xref: /openbmc/linux/mm/swapfile.c (revision 174cd4b1)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/hugetlb.h>
11 #include <linux/mman.h>
12 #include <linux/slab.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/swap.h>
15 #include <linux/vmalloc.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 #include <linux/shmem_fs.h>
19 #include <linux/blkdev.h>
20 #include <linux/random.h>
21 #include <linux/writeback.h>
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/init.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
33 #include <linux/poll.h>
34 #include <linux/oom.h>
35 #include <linux/frontswap.h>
36 #include <linux/swapfile.h>
37 #include <linux/export.h>
38 #include <linux/swap_slots.h>
39 
40 #include <asm/pgtable.h>
41 #include <asm/tlbflush.h>
42 #include <linux/swapops.h>
43 #include <linux/swap_cgroup.h>
44 
45 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
46 				 unsigned char);
47 static void free_swap_count_continuations(struct swap_info_struct *);
48 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
49 
50 DEFINE_SPINLOCK(swap_lock);
51 static unsigned int nr_swapfiles;
52 atomic_long_t nr_swap_pages;
53 /*
54  * Some modules use swappable objects and may try to swap them out under
55  * memory pressure (via the shrinker). Before doing so, they may wish to
56  * check to see if any swap space is available.
57  */
58 EXPORT_SYMBOL_GPL(nr_swap_pages);
59 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
60 long total_swap_pages;
61 static int least_priority;
62 
63 static const char Bad_file[] = "Bad swap file entry ";
64 static const char Unused_file[] = "Unused swap file entry ";
65 static const char Bad_offset[] = "Bad swap offset entry ";
66 static const char Unused_offset[] = "Unused swap offset entry ";
67 
68 /*
69  * all active swap_info_structs
70  * protected with swap_lock, and ordered by priority.
71  */
72 PLIST_HEAD(swap_active_head);
73 
74 /*
75  * all available (active, not full) swap_info_structs
76  * protected with swap_avail_lock, ordered by priority.
77  * This is used by get_swap_page() instead of swap_active_head
78  * because swap_active_head includes all swap_info_structs,
79  * but get_swap_page() doesn't need to look at full ones.
80  * This uses its own lock instead of swap_lock because when a
81  * swap_info_struct changes between not-full/full, it needs to
82  * add/remove itself to/from this list, but the swap_info_struct->lock
83  * is held and the locking order requires swap_lock to be taken
84  * before any swap_info_struct->lock.
85  */
86 static PLIST_HEAD(swap_avail_head);
87 static DEFINE_SPINLOCK(swap_avail_lock);
88 
89 struct swap_info_struct *swap_info[MAX_SWAPFILES];
90 
91 static DEFINE_MUTEX(swapon_mutex);
92 
93 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
94 /* Activity counter to indicate that a swapon or swapoff has occurred */
95 static atomic_t proc_poll_event = ATOMIC_INIT(0);
96 
97 static inline unsigned char swap_count(unsigned char ent)
98 {
99 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
100 }
101 
102 /* returns 1 if swap entry is freed */
103 static int
104 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
105 {
106 	swp_entry_t entry = swp_entry(si->type, offset);
107 	struct page *page;
108 	int ret = 0;
109 
110 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
111 	if (!page)
112 		return 0;
113 	/*
114 	 * This function is called from scan_swap_map() and it's called
115 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
116 	 * We have to use trylock for avoiding deadlock. This is a special
117 	 * case and you should use try_to_free_swap() with explicit lock_page()
118 	 * in usual operations.
119 	 */
120 	if (trylock_page(page)) {
121 		ret = try_to_free_swap(page);
122 		unlock_page(page);
123 	}
124 	put_page(page);
125 	return ret;
126 }
127 
128 /*
129  * swapon tell device that all the old swap contents can be discarded,
130  * to allow the swap device to optimize its wear-levelling.
131  */
132 static int discard_swap(struct swap_info_struct *si)
133 {
134 	struct swap_extent *se;
135 	sector_t start_block;
136 	sector_t nr_blocks;
137 	int err = 0;
138 
139 	/* Do not discard the swap header page! */
140 	se = &si->first_swap_extent;
141 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
142 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
143 	if (nr_blocks) {
144 		err = blkdev_issue_discard(si->bdev, start_block,
145 				nr_blocks, GFP_KERNEL, 0);
146 		if (err)
147 			return err;
148 		cond_resched();
149 	}
150 
151 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
152 		start_block = se->start_block << (PAGE_SHIFT - 9);
153 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
154 
155 		err = blkdev_issue_discard(si->bdev, start_block,
156 				nr_blocks, GFP_KERNEL, 0);
157 		if (err)
158 			break;
159 
160 		cond_resched();
161 	}
162 	return err;		/* That will often be -EOPNOTSUPP */
163 }
164 
165 /*
166  * swap allocation tell device that a cluster of swap can now be discarded,
167  * to allow the swap device to optimize its wear-levelling.
168  */
169 static void discard_swap_cluster(struct swap_info_struct *si,
170 				 pgoff_t start_page, pgoff_t nr_pages)
171 {
172 	struct swap_extent *se = si->curr_swap_extent;
173 	int found_extent = 0;
174 
175 	while (nr_pages) {
176 		if (se->start_page <= start_page &&
177 		    start_page < se->start_page + se->nr_pages) {
178 			pgoff_t offset = start_page - se->start_page;
179 			sector_t start_block = se->start_block + offset;
180 			sector_t nr_blocks = se->nr_pages - offset;
181 
182 			if (nr_blocks > nr_pages)
183 				nr_blocks = nr_pages;
184 			start_page += nr_blocks;
185 			nr_pages -= nr_blocks;
186 
187 			if (!found_extent++)
188 				si->curr_swap_extent = se;
189 
190 			start_block <<= PAGE_SHIFT - 9;
191 			nr_blocks <<= PAGE_SHIFT - 9;
192 			if (blkdev_issue_discard(si->bdev, start_block,
193 				    nr_blocks, GFP_NOIO, 0))
194 				break;
195 		}
196 
197 		se = list_next_entry(se, list);
198 	}
199 }
200 
201 #define SWAPFILE_CLUSTER	256
202 #define LATENCY_LIMIT		256
203 
204 static inline void cluster_set_flag(struct swap_cluster_info *info,
205 	unsigned int flag)
206 {
207 	info->flags = flag;
208 }
209 
210 static inline unsigned int cluster_count(struct swap_cluster_info *info)
211 {
212 	return info->data;
213 }
214 
215 static inline void cluster_set_count(struct swap_cluster_info *info,
216 				     unsigned int c)
217 {
218 	info->data = c;
219 }
220 
221 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
222 					 unsigned int c, unsigned int f)
223 {
224 	info->flags = f;
225 	info->data = c;
226 }
227 
228 static inline unsigned int cluster_next(struct swap_cluster_info *info)
229 {
230 	return info->data;
231 }
232 
233 static inline void cluster_set_next(struct swap_cluster_info *info,
234 				    unsigned int n)
235 {
236 	info->data = n;
237 }
238 
239 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
240 					 unsigned int n, unsigned int f)
241 {
242 	info->flags = f;
243 	info->data = n;
244 }
245 
246 static inline bool cluster_is_free(struct swap_cluster_info *info)
247 {
248 	return info->flags & CLUSTER_FLAG_FREE;
249 }
250 
251 static inline bool cluster_is_null(struct swap_cluster_info *info)
252 {
253 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
254 }
255 
256 static inline void cluster_set_null(struct swap_cluster_info *info)
257 {
258 	info->flags = CLUSTER_FLAG_NEXT_NULL;
259 	info->data = 0;
260 }
261 
262 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
263 						     unsigned long offset)
264 {
265 	struct swap_cluster_info *ci;
266 
267 	ci = si->cluster_info;
268 	if (ci) {
269 		ci += offset / SWAPFILE_CLUSTER;
270 		spin_lock(&ci->lock);
271 	}
272 	return ci;
273 }
274 
275 static inline void unlock_cluster(struct swap_cluster_info *ci)
276 {
277 	if (ci)
278 		spin_unlock(&ci->lock);
279 }
280 
281 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
282 	struct swap_info_struct *si,
283 	unsigned long offset)
284 {
285 	struct swap_cluster_info *ci;
286 
287 	ci = lock_cluster(si, offset);
288 	if (!ci)
289 		spin_lock(&si->lock);
290 
291 	return ci;
292 }
293 
294 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
295 					       struct swap_cluster_info *ci)
296 {
297 	if (ci)
298 		unlock_cluster(ci);
299 	else
300 		spin_unlock(&si->lock);
301 }
302 
303 static inline bool cluster_list_empty(struct swap_cluster_list *list)
304 {
305 	return cluster_is_null(&list->head);
306 }
307 
308 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
309 {
310 	return cluster_next(&list->head);
311 }
312 
313 static void cluster_list_init(struct swap_cluster_list *list)
314 {
315 	cluster_set_null(&list->head);
316 	cluster_set_null(&list->tail);
317 }
318 
319 static void cluster_list_add_tail(struct swap_cluster_list *list,
320 				  struct swap_cluster_info *ci,
321 				  unsigned int idx)
322 {
323 	if (cluster_list_empty(list)) {
324 		cluster_set_next_flag(&list->head, idx, 0);
325 		cluster_set_next_flag(&list->tail, idx, 0);
326 	} else {
327 		struct swap_cluster_info *ci_tail;
328 		unsigned int tail = cluster_next(&list->tail);
329 
330 		/*
331 		 * Nested cluster lock, but both cluster locks are
332 		 * only acquired when we held swap_info_struct->lock
333 		 */
334 		ci_tail = ci + tail;
335 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
336 		cluster_set_next(ci_tail, idx);
337 		unlock_cluster(ci_tail);
338 		cluster_set_next_flag(&list->tail, idx, 0);
339 	}
340 }
341 
342 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
343 					   struct swap_cluster_info *ci)
344 {
345 	unsigned int idx;
346 
347 	idx = cluster_next(&list->head);
348 	if (cluster_next(&list->tail) == idx) {
349 		cluster_set_null(&list->head);
350 		cluster_set_null(&list->tail);
351 	} else
352 		cluster_set_next_flag(&list->head,
353 				      cluster_next(&ci[idx]), 0);
354 
355 	return idx;
356 }
357 
358 /* Add a cluster to discard list and schedule it to do discard */
359 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
360 		unsigned int idx)
361 {
362 	/*
363 	 * If scan_swap_map() can't find a free cluster, it will check
364 	 * si->swap_map directly. To make sure the discarding cluster isn't
365 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
366 	 * will be cleared after discard
367 	 */
368 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
369 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
370 
371 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
372 
373 	schedule_work(&si->discard_work);
374 }
375 
376 /*
377  * Doing discard actually. After a cluster discard is finished, the cluster
378  * will be added to free cluster list. caller should hold si->lock.
379 */
380 static void swap_do_scheduled_discard(struct swap_info_struct *si)
381 {
382 	struct swap_cluster_info *info, *ci;
383 	unsigned int idx;
384 
385 	info = si->cluster_info;
386 
387 	while (!cluster_list_empty(&si->discard_clusters)) {
388 		idx = cluster_list_del_first(&si->discard_clusters, info);
389 		spin_unlock(&si->lock);
390 
391 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
392 				SWAPFILE_CLUSTER);
393 
394 		spin_lock(&si->lock);
395 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
396 		cluster_set_flag(ci, CLUSTER_FLAG_FREE);
397 		unlock_cluster(ci);
398 		cluster_list_add_tail(&si->free_clusters, info, idx);
399 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
400 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
401 				0, SWAPFILE_CLUSTER);
402 		unlock_cluster(ci);
403 	}
404 }
405 
406 static void swap_discard_work(struct work_struct *work)
407 {
408 	struct swap_info_struct *si;
409 
410 	si = container_of(work, struct swap_info_struct, discard_work);
411 
412 	spin_lock(&si->lock);
413 	swap_do_scheduled_discard(si);
414 	spin_unlock(&si->lock);
415 }
416 
417 /*
418  * The cluster corresponding to page_nr will be used. The cluster will be
419  * removed from free cluster list and its usage counter will be increased.
420  */
421 static void inc_cluster_info_page(struct swap_info_struct *p,
422 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
423 {
424 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
425 
426 	if (!cluster_info)
427 		return;
428 	if (cluster_is_free(&cluster_info[idx])) {
429 		VM_BUG_ON(cluster_list_first(&p->free_clusters) != idx);
430 		cluster_list_del_first(&p->free_clusters, cluster_info);
431 		cluster_set_count_flag(&cluster_info[idx], 0, 0);
432 	}
433 
434 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
435 	cluster_set_count(&cluster_info[idx],
436 		cluster_count(&cluster_info[idx]) + 1);
437 }
438 
439 /*
440  * The cluster corresponding to page_nr decreases one usage. If the usage
441  * counter becomes 0, which means no page in the cluster is in using, we can
442  * optionally discard the cluster and add it to free cluster list.
443  */
444 static void dec_cluster_info_page(struct swap_info_struct *p,
445 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
446 {
447 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
448 
449 	if (!cluster_info)
450 		return;
451 
452 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
453 	cluster_set_count(&cluster_info[idx],
454 		cluster_count(&cluster_info[idx]) - 1);
455 
456 	if (cluster_count(&cluster_info[idx]) == 0) {
457 		/*
458 		 * If the swap is discardable, prepare discard the cluster
459 		 * instead of free it immediately. The cluster will be freed
460 		 * after discard.
461 		 */
462 		if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
463 				 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
464 			swap_cluster_schedule_discard(p, idx);
465 			return;
466 		}
467 
468 		cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
469 		cluster_list_add_tail(&p->free_clusters, cluster_info, idx);
470 	}
471 }
472 
473 /*
474  * It's possible scan_swap_map() uses a free cluster in the middle of free
475  * cluster list. Avoiding such abuse to avoid list corruption.
476  */
477 static bool
478 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
479 	unsigned long offset)
480 {
481 	struct percpu_cluster *percpu_cluster;
482 	bool conflict;
483 
484 	offset /= SWAPFILE_CLUSTER;
485 	conflict = !cluster_list_empty(&si->free_clusters) &&
486 		offset != cluster_list_first(&si->free_clusters) &&
487 		cluster_is_free(&si->cluster_info[offset]);
488 
489 	if (!conflict)
490 		return false;
491 
492 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
493 	cluster_set_null(&percpu_cluster->index);
494 	return true;
495 }
496 
497 /*
498  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
499  * might involve allocating a new cluster for current CPU too.
500  */
501 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
502 	unsigned long *offset, unsigned long *scan_base)
503 {
504 	struct percpu_cluster *cluster;
505 	struct swap_cluster_info *ci;
506 	bool found_free;
507 	unsigned long tmp, max;
508 
509 new_cluster:
510 	cluster = this_cpu_ptr(si->percpu_cluster);
511 	if (cluster_is_null(&cluster->index)) {
512 		if (!cluster_list_empty(&si->free_clusters)) {
513 			cluster->index = si->free_clusters.head;
514 			cluster->next = cluster_next(&cluster->index) *
515 					SWAPFILE_CLUSTER;
516 		} else if (!cluster_list_empty(&si->discard_clusters)) {
517 			/*
518 			 * we don't have free cluster but have some clusters in
519 			 * discarding, do discard now and reclaim them
520 			 */
521 			swap_do_scheduled_discard(si);
522 			*scan_base = *offset = si->cluster_next;
523 			goto new_cluster;
524 		} else
525 			return false;
526 	}
527 
528 	found_free = false;
529 
530 	/*
531 	 * Other CPUs can use our cluster if they can't find a free cluster,
532 	 * check if there is still free entry in the cluster
533 	 */
534 	tmp = cluster->next;
535 	max = min_t(unsigned long, si->max,
536 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
537 	if (tmp >= max) {
538 		cluster_set_null(&cluster->index);
539 		goto new_cluster;
540 	}
541 	ci = lock_cluster(si, tmp);
542 	while (tmp < max) {
543 		if (!si->swap_map[tmp]) {
544 			found_free = true;
545 			break;
546 		}
547 		tmp++;
548 	}
549 	unlock_cluster(ci);
550 	if (!found_free) {
551 		cluster_set_null(&cluster->index);
552 		goto new_cluster;
553 	}
554 	cluster->next = tmp + 1;
555 	*offset = tmp;
556 	*scan_base = tmp;
557 	return found_free;
558 }
559 
560 static int scan_swap_map_slots(struct swap_info_struct *si,
561 			       unsigned char usage, int nr,
562 			       swp_entry_t slots[])
563 {
564 	struct swap_cluster_info *ci;
565 	unsigned long offset;
566 	unsigned long scan_base;
567 	unsigned long last_in_cluster = 0;
568 	int latency_ration = LATENCY_LIMIT;
569 	int n_ret = 0;
570 
571 	if (nr > SWAP_BATCH)
572 		nr = SWAP_BATCH;
573 
574 	/*
575 	 * We try to cluster swap pages by allocating them sequentially
576 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
577 	 * way, however, we resort to first-free allocation, starting
578 	 * a new cluster.  This prevents us from scattering swap pages
579 	 * all over the entire swap partition, so that we reduce
580 	 * overall disk seek times between swap pages.  -- sct
581 	 * But we do now try to find an empty cluster.  -Andrea
582 	 * And we let swap pages go all over an SSD partition.  Hugh
583 	 */
584 
585 	si->flags += SWP_SCANNING;
586 	scan_base = offset = si->cluster_next;
587 
588 	/* SSD algorithm */
589 	if (si->cluster_info) {
590 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
591 			goto checks;
592 		else
593 			goto scan;
594 	}
595 
596 	if (unlikely(!si->cluster_nr--)) {
597 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
598 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
599 			goto checks;
600 		}
601 
602 		spin_unlock(&si->lock);
603 
604 		/*
605 		 * If seek is expensive, start searching for new cluster from
606 		 * start of partition, to minimize the span of allocated swap.
607 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
608 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
609 		 */
610 		scan_base = offset = si->lowest_bit;
611 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
612 
613 		/* Locate the first empty (unaligned) cluster */
614 		for (; last_in_cluster <= si->highest_bit; offset++) {
615 			if (si->swap_map[offset])
616 				last_in_cluster = offset + SWAPFILE_CLUSTER;
617 			else if (offset == last_in_cluster) {
618 				spin_lock(&si->lock);
619 				offset -= SWAPFILE_CLUSTER - 1;
620 				si->cluster_next = offset;
621 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
622 				goto checks;
623 			}
624 			if (unlikely(--latency_ration < 0)) {
625 				cond_resched();
626 				latency_ration = LATENCY_LIMIT;
627 			}
628 		}
629 
630 		offset = scan_base;
631 		spin_lock(&si->lock);
632 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
633 	}
634 
635 checks:
636 	if (si->cluster_info) {
637 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
638 		/* take a break if we already got some slots */
639 			if (n_ret)
640 				goto done;
641 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
642 							&scan_base))
643 				goto scan;
644 		}
645 	}
646 	if (!(si->flags & SWP_WRITEOK))
647 		goto no_page;
648 	if (!si->highest_bit)
649 		goto no_page;
650 	if (offset > si->highest_bit)
651 		scan_base = offset = si->lowest_bit;
652 
653 	ci = lock_cluster(si, offset);
654 	/* reuse swap entry of cache-only swap if not busy. */
655 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
656 		int swap_was_freed;
657 		unlock_cluster(ci);
658 		spin_unlock(&si->lock);
659 		swap_was_freed = __try_to_reclaim_swap(si, offset);
660 		spin_lock(&si->lock);
661 		/* entry was freed successfully, try to use this again */
662 		if (swap_was_freed)
663 			goto checks;
664 		goto scan; /* check next one */
665 	}
666 
667 	if (si->swap_map[offset]) {
668 		unlock_cluster(ci);
669 		if (!n_ret)
670 			goto scan;
671 		else
672 			goto done;
673 	}
674 
675 	if (offset == si->lowest_bit)
676 		si->lowest_bit++;
677 	if (offset == si->highest_bit)
678 		si->highest_bit--;
679 	si->inuse_pages++;
680 	if (si->inuse_pages == si->pages) {
681 		si->lowest_bit = si->max;
682 		si->highest_bit = 0;
683 		spin_lock(&swap_avail_lock);
684 		plist_del(&si->avail_list, &swap_avail_head);
685 		spin_unlock(&swap_avail_lock);
686 	}
687 	si->swap_map[offset] = usage;
688 	inc_cluster_info_page(si, si->cluster_info, offset);
689 	unlock_cluster(ci);
690 	si->cluster_next = offset + 1;
691 	slots[n_ret++] = swp_entry(si->type, offset);
692 
693 	/* got enough slots or reach max slots? */
694 	if ((n_ret == nr) || (offset >= si->highest_bit))
695 		goto done;
696 
697 	/* search for next available slot */
698 
699 	/* time to take a break? */
700 	if (unlikely(--latency_ration < 0)) {
701 		if (n_ret)
702 			goto done;
703 		spin_unlock(&si->lock);
704 		cond_resched();
705 		spin_lock(&si->lock);
706 		latency_ration = LATENCY_LIMIT;
707 	}
708 
709 	/* try to get more slots in cluster */
710 	if (si->cluster_info) {
711 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
712 			goto checks;
713 		else
714 			goto done;
715 	}
716 	/* non-ssd case */
717 	++offset;
718 
719 	/* non-ssd case, still more slots in cluster? */
720 	if (si->cluster_nr && !si->swap_map[offset]) {
721 		--si->cluster_nr;
722 		goto checks;
723 	}
724 
725 done:
726 	si->flags -= SWP_SCANNING;
727 	return n_ret;
728 
729 scan:
730 	spin_unlock(&si->lock);
731 	while (++offset <= si->highest_bit) {
732 		if (!si->swap_map[offset]) {
733 			spin_lock(&si->lock);
734 			goto checks;
735 		}
736 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
737 			spin_lock(&si->lock);
738 			goto checks;
739 		}
740 		if (unlikely(--latency_ration < 0)) {
741 			cond_resched();
742 			latency_ration = LATENCY_LIMIT;
743 		}
744 	}
745 	offset = si->lowest_bit;
746 	while (offset < scan_base) {
747 		if (!si->swap_map[offset]) {
748 			spin_lock(&si->lock);
749 			goto checks;
750 		}
751 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
752 			spin_lock(&si->lock);
753 			goto checks;
754 		}
755 		if (unlikely(--latency_ration < 0)) {
756 			cond_resched();
757 			latency_ration = LATENCY_LIMIT;
758 		}
759 		offset++;
760 	}
761 	spin_lock(&si->lock);
762 
763 no_page:
764 	si->flags -= SWP_SCANNING;
765 	return n_ret;
766 }
767 
768 static unsigned long scan_swap_map(struct swap_info_struct *si,
769 				   unsigned char usage)
770 {
771 	swp_entry_t entry;
772 	int n_ret;
773 
774 	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
775 
776 	if (n_ret)
777 		return swp_offset(entry);
778 	else
779 		return 0;
780 
781 }
782 
783 int get_swap_pages(int n_goal, swp_entry_t swp_entries[])
784 {
785 	struct swap_info_struct *si, *next;
786 	long avail_pgs;
787 	int n_ret = 0;
788 
789 	avail_pgs = atomic_long_read(&nr_swap_pages);
790 	if (avail_pgs <= 0)
791 		goto noswap;
792 
793 	if (n_goal > SWAP_BATCH)
794 		n_goal = SWAP_BATCH;
795 
796 	if (n_goal > avail_pgs)
797 		n_goal = avail_pgs;
798 
799 	atomic_long_sub(n_goal, &nr_swap_pages);
800 
801 	spin_lock(&swap_avail_lock);
802 
803 start_over:
804 	plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
805 		/* requeue si to after same-priority siblings */
806 		plist_requeue(&si->avail_list, &swap_avail_head);
807 		spin_unlock(&swap_avail_lock);
808 		spin_lock(&si->lock);
809 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
810 			spin_lock(&swap_avail_lock);
811 			if (plist_node_empty(&si->avail_list)) {
812 				spin_unlock(&si->lock);
813 				goto nextsi;
814 			}
815 			WARN(!si->highest_bit,
816 			     "swap_info %d in list but !highest_bit\n",
817 			     si->type);
818 			WARN(!(si->flags & SWP_WRITEOK),
819 			     "swap_info %d in list but !SWP_WRITEOK\n",
820 			     si->type);
821 			plist_del(&si->avail_list, &swap_avail_head);
822 			spin_unlock(&si->lock);
823 			goto nextsi;
824 		}
825 		n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
826 					    n_goal, swp_entries);
827 		spin_unlock(&si->lock);
828 		if (n_ret)
829 			goto check_out;
830 		pr_debug("scan_swap_map of si %d failed to find offset\n",
831 			si->type);
832 
833 		spin_lock(&swap_avail_lock);
834 nextsi:
835 		/*
836 		 * if we got here, it's likely that si was almost full before,
837 		 * and since scan_swap_map() can drop the si->lock, multiple
838 		 * callers probably all tried to get a page from the same si
839 		 * and it filled up before we could get one; or, the si filled
840 		 * up between us dropping swap_avail_lock and taking si->lock.
841 		 * Since we dropped the swap_avail_lock, the swap_avail_head
842 		 * list may have been modified; so if next is still in the
843 		 * swap_avail_head list then try it, otherwise start over
844 		 * if we have not gotten any slots.
845 		 */
846 		if (plist_node_empty(&next->avail_list))
847 			goto start_over;
848 	}
849 
850 	spin_unlock(&swap_avail_lock);
851 
852 check_out:
853 	if (n_ret < n_goal)
854 		atomic_long_add((long) (n_goal-n_ret), &nr_swap_pages);
855 noswap:
856 	return n_ret;
857 }
858 
859 /* The only caller of this function is now suspend routine */
860 swp_entry_t get_swap_page_of_type(int type)
861 {
862 	struct swap_info_struct *si;
863 	pgoff_t offset;
864 
865 	si = swap_info[type];
866 	spin_lock(&si->lock);
867 	if (si && (si->flags & SWP_WRITEOK)) {
868 		atomic_long_dec(&nr_swap_pages);
869 		/* This is called for allocating swap entry, not cache */
870 		offset = scan_swap_map(si, 1);
871 		if (offset) {
872 			spin_unlock(&si->lock);
873 			return swp_entry(type, offset);
874 		}
875 		atomic_long_inc(&nr_swap_pages);
876 	}
877 	spin_unlock(&si->lock);
878 	return (swp_entry_t) {0};
879 }
880 
881 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
882 {
883 	struct swap_info_struct *p;
884 	unsigned long offset, type;
885 
886 	if (!entry.val)
887 		goto out;
888 	type = swp_type(entry);
889 	if (type >= nr_swapfiles)
890 		goto bad_nofile;
891 	p = swap_info[type];
892 	if (!(p->flags & SWP_USED))
893 		goto bad_device;
894 	offset = swp_offset(entry);
895 	if (offset >= p->max)
896 		goto bad_offset;
897 	return p;
898 
899 bad_offset:
900 	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
901 	goto out;
902 bad_device:
903 	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
904 	goto out;
905 bad_nofile:
906 	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
907 out:
908 	return NULL;
909 }
910 
911 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
912 {
913 	struct swap_info_struct *p;
914 
915 	p = __swap_info_get(entry);
916 	if (!p)
917 		goto out;
918 	if (!p->swap_map[swp_offset(entry)])
919 		goto bad_free;
920 	return p;
921 
922 bad_free:
923 	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
924 	goto out;
925 out:
926 	return NULL;
927 }
928 
929 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
930 {
931 	struct swap_info_struct *p;
932 
933 	p = _swap_info_get(entry);
934 	if (p)
935 		spin_lock(&p->lock);
936 	return p;
937 }
938 
939 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
940 					struct swap_info_struct *q)
941 {
942 	struct swap_info_struct *p;
943 
944 	p = _swap_info_get(entry);
945 
946 	if (p != q) {
947 		if (q != NULL)
948 			spin_unlock(&q->lock);
949 		if (p != NULL)
950 			spin_lock(&p->lock);
951 	}
952 	return p;
953 }
954 
955 static unsigned char __swap_entry_free(struct swap_info_struct *p,
956 				       swp_entry_t entry, unsigned char usage)
957 {
958 	struct swap_cluster_info *ci;
959 	unsigned long offset = swp_offset(entry);
960 	unsigned char count;
961 	unsigned char has_cache;
962 
963 	ci = lock_cluster_or_swap_info(p, offset);
964 
965 	count = p->swap_map[offset];
966 
967 	has_cache = count & SWAP_HAS_CACHE;
968 	count &= ~SWAP_HAS_CACHE;
969 
970 	if (usage == SWAP_HAS_CACHE) {
971 		VM_BUG_ON(!has_cache);
972 		has_cache = 0;
973 	} else if (count == SWAP_MAP_SHMEM) {
974 		/*
975 		 * Or we could insist on shmem.c using a special
976 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
977 		 */
978 		count = 0;
979 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
980 		if (count == COUNT_CONTINUED) {
981 			if (swap_count_continued(p, offset, count))
982 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
983 			else
984 				count = SWAP_MAP_MAX;
985 		} else
986 			count--;
987 	}
988 
989 	usage = count | has_cache;
990 	p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
991 
992 	unlock_cluster_or_swap_info(p, ci);
993 
994 	return usage;
995 }
996 
997 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
998 {
999 	struct swap_cluster_info *ci;
1000 	unsigned long offset = swp_offset(entry);
1001 	unsigned char count;
1002 
1003 	ci = lock_cluster(p, offset);
1004 	count = p->swap_map[offset];
1005 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1006 	p->swap_map[offset] = 0;
1007 	dec_cluster_info_page(p, p->cluster_info, offset);
1008 	unlock_cluster(ci);
1009 
1010 	mem_cgroup_uncharge_swap(entry);
1011 	if (offset < p->lowest_bit)
1012 		p->lowest_bit = offset;
1013 	if (offset > p->highest_bit) {
1014 		bool was_full = !p->highest_bit;
1015 
1016 		p->highest_bit = offset;
1017 		if (was_full && (p->flags & SWP_WRITEOK)) {
1018 			spin_lock(&swap_avail_lock);
1019 			WARN_ON(!plist_node_empty(&p->avail_list));
1020 			if (plist_node_empty(&p->avail_list))
1021 				plist_add(&p->avail_list,
1022 					  &swap_avail_head);
1023 			spin_unlock(&swap_avail_lock);
1024 		}
1025 	}
1026 	atomic_long_inc(&nr_swap_pages);
1027 	p->inuse_pages--;
1028 	frontswap_invalidate_page(p->type, offset);
1029 	if (p->flags & SWP_BLKDEV) {
1030 		struct gendisk *disk = p->bdev->bd_disk;
1031 
1032 		if (disk->fops->swap_slot_free_notify)
1033 			disk->fops->swap_slot_free_notify(p->bdev,
1034 							  offset);
1035 	}
1036 }
1037 
1038 /*
1039  * Caller has made sure that the swap device corresponding to entry
1040  * is still around or has not been recycled.
1041  */
1042 void swap_free(swp_entry_t entry)
1043 {
1044 	struct swap_info_struct *p;
1045 
1046 	p = _swap_info_get(entry);
1047 	if (p) {
1048 		if (!__swap_entry_free(p, entry, 1))
1049 			free_swap_slot(entry);
1050 	}
1051 }
1052 
1053 /*
1054  * Called after dropping swapcache to decrease refcnt to swap entries.
1055  */
1056 void swapcache_free(swp_entry_t entry)
1057 {
1058 	struct swap_info_struct *p;
1059 
1060 	p = _swap_info_get(entry);
1061 	if (p) {
1062 		if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1063 			free_swap_slot(entry);
1064 	}
1065 }
1066 
1067 void swapcache_free_entries(swp_entry_t *entries, int n)
1068 {
1069 	struct swap_info_struct *p, *prev;
1070 	int i;
1071 
1072 	if (n <= 0)
1073 		return;
1074 
1075 	prev = NULL;
1076 	p = NULL;
1077 	for (i = 0; i < n; ++i) {
1078 		p = swap_info_get_cont(entries[i], prev);
1079 		if (p)
1080 			swap_entry_free(p, entries[i]);
1081 		else
1082 			break;
1083 		prev = p;
1084 	}
1085 	if (p)
1086 		spin_unlock(&p->lock);
1087 }
1088 
1089 /*
1090  * How many references to page are currently swapped out?
1091  * This does not give an exact answer when swap count is continued,
1092  * but does include the high COUNT_CONTINUED flag to allow for that.
1093  */
1094 int page_swapcount(struct page *page)
1095 {
1096 	int count = 0;
1097 	struct swap_info_struct *p;
1098 	struct swap_cluster_info *ci;
1099 	swp_entry_t entry;
1100 	unsigned long offset;
1101 
1102 	entry.val = page_private(page);
1103 	p = _swap_info_get(entry);
1104 	if (p) {
1105 		offset = swp_offset(entry);
1106 		ci = lock_cluster_or_swap_info(p, offset);
1107 		count = swap_count(p->swap_map[offset]);
1108 		unlock_cluster_or_swap_info(p, ci);
1109 	}
1110 	return count;
1111 }
1112 
1113 /*
1114  * How many references to @entry are currently swapped out?
1115  * This does not give an exact answer when swap count is continued,
1116  * but does include the high COUNT_CONTINUED flag to allow for that.
1117  */
1118 int __swp_swapcount(swp_entry_t entry)
1119 {
1120 	int count = 0;
1121 	pgoff_t offset;
1122 	struct swap_info_struct *si;
1123 	struct swap_cluster_info *ci;
1124 
1125 	si = __swap_info_get(entry);
1126 	if (si) {
1127 		offset = swp_offset(entry);
1128 		ci = lock_cluster_or_swap_info(si, offset);
1129 		count = swap_count(si->swap_map[offset]);
1130 		unlock_cluster_or_swap_info(si, ci);
1131 	}
1132 	return count;
1133 }
1134 
1135 /*
1136  * How many references to @entry are currently swapped out?
1137  * This considers COUNT_CONTINUED so it returns exact answer.
1138  */
1139 int swp_swapcount(swp_entry_t entry)
1140 {
1141 	int count, tmp_count, n;
1142 	struct swap_info_struct *p;
1143 	struct swap_cluster_info *ci;
1144 	struct page *page;
1145 	pgoff_t offset;
1146 	unsigned char *map;
1147 
1148 	p = _swap_info_get(entry);
1149 	if (!p)
1150 		return 0;
1151 
1152 	offset = swp_offset(entry);
1153 
1154 	ci = lock_cluster_or_swap_info(p, offset);
1155 
1156 	count = swap_count(p->swap_map[offset]);
1157 	if (!(count & COUNT_CONTINUED))
1158 		goto out;
1159 
1160 	count &= ~COUNT_CONTINUED;
1161 	n = SWAP_MAP_MAX + 1;
1162 
1163 	page = vmalloc_to_page(p->swap_map + offset);
1164 	offset &= ~PAGE_MASK;
1165 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1166 
1167 	do {
1168 		page = list_next_entry(page, lru);
1169 		map = kmap_atomic(page);
1170 		tmp_count = map[offset];
1171 		kunmap_atomic(map);
1172 
1173 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1174 		n *= (SWAP_CONT_MAX + 1);
1175 	} while (tmp_count & COUNT_CONTINUED);
1176 out:
1177 	unlock_cluster_or_swap_info(p, ci);
1178 	return count;
1179 }
1180 
1181 /*
1182  * We can write to an anon page without COW if there are no other references
1183  * to it.  And as a side-effect, free up its swap: because the old content
1184  * on disk will never be read, and seeking back there to write new content
1185  * later would only waste time away from clustering.
1186  *
1187  * NOTE: total_mapcount should not be relied upon by the caller if
1188  * reuse_swap_page() returns false, but it may be always overwritten
1189  * (see the other implementation for CONFIG_SWAP=n).
1190  */
1191 bool reuse_swap_page(struct page *page, int *total_mapcount)
1192 {
1193 	int count;
1194 
1195 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1196 	if (unlikely(PageKsm(page)))
1197 		return false;
1198 	count = page_trans_huge_mapcount(page, total_mapcount);
1199 	if (count <= 1 && PageSwapCache(page)) {
1200 		count += page_swapcount(page);
1201 		if (count != 1)
1202 			goto out;
1203 		if (!PageWriteback(page)) {
1204 			delete_from_swap_cache(page);
1205 			SetPageDirty(page);
1206 		} else {
1207 			swp_entry_t entry;
1208 			struct swap_info_struct *p;
1209 
1210 			entry.val = page_private(page);
1211 			p = swap_info_get(entry);
1212 			if (p->flags & SWP_STABLE_WRITES) {
1213 				spin_unlock(&p->lock);
1214 				return false;
1215 			}
1216 			spin_unlock(&p->lock);
1217 		}
1218 	}
1219 out:
1220 	return count <= 1;
1221 }
1222 
1223 /*
1224  * If swap is getting full, or if there are no more mappings of this page,
1225  * then try_to_free_swap is called to free its swap space.
1226  */
1227 int try_to_free_swap(struct page *page)
1228 {
1229 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1230 
1231 	if (!PageSwapCache(page))
1232 		return 0;
1233 	if (PageWriteback(page))
1234 		return 0;
1235 	if (page_swapcount(page))
1236 		return 0;
1237 
1238 	/*
1239 	 * Once hibernation has begun to create its image of memory,
1240 	 * there's a danger that one of the calls to try_to_free_swap()
1241 	 * - most probably a call from __try_to_reclaim_swap() while
1242 	 * hibernation is allocating its own swap pages for the image,
1243 	 * but conceivably even a call from memory reclaim - will free
1244 	 * the swap from a page which has already been recorded in the
1245 	 * image as a clean swapcache page, and then reuse its swap for
1246 	 * another page of the image.  On waking from hibernation, the
1247 	 * original page might be freed under memory pressure, then
1248 	 * later read back in from swap, now with the wrong data.
1249 	 *
1250 	 * Hibernation suspends storage while it is writing the image
1251 	 * to disk so check that here.
1252 	 */
1253 	if (pm_suspended_storage())
1254 		return 0;
1255 
1256 	delete_from_swap_cache(page);
1257 	SetPageDirty(page);
1258 	return 1;
1259 }
1260 
1261 /*
1262  * Free the swap entry like above, but also try to
1263  * free the page cache entry if it is the last user.
1264  */
1265 int free_swap_and_cache(swp_entry_t entry)
1266 {
1267 	struct swap_info_struct *p;
1268 	struct page *page = NULL;
1269 	unsigned char count;
1270 
1271 	if (non_swap_entry(entry))
1272 		return 1;
1273 
1274 	p = _swap_info_get(entry);
1275 	if (p) {
1276 		count = __swap_entry_free(p, entry, 1);
1277 		if (count == SWAP_HAS_CACHE) {
1278 			page = find_get_page(swap_address_space(entry),
1279 					     swp_offset(entry));
1280 			if (page && !trylock_page(page)) {
1281 				put_page(page);
1282 				page = NULL;
1283 			}
1284 		} else if (!count)
1285 			free_swap_slot(entry);
1286 	}
1287 	if (page) {
1288 		/*
1289 		 * Not mapped elsewhere, or swap space full? Free it!
1290 		 * Also recheck PageSwapCache now page is locked (above).
1291 		 */
1292 		if (PageSwapCache(page) && !PageWriteback(page) &&
1293 		    (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1294 			delete_from_swap_cache(page);
1295 			SetPageDirty(page);
1296 		}
1297 		unlock_page(page);
1298 		put_page(page);
1299 	}
1300 	return p != NULL;
1301 }
1302 
1303 #ifdef CONFIG_HIBERNATION
1304 /*
1305  * Find the swap type that corresponds to given device (if any).
1306  *
1307  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1308  * from 0, in which the swap header is expected to be located.
1309  *
1310  * This is needed for the suspend to disk (aka swsusp).
1311  */
1312 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1313 {
1314 	struct block_device *bdev = NULL;
1315 	int type;
1316 
1317 	if (device)
1318 		bdev = bdget(device);
1319 
1320 	spin_lock(&swap_lock);
1321 	for (type = 0; type < nr_swapfiles; type++) {
1322 		struct swap_info_struct *sis = swap_info[type];
1323 
1324 		if (!(sis->flags & SWP_WRITEOK))
1325 			continue;
1326 
1327 		if (!bdev) {
1328 			if (bdev_p)
1329 				*bdev_p = bdgrab(sis->bdev);
1330 
1331 			spin_unlock(&swap_lock);
1332 			return type;
1333 		}
1334 		if (bdev == sis->bdev) {
1335 			struct swap_extent *se = &sis->first_swap_extent;
1336 
1337 			if (se->start_block == offset) {
1338 				if (bdev_p)
1339 					*bdev_p = bdgrab(sis->bdev);
1340 
1341 				spin_unlock(&swap_lock);
1342 				bdput(bdev);
1343 				return type;
1344 			}
1345 		}
1346 	}
1347 	spin_unlock(&swap_lock);
1348 	if (bdev)
1349 		bdput(bdev);
1350 
1351 	return -ENODEV;
1352 }
1353 
1354 /*
1355  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1356  * corresponding to given index in swap_info (swap type).
1357  */
1358 sector_t swapdev_block(int type, pgoff_t offset)
1359 {
1360 	struct block_device *bdev;
1361 
1362 	if ((unsigned int)type >= nr_swapfiles)
1363 		return 0;
1364 	if (!(swap_info[type]->flags & SWP_WRITEOK))
1365 		return 0;
1366 	return map_swap_entry(swp_entry(type, offset), &bdev);
1367 }
1368 
1369 /*
1370  * Return either the total number of swap pages of given type, or the number
1371  * of free pages of that type (depending on @free)
1372  *
1373  * This is needed for software suspend
1374  */
1375 unsigned int count_swap_pages(int type, int free)
1376 {
1377 	unsigned int n = 0;
1378 
1379 	spin_lock(&swap_lock);
1380 	if ((unsigned int)type < nr_swapfiles) {
1381 		struct swap_info_struct *sis = swap_info[type];
1382 
1383 		spin_lock(&sis->lock);
1384 		if (sis->flags & SWP_WRITEOK) {
1385 			n = sis->pages;
1386 			if (free)
1387 				n -= sis->inuse_pages;
1388 		}
1389 		spin_unlock(&sis->lock);
1390 	}
1391 	spin_unlock(&swap_lock);
1392 	return n;
1393 }
1394 #endif /* CONFIG_HIBERNATION */
1395 
1396 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1397 {
1398 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1399 }
1400 
1401 /*
1402  * No need to decide whether this PTE shares the swap entry with others,
1403  * just let do_wp_page work it out if a write is requested later - to
1404  * force COW, vm_page_prot omits write permission from any private vma.
1405  */
1406 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1407 		unsigned long addr, swp_entry_t entry, struct page *page)
1408 {
1409 	struct page *swapcache;
1410 	struct mem_cgroup *memcg;
1411 	spinlock_t *ptl;
1412 	pte_t *pte;
1413 	int ret = 1;
1414 
1415 	swapcache = page;
1416 	page = ksm_might_need_to_copy(page, vma, addr);
1417 	if (unlikely(!page))
1418 		return -ENOMEM;
1419 
1420 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1421 				&memcg, false)) {
1422 		ret = -ENOMEM;
1423 		goto out_nolock;
1424 	}
1425 
1426 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1427 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1428 		mem_cgroup_cancel_charge(page, memcg, false);
1429 		ret = 0;
1430 		goto out;
1431 	}
1432 
1433 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1434 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1435 	get_page(page);
1436 	set_pte_at(vma->vm_mm, addr, pte,
1437 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1438 	if (page == swapcache) {
1439 		page_add_anon_rmap(page, vma, addr, false);
1440 		mem_cgroup_commit_charge(page, memcg, true, false);
1441 	} else { /* ksm created a completely new copy */
1442 		page_add_new_anon_rmap(page, vma, addr, false);
1443 		mem_cgroup_commit_charge(page, memcg, false, false);
1444 		lru_cache_add_active_or_unevictable(page, vma);
1445 	}
1446 	swap_free(entry);
1447 	/*
1448 	 * Move the page to the active list so it is not
1449 	 * immediately swapped out again after swapon.
1450 	 */
1451 	activate_page(page);
1452 out:
1453 	pte_unmap_unlock(pte, ptl);
1454 out_nolock:
1455 	if (page != swapcache) {
1456 		unlock_page(page);
1457 		put_page(page);
1458 	}
1459 	return ret;
1460 }
1461 
1462 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1463 				unsigned long addr, unsigned long end,
1464 				swp_entry_t entry, struct page *page)
1465 {
1466 	pte_t swp_pte = swp_entry_to_pte(entry);
1467 	pte_t *pte;
1468 	int ret = 0;
1469 
1470 	/*
1471 	 * We don't actually need pte lock while scanning for swp_pte: since
1472 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1473 	 * page table while we're scanning; though it could get zapped, and on
1474 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1475 	 * of unmatched parts which look like swp_pte, so unuse_pte must
1476 	 * recheck under pte lock.  Scanning without pte lock lets it be
1477 	 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1478 	 */
1479 	pte = pte_offset_map(pmd, addr);
1480 	do {
1481 		/*
1482 		 * swapoff spends a _lot_ of time in this loop!
1483 		 * Test inline before going to call unuse_pte.
1484 		 */
1485 		if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1486 			pte_unmap(pte);
1487 			ret = unuse_pte(vma, pmd, addr, entry, page);
1488 			if (ret)
1489 				goto out;
1490 			pte = pte_offset_map(pmd, addr);
1491 		}
1492 	} while (pte++, addr += PAGE_SIZE, addr != end);
1493 	pte_unmap(pte - 1);
1494 out:
1495 	return ret;
1496 }
1497 
1498 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1499 				unsigned long addr, unsigned long end,
1500 				swp_entry_t entry, struct page *page)
1501 {
1502 	pmd_t *pmd;
1503 	unsigned long next;
1504 	int ret;
1505 
1506 	pmd = pmd_offset(pud, addr);
1507 	do {
1508 		cond_resched();
1509 		next = pmd_addr_end(addr, end);
1510 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1511 			continue;
1512 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1513 		if (ret)
1514 			return ret;
1515 	} while (pmd++, addr = next, addr != end);
1516 	return 0;
1517 }
1518 
1519 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1520 				unsigned long addr, unsigned long end,
1521 				swp_entry_t entry, struct page *page)
1522 {
1523 	pud_t *pud;
1524 	unsigned long next;
1525 	int ret;
1526 
1527 	pud = pud_offset(pgd, addr);
1528 	do {
1529 		next = pud_addr_end(addr, end);
1530 		if (pud_none_or_clear_bad(pud))
1531 			continue;
1532 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1533 		if (ret)
1534 			return ret;
1535 	} while (pud++, addr = next, addr != end);
1536 	return 0;
1537 }
1538 
1539 static int unuse_vma(struct vm_area_struct *vma,
1540 				swp_entry_t entry, struct page *page)
1541 {
1542 	pgd_t *pgd;
1543 	unsigned long addr, end, next;
1544 	int ret;
1545 
1546 	if (page_anon_vma(page)) {
1547 		addr = page_address_in_vma(page, vma);
1548 		if (addr == -EFAULT)
1549 			return 0;
1550 		else
1551 			end = addr + PAGE_SIZE;
1552 	} else {
1553 		addr = vma->vm_start;
1554 		end = vma->vm_end;
1555 	}
1556 
1557 	pgd = pgd_offset(vma->vm_mm, addr);
1558 	do {
1559 		next = pgd_addr_end(addr, end);
1560 		if (pgd_none_or_clear_bad(pgd))
1561 			continue;
1562 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1563 		if (ret)
1564 			return ret;
1565 	} while (pgd++, addr = next, addr != end);
1566 	return 0;
1567 }
1568 
1569 static int unuse_mm(struct mm_struct *mm,
1570 				swp_entry_t entry, struct page *page)
1571 {
1572 	struct vm_area_struct *vma;
1573 	int ret = 0;
1574 
1575 	if (!down_read_trylock(&mm->mmap_sem)) {
1576 		/*
1577 		 * Activate page so shrink_inactive_list is unlikely to unmap
1578 		 * its ptes while lock is dropped, so swapoff can make progress.
1579 		 */
1580 		activate_page(page);
1581 		unlock_page(page);
1582 		down_read(&mm->mmap_sem);
1583 		lock_page(page);
1584 	}
1585 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1586 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1587 			break;
1588 		cond_resched();
1589 	}
1590 	up_read(&mm->mmap_sem);
1591 	return (ret < 0)? ret: 0;
1592 }
1593 
1594 /*
1595  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1596  * from current position to next entry still in use.
1597  * Recycle to start on reaching the end, returning 0 when empty.
1598  */
1599 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1600 					unsigned int prev, bool frontswap)
1601 {
1602 	unsigned int max = si->max;
1603 	unsigned int i = prev;
1604 	unsigned char count;
1605 
1606 	/*
1607 	 * No need for swap_lock here: we're just looking
1608 	 * for whether an entry is in use, not modifying it; false
1609 	 * hits are okay, and sys_swapoff() has already prevented new
1610 	 * allocations from this area (while holding swap_lock).
1611 	 */
1612 	for (;;) {
1613 		if (++i >= max) {
1614 			if (!prev) {
1615 				i = 0;
1616 				break;
1617 			}
1618 			/*
1619 			 * No entries in use at top of swap_map,
1620 			 * loop back to start and recheck there.
1621 			 */
1622 			max = prev + 1;
1623 			prev = 0;
1624 			i = 1;
1625 		}
1626 		count = READ_ONCE(si->swap_map[i]);
1627 		if (count && swap_count(count) != SWAP_MAP_BAD)
1628 			if (!frontswap || frontswap_test(si, i))
1629 				break;
1630 		if ((i % LATENCY_LIMIT) == 0)
1631 			cond_resched();
1632 	}
1633 	return i;
1634 }
1635 
1636 /*
1637  * We completely avoid races by reading each swap page in advance,
1638  * and then search for the process using it.  All the necessary
1639  * page table adjustments can then be made atomically.
1640  *
1641  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1642  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1643  */
1644 int try_to_unuse(unsigned int type, bool frontswap,
1645 		 unsigned long pages_to_unuse)
1646 {
1647 	struct swap_info_struct *si = swap_info[type];
1648 	struct mm_struct *start_mm;
1649 	volatile unsigned char *swap_map; /* swap_map is accessed without
1650 					   * locking. Mark it as volatile
1651 					   * to prevent compiler doing
1652 					   * something odd.
1653 					   */
1654 	unsigned char swcount;
1655 	struct page *page;
1656 	swp_entry_t entry;
1657 	unsigned int i = 0;
1658 	int retval = 0;
1659 
1660 	/*
1661 	 * When searching mms for an entry, a good strategy is to
1662 	 * start at the first mm we freed the previous entry from
1663 	 * (though actually we don't notice whether we or coincidence
1664 	 * freed the entry).  Initialize this start_mm with a hold.
1665 	 *
1666 	 * A simpler strategy would be to start at the last mm we
1667 	 * freed the previous entry from; but that would take less
1668 	 * advantage of mmlist ordering, which clusters forked mms
1669 	 * together, child after parent.  If we race with dup_mmap(), we
1670 	 * prefer to resolve parent before child, lest we miss entries
1671 	 * duplicated after we scanned child: using last mm would invert
1672 	 * that.
1673 	 */
1674 	start_mm = &init_mm;
1675 	mmget(&init_mm);
1676 
1677 	/*
1678 	 * Keep on scanning until all entries have gone.  Usually,
1679 	 * one pass through swap_map is enough, but not necessarily:
1680 	 * there are races when an instance of an entry might be missed.
1681 	 */
1682 	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1683 		if (signal_pending(current)) {
1684 			retval = -EINTR;
1685 			break;
1686 		}
1687 
1688 		/*
1689 		 * Get a page for the entry, using the existing swap
1690 		 * cache page if there is one.  Otherwise, get a clean
1691 		 * page and read the swap into it.
1692 		 */
1693 		swap_map = &si->swap_map[i];
1694 		entry = swp_entry(type, i);
1695 		page = read_swap_cache_async(entry,
1696 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1697 		if (!page) {
1698 			/*
1699 			 * Either swap_duplicate() failed because entry
1700 			 * has been freed independently, and will not be
1701 			 * reused since sys_swapoff() already disabled
1702 			 * allocation from here, or alloc_page() failed.
1703 			 */
1704 			swcount = *swap_map;
1705 			/*
1706 			 * We don't hold lock here, so the swap entry could be
1707 			 * SWAP_MAP_BAD (when the cluster is discarding).
1708 			 * Instead of fail out, We can just skip the swap
1709 			 * entry because swapoff will wait for discarding
1710 			 * finish anyway.
1711 			 */
1712 			if (!swcount || swcount == SWAP_MAP_BAD)
1713 				continue;
1714 			retval = -ENOMEM;
1715 			break;
1716 		}
1717 
1718 		/*
1719 		 * Don't hold on to start_mm if it looks like exiting.
1720 		 */
1721 		if (atomic_read(&start_mm->mm_users) == 1) {
1722 			mmput(start_mm);
1723 			start_mm = &init_mm;
1724 			mmget(&init_mm);
1725 		}
1726 
1727 		/*
1728 		 * Wait for and lock page.  When do_swap_page races with
1729 		 * try_to_unuse, do_swap_page can handle the fault much
1730 		 * faster than try_to_unuse can locate the entry.  This
1731 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1732 		 * defer to do_swap_page in such a case - in some tests,
1733 		 * do_swap_page and try_to_unuse repeatedly compete.
1734 		 */
1735 		wait_on_page_locked(page);
1736 		wait_on_page_writeback(page);
1737 		lock_page(page);
1738 		wait_on_page_writeback(page);
1739 
1740 		/*
1741 		 * Remove all references to entry.
1742 		 */
1743 		swcount = *swap_map;
1744 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1745 			retval = shmem_unuse(entry, page);
1746 			/* page has already been unlocked and released */
1747 			if (retval < 0)
1748 				break;
1749 			continue;
1750 		}
1751 		if (swap_count(swcount) && start_mm != &init_mm)
1752 			retval = unuse_mm(start_mm, entry, page);
1753 
1754 		if (swap_count(*swap_map)) {
1755 			int set_start_mm = (*swap_map >= swcount);
1756 			struct list_head *p = &start_mm->mmlist;
1757 			struct mm_struct *new_start_mm = start_mm;
1758 			struct mm_struct *prev_mm = start_mm;
1759 			struct mm_struct *mm;
1760 
1761 			mmget(new_start_mm);
1762 			mmget(prev_mm);
1763 			spin_lock(&mmlist_lock);
1764 			while (swap_count(*swap_map) && !retval &&
1765 					(p = p->next) != &start_mm->mmlist) {
1766 				mm = list_entry(p, struct mm_struct, mmlist);
1767 				if (!mmget_not_zero(mm))
1768 					continue;
1769 				spin_unlock(&mmlist_lock);
1770 				mmput(prev_mm);
1771 				prev_mm = mm;
1772 
1773 				cond_resched();
1774 
1775 				swcount = *swap_map;
1776 				if (!swap_count(swcount)) /* any usage ? */
1777 					;
1778 				else if (mm == &init_mm)
1779 					set_start_mm = 1;
1780 				else
1781 					retval = unuse_mm(mm, entry, page);
1782 
1783 				if (set_start_mm && *swap_map < swcount) {
1784 					mmput(new_start_mm);
1785 					mmget(mm);
1786 					new_start_mm = mm;
1787 					set_start_mm = 0;
1788 				}
1789 				spin_lock(&mmlist_lock);
1790 			}
1791 			spin_unlock(&mmlist_lock);
1792 			mmput(prev_mm);
1793 			mmput(start_mm);
1794 			start_mm = new_start_mm;
1795 		}
1796 		if (retval) {
1797 			unlock_page(page);
1798 			put_page(page);
1799 			break;
1800 		}
1801 
1802 		/*
1803 		 * If a reference remains (rare), we would like to leave
1804 		 * the page in the swap cache; but try_to_unmap could
1805 		 * then re-duplicate the entry once we drop page lock,
1806 		 * so we might loop indefinitely; also, that page could
1807 		 * not be swapped out to other storage meanwhile.  So:
1808 		 * delete from cache even if there's another reference,
1809 		 * after ensuring that the data has been saved to disk -
1810 		 * since if the reference remains (rarer), it will be
1811 		 * read from disk into another page.  Splitting into two
1812 		 * pages would be incorrect if swap supported "shared
1813 		 * private" pages, but they are handled by tmpfs files.
1814 		 *
1815 		 * Given how unuse_vma() targets one particular offset
1816 		 * in an anon_vma, once the anon_vma has been determined,
1817 		 * this splitting happens to be just what is needed to
1818 		 * handle where KSM pages have been swapped out: re-reading
1819 		 * is unnecessarily slow, but we can fix that later on.
1820 		 */
1821 		if (swap_count(*swap_map) &&
1822 		     PageDirty(page) && PageSwapCache(page)) {
1823 			struct writeback_control wbc = {
1824 				.sync_mode = WB_SYNC_NONE,
1825 			};
1826 
1827 			swap_writepage(page, &wbc);
1828 			lock_page(page);
1829 			wait_on_page_writeback(page);
1830 		}
1831 
1832 		/*
1833 		 * It is conceivable that a racing task removed this page from
1834 		 * swap cache just before we acquired the page lock at the top,
1835 		 * or while we dropped it in unuse_mm().  The page might even
1836 		 * be back in swap cache on another swap area: that we must not
1837 		 * delete, since it may not have been written out to swap yet.
1838 		 */
1839 		if (PageSwapCache(page) &&
1840 		    likely(page_private(page) == entry.val))
1841 			delete_from_swap_cache(page);
1842 
1843 		/*
1844 		 * So we could skip searching mms once swap count went
1845 		 * to 1, we did not mark any present ptes as dirty: must
1846 		 * mark page dirty so shrink_page_list will preserve it.
1847 		 */
1848 		SetPageDirty(page);
1849 		unlock_page(page);
1850 		put_page(page);
1851 
1852 		/*
1853 		 * Make sure that we aren't completely killing
1854 		 * interactive performance.
1855 		 */
1856 		cond_resched();
1857 		if (frontswap && pages_to_unuse > 0) {
1858 			if (!--pages_to_unuse)
1859 				break;
1860 		}
1861 	}
1862 
1863 	mmput(start_mm);
1864 	return retval;
1865 }
1866 
1867 /*
1868  * After a successful try_to_unuse, if no swap is now in use, we know
1869  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1870  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1871  * added to the mmlist just after page_duplicate - before would be racy.
1872  */
1873 static void drain_mmlist(void)
1874 {
1875 	struct list_head *p, *next;
1876 	unsigned int type;
1877 
1878 	for (type = 0; type < nr_swapfiles; type++)
1879 		if (swap_info[type]->inuse_pages)
1880 			return;
1881 	spin_lock(&mmlist_lock);
1882 	list_for_each_safe(p, next, &init_mm.mmlist)
1883 		list_del_init(p);
1884 	spin_unlock(&mmlist_lock);
1885 }
1886 
1887 /*
1888  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1889  * corresponds to page offset for the specified swap entry.
1890  * Note that the type of this function is sector_t, but it returns page offset
1891  * into the bdev, not sector offset.
1892  */
1893 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1894 {
1895 	struct swap_info_struct *sis;
1896 	struct swap_extent *start_se;
1897 	struct swap_extent *se;
1898 	pgoff_t offset;
1899 
1900 	sis = swap_info[swp_type(entry)];
1901 	*bdev = sis->bdev;
1902 
1903 	offset = swp_offset(entry);
1904 	start_se = sis->curr_swap_extent;
1905 	se = start_se;
1906 
1907 	for ( ; ; ) {
1908 		if (se->start_page <= offset &&
1909 				offset < (se->start_page + se->nr_pages)) {
1910 			return se->start_block + (offset - se->start_page);
1911 		}
1912 		se = list_next_entry(se, list);
1913 		sis->curr_swap_extent = se;
1914 		BUG_ON(se == start_se);		/* It *must* be present */
1915 	}
1916 }
1917 
1918 /*
1919  * Returns the page offset into bdev for the specified page's swap entry.
1920  */
1921 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1922 {
1923 	swp_entry_t entry;
1924 	entry.val = page_private(page);
1925 	return map_swap_entry(entry, bdev);
1926 }
1927 
1928 /*
1929  * Free all of a swapdev's extent information
1930  */
1931 static void destroy_swap_extents(struct swap_info_struct *sis)
1932 {
1933 	while (!list_empty(&sis->first_swap_extent.list)) {
1934 		struct swap_extent *se;
1935 
1936 		se = list_first_entry(&sis->first_swap_extent.list,
1937 				struct swap_extent, list);
1938 		list_del(&se->list);
1939 		kfree(se);
1940 	}
1941 
1942 	if (sis->flags & SWP_FILE) {
1943 		struct file *swap_file = sis->swap_file;
1944 		struct address_space *mapping = swap_file->f_mapping;
1945 
1946 		sis->flags &= ~SWP_FILE;
1947 		mapping->a_ops->swap_deactivate(swap_file);
1948 	}
1949 }
1950 
1951 /*
1952  * Add a block range (and the corresponding page range) into this swapdev's
1953  * extent list.  The extent list is kept sorted in page order.
1954  *
1955  * This function rather assumes that it is called in ascending page order.
1956  */
1957 int
1958 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1959 		unsigned long nr_pages, sector_t start_block)
1960 {
1961 	struct swap_extent *se;
1962 	struct swap_extent *new_se;
1963 	struct list_head *lh;
1964 
1965 	if (start_page == 0) {
1966 		se = &sis->first_swap_extent;
1967 		sis->curr_swap_extent = se;
1968 		se->start_page = 0;
1969 		se->nr_pages = nr_pages;
1970 		se->start_block = start_block;
1971 		return 1;
1972 	} else {
1973 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1974 		se = list_entry(lh, struct swap_extent, list);
1975 		BUG_ON(se->start_page + se->nr_pages != start_page);
1976 		if (se->start_block + se->nr_pages == start_block) {
1977 			/* Merge it */
1978 			se->nr_pages += nr_pages;
1979 			return 0;
1980 		}
1981 	}
1982 
1983 	/*
1984 	 * No merge.  Insert a new extent, preserving ordering.
1985 	 */
1986 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1987 	if (new_se == NULL)
1988 		return -ENOMEM;
1989 	new_se->start_page = start_page;
1990 	new_se->nr_pages = nr_pages;
1991 	new_se->start_block = start_block;
1992 
1993 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1994 	return 1;
1995 }
1996 
1997 /*
1998  * A `swap extent' is a simple thing which maps a contiguous range of pages
1999  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2000  * is built at swapon time and is then used at swap_writepage/swap_readpage
2001  * time for locating where on disk a page belongs.
2002  *
2003  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2004  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2005  * swap files identically.
2006  *
2007  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2008  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2009  * swapfiles are handled *identically* after swapon time.
2010  *
2011  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2012  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2013  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2014  * requirements, they are simply tossed out - we will never use those blocks
2015  * for swapping.
2016  *
2017  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2018  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2019  * which will scribble on the fs.
2020  *
2021  * The amount of disk space which a single swap extent represents varies.
2022  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2023  * extents in the list.  To avoid much list walking, we cache the previous
2024  * search location in `curr_swap_extent', and start new searches from there.
2025  * This is extremely effective.  The average number of iterations in
2026  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2027  */
2028 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2029 {
2030 	struct file *swap_file = sis->swap_file;
2031 	struct address_space *mapping = swap_file->f_mapping;
2032 	struct inode *inode = mapping->host;
2033 	int ret;
2034 
2035 	if (S_ISBLK(inode->i_mode)) {
2036 		ret = add_swap_extent(sis, 0, sis->max, 0);
2037 		*span = sis->pages;
2038 		return ret;
2039 	}
2040 
2041 	if (mapping->a_ops->swap_activate) {
2042 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2043 		if (!ret) {
2044 			sis->flags |= SWP_FILE;
2045 			ret = add_swap_extent(sis, 0, sis->max, 0);
2046 			*span = sis->pages;
2047 		}
2048 		return ret;
2049 	}
2050 
2051 	return generic_swapfile_activate(sis, swap_file, span);
2052 }
2053 
2054 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2055 				unsigned char *swap_map,
2056 				struct swap_cluster_info *cluster_info)
2057 {
2058 	if (prio >= 0)
2059 		p->prio = prio;
2060 	else
2061 		p->prio = --least_priority;
2062 	/*
2063 	 * the plist prio is negated because plist ordering is
2064 	 * low-to-high, while swap ordering is high-to-low
2065 	 */
2066 	p->list.prio = -p->prio;
2067 	p->avail_list.prio = -p->prio;
2068 	p->swap_map = swap_map;
2069 	p->cluster_info = cluster_info;
2070 	p->flags |= SWP_WRITEOK;
2071 	atomic_long_add(p->pages, &nr_swap_pages);
2072 	total_swap_pages += p->pages;
2073 
2074 	assert_spin_locked(&swap_lock);
2075 	/*
2076 	 * both lists are plists, and thus priority ordered.
2077 	 * swap_active_head needs to be priority ordered for swapoff(),
2078 	 * which on removal of any swap_info_struct with an auto-assigned
2079 	 * (i.e. negative) priority increments the auto-assigned priority
2080 	 * of any lower-priority swap_info_structs.
2081 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2082 	 * which allocates swap pages from the highest available priority
2083 	 * swap_info_struct.
2084 	 */
2085 	plist_add(&p->list, &swap_active_head);
2086 	spin_lock(&swap_avail_lock);
2087 	plist_add(&p->avail_list, &swap_avail_head);
2088 	spin_unlock(&swap_avail_lock);
2089 }
2090 
2091 static void enable_swap_info(struct swap_info_struct *p, int prio,
2092 				unsigned char *swap_map,
2093 				struct swap_cluster_info *cluster_info,
2094 				unsigned long *frontswap_map)
2095 {
2096 	frontswap_init(p->type, frontswap_map);
2097 	spin_lock(&swap_lock);
2098 	spin_lock(&p->lock);
2099 	 _enable_swap_info(p, prio, swap_map, cluster_info);
2100 	spin_unlock(&p->lock);
2101 	spin_unlock(&swap_lock);
2102 }
2103 
2104 static void reinsert_swap_info(struct swap_info_struct *p)
2105 {
2106 	spin_lock(&swap_lock);
2107 	spin_lock(&p->lock);
2108 	_enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2109 	spin_unlock(&p->lock);
2110 	spin_unlock(&swap_lock);
2111 }
2112 
2113 bool has_usable_swap(void)
2114 {
2115 	bool ret = true;
2116 
2117 	spin_lock(&swap_lock);
2118 	if (plist_head_empty(&swap_active_head))
2119 		ret = false;
2120 	spin_unlock(&swap_lock);
2121 	return ret;
2122 }
2123 
2124 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2125 {
2126 	struct swap_info_struct *p = NULL;
2127 	unsigned char *swap_map;
2128 	struct swap_cluster_info *cluster_info;
2129 	unsigned long *frontswap_map;
2130 	struct file *swap_file, *victim;
2131 	struct address_space *mapping;
2132 	struct inode *inode;
2133 	struct filename *pathname;
2134 	int err, found = 0;
2135 	unsigned int old_block_size;
2136 
2137 	if (!capable(CAP_SYS_ADMIN))
2138 		return -EPERM;
2139 
2140 	BUG_ON(!current->mm);
2141 
2142 	pathname = getname(specialfile);
2143 	if (IS_ERR(pathname))
2144 		return PTR_ERR(pathname);
2145 
2146 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2147 	err = PTR_ERR(victim);
2148 	if (IS_ERR(victim))
2149 		goto out;
2150 
2151 	mapping = victim->f_mapping;
2152 	spin_lock(&swap_lock);
2153 	plist_for_each_entry(p, &swap_active_head, list) {
2154 		if (p->flags & SWP_WRITEOK) {
2155 			if (p->swap_file->f_mapping == mapping) {
2156 				found = 1;
2157 				break;
2158 			}
2159 		}
2160 	}
2161 	if (!found) {
2162 		err = -EINVAL;
2163 		spin_unlock(&swap_lock);
2164 		goto out_dput;
2165 	}
2166 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2167 		vm_unacct_memory(p->pages);
2168 	else {
2169 		err = -ENOMEM;
2170 		spin_unlock(&swap_lock);
2171 		goto out_dput;
2172 	}
2173 	spin_lock(&swap_avail_lock);
2174 	plist_del(&p->avail_list, &swap_avail_head);
2175 	spin_unlock(&swap_avail_lock);
2176 	spin_lock(&p->lock);
2177 	if (p->prio < 0) {
2178 		struct swap_info_struct *si = p;
2179 
2180 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2181 			si->prio++;
2182 			si->list.prio--;
2183 			si->avail_list.prio--;
2184 		}
2185 		least_priority++;
2186 	}
2187 	plist_del(&p->list, &swap_active_head);
2188 	atomic_long_sub(p->pages, &nr_swap_pages);
2189 	total_swap_pages -= p->pages;
2190 	p->flags &= ~SWP_WRITEOK;
2191 	spin_unlock(&p->lock);
2192 	spin_unlock(&swap_lock);
2193 
2194 	disable_swap_slots_cache_lock();
2195 
2196 	set_current_oom_origin();
2197 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2198 	clear_current_oom_origin();
2199 
2200 	if (err) {
2201 		/* re-insert swap space back into swap_list */
2202 		reinsert_swap_info(p);
2203 		reenable_swap_slots_cache_unlock();
2204 		goto out_dput;
2205 	}
2206 
2207 	reenable_swap_slots_cache_unlock();
2208 
2209 	flush_work(&p->discard_work);
2210 
2211 	destroy_swap_extents(p);
2212 	if (p->flags & SWP_CONTINUED)
2213 		free_swap_count_continuations(p);
2214 
2215 	mutex_lock(&swapon_mutex);
2216 	spin_lock(&swap_lock);
2217 	spin_lock(&p->lock);
2218 	drain_mmlist();
2219 
2220 	/* wait for anyone still in scan_swap_map */
2221 	p->highest_bit = 0;		/* cuts scans short */
2222 	while (p->flags >= SWP_SCANNING) {
2223 		spin_unlock(&p->lock);
2224 		spin_unlock(&swap_lock);
2225 		schedule_timeout_uninterruptible(1);
2226 		spin_lock(&swap_lock);
2227 		spin_lock(&p->lock);
2228 	}
2229 
2230 	swap_file = p->swap_file;
2231 	old_block_size = p->old_block_size;
2232 	p->swap_file = NULL;
2233 	p->max = 0;
2234 	swap_map = p->swap_map;
2235 	p->swap_map = NULL;
2236 	cluster_info = p->cluster_info;
2237 	p->cluster_info = NULL;
2238 	frontswap_map = frontswap_map_get(p);
2239 	spin_unlock(&p->lock);
2240 	spin_unlock(&swap_lock);
2241 	frontswap_invalidate_area(p->type);
2242 	frontswap_map_set(p, NULL);
2243 	mutex_unlock(&swapon_mutex);
2244 	free_percpu(p->percpu_cluster);
2245 	p->percpu_cluster = NULL;
2246 	vfree(swap_map);
2247 	vfree(cluster_info);
2248 	vfree(frontswap_map);
2249 	/* Destroy swap account information */
2250 	swap_cgroup_swapoff(p->type);
2251 	exit_swap_address_space(p->type);
2252 
2253 	inode = mapping->host;
2254 	if (S_ISBLK(inode->i_mode)) {
2255 		struct block_device *bdev = I_BDEV(inode);
2256 		set_blocksize(bdev, old_block_size);
2257 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2258 	} else {
2259 		inode_lock(inode);
2260 		inode->i_flags &= ~S_SWAPFILE;
2261 		inode_unlock(inode);
2262 	}
2263 	filp_close(swap_file, NULL);
2264 
2265 	/*
2266 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2267 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2268 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2269 	 */
2270 	spin_lock(&swap_lock);
2271 	p->flags = 0;
2272 	spin_unlock(&swap_lock);
2273 
2274 	err = 0;
2275 	atomic_inc(&proc_poll_event);
2276 	wake_up_interruptible(&proc_poll_wait);
2277 
2278 out_dput:
2279 	filp_close(victim, NULL);
2280 out:
2281 	putname(pathname);
2282 	return err;
2283 }
2284 
2285 #ifdef CONFIG_PROC_FS
2286 static unsigned swaps_poll(struct file *file, poll_table *wait)
2287 {
2288 	struct seq_file *seq = file->private_data;
2289 
2290 	poll_wait(file, &proc_poll_wait, wait);
2291 
2292 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2293 		seq->poll_event = atomic_read(&proc_poll_event);
2294 		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2295 	}
2296 
2297 	return POLLIN | POLLRDNORM;
2298 }
2299 
2300 /* iterator */
2301 static void *swap_start(struct seq_file *swap, loff_t *pos)
2302 {
2303 	struct swap_info_struct *si;
2304 	int type;
2305 	loff_t l = *pos;
2306 
2307 	mutex_lock(&swapon_mutex);
2308 
2309 	if (!l)
2310 		return SEQ_START_TOKEN;
2311 
2312 	for (type = 0; type < nr_swapfiles; type++) {
2313 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2314 		si = swap_info[type];
2315 		if (!(si->flags & SWP_USED) || !si->swap_map)
2316 			continue;
2317 		if (!--l)
2318 			return si;
2319 	}
2320 
2321 	return NULL;
2322 }
2323 
2324 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2325 {
2326 	struct swap_info_struct *si = v;
2327 	int type;
2328 
2329 	if (v == SEQ_START_TOKEN)
2330 		type = 0;
2331 	else
2332 		type = si->type + 1;
2333 
2334 	for (; type < nr_swapfiles; type++) {
2335 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
2336 		si = swap_info[type];
2337 		if (!(si->flags & SWP_USED) || !si->swap_map)
2338 			continue;
2339 		++*pos;
2340 		return si;
2341 	}
2342 
2343 	return NULL;
2344 }
2345 
2346 static void swap_stop(struct seq_file *swap, void *v)
2347 {
2348 	mutex_unlock(&swapon_mutex);
2349 }
2350 
2351 static int swap_show(struct seq_file *swap, void *v)
2352 {
2353 	struct swap_info_struct *si = v;
2354 	struct file *file;
2355 	int len;
2356 
2357 	if (si == SEQ_START_TOKEN) {
2358 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2359 		return 0;
2360 	}
2361 
2362 	file = si->swap_file;
2363 	len = seq_file_path(swap, file, " \t\n\\");
2364 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2365 			len < 40 ? 40 - len : 1, " ",
2366 			S_ISBLK(file_inode(file)->i_mode) ?
2367 				"partition" : "file\t",
2368 			si->pages << (PAGE_SHIFT - 10),
2369 			si->inuse_pages << (PAGE_SHIFT - 10),
2370 			si->prio);
2371 	return 0;
2372 }
2373 
2374 static const struct seq_operations swaps_op = {
2375 	.start =	swap_start,
2376 	.next =		swap_next,
2377 	.stop =		swap_stop,
2378 	.show =		swap_show
2379 };
2380 
2381 static int swaps_open(struct inode *inode, struct file *file)
2382 {
2383 	struct seq_file *seq;
2384 	int ret;
2385 
2386 	ret = seq_open(file, &swaps_op);
2387 	if (ret)
2388 		return ret;
2389 
2390 	seq = file->private_data;
2391 	seq->poll_event = atomic_read(&proc_poll_event);
2392 	return 0;
2393 }
2394 
2395 static const struct file_operations proc_swaps_operations = {
2396 	.open		= swaps_open,
2397 	.read		= seq_read,
2398 	.llseek		= seq_lseek,
2399 	.release	= seq_release,
2400 	.poll		= swaps_poll,
2401 };
2402 
2403 static int __init procswaps_init(void)
2404 {
2405 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
2406 	return 0;
2407 }
2408 __initcall(procswaps_init);
2409 #endif /* CONFIG_PROC_FS */
2410 
2411 #ifdef MAX_SWAPFILES_CHECK
2412 static int __init max_swapfiles_check(void)
2413 {
2414 	MAX_SWAPFILES_CHECK();
2415 	return 0;
2416 }
2417 late_initcall(max_swapfiles_check);
2418 #endif
2419 
2420 static struct swap_info_struct *alloc_swap_info(void)
2421 {
2422 	struct swap_info_struct *p;
2423 	unsigned int type;
2424 
2425 	p = kzalloc(sizeof(*p), GFP_KERNEL);
2426 	if (!p)
2427 		return ERR_PTR(-ENOMEM);
2428 
2429 	spin_lock(&swap_lock);
2430 	for (type = 0; type < nr_swapfiles; type++) {
2431 		if (!(swap_info[type]->flags & SWP_USED))
2432 			break;
2433 	}
2434 	if (type >= MAX_SWAPFILES) {
2435 		spin_unlock(&swap_lock);
2436 		kfree(p);
2437 		return ERR_PTR(-EPERM);
2438 	}
2439 	if (type >= nr_swapfiles) {
2440 		p->type = type;
2441 		swap_info[type] = p;
2442 		/*
2443 		 * Write swap_info[type] before nr_swapfiles, in case a
2444 		 * racing procfs swap_start() or swap_next() is reading them.
2445 		 * (We never shrink nr_swapfiles, we never free this entry.)
2446 		 */
2447 		smp_wmb();
2448 		nr_swapfiles++;
2449 	} else {
2450 		kfree(p);
2451 		p = swap_info[type];
2452 		/*
2453 		 * Do not memset this entry: a racing procfs swap_next()
2454 		 * would be relying on p->type to remain valid.
2455 		 */
2456 	}
2457 	INIT_LIST_HEAD(&p->first_swap_extent.list);
2458 	plist_node_init(&p->list, 0);
2459 	plist_node_init(&p->avail_list, 0);
2460 	p->flags = SWP_USED;
2461 	spin_unlock(&swap_lock);
2462 	spin_lock_init(&p->lock);
2463 
2464 	return p;
2465 }
2466 
2467 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2468 {
2469 	int error;
2470 
2471 	if (S_ISBLK(inode->i_mode)) {
2472 		p->bdev = bdgrab(I_BDEV(inode));
2473 		error = blkdev_get(p->bdev,
2474 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2475 		if (error < 0) {
2476 			p->bdev = NULL;
2477 			return error;
2478 		}
2479 		p->old_block_size = block_size(p->bdev);
2480 		error = set_blocksize(p->bdev, PAGE_SIZE);
2481 		if (error < 0)
2482 			return error;
2483 		p->flags |= SWP_BLKDEV;
2484 	} else if (S_ISREG(inode->i_mode)) {
2485 		p->bdev = inode->i_sb->s_bdev;
2486 		inode_lock(inode);
2487 		if (IS_SWAPFILE(inode))
2488 			return -EBUSY;
2489 	} else
2490 		return -EINVAL;
2491 
2492 	return 0;
2493 }
2494 
2495 static unsigned long read_swap_header(struct swap_info_struct *p,
2496 					union swap_header *swap_header,
2497 					struct inode *inode)
2498 {
2499 	int i;
2500 	unsigned long maxpages;
2501 	unsigned long swapfilepages;
2502 	unsigned long last_page;
2503 
2504 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2505 		pr_err("Unable to find swap-space signature\n");
2506 		return 0;
2507 	}
2508 
2509 	/* swap partition endianess hack... */
2510 	if (swab32(swap_header->info.version) == 1) {
2511 		swab32s(&swap_header->info.version);
2512 		swab32s(&swap_header->info.last_page);
2513 		swab32s(&swap_header->info.nr_badpages);
2514 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2515 			return 0;
2516 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2517 			swab32s(&swap_header->info.badpages[i]);
2518 	}
2519 	/* Check the swap header's sub-version */
2520 	if (swap_header->info.version != 1) {
2521 		pr_warn("Unable to handle swap header version %d\n",
2522 			swap_header->info.version);
2523 		return 0;
2524 	}
2525 
2526 	p->lowest_bit  = 1;
2527 	p->cluster_next = 1;
2528 	p->cluster_nr = 0;
2529 
2530 	/*
2531 	 * Find out how many pages are allowed for a single swap
2532 	 * device. There are two limiting factors: 1) the number
2533 	 * of bits for the swap offset in the swp_entry_t type, and
2534 	 * 2) the number of bits in the swap pte as defined by the
2535 	 * different architectures. In order to find the
2536 	 * largest possible bit mask, a swap entry with swap type 0
2537 	 * and swap offset ~0UL is created, encoded to a swap pte,
2538 	 * decoded to a swp_entry_t again, and finally the swap
2539 	 * offset is extracted. This will mask all the bits from
2540 	 * the initial ~0UL mask that can't be encoded in either
2541 	 * the swp_entry_t or the architecture definition of a
2542 	 * swap pte.
2543 	 */
2544 	maxpages = swp_offset(pte_to_swp_entry(
2545 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2546 	last_page = swap_header->info.last_page;
2547 	if (last_page > maxpages) {
2548 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2549 			maxpages << (PAGE_SHIFT - 10),
2550 			last_page << (PAGE_SHIFT - 10));
2551 	}
2552 	if (maxpages > last_page) {
2553 		maxpages = last_page + 1;
2554 		/* p->max is an unsigned int: don't overflow it */
2555 		if ((unsigned int)maxpages == 0)
2556 			maxpages = UINT_MAX;
2557 	}
2558 	p->highest_bit = maxpages - 1;
2559 
2560 	if (!maxpages)
2561 		return 0;
2562 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2563 	if (swapfilepages && maxpages > swapfilepages) {
2564 		pr_warn("Swap area shorter than signature indicates\n");
2565 		return 0;
2566 	}
2567 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2568 		return 0;
2569 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2570 		return 0;
2571 
2572 	return maxpages;
2573 }
2574 
2575 #define SWAP_CLUSTER_INFO_COLS						\
2576 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2577 #define SWAP_CLUSTER_SPACE_COLS						\
2578 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2579 #define SWAP_CLUSTER_COLS						\
2580 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2581 
2582 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2583 					union swap_header *swap_header,
2584 					unsigned char *swap_map,
2585 					struct swap_cluster_info *cluster_info,
2586 					unsigned long maxpages,
2587 					sector_t *span)
2588 {
2589 	unsigned int j, k;
2590 	unsigned int nr_good_pages;
2591 	int nr_extents;
2592 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2593 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2594 	unsigned long i, idx;
2595 
2596 	nr_good_pages = maxpages - 1;	/* omit header page */
2597 
2598 	cluster_list_init(&p->free_clusters);
2599 	cluster_list_init(&p->discard_clusters);
2600 
2601 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2602 		unsigned int page_nr = swap_header->info.badpages[i];
2603 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2604 			return -EINVAL;
2605 		if (page_nr < maxpages) {
2606 			swap_map[page_nr] = SWAP_MAP_BAD;
2607 			nr_good_pages--;
2608 			/*
2609 			 * Haven't marked the cluster free yet, no list
2610 			 * operation involved
2611 			 */
2612 			inc_cluster_info_page(p, cluster_info, page_nr);
2613 		}
2614 	}
2615 
2616 	/* Haven't marked the cluster free yet, no list operation involved */
2617 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2618 		inc_cluster_info_page(p, cluster_info, i);
2619 
2620 	if (nr_good_pages) {
2621 		swap_map[0] = SWAP_MAP_BAD;
2622 		/*
2623 		 * Not mark the cluster free yet, no list
2624 		 * operation involved
2625 		 */
2626 		inc_cluster_info_page(p, cluster_info, 0);
2627 		p->max = maxpages;
2628 		p->pages = nr_good_pages;
2629 		nr_extents = setup_swap_extents(p, span);
2630 		if (nr_extents < 0)
2631 			return nr_extents;
2632 		nr_good_pages = p->pages;
2633 	}
2634 	if (!nr_good_pages) {
2635 		pr_warn("Empty swap-file\n");
2636 		return -EINVAL;
2637 	}
2638 
2639 	if (!cluster_info)
2640 		return nr_extents;
2641 
2642 
2643 	/*
2644 	 * Reduce false cache line sharing between cluster_info and
2645 	 * sharing same address space.
2646 	 */
2647 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2648 		j = (k + col) % SWAP_CLUSTER_COLS;
2649 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2650 			idx = i * SWAP_CLUSTER_COLS + j;
2651 			if (idx >= nr_clusters)
2652 				continue;
2653 			if (cluster_count(&cluster_info[idx]))
2654 				continue;
2655 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2656 			cluster_list_add_tail(&p->free_clusters, cluster_info,
2657 					      idx);
2658 		}
2659 	}
2660 	return nr_extents;
2661 }
2662 
2663 /*
2664  * Helper to sys_swapon determining if a given swap
2665  * backing device queue supports DISCARD operations.
2666  */
2667 static bool swap_discardable(struct swap_info_struct *si)
2668 {
2669 	struct request_queue *q = bdev_get_queue(si->bdev);
2670 
2671 	if (!q || !blk_queue_discard(q))
2672 		return false;
2673 
2674 	return true;
2675 }
2676 
2677 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2678 {
2679 	struct swap_info_struct *p;
2680 	struct filename *name;
2681 	struct file *swap_file = NULL;
2682 	struct address_space *mapping;
2683 	int prio;
2684 	int error;
2685 	union swap_header *swap_header;
2686 	int nr_extents;
2687 	sector_t span;
2688 	unsigned long maxpages;
2689 	unsigned char *swap_map = NULL;
2690 	struct swap_cluster_info *cluster_info = NULL;
2691 	unsigned long *frontswap_map = NULL;
2692 	struct page *page = NULL;
2693 	struct inode *inode = NULL;
2694 
2695 	if (swap_flags & ~SWAP_FLAGS_VALID)
2696 		return -EINVAL;
2697 
2698 	if (!capable(CAP_SYS_ADMIN))
2699 		return -EPERM;
2700 
2701 	p = alloc_swap_info();
2702 	if (IS_ERR(p))
2703 		return PTR_ERR(p);
2704 
2705 	INIT_WORK(&p->discard_work, swap_discard_work);
2706 
2707 	name = getname(specialfile);
2708 	if (IS_ERR(name)) {
2709 		error = PTR_ERR(name);
2710 		name = NULL;
2711 		goto bad_swap;
2712 	}
2713 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2714 	if (IS_ERR(swap_file)) {
2715 		error = PTR_ERR(swap_file);
2716 		swap_file = NULL;
2717 		goto bad_swap;
2718 	}
2719 
2720 	p->swap_file = swap_file;
2721 	mapping = swap_file->f_mapping;
2722 	inode = mapping->host;
2723 
2724 	/* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2725 	error = claim_swapfile(p, inode);
2726 	if (unlikely(error))
2727 		goto bad_swap;
2728 
2729 	/*
2730 	 * Read the swap header.
2731 	 */
2732 	if (!mapping->a_ops->readpage) {
2733 		error = -EINVAL;
2734 		goto bad_swap;
2735 	}
2736 	page = read_mapping_page(mapping, 0, swap_file);
2737 	if (IS_ERR(page)) {
2738 		error = PTR_ERR(page);
2739 		goto bad_swap;
2740 	}
2741 	swap_header = kmap(page);
2742 
2743 	maxpages = read_swap_header(p, swap_header, inode);
2744 	if (unlikely(!maxpages)) {
2745 		error = -EINVAL;
2746 		goto bad_swap;
2747 	}
2748 
2749 	/* OK, set up the swap map and apply the bad block list */
2750 	swap_map = vzalloc(maxpages);
2751 	if (!swap_map) {
2752 		error = -ENOMEM;
2753 		goto bad_swap;
2754 	}
2755 
2756 	if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2757 		p->flags |= SWP_STABLE_WRITES;
2758 
2759 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2760 		int cpu;
2761 		unsigned long ci, nr_cluster;
2762 
2763 		p->flags |= SWP_SOLIDSTATE;
2764 		/*
2765 		 * select a random position to start with to help wear leveling
2766 		 * SSD
2767 		 */
2768 		p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2769 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2770 
2771 		cluster_info = vzalloc(nr_cluster * sizeof(*cluster_info));
2772 		if (!cluster_info) {
2773 			error = -ENOMEM;
2774 			goto bad_swap;
2775 		}
2776 
2777 		for (ci = 0; ci < nr_cluster; ci++)
2778 			spin_lock_init(&((cluster_info + ci)->lock));
2779 
2780 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2781 		if (!p->percpu_cluster) {
2782 			error = -ENOMEM;
2783 			goto bad_swap;
2784 		}
2785 		for_each_possible_cpu(cpu) {
2786 			struct percpu_cluster *cluster;
2787 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2788 			cluster_set_null(&cluster->index);
2789 		}
2790 	}
2791 
2792 	error = swap_cgroup_swapon(p->type, maxpages);
2793 	if (error)
2794 		goto bad_swap;
2795 
2796 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2797 		cluster_info, maxpages, &span);
2798 	if (unlikely(nr_extents < 0)) {
2799 		error = nr_extents;
2800 		goto bad_swap;
2801 	}
2802 	/* frontswap enabled? set up bit-per-page map for frontswap */
2803 	if (IS_ENABLED(CONFIG_FRONTSWAP))
2804 		frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2805 
2806 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2807 		/*
2808 		 * When discard is enabled for swap with no particular
2809 		 * policy flagged, we set all swap discard flags here in
2810 		 * order to sustain backward compatibility with older
2811 		 * swapon(8) releases.
2812 		 */
2813 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2814 			     SWP_PAGE_DISCARD);
2815 
2816 		/*
2817 		 * By flagging sys_swapon, a sysadmin can tell us to
2818 		 * either do single-time area discards only, or to just
2819 		 * perform discards for released swap page-clusters.
2820 		 * Now it's time to adjust the p->flags accordingly.
2821 		 */
2822 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2823 			p->flags &= ~SWP_PAGE_DISCARD;
2824 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2825 			p->flags &= ~SWP_AREA_DISCARD;
2826 
2827 		/* issue a swapon-time discard if it's still required */
2828 		if (p->flags & SWP_AREA_DISCARD) {
2829 			int err = discard_swap(p);
2830 			if (unlikely(err))
2831 				pr_err("swapon: discard_swap(%p): %d\n",
2832 					p, err);
2833 		}
2834 	}
2835 
2836 	error = init_swap_address_space(p->type, maxpages);
2837 	if (error)
2838 		goto bad_swap;
2839 
2840 	mutex_lock(&swapon_mutex);
2841 	prio = -1;
2842 	if (swap_flags & SWAP_FLAG_PREFER)
2843 		prio =
2844 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2845 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2846 
2847 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2848 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2849 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2850 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2851 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
2852 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
2853 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2854 		(frontswap_map) ? "FS" : "");
2855 
2856 	mutex_unlock(&swapon_mutex);
2857 	atomic_inc(&proc_poll_event);
2858 	wake_up_interruptible(&proc_poll_wait);
2859 
2860 	if (S_ISREG(inode->i_mode))
2861 		inode->i_flags |= S_SWAPFILE;
2862 	error = 0;
2863 	goto out;
2864 bad_swap:
2865 	free_percpu(p->percpu_cluster);
2866 	p->percpu_cluster = NULL;
2867 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2868 		set_blocksize(p->bdev, p->old_block_size);
2869 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2870 	}
2871 	destroy_swap_extents(p);
2872 	swap_cgroup_swapoff(p->type);
2873 	spin_lock(&swap_lock);
2874 	p->swap_file = NULL;
2875 	p->flags = 0;
2876 	spin_unlock(&swap_lock);
2877 	vfree(swap_map);
2878 	vfree(cluster_info);
2879 	if (swap_file) {
2880 		if (inode && S_ISREG(inode->i_mode)) {
2881 			inode_unlock(inode);
2882 			inode = NULL;
2883 		}
2884 		filp_close(swap_file, NULL);
2885 	}
2886 out:
2887 	if (page && !IS_ERR(page)) {
2888 		kunmap(page);
2889 		put_page(page);
2890 	}
2891 	if (name)
2892 		putname(name);
2893 	if (inode && S_ISREG(inode->i_mode))
2894 		inode_unlock(inode);
2895 	if (!error)
2896 		enable_swap_slots_cache();
2897 	return error;
2898 }
2899 
2900 void si_swapinfo(struct sysinfo *val)
2901 {
2902 	unsigned int type;
2903 	unsigned long nr_to_be_unused = 0;
2904 
2905 	spin_lock(&swap_lock);
2906 	for (type = 0; type < nr_swapfiles; type++) {
2907 		struct swap_info_struct *si = swap_info[type];
2908 
2909 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2910 			nr_to_be_unused += si->inuse_pages;
2911 	}
2912 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2913 	val->totalswap = total_swap_pages + nr_to_be_unused;
2914 	spin_unlock(&swap_lock);
2915 }
2916 
2917 /*
2918  * Verify that a swap entry is valid and increment its swap map count.
2919  *
2920  * Returns error code in following case.
2921  * - success -> 0
2922  * - swp_entry is invalid -> EINVAL
2923  * - swp_entry is migration entry -> EINVAL
2924  * - swap-cache reference is requested but there is already one. -> EEXIST
2925  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2926  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2927  */
2928 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2929 {
2930 	struct swap_info_struct *p;
2931 	struct swap_cluster_info *ci;
2932 	unsigned long offset, type;
2933 	unsigned char count;
2934 	unsigned char has_cache;
2935 	int err = -EINVAL;
2936 
2937 	if (non_swap_entry(entry))
2938 		goto out;
2939 
2940 	type = swp_type(entry);
2941 	if (type >= nr_swapfiles)
2942 		goto bad_file;
2943 	p = swap_info[type];
2944 	offset = swp_offset(entry);
2945 	if (unlikely(offset >= p->max))
2946 		goto out;
2947 
2948 	ci = lock_cluster_or_swap_info(p, offset);
2949 
2950 	count = p->swap_map[offset];
2951 
2952 	/*
2953 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
2954 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2955 	 */
2956 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2957 		err = -ENOENT;
2958 		goto unlock_out;
2959 	}
2960 
2961 	has_cache = count & SWAP_HAS_CACHE;
2962 	count &= ~SWAP_HAS_CACHE;
2963 	err = 0;
2964 
2965 	if (usage == SWAP_HAS_CACHE) {
2966 
2967 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2968 		if (!has_cache && count)
2969 			has_cache = SWAP_HAS_CACHE;
2970 		else if (has_cache)		/* someone else added cache */
2971 			err = -EEXIST;
2972 		else				/* no users remaining */
2973 			err = -ENOENT;
2974 
2975 	} else if (count || has_cache) {
2976 
2977 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2978 			count += usage;
2979 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2980 			err = -EINVAL;
2981 		else if (swap_count_continued(p, offset, count))
2982 			count = COUNT_CONTINUED;
2983 		else
2984 			err = -ENOMEM;
2985 	} else
2986 		err = -ENOENT;			/* unused swap entry */
2987 
2988 	p->swap_map[offset] = count | has_cache;
2989 
2990 unlock_out:
2991 	unlock_cluster_or_swap_info(p, ci);
2992 out:
2993 	return err;
2994 
2995 bad_file:
2996 	pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2997 	goto out;
2998 }
2999 
3000 /*
3001  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3002  * (in which case its reference count is never incremented).
3003  */
3004 void swap_shmem_alloc(swp_entry_t entry)
3005 {
3006 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3007 }
3008 
3009 /*
3010  * Increase reference count of swap entry by 1.
3011  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3012  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3013  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3014  * might occur if a page table entry has got corrupted.
3015  */
3016 int swap_duplicate(swp_entry_t entry)
3017 {
3018 	int err = 0;
3019 
3020 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3021 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3022 	return err;
3023 }
3024 
3025 /*
3026  * @entry: swap entry for which we allocate swap cache.
3027  *
3028  * Called when allocating swap cache for existing swap entry,
3029  * This can return error codes. Returns 0 at success.
3030  * -EBUSY means there is a swap cache.
3031  * Note: return code is different from swap_duplicate().
3032  */
3033 int swapcache_prepare(swp_entry_t entry)
3034 {
3035 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3036 }
3037 
3038 struct swap_info_struct *page_swap_info(struct page *page)
3039 {
3040 	swp_entry_t swap = { .val = page_private(page) };
3041 	return swap_info[swp_type(swap)];
3042 }
3043 
3044 /*
3045  * out-of-line __page_file_ methods to avoid include hell.
3046  */
3047 struct address_space *__page_file_mapping(struct page *page)
3048 {
3049 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3050 	return page_swap_info(page)->swap_file->f_mapping;
3051 }
3052 EXPORT_SYMBOL_GPL(__page_file_mapping);
3053 
3054 pgoff_t __page_file_index(struct page *page)
3055 {
3056 	swp_entry_t swap = { .val = page_private(page) };
3057 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3058 	return swp_offset(swap);
3059 }
3060 EXPORT_SYMBOL_GPL(__page_file_index);
3061 
3062 /*
3063  * add_swap_count_continuation - called when a swap count is duplicated
3064  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3065  * page of the original vmalloc'ed swap_map, to hold the continuation count
3066  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3067  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3068  *
3069  * These continuation pages are seldom referenced: the common paths all work
3070  * on the original swap_map, only referring to a continuation page when the
3071  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3072  *
3073  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3074  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3075  * can be called after dropping locks.
3076  */
3077 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3078 {
3079 	struct swap_info_struct *si;
3080 	struct swap_cluster_info *ci;
3081 	struct page *head;
3082 	struct page *page;
3083 	struct page *list_page;
3084 	pgoff_t offset;
3085 	unsigned char count;
3086 
3087 	/*
3088 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3089 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3090 	 */
3091 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3092 
3093 	si = swap_info_get(entry);
3094 	if (!si) {
3095 		/*
3096 		 * An acceptable race has occurred since the failing
3097 		 * __swap_duplicate(): the swap entry has been freed,
3098 		 * perhaps even the whole swap_map cleared for swapoff.
3099 		 */
3100 		goto outer;
3101 	}
3102 
3103 	offset = swp_offset(entry);
3104 
3105 	ci = lock_cluster(si, offset);
3106 
3107 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3108 
3109 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3110 		/*
3111 		 * The higher the swap count, the more likely it is that tasks
3112 		 * will race to add swap count continuation: we need to avoid
3113 		 * over-provisioning.
3114 		 */
3115 		goto out;
3116 	}
3117 
3118 	if (!page) {
3119 		unlock_cluster(ci);
3120 		spin_unlock(&si->lock);
3121 		return -ENOMEM;
3122 	}
3123 
3124 	/*
3125 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3126 	 * no architecture is using highmem pages for kernel page tables: so it
3127 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3128 	 */
3129 	head = vmalloc_to_page(si->swap_map + offset);
3130 	offset &= ~PAGE_MASK;
3131 
3132 	/*
3133 	 * Page allocation does not initialize the page's lru field,
3134 	 * but it does always reset its private field.
3135 	 */
3136 	if (!page_private(head)) {
3137 		BUG_ON(count & COUNT_CONTINUED);
3138 		INIT_LIST_HEAD(&head->lru);
3139 		set_page_private(head, SWP_CONTINUED);
3140 		si->flags |= SWP_CONTINUED;
3141 	}
3142 
3143 	list_for_each_entry(list_page, &head->lru, lru) {
3144 		unsigned char *map;
3145 
3146 		/*
3147 		 * If the previous map said no continuation, but we've found
3148 		 * a continuation page, free our allocation and use this one.
3149 		 */
3150 		if (!(count & COUNT_CONTINUED))
3151 			goto out;
3152 
3153 		map = kmap_atomic(list_page) + offset;
3154 		count = *map;
3155 		kunmap_atomic(map);
3156 
3157 		/*
3158 		 * If this continuation count now has some space in it,
3159 		 * free our allocation and use this one.
3160 		 */
3161 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3162 			goto out;
3163 	}
3164 
3165 	list_add_tail(&page->lru, &head->lru);
3166 	page = NULL;			/* now it's attached, don't free it */
3167 out:
3168 	unlock_cluster(ci);
3169 	spin_unlock(&si->lock);
3170 outer:
3171 	if (page)
3172 		__free_page(page);
3173 	return 0;
3174 }
3175 
3176 /*
3177  * swap_count_continued - when the original swap_map count is incremented
3178  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3179  * into, carry if so, or else fail until a new continuation page is allocated;
3180  * when the original swap_map count is decremented from 0 with continuation,
3181  * borrow from the continuation and report whether it still holds more.
3182  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3183  * lock.
3184  */
3185 static bool swap_count_continued(struct swap_info_struct *si,
3186 				 pgoff_t offset, unsigned char count)
3187 {
3188 	struct page *head;
3189 	struct page *page;
3190 	unsigned char *map;
3191 
3192 	head = vmalloc_to_page(si->swap_map + offset);
3193 	if (page_private(head) != SWP_CONTINUED) {
3194 		BUG_ON(count & COUNT_CONTINUED);
3195 		return false;		/* need to add count continuation */
3196 	}
3197 
3198 	offset &= ~PAGE_MASK;
3199 	page = list_entry(head->lru.next, struct page, lru);
3200 	map = kmap_atomic(page) + offset;
3201 
3202 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3203 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3204 
3205 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3206 		/*
3207 		 * Think of how you add 1 to 999
3208 		 */
3209 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3210 			kunmap_atomic(map);
3211 			page = list_entry(page->lru.next, struct page, lru);
3212 			BUG_ON(page == head);
3213 			map = kmap_atomic(page) + offset;
3214 		}
3215 		if (*map == SWAP_CONT_MAX) {
3216 			kunmap_atomic(map);
3217 			page = list_entry(page->lru.next, struct page, lru);
3218 			if (page == head)
3219 				return false;	/* add count continuation */
3220 			map = kmap_atomic(page) + offset;
3221 init_map:		*map = 0;		/* we didn't zero the page */
3222 		}
3223 		*map += 1;
3224 		kunmap_atomic(map);
3225 		page = list_entry(page->lru.prev, struct page, lru);
3226 		while (page != head) {
3227 			map = kmap_atomic(page) + offset;
3228 			*map = COUNT_CONTINUED;
3229 			kunmap_atomic(map);
3230 			page = list_entry(page->lru.prev, struct page, lru);
3231 		}
3232 		return true;			/* incremented */
3233 
3234 	} else {				/* decrementing */
3235 		/*
3236 		 * Think of how you subtract 1 from 1000
3237 		 */
3238 		BUG_ON(count != COUNT_CONTINUED);
3239 		while (*map == COUNT_CONTINUED) {
3240 			kunmap_atomic(map);
3241 			page = list_entry(page->lru.next, struct page, lru);
3242 			BUG_ON(page == head);
3243 			map = kmap_atomic(page) + offset;
3244 		}
3245 		BUG_ON(*map == 0);
3246 		*map -= 1;
3247 		if (*map == 0)
3248 			count = 0;
3249 		kunmap_atomic(map);
3250 		page = list_entry(page->lru.prev, struct page, lru);
3251 		while (page != head) {
3252 			map = kmap_atomic(page) + offset;
3253 			*map = SWAP_CONT_MAX | count;
3254 			count = COUNT_CONTINUED;
3255 			kunmap_atomic(map);
3256 			page = list_entry(page->lru.prev, struct page, lru);
3257 		}
3258 		return count == COUNT_CONTINUED;
3259 	}
3260 }
3261 
3262 /*
3263  * free_swap_count_continuations - swapoff free all the continuation pages
3264  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3265  */
3266 static void free_swap_count_continuations(struct swap_info_struct *si)
3267 {
3268 	pgoff_t offset;
3269 
3270 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3271 		struct page *head;
3272 		head = vmalloc_to_page(si->swap_map + offset);
3273 		if (page_private(head)) {
3274 			struct page *page, *next;
3275 
3276 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3277 				list_del(&page->lru);
3278 				__free_page(page);
3279 			}
3280 		}
3281 	}
3282 }
3283