1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/sched/mm.h> 10 #include <linux/hugetlb.h> 11 #include <linux/mman.h> 12 #include <linux/slab.h> 13 #include <linux/kernel_stat.h> 14 #include <linux/swap.h> 15 #include <linux/vmalloc.h> 16 #include <linux/pagemap.h> 17 #include <linux/namei.h> 18 #include <linux/shmem_fs.h> 19 #include <linux/blkdev.h> 20 #include <linux/random.h> 21 #include <linux/writeback.h> 22 #include <linux/proc_fs.h> 23 #include <linux/seq_file.h> 24 #include <linux/init.h> 25 #include <linux/ksm.h> 26 #include <linux/rmap.h> 27 #include <linux/security.h> 28 #include <linux/backing-dev.h> 29 #include <linux/mutex.h> 30 #include <linux/capability.h> 31 #include <linux/syscalls.h> 32 #include <linux/memcontrol.h> 33 #include <linux/poll.h> 34 #include <linux/oom.h> 35 #include <linux/frontswap.h> 36 #include <linux/swapfile.h> 37 #include <linux/export.h> 38 #include <linux/swap_slots.h> 39 40 #include <asm/pgtable.h> 41 #include <asm/tlbflush.h> 42 #include <linux/swapops.h> 43 #include <linux/swap_cgroup.h> 44 45 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 46 unsigned char); 47 static void free_swap_count_continuations(struct swap_info_struct *); 48 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 49 50 DEFINE_SPINLOCK(swap_lock); 51 static unsigned int nr_swapfiles; 52 atomic_long_t nr_swap_pages; 53 /* 54 * Some modules use swappable objects and may try to swap them out under 55 * memory pressure (via the shrinker). Before doing so, they may wish to 56 * check to see if any swap space is available. 57 */ 58 EXPORT_SYMBOL_GPL(nr_swap_pages); 59 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 60 long total_swap_pages; 61 static int least_priority; 62 63 static const char Bad_file[] = "Bad swap file entry "; 64 static const char Unused_file[] = "Unused swap file entry "; 65 static const char Bad_offset[] = "Bad swap offset entry "; 66 static const char Unused_offset[] = "Unused swap offset entry "; 67 68 /* 69 * all active swap_info_structs 70 * protected with swap_lock, and ordered by priority. 71 */ 72 PLIST_HEAD(swap_active_head); 73 74 /* 75 * all available (active, not full) swap_info_structs 76 * protected with swap_avail_lock, ordered by priority. 77 * This is used by get_swap_page() instead of swap_active_head 78 * because swap_active_head includes all swap_info_structs, 79 * but get_swap_page() doesn't need to look at full ones. 80 * This uses its own lock instead of swap_lock because when a 81 * swap_info_struct changes between not-full/full, it needs to 82 * add/remove itself to/from this list, but the swap_info_struct->lock 83 * is held and the locking order requires swap_lock to be taken 84 * before any swap_info_struct->lock. 85 */ 86 static PLIST_HEAD(swap_avail_head); 87 static DEFINE_SPINLOCK(swap_avail_lock); 88 89 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 90 91 static DEFINE_MUTEX(swapon_mutex); 92 93 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 94 /* Activity counter to indicate that a swapon or swapoff has occurred */ 95 static atomic_t proc_poll_event = ATOMIC_INIT(0); 96 97 static inline unsigned char swap_count(unsigned char ent) 98 { 99 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ 100 } 101 102 /* returns 1 if swap entry is freed */ 103 static int 104 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) 105 { 106 swp_entry_t entry = swp_entry(si->type, offset); 107 struct page *page; 108 int ret = 0; 109 110 page = find_get_page(swap_address_space(entry), swp_offset(entry)); 111 if (!page) 112 return 0; 113 /* 114 * This function is called from scan_swap_map() and it's called 115 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. 116 * We have to use trylock for avoiding deadlock. This is a special 117 * case and you should use try_to_free_swap() with explicit lock_page() 118 * in usual operations. 119 */ 120 if (trylock_page(page)) { 121 ret = try_to_free_swap(page); 122 unlock_page(page); 123 } 124 put_page(page); 125 return ret; 126 } 127 128 /* 129 * swapon tell device that all the old swap contents can be discarded, 130 * to allow the swap device to optimize its wear-levelling. 131 */ 132 static int discard_swap(struct swap_info_struct *si) 133 { 134 struct swap_extent *se; 135 sector_t start_block; 136 sector_t nr_blocks; 137 int err = 0; 138 139 /* Do not discard the swap header page! */ 140 se = &si->first_swap_extent; 141 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 142 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 143 if (nr_blocks) { 144 err = blkdev_issue_discard(si->bdev, start_block, 145 nr_blocks, GFP_KERNEL, 0); 146 if (err) 147 return err; 148 cond_resched(); 149 } 150 151 list_for_each_entry(se, &si->first_swap_extent.list, list) { 152 start_block = se->start_block << (PAGE_SHIFT - 9); 153 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 154 155 err = blkdev_issue_discard(si->bdev, start_block, 156 nr_blocks, GFP_KERNEL, 0); 157 if (err) 158 break; 159 160 cond_resched(); 161 } 162 return err; /* That will often be -EOPNOTSUPP */ 163 } 164 165 /* 166 * swap allocation tell device that a cluster of swap can now be discarded, 167 * to allow the swap device to optimize its wear-levelling. 168 */ 169 static void discard_swap_cluster(struct swap_info_struct *si, 170 pgoff_t start_page, pgoff_t nr_pages) 171 { 172 struct swap_extent *se = si->curr_swap_extent; 173 int found_extent = 0; 174 175 while (nr_pages) { 176 if (se->start_page <= start_page && 177 start_page < se->start_page + se->nr_pages) { 178 pgoff_t offset = start_page - se->start_page; 179 sector_t start_block = se->start_block + offset; 180 sector_t nr_blocks = se->nr_pages - offset; 181 182 if (nr_blocks > nr_pages) 183 nr_blocks = nr_pages; 184 start_page += nr_blocks; 185 nr_pages -= nr_blocks; 186 187 if (!found_extent++) 188 si->curr_swap_extent = se; 189 190 start_block <<= PAGE_SHIFT - 9; 191 nr_blocks <<= PAGE_SHIFT - 9; 192 if (blkdev_issue_discard(si->bdev, start_block, 193 nr_blocks, GFP_NOIO, 0)) 194 break; 195 } 196 197 se = list_next_entry(se, list); 198 } 199 } 200 201 #define SWAPFILE_CLUSTER 256 202 #define LATENCY_LIMIT 256 203 204 static inline void cluster_set_flag(struct swap_cluster_info *info, 205 unsigned int flag) 206 { 207 info->flags = flag; 208 } 209 210 static inline unsigned int cluster_count(struct swap_cluster_info *info) 211 { 212 return info->data; 213 } 214 215 static inline void cluster_set_count(struct swap_cluster_info *info, 216 unsigned int c) 217 { 218 info->data = c; 219 } 220 221 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 222 unsigned int c, unsigned int f) 223 { 224 info->flags = f; 225 info->data = c; 226 } 227 228 static inline unsigned int cluster_next(struct swap_cluster_info *info) 229 { 230 return info->data; 231 } 232 233 static inline void cluster_set_next(struct swap_cluster_info *info, 234 unsigned int n) 235 { 236 info->data = n; 237 } 238 239 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 240 unsigned int n, unsigned int f) 241 { 242 info->flags = f; 243 info->data = n; 244 } 245 246 static inline bool cluster_is_free(struct swap_cluster_info *info) 247 { 248 return info->flags & CLUSTER_FLAG_FREE; 249 } 250 251 static inline bool cluster_is_null(struct swap_cluster_info *info) 252 { 253 return info->flags & CLUSTER_FLAG_NEXT_NULL; 254 } 255 256 static inline void cluster_set_null(struct swap_cluster_info *info) 257 { 258 info->flags = CLUSTER_FLAG_NEXT_NULL; 259 info->data = 0; 260 } 261 262 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 263 unsigned long offset) 264 { 265 struct swap_cluster_info *ci; 266 267 ci = si->cluster_info; 268 if (ci) { 269 ci += offset / SWAPFILE_CLUSTER; 270 spin_lock(&ci->lock); 271 } 272 return ci; 273 } 274 275 static inline void unlock_cluster(struct swap_cluster_info *ci) 276 { 277 if (ci) 278 spin_unlock(&ci->lock); 279 } 280 281 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 282 struct swap_info_struct *si, 283 unsigned long offset) 284 { 285 struct swap_cluster_info *ci; 286 287 ci = lock_cluster(si, offset); 288 if (!ci) 289 spin_lock(&si->lock); 290 291 return ci; 292 } 293 294 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 295 struct swap_cluster_info *ci) 296 { 297 if (ci) 298 unlock_cluster(ci); 299 else 300 spin_unlock(&si->lock); 301 } 302 303 static inline bool cluster_list_empty(struct swap_cluster_list *list) 304 { 305 return cluster_is_null(&list->head); 306 } 307 308 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 309 { 310 return cluster_next(&list->head); 311 } 312 313 static void cluster_list_init(struct swap_cluster_list *list) 314 { 315 cluster_set_null(&list->head); 316 cluster_set_null(&list->tail); 317 } 318 319 static void cluster_list_add_tail(struct swap_cluster_list *list, 320 struct swap_cluster_info *ci, 321 unsigned int idx) 322 { 323 if (cluster_list_empty(list)) { 324 cluster_set_next_flag(&list->head, idx, 0); 325 cluster_set_next_flag(&list->tail, idx, 0); 326 } else { 327 struct swap_cluster_info *ci_tail; 328 unsigned int tail = cluster_next(&list->tail); 329 330 /* 331 * Nested cluster lock, but both cluster locks are 332 * only acquired when we held swap_info_struct->lock 333 */ 334 ci_tail = ci + tail; 335 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 336 cluster_set_next(ci_tail, idx); 337 unlock_cluster(ci_tail); 338 cluster_set_next_flag(&list->tail, idx, 0); 339 } 340 } 341 342 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 343 struct swap_cluster_info *ci) 344 { 345 unsigned int idx; 346 347 idx = cluster_next(&list->head); 348 if (cluster_next(&list->tail) == idx) { 349 cluster_set_null(&list->head); 350 cluster_set_null(&list->tail); 351 } else 352 cluster_set_next_flag(&list->head, 353 cluster_next(&ci[idx]), 0); 354 355 return idx; 356 } 357 358 /* Add a cluster to discard list and schedule it to do discard */ 359 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 360 unsigned int idx) 361 { 362 /* 363 * If scan_swap_map() can't find a free cluster, it will check 364 * si->swap_map directly. To make sure the discarding cluster isn't 365 * taken by scan_swap_map(), mark the swap entries bad (occupied). It 366 * will be cleared after discard 367 */ 368 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 369 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 370 371 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 372 373 schedule_work(&si->discard_work); 374 } 375 376 /* 377 * Doing discard actually. After a cluster discard is finished, the cluster 378 * will be added to free cluster list. caller should hold si->lock. 379 */ 380 static void swap_do_scheduled_discard(struct swap_info_struct *si) 381 { 382 struct swap_cluster_info *info, *ci; 383 unsigned int idx; 384 385 info = si->cluster_info; 386 387 while (!cluster_list_empty(&si->discard_clusters)) { 388 idx = cluster_list_del_first(&si->discard_clusters, info); 389 spin_unlock(&si->lock); 390 391 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 392 SWAPFILE_CLUSTER); 393 394 spin_lock(&si->lock); 395 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 396 cluster_set_flag(ci, CLUSTER_FLAG_FREE); 397 unlock_cluster(ci); 398 cluster_list_add_tail(&si->free_clusters, info, idx); 399 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 400 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 401 0, SWAPFILE_CLUSTER); 402 unlock_cluster(ci); 403 } 404 } 405 406 static void swap_discard_work(struct work_struct *work) 407 { 408 struct swap_info_struct *si; 409 410 si = container_of(work, struct swap_info_struct, discard_work); 411 412 spin_lock(&si->lock); 413 swap_do_scheduled_discard(si); 414 spin_unlock(&si->lock); 415 } 416 417 /* 418 * The cluster corresponding to page_nr will be used. The cluster will be 419 * removed from free cluster list and its usage counter will be increased. 420 */ 421 static void inc_cluster_info_page(struct swap_info_struct *p, 422 struct swap_cluster_info *cluster_info, unsigned long page_nr) 423 { 424 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 425 426 if (!cluster_info) 427 return; 428 if (cluster_is_free(&cluster_info[idx])) { 429 VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx); 430 cluster_list_del_first(&p->free_clusters, cluster_info); 431 cluster_set_count_flag(&cluster_info[idx], 0, 0); 432 } 433 434 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 435 cluster_set_count(&cluster_info[idx], 436 cluster_count(&cluster_info[idx]) + 1); 437 } 438 439 /* 440 * The cluster corresponding to page_nr decreases one usage. If the usage 441 * counter becomes 0, which means no page in the cluster is in using, we can 442 * optionally discard the cluster and add it to free cluster list. 443 */ 444 static void dec_cluster_info_page(struct swap_info_struct *p, 445 struct swap_cluster_info *cluster_info, unsigned long page_nr) 446 { 447 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 448 449 if (!cluster_info) 450 return; 451 452 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 453 cluster_set_count(&cluster_info[idx], 454 cluster_count(&cluster_info[idx]) - 1); 455 456 if (cluster_count(&cluster_info[idx]) == 0) { 457 /* 458 * If the swap is discardable, prepare discard the cluster 459 * instead of free it immediately. The cluster will be freed 460 * after discard. 461 */ 462 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 463 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 464 swap_cluster_schedule_discard(p, idx); 465 return; 466 } 467 468 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 469 cluster_list_add_tail(&p->free_clusters, cluster_info, idx); 470 } 471 } 472 473 /* 474 * It's possible scan_swap_map() uses a free cluster in the middle of free 475 * cluster list. Avoiding such abuse to avoid list corruption. 476 */ 477 static bool 478 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 479 unsigned long offset) 480 { 481 struct percpu_cluster *percpu_cluster; 482 bool conflict; 483 484 offset /= SWAPFILE_CLUSTER; 485 conflict = !cluster_list_empty(&si->free_clusters) && 486 offset != cluster_list_first(&si->free_clusters) && 487 cluster_is_free(&si->cluster_info[offset]); 488 489 if (!conflict) 490 return false; 491 492 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 493 cluster_set_null(&percpu_cluster->index); 494 return true; 495 } 496 497 /* 498 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 499 * might involve allocating a new cluster for current CPU too. 500 */ 501 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 502 unsigned long *offset, unsigned long *scan_base) 503 { 504 struct percpu_cluster *cluster; 505 struct swap_cluster_info *ci; 506 bool found_free; 507 unsigned long tmp, max; 508 509 new_cluster: 510 cluster = this_cpu_ptr(si->percpu_cluster); 511 if (cluster_is_null(&cluster->index)) { 512 if (!cluster_list_empty(&si->free_clusters)) { 513 cluster->index = si->free_clusters.head; 514 cluster->next = cluster_next(&cluster->index) * 515 SWAPFILE_CLUSTER; 516 } else if (!cluster_list_empty(&si->discard_clusters)) { 517 /* 518 * we don't have free cluster but have some clusters in 519 * discarding, do discard now and reclaim them 520 */ 521 swap_do_scheduled_discard(si); 522 *scan_base = *offset = si->cluster_next; 523 goto new_cluster; 524 } else 525 return false; 526 } 527 528 found_free = false; 529 530 /* 531 * Other CPUs can use our cluster if they can't find a free cluster, 532 * check if there is still free entry in the cluster 533 */ 534 tmp = cluster->next; 535 max = min_t(unsigned long, si->max, 536 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 537 if (tmp >= max) { 538 cluster_set_null(&cluster->index); 539 goto new_cluster; 540 } 541 ci = lock_cluster(si, tmp); 542 while (tmp < max) { 543 if (!si->swap_map[tmp]) { 544 found_free = true; 545 break; 546 } 547 tmp++; 548 } 549 unlock_cluster(ci); 550 if (!found_free) { 551 cluster_set_null(&cluster->index); 552 goto new_cluster; 553 } 554 cluster->next = tmp + 1; 555 *offset = tmp; 556 *scan_base = tmp; 557 return found_free; 558 } 559 560 static int scan_swap_map_slots(struct swap_info_struct *si, 561 unsigned char usage, int nr, 562 swp_entry_t slots[]) 563 { 564 struct swap_cluster_info *ci; 565 unsigned long offset; 566 unsigned long scan_base; 567 unsigned long last_in_cluster = 0; 568 int latency_ration = LATENCY_LIMIT; 569 int n_ret = 0; 570 571 if (nr > SWAP_BATCH) 572 nr = SWAP_BATCH; 573 574 /* 575 * We try to cluster swap pages by allocating them sequentially 576 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 577 * way, however, we resort to first-free allocation, starting 578 * a new cluster. This prevents us from scattering swap pages 579 * all over the entire swap partition, so that we reduce 580 * overall disk seek times between swap pages. -- sct 581 * But we do now try to find an empty cluster. -Andrea 582 * And we let swap pages go all over an SSD partition. Hugh 583 */ 584 585 si->flags += SWP_SCANNING; 586 scan_base = offset = si->cluster_next; 587 588 /* SSD algorithm */ 589 if (si->cluster_info) { 590 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 591 goto checks; 592 else 593 goto scan; 594 } 595 596 if (unlikely(!si->cluster_nr--)) { 597 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 598 si->cluster_nr = SWAPFILE_CLUSTER - 1; 599 goto checks; 600 } 601 602 spin_unlock(&si->lock); 603 604 /* 605 * If seek is expensive, start searching for new cluster from 606 * start of partition, to minimize the span of allocated swap. 607 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 608 * case, just handled by scan_swap_map_try_ssd_cluster() above. 609 */ 610 scan_base = offset = si->lowest_bit; 611 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 612 613 /* Locate the first empty (unaligned) cluster */ 614 for (; last_in_cluster <= si->highest_bit; offset++) { 615 if (si->swap_map[offset]) 616 last_in_cluster = offset + SWAPFILE_CLUSTER; 617 else if (offset == last_in_cluster) { 618 spin_lock(&si->lock); 619 offset -= SWAPFILE_CLUSTER - 1; 620 si->cluster_next = offset; 621 si->cluster_nr = SWAPFILE_CLUSTER - 1; 622 goto checks; 623 } 624 if (unlikely(--latency_ration < 0)) { 625 cond_resched(); 626 latency_ration = LATENCY_LIMIT; 627 } 628 } 629 630 offset = scan_base; 631 spin_lock(&si->lock); 632 si->cluster_nr = SWAPFILE_CLUSTER - 1; 633 } 634 635 checks: 636 if (si->cluster_info) { 637 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 638 /* take a break if we already got some slots */ 639 if (n_ret) 640 goto done; 641 if (!scan_swap_map_try_ssd_cluster(si, &offset, 642 &scan_base)) 643 goto scan; 644 } 645 } 646 if (!(si->flags & SWP_WRITEOK)) 647 goto no_page; 648 if (!si->highest_bit) 649 goto no_page; 650 if (offset > si->highest_bit) 651 scan_base = offset = si->lowest_bit; 652 653 ci = lock_cluster(si, offset); 654 /* reuse swap entry of cache-only swap if not busy. */ 655 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 656 int swap_was_freed; 657 unlock_cluster(ci); 658 spin_unlock(&si->lock); 659 swap_was_freed = __try_to_reclaim_swap(si, offset); 660 spin_lock(&si->lock); 661 /* entry was freed successfully, try to use this again */ 662 if (swap_was_freed) 663 goto checks; 664 goto scan; /* check next one */ 665 } 666 667 if (si->swap_map[offset]) { 668 unlock_cluster(ci); 669 if (!n_ret) 670 goto scan; 671 else 672 goto done; 673 } 674 675 if (offset == si->lowest_bit) 676 si->lowest_bit++; 677 if (offset == si->highest_bit) 678 si->highest_bit--; 679 si->inuse_pages++; 680 if (si->inuse_pages == si->pages) { 681 si->lowest_bit = si->max; 682 si->highest_bit = 0; 683 spin_lock(&swap_avail_lock); 684 plist_del(&si->avail_list, &swap_avail_head); 685 spin_unlock(&swap_avail_lock); 686 } 687 si->swap_map[offset] = usage; 688 inc_cluster_info_page(si, si->cluster_info, offset); 689 unlock_cluster(ci); 690 si->cluster_next = offset + 1; 691 slots[n_ret++] = swp_entry(si->type, offset); 692 693 /* got enough slots or reach max slots? */ 694 if ((n_ret == nr) || (offset >= si->highest_bit)) 695 goto done; 696 697 /* search for next available slot */ 698 699 /* time to take a break? */ 700 if (unlikely(--latency_ration < 0)) { 701 if (n_ret) 702 goto done; 703 spin_unlock(&si->lock); 704 cond_resched(); 705 spin_lock(&si->lock); 706 latency_ration = LATENCY_LIMIT; 707 } 708 709 /* try to get more slots in cluster */ 710 if (si->cluster_info) { 711 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 712 goto checks; 713 else 714 goto done; 715 } 716 /* non-ssd case */ 717 ++offset; 718 719 /* non-ssd case, still more slots in cluster? */ 720 if (si->cluster_nr && !si->swap_map[offset]) { 721 --si->cluster_nr; 722 goto checks; 723 } 724 725 done: 726 si->flags -= SWP_SCANNING; 727 return n_ret; 728 729 scan: 730 spin_unlock(&si->lock); 731 while (++offset <= si->highest_bit) { 732 if (!si->swap_map[offset]) { 733 spin_lock(&si->lock); 734 goto checks; 735 } 736 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 737 spin_lock(&si->lock); 738 goto checks; 739 } 740 if (unlikely(--latency_ration < 0)) { 741 cond_resched(); 742 latency_ration = LATENCY_LIMIT; 743 } 744 } 745 offset = si->lowest_bit; 746 while (offset < scan_base) { 747 if (!si->swap_map[offset]) { 748 spin_lock(&si->lock); 749 goto checks; 750 } 751 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 752 spin_lock(&si->lock); 753 goto checks; 754 } 755 if (unlikely(--latency_ration < 0)) { 756 cond_resched(); 757 latency_ration = LATENCY_LIMIT; 758 } 759 offset++; 760 } 761 spin_lock(&si->lock); 762 763 no_page: 764 si->flags -= SWP_SCANNING; 765 return n_ret; 766 } 767 768 static unsigned long scan_swap_map(struct swap_info_struct *si, 769 unsigned char usage) 770 { 771 swp_entry_t entry; 772 int n_ret; 773 774 n_ret = scan_swap_map_slots(si, usage, 1, &entry); 775 776 if (n_ret) 777 return swp_offset(entry); 778 else 779 return 0; 780 781 } 782 783 int get_swap_pages(int n_goal, swp_entry_t swp_entries[]) 784 { 785 struct swap_info_struct *si, *next; 786 long avail_pgs; 787 int n_ret = 0; 788 789 avail_pgs = atomic_long_read(&nr_swap_pages); 790 if (avail_pgs <= 0) 791 goto noswap; 792 793 if (n_goal > SWAP_BATCH) 794 n_goal = SWAP_BATCH; 795 796 if (n_goal > avail_pgs) 797 n_goal = avail_pgs; 798 799 atomic_long_sub(n_goal, &nr_swap_pages); 800 801 spin_lock(&swap_avail_lock); 802 803 start_over: 804 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) { 805 /* requeue si to after same-priority siblings */ 806 plist_requeue(&si->avail_list, &swap_avail_head); 807 spin_unlock(&swap_avail_lock); 808 spin_lock(&si->lock); 809 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 810 spin_lock(&swap_avail_lock); 811 if (plist_node_empty(&si->avail_list)) { 812 spin_unlock(&si->lock); 813 goto nextsi; 814 } 815 WARN(!si->highest_bit, 816 "swap_info %d in list but !highest_bit\n", 817 si->type); 818 WARN(!(si->flags & SWP_WRITEOK), 819 "swap_info %d in list but !SWP_WRITEOK\n", 820 si->type); 821 plist_del(&si->avail_list, &swap_avail_head); 822 spin_unlock(&si->lock); 823 goto nextsi; 824 } 825 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 826 n_goal, swp_entries); 827 spin_unlock(&si->lock); 828 if (n_ret) 829 goto check_out; 830 pr_debug("scan_swap_map of si %d failed to find offset\n", 831 si->type); 832 833 spin_lock(&swap_avail_lock); 834 nextsi: 835 /* 836 * if we got here, it's likely that si was almost full before, 837 * and since scan_swap_map() can drop the si->lock, multiple 838 * callers probably all tried to get a page from the same si 839 * and it filled up before we could get one; or, the si filled 840 * up between us dropping swap_avail_lock and taking si->lock. 841 * Since we dropped the swap_avail_lock, the swap_avail_head 842 * list may have been modified; so if next is still in the 843 * swap_avail_head list then try it, otherwise start over 844 * if we have not gotten any slots. 845 */ 846 if (plist_node_empty(&next->avail_list)) 847 goto start_over; 848 } 849 850 spin_unlock(&swap_avail_lock); 851 852 check_out: 853 if (n_ret < n_goal) 854 atomic_long_add((long) (n_goal-n_ret), &nr_swap_pages); 855 noswap: 856 return n_ret; 857 } 858 859 /* The only caller of this function is now suspend routine */ 860 swp_entry_t get_swap_page_of_type(int type) 861 { 862 struct swap_info_struct *si; 863 pgoff_t offset; 864 865 si = swap_info[type]; 866 spin_lock(&si->lock); 867 if (si && (si->flags & SWP_WRITEOK)) { 868 atomic_long_dec(&nr_swap_pages); 869 /* This is called for allocating swap entry, not cache */ 870 offset = scan_swap_map(si, 1); 871 if (offset) { 872 spin_unlock(&si->lock); 873 return swp_entry(type, offset); 874 } 875 atomic_long_inc(&nr_swap_pages); 876 } 877 spin_unlock(&si->lock); 878 return (swp_entry_t) {0}; 879 } 880 881 static struct swap_info_struct *__swap_info_get(swp_entry_t entry) 882 { 883 struct swap_info_struct *p; 884 unsigned long offset, type; 885 886 if (!entry.val) 887 goto out; 888 type = swp_type(entry); 889 if (type >= nr_swapfiles) 890 goto bad_nofile; 891 p = swap_info[type]; 892 if (!(p->flags & SWP_USED)) 893 goto bad_device; 894 offset = swp_offset(entry); 895 if (offset >= p->max) 896 goto bad_offset; 897 return p; 898 899 bad_offset: 900 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val); 901 goto out; 902 bad_device: 903 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val); 904 goto out; 905 bad_nofile: 906 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val); 907 out: 908 return NULL; 909 } 910 911 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 912 { 913 struct swap_info_struct *p; 914 915 p = __swap_info_get(entry); 916 if (!p) 917 goto out; 918 if (!p->swap_map[swp_offset(entry)]) 919 goto bad_free; 920 return p; 921 922 bad_free: 923 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val); 924 goto out; 925 out: 926 return NULL; 927 } 928 929 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 930 { 931 struct swap_info_struct *p; 932 933 p = _swap_info_get(entry); 934 if (p) 935 spin_lock(&p->lock); 936 return p; 937 } 938 939 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 940 struct swap_info_struct *q) 941 { 942 struct swap_info_struct *p; 943 944 p = _swap_info_get(entry); 945 946 if (p != q) { 947 if (q != NULL) 948 spin_unlock(&q->lock); 949 if (p != NULL) 950 spin_lock(&p->lock); 951 } 952 return p; 953 } 954 955 static unsigned char __swap_entry_free(struct swap_info_struct *p, 956 swp_entry_t entry, unsigned char usage) 957 { 958 struct swap_cluster_info *ci; 959 unsigned long offset = swp_offset(entry); 960 unsigned char count; 961 unsigned char has_cache; 962 963 ci = lock_cluster_or_swap_info(p, offset); 964 965 count = p->swap_map[offset]; 966 967 has_cache = count & SWAP_HAS_CACHE; 968 count &= ~SWAP_HAS_CACHE; 969 970 if (usage == SWAP_HAS_CACHE) { 971 VM_BUG_ON(!has_cache); 972 has_cache = 0; 973 } else if (count == SWAP_MAP_SHMEM) { 974 /* 975 * Or we could insist on shmem.c using a special 976 * swap_shmem_free() and free_shmem_swap_and_cache()... 977 */ 978 count = 0; 979 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 980 if (count == COUNT_CONTINUED) { 981 if (swap_count_continued(p, offset, count)) 982 count = SWAP_MAP_MAX | COUNT_CONTINUED; 983 else 984 count = SWAP_MAP_MAX; 985 } else 986 count--; 987 } 988 989 usage = count | has_cache; 990 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE; 991 992 unlock_cluster_or_swap_info(p, ci); 993 994 return usage; 995 } 996 997 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 998 { 999 struct swap_cluster_info *ci; 1000 unsigned long offset = swp_offset(entry); 1001 unsigned char count; 1002 1003 ci = lock_cluster(p, offset); 1004 count = p->swap_map[offset]; 1005 VM_BUG_ON(count != SWAP_HAS_CACHE); 1006 p->swap_map[offset] = 0; 1007 dec_cluster_info_page(p, p->cluster_info, offset); 1008 unlock_cluster(ci); 1009 1010 mem_cgroup_uncharge_swap(entry); 1011 if (offset < p->lowest_bit) 1012 p->lowest_bit = offset; 1013 if (offset > p->highest_bit) { 1014 bool was_full = !p->highest_bit; 1015 1016 p->highest_bit = offset; 1017 if (was_full && (p->flags & SWP_WRITEOK)) { 1018 spin_lock(&swap_avail_lock); 1019 WARN_ON(!plist_node_empty(&p->avail_list)); 1020 if (plist_node_empty(&p->avail_list)) 1021 plist_add(&p->avail_list, 1022 &swap_avail_head); 1023 spin_unlock(&swap_avail_lock); 1024 } 1025 } 1026 atomic_long_inc(&nr_swap_pages); 1027 p->inuse_pages--; 1028 frontswap_invalidate_page(p->type, offset); 1029 if (p->flags & SWP_BLKDEV) { 1030 struct gendisk *disk = p->bdev->bd_disk; 1031 1032 if (disk->fops->swap_slot_free_notify) 1033 disk->fops->swap_slot_free_notify(p->bdev, 1034 offset); 1035 } 1036 } 1037 1038 /* 1039 * Caller has made sure that the swap device corresponding to entry 1040 * is still around or has not been recycled. 1041 */ 1042 void swap_free(swp_entry_t entry) 1043 { 1044 struct swap_info_struct *p; 1045 1046 p = _swap_info_get(entry); 1047 if (p) { 1048 if (!__swap_entry_free(p, entry, 1)) 1049 free_swap_slot(entry); 1050 } 1051 } 1052 1053 /* 1054 * Called after dropping swapcache to decrease refcnt to swap entries. 1055 */ 1056 void swapcache_free(swp_entry_t entry) 1057 { 1058 struct swap_info_struct *p; 1059 1060 p = _swap_info_get(entry); 1061 if (p) { 1062 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE)) 1063 free_swap_slot(entry); 1064 } 1065 } 1066 1067 void swapcache_free_entries(swp_entry_t *entries, int n) 1068 { 1069 struct swap_info_struct *p, *prev; 1070 int i; 1071 1072 if (n <= 0) 1073 return; 1074 1075 prev = NULL; 1076 p = NULL; 1077 for (i = 0; i < n; ++i) { 1078 p = swap_info_get_cont(entries[i], prev); 1079 if (p) 1080 swap_entry_free(p, entries[i]); 1081 else 1082 break; 1083 prev = p; 1084 } 1085 if (p) 1086 spin_unlock(&p->lock); 1087 } 1088 1089 /* 1090 * How many references to page are currently swapped out? 1091 * This does not give an exact answer when swap count is continued, 1092 * but does include the high COUNT_CONTINUED flag to allow for that. 1093 */ 1094 int page_swapcount(struct page *page) 1095 { 1096 int count = 0; 1097 struct swap_info_struct *p; 1098 struct swap_cluster_info *ci; 1099 swp_entry_t entry; 1100 unsigned long offset; 1101 1102 entry.val = page_private(page); 1103 p = _swap_info_get(entry); 1104 if (p) { 1105 offset = swp_offset(entry); 1106 ci = lock_cluster_or_swap_info(p, offset); 1107 count = swap_count(p->swap_map[offset]); 1108 unlock_cluster_or_swap_info(p, ci); 1109 } 1110 return count; 1111 } 1112 1113 /* 1114 * How many references to @entry are currently swapped out? 1115 * This does not give an exact answer when swap count is continued, 1116 * but does include the high COUNT_CONTINUED flag to allow for that. 1117 */ 1118 int __swp_swapcount(swp_entry_t entry) 1119 { 1120 int count = 0; 1121 pgoff_t offset; 1122 struct swap_info_struct *si; 1123 struct swap_cluster_info *ci; 1124 1125 si = __swap_info_get(entry); 1126 if (si) { 1127 offset = swp_offset(entry); 1128 ci = lock_cluster_or_swap_info(si, offset); 1129 count = swap_count(si->swap_map[offset]); 1130 unlock_cluster_or_swap_info(si, ci); 1131 } 1132 return count; 1133 } 1134 1135 /* 1136 * How many references to @entry are currently swapped out? 1137 * This considers COUNT_CONTINUED so it returns exact answer. 1138 */ 1139 int swp_swapcount(swp_entry_t entry) 1140 { 1141 int count, tmp_count, n; 1142 struct swap_info_struct *p; 1143 struct swap_cluster_info *ci; 1144 struct page *page; 1145 pgoff_t offset; 1146 unsigned char *map; 1147 1148 p = _swap_info_get(entry); 1149 if (!p) 1150 return 0; 1151 1152 offset = swp_offset(entry); 1153 1154 ci = lock_cluster_or_swap_info(p, offset); 1155 1156 count = swap_count(p->swap_map[offset]); 1157 if (!(count & COUNT_CONTINUED)) 1158 goto out; 1159 1160 count &= ~COUNT_CONTINUED; 1161 n = SWAP_MAP_MAX + 1; 1162 1163 page = vmalloc_to_page(p->swap_map + offset); 1164 offset &= ~PAGE_MASK; 1165 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1166 1167 do { 1168 page = list_next_entry(page, lru); 1169 map = kmap_atomic(page); 1170 tmp_count = map[offset]; 1171 kunmap_atomic(map); 1172 1173 count += (tmp_count & ~COUNT_CONTINUED) * n; 1174 n *= (SWAP_CONT_MAX + 1); 1175 } while (tmp_count & COUNT_CONTINUED); 1176 out: 1177 unlock_cluster_or_swap_info(p, ci); 1178 return count; 1179 } 1180 1181 /* 1182 * We can write to an anon page without COW if there are no other references 1183 * to it. And as a side-effect, free up its swap: because the old content 1184 * on disk will never be read, and seeking back there to write new content 1185 * later would only waste time away from clustering. 1186 * 1187 * NOTE: total_mapcount should not be relied upon by the caller if 1188 * reuse_swap_page() returns false, but it may be always overwritten 1189 * (see the other implementation for CONFIG_SWAP=n). 1190 */ 1191 bool reuse_swap_page(struct page *page, int *total_mapcount) 1192 { 1193 int count; 1194 1195 VM_BUG_ON_PAGE(!PageLocked(page), page); 1196 if (unlikely(PageKsm(page))) 1197 return false; 1198 count = page_trans_huge_mapcount(page, total_mapcount); 1199 if (count <= 1 && PageSwapCache(page)) { 1200 count += page_swapcount(page); 1201 if (count != 1) 1202 goto out; 1203 if (!PageWriteback(page)) { 1204 delete_from_swap_cache(page); 1205 SetPageDirty(page); 1206 } else { 1207 swp_entry_t entry; 1208 struct swap_info_struct *p; 1209 1210 entry.val = page_private(page); 1211 p = swap_info_get(entry); 1212 if (p->flags & SWP_STABLE_WRITES) { 1213 spin_unlock(&p->lock); 1214 return false; 1215 } 1216 spin_unlock(&p->lock); 1217 } 1218 } 1219 out: 1220 return count <= 1; 1221 } 1222 1223 /* 1224 * If swap is getting full, or if there are no more mappings of this page, 1225 * then try_to_free_swap is called to free its swap space. 1226 */ 1227 int try_to_free_swap(struct page *page) 1228 { 1229 VM_BUG_ON_PAGE(!PageLocked(page), page); 1230 1231 if (!PageSwapCache(page)) 1232 return 0; 1233 if (PageWriteback(page)) 1234 return 0; 1235 if (page_swapcount(page)) 1236 return 0; 1237 1238 /* 1239 * Once hibernation has begun to create its image of memory, 1240 * there's a danger that one of the calls to try_to_free_swap() 1241 * - most probably a call from __try_to_reclaim_swap() while 1242 * hibernation is allocating its own swap pages for the image, 1243 * but conceivably even a call from memory reclaim - will free 1244 * the swap from a page which has already been recorded in the 1245 * image as a clean swapcache page, and then reuse its swap for 1246 * another page of the image. On waking from hibernation, the 1247 * original page might be freed under memory pressure, then 1248 * later read back in from swap, now with the wrong data. 1249 * 1250 * Hibernation suspends storage while it is writing the image 1251 * to disk so check that here. 1252 */ 1253 if (pm_suspended_storage()) 1254 return 0; 1255 1256 delete_from_swap_cache(page); 1257 SetPageDirty(page); 1258 return 1; 1259 } 1260 1261 /* 1262 * Free the swap entry like above, but also try to 1263 * free the page cache entry if it is the last user. 1264 */ 1265 int free_swap_and_cache(swp_entry_t entry) 1266 { 1267 struct swap_info_struct *p; 1268 struct page *page = NULL; 1269 unsigned char count; 1270 1271 if (non_swap_entry(entry)) 1272 return 1; 1273 1274 p = _swap_info_get(entry); 1275 if (p) { 1276 count = __swap_entry_free(p, entry, 1); 1277 if (count == SWAP_HAS_CACHE) { 1278 page = find_get_page(swap_address_space(entry), 1279 swp_offset(entry)); 1280 if (page && !trylock_page(page)) { 1281 put_page(page); 1282 page = NULL; 1283 } 1284 } else if (!count) 1285 free_swap_slot(entry); 1286 } 1287 if (page) { 1288 /* 1289 * Not mapped elsewhere, or swap space full? Free it! 1290 * Also recheck PageSwapCache now page is locked (above). 1291 */ 1292 if (PageSwapCache(page) && !PageWriteback(page) && 1293 (!page_mapped(page) || mem_cgroup_swap_full(page))) { 1294 delete_from_swap_cache(page); 1295 SetPageDirty(page); 1296 } 1297 unlock_page(page); 1298 put_page(page); 1299 } 1300 return p != NULL; 1301 } 1302 1303 #ifdef CONFIG_HIBERNATION 1304 /* 1305 * Find the swap type that corresponds to given device (if any). 1306 * 1307 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1308 * from 0, in which the swap header is expected to be located. 1309 * 1310 * This is needed for the suspend to disk (aka swsusp). 1311 */ 1312 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 1313 { 1314 struct block_device *bdev = NULL; 1315 int type; 1316 1317 if (device) 1318 bdev = bdget(device); 1319 1320 spin_lock(&swap_lock); 1321 for (type = 0; type < nr_swapfiles; type++) { 1322 struct swap_info_struct *sis = swap_info[type]; 1323 1324 if (!(sis->flags & SWP_WRITEOK)) 1325 continue; 1326 1327 if (!bdev) { 1328 if (bdev_p) 1329 *bdev_p = bdgrab(sis->bdev); 1330 1331 spin_unlock(&swap_lock); 1332 return type; 1333 } 1334 if (bdev == sis->bdev) { 1335 struct swap_extent *se = &sis->first_swap_extent; 1336 1337 if (se->start_block == offset) { 1338 if (bdev_p) 1339 *bdev_p = bdgrab(sis->bdev); 1340 1341 spin_unlock(&swap_lock); 1342 bdput(bdev); 1343 return type; 1344 } 1345 } 1346 } 1347 spin_unlock(&swap_lock); 1348 if (bdev) 1349 bdput(bdev); 1350 1351 return -ENODEV; 1352 } 1353 1354 /* 1355 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1356 * corresponding to given index in swap_info (swap type). 1357 */ 1358 sector_t swapdev_block(int type, pgoff_t offset) 1359 { 1360 struct block_device *bdev; 1361 1362 if ((unsigned int)type >= nr_swapfiles) 1363 return 0; 1364 if (!(swap_info[type]->flags & SWP_WRITEOK)) 1365 return 0; 1366 return map_swap_entry(swp_entry(type, offset), &bdev); 1367 } 1368 1369 /* 1370 * Return either the total number of swap pages of given type, or the number 1371 * of free pages of that type (depending on @free) 1372 * 1373 * This is needed for software suspend 1374 */ 1375 unsigned int count_swap_pages(int type, int free) 1376 { 1377 unsigned int n = 0; 1378 1379 spin_lock(&swap_lock); 1380 if ((unsigned int)type < nr_swapfiles) { 1381 struct swap_info_struct *sis = swap_info[type]; 1382 1383 spin_lock(&sis->lock); 1384 if (sis->flags & SWP_WRITEOK) { 1385 n = sis->pages; 1386 if (free) 1387 n -= sis->inuse_pages; 1388 } 1389 spin_unlock(&sis->lock); 1390 } 1391 spin_unlock(&swap_lock); 1392 return n; 1393 } 1394 #endif /* CONFIG_HIBERNATION */ 1395 1396 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1397 { 1398 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte); 1399 } 1400 1401 /* 1402 * No need to decide whether this PTE shares the swap entry with others, 1403 * just let do_wp_page work it out if a write is requested later - to 1404 * force COW, vm_page_prot omits write permission from any private vma. 1405 */ 1406 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1407 unsigned long addr, swp_entry_t entry, struct page *page) 1408 { 1409 struct page *swapcache; 1410 struct mem_cgroup *memcg; 1411 spinlock_t *ptl; 1412 pte_t *pte; 1413 int ret = 1; 1414 1415 swapcache = page; 1416 page = ksm_might_need_to_copy(page, vma, addr); 1417 if (unlikely(!page)) 1418 return -ENOMEM; 1419 1420 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, 1421 &memcg, false)) { 1422 ret = -ENOMEM; 1423 goto out_nolock; 1424 } 1425 1426 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1427 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1428 mem_cgroup_cancel_charge(page, memcg, false); 1429 ret = 0; 1430 goto out; 1431 } 1432 1433 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1434 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1435 get_page(page); 1436 set_pte_at(vma->vm_mm, addr, pte, 1437 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1438 if (page == swapcache) { 1439 page_add_anon_rmap(page, vma, addr, false); 1440 mem_cgroup_commit_charge(page, memcg, true, false); 1441 } else { /* ksm created a completely new copy */ 1442 page_add_new_anon_rmap(page, vma, addr, false); 1443 mem_cgroup_commit_charge(page, memcg, false, false); 1444 lru_cache_add_active_or_unevictable(page, vma); 1445 } 1446 swap_free(entry); 1447 /* 1448 * Move the page to the active list so it is not 1449 * immediately swapped out again after swapon. 1450 */ 1451 activate_page(page); 1452 out: 1453 pte_unmap_unlock(pte, ptl); 1454 out_nolock: 1455 if (page != swapcache) { 1456 unlock_page(page); 1457 put_page(page); 1458 } 1459 return ret; 1460 } 1461 1462 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1463 unsigned long addr, unsigned long end, 1464 swp_entry_t entry, struct page *page) 1465 { 1466 pte_t swp_pte = swp_entry_to_pte(entry); 1467 pte_t *pte; 1468 int ret = 0; 1469 1470 /* 1471 * We don't actually need pte lock while scanning for swp_pte: since 1472 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 1473 * page table while we're scanning; though it could get zapped, and on 1474 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 1475 * of unmatched parts which look like swp_pte, so unuse_pte must 1476 * recheck under pte lock. Scanning without pte lock lets it be 1477 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 1478 */ 1479 pte = pte_offset_map(pmd, addr); 1480 do { 1481 /* 1482 * swapoff spends a _lot_ of time in this loop! 1483 * Test inline before going to call unuse_pte. 1484 */ 1485 if (unlikely(pte_same_as_swp(*pte, swp_pte))) { 1486 pte_unmap(pte); 1487 ret = unuse_pte(vma, pmd, addr, entry, page); 1488 if (ret) 1489 goto out; 1490 pte = pte_offset_map(pmd, addr); 1491 } 1492 } while (pte++, addr += PAGE_SIZE, addr != end); 1493 pte_unmap(pte - 1); 1494 out: 1495 return ret; 1496 } 1497 1498 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1499 unsigned long addr, unsigned long end, 1500 swp_entry_t entry, struct page *page) 1501 { 1502 pmd_t *pmd; 1503 unsigned long next; 1504 int ret; 1505 1506 pmd = pmd_offset(pud, addr); 1507 do { 1508 cond_resched(); 1509 next = pmd_addr_end(addr, end); 1510 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1511 continue; 1512 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 1513 if (ret) 1514 return ret; 1515 } while (pmd++, addr = next, addr != end); 1516 return 0; 1517 } 1518 1519 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 1520 unsigned long addr, unsigned long end, 1521 swp_entry_t entry, struct page *page) 1522 { 1523 pud_t *pud; 1524 unsigned long next; 1525 int ret; 1526 1527 pud = pud_offset(pgd, addr); 1528 do { 1529 next = pud_addr_end(addr, end); 1530 if (pud_none_or_clear_bad(pud)) 1531 continue; 1532 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 1533 if (ret) 1534 return ret; 1535 } while (pud++, addr = next, addr != end); 1536 return 0; 1537 } 1538 1539 static int unuse_vma(struct vm_area_struct *vma, 1540 swp_entry_t entry, struct page *page) 1541 { 1542 pgd_t *pgd; 1543 unsigned long addr, end, next; 1544 int ret; 1545 1546 if (page_anon_vma(page)) { 1547 addr = page_address_in_vma(page, vma); 1548 if (addr == -EFAULT) 1549 return 0; 1550 else 1551 end = addr + PAGE_SIZE; 1552 } else { 1553 addr = vma->vm_start; 1554 end = vma->vm_end; 1555 } 1556 1557 pgd = pgd_offset(vma->vm_mm, addr); 1558 do { 1559 next = pgd_addr_end(addr, end); 1560 if (pgd_none_or_clear_bad(pgd)) 1561 continue; 1562 ret = unuse_pud_range(vma, pgd, addr, next, entry, page); 1563 if (ret) 1564 return ret; 1565 } while (pgd++, addr = next, addr != end); 1566 return 0; 1567 } 1568 1569 static int unuse_mm(struct mm_struct *mm, 1570 swp_entry_t entry, struct page *page) 1571 { 1572 struct vm_area_struct *vma; 1573 int ret = 0; 1574 1575 if (!down_read_trylock(&mm->mmap_sem)) { 1576 /* 1577 * Activate page so shrink_inactive_list is unlikely to unmap 1578 * its ptes while lock is dropped, so swapoff can make progress. 1579 */ 1580 activate_page(page); 1581 unlock_page(page); 1582 down_read(&mm->mmap_sem); 1583 lock_page(page); 1584 } 1585 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1586 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 1587 break; 1588 cond_resched(); 1589 } 1590 up_read(&mm->mmap_sem); 1591 return (ret < 0)? ret: 0; 1592 } 1593 1594 /* 1595 * Scan swap_map (or frontswap_map if frontswap parameter is true) 1596 * from current position to next entry still in use. 1597 * Recycle to start on reaching the end, returning 0 when empty. 1598 */ 1599 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1600 unsigned int prev, bool frontswap) 1601 { 1602 unsigned int max = si->max; 1603 unsigned int i = prev; 1604 unsigned char count; 1605 1606 /* 1607 * No need for swap_lock here: we're just looking 1608 * for whether an entry is in use, not modifying it; false 1609 * hits are okay, and sys_swapoff() has already prevented new 1610 * allocations from this area (while holding swap_lock). 1611 */ 1612 for (;;) { 1613 if (++i >= max) { 1614 if (!prev) { 1615 i = 0; 1616 break; 1617 } 1618 /* 1619 * No entries in use at top of swap_map, 1620 * loop back to start and recheck there. 1621 */ 1622 max = prev + 1; 1623 prev = 0; 1624 i = 1; 1625 } 1626 count = READ_ONCE(si->swap_map[i]); 1627 if (count && swap_count(count) != SWAP_MAP_BAD) 1628 if (!frontswap || frontswap_test(si, i)) 1629 break; 1630 if ((i % LATENCY_LIMIT) == 0) 1631 cond_resched(); 1632 } 1633 return i; 1634 } 1635 1636 /* 1637 * We completely avoid races by reading each swap page in advance, 1638 * and then search for the process using it. All the necessary 1639 * page table adjustments can then be made atomically. 1640 * 1641 * if the boolean frontswap is true, only unuse pages_to_unuse pages; 1642 * pages_to_unuse==0 means all pages; ignored if frontswap is false 1643 */ 1644 int try_to_unuse(unsigned int type, bool frontswap, 1645 unsigned long pages_to_unuse) 1646 { 1647 struct swap_info_struct *si = swap_info[type]; 1648 struct mm_struct *start_mm; 1649 volatile unsigned char *swap_map; /* swap_map is accessed without 1650 * locking. Mark it as volatile 1651 * to prevent compiler doing 1652 * something odd. 1653 */ 1654 unsigned char swcount; 1655 struct page *page; 1656 swp_entry_t entry; 1657 unsigned int i = 0; 1658 int retval = 0; 1659 1660 /* 1661 * When searching mms for an entry, a good strategy is to 1662 * start at the first mm we freed the previous entry from 1663 * (though actually we don't notice whether we or coincidence 1664 * freed the entry). Initialize this start_mm with a hold. 1665 * 1666 * A simpler strategy would be to start at the last mm we 1667 * freed the previous entry from; but that would take less 1668 * advantage of mmlist ordering, which clusters forked mms 1669 * together, child after parent. If we race with dup_mmap(), we 1670 * prefer to resolve parent before child, lest we miss entries 1671 * duplicated after we scanned child: using last mm would invert 1672 * that. 1673 */ 1674 start_mm = &init_mm; 1675 mmget(&init_mm); 1676 1677 /* 1678 * Keep on scanning until all entries have gone. Usually, 1679 * one pass through swap_map is enough, but not necessarily: 1680 * there are races when an instance of an entry might be missed. 1681 */ 1682 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) { 1683 if (signal_pending(current)) { 1684 retval = -EINTR; 1685 break; 1686 } 1687 1688 /* 1689 * Get a page for the entry, using the existing swap 1690 * cache page if there is one. Otherwise, get a clean 1691 * page and read the swap into it. 1692 */ 1693 swap_map = &si->swap_map[i]; 1694 entry = swp_entry(type, i); 1695 page = read_swap_cache_async(entry, 1696 GFP_HIGHUSER_MOVABLE, NULL, 0); 1697 if (!page) { 1698 /* 1699 * Either swap_duplicate() failed because entry 1700 * has been freed independently, and will not be 1701 * reused since sys_swapoff() already disabled 1702 * allocation from here, or alloc_page() failed. 1703 */ 1704 swcount = *swap_map; 1705 /* 1706 * We don't hold lock here, so the swap entry could be 1707 * SWAP_MAP_BAD (when the cluster is discarding). 1708 * Instead of fail out, We can just skip the swap 1709 * entry because swapoff will wait for discarding 1710 * finish anyway. 1711 */ 1712 if (!swcount || swcount == SWAP_MAP_BAD) 1713 continue; 1714 retval = -ENOMEM; 1715 break; 1716 } 1717 1718 /* 1719 * Don't hold on to start_mm if it looks like exiting. 1720 */ 1721 if (atomic_read(&start_mm->mm_users) == 1) { 1722 mmput(start_mm); 1723 start_mm = &init_mm; 1724 mmget(&init_mm); 1725 } 1726 1727 /* 1728 * Wait for and lock page. When do_swap_page races with 1729 * try_to_unuse, do_swap_page can handle the fault much 1730 * faster than try_to_unuse can locate the entry. This 1731 * apparently redundant "wait_on_page_locked" lets try_to_unuse 1732 * defer to do_swap_page in such a case - in some tests, 1733 * do_swap_page and try_to_unuse repeatedly compete. 1734 */ 1735 wait_on_page_locked(page); 1736 wait_on_page_writeback(page); 1737 lock_page(page); 1738 wait_on_page_writeback(page); 1739 1740 /* 1741 * Remove all references to entry. 1742 */ 1743 swcount = *swap_map; 1744 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 1745 retval = shmem_unuse(entry, page); 1746 /* page has already been unlocked and released */ 1747 if (retval < 0) 1748 break; 1749 continue; 1750 } 1751 if (swap_count(swcount) && start_mm != &init_mm) 1752 retval = unuse_mm(start_mm, entry, page); 1753 1754 if (swap_count(*swap_map)) { 1755 int set_start_mm = (*swap_map >= swcount); 1756 struct list_head *p = &start_mm->mmlist; 1757 struct mm_struct *new_start_mm = start_mm; 1758 struct mm_struct *prev_mm = start_mm; 1759 struct mm_struct *mm; 1760 1761 mmget(new_start_mm); 1762 mmget(prev_mm); 1763 spin_lock(&mmlist_lock); 1764 while (swap_count(*swap_map) && !retval && 1765 (p = p->next) != &start_mm->mmlist) { 1766 mm = list_entry(p, struct mm_struct, mmlist); 1767 if (!mmget_not_zero(mm)) 1768 continue; 1769 spin_unlock(&mmlist_lock); 1770 mmput(prev_mm); 1771 prev_mm = mm; 1772 1773 cond_resched(); 1774 1775 swcount = *swap_map; 1776 if (!swap_count(swcount)) /* any usage ? */ 1777 ; 1778 else if (mm == &init_mm) 1779 set_start_mm = 1; 1780 else 1781 retval = unuse_mm(mm, entry, page); 1782 1783 if (set_start_mm && *swap_map < swcount) { 1784 mmput(new_start_mm); 1785 mmget(mm); 1786 new_start_mm = mm; 1787 set_start_mm = 0; 1788 } 1789 spin_lock(&mmlist_lock); 1790 } 1791 spin_unlock(&mmlist_lock); 1792 mmput(prev_mm); 1793 mmput(start_mm); 1794 start_mm = new_start_mm; 1795 } 1796 if (retval) { 1797 unlock_page(page); 1798 put_page(page); 1799 break; 1800 } 1801 1802 /* 1803 * If a reference remains (rare), we would like to leave 1804 * the page in the swap cache; but try_to_unmap could 1805 * then re-duplicate the entry once we drop page lock, 1806 * so we might loop indefinitely; also, that page could 1807 * not be swapped out to other storage meanwhile. So: 1808 * delete from cache even if there's another reference, 1809 * after ensuring that the data has been saved to disk - 1810 * since if the reference remains (rarer), it will be 1811 * read from disk into another page. Splitting into two 1812 * pages would be incorrect if swap supported "shared 1813 * private" pages, but they are handled by tmpfs files. 1814 * 1815 * Given how unuse_vma() targets one particular offset 1816 * in an anon_vma, once the anon_vma has been determined, 1817 * this splitting happens to be just what is needed to 1818 * handle where KSM pages have been swapped out: re-reading 1819 * is unnecessarily slow, but we can fix that later on. 1820 */ 1821 if (swap_count(*swap_map) && 1822 PageDirty(page) && PageSwapCache(page)) { 1823 struct writeback_control wbc = { 1824 .sync_mode = WB_SYNC_NONE, 1825 }; 1826 1827 swap_writepage(page, &wbc); 1828 lock_page(page); 1829 wait_on_page_writeback(page); 1830 } 1831 1832 /* 1833 * It is conceivable that a racing task removed this page from 1834 * swap cache just before we acquired the page lock at the top, 1835 * or while we dropped it in unuse_mm(). The page might even 1836 * be back in swap cache on another swap area: that we must not 1837 * delete, since it may not have been written out to swap yet. 1838 */ 1839 if (PageSwapCache(page) && 1840 likely(page_private(page) == entry.val)) 1841 delete_from_swap_cache(page); 1842 1843 /* 1844 * So we could skip searching mms once swap count went 1845 * to 1, we did not mark any present ptes as dirty: must 1846 * mark page dirty so shrink_page_list will preserve it. 1847 */ 1848 SetPageDirty(page); 1849 unlock_page(page); 1850 put_page(page); 1851 1852 /* 1853 * Make sure that we aren't completely killing 1854 * interactive performance. 1855 */ 1856 cond_resched(); 1857 if (frontswap && pages_to_unuse > 0) { 1858 if (!--pages_to_unuse) 1859 break; 1860 } 1861 } 1862 1863 mmput(start_mm); 1864 return retval; 1865 } 1866 1867 /* 1868 * After a successful try_to_unuse, if no swap is now in use, we know 1869 * we can empty the mmlist. swap_lock must be held on entry and exit. 1870 * Note that mmlist_lock nests inside swap_lock, and an mm must be 1871 * added to the mmlist just after page_duplicate - before would be racy. 1872 */ 1873 static void drain_mmlist(void) 1874 { 1875 struct list_head *p, *next; 1876 unsigned int type; 1877 1878 for (type = 0; type < nr_swapfiles; type++) 1879 if (swap_info[type]->inuse_pages) 1880 return; 1881 spin_lock(&mmlist_lock); 1882 list_for_each_safe(p, next, &init_mm.mmlist) 1883 list_del_init(p); 1884 spin_unlock(&mmlist_lock); 1885 } 1886 1887 /* 1888 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 1889 * corresponds to page offset for the specified swap entry. 1890 * Note that the type of this function is sector_t, but it returns page offset 1891 * into the bdev, not sector offset. 1892 */ 1893 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 1894 { 1895 struct swap_info_struct *sis; 1896 struct swap_extent *start_se; 1897 struct swap_extent *se; 1898 pgoff_t offset; 1899 1900 sis = swap_info[swp_type(entry)]; 1901 *bdev = sis->bdev; 1902 1903 offset = swp_offset(entry); 1904 start_se = sis->curr_swap_extent; 1905 se = start_se; 1906 1907 for ( ; ; ) { 1908 if (se->start_page <= offset && 1909 offset < (se->start_page + se->nr_pages)) { 1910 return se->start_block + (offset - se->start_page); 1911 } 1912 se = list_next_entry(se, list); 1913 sis->curr_swap_extent = se; 1914 BUG_ON(se == start_se); /* It *must* be present */ 1915 } 1916 } 1917 1918 /* 1919 * Returns the page offset into bdev for the specified page's swap entry. 1920 */ 1921 sector_t map_swap_page(struct page *page, struct block_device **bdev) 1922 { 1923 swp_entry_t entry; 1924 entry.val = page_private(page); 1925 return map_swap_entry(entry, bdev); 1926 } 1927 1928 /* 1929 * Free all of a swapdev's extent information 1930 */ 1931 static void destroy_swap_extents(struct swap_info_struct *sis) 1932 { 1933 while (!list_empty(&sis->first_swap_extent.list)) { 1934 struct swap_extent *se; 1935 1936 se = list_first_entry(&sis->first_swap_extent.list, 1937 struct swap_extent, list); 1938 list_del(&se->list); 1939 kfree(se); 1940 } 1941 1942 if (sis->flags & SWP_FILE) { 1943 struct file *swap_file = sis->swap_file; 1944 struct address_space *mapping = swap_file->f_mapping; 1945 1946 sis->flags &= ~SWP_FILE; 1947 mapping->a_ops->swap_deactivate(swap_file); 1948 } 1949 } 1950 1951 /* 1952 * Add a block range (and the corresponding page range) into this swapdev's 1953 * extent list. The extent list is kept sorted in page order. 1954 * 1955 * This function rather assumes that it is called in ascending page order. 1956 */ 1957 int 1958 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1959 unsigned long nr_pages, sector_t start_block) 1960 { 1961 struct swap_extent *se; 1962 struct swap_extent *new_se; 1963 struct list_head *lh; 1964 1965 if (start_page == 0) { 1966 se = &sis->first_swap_extent; 1967 sis->curr_swap_extent = se; 1968 se->start_page = 0; 1969 se->nr_pages = nr_pages; 1970 se->start_block = start_block; 1971 return 1; 1972 } else { 1973 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 1974 se = list_entry(lh, struct swap_extent, list); 1975 BUG_ON(se->start_page + se->nr_pages != start_page); 1976 if (se->start_block + se->nr_pages == start_block) { 1977 /* Merge it */ 1978 se->nr_pages += nr_pages; 1979 return 0; 1980 } 1981 } 1982 1983 /* 1984 * No merge. Insert a new extent, preserving ordering. 1985 */ 1986 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 1987 if (new_se == NULL) 1988 return -ENOMEM; 1989 new_se->start_page = start_page; 1990 new_se->nr_pages = nr_pages; 1991 new_se->start_block = start_block; 1992 1993 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 1994 return 1; 1995 } 1996 1997 /* 1998 * A `swap extent' is a simple thing which maps a contiguous range of pages 1999 * onto a contiguous range of disk blocks. An ordered list of swap extents 2000 * is built at swapon time and is then used at swap_writepage/swap_readpage 2001 * time for locating where on disk a page belongs. 2002 * 2003 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2004 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2005 * swap files identically. 2006 * 2007 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2008 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2009 * swapfiles are handled *identically* after swapon time. 2010 * 2011 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2012 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 2013 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 2014 * requirements, they are simply tossed out - we will never use those blocks 2015 * for swapping. 2016 * 2017 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 2018 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 2019 * which will scribble on the fs. 2020 * 2021 * The amount of disk space which a single swap extent represents varies. 2022 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2023 * extents in the list. To avoid much list walking, we cache the previous 2024 * search location in `curr_swap_extent', and start new searches from there. 2025 * This is extremely effective. The average number of iterations in 2026 * map_swap_page() has been measured at about 0.3 per page. - akpm. 2027 */ 2028 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2029 { 2030 struct file *swap_file = sis->swap_file; 2031 struct address_space *mapping = swap_file->f_mapping; 2032 struct inode *inode = mapping->host; 2033 int ret; 2034 2035 if (S_ISBLK(inode->i_mode)) { 2036 ret = add_swap_extent(sis, 0, sis->max, 0); 2037 *span = sis->pages; 2038 return ret; 2039 } 2040 2041 if (mapping->a_ops->swap_activate) { 2042 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2043 if (!ret) { 2044 sis->flags |= SWP_FILE; 2045 ret = add_swap_extent(sis, 0, sis->max, 0); 2046 *span = sis->pages; 2047 } 2048 return ret; 2049 } 2050 2051 return generic_swapfile_activate(sis, swap_file, span); 2052 } 2053 2054 static void _enable_swap_info(struct swap_info_struct *p, int prio, 2055 unsigned char *swap_map, 2056 struct swap_cluster_info *cluster_info) 2057 { 2058 if (prio >= 0) 2059 p->prio = prio; 2060 else 2061 p->prio = --least_priority; 2062 /* 2063 * the plist prio is negated because plist ordering is 2064 * low-to-high, while swap ordering is high-to-low 2065 */ 2066 p->list.prio = -p->prio; 2067 p->avail_list.prio = -p->prio; 2068 p->swap_map = swap_map; 2069 p->cluster_info = cluster_info; 2070 p->flags |= SWP_WRITEOK; 2071 atomic_long_add(p->pages, &nr_swap_pages); 2072 total_swap_pages += p->pages; 2073 2074 assert_spin_locked(&swap_lock); 2075 /* 2076 * both lists are plists, and thus priority ordered. 2077 * swap_active_head needs to be priority ordered for swapoff(), 2078 * which on removal of any swap_info_struct with an auto-assigned 2079 * (i.e. negative) priority increments the auto-assigned priority 2080 * of any lower-priority swap_info_structs. 2081 * swap_avail_head needs to be priority ordered for get_swap_page(), 2082 * which allocates swap pages from the highest available priority 2083 * swap_info_struct. 2084 */ 2085 plist_add(&p->list, &swap_active_head); 2086 spin_lock(&swap_avail_lock); 2087 plist_add(&p->avail_list, &swap_avail_head); 2088 spin_unlock(&swap_avail_lock); 2089 } 2090 2091 static void enable_swap_info(struct swap_info_struct *p, int prio, 2092 unsigned char *swap_map, 2093 struct swap_cluster_info *cluster_info, 2094 unsigned long *frontswap_map) 2095 { 2096 frontswap_init(p->type, frontswap_map); 2097 spin_lock(&swap_lock); 2098 spin_lock(&p->lock); 2099 _enable_swap_info(p, prio, swap_map, cluster_info); 2100 spin_unlock(&p->lock); 2101 spin_unlock(&swap_lock); 2102 } 2103 2104 static void reinsert_swap_info(struct swap_info_struct *p) 2105 { 2106 spin_lock(&swap_lock); 2107 spin_lock(&p->lock); 2108 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2109 spin_unlock(&p->lock); 2110 spin_unlock(&swap_lock); 2111 } 2112 2113 bool has_usable_swap(void) 2114 { 2115 bool ret = true; 2116 2117 spin_lock(&swap_lock); 2118 if (plist_head_empty(&swap_active_head)) 2119 ret = false; 2120 spin_unlock(&swap_lock); 2121 return ret; 2122 } 2123 2124 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2125 { 2126 struct swap_info_struct *p = NULL; 2127 unsigned char *swap_map; 2128 struct swap_cluster_info *cluster_info; 2129 unsigned long *frontswap_map; 2130 struct file *swap_file, *victim; 2131 struct address_space *mapping; 2132 struct inode *inode; 2133 struct filename *pathname; 2134 int err, found = 0; 2135 unsigned int old_block_size; 2136 2137 if (!capable(CAP_SYS_ADMIN)) 2138 return -EPERM; 2139 2140 BUG_ON(!current->mm); 2141 2142 pathname = getname(specialfile); 2143 if (IS_ERR(pathname)) 2144 return PTR_ERR(pathname); 2145 2146 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2147 err = PTR_ERR(victim); 2148 if (IS_ERR(victim)) 2149 goto out; 2150 2151 mapping = victim->f_mapping; 2152 spin_lock(&swap_lock); 2153 plist_for_each_entry(p, &swap_active_head, list) { 2154 if (p->flags & SWP_WRITEOK) { 2155 if (p->swap_file->f_mapping == mapping) { 2156 found = 1; 2157 break; 2158 } 2159 } 2160 } 2161 if (!found) { 2162 err = -EINVAL; 2163 spin_unlock(&swap_lock); 2164 goto out_dput; 2165 } 2166 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2167 vm_unacct_memory(p->pages); 2168 else { 2169 err = -ENOMEM; 2170 spin_unlock(&swap_lock); 2171 goto out_dput; 2172 } 2173 spin_lock(&swap_avail_lock); 2174 plist_del(&p->avail_list, &swap_avail_head); 2175 spin_unlock(&swap_avail_lock); 2176 spin_lock(&p->lock); 2177 if (p->prio < 0) { 2178 struct swap_info_struct *si = p; 2179 2180 plist_for_each_entry_continue(si, &swap_active_head, list) { 2181 si->prio++; 2182 si->list.prio--; 2183 si->avail_list.prio--; 2184 } 2185 least_priority++; 2186 } 2187 plist_del(&p->list, &swap_active_head); 2188 atomic_long_sub(p->pages, &nr_swap_pages); 2189 total_swap_pages -= p->pages; 2190 p->flags &= ~SWP_WRITEOK; 2191 spin_unlock(&p->lock); 2192 spin_unlock(&swap_lock); 2193 2194 disable_swap_slots_cache_lock(); 2195 2196 set_current_oom_origin(); 2197 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ 2198 clear_current_oom_origin(); 2199 2200 if (err) { 2201 /* re-insert swap space back into swap_list */ 2202 reinsert_swap_info(p); 2203 reenable_swap_slots_cache_unlock(); 2204 goto out_dput; 2205 } 2206 2207 reenable_swap_slots_cache_unlock(); 2208 2209 flush_work(&p->discard_work); 2210 2211 destroy_swap_extents(p); 2212 if (p->flags & SWP_CONTINUED) 2213 free_swap_count_continuations(p); 2214 2215 mutex_lock(&swapon_mutex); 2216 spin_lock(&swap_lock); 2217 spin_lock(&p->lock); 2218 drain_mmlist(); 2219 2220 /* wait for anyone still in scan_swap_map */ 2221 p->highest_bit = 0; /* cuts scans short */ 2222 while (p->flags >= SWP_SCANNING) { 2223 spin_unlock(&p->lock); 2224 spin_unlock(&swap_lock); 2225 schedule_timeout_uninterruptible(1); 2226 spin_lock(&swap_lock); 2227 spin_lock(&p->lock); 2228 } 2229 2230 swap_file = p->swap_file; 2231 old_block_size = p->old_block_size; 2232 p->swap_file = NULL; 2233 p->max = 0; 2234 swap_map = p->swap_map; 2235 p->swap_map = NULL; 2236 cluster_info = p->cluster_info; 2237 p->cluster_info = NULL; 2238 frontswap_map = frontswap_map_get(p); 2239 spin_unlock(&p->lock); 2240 spin_unlock(&swap_lock); 2241 frontswap_invalidate_area(p->type); 2242 frontswap_map_set(p, NULL); 2243 mutex_unlock(&swapon_mutex); 2244 free_percpu(p->percpu_cluster); 2245 p->percpu_cluster = NULL; 2246 vfree(swap_map); 2247 vfree(cluster_info); 2248 vfree(frontswap_map); 2249 /* Destroy swap account information */ 2250 swap_cgroup_swapoff(p->type); 2251 exit_swap_address_space(p->type); 2252 2253 inode = mapping->host; 2254 if (S_ISBLK(inode->i_mode)) { 2255 struct block_device *bdev = I_BDEV(inode); 2256 set_blocksize(bdev, old_block_size); 2257 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2258 } else { 2259 inode_lock(inode); 2260 inode->i_flags &= ~S_SWAPFILE; 2261 inode_unlock(inode); 2262 } 2263 filp_close(swap_file, NULL); 2264 2265 /* 2266 * Clear the SWP_USED flag after all resources are freed so that swapon 2267 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2268 * not hold p->lock after we cleared its SWP_WRITEOK. 2269 */ 2270 spin_lock(&swap_lock); 2271 p->flags = 0; 2272 spin_unlock(&swap_lock); 2273 2274 err = 0; 2275 atomic_inc(&proc_poll_event); 2276 wake_up_interruptible(&proc_poll_wait); 2277 2278 out_dput: 2279 filp_close(victim, NULL); 2280 out: 2281 putname(pathname); 2282 return err; 2283 } 2284 2285 #ifdef CONFIG_PROC_FS 2286 static unsigned swaps_poll(struct file *file, poll_table *wait) 2287 { 2288 struct seq_file *seq = file->private_data; 2289 2290 poll_wait(file, &proc_poll_wait, wait); 2291 2292 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2293 seq->poll_event = atomic_read(&proc_poll_event); 2294 return POLLIN | POLLRDNORM | POLLERR | POLLPRI; 2295 } 2296 2297 return POLLIN | POLLRDNORM; 2298 } 2299 2300 /* iterator */ 2301 static void *swap_start(struct seq_file *swap, loff_t *pos) 2302 { 2303 struct swap_info_struct *si; 2304 int type; 2305 loff_t l = *pos; 2306 2307 mutex_lock(&swapon_mutex); 2308 2309 if (!l) 2310 return SEQ_START_TOKEN; 2311 2312 for (type = 0; type < nr_swapfiles; type++) { 2313 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2314 si = swap_info[type]; 2315 if (!(si->flags & SWP_USED) || !si->swap_map) 2316 continue; 2317 if (!--l) 2318 return si; 2319 } 2320 2321 return NULL; 2322 } 2323 2324 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2325 { 2326 struct swap_info_struct *si = v; 2327 int type; 2328 2329 if (v == SEQ_START_TOKEN) 2330 type = 0; 2331 else 2332 type = si->type + 1; 2333 2334 for (; type < nr_swapfiles; type++) { 2335 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2336 si = swap_info[type]; 2337 if (!(si->flags & SWP_USED) || !si->swap_map) 2338 continue; 2339 ++*pos; 2340 return si; 2341 } 2342 2343 return NULL; 2344 } 2345 2346 static void swap_stop(struct seq_file *swap, void *v) 2347 { 2348 mutex_unlock(&swapon_mutex); 2349 } 2350 2351 static int swap_show(struct seq_file *swap, void *v) 2352 { 2353 struct swap_info_struct *si = v; 2354 struct file *file; 2355 int len; 2356 2357 if (si == SEQ_START_TOKEN) { 2358 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 2359 return 0; 2360 } 2361 2362 file = si->swap_file; 2363 len = seq_file_path(swap, file, " \t\n\\"); 2364 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 2365 len < 40 ? 40 - len : 1, " ", 2366 S_ISBLK(file_inode(file)->i_mode) ? 2367 "partition" : "file\t", 2368 si->pages << (PAGE_SHIFT - 10), 2369 si->inuse_pages << (PAGE_SHIFT - 10), 2370 si->prio); 2371 return 0; 2372 } 2373 2374 static const struct seq_operations swaps_op = { 2375 .start = swap_start, 2376 .next = swap_next, 2377 .stop = swap_stop, 2378 .show = swap_show 2379 }; 2380 2381 static int swaps_open(struct inode *inode, struct file *file) 2382 { 2383 struct seq_file *seq; 2384 int ret; 2385 2386 ret = seq_open(file, &swaps_op); 2387 if (ret) 2388 return ret; 2389 2390 seq = file->private_data; 2391 seq->poll_event = atomic_read(&proc_poll_event); 2392 return 0; 2393 } 2394 2395 static const struct file_operations proc_swaps_operations = { 2396 .open = swaps_open, 2397 .read = seq_read, 2398 .llseek = seq_lseek, 2399 .release = seq_release, 2400 .poll = swaps_poll, 2401 }; 2402 2403 static int __init procswaps_init(void) 2404 { 2405 proc_create("swaps", 0, NULL, &proc_swaps_operations); 2406 return 0; 2407 } 2408 __initcall(procswaps_init); 2409 #endif /* CONFIG_PROC_FS */ 2410 2411 #ifdef MAX_SWAPFILES_CHECK 2412 static int __init max_swapfiles_check(void) 2413 { 2414 MAX_SWAPFILES_CHECK(); 2415 return 0; 2416 } 2417 late_initcall(max_swapfiles_check); 2418 #endif 2419 2420 static struct swap_info_struct *alloc_swap_info(void) 2421 { 2422 struct swap_info_struct *p; 2423 unsigned int type; 2424 2425 p = kzalloc(sizeof(*p), GFP_KERNEL); 2426 if (!p) 2427 return ERR_PTR(-ENOMEM); 2428 2429 spin_lock(&swap_lock); 2430 for (type = 0; type < nr_swapfiles; type++) { 2431 if (!(swap_info[type]->flags & SWP_USED)) 2432 break; 2433 } 2434 if (type >= MAX_SWAPFILES) { 2435 spin_unlock(&swap_lock); 2436 kfree(p); 2437 return ERR_PTR(-EPERM); 2438 } 2439 if (type >= nr_swapfiles) { 2440 p->type = type; 2441 swap_info[type] = p; 2442 /* 2443 * Write swap_info[type] before nr_swapfiles, in case a 2444 * racing procfs swap_start() or swap_next() is reading them. 2445 * (We never shrink nr_swapfiles, we never free this entry.) 2446 */ 2447 smp_wmb(); 2448 nr_swapfiles++; 2449 } else { 2450 kfree(p); 2451 p = swap_info[type]; 2452 /* 2453 * Do not memset this entry: a racing procfs swap_next() 2454 * would be relying on p->type to remain valid. 2455 */ 2456 } 2457 INIT_LIST_HEAD(&p->first_swap_extent.list); 2458 plist_node_init(&p->list, 0); 2459 plist_node_init(&p->avail_list, 0); 2460 p->flags = SWP_USED; 2461 spin_unlock(&swap_lock); 2462 spin_lock_init(&p->lock); 2463 2464 return p; 2465 } 2466 2467 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2468 { 2469 int error; 2470 2471 if (S_ISBLK(inode->i_mode)) { 2472 p->bdev = bdgrab(I_BDEV(inode)); 2473 error = blkdev_get(p->bdev, 2474 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2475 if (error < 0) { 2476 p->bdev = NULL; 2477 return error; 2478 } 2479 p->old_block_size = block_size(p->bdev); 2480 error = set_blocksize(p->bdev, PAGE_SIZE); 2481 if (error < 0) 2482 return error; 2483 p->flags |= SWP_BLKDEV; 2484 } else if (S_ISREG(inode->i_mode)) { 2485 p->bdev = inode->i_sb->s_bdev; 2486 inode_lock(inode); 2487 if (IS_SWAPFILE(inode)) 2488 return -EBUSY; 2489 } else 2490 return -EINVAL; 2491 2492 return 0; 2493 } 2494 2495 static unsigned long read_swap_header(struct swap_info_struct *p, 2496 union swap_header *swap_header, 2497 struct inode *inode) 2498 { 2499 int i; 2500 unsigned long maxpages; 2501 unsigned long swapfilepages; 2502 unsigned long last_page; 2503 2504 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2505 pr_err("Unable to find swap-space signature\n"); 2506 return 0; 2507 } 2508 2509 /* swap partition endianess hack... */ 2510 if (swab32(swap_header->info.version) == 1) { 2511 swab32s(&swap_header->info.version); 2512 swab32s(&swap_header->info.last_page); 2513 swab32s(&swap_header->info.nr_badpages); 2514 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2515 return 0; 2516 for (i = 0; i < swap_header->info.nr_badpages; i++) 2517 swab32s(&swap_header->info.badpages[i]); 2518 } 2519 /* Check the swap header's sub-version */ 2520 if (swap_header->info.version != 1) { 2521 pr_warn("Unable to handle swap header version %d\n", 2522 swap_header->info.version); 2523 return 0; 2524 } 2525 2526 p->lowest_bit = 1; 2527 p->cluster_next = 1; 2528 p->cluster_nr = 0; 2529 2530 /* 2531 * Find out how many pages are allowed for a single swap 2532 * device. There are two limiting factors: 1) the number 2533 * of bits for the swap offset in the swp_entry_t type, and 2534 * 2) the number of bits in the swap pte as defined by the 2535 * different architectures. In order to find the 2536 * largest possible bit mask, a swap entry with swap type 0 2537 * and swap offset ~0UL is created, encoded to a swap pte, 2538 * decoded to a swp_entry_t again, and finally the swap 2539 * offset is extracted. This will mask all the bits from 2540 * the initial ~0UL mask that can't be encoded in either 2541 * the swp_entry_t or the architecture definition of a 2542 * swap pte. 2543 */ 2544 maxpages = swp_offset(pte_to_swp_entry( 2545 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2546 last_page = swap_header->info.last_page; 2547 if (last_page > maxpages) { 2548 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2549 maxpages << (PAGE_SHIFT - 10), 2550 last_page << (PAGE_SHIFT - 10)); 2551 } 2552 if (maxpages > last_page) { 2553 maxpages = last_page + 1; 2554 /* p->max is an unsigned int: don't overflow it */ 2555 if ((unsigned int)maxpages == 0) 2556 maxpages = UINT_MAX; 2557 } 2558 p->highest_bit = maxpages - 1; 2559 2560 if (!maxpages) 2561 return 0; 2562 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2563 if (swapfilepages && maxpages > swapfilepages) { 2564 pr_warn("Swap area shorter than signature indicates\n"); 2565 return 0; 2566 } 2567 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2568 return 0; 2569 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2570 return 0; 2571 2572 return maxpages; 2573 } 2574 2575 #define SWAP_CLUSTER_INFO_COLS \ 2576 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 2577 #define SWAP_CLUSTER_SPACE_COLS \ 2578 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 2579 #define SWAP_CLUSTER_COLS \ 2580 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 2581 2582 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2583 union swap_header *swap_header, 2584 unsigned char *swap_map, 2585 struct swap_cluster_info *cluster_info, 2586 unsigned long maxpages, 2587 sector_t *span) 2588 { 2589 unsigned int j, k; 2590 unsigned int nr_good_pages; 2591 int nr_extents; 2592 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2593 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 2594 unsigned long i, idx; 2595 2596 nr_good_pages = maxpages - 1; /* omit header page */ 2597 2598 cluster_list_init(&p->free_clusters); 2599 cluster_list_init(&p->discard_clusters); 2600 2601 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2602 unsigned int page_nr = swap_header->info.badpages[i]; 2603 if (page_nr == 0 || page_nr > swap_header->info.last_page) 2604 return -EINVAL; 2605 if (page_nr < maxpages) { 2606 swap_map[page_nr] = SWAP_MAP_BAD; 2607 nr_good_pages--; 2608 /* 2609 * Haven't marked the cluster free yet, no list 2610 * operation involved 2611 */ 2612 inc_cluster_info_page(p, cluster_info, page_nr); 2613 } 2614 } 2615 2616 /* Haven't marked the cluster free yet, no list operation involved */ 2617 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 2618 inc_cluster_info_page(p, cluster_info, i); 2619 2620 if (nr_good_pages) { 2621 swap_map[0] = SWAP_MAP_BAD; 2622 /* 2623 * Not mark the cluster free yet, no list 2624 * operation involved 2625 */ 2626 inc_cluster_info_page(p, cluster_info, 0); 2627 p->max = maxpages; 2628 p->pages = nr_good_pages; 2629 nr_extents = setup_swap_extents(p, span); 2630 if (nr_extents < 0) 2631 return nr_extents; 2632 nr_good_pages = p->pages; 2633 } 2634 if (!nr_good_pages) { 2635 pr_warn("Empty swap-file\n"); 2636 return -EINVAL; 2637 } 2638 2639 if (!cluster_info) 2640 return nr_extents; 2641 2642 2643 /* 2644 * Reduce false cache line sharing between cluster_info and 2645 * sharing same address space. 2646 */ 2647 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 2648 j = (k + col) % SWAP_CLUSTER_COLS; 2649 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 2650 idx = i * SWAP_CLUSTER_COLS + j; 2651 if (idx >= nr_clusters) 2652 continue; 2653 if (cluster_count(&cluster_info[idx])) 2654 continue; 2655 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 2656 cluster_list_add_tail(&p->free_clusters, cluster_info, 2657 idx); 2658 } 2659 } 2660 return nr_extents; 2661 } 2662 2663 /* 2664 * Helper to sys_swapon determining if a given swap 2665 * backing device queue supports DISCARD operations. 2666 */ 2667 static bool swap_discardable(struct swap_info_struct *si) 2668 { 2669 struct request_queue *q = bdev_get_queue(si->bdev); 2670 2671 if (!q || !blk_queue_discard(q)) 2672 return false; 2673 2674 return true; 2675 } 2676 2677 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2678 { 2679 struct swap_info_struct *p; 2680 struct filename *name; 2681 struct file *swap_file = NULL; 2682 struct address_space *mapping; 2683 int prio; 2684 int error; 2685 union swap_header *swap_header; 2686 int nr_extents; 2687 sector_t span; 2688 unsigned long maxpages; 2689 unsigned char *swap_map = NULL; 2690 struct swap_cluster_info *cluster_info = NULL; 2691 unsigned long *frontswap_map = NULL; 2692 struct page *page = NULL; 2693 struct inode *inode = NULL; 2694 2695 if (swap_flags & ~SWAP_FLAGS_VALID) 2696 return -EINVAL; 2697 2698 if (!capable(CAP_SYS_ADMIN)) 2699 return -EPERM; 2700 2701 p = alloc_swap_info(); 2702 if (IS_ERR(p)) 2703 return PTR_ERR(p); 2704 2705 INIT_WORK(&p->discard_work, swap_discard_work); 2706 2707 name = getname(specialfile); 2708 if (IS_ERR(name)) { 2709 error = PTR_ERR(name); 2710 name = NULL; 2711 goto bad_swap; 2712 } 2713 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 2714 if (IS_ERR(swap_file)) { 2715 error = PTR_ERR(swap_file); 2716 swap_file = NULL; 2717 goto bad_swap; 2718 } 2719 2720 p->swap_file = swap_file; 2721 mapping = swap_file->f_mapping; 2722 inode = mapping->host; 2723 2724 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */ 2725 error = claim_swapfile(p, inode); 2726 if (unlikely(error)) 2727 goto bad_swap; 2728 2729 /* 2730 * Read the swap header. 2731 */ 2732 if (!mapping->a_ops->readpage) { 2733 error = -EINVAL; 2734 goto bad_swap; 2735 } 2736 page = read_mapping_page(mapping, 0, swap_file); 2737 if (IS_ERR(page)) { 2738 error = PTR_ERR(page); 2739 goto bad_swap; 2740 } 2741 swap_header = kmap(page); 2742 2743 maxpages = read_swap_header(p, swap_header, inode); 2744 if (unlikely(!maxpages)) { 2745 error = -EINVAL; 2746 goto bad_swap; 2747 } 2748 2749 /* OK, set up the swap map and apply the bad block list */ 2750 swap_map = vzalloc(maxpages); 2751 if (!swap_map) { 2752 error = -ENOMEM; 2753 goto bad_swap; 2754 } 2755 2756 if (bdi_cap_stable_pages_required(inode_to_bdi(inode))) 2757 p->flags |= SWP_STABLE_WRITES; 2758 2759 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 2760 int cpu; 2761 unsigned long ci, nr_cluster; 2762 2763 p->flags |= SWP_SOLIDSTATE; 2764 /* 2765 * select a random position to start with to help wear leveling 2766 * SSD 2767 */ 2768 p->cluster_next = 1 + (prandom_u32() % p->highest_bit); 2769 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2770 2771 cluster_info = vzalloc(nr_cluster * sizeof(*cluster_info)); 2772 if (!cluster_info) { 2773 error = -ENOMEM; 2774 goto bad_swap; 2775 } 2776 2777 for (ci = 0; ci < nr_cluster; ci++) 2778 spin_lock_init(&((cluster_info + ci)->lock)); 2779 2780 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 2781 if (!p->percpu_cluster) { 2782 error = -ENOMEM; 2783 goto bad_swap; 2784 } 2785 for_each_possible_cpu(cpu) { 2786 struct percpu_cluster *cluster; 2787 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 2788 cluster_set_null(&cluster->index); 2789 } 2790 } 2791 2792 error = swap_cgroup_swapon(p->type, maxpages); 2793 if (error) 2794 goto bad_swap; 2795 2796 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 2797 cluster_info, maxpages, &span); 2798 if (unlikely(nr_extents < 0)) { 2799 error = nr_extents; 2800 goto bad_swap; 2801 } 2802 /* frontswap enabled? set up bit-per-page map for frontswap */ 2803 if (IS_ENABLED(CONFIG_FRONTSWAP)) 2804 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long)); 2805 2806 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 2807 /* 2808 * When discard is enabled for swap with no particular 2809 * policy flagged, we set all swap discard flags here in 2810 * order to sustain backward compatibility with older 2811 * swapon(8) releases. 2812 */ 2813 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 2814 SWP_PAGE_DISCARD); 2815 2816 /* 2817 * By flagging sys_swapon, a sysadmin can tell us to 2818 * either do single-time area discards only, or to just 2819 * perform discards for released swap page-clusters. 2820 * Now it's time to adjust the p->flags accordingly. 2821 */ 2822 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 2823 p->flags &= ~SWP_PAGE_DISCARD; 2824 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 2825 p->flags &= ~SWP_AREA_DISCARD; 2826 2827 /* issue a swapon-time discard if it's still required */ 2828 if (p->flags & SWP_AREA_DISCARD) { 2829 int err = discard_swap(p); 2830 if (unlikely(err)) 2831 pr_err("swapon: discard_swap(%p): %d\n", 2832 p, err); 2833 } 2834 } 2835 2836 error = init_swap_address_space(p->type, maxpages); 2837 if (error) 2838 goto bad_swap; 2839 2840 mutex_lock(&swapon_mutex); 2841 prio = -1; 2842 if (swap_flags & SWAP_FLAG_PREFER) 2843 prio = 2844 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 2845 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 2846 2847 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 2848 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 2849 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 2850 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 2851 (p->flags & SWP_DISCARDABLE) ? "D" : "", 2852 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 2853 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 2854 (frontswap_map) ? "FS" : ""); 2855 2856 mutex_unlock(&swapon_mutex); 2857 atomic_inc(&proc_poll_event); 2858 wake_up_interruptible(&proc_poll_wait); 2859 2860 if (S_ISREG(inode->i_mode)) 2861 inode->i_flags |= S_SWAPFILE; 2862 error = 0; 2863 goto out; 2864 bad_swap: 2865 free_percpu(p->percpu_cluster); 2866 p->percpu_cluster = NULL; 2867 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 2868 set_blocksize(p->bdev, p->old_block_size); 2869 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2870 } 2871 destroy_swap_extents(p); 2872 swap_cgroup_swapoff(p->type); 2873 spin_lock(&swap_lock); 2874 p->swap_file = NULL; 2875 p->flags = 0; 2876 spin_unlock(&swap_lock); 2877 vfree(swap_map); 2878 vfree(cluster_info); 2879 if (swap_file) { 2880 if (inode && S_ISREG(inode->i_mode)) { 2881 inode_unlock(inode); 2882 inode = NULL; 2883 } 2884 filp_close(swap_file, NULL); 2885 } 2886 out: 2887 if (page && !IS_ERR(page)) { 2888 kunmap(page); 2889 put_page(page); 2890 } 2891 if (name) 2892 putname(name); 2893 if (inode && S_ISREG(inode->i_mode)) 2894 inode_unlock(inode); 2895 if (!error) 2896 enable_swap_slots_cache(); 2897 return error; 2898 } 2899 2900 void si_swapinfo(struct sysinfo *val) 2901 { 2902 unsigned int type; 2903 unsigned long nr_to_be_unused = 0; 2904 2905 spin_lock(&swap_lock); 2906 for (type = 0; type < nr_swapfiles; type++) { 2907 struct swap_info_struct *si = swap_info[type]; 2908 2909 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 2910 nr_to_be_unused += si->inuse_pages; 2911 } 2912 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 2913 val->totalswap = total_swap_pages + nr_to_be_unused; 2914 spin_unlock(&swap_lock); 2915 } 2916 2917 /* 2918 * Verify that a swap entry is valid and increment its swap map count. 2919 * 2920 * Returns error code in following case. 2921 * - success -> 0 2922 * - swp_entry is invalid -> EINVAL 2923 * - swp_entry is migration entry -> EINVAL 2924 * - swap-cache reference is requested but there is already one. -> EEXIST 2925 * - swap-cache reference is requested but the entry is not used. -> ENOENT 2926 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 2927 */ 2928 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 2929 { 2930 struct swap_info_struct *p; 2931 struct swap_cluster_info *ci; 2932 unsigned long offset, type; 2933 unsigned char count; 2934 unsigned char has_cache; 2935 int err = -EINVAL; 2936 2937 if (non_swap_entry(entry)) 2938 goto out; 2939 2940 type = swp_type(entry); 2941 if (type >= nr_swapfiles) 2942 goto bad_file; 2943 p = swap_info[type]; 2944 offset = swp_offset(entry); 2945 if (unlikely(offset >= p->max)) 2946 goto out; 2947 2948 ci = lock_cluster_or_swap_info(p, offset); 2949 2950 count = p->swap_map[offset]; 2951 2952 /* 2953 * swapin_readahead() doesn't check if a swap entry is valid, so the 2954 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 2955 */ 2956 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 2957 err = -ENOENT; 2958 goto unlock_out; 2959 } 2960 2961 has_cache = count & SWAP_HAS_CACHE; 2962 count &= ~SWAP_HAS_CACHE; 2963 err = 0; 2964 2965 if (usage == SWAP_HAS_CACHE) { 2966 2967 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 2968 if (!has_cache && count) 2969 has_cache = SWAP_HAS_CACHE; 2970 else if (has_cache) /* someone else added cache */ 2971 err = -EEXIST; 2972 else /* no users remaining */ 2973 err = -ENOENT; 2974 2975 } else if (count || has_cache) { 2976 2977 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 2978 count += usage; 2979 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 2980 err = -EINVAL; 2981 else if (swap_count_continued(p, offset, count)) 2982 count = COUNT_CONTINUED; 2983 else 2984 err = -ENOMEM; 2985 } else 2986 err = -ENOENT; /* unused swap entry */ 2987 2988 p->swap_map[offset] = count | has_cache; 2989 2990 unlock_out: 2991 unlock_cluster_or_swap_info(p, ci); 2992 out: 2993 return err; 2994 2995 bad_file: 2996 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val); 2997 goto out; 2998 } 2999 3000 /* 3001 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3002 * (in which case its reference count is never incremented). 3003 */ 3004 void swap_shmem_alloc(swp_entry_t entry) 3005 { 3006 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3007 } 3008 3009 /* 3010 * Increase reference count of swap entry by 1. 3011 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3012 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3013 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3014 * might occur if a page table entry has got corrupted. 3015 */ 3016 int swap_duplicate(swp_entry_t entry) 3017 { 3018 int err = 0; 3019 3020 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3021 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3022 return err; 3023 } 3024 3025 /* 3026 * @entry: swap entry for which we allocate swap cache. 3027 * 3028 * Called when allocating swap cache for existing swap entry, 3029 * This can return error codes. Returns 0 at success. 3030 * -EBUSY means there is a swap cache. 3031 * Note: return code is different from swap_duplicate(). 3032 */ 3033 int swapcache_prepare(swp_entry_t entry) 3034 { 3035 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3036 } 3037 3038 struct swap_info_struct *page_swap_info(struct page *page) 3039 { 3040 swp_entry_t swap = { .val = page_private(page) }; 3041 return swap_info[swp_type(swap)]; 3042 } 3043 3044 /* 3045 * out-of-line __page_file_ methods to avoid include hell. 3046 */ 3047 struct address_space *__page_file_mapping(struct page *page) 3048 { 3049 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 3050 return page_swap_info(page)->swap_file->f_mapping; 3051 } 3052 EXPORT_SYMBOL_GPL(__page_file_mapping); 3053 3054 pgoff_t __page_file_index(struct page *page) 3055 { 3056 swp_entry_t swap = { .val = page_private(page) }; 3057 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 3058 return swp_offset(swap); 3059 } 3060 EXPORT_SYMBOL_GPL(__page_file_index); 3061 3062 /* 3063 * add_swap_count_continuation - called when a swap count is duplicated 3064 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3065 * page of the original vmalloc'ed swap_map, to hold the continuation count 3066 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3067 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3068 * 3069 * These continuation pages are seldom referenced: the common paths all work 3070 * on the original swap_map, only referring to a continuation page when the 3071 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3072 * 3073 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3074 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3075 * can be called after dropping locks. 3076 */ 3077 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3078 { 3079 struct swap_info_struct *si; 3080 struct swap_cluster_info *ci; 3081 struct page *head; 3082 struct page *page; 3083 struct page *list_page; 3084 pgoff_t offset; 3085 unsigned char count; 3086 3087 /* 3088 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3089 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3090 */ 3091 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3092 3093 si = swap_info_get(entry); 3094 if (!si) { 3095 /* 3096 * An acceptable race has occurred since the failing 3097 * __swap_duplicate(): the swap entry has been freed, 3098 * perhaps even the whole swap_map cleared for swapoff. 3099 */ 3100 goto outer; 3101 } 3102 3103 offset = swp_offset(entry); 3104 3105 ci = lock_cluster(si, offset); 3106 3107 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 3108 3109 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3110 /* 3111 * The higher the swap count, the more likely it is that tasks 3112 * will race to add swap count continuation: we need to avoid 3113 * over-provisioning. 3114 */ 3115 goto out; 3116 } 3117 3118 if (!page) { 3119 unlock_cluster(ci); 3120 spin_unlock(&si->lock); 3121 return -ENOMEM; 3122 } 3123 3124 /* 3125 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 3126 * no architecture is using highmem pages for kernel page tables: so it 3127 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 3128 */ 3129 head = vmalloc_to_page(si->swap_map + offset); 3130 offset &= ~PAGE_MASK; 3131 3132 /* 3133 * Page allocation does not initialize the page's lru field, 3134 * but it does always reset its private field. 3135 */ 3136 if (!page_private(head)) { 3137 BUG_ON(count & COUNT_CONTINUED); 3138 INIT_LIST_HEAD(&head->lru); 3139 set_page_private(head, SWP_CONTINUED); 3140 si->flags |= SWP_CONTINUED; 3141 } 3142 3143 list_for_each_entry(list_page, &head->lru, lru) { 3144 unsigned char *map; 3145 3146 /* 3147 * If the previous map said no continuation, but we've found 3148 * a continuation page, free our allocation and use this one. 3149 */ 3150 if (!(count & COUNT_CONTINUED)) 3151 goto out; 3152 3153 map = kmap_atomic(list_page) + offset; 3154 count = *map; 3155 kunmap_atomic(map); 3156 3157 /* 3158 * If this continuation count now has some space in it, 3159 * free our allocation and use this one. 3160 */ 3161 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3162 goto out; 3163 } 3164 3165 list_add_tail(&page->lru, &head->lru); 3166 page = NULL; /* now it's attached, don't free it */ 3167 out: 3168 unlock_cluster(ci); 3169 spin_unlock(&si->lock); 3170 outer: 3171 if (page) 3172 __free_page(page); 3173 return 0; 3174 } 3175 3176 /* 3177 * swap_count_continued - when the original swap_map count is incremented 3178 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3179 * into, carry if so, or else fail until a new continuation page is allocated; 3180 * when the original swap_map count is decremented from 0 with continuation, 3181 * borrow from the continuation and report whether it still holds more. 3182 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3183 * lock. 3184 */ 3185 static bool swap_count_continued(struct swap_info_struct *si, 3186 pgoff_t offset, unsigned char count) 3187 { 3188 struct page *head; 3189 struct page *page; 3190 unsigned char *map; 3191 3192 head = vmalloc_to_page(si->swap_map + offset); 3193 if (page_private(head) != SWP_CONTINUED) { 3194 BUG_ON(count & COUNT_CONTINUED); 3195 return false; /* need to add count continuation */ 3196 } 3197 3198 offset &= ~PAGE_MASK; 3199 page = list_entry(head->lru.next, struct page, lru); 3200 map = kmap_atomic(page) + offset; 3201 3202 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3203 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3204 3205 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3206 /* 3207 * Think of how you add 1 to 999 3208 */ 3209 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3210 kunmap_atomic(map); 3211 page = list_entry(page->lru.next, struct page, lru); 3212 BUG_ON(page == head); 3213 map = kmap_atomic(page) + offset; 3214 } 3215 if (*map == SWAP_CONT_MAX) { 3216 kunmap_atomic(map); 3217 page = list_entry(page->lru.next, struct page, lru); 3218 if (page == head) 3219 return false; /* add count continuation */ 3220 map = kmap_atomic(page) + offset; 3221 init_map: *map = 0; /* we didn't zero the page */ 3222 } 3223 *map += 1; 3224 kunmap_atomic(map); 3225 page = list_entry(page->lru.prev, struct page, lru); 3226 while (page != head) { 3227 map = kmap_atomic(page) + offset; 3228 *map = COUNT_CONTINUED; 3229 kunmap_atomic(map); 3230 page = list_entry(page->lru.prev, struct page, lru); 3231 } 3232 return true; /* incremented */ 3233 3234 } else { /* decrementing */ 3235 /* 3236 * Think of how you subtract 1 from 1000 3237 */ 3238 BUG_ON(count != COUNT_CONTINUED); 3239 while (*map == COUNT_CONTINUED) { 3240 kunmap_atomic(map); 3241 page = list_entry(page->lru.next, struct page, lru); 3242 BUG_ON(page == head); 3243 map = kmap_atomic(page) + offset; 3244 } 3245 BUG_ON(*map == 0); 3246 *map -= 1; 3247 if (*map == 0) 3248 count = 0; 3249 kunmap_atomic(map); 3250 page = list_entry(page->lru.prev, struct page, lru); 3251 while (page != head) { 3252 map = kmap_atomic(page) + offset; 3253 *map = SWAP_CONT_MAX | count; 3254 count = COUNT_CONTINUED; 3255 kunmap_atomic(map); 3256 page = list_entry(page->lru.prev, struct page, lru); 3257 } 3258 return count == COUNT_CONTINUED; 3259 } 3260 } 3261 3262 /* 3263 * free_swap_count_continuations - swapoff free all the continuation pages 3264 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3265 */ 3266 static void free_swap_count_continuations(struct swap_info_struct *si) 3267 { 3268 pgoff_t offset; 3269 3270 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3271 struct page *head; 3272 head = vmalloc_to_page(si->swap_map + offset); 3273 if (page_private(head)) { 3274 struct page *page, *next; 3275 3276 list_for_each_entry_safe(page, next, &head->lru, lru) { 3277 list_del(&page->lru); 3278 __free_page(page); 3279 } 3280 } 3281 } 3282 } 3283