2112 		if (!error)
2113 			inode->i_flags |= S_SWAPFILE;
2114 		mutex_unlock(&inode->i_mutex);
2115 	}
2116 	return error;
2117 }
2118 
2119 void si_swapinfo(struct sysinfo *val)
2120 {
2121 	unsigned int type;
2122 	unsigned long nr_to_be_unused = 0;
2123 
2124 	spin_lock(&swap_lock);
2125 	for (type = 0; type < nr_swapfiles; type++) {
2126 		struct swap_info_struct *si = swap_info[type];
2127 
2128 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2129 			nr_to_be_unused += si->inuse_pages;
2130 	}
2131 	val->freeswap = nr_swap_pages + nr_to_be_unused;
2132 	val->totalswap = total_swap_pages + nr_to_be_unused;
2133 	spin_unlock(&swap_lock);
2134 }
2135 
2136 /*
2137  * Verify that a swap entry is valid and increment its swap map count.
2138  *
2139  * Returns error code in following case.
2140  * - success -> 0
2141  * - swp_entry is invalid -> EINVAL
2142  * - swp_entry is migration entry -> EINVAL
2143  * - swap-cache reference is requested but there is already one. -> EEXIST
2144  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2145  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2146  */
2147 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2148 {
2149 	struct swap_info_struct *p;
2150 	unsigned long offset, type;
2151 	unsigned char count;
2152 	unsigned char has_cache;
2153 	int err = -EINVAL;
2154 
2155 	if (non_swap_entry(entry))
2156 		goto out;
2157 
2158 	type = swp_type(entry);
2159 	if (type >= nr_swapfiles)
2160 		goto bad_file;
2161 	p = swap_info[type];
2162 	offset = swp_offset(entry);
2163 
2164 	spin_lock(&swap_lock);
2165 	if (unlikely(offset >= p->max))
2166 		goto unlock_out;
2167 
2168 	count = p->swap_map[offset];
2169 	has_cache = count & SWAP_HAS_CACHE;
2170 	count &= ~SWAP_HAS_CACHE;
2171 	err = 0;
2172 
2173 	if (usage == SWAP_HAS_CACHE) {
2174 
2175 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2176 		if (!has_cache && count)
2177 			has_cache = SWAP_HAS_CACHE;
2178 		else if (has_cache)		/* someone else added cache */
2179 			err = -EEXIST;
2180 		else				/* no users remaining */
2181 			err = -ENOENT;
2182 
2183 	} else if (count || has_cache) {
2184 
2185 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2186 			count += usage;
2187 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2188 			err = -EINVAL;
2189 		else if (swap_count_continued(p, offset, count))
2190 			count = COUNT_CONTINUED;
2191 		else
2192 			err = -ENOMEM;
2193 	} else
2194 		err = -ENOENT;			/* unused swap entry */
2195 
2196 	p->swap_map[offset] = count | has_cache;
2197 
2198 unlock_out:
2199 	spin_unlock(&swap_lock);
2200 out:
2201 	return err;
2202 
2203 bad_file:
2204 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2205 	goto out;
2206 }
2207 
2208 /*
2209  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2210  * (in which case its reference count is never incremented).
2211  */
2212 void swap_shmem_alloc(swp_entry_t entry)
2213 {
2214 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2215 }
2216 
2217 /*
2218  * Increase reference count of swap entry by 1.
2219  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2220  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2221  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2222  * might occur if a page table entry has got corrupted.
2223  */
2224 int swap_duplicate(swp_entry_t entry)
2225 {
2226 	int err = 0;
2227 
2228 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2229 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2230 	return err;
2231 }
2232 
2233 /*
2234  * @entry: swap entry for which we allocate swap cache.
2235  *
2236  * Called when allocating swap cache for existing swap entry,
2237  * This can return error codes. Returns 0 at success.
2238  * -EBUSY means there is a swap cache.
2239  * Note: return code is different from swap_duplicate().
2240  */
2241 int swapcache_prepare(swp_entry_t entry)
2242 {
2243 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2244 }
2245 
2246 /*
2247  * swap_lock prevents swap_map being freed. Don't grab an extra
2248  * reference on the swaphandle, it doesn't matter if it becomes unused.
2249  */
2250 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2251 {
2252 	struct swap_info_struct *si;
2253 	int our_page_cluster = page_cluster;
2254 	pgoff_t target, toff;
2255 	pgoff_t base, end;
2256 	int nr_pages = 0;
2257 
2258 	if (!our_page_cluster)	/* no readahead */
2259 		return 0;
2260 
2261 	si = swap_info[swp_type(entry)];
2262 	target = swp_offset(entry);
2263 	base = (target >> our_page_cluster) << our_page_cluster;
2264 	end = base + (1 << our_page_cluster);
2265 	if (!base)		/* first page is swap header */
2266 		base++;
2267 
2268 	spin_lock(&swap_lock);
2269 	if (end > si->max)	/* don't go beyond end of map */
2270 		end = si->max;
2271 
2272 	/* Count contiguous allocated slots above our target */
2273 	for (toff = target; ++toff < end; nr_pages++) {
2274 		/* Don't read in free or bad pages */
2275 		if (!si->swap_map[toff])
2276 			break;
2277 		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2278 			break;
2279 	}
2280 	/* Count contiguous allocated slots below our target */
2281 	for (toff = target; --toff >= base; nr_pages++) {
2282 		/* Don't read in free or bad pages */
2283 		if (!si->swap_map[toff])
2284 			break;
2285 		if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2286 			break;
2287 	}
2288 	spin_unlock(&swap_lock);
2289 
2290 	/*
2291 	 * Indicate starting offset, and return number of pages to get:
2292 	 * if only 1, say 0, since there's then no readahead to be done.
2293 	 */
2294 	*offset = ++toff;
2295 	return nr_pages? ++nr_pages: 0;
2296 }
2297 
2298 /*
2299  * add_swap_count_continuation - called when a swap count is duplicated
2300  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2301  * page of the original vmalloc'ed swap_map, to hold the continuation count
2302  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2303  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2304  *
2305  * These continuation pages are seldom referenced: the common paths all work
2306  * on the original swap_map, only referring to a continuation page when the
2307  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2308  *
2309  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2310  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2311  * can be called after dropping locks.
2312  */
2313 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2314 {
2315 	struct swap_info_struct *si;
2316 	struct page *head;
2317 	struct page *page;
2318 	struct page *list_page;
2319 	pgoff_t offset;
2320 	unsigned char count;
2321 
2322 	/*
2323 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2324 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2325 	 */
2326 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2327 
2328 	si = swap_info_get(entry);
2329 	if (!si) {
2330 		/*
2331 		 * An acceptable race has occurred since the failing
2332 		 * __swap_duplicate(): the swap entry has been freed,
2333 		 * perhaps even the whole swap_map cleared for swapoff.
2334 		 */
2335 		goto outer;
2336 	}
2337 
2338 	offset = swp_offset(entry);
2339 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2340 
2341 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2342 		/*
2343 		 * The higher the swap count, the more likely it is that tasks
2344 		 * will race to add swap count continuation: we need to avoid
2345 		 * over-provisioning.
2346 		 */
2347 		goto out;
2348 	}
2349 
2350 	if (!page) {
2351 		spin_unlock(&swap_lock);
2352 		return -ENOMEM;
2353 	}
2354 
2355 	/*
2356 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2357 	 * no architecture is using highmem pages for kernel pagetables: so it
2358 	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2359 	 */
2360 	head = vmalloc_to_page(si->swap_map + offset);
2361 	offset &= ~PAGE_MASK;
2362 
2363 	/*
2364 	 * Page allocation does not initialize the page's lru field,
2365 	 * but it does always reset its private field.
2366 	 */
2367 	if (!page_private(head)) {
2368 		BUG_ON(count & COUNT_CONTINUED);
2369 		INIT_LIST_HEAD(&head->lru);
2370 		set_page_private(head, SWP_CONTINUED);
2371 		si->flags |= SWP_CONTINUED;
2372 	}
2373 
2374 	list_for_each_entry(list_page, &head->lru, lru) {
2375 		unsigned char *map;
2376 
2377 		/*
2378 		 * If the previous map said no continuation, but we've found
2379 		 * a continuation page, free our allocation and use this one.
2380 		 */
2381 		if (!(count & COUNT_CONTINUED))
2382 			goto out;
2383 
2384 		map = kmap_atomic(list_page, KM_USER0) + offset;
2385 		count = *map;
2386 		kunmap_atomic(map, KM_USER0);
2387 
2388 		/*
2389 		 * If this continuation count now has some space in it,
2390 		 * free our allocation and use this one.
2391 		 */
2392 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2393 			goto out;
2394 	}
2395 
2396 	list_add_tail(&page->lru, &head->lru);
2397 	page = NULL;			/* now it's attached, don't free it */
2398 out:
2399 	spin_unlock(&swap_lock);
2400 outer:
2401 	if (page)
2402 		__free_page(page);
2403 	return 0;
2404 }
2405 
2406 /*
2407  * swap_count_continued - when the original swap_map count is incremented
2408  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2409  * into, carry if so, or else fail until a new continuation page is allocated;
2410  * when the original swap_map count is decremented from 0 with continuation,
2411  * borrow from the continuation and report whether it still holds more.
2412  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2413  */
2414 static bool swap_count_continued(struct swap_info_struct *si,
2415 				 pgoff_t offset, unsigned char count)
2416 {
2417 	struct page *head;
2418 	struct page *page;
2419 	unsigned char *map;
2420 
2421 	head = vmalloc_to_page(si->swap_map + offset);
2422 	if (page_private(head) != SWP_CONTINUED) {
2423 		BUG_ON(count & COUNT_CONTINUED);
2424 		return false;		/* need to add count continuation */
2425 	}
2426 
2427 	offset &= ~PAGE_MASK;
2428 	page = list_entry(head->lru.next, struct page, lru);
2429 	map = kmap_atomic(page, KM_USER0) + offset;
2430 
2431 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2432 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2433 
2434 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2435 		/*
2436 		 * Think of how you add 1 to 999
2437 		 */
2438 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2439 			kunmap_atomic(map, KM_USER0);
2440 			page = list_entry(page->lru.next, struct page, lru);
2441 			BUG_ON(page == head);
2442 			map = kmap_atomic(page, KM_USER0) + offset;
2443 		}
2444 		if (*map == SWAP_CONT_MAX) {
2445 			kunmap_atomic(map, KM_USER0);
2446 			page = list_entry(page->lru.next, struct page, lru);
2447 			if (page == head)
2448 				return false;	/* add count continuation */
2449 			map = kmap_atomic(page, KM_USER0) + offset;
2450 init_map:		*map = 0;		/* we didn't zero the page */
2451 		}
2452 		*map += 1;
2453 		kunmap_atomic(map, KM_USER0);
2454 		page = list_entry(page->lru.prev, struct page, lru);
2455 		while (page != head) {
2456 			map = kmap_atomic(page, KM_USER0) + offset;
2457 			*map = COUNT_CONTINUED;
2458 			kunmap_atomic(map, KM_USER0);
2459 			page = list_entry(page->lru.prev, struct page, lru);
2460 		}
2461 		return true;			/* incremented */
2462 
2463 	} else {				/* decrementing */
2464 		/*
2465 		 * Think of how you subtract 1 from 1000
2466 		 */
2467 		BUG_ON(count != COUNT_CONTINUED);
2468 		while (*map == COUNT_CONTINUED) {
2469 			kunmap_atomic(map, KM_USER0);
2470 			page = list_entry(page->lru.next, struct page, lru);
2471 			BUG_ON(page == head);
2472 			map = kmap_atomic(page, KM_USER0) + offset;
2473 		}
2474 		BUG_ON(*map == 0);
2475 		*map -= 1;
2476 		if (*map == 0)
2477 			count = 0;
2478 		kunmap_atomic(map, KM_USER0);
2479 		page = list_entry(page->lru.prev, struct page, lru);
2480 		while (page != head) {
2481 			map = kmap_atomic(page, KM_USER0) + offset;
2482 			*map = SWAP_CONT_MAX | count;
2483 			count = COUNT_CONTINUED;
2484 			kunmap_atomic(map, KM_USER0);
2485 			page = list_entry(page->lru.prev, struct page, lru);
2486 		}
2487 		return count == COUNT_CONTINUED;
2488 	}
2489 }
2490 
2491 /*
2492  * free_swap_count_continuations - swapoff free all the continuation pages
2493  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2494  */
2495 static void free_swap_count_continuations(struct swap_info_struct *si)
2496 {
2497 	pgoff_t offset;
2498 
2499 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2500 		struct page *head;
2501 		head = vmalloc_to_page(si->swap_map + offset);
2502 		if (page_private(head)) {
2503 			struct list_head *this, *next;
2504 			list_for_each_safe(this, next, &head->lru) {
2505 				struct page *page;
2506 				page = list_entry(this, struct page, lru);
2507 				list_del(this);
2508 				__free_page(page);
2509 			}
2510 		}
2511 	}
2512 }
2513