xref: /openbmc/linux/mm/swapfile.c (revision 0d456bad)
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37 
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/page_cgroup.h>
42 
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 				 unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47 
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 long nr_swap_pages;
51 long total_swap_pages;
52 static int least_priority;
53 
54 static const char Bad_file[] = "Bad swap file entry ";
55 static const char Unused_file[] = "Unused swap file entry ";
56 static const char Bad_offset[] = "Bad swap offset entry ";
57 static const char Unused_offset[] = "Unused swap offset entry ";
58 
59 struct swap_list_t swap_list = {-1, -1};
60 
61 struct swap_info_struct *swap_info[MAX_SWAPFILES];
62 
63 static DEFINE_MUTEX(swapon_mutex);
64 
65 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
66 /* Activity counter to indicate that a swapon or swapoff has occurred */
67 static atomic_t proc_poll_event = ATOMIC_INIT(0);
68 
69 static inline unsigned char swap_count(unsigned char ent)
70 {
71 	return ent & ~SWAP_HAS_CACHE;	/* may include SWAP_HAS_CONT flag */
72 }
73 
74 /* returns 1 if swap entry is freed */
75 static int
76 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
77 {
78 	swp_entry_t entry = swp_entry(si->type, offset);
79 	struct page *page;
80 	int ret = 0;
81 
82 	page = find_get_page(&swapper_space, entry.val);
83 	if (!page)
84 		return 0;
85 	/*
86 	 * This function is called from scan_swap_map() and it's called
87 	 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
88 	 * We have to use trylock for avoiding deadlock. This is a special
89 	 * case and you should use try_to_free_swap() with explicit lock_page()
90 	 * in usual operations.
91 	 */
92 	if (trylock_page(page)) {
93 		ret = try_to_free_swap(page);
94 		unlock_page(page);
95 	}
96 	page_cache_release(page);
97 	return ret;
98 }
99 
100 /*
101  * swapon tell device that all the old swap contents can be discarded,
102  * to allow the swap device to optimize its wear-levelling.
103  */
104 static int discard_swap(struct swap_info_struct *si)
105 {
106 	struct swap_extent *se;
107 	sector_t start_block;
108 	sector_t nr_blocks;
109 	int err = 0;
110 
111 	/* Do not discard the swap header page! */
112 	se = &si->first_swap_extent;
113 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
114 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
115 	if (nr_blocks) {
116 		err = blkdev_issue_discard(si->bdev, start_block,
117 				nr_blocks, GFP_KERNEL, 0);
118 		if (err)
119 			return err;
120 		cond_resched();
121 	}
122 
123 	list_for_each_entry(se, &si->first_swap_extent.list, list) {
124 		start_block = se->start_block << (PAGE_SHIFT - 9);
125 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
126 
127 		err = blkdev_issue_discard(si->bdev, start_block,
128 				nr_blocks, GFP_KERNEL, 0);
129 		if (err)
130 			break;
131 
132 		cond_resched();
133 	}
134 	return err;		/* That will often be -EOPNOTSUPP */
135 }
136 
137 /*
138  * swap allocation tell device that a cluster of swap can now be discarded,
139  * to allow the swap device to optimize its wear-levelling.
140  */
141 static void discard_swap_cluster(struct swap_info_struct *si,
142 				 pgoff_t start_page, pgoff_t nr_pages)
143 {
144 	struct swap_extent *se = si->curr_swap_extent;
145 	int found_extent = 0;
146 
147 	while (nr_pages) {
148 		struct list_head *lh;
149 
150 		if (se->start_page <= start_page &&
151 		    start_page < se->start_page + se->nr_pages) {
152 			pgoff_t offset = start_page - se->start_page;
153 			sector_t start_block = se->start_block + offset;
154 			sector_t nr_blocks = se->nr_pages - offset;
155 
156 			if (nr_blocks > nr_pages)
157 				nr_blocks = nr_pages;
158 			start_page += nr_blocks;
159 			nr_pages -= nr_blocks;
160 
161 			if (!found_extent++)
162 				si->curr_swap_extent = se;
163 
164 			start_block <<= PAGE_SHIFT - 9;
165 			nr_blocks <<= PAGE_SHIFT - 9;
166 			if (blkdev_issue_discard(si->bdev, start_block,
167 				    nr_blocks, GFP_NOIO, 0))
168 				break;
169 		}
170 
171 		lh = se->list.next;
172 		se = list_entry(lh, struct swap_extent, list);
173 	}
174 }
175 
176 static int wait_for_discard(void *word)
177 {
178 	schedule();
179 	return 0;
180 }
181 
182 #define SWAPFILE_CLUSTER	256
183 #define LATENCY_LIMIT		256
184 
185 static unsigned long scan_swap_map(struct swap_info_struct *si,
186 				   unsigned char usage)
187 {
188 	unsigned long offset;
189 	unsigned long scan_base;
190 	unsigned long last_in_cluster = 0;
191 	int latency_ration = LATENCY_LIMIT;
192 	int found_free_cluster = 0;
193 
194 	/*
195 	 * We try to cluster swap pages by allocating them sequentially
196 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
197 	 * way, however, we resort to first-free allocation, starting
198 	 * a new cluster.  This prevents us from scattering swap pages
199 	 * all over the entire swap partition, so that we reduce
200 	 * overall disk seek times between swap pages.  -- sct
201 	 * But we do now try to find an empty cluster.  -Andrea
202 	 * And we let swap pages go all over an SSD partition.  Hugh
203 	 */
204 
205 	si->flags += SWP_SCANNING;
206 	scan_base = offset = si->cluster_next;
207 
208 	if (unlikely(!si->cluster_nr--)) {
209 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
210 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
211 			goto checks;
212 		}
213 		if (si->flags & SWP_DISCARDABLE) {
214 			/*
215 			 * Start range check on racing allocations, in case
216 			 * they overlap the cluster we eventually decide on
217 			 * (we scan without swap_lock to allow preemption).
218 			 * It's hardly conceivable that cluster_nr could be
219 			 * wrapped during our scan, but don't depend on it.
220 			 */
221 			if (si->lowest_alloc)
222 				goto checks;
223 			si->lowest_alloc = si->max;
224 			si->highest_alloc = 0;
225 		}
226 		spin_unlock(&swap_lock);
227 
228 		/*
229 		 * If seek is expensive, start searching for new cluster from
230 		 * start of partition, to minimize the span of allocated swap.
231 		 * But if seek is cheap, search from our current position, so
232 		 * that swap is allocated from all over the partition: if the
233 		 * Flash Translation Layer only remaps within limited zones,
234 		 * we don't want to wear out the first zone too quickly.
235 		 */
236 		if (!(si->flags & SWP_SOLIDSTATE))
237 			scan_base = offset = si->lowest_bit;
238 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
239 
240 		/* Locate the first empty (unaligned) cluster */
241 		for (; last_in_cluster <= si->highest_bit; offset++) {
242 			if (si->swap_map[offset])
243 				last_in_cluster = offset + SWAPFILE_CLUSTER;
244 			else if (offset == last_in_cluster) {
245 				spin_lock(&swap_lock);
246 				offset -= SWAPFILE_CLUSTER - 1;
247 				si->cluster_next = offset;
248 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
249 				found_free_cluster = 1;
250 				goto checks;
251 			}
252 			if (unlikely(--latency_ration < 0)) {
253 				cond_resched();
254 				latency_ration = LATENCY_LIMIT;
255 			}
256 		}
257 
258 		offset = si->lowest_bit;
259 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
260 
261 		/* Locate the first empty (unaligned) cluster */
262 		for (; last_in_cluster < scan_base; offset++) {
263 			if (si->swap_map[offset])
264 				last_in_cluster = offset + SWAPFILE_CLUSTER;
265 			else if (offset == last_in_cluster) {
266 				spin_lock(&swap_lock);
267 				offset -= SWAPFILE_CLUSTER - 1;
268 				si->cluster_next = offset;
269 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
270 				found_free_cluster = 1;
271 				goto checks;
272 			}
273 			if (unlikely(--latency_ration < 0)) {
274 				cond_resched();
275 				latency_ration = LATENCY_LIMIT;
276 			}
277 		}
278 
279 		offset = scan_base;
280 		spin_lock(&swap_lock);
281 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
282 		si->lowest_alloc = 0;
283 	}
284 
285 checks:
286 	if (!(si->flags & SWP_WRITEOK))
287 		goto no_page;
288 	if (!si->highest_bit)
289 		goto no_page;
290 	if (offset > si->highest_bit)
291 		scan_base = offset = si->lowest_bit;
292 
293 	/* reuse swap entry of cache-only swap if not busy. */
294 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
295 		int swap_was_freed;
296 		spin_unlock(&swap_lock);
297 		swap_was_freed = __try_to_reclaim_swap(si, offset);
298 		spin_lock(&swap_lock);
299 		/* entry was freed successfully, try to use this again */
300 		if (swap_was_freed)
301 			goto checks;
302 		goto scan; /* check next one */
303 	}
304 
305 	if (si->swap_map[offset])
306 		goto scan;
307 
308 	if (offset == si->lowest_bit)
309 		si->lowest_bit++;
310 	if (offset == si->highest_bit)
311 		si->highest_bit--;
312 	si->inuse_pages++;
313 	if (si->inuse_pages == si->pages) {
314 		si->lowest_bit = si->max;
315 		si->highest_bit = 0;
316 	}
317 	si->swap_map[offset] = usage;
318 	si->cluster_next = offset + 1;
319 	si->flags -= SWP_SCANNING;
320 
321 	if (si->lowest_alloc) {
322 		/*
323 		 * Only set when SWP_DISCARDABLE, and there's a scan
324 		 * for a free cluster in progress or just completed.
325 		 */
326 		if (found_free_cluster) {
327 			/*
328 			 * To optimize wear-levelling, discard the
329 			 * old data of the cluster, taking care not to
330 			 * discard any of its pages that have already
331 			 * been allocated by racing tasks (offset has
332 			 * already stepped over any at the beginning).
333 			 */
334 			if (offset < si->highest_alloc &&
335 			    si->lowest_alloc <= last_in_cluster)
336 				last_in_cluster = si->lowest_alloc - 1;
337 			si->flags |= SWP_DISCARDING;
338 			spin_unlock(&swap_lock);
339 
340 			if (offset < last_in_cluster)
341 				discard_swap_cluster(si, offset,
342 					last_in_cluster - offset + 1);
343 
344 			spin_lock(&swap_lock);
345 			si->lowest_alloc = 0;
346 			si->flags &= ~SWP_DISCARDING;
347 
348 			smp_mb();	/* wake_up_bit advises this */
349 			wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
350 
351 		} else if (si->flags & SWP_DISCARDING) {
352 			/*
353 			 * Delay using pages allocated by racing tasks
354 			 * until the whole discard has been issued. We
355 			 * could defer that delay until swap_writepage,
356 			 * but it's easier to keep this self-contained.
357 			 */
358 			spin_unlock(&swap_lock);
359 			wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
360 				wait_for_discard, TASK_UNINTERRUPTIBLE);
361 			spin_lock(&swap_lock);
362 		} else {
363 			/*
364 			 * Note pages allocated by racing tasks while
365 			 * scan for a free cluster is in progress, so
366 			 * that its final discard can exclude them.
367 			 */
368 			if (offset < si->lowest_alloc)
369 				si->lowest_alloc = offset;
370 			if (offset > si->highest_alloc)
371 				si->highest_alloc = offset;
372 		}
373 	}
374 	return offset;
375 
376 scan:
377 	spin_unlock(&swap_lock);
378 	while (++offset <= si->highest_bit) {
379 		if (!si->swap_map[offset]) {
380 			spin_lock(&swap_lock);
381 			goto checks;
382 		}
383 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
384 			spin_lock(&swap_lock);
385 			goto checks;
386 		}
387 		if (unlikely(--latency_ration < 0)) {
388 			cond_resched();
389 			latency_ration = LATENCY_LIMIT;
390 		}
391 	}
392 	offset = si->lowest_bit;
393 	while (++offset < scan_base) {
394 		if (!si->swap_map[offset]) {
395 			spin_lock(&swap_lock);
396 			goto checks;
397 		}
398 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
399 			spin_lock(&swap_lock);
400 			goto checks;
401 		}
402 		if (unlikely(--latency_ration < 0)) {
403 			cond_resched();
404 			latency_ration = LATENCY_LIMIT;
405 		}
406 	}
407 	spin_lock(&swap_lock);
408 
409 no_page:
410 	si->flags -= SWP_SCANNING;
411 	return 0;
412 }
413 
414 swp_entry_t get_swap_page(void)
415 {
416 	struct swap_info_struct *si;
417 	pgoff_t offset;
418 	int type, next;
419 	int wrapped = 0;
420 
421 	spin_lock(&swap_lock);
422 	if (nr_swap_pages <= 0)
423 		goto noswap;
424 	nr_swap_pages--;
425 
426 	for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
427 		si = swap_info[type];
428 		next = si->next;
429 		if (next < 0 ||
430 		    (!wrapped && si->prio != swap_info[next]->prio)) {
431 			next = swap_list.head;
432 			wrapped++;
433 		}
434 
435 		if (!si->highest_bit)
436 			continue;
437 		if (!(si->flags & SWP_WRITEOK))
438 			continue;
439 
440 		swap_list.next = next;
441 		/* This is called for allocating swap entry for cache */
442 		offset = scan_swap_map(si, SWAP_HAS_CACHE);
443 		if (offset) {
444 			spin_unlock(&swap_lock);
445 			return swp_entry(type, offset);
446 		}
447 		next = swap_list.next;
448 	}
449 
450 	nr_swap_pages++;
451 noswap:
452 	spin_unlock(&swap_lock);
453 	return (swp_entry_t) {0};
454 }
455 
456 /* The only caller of this function is now susupend routine */
457 swp_entry_t get_swap_page_of_type(int type)
458 {
459 	struct swap_info_struct *si;
460 	pgoff_t offset;
461 
462 	spin_lock(&swap_lock);
463 	si = swap_info[type];
464 	if (si && (si->flags & SWP_WRITEOK)) {
465 		nr_swap_pages--;
466 		/* This is called for allocating swap entry, not cache */
467 		offset = scan_swap_map(si, 1);
468 		if (offset) {
469 			spin_unlock(&swap_lock);
470 			return swp_entry(type, offset);
471 		}
472 		nr_swap_pages++;
473 	}
474 	spin_unlock(&swap_lock);
475 	return (swp_entry_t) {0};
476 }
477 
478 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
479 {
480 	struct swap_info_struct *p;
481 	unsigned long offset, type;
482 
483 	if (!entry.val)
484 		goto out;
485 	type = swp_type(entry);
486 	if (type >= nr_swapfiles)
487 		goto bad_nofile;
488 	p = swap_info[type];
489 	if (!(p->flags & SWP_USED))
490 		goto bad_device;
491 	offset = swp_offset(entry);
492 	if (offset >= p->max)
493 		goto bad_offset;
494 	if (!p->swap_map[offset])
495 		goto bad_free;
496 	spin_lock(&swap_lock);
497 	return p;
498 
499 bad_free:
500 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
501 	goto out;
502 bad_offset:
503 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
504 	goto out;
505 bad_device:
506 	printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
507 	goto out;
508 bad_nofile:
509 	printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
510 out:
511 	return NULL;
512 }
513 
514 static unsigned char swap_entry_free(struct swap_info_struct *p,
515 				     swp_entry_t entry, unsigned char usage)
516 {
517 	unsigned long offset = swp_offset(entry);
518 	unsigned char count;
519 	unsigned char has_cache;
520 
521 	count = p->swap_map[offset];
522 	has_cache = count & SWAP_HAS_CACHE;
523 	count &= ~SWAP_HAS_CACHE;
524 
525 	if (usage == SWAP_HAS_CACHE) {
526 		VM_BUG_ON(!has_cache);
527 		has_cache = 0;
528 	} else if (count == SWAP_MAP_SHMEM) {
529 		/*
530 		 * Or we could insist on shmem.c using a special
531 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
532 		 */
533 		count = 0;
534 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
535 		if (count == COUNT_CONTINUED) {
536 			if (swap_count_continued(p, offset, count))
537 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
538 			else
539 				count = SWAP_MAP_MAX;
540 		} else
541 			count--;
542 	}
543 
544 	if (!count)
545 		mem_cgroup_uncharge_swap(entry);
546 
547 	usage = count | has_cache;
548 	p->swap_map[offset] = usage;
549 
550 	/* free if no reference */
551 	if (!usage) {
552 		if (offset < p->lowest_bit)
553 			p->lowest_bit = offset;
554 		if (offset > p->highest_bit)
555 			p->highest_bit = offset;
556 		if (swap_list.next >= 0 &&
557 		    p->prio > swap_info[swap_list.next]->prio)
558 			swap_list.next = p->type;
559 		nr_swap_pages++;
560 		p->inuse_pages--;
561 		frontswap_invalidate_page(p->type, offset);
562 		if (p->flags & SWP_BLKDEV) {
563 			struct gendisk *disk = p->bdev->bd_disk;
564 			if (disk->fops->swap_slot_free_notify)
565 				disk->fops->swap_slot_free_notify(p->bdev,
566 								  offset);
567 		}
568 	}
569 
570 	return usage;
571 }
572 
573 /*
574  * Caller has made sure that the swapdevice corresponding to entry
575  * is still around or has not been recycled.
576  */
577 void swap_free(swp_entry_t entry)
578 {
579 	struct swap_info_struct *p;
580 
581 	p = swap_info_get(entry);
582 	if (p) {
583 		swap_entry_free(p, entry, 1);
584 		spin_unlock(&swap_lock);
585 	}
586 }
587 
588 /*
589  * Called after dropping swapcache to decrease refcnt to swap entries.
590  */
591 void swapcache_free(swp_entry_t entry, struct page *page)
592 {
593 	struct swap_info_struct *p;
594 	unsigned char count;
595 
596 	p = swap_info_get(entry);
597 	if (p) {
598 		count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
599 		if (page)
600 			mem_cgroup_uncharge_swapcache(page, entry, count != 0);
601 		spin_unlock(&swap_lock);
602 	}
603 }
604 
605 /*
606  * How many references to page are currently swapped out?
607  * This does not give an exact answer when swap count is continued,
608  * but does include the high COUNT_CONTINUED flag to allow for that.
609  */
610 int page_swapcount(struct page *page)
611 {
612 	int count = 0;
613 	struct swap_info_struct *p;
614 	swp_entry_t entry;
615 
616 	entry.val = page_private(page);
617 	p = swap_info_get(entry);
618 	if (p) {
619 		count = swap_count(p->swap_map[swp_offset(entry)]);
620 		spin_unlock(&swap_lock);
621 	}
622 	return count;
623 }
624 
625 /*
626  * We can write to an anon page without COW if there are no other references
627  * to it.  And as a side-effect, free up its swap: because the old content
628  * on disk will never be read, and seeking back there to write new content
629  * later would only waste time away from clustering.
630  */
631 int reuse_swap_page(struct page *page)
632 {
633 	int count;
634 
635 	VM_BUG_ON(!PageLocked(page));
636 	if (unlikely(PageKsm(page)))
637 		return 0;
638 	count = page_mapcount(page);
639 	if (count <= 1 && PageSwapCache(page)) {
640 		count += page_swapcount(page);
641 		if (count == 1 && !PageWriteback(page)) {
642 			delete_from_swap_cache(page);
643 			SetPageDirty(page);
644 		}
645 	}
646 	return count <= 1;
647 }
648 
649 /*
650  * If swap is getting full, or if there are no more mappings of this page,
651  * then try_to_free_swap is called to free its swap space.
652  */
653 int try_to_free_swap(struct page *page)
654 {
655 	VM_BUG_ON(!PageLocked(page));
656 
657 	if (!PageSwapCache(page))
658 		return 0;
659 	if (PageWriteback(page))
660 		return 0;
661 	if (page_swapcount(page))
662 		return 0;
663 
664 	/*
665 	 * Once hibernation has begun to create its image of memory,
666 	 * there's a danger that one of the calls to try_to_free_swap()
667 	 * - most probably a call from __try_to_reclaim_swap() while
668 	 * hibernation is allocating its own swap pages for the image,
669 	 * but conceivably even a call from memory reclaim - will free
670 	 * the swap from a page which has already been recorded in the
671 	 * image as a clean swapcache page, and then reuse its swap for
672 	 * another page of the image.  On waking from hibernation, the
673 	 * original page might be freed under memory pressure, then
674 	 * later read back in from swap, now with the wrong data.
675 	 *
676 	 * Hibration suspends storage while it is writing the image
677 	 * to disk so check that here.
678 	 */
679 	if (pm_suspended_storage())
680 		return 0;
681 
682 	delete_from_swap_cache(page);
683 	SetPageDirty(page);
684 	return 1;
685 }
686 
687 /*
688  * Free the swap entry like above, but also try to
689  * free the page cache entry if it is the last user.
690  */
691 int free_swap_and_cache(swp_entry_t entry)
692 {
693 	struct swap_info_struct *p;
694 	struct page *page = NULL;
695 
696 	if (non_swap_entry(entry))
697 		return 1;
698 
699 	p = swap_info_get(entry);
700 	if (p) {
701 		if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
702 			page = find_get_page(&swapper_space, entry.val);
703 			if (page && !trylock_page(page)) {
704 				page_cache_release(page);
705 				page = NULL;
706 			}
707 		}
708 		spin_unlock(&swap_lock);
709 	}
710 	if (page) {
711 		/*
712 		 * Not mapped elsewhere, or swap space full? Free it!
713 		 * Also recheck PageSwapCache now page is locked (above).
714 		 */
715 		if (PageSwapCache(page) && !PageWriteback(page) &&
716 				(!page_mapped(page) || vm_swap_full())) {
717 			delete_from_swap_cache(page);
718 			SetPageDirty(page);
719 		}
720 		unlock_page(page);
721 		page_cache_release(page);
722 	}
723 	return p != NULL;
724 }
725 
726 #ifdef CONFIG_HIBERNATION
727 /*
728  * Find the swap type that corresponds to given device (if any).
729  *
730  * @offset - number of the PAGE_SIZE-sized block of the device, starting
731  * from 0, in which the swap header is expected to be located.
732  *
733  * This is needed for the suspend to disk (aka swsusp).
734  */
735 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
736 {
737 	struct block_device *bdev = NULL;
738 	int type;
739 
740 	if (device)
741 		bdev = bdget(device);
742 
743 	spin_lock(&swap_lock);
744 	for (type = 0; type < nr_swapfiles; type++) {
745 		struct swap_info_struct *sis = swap_info[type];
746 
747 		if (!(sis->flags & SWP_WRITEOK))
748 			continue;
749 
750 		if (!bdev) {
751 			if (bdev_p)
752 				*bdev_p = bdgrab(sis->bdev);
753 
754 			spin_unlock(&swap_lock);
755 			return type;
756 		}
757 		if (bdev == sis->bdev) {
758 			struct swap_extent *se = &sis->first_swap_extent;
759 
760 			if (se->start_block == offset) {
761 				if (bdev_p)
762 					*bdev_p = bdgrab(sis->bdev);
763 
764 				spin_unlock(&swap_lock);
765 				bdput(bdev);
766 				return type;
767 			}
768 		}
769 	}
770 	spin_unlock(&swap_lock);
771 	if (bdev)
772 		bdput(bdev);
773 
774 	return -ENODEV;
775 }
776 
777 /*
778  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
779  * corresponding to given index in swap_info (swap type).
780  */
781 sector_t swapdev_block(int type, pgoff_t offset)
782 {
783 	struct block_device *bdev;
784 
785 	if ((unsigned int)type >= nr_swapfiles)
786 		return 0;
787 	if (!(swap_info[type]->flags & SWP_WRITEOK))
788 		return 0;
789 	return map_swap_entry(swp_entry(type, offset), &bdev);
790 }
791 
792 /*
793  * Return either the total number of swap pages of given type, or the number
794  * of free pages of that type (depending on @free)
795  *
796  * This is needed for software suspend
797  */
798 unsigned int count_swap_pages(int type, int free)
799 {
800 	unsigned int n = 0;
801 
802 	spin_lock(&swap_lock);
803 	if ((unsigned int)type < nr_swapfiles) {
804 		struct swap_info_struct *sis = swap_info[type];
805 
806 		if (sis->flags & SWP_WRITEOK) {
807 			n = sis->pages;
808 			if (free)
809 				n -= sis->inuse_pages;
810 		}
811 	}
812 	spin_unlock(&swap_lock);
813 	return n;
814 }
815 #endif /* CONFIG_HIBERNATION */
816 
817 /*
818  * No need to decide whether this PTE shares the swap entry with others,
819  * just let do_wp_page work it out if a write is requested later - to
820  * force COW, vm_page_prot omits write permission from any private vma.
821  */
822 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
823 		unsigned long addr, swp_entry_t entry, struct page *page)
824 {
825 	struct mem_cgroup *memcg;
826 	spinlock_t *ptl;
827 	pte_t *pte;
828 	int ret = 1;
829 
830 	if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
831 					 GFP_KERNEL, &memcg)) {
832 		ret = -ENOMEM;
833 		goto out_nolock;
834 	}
835 
836 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
837 	if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
838 		mem_cgroup_cancel_charge_swapin(memcg);
839 		ret = 0;
840 		goto out;
841 	}
842 
843 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
844 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
845 	get_page(page);
846 	set_pte_at(vma->vm_mm, addr, pte,
847 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
848 	page_add_anon_rmap(page, vma, addr);
849 	mem_cgroup_commit_charge_swapin(page, memcg);
850 	swap_free(entry);
851 	/*
852 	 * Move the page to the active list so it is not
853 	 * immediately swapped out again after swapon.
854 	 */
855 	activate_page(page);
856 out:
857 	pte_unmap_unlock(pte, ptl);
858 out_nolock:
859 	return ret;
860 }
861 
862 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
863 				unsigned long addr, unsigned long end,
864 				swp_entry_t entry, struct page *page)
865 {
866 	pte_t swp_pte = swp_entry_to_pte(entry);
867 	pte_t *pte;
868 	int ret = 0;
869 
870 	/*
871 	 * We don't actually need pte lock while scanning for swp_pte: since
872 	 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
873 	 * page table while we're scanning; though it could get zapped, and on
874 	 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
875 	 * of unmatched parts which look like swp_pte, so unuse_pte must
876 	 * recheck under pte lock.  Scanning without pte lock lets it be
877 	 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
878 	 */
879 	pte = pte_offset_map(pmd, addr);
880 	do {
881 		/*
882 		 * swapoff spends a _lot_ of time in this loop!
883 		 * Test inline before going to call unuse_pte.
884 		 */
885 		if (unlikely(pte_same(*pte, swp_pte))) {
886 			pte_unmap(pte);
887 			ret = unuse_pte(vma, pmd, addr, entry, page);
888 			if (ret)
889 				goto out;
890 			pte = pte_offset_map(pmd, addr);
891 		}
892 	} while (pte++, addr += PAGE_SIZE, addr != end);
893 	pte_unmap(pte - 1);
894 out:
895 	return ret;
896 }
897 
898 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
899 				unsigned long addr, unsigned long end,
900 				swp_entry_t entry, struct page *page)
901 {
902 	pmd_t *pmd;
903 	unsigned long next;
904 	int ret;
905 
906 	pmd = pmd_offset(pud, addr);
907 	do {
908 		next = pmd_addr_end(addr, end);
909 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
910 			continue;
911 		ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
912 		if (ret)
913 			return ret;
914 	} while (pmd++, addr = next, addr != end);
915 	return 0;
916 }
917 
918 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
919 				unsigned long addr, unsigned long end,
920 				swp_entry_t entry, struct page *page)
921 {
922 	pud_t *pud;
923 	unsigned long next;
924 	int ret;
925 
926 	pud = pud_offset(pgd, addr);
927 	do {
928 		next = pud_addr_end(addr, end);
929 		if (pud_none_or_clear_bad(pud))
930 			continue;
931 		ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
932 		if (ret)
933 			return ret;
934 	} while (pud++, addr = next, addr != end);
935 	return 0;
936 }
937 
938 static int unuse_vma(struct vm_area_struct *vma,
939 				swp_entry_t entry, struct page *page)
940 {
941 	pgd_t *pgd;
942 	unsigned long addr, end, next;
943 	int ret;
944 
945 	if (page_anon_vma(page)) {
946 		addr = page_address_in_vma(page, vma);
947 		if (addr == -EFAULT)
948 			return 0;
949 		else
950 			end = addr + PAGE_SIZE;
951 	} else {
952 		addr = vma->vm_start;
953 		end = vma->vm_end;
954 	}
955 
956 	pgd = pgd_offset(vma->vm_mm, addr);
957 	do {
958 		next = pgd_addr_end(addr, end);
959 		if (pgd_none_or_clear_bad(pgd))
960 			continue;
961 		ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
962 		if (ret)
963 			return ret;
964 	} while (pgd++, addr = next, addr != end);
965 	return 0;
966 }
967 
968 static int unuse_mm(struct mm_struct *mm,
969 				swp_entry_t entry, struct page *page)
970 {
971 	struct vm_area_struct *vma;
972 	int ret = 0;
973 
974 	if (!down_read_trylock(&mm->mmap_sem)) {
975 		/*
976 		 * Activate page so shrink_inactive_list is unlikely to unmap
977 		 * its ptes while lock is dropped, so swapoff can make progress.
978 		 */
979 		activate_page(page);
980 		unlock_page(page);
981 		down_read(&mm->mmap_sem);
982 		lock_page(page);
983 	}
984 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
985 		if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
986 			break;
987 	}
988 	up_read(&mm->mmap_sem);
989 	return (ret < 0)? ret: 0;
990 }
991 
992 /*
993  * Scan swap_map (or frontswap_map if frontswap parameter is true)
994  * from current position to next entry still in use.
995  * Recycle to start on reaching the end, returning 0 when empty.
996  */
997 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
998 					unsigned int prev, bool frontswap)
999 {
1000 	unsigned int max = si->max;
1001 	unsigned int i = prev;
1002 	unsigned char count;
1003 
1004 	/*
1005 	 * No need for swap_lock here: we're just looking
1006 	 * for whether an entry is in use, not modifying it; false
1007 	 * hits are okay, and sys_swapoff() has already prevented new
1008 	 * allocations from this area (while holding swap_lock).
1009 	 */
1010 	for (;;) {
1011 		if (++i >= max) {
1012 			if (!prev) {
1013 				i = 0;
1014 				break;
1015 			}
1016 			/*
1017 			 * No entries in use at top of swap_map,
1018 			 * loop back to start and recheck there.
1019 			 */
1020 			max = prev + 1;
1021 			prev = 0;
1022 			i = 1;
1023 		}
1024 		if (frontswap) {
1025 			if (frontswap_test(si, i))
1026 				break;
1027 			else
1028 				continue;
1029 		}
1030 		count = si->swap_map[i];
1031 		if (count && swap_count(count) != SWAP_MAP_BAD)
1032 			break;
1033 	}
1034 	return i;
1035 }
1036 
1037 /*
1038  * We completely avoid races by reading each swap page in advance,
1039  * and then search for the process using it.  All the necessary
1040  * page table adjustments can then be made atomically.
1041  *
1042  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1043  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1044  */
1045 int try_to_unuse(unsigned int type, bool frontswap,
1046 		 unsigned long pages_to_unuse)
1047 {
1048 	struct swap_info_struct *si = swap_info[type];
1049 	struct mm_struct *start_mm;
1050 	unsigned char *swap_map;
1051 	unsigned char swcount;
1052 	struct page *page;
1053 	swp_entry_t entry;
1054 	unsigned int i = 0;
1055 	int retval = 0;
1056 
1057 	/*
1058 	 * When searching mms for an entry, a good strategy is to
1059 	 * start at the first mm we freed the previous entry from
1060 	 * (though actually we don't notice whether we or coincidence
1061 	 * freed the entry).  Initialize this start_mm with a hold.
1062 	 *
1063 	 * A simpler strategy would be to start at the last mm we
1064 	 * freed the previous entry from; but that would take less
1065 	 * advantage of mmlist ordering, which clusters forked mms
1066 	 * together, child after parent.  If we race with dup_mmap(), we
1067 	 * prefer to resolve parent before child, lest we miss entries
1068 	 * duplicated after we scanned child: using last mm would invert
1069 	 * that.
1070 	 */
1071 	start_mm = &init_mm;
1072 	atomic_inc(&init_mm.mm_users);
1073 
1074 	/*
1075 	 * Keep on scanning until all entries have gone.  Usually,
1076 	 * one pass through swap_map is enough, but not necessarily:
1077 	 * there are races when an instance of an entry might be missed.
1078 	 */
1079 	while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1080 		if (signal_pending(current)) {
1081 			retval = -EINTR;
1082 			break;
1083 		}
1084 
1085 		/*
1086 		 * Get a page for the entry, using the existing swap
1087 		 * cache page if there is one.  Otherwise, get a clean
1088 		 * page and read the swap into it.
1089 		 */
1090 		swap_map = &si->swap_map[i];
1091 		entry = swp_entry(type, i);
1092 		page = read_swap_cache_async(entry,
1093 					GFP_HIGHUSER_MOVABLE, NULL, 0);
1094 		if (!page) {
1095 			/*
1096 			 * Either swap_duplicate() failed because entry
1097 			 * has been freed independently, and will not be
1098 			 * reused since sys_swapoff() already disabled
1099 			 * allocation from here, or alloc_page() failed.
1100 			 */
1101 			if (!*swap_map)
1102 				continue;
1103 			retval = -ENOMEM;
1104 			break;
1105 		}
1106 
1107 		/*
1108 		 * Don't hold on to start_mm if it looks like exiting.
1109 		 */
1110 		if (atomic_read(&start_mm->mm_users) == 1) {
1111 			mmput(start_mm);
1112 			start_mm = &init_mm;
1113 			atomic_inc(&init_mm.mm_users);
1114 		}
1115 
1116 		/*
1117 		 * Wait for and lock page.  When do_swap_page races with
1118 		 * try_to_unuse, do_swap_page can handle the fault much
1119 		 * faster than try_to_unuse can locate the entry.  This
1120 		 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1121 		 * defer to do_swap_page in such a case - in some tests,
1122 		 * do_swap_page and try_to_unuse repeatedly compete.
1123 		 */
1124 		wait_on_page_locked(page);
1125 		wait_on_page_writeback(page);
1126 		lock_page(page);
1127 		wait_on_page_writeback(page);
1128 
1129 		/*
1130 		 * Remove all references to entry.
1131 		 */
1132 		swcount = *swap_map;
1133 		if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1134 			retval = shmem_unuse(entry, page);
1135 			/* page has already been unlocked and released */
1136 			if (retval < 0)
1137 				break;
1138 			continue;
1139 		}
1140 		if (swap_count(swcount) && start_mm != &init_mm)
1141 			retval = unuse_mm(start_mm, entry, page);
1142 
1143 		if (swap_count(*swap_map)) {
1144 			int set_start_mm = (*swap_map >= swcount);
1145 			struct list_head *p = &start_mm->mmlist;
1146 			struct mm_struct *new_start_mm = start_mm;
1147 			struct mm_struct *prev_mm = start_mm;
1148 			struct mm_struct *mm;
1149 
1150 			atomic_inc(&new_start_mm->mm_users);
1151 			atomic_inc(&prev_mm->mm_users);
1152 			spin_lock(&mmlist_lock);
1153 			while (swap_count(*swap_map) && !retval &&
1154 					(p = p->next) != &start_mm->mmlist) {
1155 				mm = list_entry(p, struct mm_struct, mmlist);
1156 				if (!atomic_inc_not_zero(&mm->mm_users))
1157 					continue;
1158 				spin_unlock(&mmlist_lock);
1159 				mmput(prev_mm);
1160 				prev_mm = mm;
1161 
1162 				cond_resched();
1163 
1164 				swcount = *swap_map;
1165 				if (!swap_count(swcount)) /* any usage ? */
1166 					;
1167 				else if (mm == &init_mm)
1168 					set_start_mm = 1;
1169 				else
1170 					retval = unuse_mm(mm, entry, page);
1171 
1172 				if (set_start_mm && *swap_map < swcount) {
1173 					mmput(new_start_mm);
1174 					atomic_inc(&mm->mm_users);
1175 					new_start_mm = mm;
1176 					set_start_mm = 0;
1177 				}
1178 				spin_lock(&mmlist_lock);
1179 			}
1180 			spin_unlock(&mmlist_lock);
1181 			mmput(prev_mm);
1182 			mmput(start_mm);
1183 			start_mm = new_start_mm;
1184 		}
1185 		if (retval) {
1186 			unlock_page(page);
1187 			page_cache_release(page);
1188 			break;
1189 		}
1190 
1191 		/*
1192 		 * If a reference remains (rare), we would like to leave
1193 		 * the page in the swap cache; but try_to_unmap could
1194 		 * then re-duplicate the entry once we drop page lock,
1195 		 * so we might loop indefinitely; also, that page could
1196 		 * not be swapped out to other storage meanwhile.  So:
1197 		 * delete from cache even if there's another reference,
1198 		 * after ensuring that the data has been saved to disk -
1199 		 * since if the reference remains (rarer), it will be
1200 		 * read from disk into another page.  Splitting into two
1201 		 * pages would be incorrect if swap supported "shared
1202 		 * private" pages, but they are handled by tmpfs files.
1203 		 *
1204 		 * Given how unuse_vma() targets one particular offset
1205 		 * in an anon_vma, once the anon_vma has been determined,
1206 		 * this splitting happens to be just what is needed to
1207 		 * handle where KSM pages have been swapped out: re-reading
1208 		 * is unnecessarily slow, but we can fix that later on.
1209 		 */
1210 		if (swap_count(*swap_map) &&
1211 		     PageDirty(page) && PageSwapCache(page)) {
1212 			struct writeback_control wbc = {
1213 				.sync_mode = WB_SYNC_NONE,
1214 			};
1215 
1216 			swap_writepage(page, &wbc);
1217 			lock_page(page);
1218 			wait_on_page_writeback(page);
1219 		}
1220 
1221 		/*
1222 		 * It is conceivable that a racing task removed this page from
1223 		 * swap cache just before we acquired the page lock at the top,
1224 		 * or while we dropped it in unuse_mm().  The page might even
1225 		 * be back in swap cache on another swap area: that we must not
1226 		 * delete, since it may not have been written out to swap yet.
1227 		 */
1228 		if (PageSwapCache(page) &&
1229 		    likely(page_private(page) == entry.val))
1230 			delete_from_swap_cache(page);
1231 
1232 		/*
1233 		 * So we could skip searching mms once swap count went
1234 		 * to 1, we did not mark any present ptes as dirty: must
1235 		 * mark page dirty so shrink_page_list will preserve it.
1236 		 */
1237 		SetPageDirty(page);
1238 		unlock_page(page);
1239 		page_cache_release(page);
1240 
1241 		/*
1242 		 * Make sure that we aren't completely killing
1243 		 * interactive performance.
1244 		 */
1245 		cond_resched();
1246 		if (frontswap && pages_to_unuse > 0) {
1247 			if (!--pages_to_unuse)
1248 				break;
1249 		}
1250 	}
1251 
1252 	mmput(start_mm);
1253 	return retval;
1254 }
1255 
1256 /*
1257  * After a successful try_to_unuse, if no swap is now in use, we know
1258  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1259  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1260  * added to the mmlist just after page_duplicate - before would be racy.
1261  */
1262 static void drain_mmlist(void)
1263 {
1264 	struct list_head *p, *next;
1265 	unsigned int type;
1266 
1267 	for (type = 0; type < nr_swapfiles; type++)
1268 		if (swap_info[type]->inuse_pages)
1269 			return;
1270 	spin_lock(&mmlist_lock);
1271 	list_for_each_safe(p, next, &init_mm.mmlist)
1272 		list_del_init(p);
1273 	spin_unlock(&mmlist_lock);
1274 }
1275 
1276 /*
1277  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1278  * corresponds to page offset for the specified swap entry.
1279  * Note that the type of this function is sector_t, but it returns page offset
1280  * into the bdev, not sector offset.
1281  */
1282 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1283 {
1284 	struct swap_info_struct *sis;
1285 	struct swap_extent *start_se;
1286 	struct swap_extent *se;
1287 	pgoff_t offset;
1288 
1289 	sis = swap_info[swp_type(entry)];
1290 	*bdev = sis->bdev;
1291 
1292 	offset = swp_offset(entry);
1293 	start_se = sis->curr_swap_extent;
1294 	se = start_se;
1295 
1296 	for ( ; ; ) {
1297 		struct list_head *lh;
1298 
1299 		if (se->start_page <= offset &&
1300 				offset < (se->start_page + se->nr_pages)) {
1301 			return se->start_block + (offset - se->start_page);
1302 		}
1303 		lh = se->list.next;
1304 		se = list_entry(lh, struct swap_extent, list);
1305 		sis->curr_swap_extent = se;
1306 		BUG_ON(se == start_se);		/* It *must* be present */
1307 	}
1308 }
1309 
1310 /*
1311  * Returns the page offset into bdev for the specified page's swap entry.
1312  */
1313 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1314 {
1315 	swp_entry_t entry;
1316 	entry.val = page_private(page);
1317 	return map_swap_entry(entry, bdev);
1318 }
1319 
1320 /*
1321  * Free all of a swapdev's extent information
1322  */
1323 static void destroy_swap_extents(struct swap_info_struct *sis)
1324 {
1325 	while (!list_empty(&sis->first_swap_extent.list)) {
1326 		struct swap_extent *se;
1327 
1328 		se = list_entry(sis->first_swap_extent.list.next,
1329 				struct swap_extent, list);
1330 		list_del(&se->list);
1331 		kfree(se);
1332 	}
1333 
1334 	if (sis->flags & SWP_FILE) {
1335 		struct file *swap_file = sis->swap_file;
1336 		struct address_space *mapping = swap_file->f_mapping;
1337 
1338 		sis->flags &= ~SWP_FILE;
1339 		mapping->a_ops->swap_deactivate(swap_file);
1340 	}
1341 }
1342 
1343 /*
1344  * Add a block range (and the corresponding page range) into this swapdev's
1345  * extent list.  The extent list is kept sorted in page order.
1346  *
1347  * This function rather assumes that it is called in ascending page order.
1348  */
1349 int
1350 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1351 		unsigned long nr_pages, sector_t start_block)
1352 {
1353 	struct swap_extent *se;
1354 	struct swap_extent *new_se;
1355 	struct list_head *lh;
1356 
1357 	if (start_page == 0) {
1358 		se = &sis->first_swap_extent;
1359 		sis->curr_swap_extent = se;
1360 		se->start_page = 0;
1361 		se->nr_pages = nr_pages;
1362 		se->start_block = start_block;
1363 		return 1;
1364 	} else {
1365 		lh = sis->first_swap_extent.list.prev;	/* Highest extent */
1366 		se = list_entry(lh, struct swap_extent, list);
1367 		BUG_ON(se->start_page + se->nr_pages != start_page);
1368 		if (se->start_block + se->nr_pages == start_block) {
1369 			/* Merge it */
1370 			se->nr_pages += nr_pages;
1371 			return 0;
1372 		}
1373 	}
1374 
1375 	/*
1376 	 * No merge.  Insert a new extent, preserving ordering.
1377 	 */
1378 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1379 	if (new_se == NULL)
1380 		return -ENOMEM;
1381 	new_se->start_page = start_page;
1382 	new_se->nr_pages = nr_pages;
1383 	new_se->start_block = start_block;
1384 
1385 	list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1386 	return 1;
1387 }
1388 
1389 /*
1390  * A `swap extent' is a simple thing which maps a contiguous range of pages
1391  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1392  * is built at swapon time and is then used at swap_writepage/swap_readpage
1393  * time for locating where on disk a page belongs.
1394  *
1395  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1396  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1397  * swap files identically.
1398  *
1399  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1400  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1401  * swapfiles are handled *identically* after swapon time.
1402  *
1403  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1404  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1405  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1406  * requirements, they are simply tossed out - we will never use those blocks
1407  * for swapping.
1408  *
1409  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1410  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1411  * which will scribble on the fs.
1412  *
1413  * The amount of disk space which a single swap extent represents varies.
1414  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1415  * extents in the list.  To avoid much list walking, we cache the previous
1416  * search location in `curr_swap_extent', and start new searches from there.
1417  * This is extremely effective.  The average number of iterations in
1418  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1419  */
1420 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1421 {
1422 	struct file *swap_file = sis->swap_file;
1423 	struct address_space *mapping = swap_file->f_mapping;
1424 	struct inode *inode = mapping->host;
1425 	int ret;
1426 
1427 	if (S_ISBLK(inode->i_mode)) {
1428 		ret = add_swap_extent(sis, 0, sis->max, 0);
1429 		*span = sis->pages;
1430 		return ret;
1431 	}
1432 
1433 	if (mapping->a_ops->swap_activate) {
1434 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1435 		if (!ret) {
1436 			sis->flags |= SWP_FILE;
1437 			ret = add_swap_extent(sis, 0, sis->max, 0);
1438 			*span = sis->pages;
1439 		}
1440 		return ret;
1441 	}
1442 
1443 	return generic_swapfile_activate(sis, swap_file, span);
1444 }
1445 
1446 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1447 				unsigned char *swap_map,
1448 				unsigned long *frontswap_map)
1449 {
1450 	int i, prev;
1451 
1452 	if (prio >= 0)
1453 		p->prio = prio;
1454 	else
1455 		p->prio = --least_priority;
1456 	p->swap_map = swap_map;
1457 	frontswap_map_set(p, frontswap_map);
1458 	p->flags |= SWP_WRITEOK;
1459 	nr_swap_pages += p->pages;
1460 	total_swap_pages += p->pages;
1461 
1462 	/* insert swap space into swap_list: */
1463 	prev = -1;
1464 	for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1465 		if (p->prio >= swap_info[i]->prio)
1466 			break;
1467 		prev = i;
1468 	}
1469 	p->next = i;
1470 	if (prev < 0)
1471 		swap_list.head = swap_list.next = p->type;
1472 	else
1473 		swap_info[prev]->next = p->type;
1474 }
1475 
1476 static void enable_swap_info(struct swap_info_struct *p, int prio,
1477 				unsigned char *swap_map,
1478 				unsigned long *frontswap_map)
1479 {
1480 	spin_lock(&swap_lock);
1481 	_enable_swap_info(p, prio, swap_map, frontswap_map);
1482 	frontswap_init(p->type);
1483 	spin_unlock(&swap_lock);
1484 }
1485 
1486 static void reinsert_swap_info(struct swap_info_struct *p)
1487 {
1488 	spin_lock(&swap_lock);
1489 	_enable_swap_info(p, p->prio, p->swap_map, frontswap_map_get(p));
1490 	spin_unlock(&swap_lock);
1491 }
1492 
1493 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1494 {
1495 	struct swap_info_struct *p = NULL;
1496 	unsigned char *swap_map;
1497 	struct file *swap_file, *victim;
1498 	struct address_space *mapping;
1499 	struct inode *inode;
1500 	struct filename *pathname;
1501 	int i, type, prev;
1502 	int err;
1503 
1504 	if (!capable(CAP_SYS_ADMIN))
1505 		return -EPERM;
1506 
1507 	BUG_ON(!current->mm);
1508 
1509 	pathname = getname(specialfile);
1510 	if (IS_ERR(pathname))
1511 		return PTR_ERR(pathname);
1512 
1513 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1514 	err = PTR_ERR(victim);
1515 	if (IS_ERR(victim))
1516 		goto out;
1517 
1518 	mapping = victim->f_mapping;
1519 	prev = -1;
1520 	spin_lock(&swap_lock);
1521 	for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1522 		p = swap_info[type];
1523 		if (p->flags & SWP_WRITEOK) {
1524 			if (p->swap_file->f_mapping == mapping)
1525 				break;
1526 		}
1527 		prev = type;
1528 	}
1529 	if (type < 0) {
1530 		err = -EINVAL;
1531 		spin_unlock(&swap_lock);
1532 		goto out_dput;
1533 	}
1534 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
1535 		vm_unacct_memory(p->pages);
1536 	else {
1537 		err = -ENOMEM;
1538 		spin_unlock(&swap_lock);
1539 		goto out_dput;
1540 	}
1541 	if (prev < 0)
1542 		swap_list.head = p->next;
1543 	else
1544 		swap_info[prev]->next = p->next;
1545 	if (type == swap_list.next) {
1546 		/* just pick something that's safe... */
1547 		swap_list.next = swap_list.head;
1548 	}
1549 	if (p->prio < 0) {
1550 		for (i = p->next; i >= 0; i = swap_info[i]->next)
1551 			swap_info[i]->prio = p->prio--;
1552 		least_priority++;
1553 	}
1554 	nr_swap_pages -= p->pages;
1555 	total_swap_pages -= p->pages;
1556 	p->flags &= ~SWP_WRITEOK;
1557 	spin_unlock(&swap_lock);
1558 
1559 	set_current_oom_origin();
1560 	err = try_to_unuse(type, false, 0); /* force all pages to be unused */
1561 	clear_current_oom_origin();
1562 
1563 	if (err) {
1564 		/* re-insert swap space back into swap_list */
1565 		reinsert_swap_info(p);
1566 		goto out_dput;
1567 	}
1568 
1569 	destroy_swap_extents(p);
1570 	if (p->flags & SWP_CONTINUED)
1571 		free_swap_count_continuations(p);
1572 
1573 	mutex_lock(&swapon_mutex);
1574 	spin_lock(&swap_lock);
1575 	drain_mmlist();
1576 
1577 	/* wait for anyone still in scan_swap_map */
1578 	p->highest_bit = 0;		/* cuts scans short */
1579 	while (p->flags >= SWP_SCANNING) {
1580 		spin_unlock(&swap_lock);
1581 		schedule_timeout_uninterruptible(1);
1582 		spin_lock(&swap_lock);
1583 	}
1584 
1585 	swap_file = p->swap_file;
1586 	p->swap_file = NULL;
1587 	p->max = 0;
1588 	swap_map = p->swap_map;
1589 	p->swap_map = NULL;
1590 	p->flags = 0;
1591 	frontswap_invalidate_area(type);
1592 	spin_unlock(&swap_lock);
1593 	mutex_unlock(&swapon_mutex);
1594 	vfree(swap_map);
1595 	vfree(frontswap_map_get(p));
1596 	/* Destroy swap account informatin */
1597 	swap_cgroup_swapoff(type);
1598 
1599 	inode = mapping->host;
1600 	if (S_ISBLK(inode->i_mode)) {
1601 		struct block_device *bdev = I_BDEV(inode);
1602 		set_blocksize(bdev, p->old_block_size);
1603 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1604 	} else {
1605 		mutex_lock(&inode->i_mutex);
1606 		inode->i_flags &= ~S_SWAPFILE;
1607 		mutex_unlock(&inode->i_mutex);
1608 	}
1609 	filp_close(swap_file, NULL);
1610 	err = 0;
1611 	atomic_inc(&proc_poll_event);
1612 	wake_up_interruptible(&proc_poll_wait);
1613 
1614 out_dput:
1615 	filp_close(victim, NULL);
1616 out:
1617 	putname(pathname);
1618 	return err;
1619 }
1620 
1621 #ifdef CONFIG_PROC_FS
1622 static unsigned swaps_poll(struct file *file, poll_table *wait)
1623 {
1624 	struct seq_file *seq = file->private_data;
1625 
1626 	poll_wait(file, &proc_poll_wait, wait);
1627 
1628 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
1629 		seq->poll_event = atomic_read(&proc_poll_event);
1630 		return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1631 	}
1632 
1633 	return POLLIN | POLLRDNORM;
1634 }
1635 
1636 /* iterator */
1637 static void *swap_start(struct seq_file *swap, loff_t *pos)
1638 {
1639 	struct swap_info_struct *si;
1640 	int type;
1641 	loff_t l = *pos;
1642 
1643 	mutex_lock(&swapon_mutex);
1644 
1645 	if (!l)
1646 		return SEQ_START_TOKEN;
1647 
1648 	for (type = 0; type < nr_swapfiles; type++) {
1649 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1650 		si = swap_info[type];
1651 		if (!(si->flags & SWP_USED) || !si->swap_map)
1652 			continue;
1653 		if (!--l)
1654 			return si;
1655 	}
1656 
1657 	return NULL;
1658 }
1659 
1660 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1661 {
1662 	struct swap_info_struct *si = v;
1663 	int type;
1664 
1665 	if (v == SEQ_START_TOKEN)
1666 		type = 0;
1667 	else
1668 		type = si->type + 1;
1669 
1670 	for (; type < nr_swapfiles; type++) {
1671 		smp_rmb();	/* read nr_swapfiles before swap_info[type] */
1672 		si = swap_info[type];
1673 		if (!(si->flags & SWP_USED) || !si->swap_map)
1674 			continue;
1675 		++*pos;
1676 		return si;
1677 	}
1678 
1679 	return NULL;
1680 }
1681 
1682 static void swap_stop(struct seq_file *swap, void *v)
1683 {
1684 	mutex_unlock(&swapon_mutex);
1685 }
1686 
1687 static int swap_show(struct seq_file *swap, void *v)
1688 {
1689 	struct swap_info_struct *si = v;
1690 	struct file *file;
1691 	int len;
1692 
1693 	if (si == SEQ_START_TOKEN) {
1694 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1695 		return 0;
1696 	}
1697 
1698 	file = si->swap_file;
1699 	len = seq_path(swap, &file->f_path, " \t\n\\");
1700 	seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1701 			len < 40 ? 40 - len : 1, " ",
1702 			S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1703 				"partition" : "file\t",
1704 			si->pages << (PAGE_SHIFT - 10),
1705 			si->inuse_pages << (PAGE_SHIFT - 10),
1706 			si->prio);
1707 	return 0;
1708 }
1709 
1710 static const struct seq_operations swaps_op = {
1711 	.start =	swap_start,
1712 	.next =		swap_next,
1713 	.stop =		swap_stop,
1714 	.show =		swap_show
1715 };
1716 
1717 static int swaps_open(struct inode *inode, struct file *file)
1718 {
1719 	struct seq_file *seq;
1720 	int ret;
1721 
1722 	ret = seq_open(file, &swaps_op);
1723 	if (ret)
1724 		return ret;
1725 
1726 	seq = file->private_data;
1727 	seq->poll_event = atomic_read(&proc_poll_event);
1728 	return 0;
1729 }
1730 
1731 static const struct file_operations proc_swaps_operations = {
1732 	.open		= swaps_open,
1733 	.read		= seq_read,
1734 	.llseek		= seq_lseek,
1735 	.release	= seq_release,
1736 	.poll		= swaps_poll,
1737 };
1738 
1739 static int __init procswaps_init(void)
1740 {
1741 	proc_create("swaps", 0, NULL, &proc_swaps_operations);
1742 	return 0;
1743 }
1744 __initcall(procswaps_init);
1745 #endif /* CONFIG_PROC_FS */
1746 
1747 #ifdef MAX_SWAPFILES_CHECK
1748 static int __init max_swapfiles_check(void)
1749 {
1750 	MAX_SWAPFILES_CHECK();
1751 	return 0;
1752 }
1753 late_initcall(max_swapfiles_check);
1754 #endif
1755 
1756 static struct swap_info_struct *alloc_swap_info(void)
1757 {
1758 	struct swap_info_struct *p;
1759 	unsigned int type;
1760 
1761 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1762 	if (!p)
1763 		return ERR_PTR(-ENOMEM);
1764 
1765 	spin_lock(&swap_lock);
1766 	for (type = 0; type < nr_swapfiles; type++) {
1767 		if (!(swap_info[type]->flags & SWP_USED))
1768 			break;
1769 	}
1770 	if (type >= MAX_SWAPFILES) {
1771 		spin_unlock(&swap_lock);
1772 		kfree(p);
1773 		return ERR_PTR(-EPERM);
1774 	}
1775 	if (type >= nr_swapfiles) {
1776 		p->type = type;
1777 		swap_info[type] = p;
1778 		/*
1779 		 * Write swap_info[type] before nr_swapfiles, in case a
1780 		 * racing procfs swap_start() or swap_next() is reading them.
1781 		 * (We never shrink nr_swapfiles, we never free this entry.)
1782 		 */
1783 		smp_wmb();
1784 		nr_swapfiles++;
1785 	} else {
1786 		kfree(p);
1787 		p = swap_info[type];
1788 		/*
1789 		 * Do not memset this entry: a racing procfs swap_next()
1790 		 * would be relying on p->type to remain valid.
1791 		 */
1792 	}
1793 	INIT_LIST_HEAD(&p->first_swap_extent.list);
1794 	p->flags = SWP_USED;
1795 	p->next = -1;
1796 	spin_unlock(&swap_lock);
1797 
1798 	return p;
1799 }
1800 
1801 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1802 {
1803 	int error;
1804 
1805 	if (S_ISBLK(inode->i_mode)) {
1806 		p->bdev = bdgrab(I_BDEV(inode));
1807 		error = blkdev_get(p->bdev,
1808 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1809 				   sys_swapon);
1810 		if (error < 0) {
1811 			p->bdev = NULL;
1812 			return -EINVAL;
1813 		}
1814 		p->old_block_size = block_size(p->bdev);
1815 		error = set_blocksize(p->bdev, PAGE_SIZE);
1816 		if (error < 0)
1817 			return error;
1818 		p->flags |= SWP_BLKDEV;
1819 	} else if (S_ISREG(inode->i_mode)) {
1820 		p->bdev = inode->i_sb->s_bdev;
1821 		mutex_lock(&inode->i_mutex);
1822 		if (IS_SWAPFILE(inode))
1823 			return -EBUSY;
1824 	} else
1825 		return -EINVAL;
1826 
1827 	return 0;
1828 }
1829 
1830 static unsigned long read_swap_header(struct swap_info_struct *p,
1831 					union swap_header *swap_header,
1832 					struct inode *inode)
1833 {
1834 	int i;
1835 	unsigned long maxpages;
1836 	unsigned long swapfilepages;
1837 
1838 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1839 		printk(KERN_ERR "Unable to find swap-space signature\n");
1840 		return 0;
1841 	}
1842 
1843 	/* swap partition endianess hack... */
1844 	if (swab32(swap_header->info.version) == 1) {
1845 		swab32s(&swap_header->info.version);
1846 		swab32s(&swap_header->info.last_page);
1847 		swab32s(&swap_header->info.nr_badpages);
1848 		for (i = 0; i < swap_header->info.nr_badpages; i++)
1849 			swab32s(&swap_header->info.badpages[i]);
1850 	}
1851 	/* Check the swap header's sub-version */
1852 	if (swap_header->info.version != 1) {
1853 		printk(KERN_WARNING
1854 		       "Unable to handle swap header version %d\n",
1855 		       swap_header->info.version);
1856 		return 0;
1857 	}
1858 
1859 	p->lowest_bit  = 1;
1860 	p->cluster_next = 1;
1861 	p->cluster_nr = 0;
1862 
1863 	/*
1864 	 * Find out how many pages are allowed for a single swap
1865 	 * device. There are two limiting factors: 1) the number
1866 	 * of bits for the swap offset in the swp_entry_t type, and
1867 	 * 2) the number of bits in the swap pte as defined by the
1868 	 * different architectures. In order to find the
1869 	 * largest possible bit mask, a swap entry with swap type 0
1870 	 * and swap offset ~0UL is created, encoded to a swap pte,
1871 	 * decoded to a swp_entry_t again, and finally the swap
1872 	 * offset is extracted. This will mask all the bits from
1873 	 * the initial ~0UL mask that can't be encoded in either
1874 	 * the swp_entry_t or the architecture definition of a
1875 	 * swap pte.
1876 	 */
1877 	maxpages = swp_offset(pte_to_swp_entry(
1878 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1879 	if (maxpages > swap_header->info.last_page) {
1880 		maxpages = swap_header->info.last_page + 1;
1881 		/* p->max is an unsigned int: don't overflow it */
1882 		if ((unsigned int)maxpages == 0)
1883 			maxpages = UINT_MAX;
1884 	}
1885 	p->highest_bit = maxpages - 1;
1886 
1887 	if (!maxpages)
1888 		return 0;
1889 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1890 	if (swapfilepages && maxpages > swapfilepages) {
1891 		printk(KERN_WARNING
1892 		       "Swap area shorter than signature indicates\n");
1893 		return 0;
1894 	}
1895 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1896 		return 0;
1897 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1898 		return 0;
1899 
1900 	return maxpages;
1901 }
1902 
1903 static int setup_swap_map_and_extents(struct swap_info_struct *p,
1904 					union swap_header *swap_header,
1905 					unsigned char *swap_map,
1906 					unsigned long maxpages,
1907 					sector_t *span)
1908 {
1909 	int i;
1910 	unsigned int nr_good_pages;
1911 	int nr_extents;
1912 
1913 	nr_good_pages = maxpages - 1;	/* omit header page */
1914 
1915 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
1916 		unsigned int page_nr = swap_header->info.badpages[i];
1917 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
1918 			return -EINVAL;
1919 		if (page_nr < maxpages) {
1920 			swap_map[page_nr] = SWAP_MAP_BAD;
1921 			nr_good_pages--;
1922 		}
1923 	}
1924 
1925 	if (nr_good_pages) {
1926 		swap_map[0] = SWAP_MAP_BAD;
1927 		p->max = maxpages;
1928 		p->pages = nr_good_pages;
1929 		nr_extents = setup_swap_extents(p, span);
1930 		if (nr_extents < 0)
1931 			return nr_extents;
1932 		nr_good_pages = p->pages;
1933 	}
1934 	if (!nr_good_pages) {
1935 		printk(KERN_WARNING "Empty swap-file\n");
1936 		return -EINVAL;
1937 	}
1938 
1939 	return nr_extents;
1940 }
1941 
1942 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1943 {
1944 	struct swap_info_struct *p;
1945 	struct filename *name;
1946 	struct file *swap_file = NULL;
1947 	struct address_space *mapping;
1948 	int i;
1949 	int prio;
1950 	int error;
1951 	union swap_header *swap_header;
1952 	int nr_extents;
1953 	sector_t span;
1954 	unsigned long maxpages;
1955 	unsigned char *swap_map = NULL;
1956 	unsigned long *frontswap_map = NULL;
1957 	struct page *page = NULL;
1958 	struct inode *inode = NULL;
1959 
1960 	if (swap_flags & ~SWAP_FLAGS_VALID)
1961 		return -EINVAL;
1962 
1963 	if (!capable(CAP_SYS_ADMIN))
1964 		return -EPERM;
1965 
1966 	p = alloc_swap_info();
1967 	if (IS_ERR(p))
1968 		return PTR_ERR(p);
1969 
1970 	name = getname(specialfile);
1971 	if (IS_ERR(name)) {
1972 		error = PTR_ERR(name);
1973 		name = NULL;
1974 		goto bad_swap;
1975 	}
1976 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1977 	if (IS_ERR(swap_file)) {
1978 		error = PTR_ERR(swap_file);
1979 		swap_file = NULL;
1980 		goto bad_swap;
1981 	}
1982 
1983 	p->swap_file = swap_file;
1984 	mapping = swap_file->f_mapping;
1985 
1986 	for (i = 0; i < nr_swapfiles; i++) {
1987 		struct swap_info_struct *q = swap_info[i];
1988 
1989 		if (q == p || !q->swap_file)
1990 			continue;
1991 		if (mapping == q->swap_file->f_mapping) {
1992 			error = -EBUSY;
1993 			goto bad_swap;
1994 		}
1995 	}
1996 
1997 	inode = mapping->host;
1998 	/* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
1999 	error = claim_swapfile(p, inode);
2000 	if (unlikely(error))
2001 		goto bad_swap;
2002 
2003 	/*
2004 	 * Read the swap header.
2005 	 */
2006 	if (!mapping->a_ops->readpage) {
2007 		error = -EINVAL;
2008 		goto bad_swap;
2009 	}
2010 	page = read_mapping_page(mapping, 0, swap_file);
2011 	if (IS_ERR(page)) {
2012 		error = PTR_ERR(page);
2013 		goto bad_swap;
2014 	}
2015 	swap_header = kmap(page);
2016 
2017 	maxpages = read_swap_header(p, swap_header, inode);
2018 	if (unlikely(!maxpages)) {
2019 		error = -EINVAL;
2020 		goto bad_swap;
2021 	}
2022 
2023 	/* OK, set up the swap map and apply the bad block list */
2024 	swap_map = vzalloc(maxpages);
2025 	if (!swap_map) {
2026 		error = -ENOMEM;
2027 		goto bad_swap;
2028 	}
2029 
2030 	error = swap_cgroup_swapon(p->type, maxpages);
2031 	if (error)
2032 		goto bad_swap;
2033 
2034 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2035 		maxpages, &span);
2036 	if (unlikely(nr_extents < 0)) {
2037 		error = nr_extents;
2038 		goto bad_swap;
2039 	}
2040 	/* frontswap enabled? set up bit-per-page map for frontswap */
2041 	if (frontswap_enabled)
2042 		frontswap_map = vzalloc(maxpages / sizeof(long));
2043 
2044 	if (p->bdev) {
2045 		if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2046 			p->flags |= SWP_SOLIDSTATE;
2047 			p->cluster_next = 1 + (random32() % p->highest_bit);
2048 		}
2049 		if ((swap_flags & SWAP_FLAG_DISCARD) && discard_swap(p) == 0)
2050 			p->flags |= SWP_DISCARDABLE;
2051 	}
2052 
2053 	mutex_lock(&swapon_mutex);
2054 	prio = -1;
2055 	if (swap_flags & SWAP_FLAG_PREFER)
2056 		prio =
2057 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2058 	enable_swap_info(p, prio, swap_map, frontswap_map);
2059 
2060 	printk(KERN_INFO "Adding %uk swap on %s.  "
2061 			"Priority:%d extents:%d across:%lluk %s%s%s\n",
2062 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2063 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2064 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2065 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
2066 		(frontswap_map) ? "FS" : "");
2067 
2068 	mutex_unlock(&swapon_mutex);
2069 	atomic_inc(&proc_poll_event);
2070 	wake_up_interruptible(&proc_poll_wait);
2071 
2072 	if (S_ISREG(inode->i_mode))
2073 		inode->i_flags |= S_SWAPFILE;
2074 	error = 0;
2075 	goto out;
2076 bad_swap:
2077 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2078 		set_blocksize(p->bdev, p->old_block_size);
2079 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2080 	}
2081 	destroy_swap_extents(p);
2082 	swap_cgroup_swapoff(p->type);
2083 	spin_lock(&swap_lock);
2084 	p->swap_file = NULL;
2085 	p->flags = 0;
2086 	spin_unlock(&swap_lock);
2087 	vfree(swap_map);
2088 	if (swap_file) {
2089 		if (inode && S_ISREG(inode->i_mode)) {
2090 			mutex_unlock(&inode->i_mutex);
2091 			inode = NULL;
2092 		}
2093 		filp_close(swap_file, NULL);
2094 	}
2095 out:
2096 	if (page && !IS_ERR(page)) {
2097 		kunmap(page);
2098 		page_cache_release(page);
2099 	}
2100 	if (name)
2101 		putname(name);
2102 	if (inode && S_ISREG(inode->i_mode))
2103 		mutex_unlock(&inode->i_mutex);
2104 	return error;
2105 }
2106 
2107 void si_swapinfo(struct sysinfo *val)
2108 {
2109 	unsigned int type;
2110 	unsigned long nr_to_be_unused = 0;
2111 
2112 	spin_lock(&swap_lock);
2113 	for (type = 0; type < nr_swapfiles; type++) {
2114 		struct swap_info_struct *si = swap_info[type];
2115 
2116 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2117 			nr_to_be_unused += si->inuse_pages;
2118 	}
2119 	val->freeswap = nr_swap_pages + nr_to_be_unused;
2120 	val->totalswap = total_swap_pages + nr_to_be_unused;
2121 	spin_unlock(&swap_lock);
2122 }
2123 
2124 /*
2125  * Verify that a swap entry is valid and increment its swap map count.
2126  *
2127  * Returns error code in following case.
2128  * - success -> 0
2129  * - swp_entry is invalid -> EINVAL
2130  * - swp_entry is migration entry -> EINVAL
2131  * - swap-cache reference is requested but there is already one. -> EEXIST
2132  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2133  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2134  */
2135 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2136 {
2137 	struct swap_info_struct *p;
2138 	unsigned long offset, type;
2139 	unsigned char count;
2140 	unsigned char has_cache;
2141 	int err = -EINVAL;
2142 
2143 	if (non_swap_entry(entry))
2144 		goto out;
2145 
2146 	type = swp_type(entry);
2147 	if (type >= nr_swapfiles)
2148 		goto bad_file;
2149 	p = swap_info[type];
2150 	offset = swp_offset(entry);
2151 
2152 	spin_lock(&swap_lock);
2153 	if (unlikely(offset >= p->max))
2154 		goto unlock_out;
2155 
2156 	count = p->swap_map[offset];
2157 	has_cache = count & SWAP_HAS_CACHE;
2158 	count &= ~SWAP_HAS_CACHE;
2159 	err = 0;
2160 
2161 	if (usage == SWAP_HAS_CACHE) {
2162 
2163 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
2164 		if (!has_cache && count)
2165 			has_cache = SWAP_HAS_CACHE;
2166 		else if (has_cache)		/* someone else added cache */
2167 			err = -EEXIST;
2168 		else				/* no users remaining */
2169 			err = -ENOENT;
2170 
2171 	} else if (count || has_cache) {
2172 
2173 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2174 			count += usage;
2175 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2176 			err = -EINVAL;
2177 		else if (swap_count_continued(p, offset, count))
2178 			count = COUNT_CONTINUED;
2179 		else
2180 			err = -ENOMEM;
2181 	} else
2182 		err = -ENOENT;			/* unused swap entry */
2183 
2184 	p->swap_map[offset] = count | has_cache;
2185 
2186 unlock_out:
2187 	spin_unlock(&swap_lock);
2188 out:
2189 	return err;
2190 
2191 bad_file:
2192 	printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2193 	goto out;
2194 }
2195 
2196 /*
2197  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2198  * (in which case its reference count is never incremented).
2199  */
2200 void swap_shmem_alloc(swp_entry_t entry)
2201 {
2202 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
2203 }
2204 
2205 /*
2206  * Increase reference count of swap entry by 1.
2207  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2208  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2209  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2210  * might occur if a page table entry has got corrupted.
2211  */
2212 int swap_duplicate(swp_entry_t entry)
2213 {
2214 	int err = 0;
2215 
2216 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2217 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
2218 	return err;
2219 }
2220 
2221 /*
2222  * @entry: swap entry for which we allocate swap cache.
2223  *
2224  * Called when allocating swap cache for existing swap entry,
2225  * This can return error codes. Returns 0 at success.
2226  * -EBUSY means there is a swap cache.
2227  * Note: return code is different from swap_duplicate().
2228  */
2229 int swapcache_prepare(swp_entry_t entry)
2230 {
2231 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
2232 }
2233 
2234 struct swap_info_struct *page_swap_info(struct page *page)
2235 {
2236 	swp_entry_t swap = { .val = page_private(page) };
2237 	BUG_ON(!PageSwapCache(page));
2238 	return swap_info[swp_type(swap)];
2239 }
2240 
2241 /*
2242  * out-of-line __page_file_ methods to avoid include hell.
2243  */
2244 struct address_space *__page_file_mapping(struct page *page)
2245 {
2246 	VM_BUG_ON(!PageSwapCache(page));
2247 	return page_swap_info(page)->swap_file->f_mapping;
2248 }
2249 EXPORT_SYMBOL_GPL(__page_file_mapping);
2250 
2251 pgoff_t __page_file_index(struct page *page)
2252 {
2253 	swp_entry_t swap = { .val = page_private(page) };
2254 	VM_BUG_ON(!PageSwapCache(page));
2255 	return swp_offset(swap);
2256 }
2257 EXPORT_SYMBOL_GPL(__page_file_index);
2258 
2259 /*
2260  * add_swap_count_continuation - called when a swap count is duplicated
2261  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2262  * page of the original vmalloc'ed swap_map, to hold the continuation count
2263  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2264  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2265  *
2266  * These continuation pages are seldom referenced: the common paths all work
2267  * on the original swap_map, only referring to a continuation page when the
2268  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2269  *
2270  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2271  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2272  * can be called after dropping locks.
2273  */
2274 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2275 {
2276 	struct swap_info_struct *si;
2277 	struct page *head;
2278 	struct page *page;
2279 	struct page *list_page;
2280 	pgoff_t offset;
2281 	unsigned char count;
2282 
2283 	/*
2284 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2285 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2286 	 */
2287 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2288 
2289 	si = swap_info_get(entry);
2290 	if (!si) {
2291 		/*
2292 		 * An acceptable race has occurred since the failing
2293 		 * __swap_duplicate(): the swap entry has been freed,
2294 		 * perhaps even the whole swap_map cleared for swapoff.
2295 		 */
2296 		goto outer;
2297 	}
2298 
2299 	offset = swp_offset(entry);
2300 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2301 
2302 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2303 		/*
2304 		 * The higher the swap count, the more likely it is that tasks
2305 		 * will race to add swap count continuation: we need to avoid
2306 		 * over-provisioning.
2307 		 */
2308 		goto out;
2309 	}
2310 
2311 	if (!page) {
2312 		spin_unlock(&swap_lock);
2313 		return -ENOMEM;
2314 	}
2315 
2316 	/*
2317 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2318 	 * no architecture is using highmem pages for kernel pagetables: so it
2319 	 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2320 	 */
2321 	head = vmalloc_to_page(si->swap_map + offset);
2322 	offset &= ~PAGE_MASK;
2323 
2324 	/*
2325 	 * Page allocation does not initialize the page's lru field,
2326 	 * but it does always reset its private field.
2327 	 */
2328 	if (!page_private(head)) {
2329 		BUG_ON(count & COUNT_CONTINUED);
2330 		INIT_LIST_HEAD(&head->lru);
2331 		set_page_private(head, SWP_CONTINUED);
2332 		si->flags |= SWP_CONTINUED;
2333 	}
2334 
2335 	list_for_each_entry(list_page, &head->lru, lru) {
2336 		unsigned char *map;
2337 
2338 		/*
2339 		 * If the previous map said no continuation, but we've found
2340 		 * a continuation page, free our allocation and use this one.
2341 		 */
2342 		if (!(count & COUNT_CONTINUED))
2343 			goto out;
2344 
2345 		map = kmap_atomic(list_page) + offset;
2346 		count = *map;
2347 		kunmap_atomic(map);
2348 
2349 		/*
2350 		 * If this continuation count now has some space in it,
2351 		 * free our allocation and use this one.
2352 		 */
2353 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2354 			goto out;
2355 	}
2356 
2357 	list_add_tail(&page->lru, &head->lru);
2358 	page = NULL;			/* now it's attached, don't free it */
2359 out:
2360 	spin_unlock(&swap_lock);
2361 outer:
2362 	if (page)
2363 		__free_page(page);
2364 	return 0;
2365 }
2366 
2367 /*
2368  * swap_count_continued - when the original swap_map count is incremented
2369  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2370  * into, carry if so, or else fail until a new continuation page is allocated;
2371  * when the original swap_map count is decremented from 0 with continuation,
2372  * borrow from the continuation and report whether it still holds more.
2373  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2374  */
2375 static bool swap_count_continued(struct swap_info_struct *si,
2376 				 pgoff_t offset, unsigned char count)
2377 {
2378 	struct page *head;
2379 	struct page *page;
2380 	unsigned char *map;
2381 
2382 	head = vmalloc_to_page(si->swap_map + offset);
2383 	if (page_private(head) != SWP_CONTINUED) {
2384 		BUG_ON(count & COUNT_CONTINUED);
2385 		return false;		/* need to add count continuation */
2386 	}
2387 
2388 	offset &= ~PAGE_MASK;
2389 	page = list_entry(head->lru.next, struct page, lru);
2390 	map = kmap_atomic(page) + offset;
2391 
2392 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
2393 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
2394 
2395 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2396 		/*
2397 		 * Think of how you add 1 to 999
2398 		 */
2399 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2400 			kunmap_atomic(map);
2401 			page = list_entry(page->lru.next, struct page, lru);
2402 			BUG_ON(page == head);
2403 			map = kmap_atomic(page) + offset;
2404 		}
2405 		if (*map == SWAP_CONT_MAX) {
2406 			kunmap_atomic(map);
2407 			page = list_entry(page->lru.next, struct page, lru);
2408 			if (page == head)
2409 				return false;	/* add count continuation */
2410 			map = kmap_atomic(page) + offset;
2411 init_map:		*map = 0;		/* we didn't zero the page */
2412 		}
2413 		*map += 1;
2414 		kunmap_atomic(map);
2415 		page = list_entry(page->lru.prev, struct page, lru);
2416 		while (page != head) {
2417 			map = kmap_atomic(page) + offset;
2418 			*map = COUNT_CONTINUED;
2419 			kunmap_atomic(map);
2420 			page = list_entry(page->lru.prev, struct page, lru);
2421 		}
2422 		return true;			/* incremented */
2423 
2424 	} else {				/* decrementing */
2425 		/*
2426 		 * Think of how you subtract 1 from 1000
2427 		 */
2428 		BUG_ON(count != COUNT_CONTINUED);
2429 		while (*map == COUNT_CONTINUED) {
2430 			kunmap_atomic(map);
2431 			page = list_entry(page->lru.next, struct page, lru);
2432 			BUG_ON(page == head);
2433 			map = kmap_atomic(page) + offset;
2434 		}
2435 		BUG_ON(*map == 0);
2436 		*map -= 1;
2437 		if (*map == 0)
2438 			count = 0;
2439 		kunmap_atomic(map);
2440 		page = list_entry(page->lru.prev, struct page, lru);
2441 		while (page != head) {
2442 			map = kmap_atomic(page) + offset;
2443 			*map = SWAP_CONT_MAX | count;
2444 			count = COUNT_CONTINUED;
2445 			kunmap_atomic(map);
2446 			page = list_entry(page->lru.prev, struct page, lru);
2447 		}
2448 		return count == COUNT_CONTINUED;
2449 	}
2450 }
2451 
2452 /*
2453  * free_swap_count_continuations - swapoff free all the continuation pages
2454  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2455  */
2456 static void free_swap_count_continuations(struct swap_info_struct *si)
2457 {
2458 	pgoff_t offset;
2459 
2460 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2461 		struct page *head;
2462 		head = vmalloc_to_page(si->swap_map + offset);
2463 		if (page_private(head)) {
2464 			struct list_head *this, *next;
2465 			list_for_each_safe(this, next, &head->lru) {
2466 				struct page *page;
2467 				page = list_entry(this, struct page, lru);
2468 				list_del(this);
2469 				__free_page(page);
2470 			}
2471 		}
2472 	}
2473 }
2474