1 /* 2 * linux/mm/swapfile.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/hugetlb.h> 10 #include <linux/mman.h> 11 #include <linux/slab.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/vmalloc.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/shmem_fs.h> 18 #include <linux/blkdev.h> 19 #include <linux/random.h> 20 #include <linux/writeback.h> 21 #include <linux/proc_fs.h> 22 #include <linux/seq_file.h> 23 #include <linux/init.h> 24 #include <linux/ksm.h> 25 #include <linux/rmap.h> 26 #include <linux/security.h> 27 #include <linux/backing-dev.h> 28 #include <linux/mutex.h> 29 #include <linux/capability.h> 30 #include <linux/syscalls.h> 31 #include <linux/memcontrol.h> 32 #include <linux/poll.h> 33 #include <linux/oom.h> 34 #include <linux/frontswap.h> 35 #include <linux/swapfile.h> 36 #include <linux/export.h> 37 38 #include <asm/pgtable.h> 39 #include <asm/tlbflush.h> 40 #include <linux/swapops.h> 41 #include <linux/swap_cgroup.h> 42 43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 44 unsigned char); 45 static void free_swap_count_continuations(struct swap_info_struct *); 46 static sector_t map_swap_entry(swp_entry_t, struct block_device**); 47 48 DEFINE_SPINLOCK(swap_lock); 49 static unsigned int nr_swapfiles; 50 atomic_long_t nr_swap_pages; 51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 52 long total_swap_pages; 53 static int least_priority; 54 55 static const char Bad_file[] = "Bad swap file entry "; 56 static const char Unused_file[] = "Unused swap file entry "; 57 static const char Bad_offset[] = "Bad swap offset entry "; 58 static const char Unused_offset[] = "Unused swap offset entry "; 59 60 /* 61 * all active swap_info_structs 62 * protected with swap_lock, and ordered by priority. 63 */ 64 PLIST_HEAD(swap_active_head); 65 66 /* 67 * all available (active, not full) swap_info_structs 68 * protected with swap_avail_lock, ordered by priority. 69 * This is used by get_swap_page() instead of swap_active_head 70 * because swap_active_head includes all swap_info_structs, 71 * but get_swap_page() doesn't need to look at full ones. 72 * This uses its own lock instead of swap_lock because when a 73 * swap_info_struct changes between not-full/full, it needs to 74 * add/remove itself to/from this list, but the swap_info_struct->lock 75 * is held and the locking order requires swap_lock to be taken 76 * before any swap_info_struct->lock. 77 */ 78 static PLIST_HEAD(swap_avail_head); 79 static DEFINE_SPINLOCK(swap_avail_lock); 80 81 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 82 83 static DEFINE_MUTEX(swapon_mutex); 84 85 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 86 /* Activity counter to indicate that a swapon or swapoff has occurred */ 87 static atomic_t proc_poll_event = ATOMIC_INIT(0); 88 89 static inline unsigned char swap_count(unsigned char ent) 90 { 91 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */ 92 } 93 94 /* returns 1 if swap entry is freed */ 95 static int 96 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset) 97 { 98 swp_entry_t entry = swp_entry(si->type, offset); 99 struct page *page; 100 int ret = 0; 101 102 page = find_get_page(swap_address_space(entry), entry.val); 103 if (!page) 104 return 0; 105 /* 106 * This function is called from scan_swap_map() and it's called 107 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here. 108 * We have to use trylock for avoiding deadlock. This is a special 109 * case and you should use try_to_free_swap() with explicit lock_page() 110 * in usual operations. 111 */ 112 if (trylock_page(page)) { 113 ret = try_to_free_swap(page); 114 unlock_page(page); 115 } 116 page_cache_release(page); 117 return ret; 118 } 119 120 /* 121 * swapon tell device that all the old swap contents can be discarded, 122 * to allow the swap device to optimize its wear-levelling. 123 */ 124 static int discard_swap(struct swap_info_struct *si) 125 { 126 struct swap_extent *se; 127 sector_t start_block; 128 sector_t nr_blocks; 129 int err = 0; 130 131 /* Do not discard the swap header page! */ 132 se = &si->first_swap_extent; 133 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 134 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 135 if (nr_blocks) { 136 err = blkdev_issue_discard(si->bdev, start_block, 137 nr_blocks, GFP_KERNEL, 0); 138 if (err) 139 return err; 140 cond_resched(); 141 } 142 143 list_for_each_entry(se, &si->first_swap_extent.list, list) { 144 start_block = se->start_block << (PAGE_SHIFT - 9); 145 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 146 147 err = blkdev_issue_discard(si->bdev, start_block, 148 nr_blocks, GFP_KERNEL, 0); 149 if (err) 150 break; 151 152 cond_resched(); 153 } 154 return err; /* That will often be -EOPNOTSUPP */ 155 } 156 157 /* 158 * swap allocation tell device that a cluster of swap can now be discarded, 159 * to allow the swap device to optimize its wear-levelling. 160 */ 161 static void discard_swap_cluster(struct swap_info_struct *si, 162 pgoff_t start_page, pgoff_t nr_pages) 163 { 164 struct swap_extent *se = si->curr_swap_extent; 165 int found_extent = 0; 166 167 while (nr_pages) { 168 struct list_head *lh; 169 170 if (se->start_page <= start_page && 171 start_page < se->start_page + se->nr_pages) { 172 pgoff_t offset = start_page - se->start_page; 173 sector_t start_block = se->start_block + offset; 174 sector_t nr_blocks = se->nr_pages - offset; 175 176 if (nr_blocks > nr_pages) 177 nr_blocks = nr_pages; 178 start_page += nr_blocks; 179 nr_pages -= nr_blocks; 180 181 if (!found_extent++) 182 si->curr_swap_extent = se; 183 184 start_block <<= PAGE_SHIFT - 9; 185 nr_blocks <<= PAGE_SHIFT - 9; 186 if (blkdev_issue_discard(si->bdev, start_block, 187 nr_blocks, GFP_NOIO, 0)) 188 break; 189 } 190 191 lh = se->list.next; 192 se = list_entry(lh, struct swap_extent, list); 193 } 194 } 195 196 #define SWAPFILE_CLUSTER 256 197 #define LATENCY_LIMIT 256 198 199 static inline void cluster_set_flag(struct swap_cluster_info *info, 200 unsigned int flag) 201 { 202 info->flags = flag; 203 } 204 205 static inline unsigned int cluster_count(struct swap_cluster_info *info) 206 { 207 return info->data; 208 } 209 210 static inline void cluster_set_count(struct swap_cluster_info *info, 211 unsigned int c) 212 { 213 info->data = c; 214 } 215 216 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 217 unsigned int c, unsigned int f) 218 { 219 info->flags = f; 220 info->data = c; 221 } 222 223 static inline unsigned int cluster_next(struct swap_cluster_info *info) 224 { 225 return info->data; 226 } 227 228 static inline void cluster_set_next(struct swap_cluster_info *info, 229 unsigned int n) 230 { 231 info->data = n; 232 } 233 234 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 235 unsigned int n, unsigned int f) 236 { 237 info->flags = f; 238 info->data = n; 239 } 240 241 static inline bool cluster_is_free(struct swap_cluster_info *info) 242 { 243 return info->flags & CLUSTER_FLAG_FREE; 244 } 245 246 static inline bool cluster_is_null(struct swap_cluster_info *info) 247 { 248 return info->flags & CLUSTER_FLAG_NEXT_NULL; 249 } 250 251 static inline void cluster_set_null(struct swap_cluster_info *info) 252 { 253 info->flags = CLUSTER_FLAG_NEXT_NULL; 254 info->data = 0; 255 } 256 257 /* Add a cluster to discard list and schedule it to do discard */ 258 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 259 unsigned int idx) 260 { 261 /* 262 * If scan_swap_map() can't find a free cluster, it will check 263 * si->swap_map directly. To make sure the discarding cluster isn't 264 * taken by scan_swap_map(), mark the swap entries bad (occupied). It 265 * will be cleared after discard 266 */ 267 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 268 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 269 270 if (cluster_is_null(&si->discard_cluster_head)) { 271 cluster_set_next_flag(&si->discard_cluster_head, 272 idx, 0); 273 cluster_set_next_flag(&si->discard_cluster_tail, 274 idx, 0); 275 } else { 276 unsigned int tail = cluster_next(&si->discard_cluster_tail); 277 cluster_set_next(&si->cluster_info[tail], idx); 278 cluster_set_next_flag(&si->discard_cluster_tail, 279 idx, 0); 280 } 281 282 schedule_work(&si->discard_work); 283 } 284 285 /* 286 * Doing discard actually. After a cluster discard is finished, the cluster 287 * will be added to free cluster list. caller should hold si->lock. 288 */ 289 static void swap_do_scheduled_discard(struct swap_info_struct *si) 290 { 291 struct swap_cluster_info *info; 292 unsigned int idx; 293 294 info = si->cluster_info; 295 296 while (!cluster_is_null(&si->discard_cluster_head)) { 297 idx = cluster_next(&si->discard_cluster_head); 298 299 cluster_set_next_flag(&si->discard_cluster_head, 300 cluster_next(&info[idx]), 0); 301 if (cluster_next(&si->discard_cluster_tail) == idx) { 302 cluster_set_null(&si->discard_cluster_head); 303 cluster_set_null(&si->discard_cluster_tail); 304 } 305 spin_unlock(&si->lock); 306 307 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 308 SWAPFILE_CLUSTER); 309 310 spin_lock(&si->lock); 311 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE); 312 if (cluster_is_null(&si->free_cluster_head)) { 313 cluster_set_next_flag(&si->free_cluster_head, 314 idx, 0); 315 cluster_set_next_flag(&si->free_cluster_tail, 316 idx, 0); 317 } else { 318 unsigned int tail; 319 320 tail = cluster_next(&si->free_cluster_tail); 321 cluster_set_next(&info[tail], idx); 322 cluster_set_next_flag(&si->free_cluster_tail, 323 idx, 0); 324 } 325 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 326 0, SWAPFILE_CLUSTER); 327 } 328 } 329 330 static void swap_discard_work(struct work_struct *work) 331 { 332 struct swap_info_struct *si; 333 334 si = container_of(work, struct swap_info_struct, discard_work); 335 336 spin_lock(&si->lock); 337 swap_do_scheduled_discard(si); 338 spin_unlock(&si->lock); 339 } 340 341 /* 342 * The cluster corresponding to page_nr will be used. The cluster will be 343 * removed from free cluster list and its usage counter will be increased. 344 */ 345 static void inc_cluster_info_page(struct swap_info_struct *p, 346 struct swap_cluster_info *cluster_info, unsigned long page_nr) 347 { 348 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 349 350 if (!cluster_info) 351 return; 352 if (cluster_is_free(&cluster_info[idx])) { 353 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx); 354 cluster_set_next_flag(&p->free_cluster_head, 355 cluster_next(&cluster_info[idx]), 0); 356 if (cluster_next(&p->free_cluster_tail) == idx) { 357 cluster_set_null(&p->free_cluster_tail); 358 cluster_set_null(&p->free_cluster_head); 359 } 360 cluster_set_count_flag(&cluster_info[idx], 0, 0); 361 } 362 363 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 364 cluster_set_count(&cluster_info[idx], 365 cluster_count(&cluster_info[idx]) + 1); 366 } 367 368 /* 369 * The cluster corresponding to page_nr decreases one usage. If the usage 370 * counter becomes 0, which means no page in the cluster is in using, we can 371 * optionally discard the cluster and add it to free cluster list. 372 */ 373 static void dec_cluster_info_page(struct swap_info_struct *p, 374 struct swap_cluster_info *cluster_info, unsigned long page_nr) 375 { 376 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 377 378 if (!cluster_info) 379 return; 380 381 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 382 cluster_set_count(&cluster_info[idx], 383 cluster_count(&cluster_info[idx]) - 1); 384 385 if (cluster_count(&cluster_info[idx]) == 0) { 386 /* 387 * If the swap is discardable, prepare discard the cluster 388 * instead of free it immediately. The cluster will be freed 389 * after discard. 390 */ 391 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 392 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 393 swap_cluster_schedule_discard(p, idx); 394 return; 395 } 396 397 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 398 if (cluster_is_null(&p->free_cluster_head)) { 399 cluster_set_next_flag(&p->free_cluster_head, idx, 0); 400 cluster_set_next_flag(&p->free_cluster_tail, idx, 0); 401 } else { 402 unsigned int tail = cluster_next(&p->free_cluster_tail); 403 cluster_set_next(&cluster_info[tail], idx); 404 cluster_set_next_flag(&p->free_cluster_tail, idx, 0); 405 } 406 } 407 } 408 409 /* 410 * It's possible scan_swap_map() uses a free cluster in the middle of free 411 * cluster list. Avoiding such abuse to avoid list corruption. 412 */ 413 static bool 414 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 415 unsigned long offset) 416 { 417 struct percpu_cluster *percpu_cluster; 418 bool conflict; 419 420 offset /= SWAPFILE_CLUSTER; 421 conflict = !cluster_is_null(&si->free_cluster_head) && 422 offset != cluster_next(&si->free_cluster_head) && 423 cluster_is_free(&si->cluster_info[offset]); 424 425 if (!conflict) 426 return false; 427 428 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 429 cluster_set_null(&percpu_cluster->index); 430 return true; 431 } 432 433 /* 434 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 435 * might involve allocating a new cluster for current CPU too. 436 */ 437 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 438 unsigned long *offset, unsigned long *scan_base) 439 { 440 struct percpu_cluster *cluster; 441 bool found_free; 442 unsigned long tmp; 443 444 new_cluster: 445 cluster = this_cpu_ptr(si->percpu_cluster); 446 if (cluster_is_null(&cluster->index)) { 447 if (!cluster_is_null(&si->free_cluster_head)) { 448 cluster->index = si->free_cluster_head; 449 cluster->next = cluster_next(&cluster->index) * 450 SWAPFILE_CLUSTER; 451 } else if (!cluster_is_null(&si->discard_cluster_head)) { 452 /* 453 * we don't have free cluster but have some clusters in 454 * discarding, do discard now and reclaim them 455 */ 456 swap_do_scheduled_discard(si); 457 *scan_base = *offset = si->cluster_next; 458 goto new_cluster; 459 } else 460 return; 461 } 462 463 found_free = false; 464 465 /* 466 * Other CPUs can use our cluster if they can't find a free cluster, 467 * check if there is still free entry in the cluster 468 */ 469 tmp = cluster->next; 470 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) * 471 SWAPFILE_CLUSTER) { 472 if (!si->swap_map[tmp]) { 473 found_free = true; 474 break; 475 } 476 tmp++; 477 } 478 if (!found_free) { 479 cluster_set_null(&cluster->index); 480 goto new_cluster; 481 } 482 cluster->next = tmp + 1; 483 *offset = tmp; 484 *scan_base = tmp; 485 } 486 487 static unsigned long scan_swap_map(struct swap_info_struct *si, 488 unsigned char usage) 489 { 490 unsigned long offset; 491 unsigned long scan_base; 492 unsigned long last_in_cluster = 0; 493 int latency_ration = LATENCY_LIMIT; 494 495 /* 496 * We try to cluster swap pages by allocating them sequentially 497 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 498 * way, however, we resort to first-free allocation, starting 499 * a new cluster. This prevents us from scattering swap pages 500 * all over the entire swap partition, so that we reduce 501 * overall disk seek times between swap pages. -- sct 502 * But we do now try to find an empty cluster. -Andrea 503 * And we let swap pages go all over an SSD partition. Hugh 504 */ 505 506 si->flags += SWP_SCANNING; 507 scan_base = offset = si->cluster_next; 508 509 /* SSD algorithm */ 510 if (si->cluster_info) { 511 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base); 512 goto checks; 513 } 514 515 if (unlikely(!si->cluster_nr--)) { 516 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 517 si->cluster_nr = SWAPFILE_CLUSTER - 1; 518 goto checks; 519 } 520 521 spin_unlock(&si->lock); 522 523 /* 524 * If seek is expensive, start searching for new cluster from 525 * start of partition, to minimize the span of allocated swap. 526 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 527 * case, just handled by scan_swap_map_try_ssd_cluster() above. 528 */ 529 scan_base = offset = si->lowest_bit; 530 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 531 532 /* Locate the first empty (unaligned) cluster */ 533 for (; last_in_cluster <= si->highest_bit; offset++) { 534 if (si->swap_map[offset]) 535 last_in_cluster = offset + SWAPFILE_CLUSTER; 536 else if (offset == last_in_cluster) { 537 spin_lock(&si->lock); 538 offset -= SWAPFILE_CLUSTER - 1; 539 si->cluster_next = offset; 540 si->cluster_nr = SWAPFILE_CLUSTER - 1; 541 goto checks; 542 } 543 if (unlikely(--latency_ration < 0)) { 544 cond_resched(); 545 latency_ration = LATENCY_LIMIT; 546 } 547 } 548 549 offset = scan_base; 550 spin_lock(&si->lock); 551 si->cluster_nr = SWAPFILE_CLUSTER - 1; 552 } 553 554 checks: 555 if (si->cluster_info) { 556 while (scan_swap_map_ssd_cluster_conflict(si, offset)) 557 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base); 558 } 559 if (!(si->flags & SWP_WRITEOK)) 560 goto no_page; 561 if (!si->highest_bit) 562 goto no_page; 563 if (offset > si->highest_bit) 564 scan_base = offset = si->lowest_bit; 565 566 /* reuse swap entry of cache-only swap if not busy. */ 567 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 568 int swap_was_freed; 569 spin_unlock(&si->lock); 570 swap_was_freed = __try_to_reclaim_swap(si, offset); 571 spin_lock(&si->lock); 572 /* entry was freed successfully, try to use this again */ 573 if (swap_was_freed) 574 goto checks; 575 goto scan; /* check next one */ 576 } 577 578 if (si->swap_map[offset]) 579 goto scan; 580 581 if (offset == si->lowest_bit) 582 si->lowest_bit++; 583 if (offset == si->highest_bit) 584 si->highest_bit--; 585 si->inuse_pages++; 586 if (si->inuse_pages == si->pages) { 587 si->lowest_bit = si->max; 588 si->highest_bit = 0; 589 spin_lock(&swap_avail_lock); 590 plist_del(&si->avail_list, &swap_avail_head); 591 spin_unlock(&swap_avail_lock); 592 } 593 si->swap_map[offset] = usage; 594 inc_cluster_info_page(si, si->cluster_info, offset); 595 si->cluster_next = offset + 1; 596 si->flags -= SWP_SCANNING; 597 598 return offset; 599 600 scan: 601 spin_unlock(&si->lock); 602 while (++offset <= si->highest_bit) { 603 if (!si->swap_map[offset]) { 604 spin_lock(&si->lock); 605 goto checks; 606 } 607 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 608 spin_lock(&si->lock); 609 goto checks; 610 } 611 if (unlikely(--latency_ration < 0)) { 612 cond_resched(); 613 latency_ration = LATENCY_LIMIT; 614 } 615 } 616 offset = si->lowest_bit; 617 while (offset < scan_base) { 618 if (!si->swap_map[offset]) { 619 spin_lock(&si->lock); 620 goto checks; 621 } 622 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 623 spin_lock(&si->lock); 624 goto checks; 625 } 626 if (unlikely(--latency_ration < 0)) { 627 cond_resched(); 628 latency_ration = LATENCY_LIMIT; 629 } 630 offset++; 631 } 632 spin_lock(&si->lock); 633 634 no_page: 635 si->flags -= SWP_SCANNING; 636 return 0; 637 } 638 639 swp_entry_t get_swap_page(void) 640 { 641 struct swap_info_struct *si, *next; 642 pgoff_t offset; 643 644 if (atomic_long_read(&nr_swap_pages) <= 0) 645 goto noswap; 646 atomic_long_dec(&nr_swap_pages); 647 648 spin_lock(&swap_avail_lock); 649 650 start_over: 651 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) { 652 /* requeue si to after same-priority siblings */ 653 plist_requeue(&si->avail_list, &swap_avail_head); 654 spin_unlock(&swap_avail_lock); 655 spin_lock(&si->lock); 656 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 657 spin_lock(&swap_avail_lock); 658 if (plist_node_empty(&si->avail_list)) { 659 spin_unlock(&si->lock); 660 goto nextsi; 661 } 662 WARN(!si->highest_bit, 663 "swap_info %d in list but !highest_bit\n", 664 si->type); 665 WARN(!(si->flags & SWP_WRITEOK), 666 "swap_info %d in list but !SWP_WRITEOK\n", 667 si->type); 668 plist_del(&si->avail_list, &swap_avail_head); 669 spin_unlock(&si->lock); 670 goto nextsi; 671 } 672 673 /* This is called for allocating swap entry for cache */ 674 offset = scan_swap_map(si, SWAP_HAS_CACHE); 675 spin_unlock(&si->lock); 676 if (offset) 677 return swp_entry(si->type, offset); 678 pr_debug("scan_swap_map of si %d failed to find offset\n", 679 si->type); 680 spin_lock(&swap_avail_lock); 681 nextsi: 682 /* 683 * if we got here, it's likely that si was almost full before, 684 * and since scan_swap_map() can drop the si->lock, multiple 685 * callers probably all tried to get a page from the same si 686 * and it filled up before we could get one; or, the si filled 687 * up between us dropping swap_avail_lock and taking si->lock. 688 * Since we dropped the swap_avail_lock, the swap_avail_head 689 * list may have been modified; so if next is still in the 690 * swap_avail_head list then try it, otherwise start over. 691 */ 692 if (plist_node_empty(&next->avail_list)) 693 goto start_over; 694 } 695 696 spin_unlock(&swap_avail_lock); 697 698 atomic_long_inc(&nr_swap_pages); 699 noswap: 700 return (swp_entry_t) {0}; 701 } 702 703 /* The only caller of this function is now suspend routine */ 704 swp_entry_t get_swap_page_of_type(int type) 705 { 706 struct swap_info_struct *si; 707 pgoff_t offset; 708 709 si = swap_info[type]; 710 spin_lock(&si->lock); 711 if (si && (si->flags & SWP_WRITEOK)) { 712 atomic_long_dec(&nr_swap_pages); 713 /* This is called for allocating swap entry, not cache */ 714 offset = scan_swap_map(si, 1); 715 if (offset) { 716 spin_unlock(&si->lock); 717 return swp_entry(type, offset); 718 } 719 atomic_long_inc(&nr_swap_pages); 720 } 721 spin_unlock(&si->lock); 722 return (swp_entry_t) {0}; 723 } 724 725 static struct swap_info_struct *swap_info_get(swp_entry_t entry) 726 { 727 struct swap_info_struct *p; 728 unsigned long offset, type; 729 730 if (!entry.val) 731 goto out; 732 type = swp_type(entry); 733 if (type >= nr_swapfiles) 734 goto bad_nofile; 735 p = swap_info[type]; 736 if (!(p->flags & SWP_USED)) 737 goto bad_device; 738 offset = swp_offset(entry); 739 if (offset >= p->max) 740 goto bad_offset; 741 if (!p->swap_map[offset]) 742 goto bad_free; 743 spin_lock(&p->lock); 744 return p; 745 746 bad_free: 747 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val); 748 goto out; 749 bad_offset: 750 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val); 751 goto out; 752 bad_device: 753 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val); 754 goto out; 755 bad_nofile: 756 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val); 757 out: 758 return NULL; 759 } 760 761 static unsigned char swap_entry_free(struct swap_info_struct *p, 762 swp_entry_t entry, unsigned char usage) 763 { 764 unsigned long offset = swp_offset(entry); 765 unsigned char count; 766 unsigned char has_cache; 767 768 count = p->swap_map[offset]; 769 has_cache = count & SWAP_HAS_CACHE; 770 count &= ~SWAP_HAS_CACHE; 771 772 if (usage == SWAP_HAS_CACHE) { 773 VM_BUG_ON(!has_cache); 774 has_cache = 0; 775 } else if (count == SWAP_MAP_SHMEM) { 776 /* 777 * Or we could insist on shmem.c using a special 778 * swap_shmem_free() and free_shmem_swap_and_cache()... 779 */ 780 count = 0; 781 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 782 if (count == COUNT_CONTINUED) { 783 if (swap_count_continued(p, offset, count)) 784 count = SWAP_MAP_MAX | COUNT_CONTINUED; 785 else 786 count = SWAP_MAP_MAX; 787 } else 788 count--; 789 } 790 791 if (!count) 792 mem_cgroup_uncharge_swap(entry); 793 794 usage = count | has_cache; 795 p->swap_map[offset] = usage; 796 797 /* free if no reference */ 798 if (!usage) { 799 dec_cluster_info_page(p, p->cluster_info, offset); 800 if (offset < p->lowest_bit) 801 p->lowest_bit = offset; 802 if (offset > p->highest_bit) { 803 bool was_full = !p->highest_bit; 804 p->highest_bit = offset; 805 if (was_full && (p->flags & SWP_WRITEOK)) { 806 spin_lock(&swap_avail_lock); 807 WARN_ON(!plist_node_empty(&p->avail_list)); 808 if (plist_node_empty(&p->avail_list)) 809 plist_add(&p->avail_list, 810 &swap_avail_head); 811 spin_unlock(&swap_avail_lock); 812 } 813 } 814 atomic_long_inc(&nr_swap_pages); 815 p->inuse_pages--; 816 frontswap_invalidate_page(p->type, offset); 817 if (p->flags & SWP_BLKDEV) { 818 struct gendisk *disk = p->bdev->bd_disk; 819 if (disk->fops->swap_slot_free_notify) 820 disk->fops->swap_slot_free_notify(p->bdev, 821 offset); 822 } 823 } 824 825 return usage; 826 } 827 828 /* 829 * Caller has made sure that the swap device corresponding to entry 830 * is still around or has not been recycled. 831 */ 832 void swap_free(swp_entry_t entry) 833 { 834 struct swap_info_struct *p; 835 836 p = swap_info_get(entry); 837 if (p) { 838 swap_entry_free(p, entry, 1); 839 spin_unlock(&p->lock); 840 } 841 } 842 843 /* 844 * Called after dropping swapcache to decrease refcnt to swap entries. 845 */ 846 void swapcache_free(swp_entry_t entry) 847 { 848 struct swap_info_struct *p; 849 850 p = swap_info_get(entry); 851 if (p) { 852 swap_entry_free(p, entry, SWAP_HAS_CACHE); 853 spin_unlock(&p->lock); 854 } 855 } 856 857 /* 858 * How many references to page are currently swapped out? 859 * This does not give an exact answer when swap count is continued, 860 * but does include the high COUNT_CONTINUED flag to allow for that. 861 */ 862 int page_swapcount(struct page *page) 863 { 864 int count = 0; 865 struct swap_info_struct *p; 866 swp_entry_t entry; 867 868 entry.val = page_private(page); 869 p = swap_info_get(entry); 870 if (p) { 871 count = swap_count(p->swap_map[swp_offset(entry)]); 872 spin_unlock(&p->lock); 873 } 874 return count; 875 } 876 877 /* 878 * How many references to @entry are currently swapped out? 879 * This considers COUNT_CONTINUED so it returns exact answer. 880 */ 881 int swp_swapcount(swp_entry_t entry) 882 { 883 int count, tmp_count, n; 884 struct swap_info_struct *p; 885 struct page *page; 886 pgoff_t offset; 887 unsigned char *map; 888 889 p = swap_info_get(entry); 890 if (!p) 891 return 0; 892 893 count = swap_count(p->swap_map[swp_offset(entry)]); 894 if (!(count & COUNT_CONTINUED)) 895 goto out; 896 897 count &= ~COUNT_CONTINUED; 898 n = SWAP_MAP_MAX + 1; 899 900 offset = swp_offset(entry); 901 page = vmalloc_to_page(p->swap_map + offset); 902 offset &= ~PAGE_MASK; 903 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 904 905 do { 906 page = list_entry(page->lru.next, struct page, lru); 907 map = kmap_atomic(page); 908 tmp_count = map[offset]; 909 kunmap_atomic(map); 910 911 count += (tmp_count & ~COUNT_CONTINUED) * n; 912 n *= (SWAP_CONT_MAX + 1); 913 } while (tmp_count & COUNT_CONTINUED); 914 out: 915 spin_unlock(&p->lock); 916 return count; 917 } 918 919 /* 920 * We can write to an anon page without COW if there are no other references 921 * to it. And as a side-effect, free up its swap: because the old content 922 * on disk will never be read, and seeking back there to write new content 923 * later would only waste time away from clustering. 924 */ 925 int reuse_swap_page(struct page *page) 926 { 927 int count; 928 929 VM_BUG_ON_PAGE(!PageLocked(page), page); 930 if (unlikely(PageKsm(page))) 931 return 0; 932 count = page_mapcount(page); 933 if (count <= 1 && PageSwapCache(page)) { 934 count += page_swapcount(page); 935 if (count == 1 && !PageWriteback(page)) { 936 delete_from_swap_cache(page); 937 SetPageDirty(page); 938 } 939 } 940 return count <= 1; 941 } 942 943 /* 944 * If swap is getting full, or if there are no more mappings of this page, 945 * then try_to_free_swap is called to free its swap space. 946 */ 947 int try_to_free_swap(struct page *page) 948 { 949 VM_BUG_ON_PAGE(!PageLocked(page), page); 950 951 if (!PageSwapCache(page)) 952 return 0; 953 if (PageWriteback(page)) 954 return 0; 955 if (page_swapcount(page)) 956 return 0; 957 958 /* 959 * Once hibernation has begun to create its image of memory, 960 * there's a danger that one of the calls to try_to_free_swap() 961 * - most probably a call from __try_to_reclaim_swap() while 962 * hibernation is allocating its own swap pages for the image, 963 * but conceivably even a call from memory reclaim - will free 964 * the swap from a page which has already been recorded in the 965 * image as a clean swapcache page, and then reuse its swap for 966 * another page of the image. On waking from hibernation, the 967 * original page might be freed under memory pressure, then 968 * later read back in from swap, now with the wrong data. 969 * 970 * Hibernation suspends storage while it is writing the image 971 * to disk so check that here. 972 */ 973 if (pm_suspended_storage()) 974 return 0; 975 976 delete_from_swap_cache(page); 977 SetPageDirty(page); 978 return 1; 979 } 980 981 /* 982 * Free the swap entry like above, but also try to 983 * free the page cache entry if it is the last user. 984 */ 985 int free_swap_and_cache(swp_entry_t entry) 986 { 987 struct swap_info_struct *p; 988 struct page *page = NULL; 989 990 if (non_swap_entry(entry)) 991 return 1; 992 993 p = swap_info_get(entry); 994 if (p) { 995 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) { 996 page = find_get_page(swap_address_space(entry), 997 entry.val); 998 if (page && !trylock_page(page)) { 999 page_cache_release(page); 1000 page = NULL; 1001 } 1002 } 1003 spin_unlock(&p->lock); 1004 } 1005 if (page) { 1006 /* 1007 * Not mapped elsewhere, or swap space full? Free it! 1008 * Also recheck PageSwapCache now page is locked (above). 1009 */ 1010 if (PageSwapCache(page) && !PageWriteback(page) && 1011 (!page_mapped(page) || vm_swap_full())) { 1012 delete_from_swap_cache(page); 1013 SetPageDirty(page); 1014 } 1015 unlock_page(page); 1016 page_cache_release(page); 1017 } 1018 return p != NULL; 1019 } 1020 1021 #ifdef CONFIG_HIBERNATION 1022 /* 1023 * Find the swap type that corresponds to given device (if any). 1024 * 1025 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1026 * from 0, in which the swap header is expected to be located. 1027 * 1028 * This is needed for the suspend to disk (aka swsusp). 1029 */ 1030 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p) 1031 { 1032 struct block_device *bdev = NULL; 1033 int type; 1034 1035 if (device) 1036 bdev = bdget(device); 1037 1038 spin_lock(&swap_lock); 1039 for (type = 0; type < nr_swapfiles; type++) { 1040 struct swap_info_struct *sis = swap_info[type]; 1041 1042 if (!(sis->flags & SWP_WRITEOK)) 1043 continue; 1044 1045 if (!bdev) { 1046 if (bdev_p) 1047 *bdev_p = bdgrab(sis->bdev); 1048 1049 spin_unlock(&swap_lock); 1050 return type; 1051 } 1052 if (bdev == sis->bdev) { 1053 struct swap_extent *se = &sis->first_swap_extent; 1054 1055 if (se->start_block == offset) { 1056 if (bdev_p) 1057 *bdev_p = bdgrab(sis->bdev); 1058 1059 spin_unlock(&swap_lock); 1060 bdput(bdev); 1061 return type; 1062 } 1063 } 1064 } 1065 spin_unlock(&swap_lock); 1066 if (bdev) 1067 bdput(bdev); 1068 1069 return -ENODEV; 1070 } 1071 1072 /* 1073 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1074 * corresponding to given index in swap_info (swap type). 1075 */ 1076 sector_t swapdev_block(int type, pgoff_t offset) 1077 { 1078 struct block_device *bdev; 1079 1080 if ((unsigned int)type >= nr_swapfiles) 1081 return 0; 1082 if (!(swap_info[type]->flags & SWP_WRITEOK)) 1083 return 0; 1084 return map_swap_entry(swp_entry(type, offset), &bdev); 1085 } 1086 1087 /* 1088 * Return either the total number of swap pages of given type, or the number 1089 * of free pages of that type (depending on @free) 1090 * 1091 * This is needed for software suspend 1092 */ 1093 unsigned int count_swap_pages(int type, int free) 1094 { 1095 unsigned int n = 0; 1096 1097 spin_lock(&swap_lock); 1098 if ((unsigned int)type < nr_swapfiles) { 1099 struct swap_info_struct *sis = swap_info[type]; 1100 1101 spin_lock(&sis->lock); 1102 if (sis->flags & SWP_WRITEOK) { 1103 n = sis->pages; 1104 if (free) 1105 n -= sis->inuse_pages; 1106 } 1107 spin_unlock(&sis->lock); 1108 } 1109 spin_unlock(&swap_lock); 1110 return n; 1111 } 1112 #endif /* CONFIG_HIBERNATION */ 1113 1114 static inline int maybe_same_pte(pte_t pte, pte_t swp_pte) 1115 { 1116 #ifdef CONFIG_MEM_SOFT_DIRTY 1117 /* 1118 * When pte keeps soft dirty bit the pte generated 1119 * from swap entry does not has it, still it's same 1120 * pte from logical point of view. 1121 */ 1122 pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte); 1123 return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty); 1124 #else 1125 return pte_same(pte, swp_pte); 1126 #endif 1127 } 1128 1129 /* 1130 * No need to decide whether this PTE shares the swap entry with others, 1131 * just let do_wp_page work it out if a write is requested later - to 1132 * force COW, vm_page_prot omits write permission from any private vma. 1133 */ 1134 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1135 unsigned long addr, swp_entry_t entry, struct page *page) 1136 { 1137 struct page *swapcache; 1138 struct mem_cgroup *memcg; 1139 spinlock_t *ptl; 1140 pte_t *pte; 1141 int ret = 1; 1142 1143 swapcache = page; 1144 page = ksm_might_need_to_copy(page, vma, addr); 1145 if (unlikely(!page)) 1146 return -ENOMEM; 1147 1148 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg)) { 1149 ret = -ENOMEM; 1150 goto out_nolock; 1151 } 1152 1153 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1154 if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) { 1155 mem_cgroup_cancel_charge(page, memcg); 1156 ret = 0; 1157 goto out; 1158 } 1159 1160 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1161 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1162 get_page(page); 1163 set_pte_at(vma->vm_mm, addr, pte, 1164 pte_mkold(mk_pte(page, vma->vm_page_prot))); 1165 if (page == swapcache) { 1166 page_add_anon_rmap(page, vma, addr); 1167 mem_cgroup_commit_charge(page, memcg, true); 1168 } else { /* ksm created a completely new copy */ 1169 page_add_new_anon_rmap(page, vma, addr); 1170 mem_cgroup_commit_charge(page, memcg, false); 1171 lru_cache_add_active_or_unevictable(page, vma); 1172 } 1173 swap_free(entry); 1174 /* 1175 * Move the page to the active list so it is not 1176 * immediately swapped out again after swapon. 1177 */ 1178 activate_page(page); 1179 out: 1180 pte_unmap_unlock(pte, ptl); 1181 out_nolock: 1182 if (page != swapcache) { 1183 unlock_page(page); 1184 put_page(page); 1185 } 1186 return ret; 1187 } 1188 1189 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1190 unsigned long addr, unsigned long end, 1191 swp_entry_t entry, struct page *page) 1192 { 1193 pte_t swp_pte = swp_entry_to_pte(entry); 1194 pte_t *pte; 1195 int ret = 0; 1196 1197 /* 1198 * We don't actually need pte lock while scanning for swp_pte: since 1199 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the 1200 * page table while we're scanning; though it could get zapped, and on 1201 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse 1202 * of unmatched parts which look like swp_pte, so unuse_pte must 1203 * recheck under pte lock. Scanning without pte lock lets it be 1204 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE. 1205 */ 1206 pte = pte_offset_map(pmd, addr); 1207 do { 1208 /* 1209 * swapoff spends a _lot_ of time in this loop! 1210 * Test inline before going to call unuse_pte. 1211 */ 1212 if (unlikely(maybe_same_pte(*pte, swp_pte))) { 1213 pte_unmap(pte); 1214 ret = unuse_pte(vma, pmd, addr, entry, page); 1215 if (ret) 1216 goto out; 1217 pte = pte_offset_map(pmd, addr); 1218 } 1219 } while (pte++, addr += PAGE_SIZE, addr != end); 1220 pte_unmap(pte - 1); 1221 out: 1222 return ret; 1223 } 1224 1225 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1226 unsigned long addr, unsigned long end, 1227 swp_entry_t entry, struct page *page) 1228 { 1229 pmd_t *pmd; 1230 unsigned long next; 1231 int ret; 1232 1233 pmd = pmd_offset(pud, addr); 1234 do { 1235 next = pmd_addr_end(addr, end); 1236 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1237 continue; 1238 ret = unuse_pte_range(vma, pmd, addr, next, entry, page); 1239 if (ret) 1240 return ret; 1241 } while (pmd++, addr = next, addr != end); 1242 return 0; 1243 } 1244 1245 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd, 1246 unsigned long addr, unsigned long end, 1247 swp_entry_t entry, struct page *page) 1248 { 1249 pud_t *pud; 1250 unsigned long next; 1251 int ret; 1252 1253 pud = pud_offset(pgd, addr); 1254 do { 1255 next = pud_addr_end(addr, end); 1256 if (pud_none_or_clear_bad(pud)) 1257 continue; 1258 ret = unuse_pmd_range(vma, pud, addr, next, entry, page); 1259 if (ret) 1260 return ret; 1261 } while (pud++, addr = next, addr != end); 1262 return 0; 1263 } 1264 1265 static int unuse_vma(struct vm_area_struct *vma, 1266 swp_entry_t entry, struct page *page) 1267 { 1268 pgd_t *pgd; 1269 unsigned long addr, end, next; 1270 int ret; 1271 1272 if (page_anon_vma(page)) { 1273 addr = page_address_in_vma(page, vma); 1274 if (addr == -EFAULT) 1275 return 0; 1276 else 1277 end = addr + PAGE_SIZE; 1278 } else { 1279 addr = vma->vm_start; 1280 end = vma->vm_end; 1281 } 1282 1283 pgd = pgd_offset(vma->vm_mm, addr); 1284 do { 1285 next = pgd_addr_end(addr, end); 1286 if (pgd_none_or_clear_bad(pgd)) 1287 continue; 1288 ret = unuse_pud_range(vma, pgd, addr, next, entry, page); 1289 if (ret) 1290 return ret; 1291 } while (pgd++, addr = next, addr != end); 1292 return 0; 1293 } 1294 1295 static int unuse_mm(struct mm_struct *mm, 1296 swp_entry_t entry, struct page *page) 1297 { 1298 struct vm_area_struct *vma; 1299 int ret = 0; 1300 1301 if (!down_read_trylock(&mm->mmap_sem)) { 1302 /* 1303 * Activate page so shrink_inactive_list is unlikely to unmap 1304 * its ptes while lock is dropped, so swapoff can make progress. 1305 */ 1306 activate_page(page); 1307 unlock_page(page); 1308 down_read(&mm->mmap_sem); 1309 lock_page(page); 1310 } 1311 for (vma = mm->mmap; vma; vma = vma->vm_next) { 1312 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page))) 1313 break; 1314 } 1315 up_read(&mm->mmap_sem); 1316 return (ret < 0)? ret: 0; 1317 } 1318 1319 /* 1320 * Scan swap_map (or frontswap_map if frontswap parameter is true) 1321 * from current position to next entry still in use. 1322 * Recycle to start on reaching the end, returning 0 when empty. 1323 */ 1324 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 1325 unsigned int prev, bool frontswap) 1326 { 1327 unsigned int max = si->max; 1328 unsigned int i = prev; 1329 unsigned char count; 1330 1331 /* 1332 * No need for swap_lock here: we're just looking 1333 * for whether an entry is in use, not modifying it; false 1334 * hits are okay, and sys_swapoff() has already prevented new 1335 * allocations from this area (while holding swap_lock). 1336 */ 1337 for (;;) { 1338 if (++i >= max) { 1339 if (!prev) { 1340 i = 0; 1341 break; 1342 } 1343 /* 1344 * No entries in use at top of swap_map, 1345 * loop back to start and recheck there. 1346 */ 1347 max = prev + 1; 1348 prev = 0; 1349 i = 1; 1350 } 1351 if (frontswap) { 1352 if (frontswap_test(si, i)) 1353 break; 1354 else 1355 continue; 1356 } 1357 count = READ_ONCE(si->swap_map[i]); 1358 if (count && swap_count(count) != SWAP_MAP_BAD) 1359 break; 1360 } 1361 return i; 1362 } 1363 1364 /* 1365 * We completely avoid races by reading each swap page in advance, 1366 * and then search for the process using it. All the necessary 1367 * page table adjustments can then be made atomically. 1368 * 1369 * if the boolean frontswap is true, only unuse pages_to_unuse pages; 1370 * pages_to_unuse==0 means all pages; ignored if frontswap is false 1371 */ 1372 int try_to_unuse(unsigned int type, bool frontswap, 1373 unsigned long pages_to_unuse) 1374 { 1375 struct swap_info_struct *si = swap_info[type]; 1376 struct mm_struct *start_mm; 1377 volatile unsigned char *swap_map; /* swap_map is accessed without 1378 * locking. Mark it as volatile 1379 * to prevent compiler doing 1380 * something odd. 1381 */ 1382 unsigned char swcount; 1383 struct page *page; 1384 swp_entry_t entry; 1385 unsigned int i = 0; 1386 int retval = 0; 1387 1388 /* 1389 * When searching mms for an entry, a good strategy is to 1390 * start at the first mm we freed the previous entry from 1391 * (though actually we don't notice whether we or coincidence 1392 * freed the entry). Initialize this start_mm with a hold. 1393 * 1394 * A simpler strategy would be to start at the last mm we 1395 * freed the previous entry from; but that would take less 1396 * advantage of mmlist ordering, which clusters forked mms 1397 * together, child after parent. If we race with dup_mmap(), we 1398 * prefer to resolve parent before child, lest we miss entries 1399 * duplicated after we scanned child: using last mm would invert 1400 * that. 1401 */ 1402 start_mm = &init_mm; 1403 atomic_inc(&init_mm.mm_users); 1404 1405 /* 1406 * Keep on scanning until all entries have gone. Usually, 1407 * one pass through swap_map is enough, but not necessarily: 1408 * there are races when an instance of an entry might be missed. 1409 */ 1410 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) { 1411 if (signal_pending(current)) { 1412 retval = -EINTR; 1413 break; 1414 } 1415 1416 /* 1417 * Get a page for the entry, using the existing swap 1418 * cache page if there is one. Otherwise, get a clean 1419 * page and read the swap into it. 1420 */ 1421 swap_map = &si->swap_map[i]; 1422 entry = swp_entry(type, i); 1423 page = read_swap_cache_async(entry, 1424 GFP_HIGHUSER_MOVABLE, NULL, 0); 1425 if (!page) { 1426 /* 1427 * Either swap_duplicate() failed because entry 1428 * has been freed independently, and will not be 1429 * reused since sys_swapoff() already disabled 1430 * allocation from here, or alloc_page() failed. 1431 */ 1432 swcount = *swap_map; 1433 /* 1434 * We don't hold lock here, so the swap entry could be 1435 * SWAP_MAP_BAD (when the cluster is discarding). 1436 * Instead of fail out, We can just skip the swap 1437 * entry because swapoff will wait for discarding 1438 * finish anyway. 1439 */ 1440 if (!swcount || swcount == SWAP_MAP_BAD) 1441 continue; 1442 retval = -ENOMEM; 1443 break; 1444 } 1445 1446 /* 1447 * Don't hold on to start_mm if it looks like exiting. 1448 */ 1449 if (atomic_read(&start_mm->mm_users) == 1) { 1450 mmput(start_mm); 1451 start_mm = &init_mm; 1452 atomic_inc(&init_mm.mm_users); 1453 } 1454 1455 /* 1456 * Wait for and lock page. When do_swap_page races with 1457 * try_to_unuse, do_swap_page can handle the fault much 1458 * faster than try_to_unuse can locate the entry. This 1459 * apparently redundant "wait_on_page_locked" lets try_to_unuse 1460 * defer to do_swap_page in such a case - in some tests, 1461 * do_swap_page and try_to_unuse repeatedly compete. 1462 */ 1463 wait_on_page_locked(page); 1464 wait_on_page_writeback(page); 1465 lock_page(page); 1466 wait_on_page_writeback(page); 1467 1468 /* 1469 * Remove all references to entry. 1470 */ 1471 swcount = *swap_map; 1472 if (swap_count(swcount) == SWAP_MAP_SHMEM) { 1473 retval = shmem_unuse(entry, page); 1474 /* page has already been unlocked and released */ 1475 if (retval < 0) 1476 break; 1477 continue; 1478 } 1479 if (swap_count(swcount) && start_mm != &init_mm) 1480 retval = unuse_mm(start_mm, entry, page); 1481 1482 if (swap_count(*swap_map)) { 1483 int set_start_mm = (*swap_map >= swcount); 1484 struct list_head *p = &start_mm->mmlist; 1485 struct mm_struct *new_start_mm = start_mm; 1486 struct mm_struct *prev_mm = start_mm; 1487 struct mm_struct *mm; 1488 1489 atomic_inc(&new_start_mm->mm_users); 1490 atomic_inc(&prev_mm->mm_users); 1491 spin_lock(&mmlist_lock); 1492 while (swap_count(*swap_map) && !retval && 1493 (p = p->next) != &start_mm->mmlist) { 1494 mm = list_entry(p, struct mm_struct, mmlist); 1495 if (!atomic_inc_not_zero(&mm->mm_users)) 1496 continue; 1497 spin_unlock(&mmlist_lock); 1498 mmput(prev_mm); 1499 prev_mm = mm; 1500 1501 cond_resched(); 1502 1503 swcount = *swap_map; 1504 if (!swap_count(swcount)) /* any usage ? */ 1505 ; 1506 else if (mm == &init_mm) 1507 set_start_mm = 1; 1508 else 1509 retval = unuse_mm(mm, entry, page); 1510 1511 if (set_start_mm && *swap_map < swcount) { 1512 mmput(new_start_mm); 1513 atomic_inc(&mm->mm_users); 1514 new_start_mm = mm; 1515 set_start_mm = 0; 1516 } 1517 spin_lock(&mmlist_lock); 1518 } 1519 spin_unlock(&mmlist_lock); 1520 mmput(prev_mm); 1521 mmput(start_mm); 1522 start_mm = new_start_mm; 1523 } 1524 if (retval) { 1525 unlock_page(page); 1526 page_cache_release(page); 1527 break; 1528 } 1529 1530 /* 1531 * If a reference remains (rare), we would like to leave 1532 * the page in the swap cache; but try_to_unmap could 1533 * then re-duplicate the entry once we drop page lock, 1534 * so we might loop indefinitely; also, that page could 1535 * not be swapped out to other storage meanwhile. So: 1536 * delete from cache even if there's another reference, 1537 * after ensuring that the data has been saved to disk - 1538 * since if the reference remains (rarer), it will be 1539 * read from disk into another page. Splitting into two 1540 * pages would be incorrect if swap supported "shared 1541 * private" pages, but they are handled by tmpfs files. 1542 * 1543 * Given how unuse_vma() targets one particular offset 1544 * in an anon_vma, once the anon_vma has been determined, 1545 * this splitting happens to be just what is needed to 1546 * handle where KSM pages have been swapped out: re-reading 1547 * is unnecessarily slow, but we can fix that later on. 1548 */ 1549 if (swap_count(*swap_map) && 1550 PageDirty(page) && PageSwapCache(page)) { 1551 struct writeback_control wbc = { 1552 .sync_mode = WB_SYNC_NONE, 1553 }; 1554 1555 swap_writepage(page, &wbc); 1556 lock_page(page); 1557 wait_on_page_writeback(page); 1558 } 1559 1560 /* 1561 * It is conceivable that a racing task removed this page from 1562 * swap cache just before we acquired the page lock at the top, 1563 * or while we dropped it in unuse_mm(). The page might even 1564 * be back in swap cache on another swap area: that we must not 1565 * delete, since it may not have been written out to swap yet. 1566 */ 1567 if (PageSwapCache(page) && 1568 likely(page_private(page) == entry.val)) 1569 delete_from_swap_cache(page); 1570 1571 /* 1572 * So we could skip searching mms once swap count went 1573 * to 1, we did not mark any present ptes as dirty: must 1574 * mark page dirty so shrink_page_list will preserve it. 1575 */ 1576 SetPageDirty(page); 1577 unlock_page(page); 1578 page_cache_release(page); 1579 1580 /* 1581 * Make sure that we aren't completely killing 1582 * interactive performance. 1583 */ 1584 cond_resched(); 1585 if (frontswap && pages_to_unuse > 0) { 1586 if (!--pages_to_unuse) 1587 break; 1588 } 1589 } 1590 1591 mmput(start_mm); 1592 return retval; 1593 } 1594 1595 /* 1596 * After a successful try_to_unuse, if no swap is now in use, we know 1597 * we can empty the mmlist. swap_lock must be held on entry and exit. 1598 * Note that mmlist_lock nests inside swap_lock, and an mm must be 1599 * added to the mmlist just after page_duplicate - before would be racy. 1600 */ 1601 static void drain_mmlist(void) 1602 { 1603 struct list_head *p, *next; 1604 unsigned int type; 1605 1606 for (type = 0; type < nr_swapfiles; type++) 1607 if (swap_info[type]->inuse_pages) 1608 return; 1609 spin_lock(&mmlist_lock); 1610 list_for_each_safe(p, next, &init_mm.mmlist) 1611 list_del_init(p); 1612 spin_unlock(&mmlist_lock); 1613 } 1614 1615 /* 1616 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which 1617 * corresponds to page offset for the specified swap entry. 1618 * Note that the type of this function is sector_t, but it returns page offset 1619 * into the bdev, not sector offset. 1620 */ 1621 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev) 1622 { 1623 struct swap_info_struct *sis; 1624 struct swap_extent *start_se; 1625 struct swap_extent *se; 1626 pgoff_t offset; 1627 1628 sis = swap_info[swp_type(entry)]; 1629 *bdev = sis->bdev; 1630 1631 offset = swp_offset(entry); 1632 start_se = sis->curr_swap_extent; 1633 se = start_se; 1634 1635 for ( ; ; ) { 1636 struct list_head *lh; 1637 1638 if (se->start_page <= offset && 1639 offset < (se->start_page + se->nr_pages)) { 1640 return se->start_block + (offset - se->start_page); 1641 } 1642 lh = se->list.next; 1643 se = list_entry(lh, struct swap_extent, list); 1644 sis->curr_swap_extent = se; 1645 BUG_ON(se == start_se); /* It *must* be present */ 1646 } 1647 } 1648 1649 /* 1650 * Returns the page offset into bdev for the specified page's swap entry. 1651 */ 1652 sector_t map_swap_page(struct page *page, struct block_device **bdev) 1653 { 1654 swp_entry_t entry; 1655 entry.val = page_private(page); 1656 return map_swap_entry(entry, bdev); 1657 } 1658 1659 /* 1660 * Free all of a swapdev's extent information 1661 */ 1662 static void destroy_swap_extents(struct swap_info_struct *sis) 1663 { 1664 while (!list_empty(&sis->first_swap_extent.list)) { 1665 struct swap_extent *se; 1666 1667 se = list_entry(sis->first_swap_extent.list.next, 1668 struct swap_extent, list); 1669 list_del(&se->list); 1670 kfree(se); 1671 } 1672 1673 if (sis->flags & SWP_FILE) { 1674 struct file *swap_file = sis->swap_file; 1675 struct address_space *mapping = swap_file->f_mapping; 1676 1677 sis->flags &= ~SWP_FILE; 1678 mapping->a_ops->swap_deactivate(swap_file); 1679 } 1680 } 1681 1682 /* 1683 * Add a block range (and the corresponding page range) into this swapdev's 1684 * extent list. The extent list is kept sorted in page order. 1685 * 1686 * This function rather assumes that it is called in ascending page order. 1687 */ 1688 int 1689 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 1690 unsigned long nr_pages, sector_t start_block) 1691 { 1692 struct swap_extent *se; 1693 struct swap_extent *new_se; 1694 struct list_head *lh; 1695 1696 if (start_page == 0) { 1697 se = &sis->first_swap_extent; 1698 sis->curr_swap_extent = se; 1699 se->start_page = 0; 1700 se->nr_pages = nr_pages; 1701 se->start_block = start_block; 1702 return 1; 1703 } else { 1704 lh = sis->first_swap_extent.list.prev; /* Highest extent */ 1705 se = list_entry(lh, struct swap_extent, list); 1706 BUG_ON(se->start_page + se->nr_pages != start_page); 1707 if (se->start_block + se->nr_pages == start_block) { 1708 /* Merge it */ 1709 se->nr_pages += nr_pages; 1710 return 0; 1711 } 1712 } 1713 1714 /* 1715 * No merge. Insert a new extent, preserving ordering. 1716 */ 1717 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 1718 if (new_se == NULL) 1719 return -ENOMEM; 1720 new_se->start_page = start_page; 1721 new_se->nr_pages = nr_pages; 1722 new_se->start_block = start_block; 1723 1724 list_add_tail(&new_se->list, &sis->first_swap_extent.list); 1725 return 1; 1726 } 1727 1728 /* 1729 * A `swap extent' is a simple thing which maps a contiguous range of pages 1730 * onto a contiguous range of disk blocks. An ordered list of swap extents 1731 * is built at swapon time and is then used at swap_writepage/swap_readpage 1732 * time for locating where on disk a page belongs. 1733 * 1734 * If the swapfile is an S_ISBLK block device, a single extent is installed. 1735 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 1736 * swap files identically. 1737 * 1738 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 1739 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 1740 * swapfiles are handled *identically* after swapon time. 1741 * 1742 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 1743 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If 1744 * some stray blocks are found which do not fall within the PAGE_SIZE alignment 1745 * requirements, they are simply tossed out - we will never use those blocks 1746 * for swapping. 1747 * 1748 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This 1749 * prevents root from shooting her foot off by ftruncating an in-use swapfile, 1750 * which will scribble on the fs. 1751 * 1752 * The amount of disk space which a single swap extent represents varies. 1753 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 1754 * extents in the list. To avoid much list walking, we cache the previous 1755 * search location in `curr_swap_extent', and start new searches from there. 1756 * This is extremely effective. The average number of iterations in 1757 * map_swap_page() has been measured at about 0.3 per page. - akpm. 1758 */ 1759 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 1760 { 1761 struct file *swap_file = sis->swap_file; 1762 struct address_space *mapping = swap_file->f_mapping; 1763 struct inode *inode = mapping->host; 1764 int ret; 1765 1766 if (S_ISBLK(inode->i_mode)) { 1767 ret = add_swap_extent(sis, 0, sis->max, 0); 1768 *span = sis->pages; 1769 return ret; 1770 } 1771 1772 if (mapping->a_ops->swap_activate) { 1773 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 1774 if (!ret) { 1775 sis->flags |= SWP_FILE; 1776 ret = add_swap_extent(sis, 0, sis->max, 0); 1777 *span = sis->pages; 1778 } 1779 return ret; 1780 } 1781 1782 return generic_swapfile_activate(sis, swap_file, span); 1783 } 1784 1785 static void _enable_swap_info(struct swap_info_struct *p, int prio, 1786 unsigned char *swap_map, 1787 struct swap_cluster_info *cluster_info) 1788 { 1789 if (prio >= 0) 1790 p->prio = prio; 1791 else 1792 p->prio = --least_priority; 1793 /* 1794 * the plist prio is negated because plist ordering is 1795 * low-to-high, while swap ordering is high-to-low 1796 */ 1797 p->list.prio = -p->prio; 1798 p->avail_list.prio = -p->prio; 1799 p->swap_map = swap_map; 1800 p->cluster_info = cluster_info; 1801 p->flags |= SWP_WRITEOK; 1802 atomic_long_add(p->pages, &nr_swap_pages); 1803 total_swap_pages += p->pages; 1804 1805 assert_spin_locked(&swap_lock); 1806 /* 1807 * both lists are plists, and thus priority ordered. 1808 * swap_active_head needs to be priority ordered for swapoff(), 1809 * which on removal of any swap_info_struct with an auto-assigned 1810 * (i.e. negative) priority increments the auto-assigned priority 1811 * of any lower-priority swap_info_structs. 1812 * swap_avail_head needs to be priority ordered for get_swap_page(), 1813 * which allocates swap pages from the highest available priority 1814 * swap_info_struct. 1815 */ 1816 plist_add(&p->list, &swap_active_head); 1817 spin_lock(&swap_avail_lock); 1818 plist_add(&p->avail_list, &swap_avail_head); 1819 spin_unlock(&swap_avail_lock); 1820 } 1821 1822 static void enable_swap_info(struct swap_info_struct *p, int prio, 1823 unsigned char *swap_map, 1824 struct swap_cluster_info *cluster_info, 1825 unsigned long *frontswap_map) 1826 { 1827 frontswap_init(p->type, frontswap_map); 1828 spin_lock(&swap_lock); 1829 spin_lock(&p->lock); 1830 _enable_swap_info(p, prio, swap_map, cluster_info); 1831 spin_unlock(&p->lock); 1832 spin_unlock(&swap_lock); 1833 } 1834 1835 static void reinsert_swap_info(struct swap_info_struct *p) 1836 { 1837 spin_lock(&swap_lock); 1838 spin_lock(&p->lock); 1839 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info); 1840 spin_unlock(&p->lock); 1841 spin_unlock(&swap_lock); 1842 } 1843 1844 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 1845 { 1846 struct swap_info_struct *p = NULL; 1847 unsigned char *swap_map; 1848 struct swap_cluster_info *cluster_info; 1849 unsigned long *frontswap_map; 1850 struct file *swap_file, *victim; 1851 struct address_space *mapping; 1852 struct inode *inode; 1853 struct filename *pathname; 1854 int err, found = 0; 1855 unsigned int old_block_size; 1856 1857 if (!capable(CAP_SYS_ADMIN)) 1858 return -EPERM; 1859 1860 BUG_ON(!current->mm); 1861 1862 pathname = getname(specialfile); 1863 if (IS_ERR(pathname)) 1864 return PTR_ERR(pathname); 1865 1866 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 1867 err = PTR_ERR(victim); 1868 if (IS_ERR(victim)) 1869 goto out; 1870 1871 mapping = victim->f_mapping; 1872 spin_lock(&swap_lock); 1873 plist_for_each_entry(p, &swap_active_head, list) { 1874 if (p->flags & SWP_WRITEOK) { 1875 if (p->swap_file->f_mapping == mapping) { 1876 found = 1; 1877 break; 1878 } 1879 } 1880 } 1881 if (!found) { 1882 err = -EINVAL; 1883 spin_unlock(&swap_lock); 1884 goto out_dput; 1885 } 1886 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 1887 vm_unacct_memory(p->pages); 1888 else { 1889 err = -ENOMEM; 1890 spin_unlock(&swap_lock); 1891 goto out_dput; 1892 } 1893 spin_lock(&swap_avail_lock); 1894 plist_del(&p->avail_list, &swap_avail_head); 1895 spin_unlock(&swap_avail_lock); 1896 spin_lock(&p->lock); 1897 if (p->prio < 0) { 1898 struct swap_info_struct *si = p; 1899 1900 plist_for_each_entry_continue(si, &swap_active_head, list) { 1901 si->prio++; 1902 si->list.prio--; 1903 si->avail_list.prio--; 1904 } 1905 least_priority++; 1906 } 1907 plist_del(&p->list, &swap_active_head); 1908 atomic_long_sub(p->pages, &nr_swap_pages); 1909 total_swap_pages -= p->pages; 1910 p->flags &= ~SWP_WRITEOK; 1911 spin_unlock(&p->lock); 1912 spin_unlock(&swap_lock); 1913 1914 set_current_oom_origin(); 1915 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */ 1916 clear_current_oom_origin(); 1917 1918 if (err) { 1919 /* re-insert swap space back into swap_list */ 1920 reinsert_swap_info(p); 1921 goto out_dput; 1922 } 1923 1924 flush_work(&p->discard_work); 1925 1926 destroy_swap_extents(p); 1927 if (p->flags & SWP_CONTINUED) 1928 free_swap_count_continuations(p); 1929 1930 mutex_lock(&swapon_mutex); 1931 spin_lock(&swap_lock); 1932 spin_lock(&p->lock); 1933 drain_mmlist(); 1934 1935 /* wait for anyone still in scan_swap_map */ 1936 p->highest_bit = 0; /* cuts scans short */ 1937 while (p->flags >= SWP_SCANNING) { 1938 spin_unlock(&p->lock); 1939 spin_unlock(&swap_lock); 1940 schedule_timeout_uninterruptible(1); 1941 spin_lock(&swap_lock); 1942 spin_lock(&p->lock); 1943 } 1944 1945 swap_file = p->swap_file; 1946 old_block_size = p->old_block_size; 1947 p->swap_file = NULL; 1948 p->max = 0; 1949 swap_map = p->swap_map; 1950 p->swap_map = NULL; 1951 cluster_info = p->cluster_info; 1952 p->cluster_info = NULL; 1953 frontswap_map = frontswap_map_get(p); 1954 spin_unlock(&p->lock); 1955 spin_unlock(&swap_lock); 1956 frontswap_invalidate_area(p->type); 1957 frontswap_map_set(p, NULL); 1958 mutex_unlock(&swapon_mutex); 1959 free_percpu(p->percpu_cluster); 1960 p->percpu_cluster = NULL; 1961 vfree(swap_map); 1962 vfree(cluster_info); 1963 vfree(frontswap_map); 1964 /* Destroy swap account information */ 1965 swap_cgroup_swapoff(p->type); 1966 1967 inode = mapping->host; 1968 if (S_ISBLK(inode->i_mode)) { 1969 struct block_device *bdev = I_BDEV(inode); 1970 set_blocksize(bdev, old_block_size); 1971 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 1972 } else { 1973 mutex_lock(&inode->i_mutex); 1974 inode->i_flags &= ~S_SWAPFILE; 1975 mutex_unlock(&inode->i_mutex); 1976 } 1977 filp_close(swap_file, NULL); 1978 1979 /* 1980 * Clear the SWP_USED flag after all resources are freed so that swapon 1981 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 1982 * not hold p->lock after we cleared its SWP_WRITEOK. 1983 */ 1984 spin_lock(&swap_lock); 1985 p->flags = 0; 1986 spin_unlock(&swap_lock); 1987 1988 err = 0; 1989 atomic_inc(&proc_poll_event); 1990 wake_up_interruptible(&proc_poll_wait); 1991 1992 out_dput: 1993 filp_close(victim, NULL); 1994 out: 1995 putname(pathname); 1996 return err; 1997 } 1998 1999 #ifdef CONFIG_PROC_FS 2000 static unsigned swaps_poll(struct file *file, poll_table *wait) 2001 { 2002 struct seq_file *seq = file->private_data; 2003 2004 poll_wait(file, &proc_poll_wait, wait); 2005 2006 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2007 seq->poll_event = atomic_read(&proc_poll_event); 2008 return POLLIN | POLLRDNORM | POLLERR | POLLPRI; 2009 } 2010 2011 return POLLIN | POLLRDNORM; 2012 } 2013 2014 /* iterator */ 2015 static void *swap_start(struct seq_file *swap, loff_t *pos) 2016 { 2017 struct swap_info_struct *si; 2018 int type; 2019 loff_t l = *pos; 2020 2021 mutex_lock(&swapon_mutex); 2022 2023 if (!l) 2024 return SEQ_START_TOKEN; 2025 2026 for (type = 0; type < nr_swapfiles; type++) { 2027 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2028 si = swap_info[type]; 2029 if (!(si->flags & SWP_USED) || !si->swap_map) 2030 continue; 2031 if (!--l) 2032 return si; 2033 } 2034 2035 return NULL; 2036 } 2037 2038 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2039 { 2040 struct swap_info_struct *si = v; 2041 int type; 2042 2043 if (v == SEQ_START_TOKEN) 2044 type = 0; 2045 else 2046 type = si->type + 1; 2047 2048 for (; type < nr_swapfiles; type++) { 2049 smp_rmb(); /* read nr_swapfiles before swap_info[type] */ 2050 si = swap_info[type]; 2051 if (!(si->flags & SWP_USED) || !si->swap_map) 2052 continue; 2053 ++*pos; 2054 return si; 2055 } 2056 2057 return NULL; 2058 } 2059 2060 static void swap_stop(struct seq_file *swap, void *v) 2061 { 2062 mutex_unlock(&swapon_mutex); 2063 } 2064 2065 static int swap_show(struct seq_file *swap, void *v) 2066 { 2067 struct swap_info_struct *si = v; 2068 struct file *file; 2069 int len; 2070 2071 if (si == SEQ_START_TOKEN) { 2072 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n"); 2073 return 0; 2074 } 2075 2076 file = si->swap_file; 2077 len = seq_file_path(swap, file, " \t\n\\"); 2078 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n", 2079 len < 40 ? 40 - len : 1, " ", 2080 S_ISBLK(file_inode(file)->i_mode) ? 2081 "partition" : "file\t", 2082 si->pages << (PAGE_SHIFT - 10), 2083 si->inuse_pages << (PAGE_SHIFT - 10), 2084 si->prio); 2085 return 0; 2086 } 2087 2088 static const struct seq_operations swaps_op = { 2089 .start = swap_start, 2090 .next = swap_next, 2091 .stop = swap_stop, 2092 .show = swap_show 2093 }; 2094 2095 static int swaps_open(struct inode *inode, struct file *file) 2096 { 2097 struct seq_file *seq; 2098 int ret; 2099 2100 ret = seq_open(file, &swaps_op); 2101 if (ret) 2102 return ret; 2103 2104 seq = file->private_data; 2105 seq->poll_event = atomic_read(&proc_poll_event); 2106 return 0; 2107 } 2108 2109 static const struct file_operations proc_swaps_operations = { 2110 .open = swaps_open, 2111 .read = seq_read, 2112 .llseek = seq_lseek, 2113 .release = seq_release, 2114 .poll = swaps_poll, 2115 }; 2116 2117 static int __init procswaps_init(void) 2118 { 2119 proc_create("swaps", 0, NULL, &proc_swaps_operations); 2120 return 0; 2121 } 2122 __initcall(procswaps_init); 2123 #endif /* CONFIG_PROC_FS */ 2124 2125 #ifdef MAX_SWAPFILES_CHECK 2126 static int __init max_swapfiles_check(void) 2127 { 2128 MAX_SWAPFILES_CHECK(); 2129 return 0; 2130 } 2131 late_initcall(max_swapfiles_check); 2132 #endif 2133 2134 static struct swap_info_struct *alloc_swap_info(void) 2135 { 2136 struct swap_info_struct *p; 2137 unsigned int type; 2138 2139 p = kzalloc(sizeof(*p), GFP_KERNEL); 2140 if (!p) 2141 return ERR_PTR(-ENOMEM); 2142 2143 spin_lock(&swap_lock); 2144 for (type = 0; type < nr_swapfiles; type++) { 2145 if (!(swap_info[type]->flags & SWP_USED)) 2146 break; 2147 } 2148 if (type >= MAX_SWAPFILES) { 2149 spin_unlock(&swap_lock); 2150 kfree(p); 2151 return ERR_PTR(-EPERM); 2152 } 2153 if (type >= nr_swapfiles) { 2154 p->type = type; 2155 swap_info[type] = p; 2156 /* 2157 * Write swap_info[type] before nr_swapfiles, in case a 2158 * racing procfs swap_start() or swap_next() is reading them. 2159 * (We never shrink nr_swapfiles, we never free this entry.) 2160 */ 2161 smp_wmb(); 2162 nr_swapfiles++; 2163 } else { 2164 kfree(p); 2165 p = swap_info[type]; 2166 /* 2167 * Do not memset this entry: a racing procfs swap_next() 2168 * would be relying on p->type to remain valid. 2169 */ 2170 } 2171 INIT_LIST_HEAD(&p->first_swap_extent.list); 2172 plist_node_init(&p->list, 0); 2173 plist_node_init(&p->avail_list, 0); 2174 p->flags = SWP_USED; 2175 spin_unlock(&swap_lock); 2176 spin_lock_init(&p->lock); 2177 2178 return p; 2179 } 2180 2181 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2182 { 2183 int error; 2184 2185 if (S_ISBLK(inode->i_mode)) { 2186 p->bdev = bdgrab(I_BDEV(inode)); 2187 error = blkdev_get(p->bdev, 2188 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2189 if (error < 0) { 2190 p->bdev = NULL; 2191 return error; 2192 } 2193 p->old_block_size = block_size(p->bdev); 2194 error = set_blocksize(p->bdev, PAGE_SIZE); 2195 if (error < 0) 2196 return error; 2197 p->flags |= SWP_BLKDEV; 2198 } else if (S_ISREG(inode->i_mode)) { 2199 p->bdev = inode->i_sb->s_bdev; 2200 mutex_lock(&inode->i_mutex); 2201 if (IS_SWAPFILE(inode)) 2202 return -EBUSY; 2203 } else 2204 return -EINVAL; 2205 2206 return 0; 2207 } 2208 2209 static unsigned long read_swap_header(struct swap_info_struct *p, 2210 union swap_header *swap_header, 2211 struct inode *inode) 2212 { 2213 int i; 2214 unsigned long maxpages; 2215 unsigned long swapfilepages; 2216 unsigned long last_page; 2217 2218 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2219 pr_err("Unable to find swap-space signature\n"); 2220 return 0; 2221 } 2222 2223 /* swap partition endianess hack... */ 2224 if (swab32(swap_header->info.version) == 1) { 2225 swab32s(&swap_header->info.version); 2226 swab32s(&swap_header->info.last_page); 2227 swab32s(&swap_header->info.nr_badpages); 2228 for (i = 0; i < swap_header->info.nr_badpages; i++) 2229 swab32s(&swap_header->info.badpages[i]); 2230 } 2231 /* Check the swap header's sub-version */ 2232 if (swap_header->info.version != 1) { 2233 pr_warn("Unable to handle swap header version %d\n", 2234 swap_header->info.version); 2235 return 0; 2236 } 2237 2238 p->lowest_bit = 1; 2239 p->cluster_next = 1; 2240 p->cluster_nr = 0; 2241 2242 /* 2243 * Find out how many pages are allowed for a single swap 2244 * device. There are two limiting factors: 1) the number 2245 * of bits for the swap offset in the swp_entry_t type, and 2246 * 2) the number of bits in the swap pte as defined by the 2247 * different architectures. In order to find the 2248 * largest possible bit mask, a swap entry with swap type 0 2249 * and swap offset ~0UL is created, encoded to a swap pte, 2250 * decoded to a swp_entry_t again, and finally the swap 2251 * offset is extracted. This will mask all the bits from 2252 * the initial ~0UL mask that can't be encoded in either 2253 * the swp_entry_t or the architecture definition of a 2254 * swap pte. 2255 */ 2256 maxpages = swp_offset(pte_to_swp_entry( 2257 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2258 last_page = swap_header->info.last_page; 2259 if (last_page > maxpages) { 2260 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2261 maxpages << (PAGE_SHIFT - 10), 2262 last_page << (PAGE_SHIFT - 10)); 2263 } 2264 if (maxpages > last_page) { 2265 maxpages = last_page + 1; 2266 /* p->max is an unsigned int: don't overflow it */ 2267 if ((unsigned int)maxpages == 0) 2268 maxpages = UINT_MAX; 2269 } 2270 p->highest_bit = maxpages - 1; 2271 2272 if (!maxpages) 2273 return 0; 2274 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2275 if (swapfilepages && maxpages > swapfilepages) { 2276 pr_warn("Swap area shorter than signature indicates\n"); 2277 return 0; 2278 } 2279 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2280 return 0; 2281 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2282 return 0; 2283 2284 return maxpages; 2285 } 2286 2287 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2288 union swap_header *swap_header, 2289 unsigned char *swap_map, 2290 struct swap_cluster_info *cluster_info, 2291 unsigned long maxpages, 2292 sector_t *span) 2293 { 2294 int i; 2295 unsigned int nr_good_pages; 2296 int nr_extents; 2297 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2298 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER; 2299 2300 nr_good_pages = maxpages - 1; /* omit header page */ 2301 2302 cluster_set_null(&p->free_cluster_head); 2303 cluster_set_null(&p->free_cluster_tail); 2304 cluster_set_null(&p->discard_cluster_head); 2305 cluster_set_null(&p->discard_cluster_tail); 2306 2307 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2308 unsigned int page_nr = swap_header->info.badpages[i]; 2309 if (page_nr == 0 || page_nr > swap_header->info.last_page) 2310 return -EINVAL; 2311 if (page_nr < maxpages) { 2312 swap_map[page_nr] = SWAP_MAP_BAD; 2313 nr_good_pages--; 2314 /* 2315 * Haven't marked the cluster free yet, no list 2316 * operation involved 2317 */ 2318 inc_cluster_info_page(p, cluster_info, page_nr); 2319 } 2320 } 2321 2322 /* Haven't marked the cluster free yet, no list operation involved */ 2323 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 2324 inc_cluster_info_page(p, cluster_info, i); 2325 2326 if (nr_good_pages) { 2327 swap_map[0] = SWAP_MAP_BAD; 2328 /* 2329 * Not mark the cluster free yet, no list 2330 * operation involved 2331 */ 2332 inc_cluster_info_page(p, cluster_info, 0); 2333 p->max = maxpages; 2334 p->pages = nr_good_pages; 2335 nr_extents = setup_swap_extents(p, span); 2336 if (nr_extents < 0) 2337 return nr_extents; 2338 nr_good_pages = p->pages; 2339 } 2340 if (!nr_good_pages) { 2341 pr_warn("Empty swap-file\n"); 2342 return -EINVAL; 2343 } 2344 2345 if (!cluster_info) 2346 return nr_extents; 2347 2348 for (i = 0; i < nr_clusters; i++) { 2349 if (!cluster_count(&cluster_info[idx])) { 2350 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 2351 if (cluster_is_null(&p->free_cluster_head)) { 2352 cluster_set_next_flag(&p->free_cluster_head, 2353 idx, 0); 2354 cluster_set_next_flag(&p->free_cluster_tail, 2355 idx, 0); 2356 } else { 2357 unsigned int tail; 2358 2359 tail = cluster_next(&p->free_cluster_tail); 2360 cluster_set_next(&cluster_info[tail], idx); 2361 cluster_set_next_flag(&p->free_cluster_tail, 2362 idx, 0); 2363 } 2364 } 2365 idx++; 2366 if (idx == nr_clusters) 2367 idx = 0; 2368 } 2369 return nr_extents; 2370 } 2371 2372 /* 2373 * Helper to sys_swapon determining if a given swap 2374 * backing device queue supports DISCARD operations. 2375 */ 2376 static bool swap_discardable(struct swap_info_struct *si) 2377 { 2378 struct request_queue *q = bdev_get_queue(si->bdev); 2379 2380 if (!q || !blk_queue_discard(q)) 2381 return false; 2382 2383 return true; 2384 } 2385 2386 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2387 { 2388 struct swap_info_struct *p; 2389 struct filename *name; 2390 struct file *swap_file = NULL; 2391 struct address_space *mapping; 2392 int prio; 2393 int error; 2394 union swap_header *swap_header; 2395 int nr_extents; 2396 sector_t span; 2397 unsigned long maxpages; 2398 unsigned char *swap_map = NULL; 2399 struct swap_cluster_info *cluster_info = NULL; 2400 unsigned long *frontswap_map = NULL; 2401 struct page *page = NULL; 2402 struct inode *inode = NULL; 2403 2404 if (swap_flags & ~SWAP_FLAGS_VALID) 2405 return -EINVAL; 2406 2407 if (!capable(CAP_SYS_ADMIN)) 2408 return -EPERM; 2409 2410 p = alloc_swap_info(); 2411 if (IS_ERR(p)) 2412 return PTR_ERR(p); 2413 2414 INIT_WORK(&p->discard_work, swap_discard_work); 2415 2416 name = getname(specialfile); 2417 if (IS_ERR(name)) { 2418 error = PTR_ERR(name); 2419 name = NULL; 2420 goto bad_swap; 2421 } 2422 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 2423 if (IS_ERR(swap_file)) { 2424 error = PTR_ERR(swap_file); 2425 swap_file = NULL; 2426 goto bad_swap; 2427 } 2428 2429 p->swap_file = swap_file; 2430 mapping = swap_file->f_mapping; 2431 inode = mapping->host; 2432 2433 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */ 2434 error = claim_swapfile(p, inode); 2435 if (unlikely(error)) 2436 goto bad_swap; 2437 2438 /* 2439 * Read the swap header. 2440 */ 2441 if (!mapping->a_ops->readpage) { 2442 error = -EINVAL; 2443 goto bad_swap; 2444 } 2445 page = read_mapping_page(mapping, 0, swap_file); 2446 if (IS_ERR(page)) { 2447 error = PTR_ERR(page); 2448 goto bad_swap; 2449 } 2450 swap_header = kmap(page); 2451 2452 maxpages = read_swap_header(p, swap_header, inode); 2453 if (unlikely(!maxpages)) { 2454 error = -EINVAL; 2455 goto bad_swap; 2456 } 2457 2458 /* OK, set up the swap map and apply the bad block list */ 2459 swap_map = vzalloc(maxpages); 2460 if (!swap_map) { 2461 error = -ENOMEM; 2462 goto bad_swap; 2463 } 2464 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) { 2465 int cpu; 2466 2467 p->flags |= SWP_SOLIDSTATE; 2468 /* 2469 * select a random position to start with to help wear leveling 2470 * SSD 2471 */ 2472 p->cluster_next = 1 + (prandom_u32() % p->highest_bit); 2473 2474 cluster_info = vzalloc(DIV_ROUND_UP(maxpages, 2475 SWAPFILE_CLUSTER) * sizeof(*cluster_info)); 2476 if (!cluster_info) { 2477 error = -ENOMEM; 2478 goto bad_swap; 2479 } 2480 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 2481 if (!p->percpu_cluster) { 2482 error = -ENOMEM; 2483 goto bad_swap; 2484 } 2485 for_each_possible_cpu(cpu) { 2486 struct percpu_cluster *cluster; 2487 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 2488 cluster_set_null(&cluster->index); 2489 } 2490 } 2491 2492 error = swap_cgroup_swapon(p->type, maxpages); 2493 if (error) 2494 goto bad_swap; 2495 2496 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 2497 cluster_info, maxpages, &span); 2498 if (unlikely(nr_extents < 0)) { 2499 error = nr_extents; 2500 goto bad_swap; 2501 } 2502 /* frontswap enabled? set up bit-per-page map for frontswap */ 2503 if (frontswap_enabled) 2504 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long)); 2505 2506 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) { 2507 /* 2508 * When discard is enabled for swap with no particular 2509 * policy flagged, we set all swap discard flags here in 2510 * order to sustain backward compatibility with older 2511 * swapon(8) releases. 2512 */ 2513 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 2514 SWP_PAGE_DISCARD); 2515 2516 /* 2517 * By flagging sys_swapon, a sysadmin can tell us to 2518 * either do single-time area discards only, or to just 2519 * perform discards for released swap page-clusters. 2520 * Now it's time to adjust the p->flags accordingly. 2521 */ 2522 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 2523 p->flags &= ~SWP_PAGE_DISCARD; 2524 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 2525 p->flags &= ~SWP_AREA_DISCARD; 2526 2527 /* issue a swapon-time discard if it's still required */ 2528 if (p->flags & SWP_AREA_DISCARD) { 2529 int err = discard_swap(p); 2530 if (unlikely(err)) 2531 pr_err("swapon: discard_swap(%p): %d\n", 2532 p, err); 2533 } 2534 } 2535 2536 mutex_lock(&swapon_mutex); 2537 prio = -1; 2538 if (swap_flags & SWAP_FLAG_PREFER) 2539 prio = 2540 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 2541 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 2542 2543 pr_info("Adding %uk swap on %s. " 2544 "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 2545 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 2546 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 2547 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 2548 (p->flags & SWP_DISCARDABLE) ? "D" : "", 2549 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 2550 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 2551 (frontswap_map) ? "FS" : ""); 2552 2553 mutex_unlock(&swapon_mutex); 2554 atomic_inc(&proc_poll_event); 2555 wake_up_interruptible(&proc_poll_wait); 2556 2557 if (S_ISREG(inode->i_mode)) 2558 inode->i_flags |= S_SWAPFILE; 2559 error = 0; 2560 goto out; 2561 bad_swap: 2562 free_percpu(p->percpu_cluster); 2563 p->percpu_cluster = NULL; 2564 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 2565 set_blocksize(p->bdev, p->old_block_size); 2566 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2567 } 2568 destroy_swap_extents(p); 2569 swap_cgroup_swapoff(p->type); 2570 spin_lock(&swap_lock); 2571 p->swap_file = NULL; 2572 p->flags = 0; 2573 spin_unlock(&swap_lock); 2574 vfree(swap_map); 2575 vfree(cluster_info); 2576 if (swap_file) { 2577 if (inode && S_ISREG(inode->i_mode)) { 2578 mutex_unlock(&inode->i_mutex); 2579 inode = NULL; 2580 } 2581 filp_close(swap_file, NULL); 2582 } 2583 out: 2584 if (page && !IS_ERR(page)) { 2585 kunmap(page); 2586 page_cache_release(page); 2587 } 2588 if (name) 2589 putname(name); 2590 if (inode && S_ISREG(inode->i_mode)) 2591 mutex_unlock(&inode->i_mutex); 2592 return error; 2593 } 2594 2595 void si_swapinfo(struct sysinfo *val) 2596 { 2597 unsigned int type; 2598 unsigned long nr_to_be_unused = 0; 2599 2600 spin_lock(&swap_lock); 2601 for (type = 0; type < nr_swapfiles; type++) { 2602 struct swap_info_struct *si = swap_info[type]; 2603 2604 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 2605 nr_to_be_unused += si->inuse_pages; 2606 } 2607 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 2608 val->totalswap = total_swap_pages + nr_to_be_unused; 2609 spin_unlock(&swap_lock); 2610 } 2611 2612 /* 2613 * Verify that a swap entry is valid and increment its swap map count. 2614 * 2615 * Returns error code in following case. 2616 * - success -> 0 2617 * - swp_entry is invalid -> EINVAL 2618 * - swp_entry is migration entry -> EINVAL 2619 * - swap-cache reference is requested but there is already one. -> EEXIST 2620 * - swap-cache reference is requested but the entry is not used. -> ENOENT 2621 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 2622 */ 2623 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 2624 { 2625 struct swap_info_struct *p; 2626 unsigned long offset, type; 2627 unsigned char count; 2628 unsigned char has_cache; 2629 int err = -EINVAL; 2630 2631 if (non_swap_entry(entry)) 2632 goto out; 2633 2634 type = swp_type(entry); 2635 if (type >= nr_swapfiles) 2636 goto bad_file; 2637 p = swap_info[type]; 2638 offset = swp_offset(entry); 2639 2640 spin_lock(&p->lock); 2641 if (unlikely(offset >= p->max)) 2642 goto unlock_out; 2643 2644 count = p->swap_map[offset]; 2645 2646 /* 2647 * swapin_readahead() doesn't check if a swap entry is valid, so the 2648 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 2649 */ 2650 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 2651 err = -ENOENT; 2652 goto unlock_out; 2653 } 2654 2655 has_cache = count & SWAP_HAS_CACHE; 2656 count &= ~SWAP_HAS_CACHE; 2657 err = 0; 2658 2659 if (usage == SWAP_HAS_CACHE) { 2660 2661 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 2662 if (!has_cache && count) 2663 has_cache = SWAP_HAS_CACHE; 2664 else if (has_cache) /* someone else added cache */ 2665 err = -EEXIST; 2666 else /* no users remaining */ 2667 err = -ENOENT; 2668 2669 } else if (count || has_cache) { 2670 2671 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 2672 count += usage; 2673 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 2674 err = -EINVAL; 2675 else if (swap_count_continued(p, offset, count)) 2676 count = COUNT_CONTINUED; 2677 else 2678 err = -ENOMEM; 2679 } else 2680 err = -ENOENT; /* unused swap entry */ 2681 2682 p->swap_map[offset] = count | has_cache; 2683 2684 unlock_out: 2685 spin_unlock(&p->lock); 2686 out: 2687 return err; 2688 2689 bad_file: 2690 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val); 2691 goto out; 2692 } 2693 2694 /* 2695 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 2696 * (in which case its reference count is never incremented). 2697 */ 2698 void swap_shmem_alloc(swp_entry_t entry) 2699 { 2700 __swap_duplicate(entry, SWAP_MAP_SHMEM); 2701 } 2702 2703 /* 2704 * Increase reference count of swap entry by 1. 2705 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 2706 * but could not be atomically allocated. Returns 0, just as if it succeeded, 2707 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 2708 * might occur if a page table entry has got corrupted. 2709 */ 2710 int swap_duplicate(swp_entry_t entry) 2711 { 2712 int err = 0; 2713 2714 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 2715 err = add_swap_count_continuation(entry, GFP_ATOMIC); 2716 return err; 2717 } 2718 2719 /* 2720 * @entry: swap entry for which we allocate swap cache. 2721 * 2722 * Called when allocating swap cache for existing swap entry, 2723 * This can return error codes. Returns 0 at success. 2724 * -EBUSY means there is a swap cache. 2725 * Note: return code is different from swap_duplicate(). 2726 */ 2727 int swapcache_prepare(swp_entry_t entry) 2728 { 2729 return __swap_duplicate(entry, SWAP_HAS_CACHE); 2730 } 2731 2732 struct swap_info_struct *page_swap_info(struct page *page) 2733 { 2734 swp_entry_t swap = { .val = page_private(page) }; 2735 BUG_ON(!PageSwapCache(page)); 2736 return swap_info[swp_type(swap)]; 2737 } 2738 2739 /* 2740 * out-of-line __page_file_ methods to avoid include hell. 2741 */ 2742 struct address_space *__page_file_mapping(struct page *page) 2743 { 2744 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 2745 return page_swap_info(page)->swap_file->f_mapping; 2746 } 2747 EXPORT_SYMBOL_GPL(__page_file_mapping); 2748 2749 pgoff_t __page_file_index(struct page *page) 2750 { 2751 swp_entry_t swap = { .val = page_private(page) }; 2752 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 2753 return swp_offset(swap); 2754 } 2755 EXPORT_SYMBOL_GPL(__page_file_index); 2756 2757 /* 2758 * add_swap_count_continuation - called when a swap count is duplicated 2759 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 2760 * page of the original vmalloc'ed swap_map, to hold the continuation count 2761 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 2762 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 2763 * 2764 * These continuation pages are seldom referenced: the common paths all work 2765 * on the original swap_map, only referring to a continuation page when the 2766 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 2767 * 2768 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 2769 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 2770 * can be called after dropping locks. 2771 */ 2772 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 2773 { 2774 struct swap_info_struct *si; 2775 struct page *head; 2776 struct page *page; 2777 struct page *list_page; 2778 pgoff_t offset; 2779 unsigned char count; 2780 2781 /* 2782 * When debugging, it's easier to use __GFP_ZERO here; but it's better 2783 * for latency not to zero a page while GFP_ATOMIC and holding locks. 2784 */ 2785 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 2786 2787 si = swap_info_get(entry); 2788 if (!si) { 2789 /* 2790 * An acceptable race has occurred since the failing 2791 * __swap_duplicate(): the swap entry has been freed, 2792 * perhaps even the whole swap_map cleared for swapoff. 2793 */ 2794 goto outer; 2795 } 2796 2797 offset = swp_offset(entry); 2798 count = si->swap_map[offset] & ~SWAP_HAS_CACHE; 2799 2800 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 2801 /* 2802 * The higher the swap count, the more likely it is that tasks 2803 * will race to add swap count continuation: we need to avoid 2804 * over-provisioning. 2805 */ 2806 goto out; 2807 } 2808 2809 if (!page) { 2810 spin_unlock(&si->lock); 2811 return -ENOMEM; 2812 } 2813 2814 /* 2815 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 2816 * no architecture is using highmem pages for kernel page tables: so it 2817 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 2818 */ 2819 head = vmalloc_to_page(si->swap_map + offset); 2820 offset &= ~PAGE_MASK; 2821 2822 /* 2823 * Page allocation does not initialize the page's lru field, 2824 * but it does always reset its private field. 2825 */ 2826 if (!page_private(head)) { 2827 BUG_ON(count & COUNT_CONTINUED); 2828 INIT_LIST_HEAD(&head->lru); 2829 set_page_private(head, SWP_CONTINUED); 2830 si->flags |= SWP_CONTINUED; 2831 } 2832 2833 list_for_each_entry(list_page, &head->lru, lru) { 2834 unsigned char *map; 2835 2836 /* 2837 * If the previous map said no continuation, but we've found 2838 * a continuation page, free our allocation and use this one. 2839 */ 2840 if (!(count & COUNT_CONTINUED)) 2841 goto out; 2842 2843 map = kmap_atomic(list_page) + offset; 2844 count = *map; 2845 kunmap_atomic(map); 2846 2847 /* 2848 * If this continuation count now has some space in it, 2849 * free our allocation and use this one. 2850 */ 2851 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 2852 goto out; 2853 } 2854 2855 list_add_tail(&page->lru, &head->lru); 2856 page = NULL; /* now it's attached, don't free it */ 2857 out: 2858 spin_unlock(&si->lock); 2859 outer: 2860 if (page) 2861 __free_page(page); 2862 return 0; 2863 } 2864 2865 /* 2866 * swap_count_continued - when the original swap_map count is incremented 2867 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 2868 * into, carry if so, or else fail until a new continuation page is allocated; 2869 * when the original swap_map count is decremented from 0 with continuation, 2870 * borrow from the continuation and report whether it still holds more. 2871 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock. 2872 */ 2873 static bool swap_count_continued(struct swap_info_struct *si, 2874 pgoff_t offset, unsigned char count) 2875 { 2876 struct page *head; 2877 struct page *page; 2878 unsigned char *map; 2879 2880 head = vmalloc_to_page(si->swap_map + offset); 2881 if (page_private(head) != SWP_CONTINUED) { 2882 BUG_ON(count & COUNT_CONTINUED); 2883 return false; /* need to add count continuation */ 2884 } 2885 2886 offset &= ~PAGE_MASK; 2887 page = list_entry(head->lru.next, struct page, lru); 2888 map = kmap_atomic(page) + offset; 2889 2890 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 2891 goto init_map; /* jump over SWAP_CONT_MAX checks */ 2892 2893 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 2894 /* 2895 * Think of how you add 1 to 999 2896 */ 2897 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 2898 kunmap_atomic(map); 2899 page = list_entry(page->lru.next, struct page, lru); 2900 BUG_ON(page == head); 2901 map = kmap_atomic(page) + offset; 2902 } 2903 if (*map == SWAP_CONT_MAX) { 2904 kunmap_atomic(map); 2905 page = list_entry(page->lru.next, struct page, lru); 2906 if (page == head) 2907 return false; /* add count continuation */ 2908 map = kmap_atomic(page) + offset; 2909 init_map: *map = 0; /* we didn't zero the page */ 2910 } 2911 *map += 1; 2912 kunmap_atomic(map); 2913 page = list_entry(page->lru.prev, struct page, lru); 2914 while (page != head) { 2915 map = kmap_atomic(page) + offset; 2916 *map = COUNT_CONTINUED; 2917 kunmap_atomic(map); 2918 page = list_entry(page->lru.prev, struct page, lru); 2919 } 2920 return true; /* incremented */ 2921 2922 } else { /* decrementing */ 2923 /* 2924 * Think of how you subtract 1 from 1000 2925 */ 2926 BUG_ON(count != COUNT_CONTINUED); 2927 while (*map == COUNT_CONTINUED) { 2928 kunmap_atomic(map); 2929 page = list_entry(page->lru.next, struct page, lru); 2930 BUG_ON(page == head); 2931 map = kmap_atomic(page) + offset; 2932 } 2933 BUG_ON(*map == 0); 2934 *map -= 1; 2935 if (*map == 0) 2936 count = 0; 2937 kunmap_atomic(map); 2938 page = list_entry(page->lru.prev, struct page, lru); 2939 while (page != head) { 2940 map = kmap_atomic(page) + offset; 2941 *map = SWAP_CONT_MAX | count; 2942 count = COUNT_CONTINUED; 2943 kunmap_atomic(map); 2944 page = list_entry(page->lru.prev, struct page, lru); 2945 } 2946 return count == COUNT_CONTINUED; 2947 } 2948 } 2949 2950 /* 2951 * free_swap_count_continuations - swapoff free all the continuation pages 2952 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 2953 */ 2954 static void free_swap_count_continuations(struct swap_info_struct *si) 2955 { 2956 pgoff_t offset; 2957 2958 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 2959 struct page *head; 2960 head = vmalloc_to_page(si->swap_map + offset); 2961 if (page_private(head)) { 2962 struct list_head *this, *next; 2963 list_for_each_safe(this, next, &head->lru) { 2964 struct page *page; 2965 page = list_entry(this, struct page, lru); 2966 list_del(this); 2967 __free_page(page); 2968 } 2969 } 2970 } 2971 } 2972