1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shmem_fs.h> 18 #include <linux/blkdev.h> 19 #include <linux/random.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/security.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mutex.h> 29 #include <linux/capability.h> 30 #include <linux/syscalls.h> 31 #include <linux/memcontrol.h> 32 #include <linux/poll.h> 33 #include <linux/oom.h> 34 #include <linux/frontswap.h> 35 #include <linux/swapfile.h> 36 #include <linux/export.h> 37 38 #include <asm/pgtable.h> 39 #include <asm/tlbflush.h> 40 #include <linux/swapops.h> 41 #include <linux/page_cgroup.h> 42 43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 44 unsigned char); 45 static void free_swap_count_continuations(struct swap_info_struct *); 46 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 47 48 DEFINE_SPINLOCK(swap_lock); 49 static unsigned int nr_swapfiles; 50 long nr_swap_pages; 51 long total_swap_pages; 52 static int least_priority; 53 54 static const char Bad_file[] = "Bad swap file entry "; 55 static const char Unused_file[] = "Unused swap file entry "; 56 static const char Bad_offset[] = "Bad swap offset entry "; 57 static const char Unused_offset[] = "Unused swap offset entry "; 58 59 struct swap_list_t swap_list = {-1, -1}; 60 61 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 62 63 static DEFINE_MUTEX(swapon_mutex); 64 65 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 66 /* Activity counter to indicate that a swapon or swapoff has occurred */ 67 static atomic_t proc_poll_event = ATOMIC_INIT(0); 68 69 static inline unsigned char swap_count(unsigned char ent) 70 { 71 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ 72 } 73 74 /* returns 1 if swap entry is freed */ 75 static int 76 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) 77 { 78 swp_entry_t entry = swp_entry(si->type, offset); 79 struct page *page; 80 int ret = 0; 81 82 page = find_get_page(&swapper_space, entry.val); 83 if (!page) 84 return 0; 85 /* 86 * This function is called from scan_swap_map() and it's called 87 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. 88 * We have to use trylock for avoiding deadlock. This is a special 89 * case and you should use try_to_free_swap() with explicit lock_page() 90 * in usual operations. 91 */ 92 if (trylock_page(page)) { 93 ret = try_to_free_swap(page); 94 unlock_page(page); 95 } 96 page_cache_release(page); 97 return ret; 98 } 99 100 /* 101 * swapon tell device that all the old swap contents can be discarded, 102 * to allow the swap device to optimize its wear-levelling. 103 */ 104 static int discard_swap(struct swap_info_struct *si) 105 { 106 struct swap_extent *se; 107 sector_t start_block; 108 sector_t nr_blocks; 109 int err = 0; 110 111 /* Do not discard the swap header page! */ 112 se = &si->first_swap_extent; 113 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 114 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 115 if (nr_blocks) { 116 err = blkdev_issue_discard(si->bdev, start_block, 117 nr_blocks, GFP_KERNEL, 0); 118 if (err) 119 return err; 120 cond_resched(); 121 } 122 123 list_for_each_entry(se, &si->first_swap_extent.list, list) { 124 start_block = se->start_block << (PAGE_SHIFT - 9); 125 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 126 127 err = blkdev_issue_discard(si->bdev, start_block, 128 nr_blocks, GFP_KERNEL, 0); 129 if (err) 130 break; 131 132 cond_resched(); 133 } 134 return err; /* That will often be -EOPNOTSUPP */ 135 } 136 137 /* 138 * swap allocation tell device that a cluster of swap can now be discarded, 139 * to allow the swap device to optimize its wear-levelling. 140 */ 141 static void discard_swap_cluster(struct swap_info_struct *si, 142 pgoff_t start_page, pgoff_t nr_pages) 143 { 144 struct swap_extent *se = si->curr_swap_extent; 145 int found_extent = 0; 146 147 while (nr_pages) { 148 struct list_head *lh; 149 150 if (se->start_page <= start_page && 151 start_page < se->start_page + se->nr_pages) { 152 pgoff_t offset = start_page - se->start_page; 153 sector_t start_block = se->start_block + offset; 154 sector_t nr_blocks = se->nr_pages - offset; 155 156 if (nr_blocks > nr_pages) 157 nr_blocks = nr_pages; 158 start_page += nr_blocks; 159 nr_pages -= nr_blocks; 160 161 if (!found_extent++) 162 si->curr_swap_extent = se; 163 164 start_block <<= PAGE_SHIFT - 9; 165 nr_blocks <<= PAGE_SHIFT - 9; 166 if (blkdev_issue_discard(si->bdev, start_block, 167 nr_blocks, GFP_NOIO, 0)) 168 break; 169 } 170 171 lh = se->list.next; 172 se = list_entry(lh, struct swap_extent, list); 173 } 174 } 175 176 static int wait_for_discard(void *word) 177 { 178 schedule(); 179 return 0; 180 } 181 182 #define SWAPFILE_CLUSTER 256 183 #define LATENCY_LIMIT 256 184 185 static unsigned long scan_swap_map(struct swap_info_struct *si, 186 unsigned char usage) 187 { 188 unsigned long offset; 189 unsigned long scan_base; 190 unsigned long last_in_cluster = 0; 191 int latency_ration = LATENCY_LIMIT; 192 int found_free_cluster = 0; 193 194 /* 195 * We try to cluster swap pages by allocating them sequentially 196 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 197 * way, however, we resort to first-free allocation, starting 198 * a new cluster. This prevents us from scattering swap pages 199 * all over the entire swap partition, so that we reduce 200 * overall disk seek times between swap pages. -- sct 201 * But we do now try to find an empty cluster. -Andrea 202 * And we let swap pages go all over an SSD partition. Hugh 203 */ 204 205 si->flags += SWP_SCANNING; 206 scan_base = offset = si->cluster_next; 207 208 if (unlikely(!si->cluster_nr--)) { 209 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 210 si->cluster_nr = SWAPFILE_CLUSTER - 1; 211 goto checks; 212 } 213 if (si->flags & SWP_DISCARDABLE) { 214 /* 215 * Start range check on racing allocations, in case 216 * they overlap the cluster we eventually decide on 217 * (we scan without swap_lock to allow preemption). 218 * It's hardly conceivable that cluster_nr could be 219 * wrapped during our scan, but don't depend on it. 220 */ 221 if (si->lowest_alloc) 222 goto checks; 223 si->lowest_alloc = si->max; 224 si->highest_alloc = 0; 225 } 226 spin_unlock(&swap_lock); 227 228 /* 229 * If seek is expensive, start searching for new cluster from 230 * start of partition, to minimize the span of allocated swap. 231 * But if seek is cheap, search from our current position, so 232 * that swap is allocated from all over the partition: if the 233 * Flash Translation Layer only remaps within limited zones, 234 * we don't want to wear out the first zone too quickly. 235 */ 236 if (!(si->flags & SWP_SOLIDSTATE)) 237 scan_base = offset = si->lowest_bit; 238 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 239 240 /* Locate the first empty (unaligned) cluster */ 241 for (; last_in_cluster <= si->highest_bit; offset++) { 242 if (si->swap_map[offset]) 243 last_in_cluster = offset + SWAPFILE_CLUSTER; 244 else if (offset == last_in_cluster) { 245 spin_lock(&swap_lock); 246 offset -= SWAPFILE_CLUSTER - 1; 247 si->cluster_next = offset; 248 si->cluster_nr = SWAPFILE_CLUSTER - 1; 249 found_free_cluster = 1; 250 goto checks; 251 } 252 if (unlikely(--latency_ration < 0)) { 253 cond_resched(); 254 latency_ration = LATENCY_LIMIT; 255 } 256 } 257 258 offset = si->lowest_bit; 259 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 260 261 /* Locate the first empty (unaligned) cluster */ 262 for (; last_in_cluster < scan_base; offset++) { 263 if (si->swap_map[offset]) 264 last_in_cluster = offset + SWAPFILE_CLUSTER; 265 else if (offset == last_in_cluster) { 266 spin_lock(&swap_lock); 267 offset -= SWAPFILE_CLUSTER - 1; 268 si->cluster_next = offset; 269 si->cluster_nr = SWAPFILE_CLUSTER - 1; 270 found_free_cluster = 1; 271 goto checks; 272 } 273 if (unlikely(--latency_ration < 0)) { 274 cond_resched(); 275 latency_ration = LATENCY_LIMIT; 276 } 277 } 278 279 offset = scan_base; 280 spin_lock(&swap_lock); 281 si->cluster_nr = SWAPFILE_CLUSTER - 1; 282 si->lowest_alloc = 0; 283 } 284 285 checks: 286 if (!(si->flags & SWP_WRITEOK)) 287 goto no_page; 288 if (!si->highest_bit) 289 goto no_page; 290 if (offset > si->highest_bit) 291 scan_base = offset = si->lowest_bit; 292 293 /* reuse swap entry of cache-only swap if not busy. */ 294 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 295 int swap_was_freed; 296 spin_unlock(&swap_lock); 297 swap_was_freed = __try_to_reclaim_swap(si, offset); 298 spin_lock(&swap_lock); 299 /* entry was freed successfully, try to use this again */ 300 if (swap_was_freed) 301 goto checks; 302 goto scan; /* check next one */ 303 } 304 305 if (si->swap_map[offset]) 306 goto scan; 307 308 if (offset == si->lowest_bit) 309 si->lowest_bit++; 310 if (offset == si->highest_bit) 311 si->highest_bit--; 312 si->inuse_pages++; 313 if (si->inuse_pages == si->pages) { 314 si->lowest_bit = si->max; 315 si->highest_bit = 0; 316 } 317 si->swap_map[offset] = usage; 318 si->cluster_next = offset + 1; 319 si->flags -= SWP_SCANNING; 320 321 if (si->lowest_alloc) { 322 /* 323 * Only set when SWP_DISCARDABLE, and there's a scan 324 * for a free cluster in progress or just completed. 325 */ 326 if (found_free_cluster) { 327 /* 328 * To optimize wear-levelling, discard the 329 * old data of the cluster, taking care not to 330 * discard any of its pages that have already 331 * been allocated by racing tasks (offset has 332 * already stepped over any at the beginning). 333 */ 334 if (offset < si->highest_alloc && 335 si->lowest_alloc <= last_in_cluster) 336 last_in_cluster = si->lowest_alloc - 1; 337 si->flags |= SWP_DISCARDING; 338 spin_unlock(&swap_lock); 339 340 if (offset < last_in_cluster) 341 discard_swap_cluster(si, offset, 342 last_in_cluster - offset + 1); 343 344 spin_lock(&swap_lock); 345 si->lowest_alloc = 0; 346 si->flags &= ~SWP_DISCARDING; 347 348 smp_mb(); /* wake_up_bit advises this */ 349 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING)); 350 351 } else if (si->flags & SWP_DISCARDING) { 352 /* 353 * Delay using pages allocated by racing tasks 354 * until the whole discard has been issued. We 355 * could defer that delay until swap_writepage, 356 * but it's easier to keep this self-contained. 357 */ 358 spin_unlock(&swap_lock); 359 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING), 360 wait_for_discard, TASK_UNINTERRUPTIBLE); 361 spin_lock(&swap_lock); 362 } else { 363 /* 364 * Note pages allocated by racing tasks while 365 * scan for a free cluster is in progress, so 366 * that its final discard can exclude them. 367 */ 368 if (offset < si->lowest_alloc) 369 si->lowest_alloc = offset; 370 if (offset > si->highest_alloc) 371 si->highest_alloc = offset; 372 } 373 } 374 return offset; 375 376 scan: 377 spin_unlock(&swap_lock); 378 while (++offset <= si->highest_bit) { 379 if (!si->swap_map[offset]) { 380 spin_lock(&swap_lock); 381 goto checks; 382 } 383 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 384 spin_lock(&swap_lock); 385 goto checks; 386 } 387 if (unlikely(--latency_ration < 0)) { 388 cond_resched(); 389 latency_ration = LATENCY_LIMIT; 390 } 391 } 392 offset = si->lowest_bit; 393 while (++offset < scan_base) { 394 if (!si->swap_map[offset]) { 395 spin_lock(&swap_lock); 396 goto checks; 397 } 398 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 399 spin_lock(&swap_lock); 400 goto checks; 401 } 402 if (unlikely(--latency_ration < 0)) { 403 cond_resched(); 404 latency_ration = LATENCY_LIMIT; 405 } 406 } 407 spin_lock(&swap_lock); 408 409 no_page: 410 si->flags -= SWP_SCANNING; 411 return 0; 412 } 413 414 swp_entry_t get_swap_page(void) 415 { 416 struct swap_info_struct *si; 417 pgoff_t offset; 418 int type, next; 419 int wrapped = 0; 420 421 spin_lock(&swap_lock); 422 if (nr_swap_pages <= 0) 423 goto noswap; 424 nr_swap_pages--; 425 426 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) { 427 si = swap_info[type]; 428 next = si->next; 429 if (next < 0 || 430 (!wrapped && si->prio != swap_info[next]->prio)) { 431 next = swap_list.head; 432 wrapped++; 433 } 434 435 if (!si->highest_bit) 436 continue; 437 if (!(si->flags & SWP_WRITEOK)) 438 continue; 439 440 swap_list.next = next; 441 /* This is called for allocating swap entry for cache */ 442 offset = scan_swap_map(si, SWAP_HAS_CACHE); 443 if (offset) { 444 spin_unlock(&swap_lock); 445 return swp_entry(type, offset); 446 } 447 next = swap_list.next; 448 } 449 450 nr_swap_pages++; 451 noswap: 452 spin_unlock(&swap_lock); 453 return (swp_entry_t) {0}; 454 } 455 456 /* The only caller of this function is now susupend routine */ 457 swp_entry_t get_swap_page_of_type(int type) 458 { 459 struct swap_info_struct *si; 460 pgoff_t offset; 461 462 spin_lock(&swap_lock); 463 si = swap_info[type]; 464 if (si && (si->flags & SWP_WRITEOK)) { 465 nr_swap_pages--; 466 /* This is called for allocating swap entry, not cache */ 467 offset = scan_swap_map(si, 1); 468 if (offset) { 469 spin_unlock(&swap_lock); 470 return swp_entry(type, offset); 471 } 472 nr_swap_pages++; 473 } 474 spin_unlock(&swap_lock); 475 return (swp_entry_t) {0}; 476 } 477 478 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 479 { 480 struct swap_info_struct *p; 481 unsigned long offset, type; 482 483 if (!entry.val) 484 goto out; 485 type = swp_type(entry); 486 if (type >= nr_swapfiles) 487 goto bad_nofile; 488 p = swap_info[type]; 489 if (!(p->flags & SWP_USED)) 490 goto bad_device; 491 offset = swp_offset(entry); 492 if (offset >= p->max) 493 goto bad_offset; 494 if (!p->swap_map[offset]) 495 goto bad_free; 496 spin_lock(&swap_lock); 497 return p; 498 499 bad_free: 500 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val); 501 goto out; 502 bad_offset: 503 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val); 504 goto out; 505 bad_device: 506 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val); 507 goto out; 508 bad_nofile: 509 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val); 510 out: 511 return NULL; 512 } 513 514 static unsigned char swap_entry_free(struct swap_info_struct *p, 515 swp_entry_t entry, unsigned char usage) 516 { 517 unsigned long offset = swp_offset(entry); 518 unsigned char count; 519 unsigned char has_cache; 520 521 count = p->swap_map[offset]; 522 has_cache = count & SWAP_HAS_CACHE; 523 count &= ~SWAP_HAS_CACHE; 524 525 if (usage == SWAP_HAS_CACHE) { 526 VM_BUG_ON(!has_cache); 527 has_cache = 0; 528 } else if (count == SWAP_MAP_SHMEM) { 529 /* 530 * Or we could insist on shmem.c using a special 531 * swap_shmem_free() and free_shmem_swap_and_cache()... 532 */ 533 count = 0; 534 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 535 if (count == COUNT_CONTINUED) { 536 if (swap_count_continued(p, offset, count)) 537 count = SWAP_MAP_MAX | COUNT_CONTINUED; 538 else 539 count = SWAP_MAP_MAX; 540 } else 541 count--; 542 } 543 544 if (!count) 545 mem_cgroup_uncharge_swap(entry); 546 547 usage = count | has_cache; 548 p->swap_map[offset] = usage; 549 550 /* free if no reference */ 551 if (!usage) { 552 if (offset < p->lowest_bit) 553 p->lowest_bit = offset; 554 if (offset > p->highest_bit) 555 p->highest_bit = offset; 556 if (swap_list.next >= 0 && 557 p->prio > swap_info[swap_list.next]->prio) 558 swap_list.next = p->type; 559 nr_swap_pages++; 560 p->inuse_pages--; 561 frontswap_invalidate_page(p->type, offset); 562 if (p->flags & SWP_BLKDEV) { 563 struct gendisk *disk = p->bdev->bd_disk; 564 if (disk->fops->swap_slot_free_notify) 565 disk->fops->swap_slot_free_notify(p->bdev, 566 offset); 567 } 568 } 569 570 return usage; 571 } 572 573 /* 574 * Caller has made sure that the swapdevice corresponding to entry 575 * is still around or has not been recycled. 576 */ 577 void swap_free(swp_entry_t entry) 578 { 579 struct swap_info_struct *p; 580 581 p = swap_info_get(entry); 582 if (p) { 583 swap_entry_free(p, entry, 1); 584 spin_unlock(&swap_lock); 585 } 586 } 587 588 /* 589 * Called after dropping swapcache to decrease refcnt to swap entries. 590 */ 591 void swapcache_free(swp_entry_t entry, struct page *page) 592 { 593 struct swap_info_struct *p; 594 unsigned char count; 595 596 p = swap_info_get(entry); 597 if (p) { 598 count = swap_entry_free(p, entry, SWAP_HAS_CACHE); 599 if (page) 600 mem_cgroup_uncharge_swapcache(page, entry, count != 0); 601 spin_unlock(&swap_lock); 602 } 603 } 604 605 /* 606 * How many references to page are currently swapped out? 607 * This does not give an exact answer when swap count is continued, 608 * but does include the high COUNT_CONTINUED flag to allow for that. 609 */ 610 int page_swapcount(struct page *page) 611 { 612 int count = 0; 613 struct swap_info_struct *p; 614 swp_entry_t entry; 615 616 entry.val = page_private(page); 617 p = swap_info_get(entry); 618 if (p) { 619 count = swap_count(p->swap_map[swp_offset(entry)]); 620 spin_unlock(&swap_lock); 621 } 622 return count; 623 } 624 625 /* 626 * We can write to an anon page without COW if there are no other references 627 * to it. And as a side-effect, free up its swap: because the old content 628 * on disk will never be read, and seeking back there to write new content 629 * later would only waste time away from clustering. 630 */ 631 int reuse_swap_page(struct page *page) 632 { 633 int count; 634 635 VM_BUG_ON(!PageLocked(page)); 636 if (unlikely(PageKsm(page))) 637 return 0; 638 count = page_mapcount(page); 639 if (count <= 1 && PageSwapCache(page)) { 640 count += page_swapcount(page); 641 if (count == 1 && !PageWriteback(page)) { 642 delete_from_swap_cache(page); 643 SetPageDirty(page); 644 } 645 } 646 return count <= 1; 647 } 648 649 /* 650 * If swap is getting full, or if there are no more mappings of this page, 651 * then try_to_free_swap is called to free its swap space. 652 */ 653 int try_to_free_swap(struct page *page) 654 { 655 VM_BUG_ON(!PageLocked(page)); 656 657 if (!PageSwapCache(page)) 658 return 0; 659 if (PageWriteback(page)) 660 return 0; 661 if (page_swapcount(page)) 662 return 0; 663 664 /* 665 * Once hibernation has begun to create its image of memory, 666 * there's a danger that one of the calls to try_to_free_swap() 667 * - most probably a call from __try_to_reclaim_swap() while 668 * hibernation is allocating its own swap pages for the image, 669 * but conceivably even a call from memory reclaim - will free 670 * the swap from a page which has already been recorded in the 671 * image as a clean swapcache page, and then reuse its swap for 672 * another page of the image. On waking from hibernation, the 673 * original page might be freed under memory pressure, then 674 * later read back in from swap, now with the wrong data. 675 * 676 * Hibration suspends storage while it is writing the image 677 * to disk so check that here. 678 */ 679 if (pm_suspended_storage()) 680 return 0; 681 682 delete_from_swap_cache(page); 683 SetPageDirty(page); 684 return 1; 685 } 686 687 /* 688 * Free the swap entry like above, but also try to 689 * free the page cache entry if it is the last user. 690 */ 691 int free_swap_and_cache(swp_entry_t entry) 692 { 693 struct swap_info_struct *p; 694 struct page *page = NULL; 695 696 if (non_swap_entry(entry)) 697 return 1; 698 699 p = swap_info_get(entry); 700 if (p) { 701 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) { 702 page = find_get_page(&swapper_space, entry.val); 703 if (page && !trylock_page(page)) { 704 page_cache_release(page); 705 page = NULL; 706 } 707 } 708 spin_unlock(&swap_lock); 709 } 710 if (page) { 711 /* 712 * Not mapped elsewhere, or swap space full? Free it! 713 * Also recheck PageSwapCache now page is locked (above). 714 */ 715 if (PageSwapCache(page) && !PageWriteback(page) && 716 (!page_mapped(page) || vm_swap_full())) { 717 delete_from_swap_cache(page); 718 SetPageDirty(page); 719 } 720 unlock_page(page); 721 page_cache_release(page); 722 } 723 return p != NULL; 724 } 725 726 #ifdef CONFIG_HIBERNATION 727 /* 728 * Find the swap type that corresponds to given device (if any). 729 * 730 * @offset - number of the PAGE_SIZE-sized block of the device, starting 731 * from 0, in which the swap header is expected to be located. 732 * 733 * This is needed for the suspend to disk (aka swsusp). 734 */ 735 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 736 { 737 struct block_device *bdev = NULL; 738 int type; 739 740 if (device) 741 bdev = bdget(device); 742 743 spin_lock(&swap_lock); 744 for (type = 0; type < nr_swapfiles; type++) { 745 struct swap_info_struct *sis = swap_info[type]; 746 747 if (!(sis->flags & SWP_WRITEOK)) 748 continue; 749 750 if (!bdev) { 751 if (bdev_p) 752 *bdev_p = bdgrab(sis->bdev); 753 754 spin_unlock(&swap_lock); 755 return type; 756 } 757 if (bdev == sis->bdev) { 758 struct swap_extent *se = &sis->first_swap_extent; 759 760 if (se->start_block == offset) { 761 if (bdev_p) 762 *bdev_p = bdgrab(sis->bdev); 763 764 spin_unlock(&swap_lock); 765 bdput(bdev); 766 return type; 767 } 768 } 769 } 770 spin_unlock(&swap_lock); 771 if (bdev) 772 bdput(bdev); 773 774 return -ENODEV; 775 } 776 777 /* 778 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 779 * corresponding to given index in swap_info (swap type). 780 */ 781 sector_t swapdev_block(int type, pgoff_t offset) 782 { 783 struct block_device *bdev; 784 785 if ((unsigned int)type >= nr_swapfiles) 786 return 0; 787 if (!(swap_info[type]->flags & SWP_WRITEOK)) 788 return 0; 789 return map_swap_entry(swp_entry(type, offset), &bdev); 790 } 791 792 /* 793 * Return either the total number of swap pages of given type, or the number 794 * of free pages of that type (depending on @free) 795 * 796 * This is needed for software suspend 797 */ 798 unsigned int count_swap_pages(int type, int free) 799 { 800 unsigned int n = 0; 801 802 spin_lock(&swap_lock); 803 if ((unsigned int)type < nr_swapfiles) { 804 struct swap_info_struct *sis = swap_info[type]; 805 806 if (sis->flags & SWP_WRITEOK) { 807 n = sis->pages; 808 if (free) 809 n -= sis->inuse_pages; 810 } 811 } 812 spin_unlock(&swap_lock); 813 return n; 814 } 815 #endif /* CONFIG_HIBERNATION */ 816 817 /* 818 * No need to decide whether this PTE shares the swap entry with others, 819 * just let do_wp_page work it out if a write is requested later - to 820 * force COW, vm_page_prot omits write permission from any private vma. 821 */ 822 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 823 unsigned long addr, swp_entry_t entry, struct page *page) 824 { 825 struct mem_cgroup *memcg; 826 spinlock_t *ptl; 827 pte_t *pte; 828 int ret = 1; 829 830 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, 831 GFP_KERNEL, &memcg)) { 832 ret = -ENOMEM; 833 goto out_nolock; 834 } 835 836 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 837 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) { 838 mem_cgroup_cancel_charge_swapin(memcg); 839 ret = 0; 840 goto out; 841 } 842 843 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 844 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 845 get_page(page); 846 set_pte_at(vma->vm_mm, addr, pte, 847 pte_mkold(mk_pte(page, vma->vm_page_prot))); 848 page_add_anon_rmap(page, vma, addr); 849 mem_cgroup_commit_charge_swapin(page, memcg); 850 swap_free(entry); 851 /* 852 * Move the page to the active list so it is not 853 * immediately swapped out again after swapon. 854 */ 855 activate_page(page); 856 out: 857 pte_unmap_unlock(pte, ptl); 858 out_nolock: 859 return ret; 860 } 861 862 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 863 unsigned long addr, unsigned long end, 864 swp_entry_t entry, struct page *page) 865 { 866 pte_t swp_pte = swp_entry_to_pte(entry); 867 pte_t *pte; 868 int ret = 0; 869 870 /* 871 * We don't actually need pte lock while scanning for swp_pte: since 872 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 873 * page table while we're scanning; though it could get zapped, and on 874 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 875 * of unmatched parts which look like swp_pte, so unuse_pte must 876 * recheck under pte lock. Scanning without pte lock lets it be 877 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 878 */ 879 pte = pte_offset_map(pmd, addr); 880 do { 881 /* 882 * swapoff spends a _lot_ of time in this loop! 883 * Test inline before going to call unuse_pte. 884 */ 885 if (unlikely(pte_same(*pte, swp_pte))) { 886 pte_unmap(pte); 887 ret = unuse_pte(vma, pmd, addr, entry, page); 888 if (ret) 889 goto out; 890 pte = pte_offset_map(pmd, addr); 891 } 892 } while (pte++, addr += PAGE_SIZE, addr != end); 893 pte_unmap(pte - 1); 894 out: 895 return ret; 896 } 897 898 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 899 unsigned long addr, unsigned long end, 900 swp_entry_t entry, struct page *page) 901 { 902 pmd_t *pmd; 903 unsigned long next; 904 int ret; 905 906 pmd = pmd_offset(pud, addr); 907 do { 908 next = pmd_addr_end(addr, end); 909 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 910 continue; 911 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 912 if (ret) 913 return ret; 914 } while (pmd++, addr = next, addr != end); 915 return 0; 916 } 917 918 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 919 unsigned long addr, unsigned long end, 920 swp_entry_t entry, struct page *page) 921 { 922 pud_t *pud; 923 unsigned long next; 924 int ret; 925 926 pud = pud_offset(pgd, addr); 927 do { 928 next = pud_addr_end(addr, end); 929 if (pud_none_or_clear_bad(pud)) 930 continue; 931 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 932 if (ret) 933 return ret; 934 } while (pud++, addr = next, addr != end); 935 return 0; 936 } 937 938 static int unuse_vma(struct vm_area_struct *vma, 939 swp_entry_t entry, struct page *page) 940 { 941 pgd_t *pgd; 942 unsigned long addr, end, next; 943 int ret; 944 945 if (page_anon_vma(page)) { 946 addr = page_address_in_vma(page, vma); 947 if (addr == -EFAULT) 948 return 0; 949 else 950 end = addr + PAGE_SIZE; 951 } else { 952 addr = vma->vm_start; 953 end = vma->vm_end; 954 } 955 956 pgd = pgd_offset(vma->vm_mm, addr); 957 do { 958 next = pgd_addr_end(addr, end); 959 if (pgd_none_or_clear_bad(pgd)) 960 continue; 961 ret = unuse_pud_range(vma, pgd, addr, next, entry, page); 962 if (ret) 963 return ret; 964 } while (pgd++, addr = next, addr != end); 965 return 0; 966 } 967 968 static int unuse_mm(struct mm_struct *mm, 969 swp_entry_t entry, struct page *page) 970 { 971 struct vm_area_struct *vma; 972 int ret = 0; 973 974 if (!down_read_trylock(&mm->mmap_sem)) { 975 /* 976 * Activate page so shrink_inactive_list is unlikely to unmap 977 * its ptes while lock is dropped, so swapoff can make progress. 978 */ 979 activate_page(page); 980 unlock_page(page); 981 down_read(&mm->mmap_sem); 982 lock_page(page); 983 } 984 for (vma = mm->mmap; vma; vma = vma->vm_next) { 985 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 986 break; 987 } 988 up_read(&mm->mmap_sem); 989 return (ret < 0)? ret: 0; 990 } 991 992 /* 993 * Scan swap_map (or frontswap_map if frontswap parameter is true) 994 * from current position to next entry still in use. 995 * Recycle to start on reaching the end, returning 0 when empty. 996 */ 997 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 998 unsigned int prev, bool frontswap) 999 { 1000 unsigned int max = si->max; 1001 unsigned int i = prev; 1002 unsigned char count; 1003 1004 /* 1005 * No need for swap_lock here: we're just looking 1006 * for whether an entry is in use, not modifying it; false 1007 * hits are okay, and sys_swapoff() has already prevented new 1008 * allocations from this area (while holding swap_lock). 1009 */ 1010 for (;;) { 1011 if (++i >= max) { 1012 if (!prev) { 1013 i = 0; 1014 break; 1015 } 1016 /* 1017 * No entries in use at top of swap_map, 1018 * loop back to start and recheck there. 1019 */ 1020 max = prev + 1; 1021 prev = 0; 1022 i = 1; 1023 } 1024 if (frontswap) { 1025 if (frontswap_test(si, i)) 1026 break; 1027 else 1028 continue; 1029 } 1030 count = si->swap_map[i]; 1031 if (count && swap_count(count) != SWAP_MAP_BAD) 1032 break; 1033 } 1034 return i; 1035 } 1036 1037 /* 1038 * We completely avoid races by reading each swap page in advance, 1039 * and then search for the process using it. All the necessary 1040 * page table adjustments can then be made atomically. 1041 * 1042 * if the boolean frontswap is true, only unuse pages_to_unuse pages; 1043 * pages_to_unuse==0 means all pages; ignored if frontswap is false 1044 */ 1045 int try_to_unuse(unsigned int type, bool frontswap, 1046 unsigned long pages_to_unuse) 1047 { 1048 struct swap_info_struct *si = swap_info[type]; 1049 struct mm_struct *start_mm; 1050 unsigned char *swap_map; 1051 unsigned char swcount; 1052 struct page *page; 1053 swp_entry_t entry; 1054 unsigned int i = 0; 1055 int retval = 0; 1056 1057 /* 1058 * When searching mms for an entry, a good strategy is to 1059 * start at the first mm we freed the previous entry from 1060 * (though actually we don't notice whether we or coincidence 1061 * freed the entry). Initialize this start_mm with a hold. 1062 * 1063 * A simpler strategy would be to start at the last mm we 1064 * freed the previous entry from; but that would take less 1065 * advantage of mmlist ordering, which clusters forked mms 1066 * together, child after parent. If we race with dup_mmap(), we 1067 * prefer to resolve parent before child, lest we miss entries 1068 * duplicated after we scanned child: using last mm would invert 1069 * that. 1070 */ 1071 start_mm = &init_mm; 1072 atomic_inc(&init_mm.mm_users); 1073 1074 /* 1075 * Keep on scanning until all entries have gone. Usually, 1076 * one pass through swap_map is enough, but not necessarily: 1077 * there are races when an instance of an entry might be missed. 1078 */ 1079 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) { 1080 if (signal_pending(current)) { 1081 retval = -EINTR; 1082 break; 1083 } 1084 1085 /* 1086 * Get a page for the entry, using the existing swap 1087 * cache page if there is one. Otherwise, get a clean 1088 * page and read the swap into it. 1089 */ 1090 swap_map = &si->swap_map[i]; 1091 entry = swp_entry(type, i); 1092 page = read_swap_cache_async(entry, 1093 GFP_HIGHUSER_MOVABLE, NULL, 0); 1094 if (!page) { 1095 /* 1096 * Either swap_duplicate() failed because entry 1097 * has been freed independently, and will not be 1098 * reused since sys_swapoff() already disabled 1099 * allocation from here, or alloc_page() failed. 1100 */ 1101 if (!*swap_map) 1102 continue; 1103 retval = -ENOMEM; 1104 break; 1105 } 1106 1107 /* 1108 * Don't hold on to start_mm if it looks like exiting. 1109 */ 1110 if (atomic_read(&start_mm->mm_users) == 1) { 1111 mmput(start_mm); 1112 start_mm = &init_mm; 1113 atomic_inc(&init_mm.mm_users); 1114 } 1115 1116 /* 1117 * Wait for and lock page. When do_swap_page races with 1118 * try_to_unuse, do_swap_page can handle the fault much 1119 * faster than try_to_unuse can locate the entry. This 1120 * apparently redundant "wait_on_page_locked" lets try_to_unuse 1121 * defer to do_swap_page in such a case - in some tests, 1122 * do_swap_page and try_to_unuse repeatedly compete. 1123 */ 1124 wait_on_page_locked(page); 1125 wait_on_page_writeback(page); 1126 lock_page(page); 1127 wait_on_page_writeback(page); 1128 1129 /* 1130 * Remove all references to entry. 1131 */ 1132 swcount = *swap_map; 1133 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 1134 retval = shmem_unuse(entry, page); 1135 /* page has already been unlocked and released */ 1136 if (retval < 0) 1137 break; 1138 continue; 1139 } 1140 if (swap_count(swcount) && start_mm != &init_mm) 1141 retval = unuse_mm(start_mm, entry, page); 1142 1143 if (swap_count(*swap_map)) { 1144 int set_start_mm = (*swap_map >= swcount); 1145 struct list_head *p = &start_mm->mmlist; 1146 struct mm_struct *new_start_mm = start_mm; 1147 struct mm_struct *prev_mm = start_mm; 1148 struct mm_struct *mm; 1149 1150 atomic_inc(&new_start_mm->mm_users); 1151 atomic_inc(&prev_mm->mm_users); 1152 spin_lock(&mmlist_lock); 1153 while (swap_count(*swap_map) && !retval && 1154 (p = p->next) != &start_mm->mmlist) { 1155 mm = list_entry(p, struct mm_struct, mmlist); 1156 if (!atomic_inc_not_zero(&mm->mm_users)) 1157 continue; 1158 spin_unlock(&mmlist_lock); 1159 mmput(prev_mm); 1160 prev_mm = mm; 1161 1162 cond_resched(); 1163 1164 swcount = *swap_map; 1165 if (!swap_count(swcount)) /* any usage ? */ 1166 ; 1167 else if (mm == &init_mm) 1168 set_start_mm = 1; 1169 else 1170 retval = unuse_mm(mm, entry, page); 1171 1172 if (set_start_mm && *swap_map < swcount) { 1173 mmput(new_start_mm); 1174 atomic_inc(&mm->mm_users); 1175 new_start_mm = mm; 1176 set_start_mm = 0; 1177 } 1178 spin_lock(&mmlist_lock); 1179 } 1180 spin_unlock(&mmlist_lock); 1181 mmput(prev_mm); 1182 mmput(start_mm); 1183 start_mm = new_start_mm; 1184 } 1185 if (retval) { 1186 unlock_page(page); 1187 page_cache_release(page); 1188 break; 1189 } 1190 1191 /* 1192 * If a reference remains (rare), we would like to leave 1193 * the page in the swap cache; but try_to_unmap could 1194 * then re-duplicate the entry once we drop page lock, 1195 * so we might loop indefinitely; also, that page could 1196 * not be swapped out to other storage meanwhile. So: 1197 * delete from cache even if there's another reference, 1198 * after ensuring that the data has been saved to disk - 1199 * since if the reference remains (rarer), it will be 1200 * read from disk into another page. Splitting into two 1201 * pages would be incorrect if swap supported "shared 1202 * private" pages, but they are handled by tmpfs files. 1203 * 1204 * Given how unuse_vma() targets one particular offset 1205 * in an anon_vma, once the anon_vma has been determined, 1206 * this splitting happens to be just what is needed to 1207 * handle where KSM pages have been swapped out: re-reading 1208 * is unnecessarily slow, but we can fix that later on. 1209 */ 1210 if (swap_count(*swap_map) && 1211 PageDirty(page) && PageSwapCache(page)) { 1212 struct writeback_control wbc = { 1213 .sync_mode = WB_SYNC_NONE, 1214 }; 1215 1216 swap_writepage(page, &wbc); 1217 lock_page(page); 1218 wait_on_page_writeback(page); 1219 } 1220 1221 /* 1222 * It is conceivable that a racing task removed this page from 1223 * swap cache just before we acquired the page lock at the top, 1224 * or while we dropped it in unuse_mm(). The page might even 1225 * be back in swap cache on another swap area: that we must not 1226 * delete, since it may not have been written out to swap yet. 1227 */ 1228 if (PageSwapCache(page) && 1229 likely(page_private(page) == entry.val)) 1230 delete_from_swap_cache(page); 1231 1232 /* 1233 * So we could skip searching mms once swap count went 1234 * to 1, we did not mark any present ptes as dirty: must 1235 * mark page dirty so shrink_page_list will preserve it. 1236 */ 1237 SetPageDirty(page); 1238 unlock_page(page); 1239 page_cache_release(page); 1240 1241 /* 1242 * Make sure that we aren't completely killing 1243 * interactive performance. 1244 */ 1245 cond_resched(); 1246 if (frontswap && pages_to_unuse > 0) { 1247 if (!--pages_to_unuse) 1248 break; 1249 } 1250 } 1251 1252 mmput(start_mm); 1253 return retval; 1254 } 1255 1256 /* 1257 * After a successful try_to_unuse, if no swap is now in use, we know 1258 * we can empty the mmlist. swap_lock must be held on entry and exit. 1259 * Note that mmlist_lock nests inside swap_lock, and an mm must be 1260 * added to the mmlist just after page_duplicate - before would be racy. 1261 */ 1262 static void drain_mmlist(void) 1263 { 1264 struct list_head *p, *next; 1265 unsigned int type; 1266 1267 for (type = 0; type < nr_swapfiles; type++) 1268 if (swap_info[type]->inuse_pages) 1269 return; 1270 spin_lock(&mmlist_lock); 1271 list_for_each_safe(p, next, &init_mm.mmlist) 1272 list_del_init(p); 1273 spin_unlock(&mmlist_lock); 1274 } 1275 1276 /* 1277 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 1278 * corresponds to page offset for the specified swap entry. 1279 * Note that the type of this function is sector_t, but it returns page offset 1280 * into the bdev, not sector offset. 1281 */ 1282 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 1283 { 1284 struct swap_info_struct *sis; 1285 struct swap_extent *start_se; 1286 struct swap_extent *se; 1287 pgoff_t offset; 1288 1289 sis = swap_info[swp_type(entry)]; 1290 *bdev = sis->bdev; 1291 1292 offset = swp_offset(entry); 1293 start_se = sis->curr_swap_extent; 1294 se = start_se; 1295 1296 for ( ; ; ) { 1297 struct list_head *lh; 1298 1299 if (se->start_page <= offset && 1300 offset < (se->start_page + se->nr_pages)) { 1301 return se->start_block + (offset - se->start_page); 1302 } 1303 lh = se->list.next; 1304 se = list_entry(lh, struct swap_extent, list); 1305 sis->curr_swap_extent = se; 1306 BUG_ON(se == start_se); /* It *must* be present */ 1307 } 1308 } 1309 1310 /* 1311 * Returns the page offset into bdev for the specified page's swap entry. 1312 */ 1313 sector_t map_swap_page(struct page *page, struct block_device **bdev) 1314 { 1315 swp_entry_t entry; 1316 entry.val = page_private(page); 1317 return map_swap_entry(entry, bdev); 1318 } 1319 1320 /* 1321 * Free all of a swapdev's extent information 1322 */ 1323 static void destroy_swap_extents(struct swap_info_struct *sis) 1324 { 1325 while (!list_empty(&sis->first_swap_extent.list)) { 1326 struct swap_extent *se; 1327 1328 se = list_entry(sis->first_swap_extent.list.next, 1329 struct swap_extent, list); 1330 list_del(&se->list); 1331 kfree(se); 1332 } 1333 1334 if (sis->flags & SWP_FILE) { 1335 struct file *swap_file = sis->swap_file; 1336 struct address_space *mapping = swap_file->f_mapping; 1337 1338 sis->flags &= ~SWP_FILE; 1339 mapping->a_ops->swap_deactivate(swap_file); 1340 } 1341 } 1342 1343 /* 1344 * Add a block range (and the corresponding page range) into this swapdev's 1345 * extent list. The extent list is kept sorted in page order. 1346 * 1347 * This function rather assumes that it is called in ascending page order. 1348 */ 1349 int 1350 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1351 unsigned long nr_pages, sector_t start_block) 1352 { 1353 struct swap_extent *se; 1354 struct swap_extent *new_se; 1355 struct list_head *lh; 1356 1357 if (start_page == 0) { 1358 se = &sis->first_swap_extent; 1359 sis->curr_swap_extent = se; 1360 se->start_page = 0; 1361 se->nr_pages = nr_pages; 1362 se->start_block = start_block; 1363 return 1; 1364 } else { 1365 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 1366 se = list_entry(lh, struct swap_extent, list); 1367 BUG_ON(se->start_page + se->nr_pages != start_page); 1368 if (se->start_block + se->nr_pages == start_block) { 1369 /* Merge it */ 1370 se->nr_pages += nr_pages; 1371 return 0; 1372 } 1373 } 1374 1375 /* 1376 * No merge. Insert a new extent, preserving ordering. 1377 */ 1378 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 1379 if (new_se == NULL) 1380 return -ENOMEM; 1381 new_se->start_page = start_page; 1382 new_se->nr_pages = nr_pages; 1383 new_se->start_block = start_block; 1384 1385 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 1386 return 1; 1387 } 1388 1389 /* 1390 * A `swap extent' is a simple thing which maps a contiguous range of pages 1391 * onto a contiguous range of disk blocks. An ordered list of swap extents 1392 * is built at swapon time and is then used at swap_writepage/swap_readpage 1393 * time for locating where on disk a page belongs. 1394 * 1395 * If the swapfile is an S_ISBLK block device, a single extent is installed. 1396 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 1397 * swap files identically. 1398 * 1399 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 1400 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1401 * swapfiles are handled *identically* after swapon time. 1402 * 1403 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1404 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1405 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1406 * requirements, they are simply tossed out - we will never use those blocks 1407 * for swapping. 1408 * 1409 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1410 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1411 * which will scribble on the fs. 1412 * 1413 * The amount of disk space which a single swap extent represents varies. 1414 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1415 * extents in the list. To avoid much list walking, we cache the previous 1416 * search location in `curr_swap_extent', and start new searches from there. 1417 * This is extremely effective. The average number of iterations in 1418 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1419 */ 1420 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1421 { 1422 struct file *swap_file = sis->swap_file; 1423 struct address_space *mapping = swap_file->f_mapping; 1424 struct inode *inode = mapping->host; 1425 int ret; 1426 1427 if (S_ISBLK(inode->i_mode)) { 1428 ret = add_swap_extent(sis, 0, sis->max, 0); 1429 *span = sis->pages; 1430 return ret; 1431 } 1432 1433 if (mapping->a_ops->swap_activate) { 1434 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 1435 if (!ret) { 1436 sis->flags |= SWP_FILE; 1437 ret = add_swap_extent(sis, 0, sis->max, 0); 1438 *span = sis->pages; 1439 } 1440 return ret; 1441 } 1442 1443 return generic_swapfile_activate(sis, swap_file, span); 1444 } 1445 1446 static void enable_swap_info(struct swap_info_struct *p, int prio, 1447 unsigned char *swap_map, 1448 unsigned long *frontswap_map) 1449 { 1450 int i, prev; 1451 1452 spin_lock(&swap_lock); 1453 if (prio >= 0) 1454 p->prio = prio; 1455 else 1456 p->prio = --least_priority; 1457 p->swap_map = swap_map; 1458 frontswap_map_set(p, frontswap_map); 1459 p->flags |= SWP_WRITEOK; 1460 nr_swap_pages += p->pages; 1461 total_swap_pages += p->pages; 1462 1463 /* insert swap space into swap_list: */ 1464 prev = -1; 1465 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) { 1466 if (p->prio >= swap_info[i]->prio) 1467 break; 1468 prev = i; 1469 } 1470 p->next = i; 1471 if (prev < 0) 1472 swap_list.head = swap_list.next = p->type; 1473 else 1474 swap_info[prev]->next = p->type; 1475 frontswap_init(p->type); 1476 spin_unlock(&swap_lock); 1477 } 1478 1479 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 1480 { 1481 struct swap_info_struct *p = NULL; 1482 unsigned char *swap_map; 1483 struct file *swap_file, *victim; 1484 struct address_space *mapping; 1485 struct inode *inode; 1486 char *pathname; 1487 int oom_score_adj; 1488 int i, type, prev; 1489 int err; 1490 1491 if (!capable(CAP_SYS_ADMIN)) 1492 return -EPERM; 1493 1494 BUG_ON(!current->mm); 1495 1496 pathname = getname(specialfile); 1497 err = PTR_ERR(pathname); 1498 if (IS_ERR(pathname)) 1499 goto out; 1500 1501 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0); 1502 putname(pathname); 1503 err = PTR_ERR(victim); 1504 if (IS_ERR(victim)) 1505 goto out; 1506 1507 mapping = victim->f_mapping; 1508 prev = -1; 1509 spin_lock(&swap_lock); 1510 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) { 1511 p = swap_info[type]; 1512 if (p->flags & SWP_WRITEOK) { 1513 if (p->swap_file->f_mapping == mapping) 1514 break; 1515 } 1516 prev = type; 1517 } 1518 if (type < 0) { 1519 err = -EINVAL; 1520 spin_unlock(&swap_lock); 1521 goto out_dput; 1522 } 1523 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 1524 vm_unacct_memory(p->pages); 1525 else { 1526 err = -ENOMEM; 1527 spin_unlock(&swap_lock); 1528 goto out_dput; 1529 } 1530 if (prev < 0) 1531 swap_list.head = p->next; 1532 else 1533 swap_info[prev]->next = p->next; 1534 if (type == swap_list.next) { 1535 /* just pick something that's safe... */ 1536 swap_list.next = swap_list.head; 1537 } 1538 if (p->prio < 0) { 1539 for (i = p->next; i >= 0; i = swap_info[i]->next) 1540 swap_info[i]->prio = p->prio--; 1541 least_priority++; 1542 } 1543 nr_swap_pages -= p->pages; 1544 total_swap_pages -= p->pages; 1545 p->flags &= ~SWP_WRITEOK; 1546 spin_unlock(&swap_lock); 1547 1548 oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX); 1549 err = try_to_unuse(type, false, 0); /* force all pages to be unused */ 1550 compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj); 1551 1552 if (err) { 1553 /* 1554 * reading p->prio and p->swap_map outside the lock is 1555 * safe here because only sys_swapon and sys_swapoff 1556 * change them, and there can be no other sys_swapon or 1557 * sys_swapoff for this swap_info_struct at this point. 1558 */ 1559 /* re-insert swap space back into swap_list */ 1560 enable_swap_info(p, p->prio, p->swap_map, frontswap_map_get(p)); 1561 goto out_dput; 1562 } 1563 1564 destroy_swap_extents(p); 1565 if (p->flags & SWP_CONTINUED) 1566 free_swap_count_continuations(p); 1567 1568 mutex_lock(&swapon_mutex); 1569 spin_lock(&swap_lock); 1570 drain_mmlist(); 1571 1572 /* wait for anyone still in scan_swap_map */ 1573 p->highest_bit = 0; /* cuts scans short */ 1574 while (p->flags >= SWP_SCANNING) { 1575 spin_unlock(&swap_lock); 1576 schedule_timeout_uninterruptible(1); 1577 spin_lock(&swap_lock); 1578 } 1579 1580 swap_file = p->swap_file; 1581 p->swap_file = NULL; 1582 p->max = 0; 1583 swap_map = p->swap_map; 1584 p->swap_map = NULL; 1585 p->flags = 0; 1586 frontswap_invalidate_area(type); 1587 spin_unlock(&swap_lock); 1588 mutex_unlock(&swapon_mutex); 1589 vfree(swap_map); 1590 vfree(frontswap_map_get(p)); 1591 /* Destroy swap account informatin */ 1592 swap_cgroup_swapoff(type); 1593 1594 inode = mapping->host; 1595 if (S_ISBLK(inode->i_mode)) { 1596 struct block_device *bdev = I_BDEV(inode); 1597 set_blocksize(bdev, p->old_block_size); 1598 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 1599 } else { 1600 mutex_lock(&inode->i_mutex); 1601 inode->i_flags &= ~S_SWAPFILE; 1602 mutex_unlock(&inode->i_mutex); 1603 } 1604 filp_close(swap_file, NULL); 1605 err = 0; 1606 atomic_inc(&proc_poll_event); 1607 wake_up_interruptible(&proc_poll_wait); 1608 1609 out_dput: 1610 filp_close(victim, NULL); 1611 out: 1612 return err; 1613 } 1614 1615 #ifdef CONFIG_PROC_FS 1616 static unsigned swaps_poll(struct file *file, poll_table *wait) 1617 { 1618 struct seq_file *seq = file->private_data; 1619 1620 poll_wait(file, &proc_poll_wait, wait); 1621 1622 if (seq->poll_event != atomic_read(&proc_poll_event)) { 1623 seq->poll_event = atomic_read(&proc_poll_event); 1624 return POLLIN | POLLRDNORM | POLLERR | POLLPRI; 1625 } 1626 1627 return POLLIN | POLLRDNORM; 1628 } 1629 1630 /* iterator */ 1631 static void *swap_start(struct seq_file *swap, loff_t *pos) 1632 { 1633 struct swap_info_struct *si; 1634 int type; 1635 loff_t l = *pos; 1636 1637 mutex_lock(&swapon_mutex); 1638 1639 if (!l) 1640 return SEQ_START_TOKEN; 1641 1642 for (type = 0; type < nr_swapfiles; type++) { 1643 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 1644 si = swap_info[type]; 1645 if (!(si->flags & SWP_USED) || !si->swap_map) 1646 continue; 1647 if (!--l) 1648 return si; 1649 } 1650 1651 return NULL; 1652 } 1653 1654 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 1655 { 1656 struct swap_info_struct *si = v; 1657 int type; 1658 1659 if (v == SEQ_START_TOKEN) 1660 type = 0; 1661 else 1662 type = si->type + 1; 1663 1664 for (; type < nr_swapfiles; type++) { 1665 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 1666 si = swap_info[type]; 1667 if (!(si->flags & SWP_USED) || !si->swap_map) 1668 continue; 1669 ++*pos; 1670 return si; 1671 } 1672 1673 return NULL; 1674 } 1675 1676 static void swap_stop(struct seq_file *swap, void *v) 1677 { 1678 mutex_unlock(&swapon_mutex); 1679 } 1680 1681 static int swap_show(struct seq_file *swap, void *v) 1682 { 1683 struct swap_info_struct *si = v; 1684 struct file *file; 1685 int len; 1686 1687 if (si == SEQ_START_TOKEN) { 1688 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 1689 return 0; 1690 } 1691 1692 file = si->swap_file; 1693 len = seq_path(swap, &file->f_path, " \t\n\\"); 1694 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 1695 len < 40 ? 40 - len : 1, " ", 1696 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ? 1697 "partition" : "file\t", 1698 si->pages << (PAGE_SHIFT - 10), 1699 si->inuse_pages << (PAGE_SHIFT - 10), 1700 si->prio); 1701 return 0; 1702 } 1703 1704 static const struct seq_operations swaps_op = { 1705 .start = swap_start, 1706 .next = swap_next, 1707 .stop = swap_stop, 1708 .show = swap_show 1709 }; 1710 1711 static int swaps_open(struct inode *inode, struct file *file) 1712 { 1713 struct seq_file *seq; 1714 int ret; 1715 1716 ret = seq_open(file, &swaps_op); 1717 if (ret) 1718 return ret; 1719 1720 seq = file->private_data; 1721 seq->poll_event = atomic_read(&proc_poll_event); 1722 return 0; 1723 } 1724 1725 static const struct file_operations proc_swaps_operations = { 1726 .open = swaps_open, 1727 .read = seq_read, 1728 .llseek = seq_lseek, 1729 .release = seq_release, 1730 .poll = swaps_poll, 1731 }; 1732 1733 static int __init procswaps_init(void) 1734 { 1735 proc_create("swaps", 0, NULL, &proc_swaps_operations); 1736 return 0; 1737 } 1738 __initcall(procswaps_init); 1739 #endif /* CONFIG_PROC_FS */ 1740 1741 #ifdef MAX_SWAPFILES_CHECK 1742 static int __init max_swapfiles_check(void) 1743 { 1744 MAX_SWAPFILES_CHECK(); 1745 return 0; 1746 } 1747 late_initcall(max_swapfiles_check); 1748 #endif 1749 1750 static struct swap_info_struct *alloc_swap_info(void) 1751 { 1752 struct swap_info_struct *p; 1753 unsigned int type; 1754 1755 p = kzalloc(sizeof(*p), GFP_KERNEL); 1756 if (!p) 1757 return ERR_PTR(-ENOMEM); 1758 1759 spin_lock(&swap_lock); 1760 for (type = 0; type < nr_swapfiles; type++) { 1761 if (!(swap_info[type]->flags & SWP_USED)) 1762 break; 1763 } 1764 if (type >= MAX_SWAPFILES) { 1765 spin_unlock(&swap_lock); 1766 kfree(p); 1767 return ERR_PTR(-EPERM); 1768 } 1769 if (type >= nr_swapfiles) { 1770 p->type = type; 1771 swap_info[type] = p; 1772 /* 1773 * Write swap_info[type] before nr_swapfiles, in case a 1774 * racing procfs swap_start() or swap_next() is reading them. 1775 * (We never shrink nr_swapfiles, we never free this entry.) 1776 */ 1777 smp_wmb(); 1778 nr_swapfiles++; 1779 } else { 1780 kfree(p); 1781 p = swap_info[type]; 1782 /* 1783 * Do not memset this entry: a racing procfs swap_next() 1784 * would be relying on p->type to remain valid. 1785 */ 1786 } 1787 INIT_LIST_HEAD(&p->first_swap_extent.list); 1788 p->flags = SWP_USED; 1789 p->next = -1; 1790 spin_unlock(&swap_lock); 1791 1792 return p; 1793 } 1794 1795 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 1796 { 1797 int error; 1798 1799 if (S_ISBLK(inode->i_mode)) { 1800 p->bdev = bdgrab(I_BDEV(inode)); 1801 error = blkdev_get(p->bdev, 1802 FMODE_READ | FMODE_WRITE | FMODE_EXCL, 1803 sys_swapon); 1804 if (error < 0) { 1805 p->bdev = NULL; 1806 return -EINVAL; 1807 } 1808 p->old_block_size = block_size(p->bdev); 1809 error = set_blocksize(p->bdev, PAGE_SIZE); 1810 if (error < 0) 1811 return error; 1812 p->flags |= SWP_BLKDEV; 1813 } else if (S_ISREG(inode->i_mode)) { 1814 p->bdev = inode->i_sb->s_bdev; 1815 mutex_lock(&inode->i_mutex); 1816 if (IS_SWAPFILE(inode)) 1817 return -EBUSY; 1818 } else 1819 return -EINVAL; 1820 1821 return 0; 1822 } 1823 1824 static unsigned long read_swap_header(struct swap_info_struct *p, 1825 union swap_header *swap_header, 1826 struct inode *inode) 1827 { 1828 int i; 1829 unsigned long maxpages; 1830 unsigned long swapfilepages; 1831 1832 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 1833 printk(KERN_ERR "Unable to find swap-space signature\n"); 1834 return 0; 1835 } 1836 1837 /* swap partition endianess hack... */ 1838 if (swab32(swap_header->info.version) == 1) { 1839 swab32s(&swap_header->info.version); 1840 swab32s(&swap_header->info.last_page); 1841 swab32s(&swap_header->info.nr_badpages); 1842 for (i = 0; i < swap_header->info.nr_badpages; i++) 1843 swab32s(&swap_header->info.badpages[i]); 1844 } 1845 /* Check the swap header's sub-version */ 1846 if (swap_header->info.version != 1) { 1847 printk(KERN_WARNING 1848 "Unable to handle swap header version %d\n", 1849 swap_header->info.version); 1850 return 0; 1851 } 1852 1853 p->lowest_bit = 1; 1854 p->cluster_next = 1; 1855 p->cluster_nr = 0; 1856 1857 /* 1858 * Find out how many pages are allowed for a single swap 1859 * device. There are two limiting factors: 1) the number 1860 * of bits for the swap offset in the swp_entry_t type, and 1861 * 2) the number of bits in the swap pte as defined by the 1862 * different architectures. In order to find the 1863 * largest possible bit mask, a swap entry with swap type 0 1864 * and swap offset ~0UL is created, encoded to a swap pte, 1865 * decoded to a swp_entry_t again, and finally the swap 1866 * offset is extracted. This will mask all the bits from 1867 * the initial ~0UL mask that can't be encoded in either 1868 * the swp_entry_t or the architecture definition of a 1869 * swap pte. 1870 */ 1871 maxpages = swp_offset(pte_to_swp_entry( 1872 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 1873 if (maxpages > swap_header->info.last_page) { 1874 maxpages = swap_header->info.last_page + 1; 1875 /* p->max is an unsigned int: don't overflow it */ 1876 if ((unsigned int)maxpages == 0) 1877 maxpages = UINT_MAX; 1878 } 1879 p->highest_bit = maxpages - 1; 1880 1881 if (!maxpages) 1882 return 0; 1883 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 1884 if (swapfilepages && maxpages > swapfilepages) { 1885 printk(KERN_WARNING 1886 "Swap area shorter than signature indicates\n"); 1887 return 0; 1888 } 1889 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 1890 return 0; 1891 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 1892 return 0; 1893 1894 return maxpages; 1895 } 1896 1897 static int setup_swap_map_and_extents(struct swap_info_struct *p, 1898 union swap_header *swap_header, 1899 unsigned char *swap_map, 1900 unsigned long maxpages, 1901 sector_t *span) 1902 { 1903 int i; 1904 unsigned int nr_good_pages; 1905 int nr_extents; 1906 1907 nr_good_pages = maxpages - 1; /* omit header page */ 1908 1909 for (i = 0; i < swap_header->info.nr_badpages; i++) { 1910 unsigned int page_nr = swap_header->info.badpages[i]; 1911 if (page_nr == 0 || page_nr > swap_header->info.last_page) 1912 return -EINVAL; 1913 if (page_nr < maxpages) { 1914 swap_map[page_nr] = SWAP_MAP_BAD; 1915 nr_good_pages--; 1916 } 1917 } 1918 1919 if (nr_good_pages) { 1920 swap_map[0] = SWAP_MAP_BAD; 1921 p->max = maxpages; 1922 p->pages = nr_good_pages; 1923 nr_extents = setup_swap_extents(p, span); 1924 if (nr_extents < 0) 1925 return nr_extents; 1926 nr_good_pages = p->pages; 1927 } 1928 if (!nr_good_pages) { 1929 printk(KERN_WARNING "Empty swap-file\n"); 1930 return -EINVAL; 1931 } 1932 1933 return nr_extents; 1934 } 1935 1936 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 1937 { 1938 struct swap_info_struct *p; 1939 char *name; 1940 struct file *swap_file = NULL; 1941 struct address_space *mapping; 1942 int i; 1943 int prio; 1944 int error; 1945 union swap_header *swap_header; 1946 int nr_extents; 1947 sector_t span; 1948 unsigned long maxpages; 1949 unsigned char *swap_map = NULL; 1950 unsigned long *frontswap_map = NULL; 1951 struct page *page = NULL; 1952 struct inode *inode = NULL; 1953 1954 if (swap_flags & ~SWAP_FLAGS_VALID) 1955 return -EINVAL; 1956 1957 if (!capable(CAP_SYS_ADMIN)) 1958 return -EPERM; 1959 1960 p = alloc_swap_info(); 1961 if (IS_ERR(p)) 1962 return PTR_ERR(p); 1963 1964 name = getname(specialfile); 1965 if (IS_ERR(name)) { 1966 error = PTR_ERR(name); 1967 name = NULL; 1968 goto bad_swap; 1969 } 1970 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0); 1971 if (IS_ERR(swap_file)) { 1972 error = PTR_ERR(swap_file); 1973 swap_file = NULL; 1974 goto bad_swap; 1975 } 1976 1977 p->swap_file = swap_file; 1978 mapping = swap_file->f_mapping; 1979 1980 for (i = 0; i < nr_swapfiles; i++) { 1981 struct swap_info_struct *q = swap_info[i]; 1982 1983 if (q == p || !q->swap_file) 1984 continue; 1985 if (mapping == q->swap_file->f_mapping) { 1986 error = -EBUSY; 1987 goto bad_swap; 1988 } 1989 } 1990 1991 inode = mapping->host; 1992 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */ 1993 error = claim_swapfile(p, inode); 1994 if (unlikely(error)) 1995 goto bad_swap; 1996 1997 /* 1998 * Read the swap header. 1999 */ 2000 if (!mapping->a_ops->readpage) { 2001 error = -EINVAL; 2002 goto bad_swap; 2003 } 2004 page = read_mapping_page(mapping, 0, swap_file); 2005 if (IS_ERR(page)) { 2006 error = PTR_ERR(page); 2007 goto bad_swap; 2008 } 2009 swap_header = kmap(page); 2010 2011 maxpages = read_swap_header(p, swap_header, inode); 2012 if (unlikely(!maxpages)) { 2013 error = -EINVAL; 2014 goto bad_swap; 2015 } 2016 2017 /* OK, set up the swap map and apply the bad block list */ 2018 swap_map = vzalloc(maxpages); 2019 if (!swap_map) { 2020 error = -ENOMEM; 2021 goto bad_swap; 2022 } 2023 2024 error = swap_cgroup_swapon(p->type, maxpages); 2025 if (error) 2026 goto bad_swap; 2027 2028 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 2029 maxpages, &span); 2030 if (unlikely(nr_extents < 0)) { 2031 error = nr_extents; 2032 goto bad_swap; 2033 } 2034 /* frontswap enabled? set up bit-per-page map for frontswap */ 2035 if (frontswap_enabled) 2036 frontswap_map = vzalloc(maxpages / sizeof(long)); 2037 2038 if (p->bdev) { 2039 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) { 2040 p->flags |= SWP_SOLIDSTATE; 2041 p->cluster_next = 1 + (random32() % p->highest_bit); 2042 } 2043 if ((swap_flags & SWAP_FLAG_DISCARD) && discard_swap(p) == 0) 2044 p->flags |= SWP_DISCARDABLE; 2045 } 2046 2047 mutex_lock(&swapon_mutex); 2048 prio = -1; 2049 if (swap_flags & SWAP_FLAG_PREFER) 2050 prio = 2051 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 2052 enable_swap_info(p, prio, swap_map, frontswap_map); 2053 2054 printk(KERN_INFO "Adding %uk swap on %s. " 2055 "Priority:%d extents:%d across:%lluk %s%s%s\n", 2056 p->pages<<(PAGE_SHIFT-10), name, p->prio, 2057 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 2058 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 2059 (p->flags & SWP_DISCARDABLE) ? "D" : "", 2060 (frontswap_map) ? "FS" : ""); 2061 2062 mutex_unlock(&swapon_mutex); 2063 atomic_inc(&proc_poll_event); 2064 wake_up_interruptible(&proc_poll_wait); 2065 2066 if (S_ISREG(inode->i_mode)) 2067 inode->i_flags |= S_SWAPFILE; 2068 error = 0; 2069 goto out; 2070 bad_swap: 2071 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 2072 set_blocksize(p->bdev, p->old_block_size); 2073 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2074 } 2075 destroy_swap_extents(p); 2076 swap_cgroup_swapoff(p->type); 2077 spin_lock(&swap_lock); 2078 p->swap_file = NULL; 2079 p->flags = 0; 2080 spin_unlock(&swap_lock); 2081 vfree(swap_map); 2082 if (swap_file) { 2083 if (inode && S_ISREG(inode->i_mode)) { 2084 mutex_unlock(&inode->i_mutex); 2085 inode = NULL; 2086 } 2087 filp_close(swap_file, NULL); 2088 } 2089 out: 2090 if (page && !IS_ERR(page)) { 2091 kunmap(page); 2092 page_cache_release(page); 2093 } 2094 if (name) 2095 putname(name); 2096 if (inode && S_ISREG(inode->i_mode)) 2097 mutex_unlock(&inode->i_mutex); 2098 return error; 2099 } 2100 2101 void si_swapinfo(struct sysinfo *val) 2102 { 2103 unsigned int type; 2104 unsigned long nr_to_be_unused = 0; 2105 2106 spin_lock(&swap_lock); 2107 for (type = 0; type < nr_swapfiles; type++) { 2108 struct swap_info_struct *si = swap_info[type]; 2109 2110 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 2111 nr_to_be_unused += si->inuse_pages; 2112 } 2113 val->freeswap = nr_swap_pages + nr_to_be_unused; 2114 val->totalswap = total_swap_pages + nr_to_be_unused; 2115 spin_unlock(&swap_lock); 2116 } 2117 2118 /* 2119 * Verify that a swap entry is valid and increment its swap map count. 2120 * 2121 * Returns error code in following case. 2122 * - success -> 0 2123 * - swp_entry is invalid -> EINVAL 2124 * - swp_entry is migration entry -> EINVAL 2125 * - swap-cache reference is requested but there is already one. -> EEXIST 2126 * - swap-cache reference is requested but the entry is not used. -> ENOENT 2127 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 2128 */ 2129 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 2130 { 2131 struct swap_info_struct *p; 2132 unsigned long offset, type; 2133 unsigned char count; 2134 unsigned char has_cache; 2135 int err = -EINVAL; 2136 2137 if (non_swap_entry(entry)) 2138 goto out; 2139 2140 type = swp_type(entry); 2141 if (type >= nr_swapfiles) 2142 goto bad_file; 2143 p = swap_info[type]; 2144 offset = swp_offset(entry); 2145 2146 spin_lock(&swap_lock); 2147 if (unlikely(offset >= p->max)) 2148 goto unlock_out; 2149 2150 count = p->swap_map[offset]; 2151 has_cache = count & SWAP_HAS_CACHE; 2152 count &= ~SWAP_HAS_CACHE; 2153 err = 0; 2154 2155 if (usage == SWAP_HAS_CACHE) { 2156 2157 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 2158 if (!has_cache && count) 2159 has_cache = SWAP_HAS_CACHE; 2160 else if (has_cache) /* someone else added cache */ 2161 err = -EEXIST; 2162 else /* no users remaining */ 2163 err = -ENOENT; 2164 2165 } else if (count || has_cache) { 2166 2167 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 2168 count += usage; 2169 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 2170 err = -EINVAL; 2171 else if (swap_count_continued(p, offset, count)) 2172 count = COUNT_CONTINUED; 2173 else 2174 err = -ENOMEM; 2175 } else 2176 err = -ENOENT; /* unused swap entry */ 2177 2178 p->swap_map[offset] = count | has_cache; 2179 2180 unlock_out: 2181 spin_unlock(&swap_lock); 2182 out: 2183 return err; 2184 2185 bad_file: 2186 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val); 2187 goto out; 2188 } 2189 2190 /* 2191 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 2192 * (in which case its reference count is never incremented). 2193 */ 2194 void swap_shmem_alloc(swp_entry_t entry) 2195 { 2196 __swap_duplicate(entry, SWAP_MAP_SHMEM); 2197 } 2198 2199 /* 2200 * Increase reference count of swap entry by 1. 2201 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 2202 * but could not be atomically allocated. Returns 0, just as if it succeeded, 2203 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 2204 * might occur if a page table entry has got corrupted. 2205 */ 2206 int swap_duplicate(swp_entry_t entry) 2207 { 2208 int err = 0; 2209 2210 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 2211 err = add_swap_count_continuation(entry, GFP_ATOMIC); 2212 return err; 2213 } 2214 2215 /* 2216 * @entry: swap entry for which we allocate swap cache. 2217 * 2218 * Called when allocating swap cache for existing swap entry, 2219 * This can return error codes. Returns 0 at success. 2220 * -EBUSY means there is a swap cache. 2221 * Note: return code is different from swap_duplicate(). 2222 */ 2223 int swapcache_prepare(swp_entry_t entry) 2224 { 2225 return __swap_duplicate(entry, SWAP_HAS_CACHE); 2226 } 2227 2228 struct swap_info_struct *page_swap_info(struct page *page) 2229 { 2230 swp_entry_t swap = { .val = page_private(page) }; 2231 BUG_ON(!PageSwapCache(page)); 2232 return swap_info[swp_type(swap)]; 2233 } 2234 2235 /* 2236 * out-of-line __page_file_ methods to avoid include hell. 2237 */ 2238 struct address_space *__page_file_mapping(struct page *page) 2239 { 2240 VM_BUG_ON(!PageSwapCache(page)); 2241 return page_swap_info(page)->swap_file->f_mapping; 2242 } 2243 EXPORT_SYMBOL_GPL(__page_file_mapping); 2244 2245 pgoff_t __page_file_index(struct page *page) 2246 { 2247 swp_entry_t swap = { .val = page_private(page) }; 2248 VM_BUG_ON(!PageSwapCache(page)); 2249 return swp_offset(swap); 2250 } 2251 EXPORT_SYMBOL_GPL(__page_file_index); 2252 2253 /* 2254 * add_swap_count_continuation - called when a swap count is duplicated 2255 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 2256 * page of the original vmalloc'ed swap_map, to hold the continuation count 2257 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 2258 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 2259 * 2260 * These continuation pages are seldom referenced: the common paths all work 2261 * on the original swap_map, only referring to a continuation page when the 2262 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 2263 * 2264 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 2265 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 2266 * can be called after dropping locks. 2267 */ 2268 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 2269 { 2270 struct swap_info_struct *si; 2271 struct page *head; 2272 struct page *page; 2273 struct page *list_page; 2274 pgoff_t offset; 2275 unsigned char count; 2276 2277 /* 2278 * When debugging, it's easier to use __GFP_ZERO here; but it's better 2279 * for latency not to zero a page while GFP_ATOMIC and holding locks. 2280 */ 2281 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 2282 2283 si = swap_info_get(entry); 2284 if (!si) { 2285 /* 2286 * An acceptable race has occurred since the failing 2287 * __swap_duplicate(): the swap entry has been freed, 2288 * perhaps even the whole swap_map cleared for swapoff. 2289 */ 2290 goto outer; 2291 } 2292 2293 offset = swp_offset(entry); 2294 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 2295 2296 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 2297 /* 2298 * The higher the swap count, the more likely it is that tasks 2299 * will race to add swap count continuation: we need to avoid 2300 * over-provisioning. 2301 */ 2302 goto out; 2303 } 2304 2305 if (!page) { 2306 spin_unlock(&swap_lock); 2307 return -ENOMEM; 2308 } 2309 2310 /* 2311 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 2312 * no architecture is using highmem pages for kernel pagetables: so it 2313 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps. 2314 */ 2315 head = vmalloc_to_page(si->swap_map + offset); 2316 offset &= ~PAGE_MASK; 2317 2318 /* 2319 * Page allocation does not initialize the page's lru field, 2320 * but it does always reset its private field. 2321 */ 2322 if (!page_private(head)) { 2323 BUG_ON(count & COUNT_CONTINUED); 2324 INIT_LIST_HEAD(&head->lru); 2325 set_page_private(head, SWP_CONTINUED); 2326 si->flags |= SWP_CONTINUED; 2327 } 2328 2329 list_for_each_entry(list_page, &head->lru, lru) { 2330 unsigned char *map; 2331 2332 /* 2333 * If the previous map said no continuation, but we've found 2334 * a continuation page, free our allocation and use this one. 2335 */ 2336 if (!(count & COUNT_CONTINUED)) 2337 goto out; 2338 2339 map = kmap_atomic(list_page) + offset; 2340 count = *map; 2341 kunmap_atomic(map); 2342 2343 /* 2344 * If this continuation count now has some space in it, 2345 * free our allocation and use this one. 2346 */ 2347 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 2348 goto out; 2349 } 2350 2351 list_add_tail(&page->lru, &head->lru); 2352 page = NULL; /* now it's attached, don't free it */ 2353 out: 2354 spin_unlock(&swap_lock); 2355 outer: 2356 if (page) 2357 __free_page(page); 2358 return 0; 2359 } 2360 2361 /* 2362 * swap_count_continued - when the original swap_map count is incremented 2363 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 2364 * into, carry if so, or else fail until a new continuation page is allocated; 2365 * when the original swap_map count is decremented from 0 with continuation, 2366 * borrow from the continuation and report whether it still holds more. 2367 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock. 2368 */ 2369 static bool swap_count_continued(struct swap_info_struct *si, 2370 pgoff_t offset, unsigned char count) 2371 { 2372 struct page *head; 2373 struct page *page; 2374 unsigned char *map; 2375 2376 head = vmalloc_to_page(si->swap_map + offset); 2377 if (page_private(head) != SWP_CONTINUED) { 2378 BUG_ON(count & COUNT_CONTINUED); 2379 return false; /* need to add count continuation */ 2380 } 2381 2382 offset &= ~PAGE_MASK; 2383 page = list_entry(head->lru.next, struct page, lru); 2384 map = kmap_atomic(page) + offset; 2385 2386 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 2387 goto init_map; /* jump over SWAP_CONT_MAX checks */ 2388 2389 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 2390 /* 2391 * Think of how you add 1 to 999 2392 */ 2393 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 2394 kunmap_atomic(map); 2395 page = list_entry(page->lru.next, struct page, lru); 2396 BUG_ON(page == head); 2397 map = kmap_atomic(page) + offset; 2398 } 2399 if (*map == SWAP_CONT_MAX) { 2400 kunmap_atomic(map); 2401 page = list_entry(page->lru.next, struct page, lru); 2402 if (page == head) 2403 return false; /* add count continuation */ 2404 map = kmap_atomic(page) + offset; 2405 init_map: *map = 0; /* we didn't zero the page */ 2406 } 2407 *map += 1; 2408 kunmap_atomic(map); 2409 page = list_entry(page->lru.prev, struct page, lru); 2410 while (page != head) { 2411 map = kmap_atomic(page) + offset; 2412 *map = COUNT_CONTINUED; 2413 kunmap_atomic(map); 2414 page = list_entry(page->lru.prev, struct page, lru); 2415 } 2416 return true; /* incremented */ 2417 2418 } else { /* decrementing */ 2419 /* 2420 * Think of how you subtract 1 from 1000 2421 */ 2422 BUG_ON(count != COUNT_CONTINUED); 2423 while (*map == COUNT_CONTINUED) { 2424 kunmap_atomic(map); 2425 page = list_entry(page->lru.next, struct page, lru); 2426 BUG_ON(page == head); 2427 map = kmap_atomic(page) + offset; 2428 } 2429 BUG_ON(*map == 0); 2430 *map -= 1; 2431 if (*map == 0) 2432 count = 0; 2433 kunmap_atomic(map); 2434 page = list_entry(page->lru.prev, struct page, lru); 2435 while (page != head) { 2436 map = kmap_atomic(page) + offset; 2437 *map = SWAP_CONT_MAX | count; 2438 count = COUNT_CONTINUED; 2439 kunmap_atomic(map); 2440 page = list_entry(page->lru.prev, struct page, lru); 2441 } 2442 return count == COUNT_CONTINUED; 2443 } 2444 } 2445 2446 /* 2447 * free_swap_count_continuations - swapoff free all the continuation pages 2448 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 2449 */ 2450 static void free_swap_count_continuations(struct swap_info_struct *si) 2451 { 2452 pgoff_t offset; 2453 2454 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 2455 struct page *head; 2456 head = vmalloc_to_page(si->swap_map + offset); 2457 if (page_private(head)) { 2458 struct list_head *this, *next; 2459 list_for_each_safe(this, next, &head->lru) { 2460 struct page *page; 2461 page = list_entry(this, struct page, lru); 2462 list_del(this); 2463 __free_page(page); 2464 } 2465 } 2466 } 2467 } 2468