1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/mm.h> 10 #include <linux/sched/mm.h> 11 #include <linux/sched/task.h> 12 #include <linux/hugetlb.h> 13 #include <linux/mman.h> 14 #include <linux/slab.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/swap.h> 17 #include <linux/vmalloc.h> 18 #include <linux/pagemap.h> 19 #include <linux/namei.h> 20 #include <linux/shmem_fs.h> 21 #include <linux/blkdev.h> 22 #include <linux/random.h> 23 #include <linux/writeback.h> 24 #include <linux/proc_fs.h> 25 #include <linux/seq_file.h> 26 #include <linux/init.h> 27 #include <linux/ksm.h> 28 #include <linux/rmap.h> 29 #include <linux/security.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mutex.h> 32 #include <linux/capability.h> 33 #include <linux/syscalls.h> 34 #include <linux/memcontrol.h> 35 #include <linux/poll.h> 36 #include <linux/oom.h> 37 #include <linux/frontswap.h> 38 #include <linux/swapfile.h> 39 #include <linux/export.h> 40 #include <linux/swap_slots.h> 41 #include <linux/sort.h> 42 43 #include <asm/tlbflush.h> 44 #include <linux/swapops.h> 45 #include <linux/swap_cgroup.h> 46 47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 48 unsigned char); 49 static void free_swap_count_continuations(struct swap_info_struct *); 50 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 51 52 DEFINE_SPINLOCK(swap_lock); 53 static unsigned int nr_swapfiles; 54 atomic_long_t nr_swap_pages; 55 /* 56 * Some modules use swappable objects and may try to swap them out under 57 * memory pressure (via the shrinker). Before doing so, they may wish to 58 * check to see if any swap space is available. 59 */ 60 EXPORT_SYMBOL_GPL(nr_swap_pages); 61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 62 long total_swap_pages; 63 static int least_priority = -1; 64 65 static const char Bad_file[] = "Bad swap file entry "; 66 static const char Unused_file[] = "Unused swap file entry "; 67 static const char Bad_offset[] = "Bad swap offset entry "; 68 static const char Unused_offset[] = "Unused swap offset entry "; 69 70 /* 71 * all active swap_info_structs 72 * protected with swap_lock, and ordered by priority. 73 */ 74 PLIST_HEAD(swap_active_head); 75 76 /* 77 * all available (active, not full) swap_info_structs 78 * protected with swap_avail_lock, ordered by priority. 79 * This is used by get_swap_page() instead of swap_active_head 80 * because swap_active_head includes all swap_info_structs, 81 * but get_swap_page() doesn't need to look at full ones. 82 * This uses its own lock instead of swap_lock because when a 83 * swap_info_struct changes between not-full/full, it needs to 84 * add/remove itself to/from this list, but the swap_info_struct->lock 85 * is held and the locking order requires swap_lock to be taken 86 * before any swap_info_struct->lock. 87 */ 88 static struct plist_head *swap_avail_heads; 89 static DEFINE_SPINLOCK(swap_avail_lock); 90 91 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 92 93 static DEFINE_MUTEX(swapon_mutex); 94 95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 96 /* Activity counter to indicate that a swapon or swapoff has occurred */ 97 static atomic_t proc_poll_event = ATOMIC_INIT(0); 98 99 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 100 101 static struct swap_info_struct *swap_type_to_swap_info(int type) 102 { 103 if (type >= READ_ONCE(nr_swapfiles)) 104 return NULL; 105 106 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */ 107 return READ_ONCE(swap_info[type]); 108 } 109 110 static inline unsigned char swap_count(unsigned char ent) 111 { 112 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 113 } 114 115 /* Reclaim the swap entry anyway if possible */ 116 #define TTRS_ANYWAY 0x1 117 /* 118 * Reclaim the swap entry if there are no more mappings of the 119 * corresponding page 120 */ 121 #define TTRS_UNMAPPED 0x2 122 /* Reclaim the swap entry if swap is getting full*/ 123 #define TTRS_FULL 0x4 124 125 /* returns 1 if swap entry is freed */ 126 static int __try_to_reclaim_swap(struct swap_info_struct *si, 127 unsigned long offset, unsigned long flags) 128 { 129 swp_entry_t entry = swp_entry(si->type, offset); 130 struct page *page; 131 int ret = 0; 132 133 page = find_get_page(swap_address_space(entry), offset); 134 if (!page) 135 return 0; 136 /* 137 * When this function is called from scan_swap_map_slots() and it's 138 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page, 139 * here. We have to use trylock for avoiding deadlock. This is a special 140 * case and you should use try_to_free_swap() with explicit lock_page() 141 * in usual operations. 142 */ 143 if (trylock_page(page)) { 144 if ((flags & TTRS_ANYWAY) || 145 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) || 146 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page))) 147 ret = try_to_free_swap(page); 148 unlock_page(page); 149 } 150 put_page(page); 151 return ret; 152 } 153 154 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 155 { 156 struct rb_node *rb = rb_first(&sis->swap_extent_root); 157 return rb_entry(rb, struct swap_extent, rb_node); 158 } 159 160 static inline struct swap_extent *next_se(struct swap_extent *se) 161 { 162 struct rb_node *rb = rb_next(&se->rb_node); 163 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 164 } 165 166 /* 167 * swapon tell device that all the old swap contents can be discarded, 168 * to allow the swap device to optimize its wear-levelling. 169 */ 170 static int discard_swap(struct swap_info_struct *si) 171 { 172 struct swap_extent *se; 173 sector_t start_block; 174 sector_t nr_blocks; 175 int err = 0; 176 177 /* Do not discard the swap header page! */ 178 se = first_se(si); 179 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 180 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 181 if (nr_blocks) { 182 err = blkdev_issue_discard(si->bdev, start_block, 183 nr_blocks, GFP_KERNEL, 0); 184 if (err) 185 return err; 186 cond_resched(); 187 } 188 189 for (se = next_se(se); se; se = next_se(se)) { 190 start_block = se->start_block << (PAGE_SHIFT - 9); 191 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 192 193 err = blkdev_issue_discard(si->bdev, start_block, 194 nr_blocks, GFP_KERNEL, 0); 195 if (err) 196 break; 197 198 cond_resched(); 199 } 200 return err; /* That will often be -EOPNOTSUPP */ 201 } 202 203 static struct swap_extent * 204 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 205 { 206 struct swap_extent *se; 207 struct rb_node *rb; 208 209 rb = sis->swap_extent_root.rb_node; 210 while (rb) { 211 se = rb_entry(rb, struct swap_extent, rb_node); 212 if (offset < se->start_page) 213 rb = rb->rb_left; 214 else if (offset >= se->start_page + se->nr_pages) 215 rb = rb->rb_right; 216 else 217 return se; 218 } 219 /* It *must* be present */ 220 BUG(); 221 } 222 223 /* 224 * swap allocation tell device that a cluster of swap can now be discarded, 225 * to allow the swap device to optimize its wear-levelling. 226 */ 227 static void discard_swap_cluster(struct swap_info_struct *si, 228 pgoff_t start_page, pgoff_t nr_pages) 229 { 230 struct swap_extent *se = offset_to_swap_extent(si, start_page); 231 232 while (nr_pages) { 233 pgoff_t offset = start_page - se->start_page; 234 sector_t start_block = se->start_block + offset; 235 sector_t nr_blocks = se->nr_pages - offset; 236 237 if (nr_blocks > nr_pages) 238 nr_blocks = nr_pages; 239 start_page += nr_blocks; 240 nr_pages -= nr_blocks; 241 242 start_block <<= PAGE_SHIFT - 9; 243 nr_blocks <<= PAGE_SHIFT - 9; 244 if (blkdev_issue_discard(si->bdev, start_block, 245 nr_blocks, GFP_NOIO, 0)) 246 break; 247 248 se = next_se(se); 249 } 250 } 251 252 #ifdef CONFIG_THP_SWAP 253 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 254 255 #define swap_entry_size(size) (size) 256 #else 257 #define SWAPFILE_CLUSTER 256 258 259 /* 260 * Define swap_entry_size() as constant to let compiler to optimize 261 * out some code if !CONFIG_THP_SWAP 262 */ 263 #define swap_entry_size(size) 1 264 #endif 265 #define LATENCY_LIMIT 256 266 267 static inline void cluster_set_flag(struct swap_cluster_info *info, 268 unsigned int flag) 269 { 270 info->flags = flag; 271 } 272 273 static inline unsigned int cluster_count(struct swap_cluster_info *info) 274 { 275 return info->data; 276 } 277 278 static inline void cluster_set_count(struct swap_cluster_info *info, 279 unsigned int c) 280 { 281 info->data = c; 282 } 283 284 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 285 unsigned int c, unsigned int f) 286 { 287 info->flags = f; 288 info->data = c; 289 } 290 291 static inline unsigned int cluster_next(struct swap_cluster_info *info) 292 { 293 return info->data; 294 } 295 296 static inline void cluster_set_next(struct swap_cluster_info *info, 297 unsigned int n) 298 { 299 info->data = n; 300 } 301 302 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 303 unsigned int n, unsigned int f) 304 { 305 info->flags = f; 306 info->data = n; 307 } 308 309 static inline bool cluster_is_free(struct swap_cluster_info *info) 310 { 311 return info->flags & CLUSTER_FLAG_FREE; 312 } 313 314 static inline bool cluster_is_null(struct swap_cluster_info *info) 315 { 316 return info->flags & CLUSTER_FLAG_NEXT_NULL; 317 } 318 319 static inline void cluster_set_null(struct swap_cluster_info *info) 320 { 321 info->flags = CLUSTER_FLAG_NEXT_NULL; 322 info->data = 0; 323 } 324 325 static inline bool cluster_is_huge(struct swap_cluster_info *info) 326 { 327 if (IS_ENABLED(CONFIG_THP_SWAP)) 328 return info->flags & CLUSTER_FLAG_HUGE; 329 return false; 330 } 331 332 static inline void cluster_clear_huge(struct swap_cluster_info *info) 333 { 334 info->flags &= ~CLUSTER_FLAG_HUGE; 335 } 336 337 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 338 unsigned long offset) 339 { 340 struct swap_cluster_info *ci; 341 342 ci = si->cluster_info; 343 if (ci) { 344 ci += offset / SWAPFILE_CLUSTER; 345 spin_lock(&ci->lock); 346 } 347 return ci; 348 } 349 350 static inline void unlock_cluster(struct swap_cluster_info *ci) 351 { 352 if (ci) 353 spin_unlock(&ci->lock); 354 } 355 356 /* 357 * Determine the locking method in use for this device. Return 358 * swap_cluster_info if SSD-style cluster-based locking is in place. 359 */ 360 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 361 struct swap_info_struct *si, unsigned long offset) 362 { 363 struct swap_cluster_info *ci; 364 365 /* Try to use fine-grained SSD-style locking if available: */ 366 ci = lock_cluster(si, offset); 367 /* Otherwise, fall back to traditional, coarse locking: */ 368 if (!ci) 369 spin_lock(&si->lock); 370 371 return ci; 372 } 373 374 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 375 struct swap_cluster_info *ci) 376 { 377 if (ci) 378 unlock_cluster(ci); 379 else 380 spin_unlock(&si->lock); 381 } 382 383 static inline bool cluster_list_empty(struct swap_cluster_list *list) 384 { 385 return cluster_is_null(&list->head); 386 } 387 388 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 389 { 390 return cluster_next(&list->head); 391 } 392 393 static void cluster_list_init(struct swap_cluster_list *list) 394 { 395 cluster_set_null(&list->head); 396 cluster_set_null(&list->tail); 397 } 398 399 static void cluster_list_add_tail(struct swap_cluster_list *list, 400 struct swap_cluster_info *ci, 401 unsigned int idx) 402 { 403 if (cluster_list_empty(list)) { 404 cluster_set_next_flag(&list->head, idx, 0); 405 cluster_set_next_flag(&list->tail, idx, 0); 406 } else { 407 struct swap_cluster_info *ci_tail; 408 unsigned int tail = cluster_next(&list->tail); 409 410 /* 411 * Nested cluster lock, but both cluster locks are 412 * only acquired when we held swap_info_struct->lock 413 */ 414 ci_tail = ci + tail; 415 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 416 cluster_set_next(ci_tail, idx); 417 spin_unlock(&ci_tail->lock); 418 cluster_set_next_flag(&list->tail, idx, 0); 419 } 420 } 421 422 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 423 struct swap_cluster_info *ci) 424 { 425 unsigned int idx; 426 427 idx = cluster_next(&list->head); 428 if (cluster_next(&list->tail) == idx) { 429 cluster_set_null(&list->head); 430 cluster_set_null(&list->tail); 431 } else 432 cluster_set_next_flag(&list->head, 433 cluster_next(&ci[idx]), 0); 434 435 return idx; 436 } 437 438 /* Add a cluster to discard list and schedule it to do discard */ 439 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 440 unsigned int idx) 441 { 442 /* 443 * If scan_swap_map() can't find a free cluster, it will check 444 * si->swap_map directly. To make sure the discarding cluster isn't 445 * taken by scan_swap_map(), mark the swap entries bad (occupied). It 446 * will be cleared after discard 447 */ 448 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 449 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 450 451 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 452 453 schedule_work(&si->discard_work); 454 } 455 456 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 457 { 458 struct swap_cluster_info *ci = si->cluster_info; 459 460 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 461 cluster_list_add_tail(&si->free_clusters, ci, idx); 462 } 463 464 /* 465 * Doing discard actually. After a cluster discard is finished, the cluster 466 * will be added to free cluster list. caller should hold si->lock. 467 */ 468 static void swap_do_scheduled_discard(struct swap_info_struct *si) 469 { 470 struct swap_cluster_info *info, *ci; 471 unsigned int idx; 472 473 info = si->cluster_info; 474 475 while (!cluster_list_empty(&si->discard_clusters)) { 476 idx = cluster_list_del_first(&si->discard_clusters, info); 477 spin_unlock(&si->lock); 478 479 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 480 SWAPFILE_CLUSTER); 481 482 spin_lock(&si->lock); 483 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 484 __free_cluster(si, idx); 485 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 486 0, SWAPFILE_CLUSTER); 487 unlock_cluster(ci); 488 } 489 } 490 491 static void swap_discard_work(struct work_struct *work) 492 { 493 struct swap_info_struct *si; 494 495 si = container_of(work, struct swap_info_struct, discard_work); 496 497 spin_lock(&si->lock); 498 swap_do_scheduled_discard(si); 499 spin_unlock(&si->lock); 500 } 501 502 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 503 { 504 struct swap_cluster_info *ci = si->cluster_info; 505 506 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 507 cluster_list_del_first(&si->free_clusters, ci); 508 cluster_set_count_flag(ci + idx, 0, 0); 509 } 510 511 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 512 { 513 struct swap_cluster_info *ci = si->cluster_info + idx; 514 515 VM_BUG_ON(cluster_count(ci) != 0); 516 /* 517 * If the swap is discardable, prepare discard the cluster 518 * instead of free it immediately. The cluster will be freed 519 * after discard. 520 */ 521 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 522 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 523 swap_cluster_schedule_discard(si, idx); 524 return; 525 } 526 527 __free_cluster(si, idx); 528 } 529 530 /* 531 * The cluster corresponding to page_nr will be used. The cluster will be 532 * removed from free cluster list and its usage counter will be increased. 533 */ 534 static void inc_cluster_info_page(struct swap_info_struct *p, 535 struct swap_cluster_info *cluster_info, unsigned long page_nr) 536 { 537 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 538 539 if (!cluster_info) 540 return; 541 if (cluster_is_free(&cluster_info[idx])) 542 alloc_cluster(p, idx); 543 544 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 545 cluster_set_count(&cluster_info[idx], 546 cluster_count(&cluster_info[idx]) + 1); 547 } 548 549 /* 550 * The cluster corresponding to page_nr decreases one usage. If the usage 551 * counter becomes 0, which means no page in the cluster is in using, we can 552 * optionally discard the cluster and add it to free cluster list. 553 */ 554 static void dec_cluster_info_page(struct swap_info_struct *p, 555 struct swap_cluster_info *cluster_info, unsigned long page_nr) 556 { 557 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 558 559 if (!cluster_info) 560 return; 561 562 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 563 cluster_set_count(&cluster_info[idx], 564 cluster_count(&cluster_info[idx]) - 1); 565 566 if (cluster_count(&cluster_info[idx]) == 0) 567 free_cluster(p, idx); 568 } 569 570 /* 571 * It's possible scan_swap_map() uses a free cluster in the middle of free 572 * cluster list. Avoiding such abuse to avoid list corruption. 573 */ 574 static bool 575 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 576 unsigned long offset) 577 { 578 struct percpu_cluster *percpu_cluster; 579 bool conflict; 580 581 offset /= SWAPFILE_CLUSTER; 582 conflict = !cluster_list_empty(&si->free_clusters) && 583 offset != cluster_list_first(&si->free_clusters) && 584 cluster_is_free(&si->cluster_info[offset]); 585 586 if (!conflict) 587 return false; 588 589 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 590 cluster_set_null(&percpu_cluster->index); 591 return true; 592 } 593 594 /* 595 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 596 * might involve allocating a new cluster for current CPU too. 597 */ 598 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 599 unsigned long *offset, unsigned long *scan_base) 600 { 601 struct percpu_cluster *cluster; 602 struct swap_cluster_info *ci; 603 unsigned long tmp, max; 604 605 new_cluster: 606 cluster = this_cpu_ptr(si->percpu_cluster); 607 if (cluster_is_null(&cluster->index)) { 608 if (!cluster_list_empty(&si->free_clusters)) { 609 cluster->index = si->free_clusters.head; 610 cluster->next = cluster_next(&cluster->index) * 611 SWAPFILE_CLUSTER; 612 } else if (!cluster_list_empty(&si->discard_clusters)) { 613 /* 614 * we don't have free cluster but have some clusters in 615 * discarding, do discard now and reclaim them, then 616 * reread cluster_next_cpu since we dropped si->lock 617 */ 618 swap_do_scheduled_discard(si); 619 *scan_base = this_cpu_read(*si->cluster_next_cpu); 620 *offset = *scan_base; 621 goto new_cluster; 622 } else 623 return false; 624 } 625 626 /* 627 * Other CPUs can use our cluster if they can't find a free cluster, 628 * check if there is still free entry in the cluster 629 */ 630 tmp = cluster->next; 631 max = min_t(unsigned long, si->max, 632 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 633 if (tmp < max) { 634 ci = lock_cluster(si, tmp); 635 while (tmp < max) { 636 if (!si->swap_map[tmp]) 637 break; 638 tmp++; 639 } 640 unlock_cluster(ci); 641 } 642 if (tmp >= max) { 643 cluster_set_null(&cluster->index); 644 goto new_cluster; 645 } 646 cluster->next = tmp + 1; 647 *offset = tmp; 648 *scan_base = tmp; 649 return true; 650 } 651 652 static void __del_from_avail_list(struct swap_info_struct *p) 653 { 654 int nid; 655 656 for_each_node(nid) 657 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 658 } 659 660 static void del_from_avail_list(struct swap_info_struct *p) 661 { 662 spin_lock(&swap_avail_lock); 663 __del_from_avail_list(p); 664 spin_unlock(&swap_avail_lock); 665 } 666 667 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 668 unsigned int nr_entries) 669 { 670 unsigned int end = offset + nr_entries - 1; 671 672 if (offset == si->lowest_bit) 673 si->lowest_bit += nr_entries; 674 if (end == si->highest_bit) 675 si->highest_bit -= nr_entries; 676 si->inuse_pages += nr_entries; 677 if (si->inuse_pages == si->pages) { 678 si->lowest_bit = si->max; 679 si->highest_bit = 0; 680 del_from_avail_list(si); 681 } 682 } 683 684 static void add_to_avail_list(struct swap_info_struct *p) 685 { 686 int nid; 687 688 spin_lock(&swap_avail_lock); 689 for_each_node(nid) { 690 WARN_ON(!plist_node_empty(&p->avail_lists[nid])); 691 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 692 } 693 spin_unlock(&swap_avail_lock); 694 } 695 696 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 697 unsigned int nr_entries) 698 { 699 unsigned long end = offset + nr_entries - 1; 700 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 701 702 if (offset < si->lowest_bit) 703 si->lowest_bit = offset; 704 if (end > si->highest_bit) { 705 bool was_full = !si->highest_bit; 706 707 si->highest_bit = end; 708 if (was_full && (si->flags & SWP_WRITEOK)) 709 add_to_avail_list(si); 710 } 711 atomic_long_add(nr_entries, &nr_swap_pages); 712 si->inuse_pages -= nr_entries; 713 if (si->flags & SWP_BLKDEV) 714 swap_slot_free_notify = 715 si->bdev->bd_disk->fops->swap_slot_free_notify; 716 else 717 swap_slot_free_notify = NULL; 718 while (offset <= end) { 719 frontswap_invalidate_page(si->type, offset); 720 if (swap_slot_free_notify) 721 swap_slot_free_notify(si->bdev, offset); 722 offset++; 723 } 724 } 725 726 static void set_cluster_next(struct swap_info_struct *si, unsigned long next) 727 { 728 unsigned long prev; 729 730 if (!(si->flags & SWP_SOLIDSTATE)) { 731 si->cluster_next = next; 732 return; 733 } 734 735 prev = this_cpu_read(*si->cluster_next_cpu); 736 /* 737 * Cross the swap address space size aligned trunk, choose 738 * another trunk randomly to avoid lock contention on swap 739 * address space if possible. 740 */ 741 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) != 742 (next >> SWAP_ADDRESS_SPACE_SHIFT)) { 743 /* No free swap slots available */ 744 if (si->highest_bit <= si->lowest_bit) 745 return; 746 next = si->lowest_bit + 747 prandom_u32_max(si->highest_bit - si->lowest_bit + 1); 748 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES); 749 next = max_t(unsigned int, next, si->lowest_bit); 750 } 751 this_cpu_write(*si->cluster_next_cpu, next); 752 } 753 754 static int scan_swap_map_slots(struct swap_info_struct *si, 755 unsigned char usage, int nr, 756 swp_entry_t slots[]) 757 { 758 struct swap_cluster_info *ci; 759 unsigned long offset; 760 unsigned long scan_base; 761 unsigned long last_in_cluster = 0; 762 int latency_ration = LATENCY_LIMIT; 763 int n_ret = 0; 764 bool scanned_many = false; 765 766 /* 767 * We try to cluster swap pages by allocating them sequentially 768 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 769 * way, however, we resort to first-free allocation, starting 770 * a new cluster. This prevents us from scattering swap pages 771 * all over the entire swap partition, so that we reduce 772 * overall disk seek times between swap pages. -- sct 773 * But we do now try to find an empty cluster. -Andrea 774 * And we let swap pages go all over an SSD partition. Hugh 775 */ 776 777 si->flags += SWP_SCANNING; 778 /* 779 * Use percpu scan base for SSD to reduce lock contention on 780 * cluster and swap cache. For HDD, sequential access is more 781 * important. 782 */ 783 if (si->flags & SWP_SOLIDSTATE) 784 scan_base = this_cpu_read(*si->cluster_next_cpu); 785 else 786 scan_base = si->cluster_next; 787 offset = scan_base; 788 789 /* SSD algorithm */ 790 if (si->cluster_info) { 791 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 792 goto scan; 793 } else if (unlikely(!si->cluster_nr--)) { 794 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 795 si->cluster_nr = SWAPFILE_CLUSTER - 1; 796 goto checks; 797 } 798 799 spin_unlock(&si->lock); 800 801 /* 802 * If seek is expensive, start searching for new cluster from 803 * start of partition, to minimize the span of allocated swap. 804 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 805 * case, just handled by scan_swap_map_try_ssd_cluster() above. 806 */ 807 scan_base = offset = si->lowest_bit; 808 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 809 810 /* Locate the first empty (unaligned) cluster */ 811 for (; last_in_cluster <= si->highest_bit; offset++) { 812 if (si->swap_map[offset]) 813 last_in_cluster = offset + SWAPFILE_CLUSTER; 814 else if (offset == last_in_cluster) { 815 spin_lock(&si->lock); 816 offset -= SWAPFILE_CLUSTER - 1; 817 si->cluster_next = offset; 818 si->cluster_nr = SWAPFILE_CLUSTER - 1; 819 goto checks; 820 } 821 if (unlikely(--latency_ration < 0)) { 822 cond_resched(); 823 latency_ration = LATENCY_LIMIT; 824 } 825 } 826 827 offset = scan_base; 828 spin_lock(&si->lock); 829 si->cluster_nr = SWAPFILE_CLUSTER - 1; 830 } 831 832 checks: 833 if (si->cluster_info) { 834 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 835 /* take a break if we already got some slots */ 836 if (n_ret) 837 goto done; 838 if (!scan_swap_map_try_ssd_cluster(si, &offset, 839 &scan_base)) 840 goto scan; 841 } 842 } 843 if (!(si->flags & SWP_WRITEOK)) 844 goto no_page; 845 if (!si->highest_bit) 846 goto no_page; 847 if (offset > si->highest_bit) 848 scan_base = offset = si->lowest_bit; 849 850 ci = lock_cluster(si, offset); 851 /* reuse swap entry of cache-only swap if not busy. */ 852 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 853 int swap_was_freed; 854 unlock_cluster(ci); 855 spin_unlock(&si->lock); 856 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 857 spin_lock(&si->lock); 858 /* entry was freed successfully, try to use this again */ 859 if (swap_was_freed) 860 goto checks; 861 goto scan; /* check next one */ 862 } 863 864 if (si->swap_map[offset]) { 865 unlock_cluster(ci); 866 if (!n_ret) 867 goto scan; 868 else 869 goto done; 870 } 871 si->swap_map[offset] = usage; 872 inc_cluster_info_page(si, si->cluster_info, offset); 873 unlock_cluster(ci); 874 875 swap_range_alloc(si, offset, 1); 876 slots[n_ret++] = swp_entry(si->type, offset); 877 878 /* got enough slots or reach max slots? */ 879 if ((n_ret == nr) || (offset >= si->highest_bit)) 880 goto done; 881 882 /* search for next available slot */ 883 884 /* time to take a break? */ 885 if (unlikely(--latency_ration < 0)) { 886 if (n_ret) 887 goto done; 888 spin_unlock(&si->lock); 889 cond_resched(); 890 spin_lock(&si->lock); 891 latency_ration = LATENCY_LIMIT; 892 } 893 894 /* try to get more slots in cluster */ 895 if (si->cluster_info) { 896 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 897 goto checks; 898 } else if (si->cluster_nr && !si->swap_map[++offset]) { 899 /* non-ssd case, still more slots in cluster? */ 900 --si->cluster_nr; 901 goto checks; 902 } 903 904 /* 905 * Even if there's no free clusters available (fragmented), 906 * try to scan a little more quickly with lock held unless we 907 * have scanned too many slots already. 908 */ 909 if (!scanned_many) { 910 unsigned long scan_limit; 911 912 if (offset < scan_base) 913 scan_limit = scan_base; 914 else 915 scan_limit = si->highest_bit; 916 for (; offset <= scan_limit && --latency_ration > 0; 917 offset++) { 918 if (!si->swap_map[offset]) 919 goto checks; 920 } 921 } 922 923 done: 924 set_cluster_next(si, offset + 1); 925 si->flags -= SWP_SCANNING; 926 return n_ret; 927 928 scan: 929 spin_unlock(&si->lock); 930 while (++offset <= si->highest_bit) { 931 if (!si->swap_map[offset]) { 932 spin_lock(&si->lock); 933 goto checks; 934 } 935 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 936 spin_lock(&si->lock); 937 goto checks; 938 } 939 if (unlikely(--latency_ration < 0)) { 940 cond_resched(); 941 latency_ration = LATENCY_LIMIT; 942 scanned_many = true; 943 } 944 } 945 offset = si->lowest_bit; 946 while (offset < scan_base) { 947 if (!si->swap_map[offset]) { 948 spin_lock(&si->lock); 949 goto checks; 950 } 951 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 952 spin_lock(&si->lock); 953 goto checks; 954 } 955 if (unlikely(--latency_ration < 0)) { 956 cond_resched(); 957 latency_ration = LATENCY_LIMIT; 958 scanned_many = true; 959 } 960 offset++; 961 } 962 spin_lock(&si->lock); 963 964 no_page: 965 si->flags -= SWP_SCANNING; 966 return n_ret; 967 } 968 969 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 970 { 971 unsigned long idx; 972 struct swap_cluster_info *ci; 973 unsigned long offset, i; 974 unsigned char *map; 975 976 /* 977 * Should not even be attempting cluster allocations when huge 978 * page swap is disabled. Warn and fail the allocation. 979 */ 980 if (!IS_ENABLED(CONFIG_THP_SWAP)) { 981 VM_WARN_ON_ONCE(1); 982 return 0; 983 } 984 985 if (cluster_list_empty(&si->free_clusters)) 986 return 0; 987 988 idx = cluster_list_first(&si->free_clusters); 989 offset = idx * SWAPFILE_CLUSTER; 990 ci = lock_cluster(si, offset); 991 alloc_cluster(si, idx); 992 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 993 994 map = si->swap_map + offset; 995 for (i = 0; i < SWAPFILE_CLUSTER; i++) 996 map[i] = SWAP_HAS_CACHE; 997 unlock_cluster(ci); 998 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 999 *slot = swp_entry(si->type, offset); 1000 1001 return 1; 1002 } 1003 1004 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 1005 { 1006 unsigned long offset = idx * SWAPFILE_CLUSTER; 1007 struct swap_cluster_info *ci; 1008 1009 ci = lock_cluster(si, offset); 1010 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 1011 cluster_set_count_flag(ci, 0, 0); 1012 free_cluster(si, idx); 1013 unlock_cluster(ci); 1014 swap_range_free(si, offset, SWAPFILE_CLUSTER); 1015 } 1016 1017 static unsigned long scan_swap_map(struct swap_info_struct *si, 1018 unsigned char usage) 1019 { 1020 swp_entry_t entry; 1021 int n_ret; 1022 1023 n_ret = scan_swap_map_slots(si, usage, 1, &entry); 1024 1025 if (n_ret) 1026 return swp_offset(entry); 1027 else 1028 return 0; 1029 1030 } 1031 1032 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) 1033 { 1034 unsigned long size = swap_entry_size(entry_size); 1035 struct swap_info_struct *si, *next; 1036 long avail_pgs; 1037 int n_ret = 0; 1038 int node; 1039 1040 /* Only single cluster request supported */ 1041 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); 1042 1043 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 1044 if (avail_pgs <= 0) 1045 goto noswap; 1046 1047 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); 1048 1049 atomic_long_sub(n_goal * size, &nr_swap_pages); 1050 1051 spin_lock(&swap_avail_lock); 1052 1053 start_over: 1054 node = numa_node_id(); 1055 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1056 /* requeue si to after same-priority siblings */ 1057 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1058 spin_unlock(&swap_avail_lock); 1059 spin_lock(&si->lock); 1060 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 1061 spin_lock(&swap_avail_lock); 1062 if (plist_node_empty(&si->avail_lists[node])) { 1063 spin_unlock(&si->lock); 1064 goto nextsi; 1065 } 1066 WARN(!si->highest_bit, 1067 "swap_info %d in list but !highest_bit\n", 1068 si->type); 1069 WARN(!(si->flags & SWP_WRITEOK), 1070 "swap_info %d in list but !SWP_WRITEOK\n", 1071 si->type); 1072 __del_from_avail_list(si); 1073 spin_unlock(&si->lock); 1074 goto nextsi; 1075 } 1076 if (size == SWAPFILE_CLUSTER) { 1077 if (!(si->flags & SWP_FS)) 1078 n_ret = swap_alloc_cluster(si, swp_entries); 1079 } else 1080 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1081 n_goal, swp_entries); 1082 spin_unlock(&si->lock); 1083 if (n_ret || size == SWAPFILE_CLUSTER) 1084 goto check_out; 1085 pr_debug("scan_swap_map of si %d failed to find offset\n", 1086 si->type); 1087 1088 spin_lock(&swap_avail_lock); 1089 nextsi: 1090 /* 1091 * if we got here, it's likely that si was almost full before, 1092 * and since scan_swap_map() can drop the si->lock, multiple 1093 * callers probably all tried to get a page from the same si 1094 * and it filled up before we could get one; or, the si filled 1095 * up between us dropping swap_avail_lock and taking si->lock. 1096 * Since we dropped the swap_avail_lock, the swap_avail_head 1097 * list may have been modified; so if next is still in the 1098 * swap_avail_head list then try it, otherwise start over 1099 * if we have not gotten any slots. 1100 */ 1101 if (plist_node_empty(&next->avail_lists[node])) 1102 goto start_over; 1103 } 1104 1105 spin_unlock(&swap_avail_lock); 1106 1107 check_out: 1108 if (n_ret < n_goal) 1109 atomic_long_add((long)(n_goal - n_ret) * size, 1110 &nr_swap_pages); 1111 noswap: 1112 return n_ret; 1113 } 1114 1115 /* The only caller of this function is now suspend routine */ 1116 swp_entry_t get_swap_page_of_type(int type) 1117 { 1118 struct swap_info_struct *si = swap_type_to_swap_info(type); 1119 pgoff_t offset; 1120 1121 if (!si) 1122 goto fail; 1123 1124 spin_lock(&si->lock); 1125 if (si->flags & SWP_WRITEOK) { 1126 atomic_long_dec(&nr_swap_pages); 1127 /* This is called for allocating swap entry, not cache */ 1128 offset = scan_swap_map(si, 1); 1129 if (offset) { 1130 spin_unlock(&si->lock); 1131 return swp_entry(type, offset); 1132 } 1133 atomic_long_inc(&nr_swap_pages); 1134 } 1135 spin_unlock(&si->lock); 1136 fail: 1137 return (swp_entry_t) {0}; 1138 } 1139 1140 static struct swap_info_struct *__swap_info_get(swp_entry_t entry) 1141 { 1142 struct swap_info_struct *p; 1143 unsigned long offset; 1144 1145 if (!entry.val) 1146 goto out; 1147 p = swp_swap_info(entry); 1148 if (!p) 1149 goto bad_nofile; 1150 if (!(p->flags & SWP_USED)) 1151 goto bad_device; 1152 offset = swp_offset(entry); 1153 if (offset >= p->max) 1154 goto bad_offset; 1155 return p; 1156 1157 bad_offset: 1158 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val); 1159 goto out; 1160 bad_device: 1161 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val); 1162 goto out; 1163 bad_nofile: 1164 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val); 1165 out: 1166 return NULL; 1167 } 1168 1169 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1170 { 1171 struct swap_info_struct *p; 1172 1173 p = __swap_info_get(entry); 1174 if (!p) 1175 goto out; 1176 if (!p->swap_map[swp_offset(entry)]) 1177 goto bad_free; 1178 return p; 1179 1180 bad_free: 1181 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val); 1182 goto out; 1183 out: 1184 return NULL; 1185 } 1186 1187 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 1188 { 1189 struct swap_info_struct *p; 1190 1191 p = _swap_info_get(entry); 1192 if (p) 1193 spin_lock(&p->lock); 1194 return p; 1195 } 1196 1197 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1198 struct swap_info_struct *q) 1199 { 1200 struct swap_info_struct *p; 1201 1202 p = _swap_info_get(entry); 1203 1204 if (p != q) { 1205 if (q != NULL) 1206 spin_unlock(&q->lock); 1207 if (p != NULL) 1208 spin_lock(&p->lock); 1209 } 1210 return p; 1211 } 1212 1213 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1214 unsigned long offset, 1215 unsigned char usage) 1216 { 1217 unsigned char count; 1218 unsigned char has_cache; 1219 1220 count = p->swap_map[offset]; 1221 1222 has_cache = count & SWAP_HAS_CACHE; 1223 count &= ~SWAP_HAS_CACHE; 1224 1225 if (usage == SWAP_HAS_CACHE) { 1226 VM_BUG_ON(!has_cache); 1227 has_cache = 0; 1228 } else if (count == SWAP_MAP_SHMEM) { 1229 /* 1230 * Or we could insist on shmem.c using a special 1231 * swap_shmem_free() and free_shmem_swap_and_cache()... 1232 */ 1233 count = 0; 1234 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1235 if (count == COUNT_CONTINUED) { 1236 if (swap_count_continued(p, offset, count)) 1237 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1238 else 1239 count = SWAP_MAP_MAX; 1240 } else 1241 count--; 1242 } 1243 1244 usage = count | has_cache; 1245 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE; 1246 1247 return usage; 1248 } 1249 1250 /* 1251 * Check whether swap entry is valid in the swap device. If so, 1252 * return pointer to swap_info_struct, and keep the swap entry valid 1253 * via preventing the swap device from being swapoff, until 1254 * put_swap_device() is called. Otherwise return NULL. 1255 * 1256 * The entirety of the RCU read critical section must come before the 1257 * return from or after the call to synchronize_rcu() in 1258 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is 1259 * true, the si->map, si->cluster_info, etc. must be valid in the 1260 * critical section. 1261 * 1262 * Notice that swapoff or swapoff+swapon can still happen before the 1263 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock() 1264 * in put_swap_device() if there isn't any other way to prevent 1265 * swapoff, such as page lock, page table lock, etc. The caller must 1266 * be prepared for that. For example, the following situation is 1267 * possible. 1268 * 1269 * CPU1 CPU2 1270 * do_swap_page() 1271 * ... swapoff+swapon 1272 * __read_swap_cache_async() 1273 * swapcache_prepare() 1274 * __swap_duplicate() 1275 * // check swap_map 1276 * // verify PTE not changed 1277 * 1278 * In __swap_duplicate(), the swap_map need to be checked before 1279 * changing partly because the specified swap entry may be for another 1280 * swap device which has been swapoff. And in do_swap_page(), after 1281 * the page is read from the swap device, the PTE is verified not 1282 * changed with the page table locked to check whether the swap device 1283 * has been swapoff or swapoff+swapon. 1284 */ 1285 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1286 { 1287 struct swap_info_struct *si; 1288 unsigned long offset; 1289 1290 if (!entry.val) 1291 goto out; 1292 si = swp_swap_info(entry); 1293 if (!si) 1294 goto bad_nofile; 1295 1296 rcu_read_lock(); 1297 if (!(si->flags & SWP_VALID)) 1298 goto unlock_out; 1299 offset = swp_offset(entry); 1300 if (offset >= si->max) 1301 goto unlock_out; 1302 1303 return si; 1304 bad_nofile: 1305 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1306 out: 1307 return NULL; 1308 unlock_out: 1309 rcu_read_unlock(); 1310 return NULL; 1311 } 1312 1313 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1314 swp_entry_t entry) 1315 { 1316 struct swap_cluster_info *ci; 1317 unsigned long offset = swp_offset(entry); 1318 unsigned char usage; 1319 1320 ci = lock_cluster_or_swap_info(p, offset); 1321 usage = __swap_entry_free_locked(p, offset, 1); 1322 unlock_cluster_or_swap_info(p, ci); 1323 if (!usage) 1324 free_swap_slot(entry); 1325 1326 return usage; 1327 } 1328 1329 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1330 { 1331 struct swap_cluster_info *ci; 1332 unsigned long offset = swp_offset(entry); 1333 unsigned char count; 1334 1335 ci = lock_cluster(p, offset); 1336 count = p->swap_map[offset]; 1337 VM_BUG_ON(count != SWAP_HAS_CACHE); 1338 p->swap_map[offset] = 0; 1339 dec_cluster_info_page(p, p->cluster_info, offset); 1340 unlock_cluster(ci); 1341 1342 mem_cgroup_uncharge_swap(entry, 1); 1343 swap_range_free(p, offset, 1); 1344 } 1345 1346 /* 1347 * Caller has made sure that the swap device corresponding to entry 1348 * is still around or has not been recycled. 1349 */ 1350 void swap_free(swp_entry_t entry) 1351 { 1352 struct swap_info_struct *p; 1353 1354 p = _swap_info_get(entry); 1355 if (p) 1356 __swap_entry_free(p, entry); 1357 } 1358 1359 /* 1360 * Called after dropping swapcache to decrease refcnt to swap entries. 1361 */ 1362 void put_swap_page(struct page *page, swp_entry_t entry) 1363 { 1364 unsigned long offset = swp_offset(entry); 1365 unsigned long idx = offset / SWAPFILE_CLUSTER; 1366 struct swap_cluster_info *ci; 1367 struct swap_info_struct *si; 1368 unsigned char *map; 1369 unsigned int i, free_entries = 0; 1370 unsigned char val; 1371 int size = swap_entry_size(hpage_nr_pages(page)); 1372 1373 si = _swap_info_get(entry); 1374 if (!si) 1375 return; 1376 1377 ci = lock_cluster_or_swap_info(si, offset); 1378 if (size == SWAPFILE_CLUSTER) { 1379 VM_BUG_ON(!cluster_is_huge(ci)); 1380 map = si->swap_map + offset; 1381 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1382 val = map[i]; 1383 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1384 if (val == SWAP_HAS_CACHE) 1385 free_entries++; 1386 } 1387 cluster_clear_huge(ci); 1388 if (free_entries == SWAPFILE_CLUSTER) { 1389 unlock_cluster_or_swap_info(si, ci); 1390 spin_lock(&si->lock); 1391 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1392 swap_free_cluster(si, idx); 1393 spin_unlock(&si->lock); 1394 return; 1395 } 1396 } 1397 for (i = 0; i < size; i++, entry.val++) { 1398 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1399 unlock_cluster_or_swap_info(si, ci); 1400 free_swap_slot(entry); 1401 if (i == size - 1) 1402 return; 1403 lock_cluster_or_swap_info(si, offset); 1404 } 1405 } 1406 unlock_cluster_or_swap_info(si, ci); 1407 } 1408 1409 #ifdef CONFIG_THP_SWAP 1410 int split_swap_cluster(swp_entry_t entry) 1411 { 1412 struct swap_info_struct *si; 1413 struct swap_cluster_info *ci; 1414 unsigned long offset = swp_offset(entry); 1415 1416 si = _swap_info_get(entry); 1417 if (!si) 1418 return -EBUSY; 1419 ci = lock_cluster(si, offset); 1420 cluster_clear_huge(ci); 1421 unlock_cluster(ci); 1422 return 0; 1423 } 1424 #endif 1425 1426 static int swp_entry_cmp(const void *ent1, const void *ent2) 1427 { 1428 const swp_entry_t *e1 = ent1, *e2 = ent2; 1429 1430 return (int)swp_type(*e1) - (int)swp_type(*e2); 1431 } 1432 1433 void swapcache_free_entries(swp_entry_t *entries, int n) 1434 { 1435 struct swap_info_struct *p, *prev; 1436 int i; 1437 1438 if (n <= 0) 1439 return; 1440 1441 prev = NULL; 1442 p = NULL; 1443 1444 /* 1445 * Sort swap entries by swap device, so each lock is only taken once. 1446 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1447 * so low that it isn't necessary to optimize further. 1448 */ 1449 if (nr_swapfiles > 1) 1450 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1451 for (i = 0; i < n; ++i) { 1452 p = swap_info_get_cont(entries[i], prev); 1453 if (p) 1454 swap_entry_free(p, entries[i]); 1455 prev = p; 1456 } 1457 if (p) 1458 spin_unlock(&p->lock); 1459 } 1460 1461 /* 1462 * How many references to page are currently swapped out? 1463 * This does not give an exact answer when swap count is continued, 1464 * but does include the high COUNT_CONTINUED flag to allow for that. 1465 */ 1466 int page_swapcount(struct page *page) 1467 { 1468 int count = 0; 1469 struct swap_info_struct *p; 1470 struct swap_cluster_info *ci; 1471 swp_entry_t entry; 1472 unsigned long offset; 1473 1474 entry.val = page_private(page); 1475 p = _swap_info_get(entry); 1476 if (p) { 1477 offset = swp_offset(entry); 1478 ci = lock_cluster_or_swap_info(p, offset); 1479 count = swap_count(p->swap_map[offset]); 1480 unlock_cluster_or_swap_info(p, ci); 1481 } 1482 return count; 1483 } 1484 1485 int __swap_count(swp_entry_t entry) 1486 { 1487 struct swap_info_struct *si; 1488 pgoff_t offset = swp_offset(entry); 1489 int count = 0; 1490 1491 si = get_swap_device(entry); 1492 if (si) { 1493 count = swap_count(si->swap_map[offset]); 1494 put_swap_device(si); 1495 } 1496 return count; 1497 } 1498 1499 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1500 { 1501 int count = 0; 1502 pgoff_t offset = swp_offset(entry); 1503 struct swap_cluster_info *ci; 1504 1505 ci = lock_cluster_or_swap_info(si, offset); 1506 count = swap_count(si->swap_map[offset]); 1507 unlock_cluster_or_swap_info(si, ci); 1508 return count; 1509 } 1510 1511 /* 1512 * How many references to @entry are currently swapped out? 1513 * This does not give an exact answer when swap count is continued, 1514 * but does include the high COUNT_CONTINUED flag to allow for that. 1515 */ 1516 int __swp_swapcount(swp_entry_t entry) 1517 { 1518 int count = 0; 1519 struct swap_info_struct *si; 1520 1521 si = get_swap_device(entry); 1522 if (si) { 1523 count = swap_swapcount(si, entry); 1524 put_swap_device(si); 1525 } 1526 return count; 1527 } 1528 1529 /* 1530 * How many references to @entry are currently swapped out? 1531 * This considers COUNT_CONTINUED so it returns exact answer. 1532 */ 1533 int swp_swapcount(swp_entry_t entry) 1534 { 1535 int count, tmp_count, n; 1536 struct swap_info_struct *p; 1537 struct swap_cluster_info *ci; 1538 struct page *page; 1539 pgoff_t offset; 1540 unsigned char *map; 1541 1542 p = _swap_info_get(entry); 1543 if (!p) 1544 return 0; 1545 1546 offset = swp_offset(entry); 1547 1548 ci = lock_cluster_or_swap_info(p, offset); 1549 1550 count = swap_count(p->swap_map[offset]); 1551 if (!(count & COUNT_CONTINUED)) 1552 goto out; 1553 1554 count &= ~COUNT_CONTINUED; 1555 n = SWAP_MAP_MAX + 1; 1556 1557 page = vmalloc_to_page(p->swap_map + offset); 1558 offset &= ~PAGE_MASK; 1559 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1560 1561 do { 1562 page = list_next_entry(page, lru); 1563 map = kmap_atomic(page); 1564 tmp_count = map[offset]; 1565 kunmap_atomic(map); 1566 1567 count += (tmp_count & ~COUNT_CONTINUED) * n; 1568 n *= (SWAP_CONT_MAX + 1); 1569 } while (tmp_count & COUNT_CONTINUED); 1570 out: 1571 unlock_cluster_or_swap_info(p, ci); 1572 return count; 1573 } 1574 1575 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1576 swp_entry_t entry) 1577 { 1578 struct swap_cluster_info *ci; 1579 unsigned char *map = si->swap_map; 1580 unsigned long roffset = swp_offset(entry); 1581 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1582 int i; 1583 bool ret = false; 1584 1585 ci = lock_cluster_or_swap_info(si, offset); 1586 if (!ci || !cluster_is_huge(ci)) { 1587 if (swap_count(map[roffset])) 1588 ret = true; 1589 goto unlock_out; 1590 } 1591 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1592 if (swap_count(map[offset + i])) { 1593 ret = true; 1594 break; 1595 } 1596 } 1597 unlock_out: 1598 unlock_cluster_or_swap_info(si, ci); 1599 return ret; 1600 } 1601 1602 static bool page_swapped(struct page *page) 1603 { 1604 swp_entry_t entry; 1605 struct swap_info_struct *si; 1606 1607 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) 1608 return page_swapcount(page) != 0; 1609 1610 page = compound_head(page); 1611 entry.val = page_private(page); 1612 si = _swap_info_get(entry); 1613 if (si) 1614 return swap_page_trans_huge_swapped(si, entry); 1615 return false; 1616 } 1617 1618 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount, 1619 int *total_swapcount) 1620 { 1621 int i, map_swapcount, _total_mapcount, _total_swapcount; 1622 unsigned long offset = 0; 1623 struct swap_info_struct *si; 1624 struct swap_cluster_info *ci = NULL; 1625 unsigned char *map = NULL; 1626 int mapcount, swapcount = 0; 1627 1628 /* hugetlbfs shouldn't call it */ 1629 VM_BUG_ON_PAGE(PageHuge(page), page); 1630 1631 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) { 1632 mapcount = page_trans_huge_mapcount(page, total_mapcount); 1633 if (PageSwapCache(page)) 1634 swapcount = page_swapcount(page); 1635 if (total_swapcount) 1636 *total_swapcount = swapcount; 1637 return mapcount + swapcount; 1638 } 1639 1640 page = compound_head(page); 1641 1642 _total_mapcount = _total_swapcount = map_swapcount = 0; 1643 if (PageSwapCache(page)) { 1644 swp_entry_t entry; 1645 1646 entry.val = page_private(page); 1647 si = _swap_info_get(entry); 1648 if (si) { 1649 map = si->swap_map; 1650 offset = swp_offset(entry); 1651 } 1652 } 1653 if (map) 1654 ci = lock_cluster(si, offset); 1655 for (i = 0; i < HPAGE_PMD_NR; i++) { 1656 mapcount = atomic_read(&page[i]._mapcount) + 1; 1657 _total_mapcount += mapcount; 1658 if (map) { 1659 swapcount = swap_count(map[offset + i]); 1660 _total_swapcount += swapcount; 1661 } 1662 map_swapcount = max(map_swapcount, mapcount + swapcount); 1663 } 1664 unlock_cluster(ci); 1665 if (PageDoubleMap(page)) { 1666 map_swapcount -= 1; 1667 _total_mapcount -= HPAGE_PMD_NR; 1668 } 1669 mapcount = compound_mapcount(page); 1670 map_swapcount += mapcount; 1671 _total_mapcount += mapcount; 1672 if (total_mapcount) 1673 *total_mapcount = _total_mapcount; 1674 if (total_swapcount) 1675 *total_swapcount = _total_swapcount; 1676 1677 return map_swapcount; 1678 } 1679 1680 /* 1681 * We can write to an anon page without COW if there are no other references 1682 * to it. And as a side-effect, free up its swap: because the old content 1683 * on disk will never be read, and seeking back there to write new content 1684 * later would only waste time away from clustering. 1685 * 1686 * NOTE: total_map_swapcount should not be relied upon by the caller if 1687 * reuse_swap_page() returns false, but it may be always overwritten 1688 * (see the other implementation for CONFIG_SWAP=n). 1689 */ 1690 bool reuse_swap_page(struct page *page, int *total_map_swapcount) 1691 { 1692 int count, total_mapcount, total_swapcount; 1693 1694 VM_BUG_ON_PAGE(!PageLocked(page), page); 1695 if (unlikely(PageKsm(page))) 1696 return false; 1697 count = page_trans_huge_map_swapcount(page, &total_mapcount, 1698 &total_swapcount); 1699 if (total_map_swapcount) 1700 *total_map_swapcount = total_mapcount + total_swapcount; 1701 if (count == 1 && PageSwapCache(page) && 1702 (likely(!PageTransCompound(page)) || 1703 /* The remaining swap count will be freed soon */ 1704 total_swapcount == page_swapcount(page))) { 1705 if (!PageWriteback(page)) { 1706 page = compound_head(page); 1707 delete_from_swap_cache(page); 1708 SetPageDirty(page); 1709 } else { 1710 swp_entry_t entry; 1711 struct swap_info_struct *p; 1712 1713 entry.val = page_private(page); 1714 p = swap_info_get(entry); 1715 if (p->flags & SWP_STABLE_WRITES) { 1716 spin_unlock(&p->lock); 1717 return false; 1718 } 1719 spin_unlock(&p->lock); 1720 } 1721 } 1722 1723 return count <= 1; 1724 } 1725 1726 /* 1727 * If swap is getting full, or if there are no more mappings of this page, 1728 * then try_to_free_swap is called to free its swap space. 1729 */ 1730 int try_to_free_swap(struct page *page) 1731 { 1732 VM_BUG_ON_PAGE(!PageLocked(page), page); 1733 1734 if (!PageSwapCache(page)) 1735 return 0; 1736 if (PageWriteback(page)) 1737 return 0; 1738 if (page_swapped(page)) 1739 return 0; 1740 1741 /* 1742 * Once hibernation has begun to create its image of memory, 1743 * there's a danger that one of the calls to try_to_free_swap() 1744 * - most probably a call from __try_to_reclaim_swap() while 1745 * hibernation is allocating its own swap pages for the image, 1746 * but conceivably even a call from memory reclaim - will free 1747 * the swap from a page which has already been recorded in the 1748 * image as a clean swapcache page, and then reuse its swap for 1749 * another page of the image. On waking from hibernation, the 1750 * original page might be freed under memory pressure, then 1751 * later read back in from swap, now with the wrong data. 1752 * 1753 * Hibernation suspends storage while it is writing the image 1754 * to disk so check that here. 1755 */ 1756 if (pm_suspended_storage()) 1757 return 0; 1758 1759 page = compound_head(page); 1760 delete_from_swap_cache(page); 1761 SetPageDirty(page); 1762 return 1; 1763 } 1764 1765 /* 1766 * Free the swap entry like above, but also try to 1767 * free the page cache entry if it is the last user. 1768 */ 1769 int free_swap_and_cache(swp_entry_t entry) 1770 { 1771 struct swap_info_struct *p; 1772 unsigned char count; 1773 1774 if (non_swap_entry(entry)) 1775 return 1; 1776 1777 p = _swap_info_get(entry); 1778 if (p) { 1779 count = __swap_entry_free(p, entry); 1780 if (count == SWAP_HAS_CACHE && 1781 !swap_page_trans_huge_swapped(p, entry)) 1782 __try_to_reclaim_swap(p, swp_offset(entry), 1783 TTRS_UNMAPPED | TTRS_FULL); 1784 } 1785 return p != NULL; 1786 } 1787 1788 #ifdef CONFIG_HIBERNATION 1789 /* 1790 * Find the swap type that corresponds to given device (if any). 1791 * 1792 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1793 * from 0, in which the swap header is expected to be located. 1794 * 1795 * This is needed for the suspend to disk (aka swsusp). 1796 */ 1797 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 1798 { 1799 struct block_device *bdev = NULL; 1800 int type; 1801 1802 if (device) 1803 bdev = bdget(device); 1804 1805 spin_lock(&swap_lock); 1806 for (type = 0; type < nr_swapfiles; type++) { 1807 struct swap_info_struct *sis = swap_info[type]; 1808 1809 if (!(sis->flags & SWP_WRITEOK)) 1810 continue; 1811 1812 if (!bdev) { 1813 if (bdev_p) 1814 *bdev_p = bdgrab(sis->bdev); 1815 1816 spin_unlock(&swap_lock); 1817 return type; 1818 } 1819 if (bdev == sis->bdev) { 1820 struct swap_extent *se = first_se(sis); 1821 1822 if (se->start_block == offset) { 1823 if (bdev_p) 1824 *bdev_p = bdgrab(sis->bdev); 1825 1826 spin_unlock(&swap_lock); 1827 bdput(bdev); 1828 return type; 1829 } 1830 } 1831 } 1832 spin_unlock(&swap_lock); 1833 if (bdev) 1834 bdput(bdev); 1835 1836 return -ENODEV; 1837 } 1838 1839 /* 1840 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1841 * corresponding to given index in swap_info (swap type). 1842 */ 1843 sector_t swapdev_block(int type, pgoff_t offset) 1844 { 1845 struct block_device *bdev; 1846 struct swap_info_struct *si = swap_type_to_swap_info(type); 1847 1848 if (!si || !(si->flags & SWP_WRITEOK)) 1849 return 0; 1850 return map_swap_entry(swp_entry(type, offset), &bdev); 1851 } 1852 1853 /* 1854 * Return either the total number of swap pages of given type, or the number 1855 * of free pages of that type (depending on @free) 1856 * 1857 * This is needed for software suspend 1858 */ 1859 unsigned int count_swap_pages(int type, int free) 1860 { 1861 unsigned int n = 0; 1862 1863 spin_lock(&swap_lock); 1864 if ((unsigned int)type < nr_swapfiles) { 1865 struct swap_info_struct *sis = swap_info[type]; 1866 1867 spin_lock(&sis->lock); 1868 if (sis->flags & SWP_WRITEOK) { 1869 n = sis->pages; 1870 if (free) 1871 n -= sis->inuse_pages; 1872 } 1873 spin_unlock(&sis->lock); 1874 } 1875 spin_unlock(&swap_lock); 1876 return n; 1877 } 1878 #endif /* CONFIG_HIBERNATION */ 1879 1880 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1881 { 1882 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte); 1883 } 1884 1885 /* 1886 * No need to decide whether this PTE shares the swap entry with others, 1887 * just let do_wp_page work it out if a write is requested later - to 1888 * force COW, vm_page_prot omits write permission from any private vma. 1889 */ 1890 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1891 unsigned long addr, swp_entry_t entry, struct page *page) 1892 { 1893 struct page *swapcache; 1894 spinlock_t *ptl; 1895 pte_t *pte; 1896 int ret = 1; 1897 1898 swapcache = page; 1899 page = ksm_might_need_to_copy(page, vma, addr); 1900 if (unlikely(!page)) 1901 return -ENOMEM; 1902 1903 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1904 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1905 ret = 0; 1906 goto out; 1907 } 1908 1909 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1910 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1911 get_page(page); 1912 set_pte_at(vma->vm_mm, addr, pte, 1913 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1914 if (page == swapcache) { 1915 page_add_anon_rmap(page, vma, addr, false); 1916 } else { /* ksm created a completely new copy */ 1917 page_add_new_anon_rmap(page, vma, addr, false); 1918 lru_cache_add_active_or_unevictable(page, vma); 1919 } 1920 swap_free(entry); 1921 /* 1922 * Move the page to the active list so it is not 1923 * immediately swapped out again after swapon. 1924 */ 1925 activate_page(page); 1926 out: 1927 pte_unmap_unlock(pte, ptl); 1928 if (page != swapcache) { 1929 unlock_page(page); 1930 put_page(page); 1931 } 1932 return ret; 1933 } 1934 1935 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1936 unsigned long addr, unsigned long end, 1937 unsigned int type, bool frontswap, 1938 unsigned long *fs_pages_to_unuse) 1939 { 1940 struct page *page; 1941 swp_entry_t entry; 1942 pte_t *pte; 1943 struct swap_info_struct *si; 1944 unsigned long offset; 1945 int ret = 0; 1946 volatile unsigned char *swap_map; 1947 1948 si = swap_info[type]; 1949 pte = pte_offset_map(pmd, addr); 1950 do { 1951 struct vm_fault vmf; 1952 1953 if (!is_swap_pte(*pte)) 1954 continue; 1955 1956 entry = pte_to_swp_entry(*pte); 1957 if (swp_type(entry) != type) 1958 continue; 1959 1960 offset = swp_offset(entry); 1961 if (frontswap && !frontswap_test(si, offset)) 1962 continue; 1963 1964 pte_unmap(pte); 1965 swap_map = &si->swap_map[offset]; 1966 page = lookup_swap_cache(entry, vma, addr); 1967 if (!page) { 1968 vmf.vma = vma; 1969 vmf.address = addr; 1970 vmf.pmd = pmd; 1971 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 1972 &vmf); 1973 } 1974 if (!page) { 1975 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD) 1976 goto try_next; 1977 return -ENOMEM; 1978 } 1979 1980 lock_page(page); 1981 wait_on_page_writeback(page); 1982 ret = unuse_pte(vma, pmd, addr, entry, page); 1983 if (ret < 0) { 1984 unlock_page(page); 1985 put_page(page); 1986 goto out; 1987 } 1988 1989 try_to_free_swap(page); 1990 unlock_page(page); 1991 put_page(page); 1992 1993 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) { 1994 ret = FRONTSWAP_PAGES_UNUSED; 1995 goto out; 1996 } 1997 try_next: 1998 pte = pte_offset_map(pmd, addr); 1999 } while (pte++, addr += PAGE_SIZE, addr != end); 2000 pte_unmap(pte - 1); 2001 2002 ret = 0; 2003 out: 2004 return ret; 2005 } 2006 2007 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 2008 unsigned long addr, unsigned long end, 2009 unsigned int type, bool frontswap, 2010 unsigned long *fs_pages_to_unuse) 2011 { 2012 pmd_t *pmd; 2013 unsigned long next; 2014 int ret; 2015 2016 pmd = pmd_offset(pud, addr); 2017 do { 2018 cond_resched(); 2019 next = pmd_addr_end(addr, end); 2020 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 2021 continue; 2022 ret = unuse_pte_range(vma, pmd, addr, next, type, 2023 frontswap, fs_pages_to_unuse); 2024 if (ret) 2025 return ret; 2026 } while (pmd++, addr = next, addr != end); 2027 return 0; 2028 } 2029 2030 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 2031 unsigned long addr, unsigned long end, 2032 unsigned int type, bool frontswap, 2033 unsigned long *fs_pages_to_unuse) 2034 { 2035 pud_t *pud; 2036 unsigned long next; 2037 int ret; 2038 2039 pud = pud_offset(p4d, addr); 2040 do { 2041 next = pud_addr_end(addr, end); 2042 if (pud_none_or_clear_bad(pud)) 2043 continue; 2044 ret = unuse_pmd_range(vma, pud, addr, next, type, 2045 frontswap, fs_pages_to_unuse); 2046 if (ret) 2047 return ret; 2048 } while (pud++, addr = next, addr != end); 2049 return 0; 2050 } 2051 2052 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 2053 unsigned long addr, unsigned long end, 2054 unsigned int type, bool frontswap, 2055 unsigned long *fs_pages_to_unuse) 2056 { 2057 p4d_t *p4d; 2058 unsigned long next; 2059 int ret; 2060 2061 p4d = p4d_offset(pgd, addr); 2062 do { 2063 next = p4d_addr_end(addr, end); 2064 if (p4d_none_or_clear_bad(p4d)) 2065 continue; 2066 ret = unuse_pud_range(vma, p4d, addr, next, type, 2067 frontswap, fs_pages_to_unuse); 2068 if (ret) 2069 return ret; 2070 } while (p4d++, addr = next, addr != end); 2071 return 0; 2072 } 2073 2074 static int unuse_vma(struct vm_area_struct *vma, unsigned int type, 2075 bool frontswap, unsigned long *fs_pages_to_unuse) 2076 { 2077 pgd_t *pgd; 2078 unsigned long addr, end, next; 2079 int ret; 2080 2081 addr = vma->vm_start; 2082 end = vma->vm_end; 2083 2084 pgd = pgd_offset(vma->vm_mm, addr); 2085 do { 2086 next = pgd_addr_end(addr, end); 2087 if (pgd_none_or_clear_bad(pgd)) 2088 continue; 2089 ret = unuse_p4d_range(vma, pgd, addr, next, type, 2090 frontswap, fs_pages_to_unuse); 2091 if (ret) 2092 return ret; 2093 } while (pgd++, addr = next, addr != end); 2094 return 0; 2095 } 2096 2097 static int unuse_mm(struct mm_struct *mm, unsigned int type, 2098 bool frontswap, unsigned long *fs_pages_to_unuse) 2099 { 2100 struct vm_area_struct *vma; 2101 int ret = 0; 2102 2103 mmap_read_lock(mm); 2104 for (vma = mm->mmap; vma; vma = vma->vm_next) { 2105 if (vma->anon_vma) { 2106 ret = unuse_vma(vma, type, frontswap, 2107 fs_pages_to_unuse); 2108 if (ret) 2109 break; 2110 } 2111 cond_resched(); 2112 } 2113 mmap_read_unlock(mm); 2114 return ret; 2115 } 2116 2117 /* 2118 * Scan swap_map (or frontswap_map if frontswap parameter is true) 2119 * from current position to next entry still in use. Return 0 2120 * if there are no inuse entries after prev till end of the map. 2121 */ 2122 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2123 unsigned int prev, bool frontswap) 2124 { 2125 unsigned int i; 2126 unsigned char count; 2127 2128 /* 2129 * No need for swap_lock here: we're just looking 2130 * for whether an entry is in use, not modifying it; false 2131 * hits are okay, and sys_swapoff() has already prevented new 2132 * allocations from this area (while holding swap_lock). 2133 */ 2134 for (i = prev + 1; i < si->max; i++) { 2135 count = READ_ONCE(si->swap_map[i]); 2136 if (count && swap_count(count) != SWAP_MAP_BAD) 2137 if (!frontswap || frontswap_test(si, i)) 2138 break; 2139 if ((i % LATENCY_LIMIT) == 0) 2140 cond_resched(); 2141 } 2142 2143 if (i == si->max) 2144 i = 0; 2145 2146 return i; 2147 } 2148 2149 /* 2150 * If the boolean frontswap is true, only unuse pages_to_unuse pages; 2151 * pages_to_unuse==0 means all pages; ignored if frontswap is false 2152 */ 2153 int try_to_unuse(unsigned int type, bool frontswap, 2154 unsigned long pages_to_unuse) 2155 { 2156 struct mm_struct *prev_mm; 2157 struct mm_struct *mm; 2158 struct list_head *p; 2159 int retval = 0; 2160 struct swap_info_struct *si = swap_info[type]; 2161 struct page *page; 2162 swp_entry_t entry; 2163 unsigned int i; 2164 2165 if (!READ_ONCE(si->inuse_pages)) 2166 return 0; 2167 2168 if (!frontswap) 2169 pages_to_unuse = 0; 2170 2171 retry: 2172 retval = shmem_unuse(type, frontswap, &pages_to_unuse); 2173 if (retval) 2174 goto out; 2175 2176 prev_mm = &init_mm; 2177 mmget(prev_mm); 2178 2179 spin_lock(&mmlist_lock); 2180 p = &init_mm.mmlist; 2181 while (READ_ONCE(si->inuse_pages) && 2182 !signal_pending(current) && 2183 (p = p->next) != &init_mm.mmlist) { 2184 2185 mm = list_entry(p, struct mm_struct, mmlist); 2186 if (!mmget_not_zero(mm)) 2187 continue; 2188 spin_unlock(&mmlist_lock); 2189 mmput(prev_mm); 2190 prev_mm = mm; 2191 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse); 2192 2193 if (retval) { 2194 mmput(prev_mm); 2195 goto out; 2196 } 2197 2198 /* 2199 * Make sure that we aren't completely killing 2200 * interactive performance. 2201 */ 2202 cond_resched(); 2203 spin_lock(&mmlist_lock); 2204 } 2205 spin_unlock(&mmlist_lock); 2206 2207 mmput(prev_mm); 2208 2209 i = 0; 2210 while (READ_ONCE(si->inuse_pages) && 2211 !signal_pending(current) && 2212 (i = find_next_to_unuse(si, i, frontswap)) != 0) { 2213 2214 entry = swp_entry(type, i); 2215 page = find_get_page(swap_address_space(entry), i); 2216 if (!page) 2217 continue; 2218 2219 /* 2220 * It is conceivable that a racing task removed this page from 2221 * swap cache just before we acquired the page lock. The page 2222 * might even be back in swap cache on another swap area. But 2223 * that is okay, try_to_free_swap() only removes stale pages. 2224 */ 2225 lock_page(page); 2226 wait_on_page_writeback(page); 2227 try_to_free_swap(page); 2228 unlock_page(page); 2229 put_page(page); 2230 2231 /* 2232 * For frontswap, we just need to unuse pages_to_unuse, if 2233 * it was specified. Need not check frontswap again here as 2234 * we already zeroed out pages_to_unuse if not frontswap. 2235 */ 2236 if (pages_to_unuse && --pages_to_unuse == 0) 2237 goto out; 2238 } 2239 2240 /* 2241 * Lets check again to see if there are still swap entries in the map. 2242 * If yes, we would need to do retry the unuse logic again. 2243 * Under global memory pressure, swap entries can be reinserted back 2244 * into process space after the mmlist loop above passes over them. 2245 * 2246 * Limit the number of retries? No: when mmget_not_zero() above fails, 2247 * that mm is likely to be freeing swap from exit_mmap(), which proceeds 2248 * at its own independent pace; and even shmem_writepage() could have 2249 * been preempted after get_swap_page(), temporarily hiding that swap. 2250 * It's easy and robust (though cpu-intensive) just to keep retrying. 2251 */ 2252 if (READ_ONCE(si->inuse_pages)) { 2253 if (!signal_pending(current)) 2254 goto retry; 2255 retval = -EINTR; 2256 } 2257 out: 2258 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval; 2259 } 2260 2261 /* 2262 * After a successful try_to_unuse, if no swap is now in use, we know 2263 * we can empty the mmlist. swap_lock must be held on entry and exit. 2264 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2265 * added to the mmlist just after page_duplicate - before would be racy. 2266 */ 2267 static void drain_mmlist(void) 2268 { 2269 struct list_head *p, *next; 2270 unsigned int type; 2271 2272 for (type = 0; type < nr_swapfiles; type++) 2273 if (swap_info[type]->inuse_pages) 2274 return; 2275 spin_lock(&mmlist_lock); 2276 list_for_each_safe(p, next, &init_mm.mmlist) 2277 list_del_init(p); 2278 spin_unlock(&mmlist_lock); 2279 } 2280 2281 /* 2282 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 2283 * corresponds to page offset for the specified swap entry. 2284 * Note that the type of this function is sector_t, but it returns page offset 2285 * into the bdev, not sector offset. 2286 */ 2287 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 2288 { 2289 struct swap_info_struct *sis; 2290 struct swap_extent *se; 2291 pgoff_t offset; 2292 2293 sis = swp_swap_info(entry); 2294 *bdev = sis->bdev; 2295 2296 offset = swp_offset(entry); 2297 se = offset_to_swap_extent(sis, offset); 2298 return se->start_block + (offset - se->start_page); 2299 } 2300 2301 /* 2302 * Returns the page offset into bdev for the specified page's swap entry. 2303 */ 2304 sector_t map_swap_page(struct page *page, struct block_device **bdev) 2305 { 2306 swp_entry_t entry; 2307 entry.val = page_private(page); 2308 return map_swap_entry(entry, bdev); 2309 } 2310 2311 /* 2312 * Free all of a swapdev's extent information 2313 */ 2314 static void destroy_swap_extents(struct swap_info_struct *sis) 2315 { 2316 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2317 struct rb_node *rb = sis->swap_extent_root.rb_node; 2318 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2319 2320 rb_erase(rb, &sis->swap_extent_root); 2321 kfree(se); 2322 } 2323 2324 if (sis->flags & SWP_ACTIVATED) { 2325 struct file *swap_file = sis->swap_file; 2326 struct address_space *mapping = swap_file->f_mapping; 2327 2328 sis->flags &= ~SWP_ACTIVATED; 2329 if (mapping->a_ops->swap_deactivate) 2330 mapping->a_ops->swap_deactivate(swap_file); 2331 } 2332 } 2333 2334 /* 2335 * Add a block range (and the corresponding page range) into this swapdev's 2336 * extent tree. 2337 * 2338 * This function rather assumes that it is called in ascending page order. 2339 */ 2340 int 2341 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2342 unsigned long nr_pages, sector_t start_block) 2343 { 2344 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2345 struct swap_extent *se; 2346 struct swap_extent *new_se; 2347 2348 /* 2349 * place the new node at the right most since the 2350 * function is called in ascending page order. 2351 */ 2352 while (*link) { 2353 parent = *link; 2354 link = &parent->rb_right; 2355 } 2356 2357 if (parent) { 2358 se = rb_entry(parent, struct swap_extent, rb_node); 2359 BUG_ON(se->start_page + se->nr_pages != start_page); 2360 if (se->start_block + se->nr_pages == start_block) { 2361 /* Merge it */ 2362 se->nr_pages += nr_pages; 2363 return 0; 2364 } 2365 } 2366 2367 /* No merge, insert a new extent. */ 2368 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2369 if (new_se == NULL) 2370 return -ENOMEM; 2371 new_se->start_page = start_page; 2372 new_se->nr_pages = nr_pages; 2373 new_se->start_block = start_block; 2374 2375 rb_link_node(&new_se->rb_node, parent, link); 2376 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2377 return 1; 2378 } 2379 EXPORT_SYMBOL_GPL(add_swap_extent); 2380 2381 /* 2382 * A `swap extent' is a simple thing which maps a contiguous range of pages 2383 * onto a contiguous range of disk blocks. An ordered list of swap extents 2384 * is built at swapon time and is then used at swap_writepage/swap_readpage 2385 * time for locating where on disk a page belongs. 2386 * 2387 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2388 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2389 * swap files identically. 2390 * 2391 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2392 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2393 * swapfiles are handled *identically* after swapon time. 2394 * 2395 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2396 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 2397 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 2398 * requirements, they are simply tossed out - we will never use those blocks 2399 * for swapping. 2400 * 2401 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2402 * prevents users from writing to the swap device, which will corrupt memory. 2403 * 2404 * The amount of disk space which a single swap extent represents varies. 2405 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2406 * extents in the list. To avoid much list walking, we cache the previous 2407 * search location in `curr_swap_extent', and start new searches from there. 2408 * This is extremely effective. The average number of iterations in 2409 * map_swap_page() has been measured at about 0.3 per page. - akpm. 2410 */ 2411 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2412 { 2413 struct file *swap_file = sis->swap_file; 2414 struct address_space *mapping = swap_file->f_mapping; 2415 struct inode *inode = mapping->host; 2416 int ret; 2417 2418 if (S_ISBLK(inode->i_mode)) { 2419 ret = add_swap_extent(sis, 0, sis->max, 0); 2420 *span = sis->pages; 2421 return ret; 2422 } 2423 2424 if (mapping->a_ops->swap_activate) { 2425 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2426 if (ret >= 0) 2427 sis->flags |= SWP_ACTIVATED; 2428 if (!ret) { 2429 sis->flags |= SWP_FS; 2430 ret = add_swap_extent(sis, 0, sis->max, 0); 2431 *span = sis->pages; 2432 } 2433 return ret; 2434 } 2435 2436 return generic_swapfile_activate(sis, swap_file, span); 2437 } 2438 2439 static int swap_node(struct swap_info_struct *p) 2440 { 2441 struct block_device *bdev; 2442 2443 if (p->bdev) 2444 bdev = p->bdev; 2445 else 2446 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2447 2448 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2449 } 2450 2451 static void setup_swap_info(struct swap_info_struct *p, int prio, 2452 unsigned char *swap_map, 2453 struct swap_cluster_info *cluster_info) 2454 { 2455 int i; 2456 2457 if (prio >= 0) 2458 p->prio = prio; 2459 else 2460 p->prio = --least_priority; 2461 /* 2462 * the plist prio is negated because plist ordering is 2463 * low-to-high, while swap ordering is high-to-low 2464 */ 2465 p->list.prio = -p->prio; 2466 for_each_node(i) { 2467 if (p->prio >= 0) 2468 p->avail_lists[i].prio = -p->prio; 2469 else { 2470 if (swap_node(p) == i) 2471 p->avail_lists[i].prio = 1; 2472 else 2473 p->avail_lists[i].prio = -p->prio; 2474 } 2475 } 2476 p->swap_map = swap_map; 2477 p->cluster_info = cluster_info; 2478 } 2479 2480 static void _enable_swap_info(struct swap_info_struct *p) 2481 { 2482 p->flags |= SWP_WRITEOK | SWP_VALID; 2483 atomic_long_add(p->pages, &nr_swap_pages); 2484 total_swap_pages += p->pages; 2485 2486 assert_spin_locked(&swap_lock); 2487 /* 2488 * both lists are plists, and thus priority ordered. 2489 * swap_active_head needs to be priority ordered for swapoff(), 2490 * which on removal of any swap_info_struct with an auto-assigned 2491 * (i.e. negative) priority increments the auto-assigned priority 2492 * of any lower-priority swap_info_structs. 2493 * swap_avail_head needs to be priority ordered for get_swap_page(), 2494 * which allocates swap pages from the highest available priority 2495 * swap_info_struct. 2496 */ 2497 plist_add(&p->list, &swap_active_head); 2498 add_to_avail_list(p); 2499 } 2500 2501 static void enable_swap_info(struct swap_info_struct *p, int prio, 2502 unsigned char *swap_map, 2503 struct swap_cluster_info *cluster_info, 2504 unsigned long *frontswap_map) 2505 { 2506 frontswap_init(p->type, frontswap_map); 2507 spin_lock(&swap_lock); 2508 spin_lock(&p->lock); 2509 setup_swap_info(p, prio, swap_map, cluster_info); 2510 spin_unlock(&p->lock); 2511 spin_unlock(&swap_lock); 2512 /* 2513 * Guarantee swap_map, cluster_info, etc. fields are valid 2514 * between get/put_swap_device() if SWP_VALID bit is set 2515 */ 2516 synchronize_rcu(); 2517 spin_lock(&swap_lock); 2518 spin_lock(&p->lock); 2519 _enable_swap_info(p); 2520 spin_unlock(&p->lock); 2521 spin_unlock(&swap_lock); 2522 } 2523 2524 static void reinsert_swap_info(struct swap_info_struct *p) 2525 { 2526 spin_lock(&swap_lock); 2527 spin_lock(&p->lock); 2528 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2529 _enable_swap_info(p); 2530 spin_unlock(&p->lock); 2531 spin_unlock(&swap_lock); 2532 } 2533 2534 bool has_usable_swap(void) 2535 { 2536 bool ret = true; 2537 2538 spin_lock(&swap_lock); 2539 if (plist_head_empty(&swap_active_head)) 2540 ret = false; 2541 spin_unlock(&swap_lock); 2542 return ret; 2543 } 2544 2545 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2546 { 2547 struct swap_info_struct *p = NULL; 2548 unsigned char *swap_map; 2549 struct swap_cluster_info *cluster_info; 2550 unsigned long *frontswap_map; 2551 struct file *swap_file, *victim; 2552 struct address_space *mapping; 2553 struct inode *inode; 2554 struct filename *pathname; 2555 int err, found = 0; 2556 unsigned int old_block_size; 2557 2558 if (!capable(CAP_SYS_ADMIN)) 2559 return -EPERM; 2560 2561 BUG_ON(!current->mm); 2562 2563 pathname = getname(specialfile); 2564 if (IS_ERR(pathname)) 2565 return PTR_ERR(pathname); 2566 2567 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2568 err = PTR_ERR(victim); 2569 if (IS_ERR(victim)) 2570 goto out; 2571 2572 mapping = victim->f_mapping; 2573 spin_lock(&swap_lock); 2574 plist_for_each_entry(p, &swap_active_head, list) { 2575 if (p->flags & SWP_WRITEOK) { 2576 if (p->swap_file->f_mapping == mapping) { 2577 found = 1; 2578 break; 2579 } 2580 } 2581 } 2582 if (!found) { 2583 err = -EINVAL; 2584 spin_unlock(&swap_lock); 2585 goto out_dput; 2586 } 2587 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2588 vm_unacct_memory(p->pages); 2589 else { 2590 err = -ENOMEM; 2591 spin_unlock(&swap_lock); 2592 goto out_dput; 2593 } 2594 del_from_avail_list(p); 2595 spin_lock(&p->lock); 2596 if (p->prio < 0) { 2597 struct swap_info_struct *si = p; 2598 int nid; 2599 2600 plist_for_each_entry_continue(si, &swap_active_head, list) { 2601 si->prio++; 2602 si->list.prio--; 2603 for_each_node(nid) { 2604 if (si->avail_lists[nid].prio != 1) 2605 si->avail_lists[nid].prio--; 2606 } 2607 } 2608 least_priority++; 2609 } 2610 plist_del(&p->list, &swap_active_head); 2611 atomic_long_sub(p->pages, &nr_swap_pages); 2612 total_swap_pages -= p->pages; 2613 p->flags &= ~SWP_WRITEOK; 2614 spin_unlock(&p->lock); 2615 spin_unlock(&swap_lock); 2616 2617 disable_swap_slots_cache_lock(); 2618 2619 set_current_oom_origin(); 2620 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ 2621 clear_current_oom_origin(); 2622 2623 if (err) { 2624 /* re-insert swap space back into swap_list */ 2625 reinsert_swap_info(p); 2626 reenable_swap_slots_cache_unlock(); 2627 goto out_dput; 2628 } 2629 2630 reenable_swap_slots_cache_unlock(); 2631 2632 spin_lock(&swap_lock); 2633 spin_lock(&p->lock); 2634 p->flags &= ~SWP_VALID; /* mark swap device as invalid */ 2635 spin_unlock(&p->lock); 2636 spin_unlock(&swap_lock); 2637 /* 2638 * wait for swap operations protected by get/put_swap_device() 2639 * to complete 2640 */ 2641 synchronize_rcu(); 2642 2643 flush_work(&p->discard_work); 2644 2645 destroy_swap_extents(p); 2646 if (p->flags & SWP_CONTINUED) 2647 free_swap_count_continuations(p); 2648 2649 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev))) 2650 atomic_dec(&nr_rotate_swap); 2651 2652 mutex_lock(&swapon_mutex); 2653 spin_lock(&swap_lock); 2654 spin_lock(&p->lock); 2655 drain_mmlist(); 2656 2657 /* wait for anyone still in scan_swap_map */ 2658 p->highest_bit = 0; /* cuts scans short */ 2659 while (p->flags >= SWP_SCANNING) { 2660 spin_unlock(&p->lock); 2661 spin_unlock(&swap_lock); 2662 schedule_timeout_uninterruptible(1); 2663 spin_lock(&swap_lock); 2664 spin_lock(&p->lock); 2665 } 2666 2667 swap_file = p->swap_file; 2668 old_block_size = p->old_block_size; 2669 p->swap_file = NULL; 2670 p->max = 0; 2671 swap_map = p->swap_map; 2672 p->swap_map = NULL; 2673 cluster_info = p->cluster_info; 2674 p->cluster_info = NULL; 2675 frontswap_map = frontswap_map_get(p); 2676 spin_unlock(&p->lock); 2677 spin_unlock(&swap_lock); 2678 frontswap_invalidate_area(p->type); 2679 frontswap_map_set(p, NULL); 2680 mutex_unlock(&swapon_mutex); 2681 free_percpu(p->percpu_cluster); 2682 p->percpu_cluster = NULL; 2683 free_percpu(p->cluster_next_cpu); 2684 p->cluster_next_cpu = NULL; 2685 vfree(swap_map); 2686 kvfree(cluster_info); 2687 kvfree(frontswap_map); 2688 /* Destroy swap account information */ 2689 swap_cgroup_swapoff(p->type); 2690 exit_swap_address_space(p->type); 2691 2692 inode = mapping->host; 2693 if (S_ISBLK(inode->i_mode)) { 2694 struct block_device *bdev = I_BDEV(inode); 2695 2696 set_blocksize(bdev, old_block_size); 2697 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2698 } 2699 2700 inode_lock(inode); 2701 inode->i_flags &= ~S_SWAPFILE; 2702 inode_unlock(inode); 2703 filp_close(swap_file, NULL); 2704 2705 /* 2706 * Clear the SWP_USED flag after all resources are freed so that swapon 2707 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2708 * not hold p->lock after we cleared its SWP_WRITEOK. 2709 */ 2710 spin_lock(&swap_lock); 2711 p->flags = 0; 2712 spin_unlock(&swap_lock); 2713 2714 err = 0; 2715 atomic_inc(&proc_poll_event); 2716 wake_up_interruptible(&proc_poll_wait); 2717 2718 out_dput: 2719 filp_close(victim, NULL); 2720 out: 2721 putname(pathname); 2722 return err; 2723 } 2724 2725 #ifdef CONFIG_PROC_FS 2726 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2727 { 2728 struct seq_file *seq = file->private_data; 2729 2730 poll_wait(file, &proc_poll_wait, wait); 2731 2732 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2733 seq->poll_event = atomic_read(&proc_poll_event); 2734 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2735 } 2736 2737 return EPOLLIN | EPOLLRDNORM; 2738 } 2739 2740 /* iterator */ 2741 static void *swap_start(struct seq_file *swap, loff_t *pos) 2742 { 2743 struct swap_info_struct *si; 2744 int type; 2745 loff_t l = *pos; 2746 2747 mutex_lock(&swapon_mutex); 2748 2749 if (!l) 2750 return SEQ_START_TOKEN; 2751 2752 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2753 if (!(si->flags & SWP_USED) || !si->swap_map) 2754 continue; 2755 if (!--l) 2756 return si; 2757 } 2758 2759 return NULL; 2760 } 2761 2762 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2763 { 2764 struct swap_info_struct *si = v; 2765 int type; 2766 2767 if (v == SEQ_START_TOKEN) 2768 type = 0; 2769 else 2770 type = si->type + 1; 2771 2772 ++(*pos); 2773 for (; (si = swap_type_to_swap_info(type)); type++) { 2774 if (!(si->flags & SWP_USED) || !si->swap_map) 2775 continue; 2776 return si; 2777 } 2778 2779 return NULL; 2780 } 2781 2782 static void swap_stop(struct seq_file *swap, void *v) 2783 { 2784 mutex_unlock(&swapon_mutex); 2785 } 2786 2787 static int swap_show(struct seq_file *swap, void *v) 2788 { 2789 struct swap_info_struct *si = v; 2790 struct file *file; 2791 int len; 2792 unsigned int bytes, inuse; 2793 2794 if (si == SEQ_START_TOKEN) { 2795 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2796 return 0; 2797 } 2798 2799 bytes = si->pages << (PAGE_SHIFT - 10); 2800 inuse = si->inuse_pages << (PAGE_SHIFT - 10); 2801 2802 file = si->swap_file; 2803 len = seq_file_path(swap, file, " \t\n\\"); 2804 seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n", 2805 len < 40 ? 40 - len : 1, " ", 2806 S_ISBLK(file_inode(file)->i_mode) ? 2807 "partition" : "file\t", 2808 bytes, bytes < 10000000 ? "\t" : "", 2809 inuse, inuse < 10000000 ? "\t" : "", 2810 si->prio); 2811 return 0; 2812 } 2813 2814 static const struct seq_operations swaps_op = { 2815 .start = swap_start, 2816 .next = swap_next, 2817 .stop = swap_stop, 2818 .show = swap_show 2819 }; 2820 2821 static int swaps_open(struct inode *inode, struct file *file) 2822 { 2823 struct seq_file *seq; 2824 int ret; 2825 2826 ret = seq_open(file, &swaps_op); 2827 if (ret) 2828 return ret; 2829 2830 seq = file->private_data; 2831 seq->poll_event = atomic_read(&proc_poll_event); 2832 return 0; 2833 } 2834 2835 static const struct proc_ops swaps_proc_ops = { 2836 .proc_flags = PROC_ENTRY_PERMANENT, 2837 .proc_open = swaps_open, 2838 .proc_read = seq_read, 2839 .proc_lseek = seq_lseek, 2840 .proc_release = seq_release, 2841 .proc_poll = swaps_poll, 2842 }; 2843 2844 static int __init procswaps_init(void) 2845 { 2846 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2847 return 0; 2848 } 2849 __initcall(procswaps_init); 2850 #endif /* CONFIG_PROC_FS */ 2851 2852 #ifdef MAX_SWAPFILES_CHECK 2853 static int __init max_swapfiles_check(void) 2854 { 2855 MAX_SWAPFILES_CHECK(); 2856 return 0; 2857 } 2858 late_initcall(max_swapfiles_check); 2859 #endif 2860 2861 static struct swap_info_struct *alloc_swap_info(void) 2862 { 2863 struct swap_info_struct *p; 2864 unsigned int type; 2865 int i; 2866 2867 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2868 if (!p) 2869 return ERR_PTR(-ENOMEM); 2870 2871 spin_lock(&swap_lock); 2872 for (type = 0; type < nr_swapfiles; type++) { 2873 if (!(swap_info[type]->flags & SWP_USED)) 2874 break; 2875 } 2876 if (type >= MAX_SWAPFILES) { 2877 spin_unlock(&swap_lock); 2878 kvfree(p); 2879 return ERR_PTR(-EPERM); 2880 } 2881 if (type >= nr_swapfiles) { 2882 p->type = type; 2883 WRITE_ONCE(swap_info[type], p); 2884 /* 2885 * Write swap_info[type] before nr_swapfiles, in case a 2886 * racing procfs swap_start() or swap_next() is reading them. 2887 * (We never shrink nr_swapfiles, we never free this entry.) 2888 */ 2889 smp_wmb(); 2890 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1); 2891 } else { 2892 kvfree(p); 2893 p = swap_info[type]; 2894 /* 2895 * Do not memset this entry: a racing procfs swap_next() 2896 * would be relying on p->type to remain valid. 2897 */ 2898 } 2899 p->swap_extent_root = RB_ROOT; 2900 plist_node_init(&p->list, 0); 2901 for_each_node(i) 2902 plist_node_init(&p->avail_lists[i], 0); 2903 p->flags = SWP_USED; 2904 spin_unlock(&swap_lock); 2905 spin_lock_init(&p->lock); 2906 spin_lock_init(&p->cont_lock); 2907 2908 return p; 2909 } 2910 2911 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2912 { 2913 int error; 2914 2915 if (S_ISBLK(inode->i_mode)) { 2916 p->bdev = bdgrab(I_BDEV(inode)); 2917 error = blkdev_get(p->bdev, 2918 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2919 if (error < 0) { 2920 p->bdev = NULL; 2921 return error; 2922 } 2923 p->old_block_size = block_size(p->bdev); 2924 error = set_blocksize(p->bdev, PAGE_SIZE); 2925 if (error < 0) 2926 return error; 2927 /* 2928 * Zoned block devices contain zones that have a sequential 2929 * write only restriction. Hence zoned block devices are not 2930 * suitable for swapping. Disallow them here. 2931 */ 2932 if (blk_queue_is_zoned(p->bdev->bd_queue)) 2933 return -EINVAL; 2934 p->flags |= SWP_BLKDEV; 2935 } else if (S_ISREG(inode->i_mode)) { 2936 p->bdev = inode->i_sb->s_bdev; 2937 } 2938 2939 return 0; 2940 } 2941 2942 2943 /* 2944 * Find out how many pages are allowed for a single swap device. There 2945 * are two limiting factors: 2946 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2947 * 2) the number of bits in the swap pte, as defined by the different 2948 * architectures. 2949 * 2950 * In order to find the largest possible bit mask, a swap entry with 2951 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2952 * decoded to a swp_entry_t again, and finally the swap offset is 2953 * extracted. 2954 * 2955 * This will mask all the bits from the initial ~0UL mask that can't 2956 * be encoded in either the swp_entry_t or the architecture definition 2957 * of a swap pte. 2958 */ 2959 unsigned long generic_max_swapfile_size(void) 2960 { 2961 return swp_offset(pte_to_swp_entry( 2962 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2963 } 2964 2965 /* Can be overridden by an architecture for additional checks. */ 2966 __weak unsigned long max_swapfile_size(void) 2967 { 2968 return generic_max_swapfile_size(); 2969 } 2970 2971 static unsigned long read_swap_header(struct swap_info_struct *p, 2972 union swap_header *swap_header, 2973 struct inode *inode) 2974 { 2975 int i; 2976 unsigned long maxpages; 2977 unsigned long swapfilepages; 2978 unsigned long last_page; 2979 2980 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2981 pr_err("Unable to find swap-space signature\n"); 2982 return 0; 2983 } 2984 2985 /* swap partition endianess hack... */ 2986 if (swab32(swap_header->info.version) == 1) { 2987 swab32s(&swap_header->info.version); 2988 swab32s(&swap_header->info.last_page); 2989 swab32s(&swap_header->info.nr_badpages); 2990 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2991 return 0; 2992 for (i = 0; i < swap_header->info.nr_badpages; i++) 2993 swab32s(&swap_header->info.badpages[i]); 2994 } 2995 /* Check the swap header's sub-version */ 2996 if (swap_header->info.version != 1) { 2997 pr_warn("Unable to handle swap header version %d\n", 2998 swap_header->info.version); 2999 return 0; 3000 } 3001 3002 p->lowest_bit = 1; 3003 p->cluster_next = 1; 3004 p->cluster_nr = 0; 3005 3006 maxpages = max_swapfile_size(); 3007 last_page = swap_header->info.last_page; 3008 if (!last_page) { 3009 pr_warn("Empty swap-file\n"); 3010 return 0; 3011 } 3012 if (last_page > maxpages) { 3013 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 3014 maxpages << (PAGE_SHIFT - 10), 3015 last_page << (PAGE_SHIFT - 10)); 3016 } 3017 if (maxpages > last_page) { 3018 maxpages = last_page + 1; 3019 /* p->max is an unsigned int: don't overflow it */ 3020 if ((unsigned int)maxpages == 0) 3021 maxpages = UINT_MAX; 3022 } 3023 p->highest_bit = maxpages - 1; 3024 3025 if (!maxpages) 3026 return 0; 3027 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 3028 if (swapfilepages && maxpages > swapfilepages) { 3029 pr_warn("Swap area shorter than signature indicates\n"); 3030 return 0; 3031 } 3032 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 3033 return 0; 3034 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 3035 return 0; 3036 3037 return maxpages; 3038 } 3039 3040 #define SWAP_CLUSTER_INFO_COLS \ 3041 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 3042 #define SWAP_CLUSTER_SPACE_COLS \ 3043 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 3044 #define SWAP_CLUSTER_COLS \ 3045 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 3046 3047 static int setup_swap_map_and_extents(struct swap_info_struct *p, 3048 union swap_header *swap_header, 3049 unsigned char *swap_map, 3050 struct swap_cluster_info *cluster_info, 3051 unsigned long maxpages, 3052 sector_t *span) 3053 { 3054 unsigned int j, k; 3055 unsigned int nr_good_pages; 3056 int nr_extents; 3057 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3058 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 3059 unsigned long i, idx; 3060 3061 nr_good_pages = maxpages - 1; /* omit header page */ 3062 3063 cluster_list_init(&p->free_clusters); 3064 cluster_list_init(&p->discard_clusters); 3065 3066 for (i = 0; i < swap_header->info.nr_badpages; i++) { 3067 unsigned int page_nr = swap_header->info.badpages[i]; 3068 if (page_nr == 0 || page_nr > swap_header->info.last_page) 3069 return -EINVAL; 3070 if (page_nr < maxpages) { 3071 swap_map[page_nr] = SWAP_MAP_BAD; 3072 nr_good_pages--; 3073 /* 3074 * Haven't marked the cluster free yet, no list 3075 * operation involved 3076 */ 3077 inc_cluster_info_page(p, cluster_info, page_nr); 3078 } 3079 } 3080 3081 /* Haven't marked the cluster free yet, no list operation involved */ 3082 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 3083 inc_cluster_info_page(p, cluster_info, i); 3084 3085 if (nr_good_pages) { 3086 swap_map[0] = SWAP_MAP_BAD; 3087 /* 3088 * Not mark the cluster free yet, no list 3089 * operation involved 3090 */ 3091 inc_cluster_info_page(p, cluster_info, 0); 3092 p->max = maxpages; 3093 p->pages = nr_good_pages; 3094 nr_extents = setup_swap_extents(p, span); 3095 if (nr_extents < 0) 3096 return nr_extents; 3097 nr_good_pages = p->pages; 3098 } 3099 if (!nr_good_pages) { 3100 pr_warn("Empty swap-file\n"); 3101 return -EINVAL; 3102 } 3103 3104 if (!cluster_info) 3105 return nr_extents; 3106 3107 3108 /* 3109 * Reduce false cache line sharing between cluster_info and 3110 * sharing same address space. 3111 */ 3112 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 3113 j = (k + col) % SWAP_CLUSTER_COLS; 3114 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 3115 idx = i * SWAP_CLUSTER_COLS + j; 3116 if (idx >= nr_clusters) 3117 continue; 3118 if (cluster_count(&cluster_info[idx])) 3119 continue; 3120 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 3121 cluster_list_add_tail(&p->free_clusters, cluster_info, 3122 idx); 3123 } 3124 } 3125 return nr_extents; 3126 } 3127 3128 /* 3129 * Helper to sys_swapon determining if a given swap 3130 * backing device queue supports DISCARD operations. 3131 */ 3132 static bool swap_discardable(struct swap_info_struct *si) 3133 { 3134 struct request_queue *q = bdev_get_queue(si->bdev); 3135 3136 if (!q || !blk_queue_discard(q)) 3137 return false; 3138 3139 return true; 3140 } 3141 3142 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 3143 { 3144 struct swap_info_struct *p; 3145 struct filename *name; 3146 struct file *swap_file = NULL; 3147 struct address_space *mapping; 3148 int prio; 3149 int error; 3150 union swap_header *swap_header; 3151 int nr_extents; 3152 sector_t span; 3153 unsigned long maxpages; 3154 unsigned char *swap_map = NULL; 3155 struct swap_cluster_info *cluster_info = NULL; 3156 unsigned long *frontswap_map = NULL; 3157 struct page *page = NULL; 3158 struct inode *inode = NULL; 3159 bool inced_nr_rotate_swap = false; 3160 3161 if (swap_flags & ~SWAP_FLAGS_VALID) 3162 return -EINVAL; 3163 3164 if (!capable(CAP_SYS_ADMIN)) 3165 return -EPERM; 3166 3167 if (!swap_avail_heads) 3168 return -ENOMEM; 3169 3170 p = alloc_swap_info(); 3171 if (IS_ERR(p)) 3172 return PTR_ERR(p); 3173 3174 INIT_WORK(&p->discard_work, swap_discard_work); 3175 3176 name = getname(specialfile); 3177 if (IS_ERR(name)) { 3178 error = PTR_ERR(name); 3179 name = NULL; 3180 goto bad_swap; 3181 } 3182 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3183 if (IS_ERR(swap_file)) { 3184 error = PTR_ERR(swap_file); 3185 swap_file = NULL; 3186 goto bad_swap; 3187 } 3188 3189 p->swap_file = swap_file; 3190 mapping = swap_file->f_mapping; 3191 inode = mapping->host; 3192 3193 error = claim_swapfile(p, inode); 3194 if (unlikely(error)) 3195 goto bad_swap; 3196 3197 inode_lock(inode); 3198 if (IS_SWAPFILE(inode)) { 3199 error = -EBUSY; 3200 goto bad_swap_unlock_inode; 3201 } 3202 3203 /* 3204 * Read the swap header. 3205 */ 3206 if (!mapping->a_ops->readpage) { 3207 error = -EINVAL; 3208 goto bad_swap_unlock_inode; 3209 } 3210 page = read_mapping_page(mapping, 0, swap_file); 3211 if (IS_ERR(page)) { 3212 error = PTR_ERR(page); 3213 goto bad_swap_unlock_inode; 3214 } 3215 swap_header = kmap(page); 3216 3217 maxpages = read_swap_header(p, swap_header, inode); 3218 if (unlikely(!maxpages)) { 3219 error = -EINVAL; 3220 goto bad_swap_unlock_inode; 3221 } 3222 3223 /* OK, set up the swap map and apply the bad block list */ 3224 swap_map = vzalloc(maxpages); 3225 if (!swap_map) { 3226 error = -ENOMEM; 3227 goto bad_swap_unlock_inode; 3228 } 3229 3230 if (bdi_cap_stable_pages_required(inode_to_bdi(inode))) 3231 p->flags |= SWP_STABLE_WRITES; 3232 3233 if (bdi_cap_synchronous_io(inode_to_bdi(inode))) 3234 p->flags |= SWP_SYNCHRONOUS_IO; 3235 3236 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 3237 int cpu; 3238 unsigned long ci, nr_cluster; 3239 3240 p->flags |= SWP_SOLIDSTATE; 3241 p->cluster_next_cpu = alloc_percpu(unsigned int); 3242 if (!p->cluster_next_cpu) { 3243 error = -ENOMEM; 3244 goto bad_swap_unlock_inode; 3245 } 3246 /* 3247 * select a random position to start with to help wear leveling 3248 * SSD 3249 */ 3250 for_each_possible_cpu(cpu) { 3251 per_cpu(*p->cluster_next_cpu, cpu) = 3252 1 + prandom_u32_max(p->highest_bit); 3253 } 3254 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3255 3256 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3257 GFP_KERNEL); 3258 if (!cluster_info) { 3259 error = -ENOMEM; 3260 goto bad_swap_unlock_inode; 3261 } 3262 3263 for (ci = 0; ci < nr_cluster; ci++) 3264 spin_lock_init(&((cluster_info + ci)->lock)); 3265 3266 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3267 if (!p->percpu_cluster) { 3268 error = -ENOMEM; 3269 goto bad_swap_unlock_inode; 3270 } 3271 for_each_possible_cpu(cpu) { 3272 struct percpu_cluster *cluster; 3273 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3274 cluster_set_null(&cluster->index); 3275 } 3276 } else { 3277 atomic_inc(&nr_rotate_swap); 3278 inced_nr_rotate_swap = true; 3279 } 3280 3281 error = swap_cgroup_swapon(p->type, maxpages); 3282 if (error) 3283 goto bad_swap_unlock_inode; 3284 3285 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3286 cluster_info, maxpages, &span); 3287 if (unlikely(nr_extents < 0)) { 3288 error = nr_extents; 3289 goto bad_swap_unlock_inode; 3290 } 3291 /* frontswap enabled? set up bit-per-page map for frontswap */ 3292 if (IS_ENABLED(CONFIG_FRONTSWAP)) 3293 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages), 3294 sizeof(long), 3295 GFP_KERNEL); 3296 3297 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 3298 /* 3299 * When discard is enabled for swap with no particular 3300 * policy flagged, we set all swap discard flags here in 3301 * order to sustain backward compatibility with older 3302 * swapon(8) releases. 3303 */ 3304 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3305 SWP_PAGE_DISCARD); 3306 3307 /* 3308 * By flagging sys_swapon, a sysadmin can tell us to 3309 * either do single-time area discards only, or to just 3310 * perform discards for released swap page-clusters. 3311 * Now it's time to adjust the p->flags accordingly. 3312 */ 3313 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3314 p->flags &= ~SWP_PAGE_DISCARD; 3315 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3316 p->flags &= ~SWP_AREA_DISCARD; 3317 3318 /* issue a swapon-time discard if it's still required */ 3319 if (p->flags & SWP_AREA_DISCARD) { 3320 int err = discard_swap(p); 3321 if (unlikely(err)) 3322 pr_err("swapon: discard_swap(%p): %d\n", 3323 p, err); 3324 } 3325 } 3326 3327 error = init_swap_address_space(p->type, maxpages); 3328 if (error) 3329 goto bad_swap_unlock_inode; 3330 3331 /* 3332 * Flush any pending IO and dirty mappings before we start using this 3333 * swap device. 3334 */ 3335 inode->i_flags |= S_SWAPFILE; 3336 error = inode_drain_writes(inode); 3337 if (error) { 3338 inode->i_flags &= ~S_SWAPFILE; 3339 goto bad_swap_unlock_inode; 3340 } 3341 3342 mutex_lock(&swapon_mutex); 3343 prio = -1; 3344 if (swap_flags & SWAP_FLAG_PREFER) 3345 prio = 3346 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3347 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 3348 3349 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 3350 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 3351 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 3352 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3353 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3354 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3355 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 3356 (frontswap_map) ? "FS" : ""); 3357 3358 mutex_unlock(&swapon_mutex); 3359 atomic_inc(&proc_poll_event); 3360 wake_up_interruptible(&proc_poll_wait); 3361 3362 error = 0; 3363 goto out; 3364 bad_swap_unlock_inode: 3365 inode_unlock(inode); 3366 bad_swap: 3367 free_percpu(p->percpu_cluster); 3368 p->percpu_cluster = NULL; 3369 free_percpu(p->cluster_next_cpu); 3370 p->cluster_next_cpu = NULL; 3371 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 3372 set_blocksize(p->bdev, p->old_block_size); 3373 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 3374 } 3375 inode = NULL; 3376 destroy_swap_extents(p); 3377 swap_cgroup_swapoff(p->type); 3378 spin_lock(&swap_lock); 3379 p->swap_file = NULL; 3380 p->flags = 0; 3381 spin_unlock(&swap_lock); 3382 vfree(swap_map); 3383 kvfree(cluster_info); 3384 kvfree(frontswap_map); 3385 if (inced_nr_rotate_swap) 3386 atomic_dec(&nr_rotate_swap); 3387 if (swap_file) 3388 filp_close(swap_file, NULL); 3389 out: 3390 if (page && !IS_ERR(page)) { 3391 kunmap(page); 3392 put_page(page); 3393 } 3394 if (name) 3395 putname(name); 3396 if (inode) 3397 inode_unlock(inode); 3398 if (!error) 3399 enable_swap_slots_cache(); 3400 return error; 3401 } 3402 3403 void si_swapinfo(struct sysinfo *val) 3404 { 3405 unsigned int type; 3406 unsigned long nr_to_be_unused = 0; 3407 3408 spin_lock(&swap_lock); 3409 for (type = 0; type < nr_swapfiles; type++) { 3410 struct swap_info_struct *si = swap_info[type]; 3411 3412 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3413 nr_to_be_unused += si->inuse_pages; 3414 } 3415 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3416 val->totalswap = total_swap_pages + nr_to_be_unused; 3417 spin_unlock(&swap_lock); 3418 } 3419 3420 /* 3421 * Verify that a swap entry is valid and increment its swap map count. 3422 * 3423 * Returns error code in following case. 3424 * - success -> 0 3425 * - swp_entry is invalid -> EINVAL 3426 * - swp_entry is migration entry -> EINVAL 3427 * - swap-cache reference is requested but there is already one. -> EEXIST 3428 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3429 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3430 */ 3431 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3432 { 3433 struct swap_info_struct *p; 3434 struct swap_cluster_info *ci; 3435 unsigned long offset; 3436 unsigned char count; 3437 unsigned char has_cache; 3438 int err = -EINVAL; 3439 3440 p = get_swap_device(entry); 3441 if (!p) 3442 goto out; 3443 3444 offset = swp_offset(entry); 3445 ci = lock_cluster_or_swap_info(p, offset); 3446 3447 count = p->swap_map[offset]; 3448 3449 /* 3450 * swapin_readahead() doesn't check if a swap entry is valid, so the 3451 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3452 */ 3453 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3454 err = -ENOENT; 3455 goto unlock_out; 3456 } 3457 3458 has_cache = count & SWAP_HAS_CACHE; 3459 count &= ~SWAP_HAS_CACHE; 3460 err = 0; 3461 3462 if (usage == SWAP_HAS_CACHE) { 3463 3464 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3465 if (!has_cache && count) 3466 has_cache = SWAP_HAS_CACHE; 3467 else if (has_cache) /* someone else added cache */ 3468 err = -EEXIST; 3469 else /* no users remaining */ 3470 err = -ENOENT; 3471 3472 } else if (count || has_cache) { 3473 3474 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3475 count += usage; 3476 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3477 err = -EINVAL; 3478 else if (swap_count_continued(p, offset, count)) 3479 count = COUNT_CONTINUED; 3480 else 3481 err = -ENOMEM; 3482 } else 3483 err = -ENOENT; /* unused swap entry */ 3484 3485 p->swap_map[offset] = count | has_cache; 3486 3487 unlock_out: 3488 unlock_cluster_or_swap_info(p, ci); 3489 out: 3490 if (p) 3491 put_swap_device(p); 3492 return err; 3493 } 3494 3495 /* 3496 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3497 * (in which case its reference count is never incremented). 3498 */ 3499 void swap_shmem_alloc(swp_entry_t entry) 3500 { 3501 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3502 } 3503 3504 /* 3505 * Increase reference count of swap entry by 1. 3506 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3507 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3508 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3509 * might occur if a page table entry has got corrupted. 3510 */ 3511 int swap_duplicate(swp_entry_t entry) 3512 { 3513 int err = 0; 3514 3515 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3516 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3517 return err; 3518 } 3519 3520 /* 3521 * @entry: swap entry for which we allocate swap cache. 3522 * 3523 * Called when allocating swap cache for existing swap entry, 3524 * This can return error codes. Returns 0 at success. 3525 * -EEXIST means there is a swap cache. 3526 * Note: return code is different from swap_duplicate(). 3527 */ 3528 int swapcache_prepare(swp_entry_t entry) 3529 { 3530 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3531 } 3532 3533 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3534 { 3535 return swap_type_to_swap_info(swp_type(entry)); 3536 } 3537 3538 struct swap_info_struct *page_swap_info(struct page *page) 3539 { 3540 swp_entry_t entry = { .val = page_private(page) }; 3541 return swp_swap_info(entry); 3542 } 3543 3544 /* 3545 * out-of-line __page_file_ methods to avoid include hell. 3546 */ 3547 struct address_space *__page_file_mapping(struct page *page) 3548 { 3549 return page_swap_info(page)->swap_file->f_mapping; 3550 } 3551 EXPORT_SYMBOL_GPL(__page_file_mapping); 3552 3553 pgoff_t __page_file_index(struct page *page) 3554 { 3555 swp_entry_t swap = { .val = page_private(page) }; 3556 return swp_offset(swap); 3557 } 3558 EXPORT_SYMBOL_GPL(__page_file_index); 3559 3560 /* 3561 * add_swap_count_continuation - called when a swap count is duplicated 3562 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3563 * page of the original vmalloc'ed swap_map, to hold the continuation count 3564 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3565 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3566 * 3567 * These continuation pages are seldom referenced: the common paths all work 3568 * on the original swap_map, only referring to a continuation page when the 3569 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3570 * 3571 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3572 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3573 * can be called after dropping locks. 3574 */ 3575 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3576 { 3577 struct swap_info_struct *si; 3578 struct swap_cluster_info *ci; 3579 struct page *head; 3580 struct page *page; 3581 struct page *list_page; 3582 pgoff_t offset; 3583 unsigned char count; 3584 int ret = 0; 3585 3586 /* 3587 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3588 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3589 */ 3590 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3591 3592 si = get_swap_device(entry); 3593 if (!si) { 3594 /* 3595 * An acceptable race has occurred since the failing 3596 * __swap_duplicate(): the swap device may be swapoff 3597 */ 3598 goto outer; 3599 } 3600 spin_lock(&si->lock); 3601 3602 offset = swp_offset(entry); 3603 3604 ci = lock_cluster(si, offset); 3605 3606 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 3607 3608 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3609 /* 3610 * The higher the swap count, the more likely it is that tasks 3611 * will race to add swap count continuation: we need to avoid 3612 * over-provisioning. 3613 */ 3614 goto out; 3615 } 3616 3617 if (!page) { 3618 ret = -ENOMEM; 3619 goto out; 3620 } 3621 3622 /* 3623 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 3624 * no architecture is using highmem pages for kernel page tables: so it 3625 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 3626 */ 3627 head = vmalloc_to_page(si->swap_map + offset); 3628 offset &= ~PAGE_MASK; 3629 3630 spin_lock(&si->cont_lock); 3631 /* 3632 * Page allocation does not initialize the page's lru field, 3633 * but it does always reset its private field. 3634 */ 3635 if (!page_private(head)) { 3636 BUG_ON(count & COUNT_CONTINUED); 3637 INIT_LIST_HEAD(&head->lru); 3638 set_page_private(head, SWP_CONTINUED); 3639 si->flags |= SWP_CONTINUED; 3640 } 3641 3642 list_for_each_entry(list_page, &head->lru, lru) { 3643 unsigned char *map; 3644 3645 /* 3646 * If the previous map said no continuation, but we've found 3647 * a continuation page, free our allocation and use this one. 3648 */ 3649 if (!(count & COUNT_CONTINUED)) 3650 goto out_unlock_cont; 3651 3652 map = kmap_atomic(list_page) + offset; 3653 count = *map; 3654 kunmap_atomic(map); 3655 3656 /* 3657 * If this continuation count now has some space in it, 3658 * free our allocation and use this one. 3659 */ 3660 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3661 goto out_unlock_cont; 3662 } 3663 3664 list_add_tail(&page->lru, &head->lru); 3665 page = NULL; /* now it's attached, don't free it */ 3666 out_unlock_cont: 3667 spin_unlock(&si->cont_lock); 3668 out: 3669 unlock_cluster(ci); 3670 spin_unlock(&si->lock); 3671 put_swap_device(si); 3672 outer: 3673 if (page) 3674 __free_page(page); 3675 return ret; 3676 } 3677 3678 /* 3679 * swap_count_continued - when the original swap_map count is incremented 3680 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3681 * into, carry if so, or else fail until a new continuation page is allocated; 3682 * when the original swap_map count is decremented from 0 with continuation, 3683 * borrow from the continuation and report whether it still holds more. 3684 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3685 * lock. 3686 */ 3687 static bool swap_count_continued(struct swap_info_struct *si, 3688 pgoff_t offset, unsigned char count) 3689 { 3690 struct page *head; 3691 struct page *page; 3692 unsigned char *map; 3693 bool ret; 3694 3695 head = vmalloc_to_page(si->swap_map + offset); 3696 if (page_private(head) != SWP_CONTINUED) { 3697 BUG_ON(count & COUNT_CONTINUED); 3698 return false; /* need to add count continuation */ 3699 } 3700 3701 spin_lock(&si->cont_lock); 3702 offset &= ~PAGE_MASK; 3703 page = list_next_entry(head, lru); 3704 map = kmap_atomic(page) + offset; 3705 3706 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3707 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3708 3709 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3710 /* 3711 * Think of how you add 1 to 999 3712 */ 3713 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3714 kunmap_atomic(map); 3715 page = list_next_entry(page, lru); 3716 BUG_ON(page == head); 3717 map = kmap_atomic(page) + offset; 3718 } 3719 if (*map == SWAP_CONT_MAX) { 3720 kunmap_atomic(map); 3721 page = list_next_entry(page, lru); 3722 if (page == head) { 3723 ret = false; /* add count continuation */ 3724 goto out; 3725 } 3726 map = kmap_atomic(page) + offset; 3727 init_map: *map = 0; /* we didn't zero the page */ 3728 } 3729 *map += 1; 3730 kunmap_atomic(map); 3731 while ((page = list_prev_entry(page, lru)) != head) { 3732 map = kmap_atomic(page) + offset; 3733 *map = COUNT_CONTINUED; 3734 kunmap_atomic(map); 3735 } 3736 ret = true; /* incremented */ 3737 3738 } else { /* decrementing */ 3739 /* 3740 * Think of how you subtract 1 from 1000 3741 */ 3742 BUG_ON(count != COUNT_CONTINUED); 3743 while (*map == COUNT_CONTINUED) { 3744 kunmap_atomic(map); 3745 page = list_next_entry(page, lru); 3746 BUG_ON(page == head); 3747 map = kmap_atomic(page) + offset; 3748 } 3749 BUG_ON(*map == 0); 3750 *map -= 1; 3751 if (*map == 0) 3752 count = 0; 3753 kunmap_atomic(map); 3754 while ((page = list_prev_entry(page, lru)) != head) { 3755 map = kmap_atomic(page) + offset; 3756 *map = SWAP_CONT_MAX | count; 3757 count = COUNT_CONTINUED; 3758 kunmap_atomic(map); 3759 } 3760 ret = count == COUNT_CONTINUED; 3761 } 3762 out: 3763 spin_unlock(&si->cont_lock); 3764 return ret; 3765 } 3766 3767 /* 3768 * free_swap_count_continuations - swapoff free all the continuation pages 3769 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3770 */ 3771 static void free_swap_count_continuations(struct swap_info_struct *si) 3772 { 3773 pgoff_t offset; 3774 3775 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3776 struct page *head; 3777 head = vmalloc_to_page(si->swap_map + offset); 3778 if (page_private(head)) { 3779 struct page *page, *next; 3780 3781 list_for_each_entry_safe(page, next, &head->lru, lru) { 3782 list_del(&page->lru); 3783 __free_page(page); 3784 } 3785 } 3786 } 3787 } 3788 3789 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3790 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask) 3791 { 3792 struct swap_info_struct *si, *next; 3793 int nid = page_to_nid(page); 3794 3795 if (!(gfp_mask & __GFP_IO)) 3796 return; 3797 3798 if (!blk_cgroup_congested()) 3799 return; 3800 3801 /* 3802 * We've already scheduled a throttle, avoid taking the global swap 3803 * lock. 3804 */ 3805 if (current->throttle_queue) 3806 return; 3807 3808 spin_lock(&swap_avail_lock); 3809 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3810 avail_lists[nid]) { 3811 if (si->bdev) { 3812 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true); 3813 break; 3814 } 3815 } 3816 spin_unlock(&swap_avail_lock); 3817 } 3818 #endif 3819 3820 static int __init swapfile_init(void) 3821 { 3822 int nid; 3823 3824 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3825 GFP_KERNEL); 3826 if (!swap_avail_heads) { 3827 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3828 return -ENOMEM; 3829 } 3830 3831 for_each_node(nid) 3832 plist_head_init(&swap_avail_heads[nid]); 3833 3834 return 0; 3835 } 3836 subsys_initcall(swapfile_init); 3837