xref: /openbmc/linux/mm/swapfile.c (revision 18afb028)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45 
46 #include <asm/tlbflush.h>
47 #include <linux/swapops.h>
48 #include <linux/swap_cgroup.h>
49 #include "internal.h"
50 #include "swap.h"
51 
52 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
53 				 unsigned char);
54 static void free_swap_count_continuations(struct swap_info_struct *);
55 
56 static DEFINE_SPINLOCK(swap_lock);
57 static unsigned int nr_swapfiles;
58 atomic_long_t nr_swap_pages;
59 /*
60  * Some modules use swappable objects and may try to swap them out under
61  * memory pressure (via the shrinker). Before doing so, they may wish to
62  * check to see if any swap space is available.
63  */
64 EXPORT_SYMBOL_GPL(nr_swap_pages);
65 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
66 long total_swap_pages;
67 static int least_priority = -1;
68 unsigned long swapfile_maximum_size;
69 #ifdef CONFIG_MIGRATION
70 bool swap_migration_ad_supported;
71 #endif	/* CONFIG_MIGRATION */
72 
73 static const char Bad_file[] = "Bad swap file entry ";
74 static const char Unused_file[] = "Unused swap file entry ";
75 static const char Bad_offset[] = "Bad swap offset entry ";
76 static const char Unused_offset[] = "Unused swap offset entry ";
77 
78 /*
79  * all active swap_info_structs
80  * protected with swap_lock, and ordered by priority.
81  */
82 static PLIST_HEAD(swap_active_head);
83 
84 /*
85  * all available (active, not full) swap_info_structs
86  * protected with swap_avail_lock, ordered by priority.
87  * This is used by folio_alloc_swap() instead of swap_active_head
88  * because swap_active_head includes all swap_info_structs,
89  * but folio_alloc_swap() doesn't need to look at full ones.
90  * This uses its own lock instead of swap_lock because when a
91  * swap_info_struct changes between not-full/full, it needs to
92  * add/remove itself to/from this list, but the swap_info_struct->lock
93  * is held and the locking order requires swap_lock to be taken
94  * before any swap_info_struct->lock.
95  */
96 static struct plist_head *swap_avail_heads;
97 static DEFINE_SPINLOCK(swap_avail_lock);
98 
99 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
100 
101 static DEFINE_MUTEX(swapon_mutex);
102 
103 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
104 /* Activity counter to indicate that a swapon or swapoff has occurred */
105 static atomic_t proc_poll_event = ATOMIC_INIT(0);
106 
107 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
108 
109 static struct swap_info_struct *swap_type_to_swap_info(int type)
110 {
111 	if (type >= MAX_SWAPFILES)
112 		return NULL;
113 
114 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
115 }
116 
117 static inline unsigned char swap_count(unsigned char ent)
118 {
119 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
120 }
121 
122 /* Reclaim the swap entry anyway if possible */
123 #define TTRS_ANYWAY		0x1
124 /*
125  * Reclaim the swap entry if there are no more mappings of the
126  * corresponding page
127  */
128 #define TTRS_UNMAPPED		0x2
129 /* Reclaim the swap entry if swap is getting full*/
130 #define TTRS_FULL		0x4
131 
132 /* returns 1 if swap entry is freed */
133 static int __try_to_reclaim_swap(struct swap_info_struct *si,
134 				 unsigned long offset, unsigned long flags)
135 {
136 	swp_entry_t entry = swp_entry(si->type, offset);
137 	struct folio *folio;
138 	int ret = 0;
139 
140 	folio = filemap_get_folio(swap_address_space(entry), offset);
141 	if (IS_ERR(folio))
142 		return 0;
143 	/*
144 	 * When this function is called from scan_swap_map_slots() and it's
145 	 * called by vmscan.c at reclaiming folios. So we hold a folio lock
146 	 * here. We have to use trylock for avoiding deadlock. This is a special
147 	 * case and you should use folio_free_swap() with explicit folio_lock()
148 	 * in usual operations.
149 	 */
150 	if (folio_trylock(folio)) {
151 		if ((flags & TTRS_ANYWAY) ||
152 		    ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
153 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
154 			ret = folio_free_swap(folio);
155 		folio_unlock(folio);
156 	}
157 	folio_put(folio);
158 	return ret;
159 }
160 
161 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
162 {
163 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
164 	return rb_entry(rb, struct swap_extent, rb_node);
165 }
166 
167 static inline struct swap_extent *next_se(struct swap_extent *se)
168 {
169 	struct rb_node *rb = rb_next(&se->rb_node);
170 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
171 }
172 
173 /*
174  * swapon tell device that all the old swap contents can be discarded,
175  * to allow the swap device to optimize its wear-levelling.
176  */
177 static int discard_swap(struct swap_info_struct *si)
178 {
179 	struct swap_extent *se;
180 	sector_t start_block;
181 	sector_t nr_blocks;
182 	int err = 0;
183 
184 	/* Do not discard the swap header page! */
185 	se = first_se(si);
186 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
187 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
188 	if (nr_blocks) {
189 		err = blkdev_issue_discard(si->bdev, start_block,
190 				nr_blocks, GFP_KERNEL);
191 		if (err)
192 			return err;
193 		cond_resched();
194 	}
195 
196 	for (se = next_se(se); se; se = next_se(se)) {
197 		start_block = se->start_block << (PAGE_SHIFT - 9);
198 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
199 
200 		err = blkdev_issue_discard(si->bdev, start_block,
201 				nr_blocks, GFP_KERNEL);
202 		if (err)
203 			break;
204 
205 		cond_resched();
206 	}
207 	return err;		/* That will often be -EOPNOTSUPP */
208 }
209 
210 static struct swap_extent *
211 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
212 {
213 	struct swap_extent *se;
214 	struct rb_node *rb;
215 
216 	rb = sis->swap_extent_root.rb_node;
217 	while (rb) {
218 		se = rb_entry(rb, struct swap_extent, rb_node);
219 		if (offset < se->start_page)
220 			rb = rb->rb_left;
221 		else if (offset >= se->start_page + se->nr_pages)
222 			rb = rb->rb_right;
223 		else
224 			return se;
225 	}
226 	/* It *must* be present */
227 	BUG();
228 }
229 
230 sector_t swap_page_sector(struct page *page)
231 {
232 	struct swap_info_struct *sis = page_swap_info(page);
233 	struct swap_extent *se;
234 	sector_t sector;
235 	pgoff_t offset;
236 
237 	offset = __page_file_index(page);
238 	se = offset_to_swap_extent(sis, offset);
239 	sector = se->start_block + (offset - se->start_page);
240 	return sector << (PAGE_SHIFT - 9);
241 }
242 
243 /*
244  * swap allocation tell device that a cluster of swap can now be discarded,
245  * to allow the swap device to optimize its wear-levelling.
246  */
247 static void discard_swap_cluster(struct swap_info_struct *si,
248 				 pgoff_t start_page, pgoff_t nr_pages)
249 {
250 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
251 
252 	while (nr_pages) {
253 		pgoff_t offset = start_page - se->start_page;
254 		sector_t start_block = se->start_block + offset;
255 		sector_t nr_blocks = se->nr_pages - offset;
256 
257 		if (nr_blocks > nr_pages)
258 			nr_blocks = nr_pages;
259 		start_page += nr_blocks;
260 		nr_pages -= nr_blocks;
261 
262 		start_block <<= PAGE_SHIFT - 9;
263 		nr_blocks <<= PAGE_SHIFT - 9;
264 		if (blkdev_issue_discard(si->bdev, start_block,
265 					nr_blocks, GFP_NOIO))
266 			break;
267 
268 		se = next_se(se);
269 	}
270 }
271 
272 #ifdef CONFIG_THP_SWAP
273 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
274 
275 #define swap_entry_size(size)	(size)
276 #else
277 #define SWAPFILE_CLUSTER	256
278 
279 /*
280  * Define swap_entry_size() as constant to let compiler to optimize
281  * out some code if !CONFIG_THP_SWAP
282  */
283 #define swap_entry_size(size)	1
284 #endif
285 #define LATENCY_LIMIT		256
286 
287 static inline void cluster_set_flag(struct swap_cluster_info *info,
288 	unsigned int flag)
289 {
290 	info->flags = flag;
291 }
292 
293 static inline unsigned int cluster_count(struct swap_cluster_info *info)
294 {
295 	return info->data;
296 }
297 
298 static inline void cluster_set_count(struct swap_cluster_info *info,
299 				     unsigned int c)
300 {
301 	info->data = c;
302 }
303 
304 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
305 					 unsigned int c, unsigned int f)
306 {
307 	info->flags = f;
308 	info->data = c;
309 }
310 
311 static inline unsigned int cluster_next(struct swap_cluster_info *info)
312 {
313 	return info->data;
314 }
315 
316 static inline void cluster_set_next(struct swap_cluster_info *info,
317 				    unsigned int n)
318 {
319 	info->data = n;
320 }
321 
322 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
323 					 unsigned int n, unsigned int f)
324 {
325 	info->flags = f;
326 	info->data = n;
327 }
328 
329 static inline bool cluster_is_free(struct swap_cluster_info *info)
330 {
331 	return info->flags & CLUSTER_FLAG_FREE;
332 }
333 
334 static inline bool cluster_is_null(struct swap_cluster_info *info)
335 {
336 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
337 }
338 
339 static inline void cluster_set_null(struct swap_cluster_info *info)
340 {
341 	info->flags = CLUSTER_FLAG_NEXT_NULL;
342 	info->data = 0;
343 }
344 
345 static inline bool cluster_is_huge(struct swap_cluster_info *info)
346 {
347 	if (IS_ENABLED(CONFIG_THP_SWAP))
348 		return info->flags & CLUSTER_FLAG_HUGE;
349 	return false;
350 }
351 
352 static inline void cluster_clear_huge(struct swap_cluster_info *info)
353 {
354 	info->flags &= ~CLUSTER_FLAG_HUGE;
355 }
356 
357 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
358 						     unsigned long offset)
359 {
360 	struct swap_cluster_info *ci;
361 
362 	ci = si->cluster_info;
363 	if (ci) {
364 		ci += offset / SWAPFILE_CLUSTER;
365 		spin_lock(&ci->lock);
366 	}
367 	return ci;
368 }
369 
370 static inline void unlock_cluster(struct swap_cluster_info *ci)
371 {
372 	if (ci)
373 		spin_unlock(&ci->lock);
374 }
375 
376 /*
377  * Determine the locking method in use for this device.  Return
378  * swap_cluster_info if SSD-style cluster-based locking is in place.
379  */
380 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
381 		struct swap_info_struct *si, unsigned long offset)
382 {
383 	struct swap_cluster_info *ci;
384 
385 	/* Try to use fine-grained SSD-style locking if available: */
386 	ci = lock_cluster(si, offset);
387 	/* Otherwise, fall back to traditional, coarse locking: */
388 	if (!ci)
389 		spin_lock(&si->lock);
390 
391 	return ci;
392 }
393 
394 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
395 					       struct swap_cluster_info *ci)
396 {
397 	if (ci)
398 		unlock_cluster(ci);
399 	else
400 		spin_unlock(&si->lock);
401 }
402 
403 static inline bool cluster_list_empty(struct swap_cluster_list *list)
404 {
405 	return cluster_is_null(&list->head);
406 }
407 
408 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
409 {
410 	return cluster_next(&list->head);
411 }
412 
413 static void cluster_list_init(struct swap_cluster_list *list)
414 {
415 	cluster_set_null(&list->head);
416 	cluster_set_null(&list->tail);
417 }
418 
419 static void cluster_list_add_tail(struct swap_cluster_list *list,
420 				  struct swap_cluster_info *ci,
421 				  unsigned int idx)
422 {
423 	if (cluster_list_empty(list)) {
424 		cluster_set_next_flag(&list->head, idx, 0);
425 		cluster_set_next_flag(&list->tail, idx, 0);
426 	} else {
427 		struct swap_cluster_info *ci_tail;
428 		unsigned int tail = cluster_next(&list->tail);
429 
430 		/*
431 		 * Nested cluster lock, but both cluster locks are
432 		 * only acquired when we held swap_info_struct->lock
433 		 */
434 		ci_tail = ci + tail;
435 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
436 		cluster_set_next(ci_tail, idx);
437 		spin_unlock(&ci_tail->lock);
438 		cluster_set_next_flag(&list->tail, idx, 0);
439 	}
440 }
441 
442 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
443 					   struct swap_cluster_info *ci)
444 {
445 	unsigned int idx;
446 
447 	idx = cluster_next(&list->head);
448 	if (cluster_next(&list->tail) == idx) {
449 		cluster_set_null(&list->head);
450 		cluster_set_null(&list->tail);
451 	} else
452 		cluster_set_next_flag(&list->head,
453 				      cluster_next(&ci[idx]), 0);
454 
455 	return idx;
456 }
457 
458 /* Add a cluster to discard list and schedule it to do discard */
459 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
460 		unsigned int idx)
461 {
462 	/*
463 	 * If scan_swap_map_slots() can't find a free cluster, it will check
464 	 * si->swap_map directly. To make sure the discarding cluster isn't
465 	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
466 	 * It will be cleared after discard
467 	 */
468 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
469 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
470 
471 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
472 
473 	schedule_work(&si->discard_work);
474 }
475 
476 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
477 {
478 	struct swap_cluster_info *ci = si->cluster_info;
479 
480 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
481 	cluster_list_add_tail(&si->free_clusters, ci, idx);
482 }
483 
484 /*
485  * Doing discard actually. After a cluster discard is finished, the cluster
486  * will be added to free cluster list. caller should hold si->lock.
487 */
488 static void swap_do_scheduled_discard(struct swap_info_struct *si)
489 {
490 	struct swap_cluster_info *info, *ci;
491 	unsigned int idx;
492 
493 	info = si->cluster_info;
494 
495 	while (!cluster_list_empty(&si->discard_clusters)) {
496 		idx = cluster_list_del_first(&si->discard_clusters, info);
497 		spin_unlock(&si->lock);
498 
499 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
500 				SWAPFILE_CLUSTER);
501 
502 		spin_lock(&si->lock);
503 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
504 		__free_cluster(si, idx);
505 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
506 				0, SWAPFILE_CLUSTER);
507 		unlock_cluster(ci);
508 	}
509 }
510 
511 static void swap_discard_work(struct work_struct *work)
512 {
513 	struct swap_info_struct *si;
514 
515 	si = container_of(work, struct swap_info_struct, discard_work);
516 
517 	spin_lock(&si->lock);
518 	swap_do_scheduled_discard(si);
519 	spin_unlock(&si->lock);
520 }
521 
522 static void swap_users_ref_free(struct percpu_ref *ref)
523 {
524 	struct swap_info_struct *si;
525 
526 	si = container_of(ref, struct swap_info_struct, users);
527 	complete(&si->comp);
528 }
529 
530 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
531 {
532 	struct swap_cluster_info *ci = si->cluster_info;
533 
534 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
535 	cluster_list_del_first(&si->free_clusters, ci);
536 	cluster_set_count_flag(ci + idx, 0, 0);
537 }
538 
539 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
540 {
541 	struct swap_cluster_info *ci = si->cluster_info + idx;
542 
543 	VM_BUG_ON(cluster_count(ci) != 0);
544 	/*
545 	 * If the swap is discardable, prepare discard the cluster
546 	 * instead of free it immediately. The cluster will be freed
547 	 * after discard.
548 	 */
549 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
550 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
551 		swap_cluster_schedule_discard(si, idx);
552 		return;
553 	}
554 
555 	__free_cluster(si, idx);
556 }
557 
558 /*
559  * The cluster corresponding to page_nr will be used. The cluster will be
560  * removed from free cluster list and its usage counter will be increased.
561  */
562 static void inc_cluster_info_page(struct swap_info_struct *p,
563 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
564 {
565 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
566 
567 	if (!cluster_info)
568 		return;
569 	if (cluster_is_free(&cluster_info[idx]))
570 		alloc_cluster(p, idx);
571 
572 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
573 	cluster_set_count(&cluster_info[idx],
574 		cluster_count(&cluster_info[idx]) + 1);
575 }
576 
577 /*
578  * The cluster corresponding to page_nr decreases one usage. If the usage
579  * counter becomes 0, which means no page in the cluster is in using, we can
580  * optionally discard the cluster and add it to free cluster list.
581  */
582 static void dec_cluster_info_page(struct swap_info_struct *p,
583 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
584 {
585 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
586 
587 	if (!cluster_info)
588 		return;
589 
590 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
591 	cluster_set_count(&cluster_info[idx],
592 		cluster_count(&cluster_info[idx]) - 1);
593 
594 	if (cluster_count(&cluster_info[idx]) == 0)
595 		free_cluster(p, idx);
596 }
597 
598 /*
599  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
600  * cluster list. Avoiding such abuse to avoid list corruption.
601  */
602 static bool
603 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
604 	unsigned long offset)
605 {
606 	struct percpu_cluster *percpu_cluster;
607 	bool conflict;
608 
609 	offset /= SWAPFILE_CLUSTER;
610 	conflict = !cluster_list_empty(&si->free_clusters) &&
611 		offset != cluster_list_first(&si->free_clusters) &&
612 		cluster_is_free(&si->cluster_info[offset]);
613 
614 	if (!conflict)
615 		return false;
616 
617 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
618 	cluster_set_null(&percpu_cluster->index);
619 	return true;
620 }
621 
622 /*
623  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
624  * might involve allocating a new cluster for current CPU too.
625  */
626 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
627 	unsigned long *offset, unsigned long *scan_base)
628 {
629 	struct percpu_cluster *cluster;
630 	struct swap_cluster_info *ci;
631 	unsigned long tmp, max;
632 
633 new_cluster:
634 	cluster = this_cpu_ptr(si->percpu_cluster);
635 	if (cluster_is_null(&cluster->index)) {
636 		if (!cluster_list_empty(&si->free_clusters)) {
637 			cluster->index = si->free_clusters.head;
638 			cluster->next = cluster_next(&cluster->index) *
639 					SWAPFILE_CLUSTER;
640 		} else if (!cluster_list_empty(&si->discard_clusters)) {
641 			/*
642 			 * we don't have free cluster but have some clusters in
643 			 * discarding, do discard now and reclaim them, then
644 			 * reread cluster_next_cpu since we dropped si->lock
645 			 */
646 			swap_do_scheduled_discard(si);
647 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
648 			*offset = *scan_base;
649 			goto new_cluster;
650 		} else
651 			return false;
652 	}
653 
654 	/*
655 	 * Other CPUs can use our cluster if they can't find a free cluster,
656 	 * check if there is still free entry in the cluster
657 	 */
658 	tmp = cluster->next;
659 	max = min_t(unsigned long, si->max,
660 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
661 	if (tmp < max) {
662 		ci = lock_cluster(si, tmp);
663 		while (tmp < max) {
664 			if (!si->swap_map[tmp])
665 				break;
666 			tmp++;
667 		}
668 		unlock_cluster(ci);
669 	}
670 	if (tmp >= max) {
671 		cluster_set_null(&cluster->index);
672 		goto new_cluster;
673 	}
674 	cluster->next = tmp + 1;
675 	*offset = tmp;
676 	*scan_base = tmp;
677 	return true;
678 }
679 
680 static void __del_from_avail_list(struct swap_info_struct *p)
681 {
682 	int nid;
683 
684 	assert_spin_locked(&p->lock);
685 	for_each_node(nid)
686 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
687 }
688 
689 static void del_from_avail_list(struct swap_info_struct *p)
690 {
691 	spin_lock(&swap_avail_lock);
692 	__del_from_avail_list(p);
693 	spin_unlock(&swap_avail_lock);
694 }
695 
696 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
697 			     unsigned int nr_entries)
698 {
699 	unsigned int end = offset + nr_entries - 1;
700 
701 	if (offset == si->lowest_bit)
702 		si->lowest_bit += nr_entries;
703 	if (end == si->highest_bit)
704 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
705 	WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
706 	if (si->inuse_pages == si->pages) {
707 		si->lowest_bit = si->max;
708 		si->highest_bit = 0;
709 		del_from_avail_list(si);
710 	}
711 }
712 
713 static void add_to_avail_list(struct swap_info_struct *p)
714 {
715 	int nid;
716 
717 	spin_lock(&swap_avail_lock);
718 	for_each_node(nid)
719 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
720 	spin_unlock(&swap_avail_lock);
721 }
722 
723 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
724 			    unsigned int nr_entries)
725 {
726 	unsigned long begin = offset;
727 	unsigned long end = offset + nr_entries - 1;
728 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
729 
730 	if (offset < si->lowest_bit)
731 		si->lowest_bit = offset;
732 	if (end > si->highest_bit) {
733 		bool was_full = !si->highest_bit;
734 
735 		WRITE_ONCE(si->highest_bit, end);
736 		if (was_full && (si->flags & SWP_WRITEOK))
737 			add_to_avail_list(si);
738 	}
739 	atomic_long_add(nr_entries, &nr_swap_pages);
740 	WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
741 	if (si->flags & SWP_BLKDEV)
742 		swap_slot_free_notify =
743 			si->bdev->bd_disk->fops->swap_slot_free_notify;
744 	else
745 		swap_slot_free_notify = NULL;
746 	while (offset <= end) {
747 		arch_swap_invalidate_page(si->type, offset);
748 		zswap_invalidate(si->type, offset);
749 		if (swap_slot_free_notify)
750 			swap_slot_free_notify(si->bdev, offset);
751 		offset++;
752 	}
753 	clear_shadow_from_swap_cache(si->type, begin, end);
754 }
755 
756 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
757 {
758 	unsigned long prev;
759 
760 	if (!(si->flags & SWP_SOLIDSTATE)) {
761 		si->cluster_next = next;
762 		return;
763 	}
764 
765 	prev = this_cpu_read(*si->cluster_next_cpu);
766 	/*
767 	 * Cross the swap address space size aligned trunk, choose
768 	 * another trunk randomly to avoid lock contention on swap
769 	 * address space if possible.
770 	 */
771 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
772 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
773 		/* No free swap slots available */
774 		if (si->highest_bit <= si->lowest_bit)
775 			return;
776 		next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
777 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
778 		next = max_t(unsigned int, next, si->lowest_bit);
779 	}
780 	this_cpu_write(*si->cluster_next_cpu, next);
781 }
782 
783 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
784 					     unsigned long offset)
785 {
786 	if (data_race(!si->swap_map[offset])) {
787 		spin_lock(&si->lock);
788 		return true;
789 	}
790 
791 	if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
792 		spin_lock(&si->lock);
793 		return true;
794 	}
795 
796 	return false;
797 }
798 
799 static int scan_swap_map_slots(struct swap_info_struct *si,
800 			       unsigned char usage, int nr,
801 			       swp_entry_t slots[])
802 {
803 	struct swap_cluster_info *ci;
804 	unsigned long offset;
805 	unsigned long scan_base;
806 	unsigned long last_in_cluster = 0;
807 	int latency_ration = LATENCY_LIMIT;
808 	int n_ret = 0;
809 	bool scanned_many = false;
810 
811 	/*
812 	 * We try to cluster swap pages by allocating them sequentially
813 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
814 	 * way, however, we resort to first-free allocation, starting
815 	 * a new cluster.  This prevents us from scattering swap pages
816 	 * all over the entire swap partition, so that we reduce
817 	 * overall disk seek times between swap pages.  -- sct
818 	 * But we do now try to find an empty cluster.  -Andrea
819 	 * And we let swap pages go all over an SSD partition.  Hugh
820 	 */
821 
822 	si->flags += SWP_SCANNING;
823 	/*
824 	 * Use percpu scan base for SSD to reduce lock contention on
825 	 * cluster and swap cache.  For HDD, sequential access is more
826 	 * important.
827 	 */
828 	if (si->flags & SWP_SOLIDSTATE)
829 		scan_base = this_cpu_read(*si->cluster_next_cpu);
830 	else
831 		scan_base = si->cluster_next;
832 	offset = scan_base;
833 
834 	/* SSD algorithm */
835 	if (si->cluster_info) {
836 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
837 			goto scan;
838 	} else if (unlikely(!si->cluster_nr--)) {
839 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
840 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
841 			goto checks;
842 		}
843 
844 		spin_unlock(&si->lock);
845 
846 		/*
847 		 * If seek is expensive, start searching for new cluster from
848 		 * start of partition, to minimize the span of allocated swap.
849 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
850 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
851 		 */
852 		scan_base = offset = si->lowest_bit;
853 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
854 
855 		/* Locate the first empty (unaligned) cluster */
856 		for (; last_in_cluster <= si->highest_bit; offset++) {
857 			if (si->swap_map[offset])
858 				last_in_cluster = offset + SWAPFILE_CLUSTER;
859 			else if (offset == last_in_cluster) {
860 				spin_lock(&si->lock);
861 				offset -= SWAPFILE_CLUSTER - 1;
862 				si->cluster_next = offset;
863 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
864 				goto checks;
865 			}
866 			if (unlikely(--latency_ration < 0)) {
867 				cond_resched();
868 				latency_ration = LATENCY_LIMIT;
869 			}
870 		}
871 
872 		offset = scan_base;
873 		spin_lock(&si->lock);
874 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
875 	}
876 
877 checks:
878 	if (si->cluster_info) {
879 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
880 		/* take a break if we already got some slots */
881 			if (n_ret)
882 				goto done;
883 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
884 							&scan_base))
885 				goto scan;
886 		}
887 	}
888 	if (!(si->flags & SWP_WRITEOK))
889 		goto no_page;
890 	if (!si->highest_bit)
891 		goto no_page;
892 	if (offset > si->highest_bit)
893 		scan_base = offset = si->lowest_bit;
894 
895 	ci = lock_cluster(si, offset);
896 	/* reuse swap entry of cache-only swap if not busy. */
897 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
898 		int swap_was_freed;
899 		unlock_cluster(ci);
900 		spin_unlock(&si->lock);
901 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
902 		spin_lock(&si->lock);
903 		/* entry was freed successfully, try to use this again */
904 		if (swap_was_freed)
905 			goto checks;
906 		goto scan; /* check next one */
907 	}
908 
909 	if (si->swap_map[offset]) {
910 		unlock_cluster(ci);
911 		if (!n_ret)
912 			goto scan;
913 		else
914 			goto done;
915 	}
916 	WRITE_ONCE(si->swap_map[offset], usage);
917 	inc_cluster_info_page(si, si->cluster_info, offset);
918 	unlock_cluster(ci);
919 
920 	swap_range_alloc(si, offset, 1);
921 	slots[n_ret++] = swp_entry(si->type, offset);
922 
923 	/* got enough slots or reach max slots? */
924 	if ((n_ret == nr) || (offset >= si->highest_bit))
925 		goto done;
926 
927 	/* search for next available slot */
928 
929 	/* time to take a break? */
930 	if (unlikely(--latency_ration < 0)) {
931 		if (n_ret)
932 			goto done;
933 		spin_unlock(&si->lock);
934 		cond_resched();
935 		spin_lock(&si->lock);
936 		latency_ration = LATENCY_LIMIT;
937 	}
938 
939 	/* try to get more slots in cluster */
940 	if (si->cluster_info) {
941 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
942 			goto checks;
943 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
944 		/* non-ssd case, still more slots in cluster? */
945 		--si->cluster_nr;
946 		goto checks;
947 	}
948 
949 	/*
950 	 * Even if there's no free clusters available (fragmented),
951 	 * try to scan a little more quickly with lock held unless we
952 	 * have scanned too many slots already.
953 	 */
954 	if (!scanned_many) {
955 		unsigned long scan_limit;
956 
957 		if (offset < scan_base)
958 			scan_limit = scan_base;
959 		else
960 			scan_limit = si->highest_bit;
961 		for (; offset <= scan_limit && --latency_ration > 0;
962 		     offset++) {
963 			if (!si->swap_map[offset])
964 				goto checks;
965 		}
966 	}
967 
968 done:
969 	set_cluster_next(si, offset + 1);
970 	si->flags -= SWP_SCANNING;
971 	return n_ret;
972 
973 scan:
974 	spin_unlock(&si->lock);
975 	while (++offset <= READ_ONCE(si->highest_bit)) {
976 		if (unlikely(--latency_ration < 0)) {
977 			cond_resched();
978 			latency_ration = LATENCY_LIMIT;
979 			scanned_many = true;
980 		}
981 		if (swap_offset_available_and_locked(si, offset))
982 			goto checks;
983 	}
984 	offset = si->lowest_bit;
985 	while (offset < scan_base) {
986 		if (unlikely(--latency_ration < 0)) {
987 			cond_resched();
988 			latency_ration = LATENCY_LIMIT;
989 			scanned_many = true;
990 		}
991 		if (swap_offset_available_and_locked(si, offset))
992 			goto checks;
993 		offset++;
994 	}
995 	spin_lock(&si->lock);
996 
997 no_page:
998 	si->flags -= SWP_SCANNING;
999 	return n_ret;
1000 }
1001 
1002 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1003 {
1004 	unsigned long idx;
1005 	struct swap_cluster_info *ci;
1006 	unsigned long offset;
1007 
1008 	/*
1009 	 * Should not even be attempting cluster allocations when huge
1010 	 * page swap is disabled.  Warn and fail the allocation.
1011 	 */
1012 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1013 		VM_WARN_ON_ONCE(1);
1014 		return 0;
1015 	}
1016 
1017 	if (cluster_list_empty(&si->free_clusters))
1018 		return 0;
1019 
1020 	idx = cluster_list_first(&si->free_clusters);
1021 	offset = idx * SWAPFILE_CLUSTER;
1022 	ci = lock_cluster(si, offset);
1023 	alloc_cluster(si, idx);
1024 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1025 
1026 	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1027 	unlock_cluster(ci);
1028 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1029 	*slot = swp_entry(si->type, offset);
1030 
1031 	return 1;
1032 }
1033 
1034 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1035 {
1036 	unsigned long offset = idx * SWAPFILE_CLUSTER;
1037 	struct swap_cluster_info *ci;
1038 
1039 	ci = lock_cluster(si, offset);
1040 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1041 	cluster_set_count_flag(ci, 0, 0);
1042 	free_cluster(si, idx);
1043 	unlock_cluster(ci);
1044 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1045 }
1046 
1047 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1048 {
1049 	unsigned long size = swap_entry_size(entry_size);
1050 	struct swap_info_struct *si, *next;
1051 	long avail_pgs;
1052 	int n_ret = 0;
1053 	int node;
1054 
1055 	/* Only single cluster request supported */
1056 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1057 
1058 	spin_lock(&swap_avail_lock);
1059 
1060 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1061 	if (avail_pgs <= 0) {
1062 		spin_unlock(&swap_avail_lock);
1063 		goto noswap;
1064 	}
1065 
1066 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1067 
1068 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1069 
1070 start_over:
1071 	node = numa_node_id();
1072 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1073 		/* requeue si to after same-priority siblings */
1074 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1075 		spin_unlock(&swap_avail_lock);
1076 		spin_lock(&si->lock);
1077 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1078 			spin_lock(&swap_avail_lock);
1079 			if (plist_node_empty(&si->avail_lists[node])) {
1080 				spin_unlock(&si->lock);
1081 				goto nextsi;
1082 			}
1083 			WARN(!si->highest_bit,
1084 			     "swap_info %d in list but !highest_bit\n",
1085 			     si->type);
1086 			WARN(!(si->flags & SWP_WRITEOK),
1087 			     "swap_info %d in list but !SWP_WRITEOK\n",
1088 			     si->type);
1089 			__del_from_avail_list(si);
1090 			spin_unlock(&si->lock);
1091 			goto nextsi;
1092 		}
1093 		if (size == SWAPFILE_CLUSTER) {
1094 			if (si->flags & SWP_BLKDEV)
1095 				n_ret = swap_alloc_cluster(si, swp_entries);
1096 		} else
1097 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1098 						    n_goal, swp_entries);
1099 		spin_unlock(&si->lock);
1100 		if (n_ret || size == SWAPFILE_CLUSTER)
1101 			goto check_out;
1102 		cond_resched();
1103 
1104 		spin_lock(&swap_avail_lock);
1105 nextsi:
1106 		/*
1107 		 * if we got here, it's likely that si was almost full before,
1108 		 * and since scan_swap_map_slots() can drop the si->lock,
1109 		 * multiple callers probably all tried to get a page from the
1110 		 * same si and it filled up before we could get one; or, the si
1111 		 * filled up between us dropping swap_avail_lock and taking
1112 		 * si->lock. Since we dropped the swap_avail_lock, the
1113 		 * swap_avail_head list may have been modified; so if next is
1114 		 * still in the swap_avail_head list then try it, otherwise
1115 		 * start over if we have not gotten any slots.
1116 		 */
1117 		if (plist_node_empty(&next->avail_lists[node]))
1118 			goto start_over;
1119 	}
1120 
1121 	spin_unlock(&swap_avail_lock);
1122 
1123 check_out:
1124 	if (n_ret < n_goal)
1125 		atomic_long_add((long)(n_goal - n_ret) * size,
1126 				&nr_swap_pages);
1127 noswap:
1128 	return n_ret;
1129 }
1130 
1131 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1132 {
1133 	struct swap_info_struct *p;
1134 	unsigned long offset;
1135 
1136 	if (!entry.val)
1137 		goto out;
1138 	p = swp_swap_info(entry);
1139 	if (!p)
1140 		goto bad_nofile;
1141 	if (data_race(!(p->flags & SWP_USED)))
1142 		goto bad_device;
1143 	offset = swp_offset(entry);
1144 	if (offset >= p->max)
1145 		goto bad_offset;
1146 	if (data_race(!p->swap_map[swp_offset(entry)]))
1147 		goto bad_free;
1148 	return p;
1149 
1150 bad_free:
1151 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1152 	goto out;
1153 bad_offset:
1154 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1155 	goto out;
1156 bad_device:
1157 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1158 	goto out;
1159 bad_nofile:
1160 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1161 out:
1162 	return NULL;
1163 }
1164 
1165 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1166 					struct swap_info_struct *q)
1167 {
1168 	struct swap_info_struct *p;
1169 
1170 	p = _swap_info_get(entry);
1171 
1172 	if (p != q) {
1173 		if (q != NULL)
1174 			spin_unlock(&q->lock);
1175 		if (p != NULL)
1176 			spin_lock(&p->lock);
1177 	}
1178 	return p;
1179 }
1180 
1181 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1182 					      unsigned long offset,
1183 					      unsigned char usage)
1184 {
1185 	unsigned char count;
1186 	unsigned char has_cache;
1187 
1188 	count = p->swap_map[offset];
1189 
1190 	has_cache = count & SWAP_HAS_CACHE;
1191 	count &= ~SWAP_HAS_CACHE;
1192 
1193 	if (usage == SWAP_HAS_CACHE) {
1194 		VM_BUG_ON(!has_cache);
1195 		has_cache = 0;
1196 	} else if (count == SWAP_MAP_SHMEM) {
1197 		/*
1198 		 * Or we could insist on shmem.c using a special
1199 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1200 		 */
1201 		count = 0;
1202 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1203 		if (count == COUNT_CONTINUED) {
1204 			if (swap_count_continued(p, offset, count))
1205 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1206 			else
1207 				count = SWAP_MAP_MAX;
1208 		} else
1209 			count--;
1210 	}
1211 
1212 	usage = count | has_cache;
1213 	if (usage)
1214 		WRITE_ONCE(p->swap_map[offset], usage);
1215 	else
1216 		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1217 
1218 	return usage;
1219 }
1220 
1221 /*
1222  * When we get a swap entry, if there aren't some other ways to
1223  * prevent swapoff, such as the folio in swap cache is locked, page
1224  * table lock is held, etc., the swap entry may become invalid because
1225  * of swapoff.  Then, we need to enclose all swap related functions
1226  * with get_swap_device() and put_swap_device(), unless the swap
1227  * functions call get/put_swap_device() by themselves.
1228  *
1229  * Check whether swap entry is valid in the swap device.  If so,
1230  * return pointer to swap_info_struct, and keep the swap entry valid
1231  * via preventing the swap device from being swapoff, until
1232  * put_swap_device() is called.  Otherwise return NULL.
1233  *
1234  * Notice that swapoff or swapoff+swapon can still happen before the
1235  * percpu_ref_tryget_live() in get_swap_device() or after the
1236  * percpu_ref_put() in put_swap_device() if there isn't any other way
1237  * to prevent swapoff.  The caller must be prepared for that.  For
1238  * example, the following situation is possible.
1239  *
1240  *   CPU1				CPU2
1241  *   do_swap_page()
1242  *     ...				swapoff+swapon
1243  *     __read_swap_cache_async()
1244  *       swapcache_prepare()
1245  *         __swap_duplicate()
1246  *           // check swap_map
1247  *     // verify PTE not changed
1248  *
1249  * In __swap_duplicate(), the swap_map need to be checked before
1250  * changing partly because the specified swap entry may be for another
1251  * swap device which has been swapoff.  And in do_swap_page(), after
1252  * the page is read from the swap device, the PTE is verified not
1253  * changed with the page table locked to check whether the swap device
1254  * has been swapoff or swapoff+swapon.
1255  */
1256 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1257 {
1258 	struct swap_info_struct *si;
1259 	unsigned long offset;
1260 
1261 	if (!entry.val)
1262 		goto out;
1263 	si = swp_swap_info(entry);
1264 	if (!si)
1265 		goto bad_nofile;
1266 	if (!percpu_ref_tryget_live(&si->users))
1267 		goto out;
1268 	/*
1269 	 * Guarantee the si->users are checked before accessing other
1270 	 * fields of swap_info_struct.
1271 	 *
1272 	 * Paired with the spin_unlock() after setup_swap_info() in
1273 	 * enable_swap_info().
1274 	 */
1275 	smp_rmb();
1276 	offset = swp_offset(entry);
1277 	if (offset >= si->max)
1278 		goto put_out;
1279 
1280 	return si;
1281 bad_nofile:
1282 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1283 out:
1284 	return NULL;
1285 put_out:
1286 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1287 	percpu_ref_put(&si->users);
1288 	return NULL;
1289 }
1290 
1291 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1292 				       swp_entry_t entry)
1293 {
1294 	struct swap_cluster_info *ci;
1295 	unsigned long offset = swp_offset(entry);
1296 	unsigned char usage;
1297 
1298 	ci = lock_cluster_or_swap_info(p, offset);
1299 	usage = __swap_entry_free_locked(p, offset, 1);
1300 	unlock_cluster_or_swap_info(p, ci);
1301 	if (!usage)
1302 		free_swap_slot(entry);
1303 
1304 	return usage;
1305 }
1306 
1307 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1308 {
1309 	struct swap_cluster_info *ci;
1310 	unsigned long offset = swp_offset(entry);
1311 	unsigned char count;
1312 
1313 	ci = lock_cluster(p, offset);
1314 	count = p->swap_map[offset];
1315 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1316 	p->swap_map[offset] = 0;
1317 	dec_cluster_info_page(p, p->cluster_info, offset);
1318 	unlock_cluster(ci);
1319 
1320 	mem_cgroup_uncharge_swap(entry, 1);
1321 	swap_range_free(p, offset, 1);
1322 }
1323 
1324 /*
1325  * Caller has made sure that the swap device corresponding to entry
1326  * is still around or has not been recycled.
1327  */
1328 void swap_free(swp_entry_t entry)
1329 {
1330 	struct swap_info_struct *p;
1331 
1332 	p = _swap_info_get(entry);
1333 	if (p)
1334 		__swap_entry_free(p, entry);
1335 }
1336 
1337 /*
1338  * Called after dropping swapcache to decrease refcnt to swap entries.
1339  */
1340 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1341 {
1342 	unsigned long offset = swp_offset(entry);
1343 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1344 	struct swap_cluster_info *ci;
1345 	struct swap_info_struct *si;
1346 	unsigned char *map;
1347 	unsigned int i, free_entries = 0;
1348 	unsigned char val;
1349 	int size = swap_entry_size(folio_nr_pages(folio));
1350 
1351 	si = _swap_info_get(entry);
1352 	if (!si)
1353 		return;
1354 
1355 	ci = lock_cluster_or_swap_info(si, offset);
1356 	if (size == SWAPFILE_CLUSTER) {
1357 		VM_BUG_ON(!cluster_is_huge(ci));
1358 		map = si->swap_map + offset;
1359 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1360 			val = map[i];
1361 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1362 			if (val == SWAP_HAS_CACHE)
1363 				free_entries++;
1364 		}
1365 		cluster_clear_huge(ci);
1366 		if (free_entries == SWAPFILE_CLUSTER) {
1367 			unlock_cluster_or_swap_info(si, ci);
1368 			spin_lock(&si->lock);
1369 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1370 			swap_free_cluster(si, idx);
1371 			spin_unlock(&si->lock);
1372 			return;
1373 		}
1374 	}
1375 	for (i = 0; i < size; i++, entry.val++) {
1376 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1377 			unlock_cluster_or_swap_info(si, ci);
1378 			free_swap_slot(entry);
1379 			if (i == size - 1)
1380 				return;
1381 			lock_cluster_or_swap_info(si, offset);
1382 		}
1383 	}
1384 	unlock_cluster_or_swap_info(si, ci);
1385 }
1386 
1387 #ifdef CONFIG_THP_SWAP
1388 int split_swap_cluster(swp_entry_t entry)
1389 {
1390 	struct swap_info_struct *si;
1391 	struct swap_cluster_info *ci;
1392 	unsigned long offset = swp_offset(entry);
1393 
1394 	si = _swap_info_get(entry);
1395 	if (!si)
1396 		return -EBUSY;
1397 	ci = lock_cluster(si, offset);
1398 	cluster_clear_huge(ci);
1399 	unlock_cluster(ci);
1400 	return 0;
1401 }
1402 #endif
1403 
1404 static int swp_entry_cmp(const void *ent1, const void *ent2)
1405 {
1406 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1407 
1408 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1409 }
1410 
1411 void swapcache_free_entries(swp_entry_t *entries, int n)
1412 {
1413 	struct swap_info_struct *p, *prev;
1414 	int i;
1415 
1416 	if (n <= 0)
1417 		return;
1418 
1419 	prev = NULL;
1420 	p = NULL;
1421 
1422 	/*
1423 	 * Sort swap entries by swap device, so each lock is only taken once.
1424 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1425 	 * so low that it isn't necessary to optimize further.
1426 	 */
1427 	if (nr_swapfiles > 1)
1428 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1429 	for (i = 0; i < n; ++i) {
1430 		p = swap_info_get_cont(entries[i], prev);
1431 		if (p)
1432 			swap_entry_free(p, entries[i]);
1433 		prev = p;
1434 	}
1435 	if (p)
1436 		spin_unlock(&p->lock);
1437 }
1438 
1439 int __swap_count(swp_entry_t entry)
1440 {
1441 	struct swap_info_struct *si = swp_swap_info(entry);
1442 	pgoff_t offset = swp_offset(entry);
1443 
1444 	return swap_count(si->swap_map[offset]);
1445 }
1446 
1447 /*
1448  * How many references to @entry are currently swapped out?
1449  * This does not give an exact answer when swap count is continued,
1450  * but does include the high COUNT_CONTINUED flag to allow for that.
1451  */
1452 int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1453 {
1454 	pgoff_t offset = swp_offset(entry);
1455 	struct swap_cluster_info *ci;
1456 	int count;
1457 
1458 	ci = lock_cluster_or_swap_info(si, offset);
1459 	count = swap_count(si->swap_map[offset]);
1460 	unlock_cluster_or_swap_info(si, ci);
1461 	return count;
1462 }
1463 
1464 /*
1465  * How many references to @entry are currently swapped out?
1466  * This considers COUNT_CONTINUED so it returns exact answer.
1467  */
1468 int swp_swapcount(swp_entry_t entry)
1469 {
1470 	int count, tmp_count, n;
1471 	struct swap_info_struct *p;
1472 	struct swap_cluster_info *ci;
1473 	struct page *page;
1474 	pgoff_t offset;
1475 	unsigned char *map;
1476 
1477 	p = _swap_info_get(entry);
1478 	if (!p)
1479 		return 0;
1480 
1481 	offset = swp_offset(entry);
1482 
1483 	ci = lock_cluster_or_swap_info(p, offset);
1484 
1485 	count = swap_count(p->swap_map[offset]);
1486 	if (!(count & COUNT_CONTINUED))
1487 		goto out;
1488 
1489 	count &= ~COUNT_CONTINUED;
1490 	n = SWAP_MAP_MAX + 1;
1491 
1492 	page = vmalloc_to_page(p->swap_map + offset);
1493 	offset &= ~PAGE_MASK;
1494 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1495 
1496 	do {
1497 		page = list_next_entry(page, lru);
1498 		map = kmap_atomic(page);
1499 		tmp_count = map[offset];
1500 		kunmap_atomic(map);
1501 
1502 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1503 		n *= (SWAP_CONT_MAX + 1);
1504 	} while (tmp_count & COUNT_CONTINUED);
1505 out:
1506 	unlock_cluster_or_swap_info(p, ci);
1507 	return count;
1508 }
1509 
1510 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1511 					 swp_entry_t entry)
1512 {
1513 	struct swap_cluster_info *ci;
1514 	unsigned char *map = si->swap_map;
1515 	unsigned long roffset = swp_offset(entry);
1516 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1517 	int i;
1518 	bool ret = false;
1519 
1520 	ci = lock_cluster_or_swap_info(si, offset);
1521 	if (!ci || !cluster_is_huge(ci)) {
1522 		if (swap_count(map[roffset]))
1523 			ret = true;
1524 		goto unlock_out;
1525 	}
1526 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1527 		if (swap_count(map[offset + i])) {
1528 			ret = true;
1529 			break;
1530 		}
1531 	}
1532 unlock_out:
1533 	unlock_cluster_or_swap_info(si, ci);
1534 	return ret;
1535 }
1536 
1537 static bool folio_swapped(struct folio *folio)
1538 {
1539 	swp_entry_t entry = folio->swap;
1540 	struct swap_info_struct *si = _swap_info_get(entry);
1541 
1542 	if (!si)
1543 		return false;
1544 
1545 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1546 		return swap_swapcount(si, entry) != 0;
1547 
1548 	return swap_page_trans_huge_swapped(si, entry);
1549 }
1550 
1551 /**
1552  * folio_free_swap() - Free the swap space used for this folio.
1553  * @folio: The folio to remove.
1554  *
1555  * If swap is getting full, or if there are no more mappings of this folio,
1556  * then call folio_free_swap to free its swap space.
1557  *
1558  * Return: true if we were able to release the swap space.
1559  */
1560 bool folio_free_swap(struct folio *folio)
1561 {
1562 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1563 
1564 	if (!folio_test_swapcache(folio))
1565 		return false;
1566 	if (folio_test_writeback(folio))
1567 		return false;
1568 	if (folio_swapped(folio))
1569 		return false;
1570 
1571 	/*
1572 	 * Once hibernation has begun to create its image of memory,
1573 	 * there's a danger that one of the calls to folio_free_swap()
1574 	 * - most probably a call from __try_to_reclaim_swap() while
1575 	 * hibernation is allocating its own swap pages for the image,
1576 	 * but conceivably even a call from memory reclaim - will free
1577 	 * the swap from a folio which has already been recorded in the
1578 	 * image as a clean swapcache folio, and then reuse its swap for
1579 	 * another page of the image.  On waking from hibernation, the
1580 	 * original folio might be freed under memory pressure, then
1581 	 * later read back in from swap, now with the wrong data.
1582 	 *
1583 	 * Hibernation suspends storage while it is writing the image
1584 	 * to disk so check that here.
1585 	 */
1586 	if (pm_suspended_storage())
1587 		return false;
1588 
1589 	delete_from_swap_cache(folio);
1590 	folio_set_dirty(folio);
1591 	return true;
1592 }
1593 
1594 /*
1595  * Free the swap entry like above, but also try to
1596  * free the page cache entry if it is the last user.
1597  */
1598 int free_swap_and_cache(swp_entry_t entry)
1599 {
1600 	struct swap_info_struct *p;
1601 	unsigned char count;
1602 
1603 	if (non_swap_entry(entry))
1604 		return 1;
1605 
1606 	p = _swap_info_get(entry);
1607 	if (p) {
1608 		count = __swap_entry_free(p, entry);
1609 		if (count == SWAP_HAS_CACHE &&
1610 		    !swap_page_trans_huge_swapped(p, entry))
1611 			__try_to_reclaim_swap(p, swp_offset(entry),
1612 					      TTRS_UNMAPPED | TTRS_FULL);
1613 	}
1614 	return p != NULL;
1615 }
1616 
1617 #ifdef CONFIG_HIBERNATION
1618 
1619 swp_entry_t get_swap_page_of_type(int type)
1620 {
1621 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1622 	swp_entry_t entry = {0};
1623 
1624 	if (!si)
1625 		goto fail;
1626 
1627 	/* This is called for allocating swap entry, not cache */
1628 	spin_lock(&si->lock);
1629 	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1630 		atomic_long_dec(&nr_swap_pages);
1631 	spin_unlock(&si->lock);
1632 fail:
1633 	return entry;
1634 }
1635 
1636 /*
1637  * Find the swap type that corresponds to given device (if any).
1638  *
1639  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1640  * from 0, in which the swap header is expected to be located.
1641  *
1642  * This is needed for the suspend to disk (aka swsusp).
1643  */
1644 int swap_type_of(dev_t device, sector_t offset)
1645 {
1646 	int type;
1647 
1648 	if (!device)
1649 		return -1;
1650 
1651 	spin_lock(&swap_lock);
1652 	for (type = 0; type < nr_swapfiles; type++) {
1653 		struct swap_info_struct *sis = swap_info[type];
1654 
1655 		if (!(sis->flags & SWP_WRITEOK))
1656 			continue;
1657 
1658 		if (device == sis->bdev->bd_dev) {
1659 			struct swap_extent *se = first_se(sis);
1660 
1661 			if (se->start_block == offset) {
1662 				spin_unlock(&swap_lock);
1663 				return type;
1664 			}
1665 		}
1666 	}
1667 	spin_unlock(&swap_lock);
1668 	return -ENODEV;
1669 }
1670 
1671 int find_first_swap(dev_t *device)
1672 {
1673 	int type;
1674 
1675 	spin_lock(&swap_lock);
1676 	for (type = 0; type < nr_swapfiles; type++) {
1677 		struct swap_info_struct *sis = swap_info[type];
1678 
1679 		if (!(sis->flags & SWP_WRITEOK))
1680 			continue;
1681 		*device = sis->bdev->bd_dev;
1682 		spin_unlock(&swap_lock);
1683 		return type;
1684 	}
1685 	spin_unlock(&swap_lock);
1686 	return -ENODEV;
1687 }
1688 
1689 /*
1690  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1691  * corresponding to given index in swap_info (swap type).
1692  */
1693 sector_t swapdev_block(int type, pgoff_t offset)
1694 {
1695 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1696 	struct swap_extent *se;
1697 
1698 	if (!si || !(si->flags & SWP_WRITEOK))
1699 		return 0;
1700 	se = offset_to_swap_extent(si, offset);
1701 	return se->start_block + (offset - se->start_page);
1702 }
1703 
1704 /*
1705  * Return either the total number of swap pages of given type, or the number
1706  * of free pages of that type (depending on @free)
1707  *
1708  * This is needed for software suspend
1709  */
1710 unsigned int count_swap_pages(int type, int free)
1711 {
1712 	unsigned int n = 0;
1713 
1714 	spin_lock(&swap_lock);
1715 	if ((unsigned int)type < nr_swapfiles) {
1716 		struct swap_info_struct *sis = swap_info[type];
1717 
1718 		spin_lock(&sis->lock);
1719 		if (sis->flags & SWP_WRITEOK) {
1720 			n = sis->pages;
1721 			if (free)
1722 				n -= sis->inuse_pages;
1723 		}
1724 		spin_unlock(&sis->lock);
1725 	}
1726 	spin_unlock(&swap_lock);
1727 	return n;
1728 }
1729 #endif /* CONFIG_HIBERNATION */
1730 
1731 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1732 {
1733 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1734 }
1735 
1736 /*
1737  * No need to decide whether this PTE shares the swap entry with others,
1738  * just let do_wp_page work it out if a write is requested later - to
1739  * force COW, vm_page_prot omits write permission from any private vma.
1740  */
1741 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1742 		unsigned long addr, swp_entry_t entry, struct folio *folio)
1743 {
1744 	struct page *page = folio_file_page(folio, swp_offset(entry));
1745 	struct page *swapcache;
1746 	spinlock_t *ptl;
1747 	pte_t *pte, new_pte, old_pte;
1748 	bool hwpoisoned = PageHWPoison(page);
1749 	int ret = 1;
1750 
1751 	swapcache = page;
1752 	page = ksm_might_need_to_copy(page, vma, addr);
1753 	if (unlikely(!page))
1754 		return -ENOMEM;
1755 	else if (unlikely(PTR_ERR(page) == -EHWPOISON))
1756 		hwpoisoned = true;
1757 
1758 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1759 	if (unlikely(!pte || !pte_same_as_swp(ptep_get(pte),
1760 						swp_entry_to_pte(entry)))) {
1761 		ret = 0;
1762 		goto out;
1763 	}
1764 
1765 	old_pte = ptep_get(pte);
1766 
1767 	if (unlikely(hwpoisoned || !PageUptodate(page))) {
1768 		swp_entry_t swp_entry;
1769 
1770 		dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1771 		if (hwpoisoned) {
1772 			swp_entry = make_hwpoison_entry(swapcache);
1773 			page = swapcache;
1774 		} else {
1775 			swp_entry = make_poisoned_swp_entry();
1776 		}
1777 		new_pte = swp_entry_to_pte(swp_entry);
1778 		ret = 0;
1779 		goto setpte;
1780 	}
1781 
1782 	/*
1783 	 * Some architectures may have to restore extra metadata to the page
1784 	 * when reading from swap. This metadata may be indexed by swap entry
1785 	 * so this must be called before swap_free().
1786 	 */
1787 	arch_swap_restore(entry, page_folio(page));
1788 
1789 	/* See do_swap_page() */
1790 	BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1791 	BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1792 
1793 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1794 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1795 	get_page(page);
1796 	if (page == swapcache) {
1797 		rmap_t rmap_flags = RMAP_NONE;
1798 
1799 		/*
1800 		 * See do_swap_page(): PageWriteback() would be problematic.
1801 		 * However, we do a wait_on_page_writeback() just before this
1802 		 * call and have the page locked.
1803 		 */
1804 		VM_BUG_ON_PAGE(PageWriteback(page), page);
1805 		if (pte_swp_exclusive(old_pte))
1806 			rmap_flags |= RMAP_EXCLUSIVE;
1807 
1808 		page_add_anon_rmap(page, vma, addr, rmap_flags);
1809 	} else { /* ksm created a completely new copy */
1810 		page_add_new_anon_rmap(page, vma, addr);
1811 		lru_cache_add_inactive_or_unevictable(page, vma);
1812 	}
1813 	new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1814 	if (pte_swp_soft_dirty(old_pte))
1815 		new_pte = pte_mksoft_dirty(new_pte);
1816 	if (pte_swp_uffd_wp(old_pte))
1817 		new_pte = pte_mkuffd_wp(new_pte);
1818 setpte:
1819 	set_pte_at(vma->vm_mm, addr, pte, new_pte);
1820 	swap_free(entry);
1821 out:
1822 	if (pte)
1823 		pte_unmap_unlock(pte, ptl);
1824 	if (page != swapcache) {
1825 		unlock_page(page);
1826 		put_page(page);
1827 	}
1828 	return ret;
1829 }
1830 
1831 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1832 			unsigned long addr, unsigned long end,
1833 			unsigned int type)
1834 {
1835 	pte_t *pte = NULL;
1836 	struct swap_info_struct *si;
1837 
1838 	si = swap_info[type];
1839 	do {
1840 		struct folio *folio;
1841 		unsigned long offset;
1842 		unsigned char swp_count;
1843 		swp_entry_t entry;
1844 		int ret;
1845 		pte_t ptent;
1846 
1847 		if (!pte++) {
1848 			pte = pte_offset_map(pmd, addr);
1849 			if (!pte)
1850 				break;
1851 		}
1852 
1853 		ptent = ptep_get_lockless(pte);
1854 
1855 		if (!is_swap_pte(ptent))
1856 			continue;
1857 
1858 		entry = pte_to_swp_entry(ptent);
1859 		if (swp_type(entry) != type)
1860 			continue;
1861 
1862 		offset = swp_offset(entry);
1863 		pte_unmap(pte);
1864 		pte = NULL;
1865 
1866 		folio = swap_cache_get_folio(entry, vma, addr);
1867 		if (!folio) {
1868 			struct page *page;
1869 			struct vm_fault vmf = {
1870 				.vma = vma,
1871 				.address = addr,
1872 				.real_address = addr,
1873 				.pmd = pmd,
1874 			};
1875 
1876 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1877 						&vmf);
1878 			if (page)
1879 				folio = page_folio(page);
1880 		}
1881 		if (!folio) {
1882 			swp_count = READ_ONCE(si->swap_map[offset]);
1883 			if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
1884 				continue;
1885 			return -ENOMEM;
1886 		}
1887 
1888 		folio_lock(folio);
1889 		folio_wait_writeback(folio);
1890 		ret = unuse_pte(vma, pmd, addr, entry, folio);
1891 		if (ret < 0) {
1892 			folio_unlock(folio);
1893 			folio_put(folio);
1894 			return ret;
1895 		}
1896 
1897 		folio_free_swap(folio);
1898 		folio_unlock(folio);
1899 		folio_put(folio);
1900 	} while (addr += PAGE_SIZE, addr != end);
1901 
1902 	if (pte)
1903 		pte_unmap(pte);
1904 	return 0;
1905 }
1906 
1907 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1908 				unsigned long addr, unsigned long end,
1909 				unsigned int type)
1910 {
1911 	pmd_t *pmd;
1912 	unsigned long next;
1913 	int ret;
1914 
1915 	pmd = pmd_offset(pud, addr);
1916 	do {
1917 		cond_resched();
1918 		next = pmd_addr_end(addr, end);
1919 		ret = unuse_pte_range(vma, pmd, addr, next, type);
1920 		if (ret)
1921 			return ret;
1922 	} while (pmd++, addr = next, addr != end);
1923 	return 0;
1924 }
1925 
1926 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1927 				unsigned long addr, unsigned long end,
1928 				unsigned int type)
1929 {
1930 	pud_t *pud;
1931 	unsigned long next;
1932 	int ret;
1933 
1934 	pud = pud_offset(p4d, addr);
1935 	do {
1936 		next = pud_addr_end(addr, end);
1937 		if (pud_none_or_clear_bad(pud))
1938 			continue;
1939 		ret = unuse_pmd_range(vma, pud, addr, next, type);
1940 		if (ret)
1941 			return ret;
1942 	} while (pud++, addr = next, addr != end);
1943 	return 0;
1944 }
1945 
1946 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1947 				unsigned long addr, unsigned long end,
1948 				unsigned int type)
1949 {
1950 	p4d_t *p4d;
1951 	unsigned long next;
1952 	int ret;
1953 
1954 	p4d = p4d_offset(pgd, addr);
1955 	do {
1956 		next = p4d_addr_end(addr, end);
1957 		if (p4d_none_or_clear_bad(p4d))
1958 			continue;
1959 		ret = unuse_pud_range(vma, p4d, addr, next, type);
1960 		if (ret)
1961 			return ret;
1962 	} while (p4d++, addr = next, addr != end);
1963 	return 0;
1964 }
1965 
1966 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1967 {
1968 	pgd_t *pgd;
1969 	unsigned long addr, end, next;
1970 	int ret;
1971 
1972 	addr = vma->vm_start;
1973 	end = vma->vm_end;
1974 
1975 	pgd = pgd_offset(vma->vm_mm, addr);
1976 	do {
1977 		next = pgd_addr_end(addr, end);
1978 		if (pgd_none_or_clear_bad(pgd))
1979 			continue;
1980 		ret = unuse_p4d_range(vma, pgd, addr, next, type);
1981 		if (ret)
1982 			return ret;
1983 	} while (pgd++, addr = next, addr != end);
1984 	return 0;
1985 }
1986 
1987 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1988 {
1989 	struct vm_area_struct *vma;
1990 	int ret = 0;
1991 	VMA_ITERATOR(vmi, mm, 0);
1992 
1993 	mmap_read_lock(mm);
1994 	for_each_vma(vmi, vma) {
1995 		if (vma->anon_vma) {
1996 			ret = unuse_vma(vma, type);
1997 			if (ret)
1998 				break;
1999 		}
2000 
2001 		cond_resched();
2002 	}
2003 	mmap_read_unlock(mm);
2004 	return ret;
2005 }
2006 
2007 /*
2008  * Scan swap_map from current position to next entry still in use.
2009  * Return 0 if there are no inuse entries after prev till end of
2010  * the map.
2011  */
2012 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2013 					unsigned int prev)
2014 {
2015 	unsigned int i;
2016 	unsigned char count;
2017 
2018 	/*
2019 	 * No need for swap_lock here: we're just looking
2020 	 * for whether an entry is in use, not modifying it; false
2021 	 * hits are okay, and sys_swapoff() has already prevented new
2022 	 * allocations from this area (while holding swap_lock).
2023 	 */
2024 	for (i = prev + 1; i < si->max; i++) {
2025 		count = READ_ONCE(si->swap_map[i]);
2026 		if (count && swap_count(count) != SWAP_MAP_BAD)
2027 			break;
2028 		if ((i % LATENCY_LIMIT) == 0)
2029 			cond_resched();
2030 	}
2031 
2032 	if (i == si->max)
2033 		i = 0;
2034 
2035 	return i;
2036 }
2037 
2038 static int try_to_unuse(unsigned int type)
2039 {
2040 	struct mm_struct *prev_mm;
2041 	struct mm_struct *mm;
2042 	struct list_head *p;
2043 	int retval = 0;
2044 	struct swap_info_struct *si = swap_info[type];
2045 	struct folio *folio;
2046 	swp_entry_t entry;
2047 	unsigned int i;
2048 
2049 	if (!READ_ONCE(si->inuse_pages))
2050 		return 0;
2051 
2052 retry:
2053 	retval = shmem_unuse(type);
2054 	if (retval)
2055 		return retval;
2056 
2057 	prev_mm = &init_mm;
2058 	mmget(prev_mm);
2059 
2060 	spin_lock(&mmlist_lock);
2061 	p = &init_mm.mmlist;
2062 	while (READ_ONCE(si->inuse_pages) &&
2063 	       !signal_pending(current) &&
2064 	       (p = p->next) != &init_mm.mmlist) {
2065 
2066 		mm = list_entry(p, struct mm_struct, mmlist);
2067 		if (!mmget_not_zero(mm))
2068 			continue;
2069 		spin_unlock(&mmlist_lock);
2070 		mmput(prev_mm);
2071 		prev_mm = mm;
2072 		retval = unuse_mm(mm, type);
2073 		if (retval) {
2074 			mmput(prev_mm);
2075 			return retval;
2076 		}
2077 
2078 		/*
2079 		 * Make sure that we aren't completely killing
2080 		 * interactive performance.
2081 		 */
2082 		cond_resched();
2083 		spin_lock(&mmlist_lock);
2084 	}
2085 	spin_unlock(&mmlist_lock);
2086 
2087 	mmput(prev_mm);
2088 
2089 	i = 0;
2090 	while (READ_ONCE(si->inuse_pages) &&
2091 	       !signal_pending(current) &&
2092 	       (i = find_next_to_unuse(si, i)) != 0) {
2093 
2094 		entry = swp_entry(type, i);
2095 		folio = filemap_get_folio(swap_address_space(entry), i);
2096 		if (IS_ERR(folio))
2097 			continue;
2098 
2099 		/*
2100 		 * It is conceivable that a racing task removed this folio from
2101 		 * swap cache just before we acquired the page lock. The folio
2102 		 * might even be back in swap cache on another swap area. But
2103 		 * that is okay, folio_free_swap() only removes stale folios.
2104 		 */
2105 		folio_lock(folio);
2106 		folio_wait_writeback(folio);
2107 		folio_free_swap(folio);
2108 		folio_unlock(folio);
2109 		folio_put(folio);
2110 	}
2111 
2112 	/*
2113 	 * Lets check again to see if there are still swap entries in the map.
2114 	 * If yes, we would need to do retry the unuse logic again.
2115 	 * Under global memory pressure, swap entries can be reinserted back
2116 	 * into process space after the mmlist loop above passes over them.
2117 	 *
2118 	 * Limit the number of retries? No: when mmget_not_zero()
2119 	 * above fails, that mm is likely to be freeing swap from
2120 	 * exit_mmap(), which proceeds at its own independent pace;
2121 	 * and even shmem_writepage() could have been preempted after
2122 	 * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2123 	 * and robust (though cpu-intensive) just to keep retrying.
2124 	 */
2125 	if (READ_ONCE(si->inuse_pages)) {
2126 		if (!signal_pending(current))
2127 			goto retry;
2128 		return -EINTR;
2129 	}
2130 
2131 	return 0;
2132 }
2133 
2134 /*
2135  * After a successful try_to_unuse, if no swap is now in use, we know
2136  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2137  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2138  * added to the mmlist just after page_duplicate - before would be racy.
2139  */
2140 static void drain_mmlist(void)
2141 {
2142 	struct list_head *p, *next;
2143 	unsigned int type;
2144 
2145 	for (type = 0; type < nr_swapfiles; type++)
2146 		if (swap_info[type]->inuse_pages)
2147 			return;
2148 	spin_lock(&mmlist_lock);
2149 	list_for_each_safe(p, next, &init_mm.mmlist)
2150 		list_del_init(p);
2151 	spin_unlock(&mmlist_lock);
2152 }
2153 
2154 /*
2155  * Free all of a swapdev's extent information
2156  */
2157 static void destroy_swap_extents(struct swap_info_struct *sis)
2158 {
2159 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2160 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2161 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2162 
2163 		rb_erase(rb, &sis->swap_extent_root);
2164 		kfree(se);
2165 	}
2166 
2167 	if (sis->flags & SWP_ACTIVATED) {
2168 		struct file *swap_file = sis->swap_file;
2169 		struct address_space *mapping = swap_file->f_mapping;
2170 
2171 		sis->flags &= ~SWP_ACTIVATED;
2172 		if (mapping->a_ops->swap_deactivate)
2173 			mapping->a_ops->swap_deactivate(swap_file);
2174 	}
2175 }
2176 
2177 /*
2178  * Add a block range (and the corresponding page range) into this swapdev's
2179  * extent tree.
2180  *
2181  * This function rather assumes that it is called in ascending page order.
2182  */
2183 int
2184 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2185 		unsigned long nr_pages, sector_t start_block)
2186 {
2187 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2188 	struct swap_extent *se;
2189 	struct swap_extent *new_se;
2190 
2191 	/*
2192 	 * place the new node at the right most since the
2193 	 * function is called in ascending page order.
2194 	 */
2195 	while (*link) {
2196 		parent = *link;
2197 		link = &parent->rb_right;
2198 	}
2199 
2200 	if (parent) {
2201 		se = rb_entry(parent, struct swap_extent, rb_node);
2202 		BUG_ON(se->start_page + se->nr_pages != start_page);
2203 		if (se->start_block + se->nr_pages == start_block) {
2204 			/* Merge it */
2205 			se->nr_pages += nr_pages;
2206 			return 0;
2207 		}
2208 	}
2209 
2210 	/* No merge, insert a new extent. */
2211 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2212 	if (new_se == NULL)
2213 		return -ENOMEM;
2214 	new_se->start_page = start_page;
2215 	new_se->nr_pages = nr_pages;
2216 	new_se->start_block = start_block;
2217 
2218 	rb_link_node(&new_se->rb_node, parent, link);
2219 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2220 	return 1;
2221 }
2222 EXPORT_SYMBOL_GPL(add_swap_extent);
2223 
2224 /*
2225  * A `swap extent' is a simple thing which maps a contiguous range of pages
2226  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2227  * built at swapon time and is then used at swap_writepage/swap_readpage
2228  * time for locating where on disk a page belongs.
2229  *
2230  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2231  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2232  * swap files identically.
2233  *
2234  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2235  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2236  * swapfiles are handled *identically* after swapon time.
2237  *
2238  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2239  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2240  * blocks are found which do not fall within the PAGE_SIZE alignment
2241  * requirements, they are simply tossed out - we will never use those blocks
2242  * for swapping.
2243  *
2244  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2245  * prevents users from writing to the swap device, which will corrupt memory.
2246  *
2247  * The amount of disk space which a single swap extent represents varies.
2248  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2249  * extents in the rbtree. - akpm.
2250  */
2251 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2252 {
2253 	struct file *swap_file = sis->swap_file;
2254 	struct address_space *mapping = swap_file->f_mapping;
2255 	struct inode *inode = mapping->host;
2256 	int ret;
2257 
2258 	if (S_ISBLK(inode->i_mode)) {
2259 		ret = add_swap_extent(sis, 0, sis->max, 0);
2260 		*span = sis->pages;
2261 		return ret;
2262 	}
2263 
2264 	if (mapping->a_ops->swap_activate) {
2265 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2266 		if (ret < 0)
2267 			return ret;
2268 		sis->flags |= SWP_ACTIVATED;
2269 		if ((sis->flags & SWP_FS_OPS) &&
2270 		    sio_pool_init() != 0) {
2271 			destroy_swap_extents(sis);
2272 			return -ENOMEM;
2273 		}
2274 		return ret;
2275 	}
2276 
2277 	return generic_swapfile_activate(sis, swap_file, span);
2278 }
2279 
2280 static int swap_node(struct swap_info_struct *p)
2281 {
2282 	struct block_device *bdev;
2283 
2284 	if (p->bdev)
2285 		bdev = p->bdev;
2286 	else
2287 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2288 
2289 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2290 }
2291 
2292 static void setup_swap_info(struct swap_info_struct *p, int prio,
2293 			    unsigned char *swap_map,
2294 			    struct swap_cluster_info *cluster_info)
2295 {
2296 	int i;
2297 
2298 	if (prio >= 0)
2299 		p->prio = prio;
2300 	else
2301 		p->prio = --least_priority;
2302 	/*
2303 	 * the plist prio is negated because plist ordering is
2304 	 * low-to-high, while swap ordering is high-to-low
2305 	 */
2306 	p->list.prio = -p->prio;
2307 	for_each_node(i) {
2308 		if (p->prio >= 0)
2309 			p->avail_lists[i].prio = -p->prio;
2310 		else {
2311 			if (swap_node(p) == i)
2312 				p->avail_lists[i].prio = 1;
2313 			else
2314 				p->avail_lists[i].prio = -p->prio;
2315 		}
2316 	}
2317 	p->swap_map = swap_map;
2318 	p->cluster_info = cluster_info;
2319 }
2320 
2321 static void _enable_swap_info(struct swap_info_struct *p)
2322 {
2323 	p->flags |= SWP_WRITEOK;
2324 	atomic_long_add(p->pages, &nr_swap_pages);
2325 	total_swap_pages += p->pages;
2326 
2327 	assert_spin_locked(&swap_lock);
2328 	/*
2329 	 * both lists are plists, and thus priority ordered.
2330 	 * swap_active_head needs to be priority ordered for swapoff(),
2331 	 * which on removal of any swap_info_struct with an auto-assigned
2332 	 * (i.e. negative) priority increments the auto-assigned priority
2333 	 * of any lower-priority swap_info_structs.
2334 	 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2335 	 * which allocates swap pages from the highest available priority
2336 	 * swap_info_struct.
2337 	 */
2338 	plist_add(&p->list, &swap_active_head);
2339 
2340 	/* add to available list iff swap device is not full */
2341 	if (p->highest_bit)
2342 		add_to_avail_list(p);
2343 }
2344 
2345 static void enable_swap_info(struct swap_info_struct *p, int prio,
2346 				unsigned char *swap_map,
2347 				struct swap_cluster_info *cluster_info)
2348 {
2349 	zswap_swapon(p->type);
2350 
2351 	spin_lock(&swap_lock);
2352 	spin_lock(&p->lock);
2353 	setup_swap_info(p, prio, swap_map, cluster_info);
2354 	spin_unlock(&p->lock);
2355 	spin_unlock(&swap_lock);
2356 	/*
2357 	 * Finished initializing swap device, now it's safe to reference it.
2358 	 */
2359 	percpu_ref_resurrect(&p->users);
2360 	spin_lock(&swap_lock);
2361 	spin_lock(&p->lock);
2362 	_enable_swap_info(p);
2363 	spin_unlock(&p->lock);
2364 	spin_unlock(&swap_lock);
2365 }
2366 
2367 static void reinsert_swap_info(struct swap_info_struct *p)
2368 {
2369 	spin_lock(&swap_lock);
2370 	spin_lock(&p->lock);
2371 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2372 	_enable_swap_info(p);
2373 	spin_unlock(&p->lock);
2374 	spin_unlock(&swap_lock);
2375 }
2376 
2377 bool has_usable_swap(void)
2378 {
2379 	bool ret = true;
2380 
2381 	spin_lock(&swap_lock);
2382 	if (plist_head_empty(&swap_active_head))
2383 		ret = false;
2384 	spin_unlock(&swap_lock);
2385 	return ret;
2386 }
2387 
2388 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2389 {
2390 	struct swap_info_struct *p = NULL;
2391 	unsigned char *swap_map;
2392 	struct swap_cluster_info *cluster_info;
2393 	struct file *swap_file, *victim;
2394 	struct address_space *mapping;
2395 	struct inode *inode;
2396 	struct filename *pathname;
2397 	int err, found = 0;
2398 	unsigned int old_block_size;
2399 
2400 	if (!capable(CAP_SYS_ADMIN))
2401 		return -EPERM;
2402 
2403 	BUG_ON(!current->mm);
2404 
2405 	pathname = getname(specialfile);
2406 	if (IS_ERR(pathname))
2407 		return PTR_ERR(pathname);
2408 
2409 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2410 	err = PTR_ERR(victim);
2411 	if (IS_ERR(victim))
2412 		goto out;
2413 
2414 	mapping = victim->f_mapping;
2415 	spin_lock(&swap_lock);
2416 	plist_for_each_entry(p, &swap_active_head, list) {
2417 		if (p->flags & SWP_WRITEOK) {
2418 			if (p->swap_file->f_mapping == mapping) {
2419 				found = 1;
2420 				break;
2421 			}
2422 		}
2423 	}
2424 	if (!found) {
2425 		err = -EINVAL;
2426 		spin_unlock(&swap_lock);
2427 		goto out_dput;
2428 	}
2429 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2430 		vm_unacct_memory(p->pages);
2431 	else {
2432 		err = -ENOMEM;
2433 		spin_unlock(&swap_lock);
2434 		goto out_dput;
2435 	}
2436 	spin_lock(&p->lock);
2437 	del_from_avail_list(p);
2438 	if (p->prio < 0) {
2439 		struct swap_info_struct *si = p;
2440 		int nid;
2441 
2442 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2443 			si->prio++;
2444 			si->list.prio--;
2445 			for_each_node(nid) {
2446 				if (si->avail_lists[nid].prio != 1)
2447 					si->avail_lists[nid].prio--;
2448 			}
2449 		}
2450 		least_priority++;
2451 	}
2452 	plist_del(&p->list, &swap_active_head);
2453 	atomic_long_sub(p->pages, &nr_swap_pages);
2454 	total_swap_pages -= p->pages;
2455 	p->flags &= ~SWP_WRITEOK;
2456 	spin_unlock(&p->lock);
2457 	spin_unlock(&swap_lock);
2458 
2459 	disable_swap_slots_cache_lock();
2460 
2461 	set_current_oom_origin();
2462 	err = try_to_unuse(p->type);
2463 	clear_current_oom_origin();
2464 
2465 	if (err) {
2466 		/* re-insert swap space back into swap_list */
2467 		reinsert_swap_info(p);
2468 		reenable_swap_slots_cache_unlock();
2469 		goto out_dput;
2470 	}
2471 
2472 	reenable_swap_slots_cache_unlock();
2473 
2474 	/*
2475 	 * Wait for swap operations protected by get/put_swap_device()
2476 	 * to complete.
2477 	 *
2478 	 * We need synchronize_rcu() here to protect the accessing to
2479 	 * the swap cache data structure.
2480 	 */
2481 	percpu_ref_kill(&p->users);
2482 	synchronize_rcu();
2483 	wait_for_completion(&p->comp);
2484 
2485 	flush_work(&p->discard_work);
2486 
2487 	destroy_swap_extents(p);
2488 	if (p->flags & SWP_CONTINUED)
2489 		free_swap_count_continuations(p);
2490 
2491 	if (!p->bdev || !bdev_nonrot(p->bdev))
2492 		atomic_dec(&nr_rotate_swap);
2493 
2494 	mutex_lock(&swapon_mutex);
2495 	spin_lock(&swap_lock);
2496 	spin_lock(&p->lock);
2497 	drain_mmlist();
2498 
2499 	/* wait for anyone still in scan_swap_map_slots */
2500 	p->highest_bit = 0;		/* cuts scans short */
2501 	while (p->flags >= SWP_SCANNING) {
2502 		spin_unlock(&p->lock);
2503 		spin_unlock(&swap_lock);
2504 		schedule_timeout_uninterruptible(1);
2505 		spin_lock(&swap_lock);
2506 		spin_lock(&p->lock);
2507 	}
2508 
2509 	swap_file = p->swap_file;
2510 	old_block_size = p->old_block_size;
2511 	p->swap_file = NULL;
2512 	p->max = 0;
2513 	swap_map = p->swap_map;
2514 	p->swap_map = NULL;
2515 	cluster_info = p->cluster_info;
2516 	p->cluster_info = NULL;
2517 	spin_unlock(&p->lock);
2518 	spin_unlock(&swap_lock);
2519 	arch_swap_invalidate_area(p->type);
2520 	zswap_swapoff(p->type);
2521 	mutex_unlock(&swapon_mutex);
2522 	free_percpu(p->percpu_cluster);
2523 	p->percpu_cluster = NULL;
2524 	free_percpu(p->cluster_next_cpu);
2525 	p->cluster_next_cpu = NULL;
2526 	vfree(swap_map);
2527 	kvfree(cluster_info);
2528 	/* Destroy swap account information */
2529 	swap_cgroup_swapoff(p->type);
2530 	exit_swap_address_space(p->type);
2531 
2532 	inode = mapping->host;
2533 	if (S_ISBLK(inode->i_mode)) {
2534 		struct block_device *bdev = I_BDEV(inode);
2535 
2536 		set_blocksize(bdev, old_block_size);
2537 		blkdev_put(bdev, p);
2538 	}
2539 
2540 	inode_lock(inode);
2541 	inode->i_flags &= ~S_SWAPFILE;
2542 	inode_unlock(inode);
2543 	filp_close(swap_file, NULL);
2544 
2545 	/*
2546 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2547 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2548 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2549 	 */
2550 	spin_lock(&swap_lock);
2551 	p->flags = 0;
2552 	spin_unlock(&swap_lock);
2553 
2554 	err = 0;
2555 	atomic_inc(&proc_poll_event);
2556 	wake_up_interruptible(&proc_poll_wait);
2557 
2558 out_dput:
2559 	filp_close(victim, NULL);
2560 out:
2561 	putname(pathname);
2562 	return err;
2563 }
2564 
2565 #ifdef CONFIG_PROC_FS
2566 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2567 {
2568 	struct seq_file *seq = file->private_data;
2569 
2570 	poll_wait(file, &proc_poll_wait, wait);
2571 
2572 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2573 		seq->poll_event = atomic_read(&proc_poll_event);
2574 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2575 	}
2576 
2577 	return EPOLLIN | EPOLLRDNORM;
2578 }
2579 
2580 /* iterator */
2581 static void *swap_start(struct seq_file *swap, loff_t *pos)
2582 {
2583 	struct swap_info_struct *si;
2584 	int type;
2585 	loff_t l = *pos;
2586 
2587 	mutex_lock(&swapon_mutex);
2588 
2589 	if (!l)
2590 		return SEQ_START_TOKEN;
2591 
2592 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2593 		if (!(si->flags & SWP_USED) || !si->swap_map)
2594 			continue;
2595 		if (!--l)
2596 			return si;
2597 	}
2598 
2599 	return NULL;
2600 }
2601 
2602 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2603 {
2604 	struct swap_info_struct *si = v;
2605 	int type;
2606 
2607 	if (v == SEQ_START_TOKEN)
2608 		type = 0;
2609 	else
2610 		type = si->type + 1;
2611 
2612 	++(*pos);
2613 	for (; (si = swap_type_to_swap_info(type)); type++) {
2614 		if (!(si->flags & SWP_USED) || !si->swap_map)
2615 			continue;
2616 		return si;
2617 	}
2618 
2619 	return NULL;
2620 }
2621 
2622 static void swap_stop(struct seq_file *swap, void *v)
2623 {
2624 	mutex_unlock(&swapon_mutex);
2625 }
2626 
2627 static int swap_show(struct seq_file *swap, void *v)
2628 {
2629 	struct swap_info_struct *si = v;
2630 	struct file *file;
2631 	int len;
2632 	unsigned long bytes, inuse;
2633 
2634 	if (si == SEQ_START_TOKEN) {
2635 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2636 		return 0;
2637 	}
2638 
2639 	bytes = K(si->pages);
2640 	inuse = K(READ_ONCE(si->inuse_pages));
2641 
2642 	file = si->swap_file;
2643 	len = seq_file_path(swap, file, " \t\n\\");
2644 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2645 			len < 40 ? 40 - len : 1, " ",
2646 			S_ISBLK(file_inode(file)->i_mode) ?
2647 				"partition" : "file\t",
2648 			bytes, bytes < 10000000 ? "\t" : "",
2649 			inuse, inuse < 10000000 ? "\t" : "",
2650 			si->prio);
2651 	return 0;
2652 }
2653 
2654 static const struct seq_operations swaps_op = {
2655 	.start =	swap_start,
2656 	.next =		swap_next,
2657 	.stop =		swap_stop,
2658 	.show =		swap_show
2659 };
2660 
2661 static int swaps_open(struct inode *inode, struct file *file)
2662 {
2663 	struct seq_file *seq;
2664 	int ret;
2665 
2666 	ret = seq_open(file, &swaps_op);
2667 	if (ret)
2668 		return ret;
2669 
2670 	seq = file->private_data;
2671 	seq->poll_event = atomic_read(&proc_poll_event);
2672 	return 0;
2673 }
2674 
2675 static const struct proc_ops swaps_proc_ops = {
2676 	.proc_flags	= PROC_ENTRY_PERMANENT,
2677 	.proc_open	= swaps_open,
2678 	.proc_read	= seq_read,
2679 	.proc_lseek	= seq_lseek,
2680 	.proc_release	= seq_release,
2681 	.proc_poll	= swaps_poll,
2682 };
2683 
2684 static int __init procswaps_init(void)
2685 {
2686 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2687 	return 0;
2688 }
2689 __initcall(procswaps_init);
2690 #endif /* CONFIG_PROC_FS */
2691 
2692 #ifdef MAX_SWAPFILES_CHECK
2693 static int __init max_swapfiles_check(void)
2694 {
2695 	MAX_SWAPFILES_CHECK();
2696 	return 0;
2697 }
2698 late_initcall(max_swapfiles_check);
2699 #endif
2700 
2701 static struct swap_info_struct *alloc_swap_info(void)
2702 {
2703 	struct swap_info_struct *p;
2704 	struct swap_info_struct *defer = NULL;
2705 	unsigned int type;
2706 	int i;
2707 
2708 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2709 	if (!p)
2710 		return ERR_PTR(-ENOMEM);
2711 
2712 	if (percpu_ref_init(&p->users, swap_users_ref_free,
2713 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2714 		kvfree(p);
2715 		return ERR_PTR(-ENOMEM);
2716 	}
2717 
2718 	spin_lock(&swap_lock);
2719 	for (type = 0; type < nr_swapfiles; type++) {
2720 		if (!(swap_info[type]->flags & SWP_USED))
2721 			break;
2722 	}
2723 	if (type >= MAX_SWAPFILES) {
2724 		spin_unlock(&swap_lock);
2725 		percpu_ref_exit(&p->users);
2726 		kvfree(p);
2727 		return ERR_PTR(-EPERM);
2728 	}
2729 	if (type >= nr_swapfiles) {
2730 		p->type = type;
2731 		/*
2732 		 * Publish the swap_info_struct after initializing it.
2733 		 * Note that kvzalloc() above zeroes all its fields.
2734 		 */
2735 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2736 		nr_swapfiles++;
2737 	} else {
2738 		defer = p;
2739 		p = swap_info[type];
2740 		/*
2741 		 * Do not memset this entry: a racing procfs swap_next()
2742 		 * would be relying on p->type to remain valid.
2743 		 */
2744 	}
2745 	p->swap_extent_root = RB_ROOT;
2746 	plist_node_init(&p->list, 0);
2747 	for_each_node(i)
2748 		plist_node_init(&p->avail_lists[i], 0);
2749 	p->flags = SWP_USED;
2750 	spin_unlock(&swap_lock);
2751 	if (defer) {
2752 		percpu_ref_exit(&defer->users);
2753 		kvfree(defer);
2754 	}
2755 	spin_lock_init(&p->lock);
2756 	spin_lock_init(&p->cont_lock);
2757 	init_completion(&p->comp);
2758 
2759 	return p;
2760 }
2761 
2762 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2763 {
2764 	int error;
2765 
2766 	if (S_ISBLK(inode->i_mode)) {
2767 		p->bdev = blkdev_get_by_dev(inode->i_rdev,
2768 				BLK_OPEN_READ | BLK_OPEN_WRITE, p, NULL);
2769 		if (IS_ERR(p->bdev)) {
2770 			error = PTR_ERR(p->bdev);
2771 			p->bdev = NULL;
2772 			return error;
2773 		}
2774 		p->old_block_size = block_size(p->bdev);
2775 		error = set_blocksize(p->bdev, PAGE_SIZE);
2776 		if (error < 0)
2777 			return error;
2778 		/*
2779 		 * Zoned block devices contain zones that have a sequential
2780 		 * write only restriction.  Hence zoned block devices are not
2781 		 * suitable for swapping.  Disallow them here.
2782 		 */
2783 		if (bdev_is_zoned(p->bdev))
2784 			return -EINVAL;
2785 		p->flags |= SWP_BLKDEV;
2786 	} else if (S_ISREG(inode->i_mode)) {
2787 		p->bdev = inode->i_sb->s_bdev;
2788 	}
2789 
2790 	return 0;
2791 }
2792 
2793 
2794 /*
2795  * Find out how many pages are allowed for a single swap device. There
2796  * are two limiting factors:
2797  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2798  * 2) the number of bits in the swap pte, as defined by the different
2799  * architectures.
2800  *
2801  * In order to find the largest possible bit mask, a swap entry with
2802  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2803  * decoded to a swp_entry_t again, and finally the swap offset is
2804  * extracted.
2805  *
2806  * This will mask all the bits from the initial ~0UL mask that can't
2807  * be encoded in either the swp_entry_t or the architecture definition
2808  * of a swap pte.
2809  */
2810 unsigned long generic_max_swapfile_size(void)
2811 {
2812 	return swp_offset(pte_to_swp_entry(
2813 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2814 }
2815 
2816 /* Can be overridden by an architecture for additional checks. */
2817 __weak unsigned long arch_max_swapfile_size(void)
2818 {
2819 	return generic_max_swapfile_size();
2820 }
2821 
2822 static unsigned long read_swap_header(struct swap_info_struct *p,
2823 					union swap_header *swap_header,
2824 					struct inode *inode)
2825 {
2826 	int i;
2827 	unsigned long maxpages;
2828 	unsigned long swapfilepages;
2829 	unsigned long last_page;
2830 
2831 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2832 		pr_err("Unable to find swap-space signature\n");
2833 		return 0;
2834 	}
2835 
2836 	/* swap partition endianness hack... */
2837 	if (swab32(swap_header->info.version) == 1) {
2838 		swab32s(&swap_header->info.version);
2839 		swab32s(&swap_header->info.last_page);
2840 		swab32s(&swap_header->info.nr_badpages);
2841 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2842 			return 0;
2843 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2844 			swab32s(&swap_header->info.badpages[i]);
2845 	}
2846 	/* Check the swap header's sub-version */
2847 	if (swap_header->info.version != 1) {
2848 		pr_warn("Unable to handle swap header version %d\n",
2849 			swap_header->info.version);
2850 		return 0;
2851 	}
2852 
2853 	p->lowest_bit  = 1;
2854 	p->cluster_next = 1;
2855 	p->cluster_nr = 0;
2856 
2857 	maxpages = swapfile_maximum_size;
2858 	last_page = swap_header->info.last_page;
2859 	if (!last_page) {
2860 		pr_warn("Empty swap-file\n");
2861 		return 0;
2862 	}
2863 	if (last_page > maxpages) {
2864 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2865 			K(maxpages), K(last_page));
2866 	}
2867 	if (maxpages > last_page) {
2868 		maxpages = last_page + 1;
2869 		/* p->max is an unsigned int: don't overflow it */
2870 		if ((unsigned int)maxpages == 0)
2871 			maxpages = UINT_MAX;
2872 	}
2873 	p->highest_bit = maxpages - 1;
2874 
2875 	if (!maxpages)
2876 		return 0;
2877 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2878 	if (swapfilepages && maxpages > swapfilepages) {
2879 		pr_warn("Swap area shorter than signature indicates\n");
2880 		return 0;
2881 	}
2882 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2883 		return 0;
2884 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2885 		return 0;
2886 
2887 	return maxpages;
2888 }
2889 
2890 #define SWAP_CLUSTER_INFO_COLS						\
2891 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2892 #define SWAP_CLUSTER_SPACE_COLS						\
2893 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2894 #define SWAP_CLUSTER_COLS						\
2895 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2896 
2897 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2898 					union swap_header *swap_header,
2899 					unsigned char *swap_map,
2900 					struct swap_cluster_info *cluster_info,
2901 					unsigned long maxpages,
2902 					sector_t *span)
2903 {
2904 	unsigned int j, k;
2905 	unsigned int nr_good_pages;
2906 	int nr_extents;
2907 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2908 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2909 	unsigned long i, idx;
2910 
2911 	nr_good_pages = maxpages - 1;	/* omit header page */
2912 
2913 	cluster_list_init(&p->free_clusters);
2914 	cluster_list_init(&p->discard_clusters);
2915 
2916 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2917 		unsigned int page_nr = swap_header->info.badpages[i];
2918 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2919 			return -EINVAL;
2920 		if (page_nr < maxpages) {
2921 			swap_map[page_nr] = SWAP_MAP_BAD;
2922 			nr_good_pages--;
2923 			/*
2924 			 * Haven't marked the cluster free yet, no list
2925 			 * operation involved
2926 			 */
2927 			inc_cluster_info_page(p, cluster_info, page_nr);
2928 		}
2929 	}
2930 
2931 	/* Haven't marked the cluster free yet, no list operation involved */
2932 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2933 		inc_cluster_info_page(p, cluster_info, i);
2934 
2935 	if (nr_good_pages) {
2936 		swap_map[0] = SWAP_MAP_BAD;
2937 		/*
2938 		 * Not mark the cluster free yet, no list
2939 		 * operation involved
2940 		 */
2941 		inc_cluster_info_page(p, cluster_info, 0);
2942 		p->max = maxpages;
2943 		p->pages = nr_good_pages;
2944 		nr_extents = setup_swap_extents(p, span);
2945 		if (nr_extents < 0)
2946 			return nr_extents;
2947 		nr_good_pages = p->pages;
2948 	}
2949 	if (!nr_good_pages) {
2950 		pr_warn("Empty swap-file\n");
2951 		return -EINVAL;
2952 	}
2953 
2954 	if (!cluster_info)
2955 		return nr_extents;
2956 
2957 
2958 	/*
2959 	 * Reduce false cache line sharing between cluster_info and
2960 	 * sharing same address space.
2961 	 */
2962 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2963 		j = (k + col) % SWAP_CLUSTER_COLS;
2964 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2965 			idx = i * SWAP_CLUSTER_COLS + j;
2966 			if (idx >= nr_clusters)
2967 				continue;
2968 			if (cluster_count(&cluster_info[idx]))
2969 				continue;
2970 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2971 			cluster_list_add_tail(&p->free_clusters, cluster_info,
2972 					      idx);
2973 		}
2974 	}
2975 	return nr_extents;
2976 }
2977 
2978 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2979 {
2980 	struct swap_info_struct *p;
2981 	struct filename *name;
2982 	struct file *swap_file = NULL;
2983 	struct address_space *mapping;
2984 	struct dentry *dentry;
2985 	int prio;
2986 	int error;
2987 	union swap_header *swap_header;
2988 	int nr_extents;
2989 	sector_t span;
2990 	unsigned long maxpages;
2991 	unsigned char *swap_map = NULL;
2992 	struct swap_cluster_info *cluster_info = NULL;
2993 	struct page *page = NULL;
2994 	struct inode *inode = NULL;
2995 	bool inced_nr_rotate_swap = false;
2996 
2997 	if (swap_flags & ~SWAP_FLAGS_VALID)
2998 		return -EINVAL;
2999 
3000 	if (!capable(CAP_SYS_ADMIN))
3001 		return -EPERM;
3002 
3003 	if (!swap_avail_heads)
3004 		return -ENOMEM;
3005 
3006 	p = alloc_swap_info();
3007 	if (IS_ERR(p))
3008 		return PTR_ERR(p);
3009 
3010 	INIT_WORK(&p->discard_work, swap_discard_work);
3011 
3012 	name = getname(specialfile);
3013 	if (IS_ERR(name)) {
3014 		error = PTR_ERR(name);
3015 		name = NULL;
3016 		goto bad_swap;
3017 	}
3018 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3019 	if (IS_ERR(swap_file)) {
3020 		error = PTR_ERR(swap_file);
3021 		swap_file = NULL;
3022 		goto bad_swap;
3023 	}
3024 
3025 	p->swap_file = swap_file;
3026 	mapping = swap_file->f_mapping;
3027 	dentry = swap_file->f_path.dentry;
3028 	inode = mapping->host;
3029 
3030 	error = claim_swapfile(p, inode);
3031 	if (unlikely(error))
3032 		goto bad_swap;
3033 
3034 	inode_lock(inode);
3035 	if (d_unlinked(dentry) || cant_mount(dentry)) {
3036 		error = -ENOENT;
3037 		goto bad_swap_unlock_inode;
3038 	}
3039 	if (IS_SWAPFILE(inode)) {
3040 		error = -EBUSY;
3041 		goto bad_swap_unlock_inode;
3042 	}
3043 
3044 	/*
3045 	 * Read the swap header.
3046 	 */
3047 	if (!mapping->a_ops->read_folio) {
3048 		error = -EINVAL;
3049 		goto bad_swap_unlock_inode;
3050 	}
3051 	page = read_mapping_page(mapping, 0, swap_file);
3052 	if (IS_ERR(page)) {
3053 		error = PTR_ERR(page);
3054 		goto bad_swap_unlock_inode;
3055 	}
3056 	swap_header = kmap(page);
3057 
3058 	maxpages = read_swap_header(p, swap_header, inode);
3059 	if (unlikely(!maxpages)) {
3060 		error = -EINVAL;
3061 		goto bad_swap_unlock_inode;
3062 	}
3063 
3064 	/* OK, set up the swap map and apply the bad block list */
3065 	swap_map = vzalloc(maxpages);
3066 	if (!swap_map) {
3067 		error = -ENOMEM;
3068 		goto bad_swap_unlock_inode;
3069 	}
3070 
3071 	if (p->bdev && bdev_stable_writes(p->bdev))
3072 		p->flags |= SWP_STABLE_WRITES;
3073 
3074 	if (p->bdev && bdev_synchronous(p->bdev))
3075 		p->flags |= SWP_SYNCHRONOUS_IO;
3076 
3077 	if (p->bdev && bdev_nonrot(p->bdev)) {
3078 		int cpu;
3079 		unsigned long ci, nr_cluster;
3080 
3081 		p->flags |= SWP_SOLIDSTATE;
3082 		p->cluster_next_cpu = alloc_percpu(unsigned int);
3083 		if (!p->cluster_next_cpu) {
3084 			error = -ENOMEM;
3085 			goto bad_swap_unlock_inode;
3086 		}
3087 		/*
3088 		 * select a random position to start with to help wear leveling
3089 		 * SSD
3090 		 */
3091 		for_each_possible_cpu(cpu) {
3092 			per_cpu(*p->cluster_next_cpu, cpu) =
3093 				get_random_u32_inclusive(1, p->highest_bit);
3094 		}
3095 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3096 
3097 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3098 					GFP_KERNEL);
3099 		if (!cluster_info) {
3100 			error = -ENOMEM;
3101 			goto bad_swap_unlock_inode;
3102 		}
3103 
3104 		for (ci = 0; ci < nr_cluster; ci++)
3105 			spin_lock_init(&((cluster_info + ci)->lock));
3106 
3107 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3108 		if (!p->percpu_cluster) {
3109 			error = -ENOMEM;
3110 			goto bad_swap_unlock_inode;
3111 		}
3112 		for_each_possible_cpu(cpu) {
3113 			struct percpu_cluster *cluster;
3114 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3115 			cluster_set_null(&cluster->index);
3116 		}
3117 	} else {
3118 		atomic_inc(&nr_rotate_swap);
3119 		inced_nr_rotate_swap = true;
3120 	}
3121 
3122 	error = swap_cgroup_swapon(p->type, maxpages);
3123 	if (error)
3124 		goto bad_swap_unlock_inode;
3125 
3126 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3127 		cluster_info, maxpages, &span);
3128 	if (unlikely(nr_extents < 0)) {
3129 		error = nr_extents;
3130 		goto bad_swap_unlock_inode;
3131 	}
3132 
3133 	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3134 	    p->bdev && bdev_max_discard_sectors(p->bdev)) {
3135 		/*
3136 		 * When discard is enabled for swap with no particular
3137 		 * policy flagged, we set all swap discard flags here in
3138 		 * order to sustain backward compatibility with older
3139 		 * swapon(8) releases.
3140 		 */
3141 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3142 			     SWP_PAGE_DISCARD);
3143 
3144 		/*
3145 		 * By flagging sys_swapon, a sysadmin can tell us to
3146 		 * either do single-time area discards only, or to just
3147 		 * perform discards for released swap page-clusters.
3148 		 * Now it's time to adjust the p->flags accordingly.
3149 		 */
3150 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3151 			p->flags &= ~SWP_PAGE_DISCARD;
3152 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3153 			p->flags &= ~SWP_AREA_DISCARD;
3154 
3155 		/* issue a swapon-time discard if it's still required */
3156 		if (p->flags & SWP_AREA_DISCARD) {
3157 			int err = discard_swap(p);
3158 			if (unlikely(err))
3159 				pr_err("swapon: discard_swap(%p): %d\n",
3160 					p, err);
3161 		}
3162 	}
3163 
3164 	error = init_swap_address_space(p->type, maxpages);
3165 	if (error)
3166 		goto bad_swap_unlock_inode;
3167 
3168 	/*
3169 	 * Flush any pending IO and dirty mappings before we start using this
3170 	 * swap device.
3171 	 */
3172 	inode->i_flags |= S_SWAPFILE;
3173 	error = inode_drain_writes(inode);
3174 	if (error) {
3175 		inode->i_flags &= ~S_SWAPFILE;
3176 		goto free_swap_address_space;
3177 	}
3178 
3179 	mutex_lock(&swapon_mutex);
3180 	prio = -1;
3181 	if (swap_flags & SWAP_FLAG_PREFER)
3182 		prio =
3183 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3184 	enable_swap_info(p, prio, swap_map, cluster_info);
3185 
3186 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3187 		K(p->pages), name->name, p->prio, nr_extents,
3188 		K((unsigned long long)span),
3189 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3190 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3191 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3192 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "");
3193 
3194 	mutex_unlock(&swapon_mutex);
3195 	atomic_inc(&proc_poll_event);
3196 	wake_up_interruptible(&proc_poll_wait);
3197 
3198 	error = 0;
3199 	goto out;
3200 free_swap_address_space:
3201 	exit_swap_address_space(p->type);
3202 bad_swap_unlock_inode:
3203 	inode_unlock(inode);
3204 bad_swap:
3205 	free_percpu(p->percpu_cluster);
3206 	p->percpu_cluster = NULL;
3207 	free_percpu(p->cluster_next_cpu);
3208 	p->cluster_next_cpu = NULL;
3209 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3210 		set_blocksize(p->bdev, p->old_block_size);
3211 		blkdev_put(p->bdev, p);
3212 	}
3213 	inode = NULL;
3214 	destroy_swap_extents(p);
3215 	swap_cgroup_swapoff(p->type);
3216 	spin_lock(&swap_lock);
3217 	p->swap_file = NULL;
3218 	p->flags = 0;
3219 	spin_unlock(&swap_lock);
3220 	vfree(swap_map);
3221 	kvfree(cluster_info);
3222 	if (inced_nr_rotate_swap)
3223 		atomic_dec(&nr_rotate_swap);
3224 	if (swap_file)
3225 		filp_close(swap_file, NULL);
3226 out:
3227 	if (page && !IS_ERR(page)) {
3228 		kunmap(page);
3229 		put_page(page);
3230 	}
3231 	if (name)
3232 		putname(name);
3233 	if (inode)
3234 		inode_unlock(inode);
3235 	if (!error)
3236 		enable_swap_slots_cache();
3237 	return error;
3238 }
3239 
3240 void si_swapinfo(struct sysinfo *val)
3241 {
3242 	unsigned int type;
3243 	unsigned long nr_to_be_unused = 0;
3244 
3245 	spin_lock(&swap_lock);
3246 	for (type = 0; type < nr_swapfiles; type++) {
3247 		struct swap_info_struct *si = swap_info[type];
3248 
3249 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3250 			nr_to_be_unused += READ_ONCE(si->inuse_pages);
3251 	}
3252 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3253 	val->totalswap = total_swap_pages + nr_to_be_unused;
3254 	spin_unlock(&swap_lock);
3255 }
3256 
3257 /*
3258  * Verify that a swap entry is valid and increment its swap map count.
3259  *
3260  * Returns error code in following case.
3261  * - success -> 0
3262  * - swp_entry is invalid -> EINVAL
3263  * - swp_entry is migration entry -> EINVAL
3264  * - swap-cache reference is requested but there is already one. -> EEXIST
3265  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3266  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3267  */
3268 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3269 {
3270 	struct swap_info_struct *p;
3271 	struct swap_cluster_info *ci;
3272 	unsigned long offset;
3273 	unsigned char count;
3274 	unsigned char has_cache;
3275 	int err;
3276 
3277 	p = swp_swap_info(entry);
3278 
3279 	offset = swp_offset(entry);
3280 	ci = lock_cluster_or_swap_info(p, offset);
3281 
3282 	count = p->swap_map[offset];
3283 
3284 	/*
3285 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3286 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3287 	 */
3288 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3289 		err = -ENOENT;
3290 		goto unlock_out;
3291 	}
3292 
3293 	has_cache = count & SWAP_HAS_CACHE;
3294 	count &= ~SWAP_HAS_CACHE;
3295 	err = 0;
3296 
3297 	if (usage == SWAP_HAS_CACHE) {
3298 
3299 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3300 		if (!has_cache && count)
3301 			has_cache = SWAP_HAS_CACHE;
3302 		else if (has_cache)		/* someone else added cache */
3303 			err = -EEXIST;
3304 		else				/* no users remaining */
3305 			err = -ENOENT;
3306 
3307 	} else if (count || has_cache) {
3308 
3309 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3310 			count += usage;
3311 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3312 			err = -EINVAL;
3313 		else if (swap_count_continued(p, offset, count))
3314 			count = COUNT_CONTINUED;
3315 		else
3316 			err = -ENOMEM;
3317 	} else
3318 		err = -ENOENT;			/* unused swap entry */
3319 
3320 	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3321 
3322 unlock_out:
3323 	unlock_cluster_or_swap_info(p, ci);
3324 	return err;
3325 }
3326 
3327 /*
3328  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3329  * (in which case its reference count is never incremented).
3330  */
3331 void swap_shmem_alloc(swp_entry_t entry)
3332 {
3333 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3334 }
3335 
3336 /*
3337  * Increase reference count of swap entry by 1.
3338  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3339  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3340  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3341  * might occur if a page table entry has got corrupted.
3342  */
3343 int swap_duplicate(swp_entry_t entry)
3344 {
3345 	int err = 0;
3346 
3347 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3348 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3349 	return err;
3350 }
3351 
3352 /*
3353  * @entry: swap entry for which we allocate swap cache.
3354  *
3355  * Called when allocating swap cache for existing swap entry,
3356  * This can return error codes. Returns 0 at success.
3357  * -EEXIST means there is a swap cache.
3358  * Note: return code is different from swap_duplicate().
3359  */
3360 int swapcache_prepare(swp_entry_t entry)
3361 {
3362 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3363 }
3364 
3365 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3366 {
3367 	return swap_type_to_swap_info(swp_type(entry));
3368 }
3369 
3370 struct swap_info_struct *page_swap_info(struct page *page)
3371 {
3372 	swp_entry_t entry = page_swap_entry(page);
3373 	return swp_swap_info(entry);
3374 }
3375 
3376 /*
3377  * out-of-line methods to avoid include hell.
3378  */
3379 struct address_space *swapcache_mapping(struct folio *folio)
3380 {
3381 	return page_swap_info(&folio->page)->swap_file->f_mapping;
3382 }
3383 EXPORT_SYMBOL_GPL(swapcache_mapping);
3384 
3385 pgoff_t __page_file_index(struct page *page)
3386 {
3387 	swp_entry_t swap = page_swap_entry(page);
3388 	return swp_offset(swap);
3389 }
3390 EXPORT_SYMBOL_GPL(__page_file_index);
3391 
3392 /*
3393  * add_swap_count_continuation - called when a swap count is duplicated
3394  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3395  * page of the original vmalloc'ed swap_map, to hold the continuation count
3396  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3397  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3398  *
3399  * These continuation pages are seldom referenced: the common paths all work
3400  * on the original swap_map, only referring to a continuation page when the
3401  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3402  *
3403  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3404  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3405  * can be called after dropping locks.
3406  */
3407 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3408 {
3409 	struct swap_info_struct *si;
3410 	struct swap_cluster_info *ci;
3411 	struct page *head;
3412 	struct page *page;
3413 	struct page *list_page;
3414 	pgoff_t offset;
3415 	unsigned char count;
3416 	int ret = 0;
3417 
3418 	/*
3419 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3420 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3421 	 */
3422 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3423 
3424 	si = get_swap_device(entry);
3425 	if (!si) {
3426 		/*
3427 		 * An acceptable race has occurred since the failing
3428 		 * __swap_duplicate(): the swap device may be swapoff
3429 		 */
3430 		goto outer;
3431 	}
3432 	spin_lock(&si->lock);
3433 
3434 	offset = swp_offset(entry);
3435 
3436 	ci = lock_cluster(si, offset);
3437 
3438 	count = swap_count(si->swap_map[offset]);
3439 
3440 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3441 		/*
3442 		 * The higher the swap count, the more likely it is that tasks
3443 		 * will race to add swap count continuation: we need to avoid
3444 		 * over-provisioning.
3445 		 */
3446 		goto out;
3447 	}
3448 
3449 	if (!page) {
3450 		ret = -ENOMEM;
3451 		goto out;
3452 	}
3453 
3454 	head = vmalloc_to_page(si->swap_map + offset);
3455 	offset &= ~PAGE_MASK;
3456 
3457 	spin_lock(&si->cont_lock);
3458 	/*
3459 	 * Page allocation does not initialize the page's lru field,
3460 	 * but it does always reset its private field.
3461 	 */
3462 	if (!page_private(head)) {
3463 		BUG_ON(count & COUNT_CONTINUED);
3464 		INIT_LIST_HEAD(&head->lru);
3465 		set_page_private(head, SWP_CONTINUED);
3466 		si->flags |= SWP_CONTINUED;
3467 	}
3468 
3469 	list_for_each_entry(list_page, &head->lru, lru) {
3470 		unsigned char *map;
3471 
3472 		/*
3473 		 * If the previous map said no continuation, but we've found
3474 		 * a continuation page, free our allocation and use this one.
3475 		 */
3476 		if (!(count & COUNT_CONTINUED))
3477 			goto out_unlock_cont;
3478 
3479 		map = kmap_atomic(list_page) + offset;
3480 		count = *map;
3481 		kunmap_atomic(map);
3482 
3483 		/*
3484 		 * If this continuation count now has some space in it,
3485 		 * free our allocation and use this one.
3486 		 */
3487 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3488 			goto out_unlock_cont;
3489 	}
3490 
3491 	list_add_tail(&page->lru, &head->lru);
3492 	page = NULL;			/* now it's attached, don't free it */
3493 out_unlock_cont:
3494 	spin_unlock(&si->cont_lock);
3495 out:
3496 	unlock_cluster(ci);
3497 	spin_unlock(&si->lock);
3498 	put_swap_device(si);
3499 outer:
3500 	if (page)
3501 		__free_page(page);
3502 	return ret;
3503 }
3504 
3505 /*
3506  * swap_count_continued - when the original swap_map count is incremented
3507  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3508  * into, carry if so, or else fail until a new continuation page is allocated;
3509  * when the original swap_map count is decremented from 0 with continuation,
3510  * borrow from the continuation and report whether it still holds more.
3511  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3512  * lock.
3513  */
3514 static bool swap_count_continued(struct swap_info_struct *si,
3515 				 pgoff_t offset, unsigned char count)
3516 {
3517 	struct page *head;
3518 	struct page *page;
3519 	unsigned char *map;
3520 	bool ret;
3521 
3522 	head = vmalloc_to_page(si->swap_map + offset);
3523 	if (page_private(head) != SWP_CONTINUED) {
3524 		BUG_ON(count & COUNT_CONTINUED);
3525 		return false;		/* need to add count continuation */
3526 	}
3527 
3528 	spin_lock(&si->cont_lock);
3529 	offset &= ~PAGE_MASK;
3530 	page = list_next_entry(head, lru);
3531 	map = kmap_atomic(page) + offset;
3532 
3533 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3534 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3535 
3536 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3537 		/*
3538 		 * Think of how you add 1 to 999
3539 		 */
3540 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3541 			kunmap_atomic(map);
3542 			page = list_next_entry(page, lru);
3543 			BUG_ON(page == head);
3544 			map = kmap_atomic(page) + offset;
3545 		}
3546 		if (*map == SWAP_CONT_MAX) {
3547 			kunmap_atomic(map);
3548 			page = list_next_entry(page, lru);
3549 			if (page == head) {
3550 				ret = false;	/* add count continuation */
3551 				goto out;
3552 			}
3553 			map = kmap_atomic(page) + offset;
3554 init_map:		*map = 0;		/* we didn't zero the page */
3555 		}
3556 		*map += 1;
3557 		kunmap_atomic(map);
3558 		while ((page = list_prev_entry(page, lru)) != head) {
3559 			map = kmap_atomic(page) + offset;
3560 			*map = COUNT_CONTINUED;
3561 			kunmap_atomic(map);
3562 		}
3563 		ret = true;			/* incremented */
3564 
3565 	} else {				/* decrementing */
3566 		/*
3567 		 * Think of how you subtract 1 from 1000
3568 		 */
3569 		BUG_ON(count != COUNT_CONTINUED);
3570 		while (*map == COUNT_CONTINUED) {
3571 			kunmap_atomic(map);
3572 			page = list_next_entry(page, lru);
3573 			BUG_ON(page == head);
3574 			map = kmap_atomic(page) + offset;
3575 		}
3576 		BUG_ON(*map == 0);
3577 		*map -= 1;
3578 		if (*map == 0)
3579 			count = 0;
3580 		kunmap_atomic(map);
3581 		while ((page = list_prev_entry(page, lru)) != head) {
3582 			map = kmap_atomic(page) + offset;
3583 			*map = SWAP_CONT_MAX | count;
3584 			count = COUNT_CONTINUED;
3585 			kunmap_atomic(map);
3586 		}
3587 		ret = count == COUNT_CONTINUED;
3588 	}
3589 out:
3590 	spin_unlock(&si->cont_lock);
3591 	return ret;
3592 }
3593 
3594 /*
3595  * free_swap_count_continuations - swapoff free all the continuation pages
3596  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3597  */
3598 static void free_swap_count_continuations(struct swap_info_struct *si)
3599 {
3600 	pgoff_t offset;
3601 
3602 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3603 		struct page *head;
3604 		head = vmalloc_to_page(si->swap_map + offset);
3605 		if (page_private(head)) {
3606 			struct page *page, *next;
3607 
3608 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3609 				list_del(&page->lru);
3610 				__free_page(page);
3611 			}
3612 		}
3613 	}
3614 }
3615 
3616 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3617 void __folio_throttle_swaprate(struct folio *folio, gfp_t gfp)
3618 {
3619 	struct swap_info_struct *si, *next;
3620 	int nid = folio_nid(folio);
3621 
3622 	if (!(gfp & __GFP_IO))
3623 		return;
3624 
3625 	if (!blk_cgroup_congested())
3626 		return;
3627 
3628 	/*
3629 	 * We've already scheduled a throttle, avoid taking the global swap
3630 	 * lock.
3631 	 */
3632 	if (current->throttle_disk)
3633 		return;
3634 
3635 	spin_lock(&swap_avail_lock);
3636 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3637 				  avail_lists[nid]) {
3638 		if (si->bdev) {
3639 			blkcg_schedule_throttle(si->bdev->bd_disk, true);
3640 			break;
3641 		}
3642 	}
3643 	spin_unlock(&swap_avail_lock);
3644 }
3645 #endif
3646 
3647 static int __init swapfile_init(void)
3648 {
3649 	int nid;
3650 
3651 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3652 					 GFP_KERNEL);
3653 	if (!swap_avail_heads) {
3654 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3655 		return -ENOMEM;
3656 	}
3657 
3658 	for_each_node(nid)
3659 		plist_head_init(&swap_avail_heads[nid]);
3660 
3661 	swapfile_maximum_size = arch_max_swapfile_size();
3662 
3663 #ifdef CONFIG_MIGRATION
3664 	if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3665 		swap_migration_ad_supported = true;
3666 #endif	/* CONFIG_MIGRATION */
3667 
3668 	return 0;
3669 }
3670 subsys_initcall(swapfile_init);
3671