xref: /openbmc/linux/mm/swapfile.c (revision 0cabf991)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46 
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 				 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51 
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64 
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69 
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75 
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90 
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92 
93 static DEFINE_MUTEX(swapon_mutex);
94 
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98 
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100 
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103 	if (type >= READ_ONCE(nr_swapfiles))
104 		return NULL;
105 
106 	smp_rmb();	/* Pairs with smp_wmb in alloc_swap_info. */
107 	return READ_ONCE(swap_info[type]);
108 }
109 
110 static inline unsigned char swap_count(unsigned char ent)
111 {
112 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
113 }
114 
115 /* Reclaim the swap entry anyway if possible */
116 #define TTRS_ANYWAY		0x1
117 /*
118  * Reclaim the swap entry if there are no more mappings of the
119  * corresponding page
120  */
121 #define TTRS_UNMAPPED		0x2
122 /* Reclaim the swap entry if swap is getting full*/
123 #define TTRS_FULL		0x4
124 
125 /* returns 1 if swap entry is freed */
126 static int __try_to_reclaim_swap(struct swap_info_struct *si,
127 				 unsigned long offset, unsigned long flags)
128 {
129 	swp_entry_t entry = swp_entry(si->type, offset);
130 	struct page *page;
131 	int ret = 0;
132 
133 	page = find_get_page(swap_address_space(entry), offset);
134 	if (!page)
135 		return 0;
136 	/*
137 	 * When this function is called from scan_swap_map_slots() and it's
138 	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139 	 * here. We have to use trylock for avoiding deadlock. This is a special
140 	 * case and you should use try_to_free_swap() with explicit lock_page()
141 	 * in usual operations.
142 	 */
143 	if (trylock_page(page)) {
144 		if ((flags & TTRS_ANYWAY) ||
145 		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147 			ret = try_to_free_swap(page);
148 		unlock_page(page);
149 	}
150 	put_page(page);
151 	return ret;
152 }
153 
154 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155 {
156 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
157 	return rb_entry(rb, struct swap_extent, rb_node);
158 }
159 
160 static inline struct swap_extent *next_se(struct swap_extent *se)
161 {
162 	struct rb_node *rb = rb_next(&se->rb_node);
163 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
164 }
165 
166 /*
167  * swapon tell device that all the old swap contents can be discarded,
168  * to allow the swap device to optimize its wear-levelling.
169  */
170 static int discard_swap(struct swap_info_struct *si)
171 {
172 	struct swap_extent *se;
173 	sector_t start_block;
174 	sector_t nr_blocks;
175 	int err = 0;
176 
177 	/* Do not discard the swap header page! */
178 	se = first_se(si);
179 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181 	if (nr_blocks) {
182 		err = blkdev_issue_discard(si->bdev, start_block,
183 				nr_blocks, GFP_KERNEL, 0);
184 		if (err)
185 			return err;
186 		cond_resched();
187 	}
188 
189 	for (se = next_se(se); se; se = next_se(se)) {
190 		start_block = se->start_block << (PAGE_SHIFT - 9);
191 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
192 
193 		err = blkdev_issue_discard(si->bdev, start_block,
194 				nr_blocks, GFP_KERNEL, 0);
195 		if (err)
196 			break;
197 
198 		cond_resched();
199 	}
200 	return err;		/* That will often be -EOPNOTSUPP */
201 }
202 
203 static struct swap_extent *
204 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205 {
206 	struct swap_extent *se;
207 	struct rb_node *rb;
208 
209 	rb = sis->swap_extent_root.rb_node;
210 	while (rb) {
211 		se = rb_entry(rb, struct swap_extent, rb_node);
212 		if (offset < se->start_page)
213 			rb = rb->rb_left;
214 		else if (offset >= se->start_page + se->nr_pages)
215 			rb = rb->rb_right;
216 		else
217 			return se;
218 	}
219 	/* It *must* be present */
220 	BUG();
221 }
222 
223 /*
224  * swap allocation tell device that a cluster of swap can now be discarded,
225  * to allow the swap device to optimize its wear-levelling.
226  */
227 static void discard_swap_cluster(struct swap_info_struct *si,
228 				 pgoff_t start_page, pgoff_t nr_pages)
229 {
230 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
231 
232 	while (nr_pages) {
233 		pgoff_t offset = start_page - se->start_page;
234 		sector_t start_block = se->start_block + offset;
235 		sector_t nr_blocks = se->nr_pages - offset;
236 
237 		if (nr_blocks > nr_pages)
238 			nr_blocks = nr_pages;
239 		start_page += nr_blocks;
240 		nr_pages -= nr_blocks;
241 
242 		start_block <<= PAGE_SHIFT - 9;
243 		nr_blocks <<= PAGE_SHIFT - 9;
244 		if (blkdev_issue_discard(si->bdev, start_block,
245 					nr_blocks, GFP_NOIO, 0))
246 			break;
247 
248 		se = next_se(se);
249 	}
250 }
251 
252 #ifdef CONFIG_THP_SWAP
253 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
254 
255 #define swap_entry_size(size)	(size)
256 #else
257 #define SWAPFILE_CLUSTER	256
258 
259 /*
260  * Define swap_entry_size() as constant to let compiler to optimize
261  * out some code if !CONFIG_THP_SWAP
262  */
263 #define swap_entry_size(size)	1
264 #endif
265 #define LATENCY_LIMIT		256
266 
267 static inline void cluster_set_flag(struct swap_cluster_info *info,
268 	unsigned int flag)
269 {
270 	info->flags = flag;
271 }
272 
273 static inline unsigned int cluster_count(struct swap_cluster_info *info)
274 {
275 	return info->data;
276 }
277 
278 static inline void cluster_set_count(struct swap_cluster_info *info,
279 				     unsigned int c)
280 {
281 	info->data = c;
282 }
283 
284 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
285 					 unsigned int c, unsigned int f)
286 {
287 	info->flags = f;
288 	info->data = c;
289 }
290 
291 static inline unsigned int cluster_next(struct swap_cluster_info *info)
292 {
293 	return info->data;
294 }
295 
296 static inline void cluster_set_next(struct swap_cluster_info *info,
297 				    unsigned int n)
298 {
299 	info->data = n;
300 }
301 
302 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
303 					 unsigned int n, unsigned int f)
304 {
305 	info->flags = f;
306 	info->data = n;
307 }
308 
309 static inline bool cluster_is_free(struct swap_cluster_info *info)
310 {
311 	return info->flags & CLUSTER_FLAG_FREE;
312 }
313 
314 static inline bool cluster_is_null(struct swap_cluster_info *info)
315 {
316 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
317 }
318 
319 static inline void cluster_set_null(struct swap_cluster_info *info)
320 {
321 	info->flags = CLUSTER_FLAG_NEXT_NULL;
322 	info->data = 0;
323 }
324 
325 static inline bool cluster_is_huge(struct swap_cluster_info *info)
326 {
327 	if (IS_ENABLED(CONFIG_THP_SWAP))
328 		return info->flags & CLUSTER_FLAG_HUGE;
329 	return false;
330 }
331 
332 static inline void cluster_clear_huge(struct swap_cluster_info *info)
333 {
334 	info->flags &= ~CLUSTER_FLAG_HUGE;
335 }
336 
337 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
338 						     unsigned long offset)
339 {
340 	struct swap_cluster_info *ci;
341 
342 	ci = si->cluster_info;
343 	if (ci) {
344 		ci += offset / SWAPFILE_CLUSTER;
345 		spin_lock(&ci->lock);
346 	}
347 	return ci;
348 }
349 
350 static inline void unlock_cluster(struct swap_cluster_info *ci)
351 {
352 	if (ci)
353 		spin_unlock(&ci->lock);
354 }
355 
356 /*
357  * Determine the locking method in use for this device.  Return
358  * swap_cluster_info if SSD-style cluster-based locking is in place.
359  */
360 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
361 		struct swap_info_struct *si, unsigned long offset)
362 {
363 	struct swap_cluster_info *ci;
364 
365 	/* Try to use fine-grained SSD-style locking if available: */
366 	ci = lock_cluster(si, offset);
367 	/* Otherwise, fall back to traditional, coarse locking: */
368 	if (!ci)
369 		spin_lock(&si->lock);
370 
371 	return ci;
372 }
373 
374 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
375 					       struct swap_cluster_info *ci)
376 {
377 	if (ci)
378 		unlock_cluster(ci);
379 	else
380 		spin_unlock(&si->lock);
381 }
382 
383 static inline bool cluster_list_empty(struct swap_cluster_list *list)
384 {
385 	return cluster_is_null(&list->head);
386 }
387 
388 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
389 {
390 	return cluster_next(&list->head);
391 }
392 
393 static void cluster_list_init(struct swap_cluster_list *list)
394 {
395 	cluster_set_null(&list->head);
396 	cluster_set_null(&list->tail);
397 }
398 
399 static void cluster_list_add_tail(struct swap_cluster_list *list,
400 				  struct swap_cluster_info *ci,
401 				  unsigned int idx)
402 {
403 	if (cluster_list_empty(list)) {
404 		cluster_set_next_flag(&list->head, idx, 0);
405 		cluster_set_next_flag(&list->tail, idx, 0);
406 	} else {
407 		struct swap_cluster_info *ci_tail;
408 		unsigned int tail = cluster_next(&list->tail);
409 
410 		/*
411 		 * Nested cluster lock, but both cluster locks are
412 		 * only acquired when we held swap_info_struct->lock
413 		 */
414 		ci_tail = ci + tail;
415 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
416 		cluster_set_next(ci_tail, idx);
417 		spin_unlock(&ci_tail->lock);
418 		cluster_set_next_flag(&list->tail, idx, 0);
419 	}
420 }
421 
422 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
423 					   struct swap_cluster_info *ci)
424 {
425 	unsigned int idx;
426 
427 	idx = cluster_next(&list->head);
428 	if (cluster_next(&list->tail) == idx) {
429 		cluster_set_null(&list->head);
430 		cluster_set_null(&list->tail);
431 	} else
432 		cluster_set_next_flag(&list->head,
433 				      cluster_next(&ci[idx]), 0);
434 
435 	return idx;
436 }
437 
438 /* Add a cluster to discard list and schedule it to do discard */
439 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
440 		unsigned int idx)
441 {
442 	/*
443 	 * If scan_swap_map() can't find a free cluster, it will check
444 	 * si->swap_map directly. To make sure the discarding cluster isn't
445 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
446 	 * will be cleared after discard
447 	 */
448 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
449 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
450 
451 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
452 
453 	schedule_work(&si->discard_work);
454 }
455 
456 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
457 {
458 	struct swap_cluster_info *ci = si->cluster_info;
459 
460 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
461 	cluster_list_add_tail(&si->free_clusters, ci, idx);
462 }
463 
464 /*
465  * Doing discard actually. After a cluster discard is finished, the cluster
466  * will be added to free cluster list. caller should hold si->lock.
467 */
468 static void swap_do_scheduled_discard(struct swap_info_struct *si)
469 {
470 	struct swap_cluster_info *info, *ci;
471 	unsigned int idx;
472 
473 	info = si->cluster_info;
474 
475 	while (!cluster_list_empty(&si->discard_clusters)) {
476 		idx = cluster_list_del_first(&si->discard_clusters, info);
477 		spin_unlock(&si->lock);
478 
479 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
480 				SWAPFILE_CLUSTER);
481 
482 		spin_lock(&si->lock);
483 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
484 		__free_cluster(si, idx);
485 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
486 				0, SWAPFILE_CLUSTER);
487 		unlock_cluster(ci);
488 	}
489 }
490 
491 static void swap_discard_work(struct work_struct *work)
492 {
493 	struct swap_info_struct *si;
494 
495 	si = container_of(work, struct swap_info_struct, discard_work);
496 
497 	spin_lock(&si->lock);
498 	swap_do_scheduled_discard(si);
499 	spin_unlock(&si->lock);
500 }
501 
502 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
503 {
504 	struct swap_cluster_info *ci = si->cluster_info;
505 
506 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
507 	cluster_list_del_first(&si->free_clusters, ci);
508 	cluster_set_count_flag(ci + idx, 0, 0);
509 }
510 
511 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
512 {
513 	struct swap_cluster_info *ci = si->cluster_info + idx;
514 
515 	VM_BUG_ON(cluster_count(ci) != 0);
516 	/*
517 	 * If the swap is discardable, prepare discard the cluster
518 	 * instead of free it immediately. The cluster will be freed
519 	 * after discard.
520 	 */
521 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
522 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
523 		swap_cluster_schedule_discard(si, idx);
524 		return;
525 	}
526 
527 	__free_cluster(si, idx);
528 }
529 
530 /*
531  * The cluster corresponding to page_nr will be used. The cluster will be
532  * removed from free cluster list and its usage counter will be increased.
533  */
534 static void inc_cluster_info_page(struct swap_info_struct *p,
535 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
536 {
537 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
538 
539 	if (!cluster_info)
540 		return;
541 	if (cluster_is_free(&cluster_info[idx]))
542 		alloc_cluster(p, idx);
543 
544 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
545 	cluster_set_count(&cluster_info[idx],
546 		cluster_count(&cluster_info[idx]) + 1);
547 }
548 
549 /*
550  * The cluster corresponding to page_nr decreases one usage. If the usage
551  * counter becomes 0, which means no page in the cluster is in using, we can
552  * optionally discard the cluster and add it to free cluster list.
553  */
554 static void dec_cluster_info_page(struct swap_info_struct *p,
555 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
556 {
557 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558 
559 	if (!cluster_info)
560 		return;
561 
562 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
563 	cluster_set_count(&cluster_info[idx],
564 		cluster_count(&cluster_info[idx]) - 1);
565 
566 	if (cluster_count(&cluster_info[idx]) == 0)
567 		free_cluster(p, idx);
568 }
569 
570 /*
571  * It's possible scan_swap_map() uses a free cluster in the middle of free
572  * cluster list. Avoiding such abuse to avoid list corruption.
573  */
574 static bool
575 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
576 	unsigned long offset)
577 {
578 	struct percpu_cluster *percpu_cluster;
579 	bool conflict;
580 
581 	offset /= SWAPFILE_CLUSTER;
582 	conflict = !cluster_list_empty(&si->free_clusters) &&
583 		offset != cluster_list_first(&si->free_clusters) &&
584 		cluster_is_free(&si->cluster_info[offset]);
585 
586 	if (!conflict)
587 		return false;
588 
589 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
590 	cluster_set_null(&percpu_cluster->index);
591 	return true;
592 }
593 
594 /*
595  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
596  * might involve allocating a new cluster for current CPU too.
597  */
598 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
599 	unsigned long *offset, unsigned long *scan_base)
600 {
601 	struct percpu_cluster *cluster;
602 	struct swap_cluster_info *ci;
603 	unsigned long tmp, max;
604 
605 new_cluster:
606 	cluster = this_cpu_ptr(si->percpu_cluster);
607 	if (cluster_is_null(&cluster->index)) {
608 		if (!cluster_list_empty(&si->free_clusters)) {
609 			cluster->index = si->free_clusters.head;
610 			cluster->next = cluster_next(&cluster->index) *
611 					SWAPFILE_CLUSTER;
612 		} else if (!cluster_list_empty(&si->discard_clusters)) {
613 			/*
614 			 * we don't have free cluster but have some clusters in
615 			 * discarding, do discard now and reclaim them, then
616 			 * reread cluster_next_cpu since we dropped si->lock
617 			 */
618 			swap_do_scheduled_discard(si);
619 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
620 			*offset = *scan_base;
621 			goto new_cluster;
622 		} else
623 			return false;
624 	}
625 
626 	/*
627 	 * Other CPUs can use our cluster if they can't find a free cluster,
628 	 * check if there is still free entry in the cluster
629 	 */
630 	tmp = cluster->next;
631 	max = min_t(unsigned long, si->max,
632 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
633 	if (tmp < max) {
634 		ci = lock_cluster(si, tmp);
635 		while (tmp < max) {
636 			if (!si->swap_map[tmp])
637 				break;
638 			tmp++;
639 		}
640 		unlock_cluster(ci);
641 	}
642 	if (tmp >= max) {
643 		cluster_set_null(&cluster->index);
644 		goto new_cluster;
645 	}
646 	cluster->next = tmp + 1;
647 	*offset = tmp;
648 	*scan_base = tmp;
649 	return true;
650 }
651 
652 static void __del_from_avail_list(struct swap_info_struct *p)
653 {
654 	int nid;
655 
656 	for_each_node(nid)
657 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
658 }
659 
660 static void del_from_avail_list(struct swap_info_struct *p)
661 {
662 	spin_lock(&swap_avail_lock);
663 	__del_from_avail_list(p);
664 	spin_unlock(&swap_avail_lock);
665 }
666 
667 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
668 			     unsigned int nr_entries)
669 {
670 	unsigned int end = offset + nr_entries - 1;
671 
672 	if (offset == si->lowest_bit)
673 		si->lowest_bit += nr_entries;
674 	if (end == si->highest_bit)
675 		si->highest_bit -= nr_entries;
676 	si->inuse_pages += nr_entries;
677 	if (si->inuse_pages == si->pages) {
678 		si->lowest_bit = si->max;
679 		si->highest_bit = 0;
680 		del_from_avail_list(si);
681 	}
682 }
683 
684 static void add_to_avail_list(struct swap_info_struct *p)
685 {
686 	int nid;
687 
688 	spin_lock(&swap_avail_lock);
689 	for_each_node(nid) {
690 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
691 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
692 	}
693 	spin_unlock(&swap_avail_lock);
694 }
695 
696 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
697 			    unsigned int nr_entries)
698 {
699 	unsigned long begin = offset;
700 	unsigned long end = offset + nr_entries - 1;
701 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
702 
703 	if (offset < si->lowest_bit)
704 		si->lowest_bit = offset;
705 	if (end > si->highest_bit) {
706 		bool was_full = !si->highest_bit;
707 
708 		si->highest_bit = end;
709 		if (was_full && (si->flags & SWP_WRITEOK))
710 			add_to_avail_list(si);
711 	}
712 	atomic_long_add(nr_entries, &nr_swap_pages);
713 	si->inuse_pages -= nr_entries;
714 	if (si->flags & SWP_BLKDEV)
715 		swap_slot_free_notify =
716 			si->bdev->bd_disk->fops->swap_slot_free_notify;
717 	else
718 		swap_slot_free_notify = NULL;
719 	while (offset <= end) {
720 		frontswap_invalidate_page(si->type, offset);
721 		if (swap_slot_free_notify)
722 			swap_slot_free_notify(si->bdev, offset);
723 		offset++;
724 	}
725 	clear_shadow_from_swap_cache(si->type, begin, end);
726 }
727 
728 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
729 {
730 	unsigned long prev;
731 
732 	if (!(si->flags & SWP_SOLIDSTATE)) {
733 		si->cluster_next = next;
734 		return;
735 	}
736 
737 	prev = this_cpu_read(*si->cluster_next_cpu);
738 	/*
739 	 * Cross the swap address space size aligned trunk, choose
740 	 * another trunk randomly to avoid lock contention on swap
741 	 * address space if possible.
742 	 */
743 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
744 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
745 		/* No free swap slots available */
746 		if (si->highest_bit <= si->lowest_bit)
747 			return;
748 		next = si->lowest_bit +
749 			prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
750 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
751 		next = max_t(unsigned int, next, si->lowest_bit);
752 	}
753 	this_cpu_write(*si->cluster_next_cpu, next);
754 }
755 
756 static int scan_swap_map_slots(struct swap_info_struct *si,
757 			       unsigned char usage, int nr,
758 			       swp_entry_t slots[])
759 {
760 	struct swap_cluster_info *ci;
761 	unsigned long offset;
762 	unsigned long scan_base;
763 	unsigned long last_in_cluster = 0;
764 	int latency_ration = LATENCY_LIMIT;
765 	int n_ret = 0;
766 	bool scanned_many = false;
767 
768 	/*
769 	 * We try to cluster swap pages by allocating them sequentially
770 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
771 	 * way, however, we resort to first-free allocation, starting
772 	 * a new cluster.  This prevents us from scattering swap pages
773 	 * all over the entire swap partition, so that we reduce
774 	 * overall disk seek times between swap pages.  -- sct
775 	 * But we do now try to find an empty cluster.  -Andrea
776 	 * And we let swap pages go all over an SSD partition.  Hugh
777 	 */
778 
779 	si->flags += SWP_SCANNING;
780 	/*
781 	 * Use percpu scan base for SSD to reduce lock contention on
782 	 * cluster and swap cache.  For HDD, sequential access is more
783 	 * important.
784 	 */
785 	if (si->flags & SWP_SOLIDSTATE)
786 		scan_base = this_cpu_read(*si->cluster_next_cpu);
787 	else
788 		scan_base = si->cluster_next;
789 	offset = scan_base;
790 
791 	/* SSD algorithm */
792 	if (si->cluster_info) {
793 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
794 			goto scan;
795 	} else if (unlikely(!si->cluster_nr--)) {
796 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
797 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
798 			goto checks;
799 		}
800 
801 		spin_unlock(&si->lock);
802 
803 		/*
804 		 * If seek is expensive, start searching for new cluster from
805 		 * start of partition, to minimize the span of allocated swap.
806 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
807 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
808 		 */
809 		scan_base = offset = si->lowest_bit;
810 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
811 
812 		/* Locate the first empty (unaligned) cluster */
813 		for (; last_in_cluster <= si->highest_bit; offset++) {
814 			if (si->swap_map[offset])
815 				last_in_cluster = offset + SWAPFILE_CLUSTER;
816 			else if (offset == last_in_cluster) {
817 				spin_lock(&si->lock);
818 				offset -= SWAPFILE_CLUSTER - 1;
819 				si->cluster_next = offset;
820 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
821 				goto checks;
822 			}
823 			if (unlikely(--latency_ration < 0)) {
824 				cond_resched();
825 				latency_ration = LATENCY_LIMIT;
826 			}
827 		}
828 
829 		offset = scan_base;
830 		spin_lock(&si->lock);
831 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
832 	}
833 
834 checks:
835 	if (si->cluster_info) {
836 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
837 		/* take a break if we already got some slots */
838 			if (n_ret)
839 				goto done;
840 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
841 							&scan_base))
842 				goto scan;
843 		}
844 	}
845 	if (!(si->flags & SWP_WRITEOK))
846 		goto no_page;
847 	if (!si->highest_bit)
848 		goto no_page;
849 	if (offset > si->highest_bit)
850 		scan_base = offset = si->lowest_bit;
851 
852 	ci = lock_cluster(si, offset);
853 	/* reuse swap entry of cache-only swap if not busy. */
854 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
855 		int swap_was_freed;
856 		unlock_cluster(ci);
857 		spin_unlock(&si->lock);
858 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
859 		spin_lock(&si->lock);
860 		/* entry was freed successfully, try to use this again */
861 		if (swap_was_freed)
862 			goto checks;
863 		goto scan; /* check next one */
864 	}
865 
866 	if (si->swap_map[offset]) {
867 		unlock_cluster(ci);
868 		if (!n_ret)
869 			goto scan;
870 		else
871 			goto done;
872 	}
873 	si->swap_map[offset] = usage;
874 	inc_cluster_info_page(si, si->cluster_info, offset);
875 	unlock_cluster(ci);
876 
877 	swap_range_alloc(si, offset, 1);
878 	slots[n_ret++] = swp_entry(si->type, offset);
879 
880 	/* got enough slots or reach max slots? */
881 	if ((n_ret == nr) || (offset >= si->highest_bit))
882 		goto done;
883 
884 	/* search for next available slot */
885 
886 	/* time to take a break? */
887 	if (unlikely(--latency_ration < 0)) {
888 		if (n_ret)
889 			goto done;
890 		spin_unlock(&si->lock);
891 		cond_resched();
892 		spin_lock(&si->lock);
893 		latency_ration = LATENCY_LIMIT;
894 	}
895 
896 	/* try to get more slots in cluster */
897 	if (si->cluster_info) {
898 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
899 			goto checks;
900 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
901 		/* non-ssd case, still more slots in cluster? */
902 		--si->cluster_nr;
903 		goto checks;
904 	}
905 
906 	/*
907 	 * Even if there's no free clusters available (fragmented),
908 	 * try to scan a little more quickly with lock held unless we
909 	 * have scanned too many slots already.
910 	 */
911 	if (!scanned_many) {
912 		unsigned long scan_limit;
913 
914 		if (offset < scan_base)
915 			scan_limit = scan_base;
916 		else
917 			scan_limit = si->highest_bit;
918 		for (; offset <= scan_limit && --latency_ration > 0;
919 		     offset++) {
920 			if (!si->swap_map[offset])
921 				goto checks;
922 		}
923 	}
924 
925 done:
926 	set_cluster_next(si, offset + 1);
927 	si->flags -= SWP_SCANNING;
928 	return n_ret;
929 
930 scan:
931 	spin_unlock(&si->lock);
932 	while (++offset <= si->highest_bit) {
933 		if (!si->swap_map[offset]) {
934 			spin_lock(&si->lock);
935 			goto checks;
936 		}
937 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
938 			spin_lock(&si->lock);
939 			goto checks;
940 		}
941 		if (unlikely(--latency_ration < 0)) {
942 			cond_resched();
943 			latency_ration = LATENCY_LIMIT;
944 			scanned_many = true;
945 		}
946 	}
947 	offset = si->lowest_bit;
948 	while (offset < scan_base) {
949 		if (!si->swap_map[offset]) {
950 			spin_lock(&si->lock);
951 			goto checks;
952 		}
953 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
954 			spin_lock(&si->lock);
955 			goto checks;
956 		}
957 		if (unlikely(--latency_ration < 0)) {
958 			cond_resched();
959 			latency_ration = LATENCY_LIMIT;
960 			scanned_many = true;
961 		}
962 		offset++;
963 	}
964 	spin_lock(&si->lock);
965 
966 no_page:
967 	si->flags -= SWP_SCANNING;
968 	return n_ret;
969 }
970 
971 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
972 {
973 	unsigned long idx;
974 	struct swap_cluster_info *ci;
975 	unsigned long offset, i;
976 	unsigned char *map;
977 
978 	/*
979 	 * Should not even be attempting cluster allocations when huge
980 	 * page swap is disabled.  Warn and fail the allocation.
981 	 */
982 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
983 		VM_WARN_ON_ONCE(1);
984 		return 0;
985 	}
986 
987 	if (cluster_list_empty(&si->free_clusters))
988 		return 0;
989 
990 	idx = cluster_list_first(&si->free_clusters);
991 	offset = idx * SWAPFILE_CLUSTER;
992 	ci = lock_cluster(si, offset);
993 	alloc_cluster(si, idx);
994 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
995 
996 	map = si->swap_map + offset;
997 	for (i = 0; i < SWAPFILE_CLUSTER; i++)
998 		map[i] = SWAP_HAS_CACHE;
999 	unlock_cluster(ci);
1000 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1001 	*slot = swp_entry(si->type, offset);
1002 
1003 	return 1;
1004 }
1005 
1006 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1007 {
1008 	unsigned long offset = idx * SWAPFILE_CLUSTER;
1009 	struct swap_cluster_info *ci;
1010 
1011 	ci = lock_cluster(si, offset);
1012 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1013 	cluster_set_count_flag(ci, 0, 0);
1014 	free_cluster(si, idx);
1015 	unlock_cluster(ci);
1016 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1017 }
1018 
1019 static unsigned long scan_swap_map(struct swap_info_struct *si,
1020 				   unsigned char usage)
1021 {
1022 	swp_entry_t entry;
1023 	int n_ret;
1024 
1025 	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1026 
1027 	if (n_ret)
1028 		return swp_offset(entry);
1029 	else
1030 		return 0;
1031 
1032 }
1033 
1034 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1035 {
1036 	unsigned long size = swap_entry_size(entry_size);
1037 	struct swap_info_struct *si, *next;
1038 	long avail_pgs;
1039 	int n_ret = 0;
1040 	int node;
1041 
1042 	/* Only single cluster request supported */
1043 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1044 
1045 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1046 	if (avail_pgs <= 0)
1047 		goto noswap;
1048 
1049 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1050 
1051 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1052 
1053 	spin_lock(&swap_avail_lock);
1054 
1055 start_over:
1056 	node = numa_node_id();
1057 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1058 		/* requeue si to after same-priority siblings */
1059 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1060 		spin_unlock(&swap_avail_lock);
1061 		spin_lock(&si->lock);
1062 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1063 			spin_lock(&swap_avail_lock);
1064 			if (plist_node_empty(&si->avail_lists[node])) {
1065 				spin_unlock(&si->lock);
1066 				goto nextsi;
1067 			}
1068 			WARN(!si->highest_bit,
1069 			     "swap_info %d in list but !highest_bit\n",
1070 			     si->type);
1071 			WARN(!(si->flags & SWP_WRITEOK),
1072 			     "swap_info %d in list but !SWP_WRITEOK\n",
1073 			     si->type);
1074 			__del_from_avail_list(si);
1075 			spin_unlock(&si->lock);
1076 			goto nextsi;
1077 		}
1078 		if (size == SWAPFILE_CLUSTER) {
1079 			if (!(si->flags & SWP_FS))
1080 				n_ret = swap_alloc_cluster(si, swp_entries);
1081 		} else
1082 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1083 						    n_goal, swp_entries);
1084 		spin_unlock(&si->lock);
1085 		if (n_ret || size == SWAPFILE_CLUSTER)
1086 			goto check_out;
1087 		pr_debug("scan_swap_map of si %d failed to find offset\n",
1088 			si->type);
1089 
1090 		spin_lock(&swap_avail_lock);
1091 nextsi:
1092 		/*
1093 		 * if we got here, it's likely that si was almost full before,
1094 		 * and since scan_swap_map() can drop the si->lock, multiple
1095 		 * callers probably all tried to get a page from the same si
1096 		 * and it filled up before we could get one; or, the si filled
1097 		 * up between us dropping swap_avail_lock and taking si->lock.
1098 		 * Since we dropped the swap_avail_lock, the swap_avail_head
1099 		 * list may have been modified; so if next is still in the
1100 		 * swap_avail_head list then try it, otherwise start over
1101 		 * if we have not gotten any slots.
1102 		 */
1103 		if (plist_node_empty(&next->avail_lists[node]))
1104 			goto start_over;
1105 	}
1106 
1107 	spin_unlock(&swap_avail_lock);
1108 
1109 check_out:
1110 	if (n_ret < n_goal)
1111 		atomic_long_add((long)(n_goal - n_ret) * size,
1112 				&nr_swap_pages);
1113 noswap:
1114 	return n_ret;
1115 }
1116 
1117 /* The only caller of this function is now suspend routine */
1118 swp_entry_t get_swap_page_of_type(int type)
1119 {
1120 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1121 	pgoff_t offset;
1122 
1123 	if (!si)
1124 		goto fail;
1125 
1126 	spin_lock(&si->lock);
1127 	if (si->flags & SWP_WRITEOK) {
1128 		atomic_long_dec(&nr_swap_pages);
1129 		/* This is called for allocating swap entry, not cache */
1130 		offset = scan_swap_map(si, 1);
1131 		if (offset) {
1132 			spin_unlock(&si->lock);
1133 			return swp_entry(type, offset);
1134 		}
1135 		atomic_long_inc(&nr_swap_pages);
1136 	}
1137 	spin_unlock(&si->lock);
1138 fail:
1139 	return (swp_entry_t) {0};
1140 }
1141 
1142 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1143 {
1144 	struct swap_info_struct *p;
1145 	unsigned long offset;
1146 
1147 	if (!entry.val)
1148 		goto out;
1149 	p = swp_swap_info(entry);
1150 	if (!p)
1151 		goto bad_nofile;
1152 	if (!(p->flags & SWP_USED))
1153 		goto bad_device;
1154 	offset = swp_offset(entry);
1155 	if (offset >= p->max)
1156 		goto bad_offset;
1157 	return p;
1158 
1159 bad_offset:
1160 	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1161 	goto out;
1162 bad_device:
1163 	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1164 	goto out;
1165 bad_nofile:
1166 	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1167 out:
1168 	return NULL;
1169 }
1170 
1171 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1172 {
1173 	struct swap_info_struct *p;
1174 
1175 	p = __swap_info_get(entry);
1176 	if (!p)
1177 		goto out;
1178 	if (!p->swap_map[swp_offset(entry)])
1179 		goto bad_free;
1180 	return p;
1181 
1182 bad_free:
1183 	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1184 	goto out;
1185 out:
1186 	return NULL;
1187 }
1188 
1189 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1190 {
1191 	struct swap_info_struct *p;
1192 
1193 	p = _swap_info_get(entry);
1194 	if (p)
1195 		spin_lock(&p->lock);
1196 	return p;
1197 }
1198 
1199 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1200 					struct swap_info_struct *q)
1201 {
1202 	struct swap_info_struct *p;
1203 
1204 	p = _swap_info_get(entry);
1205 
1206 	if (p != q) {
1207 		if (q != NULL)
1208 			spin_unlock(&q->lock);
1209 		if (p != NULL)
1210 			spin_lock(&p->lock);
1211 	}
1212 	return p;
1213 }
1214 
1215 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1216 					      unsigned long offset,
1217 					      unsigned char usage)
1218 {
1219 	unsigned char count;
1220 	unsigned char has_cache;
1221 
1222 	count = p->swap_map[offset];
1223 
1224 	has_cache = count & SWAP_HAS_CACHE;
1225 	count &= ~SWAP_HAS_CACHE;
1226 
1227 	if (usage == SWAP_HAS_CACHE) {
1228 		VM_BUG_ON(!has_cache);
1229 		has_cache = 0;
1230 	} else if (count == SWAP_MAP_SHMEM) {
1231 		/*
1232 		 * Or we could insist on shmem.c using a special
1233 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1234 		 */
1235 		count = 0;
1236 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1237 		if (count == COUNT_CONTINUED) {
1238 			if (swap_count_continued(p, offset, count))
1239 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1240 			else
1241 				count = SWAP_MAP_MAX;
1242 		} else
1243 			count--;
1244 	}
1245 
1246 	usage = count | has_cache;
1247 	p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1248 
1249 	return usage;
1250 }
1251 
1252 /*
1253  * Check whether swap entry is valid in the swap device.  If so,
1254  * return pointer to swap_info_struct, and keep the swap entry valid
1255  * via preventing the swap device from being swapoff, until
1256  * put_swap_device() is called.  Otherwise return NULL.
1257  *
1258  * The entirety of the RCU read critical section must come before the
1259  * return from or after the call to synchronize_rcu() in
1260  * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1261  * true, the si->map, si->cluster_info, etc. must be valid in the
1262  * critical section.
1263  *
1264  * Notice that swapoff or swapoff+swapon can still happen before the
1265  * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1266  * in put_swap_device() if there isn't any other way to prevent
1267  * swapoff, such as page lock, page table lock, etc.  The caller must
1268  * be prepared for that.  For example, the following situation is
1269  * possible.
1270  *
1271  *   CPU1				CPU2
1272  *   do_swap_page()
1273  *     ...				swapoff+swapon
1274  *     __read_swap_cache_async()
1275  *       swapcache_prepare()
1276  *         __swap_duplicate()
1277  *           // check swap_map
1278  *     // verify PTE not changed
1279  *
1280  * In __swap_duplicate(), the swap_map need to be checked before
1281  * changing partly because the specified swap entry may be for another
1282  * swap device which has been swapoff.  And in do_swap_page(), after
1283  * the page is read from the swap device, the PTE is verified not
1284  * changed with the page table locked to check whether the swap device
1285  * has been swapoff or swapoff+swapon.
1286  */
1287 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1288 {
1289 	struct swap_info_struct *si;
1290 	unsigned long offset;
1291 
1292 	if (!entry.val)
1293 		goto out;
1294 	si = swp_swap_info(entry);
1295 	if (!si)
1296 		goto bad_nofile;
1297 
1298 	rcu_read_lock();
1299 	if (!(si->flags & SWP_VALID))
1300 		goto unlock_out;
1301 	offset = swp_offset(entry);
1302 	if (offset >= si->max)
1303 		goto unlock_out;
1304 
1305 	return si;
1306 bad_nofile:
1307 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1308 out:
1309 	return NULL;
1310 unlock_out:
1311 	rcu_read_unlock();
1312 	return NULL;
1313 }
1314 
1315 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1316 				       swp_entry_t entry)
1317 {
1318 	struct swap_cluster_info *ci;
1319 	unsigned long offset = swp_offset(entry);
1320 	unsigned char usage;
1321 
1322 	ci = lock_cluster_or_swap_info(p, offset);
1323 	usage = __swap_entry_free_locked(p, offset, 1);
1324 	unlock_cluster_or_swap_info(p, ci);
1325 	if (!usage)
1326 		free_swap_slot(entry);
1327 
1328 	return usage;
1329 }
1330 
1331 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1332 {
1333 	struct swap_cluster_info *ci;
1334 	unsigned long offset = swp_offset(entry);
1335 	unsigned char count;
1336 
1337 	ci = lock_cluster(p, offset);
1338 	count = p->swap_map[offset];
1339 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1340 	p->swap_map[offset] = 0;
1341 	dec_cluster_info_page(p, p->cluster_info, offset);
1342 	unlock_cluster(ci);
1343 
1344 	mem_cgroup_uncharge_swap(entry, 1);
1345 	swap_range_free(p, offset, 1);
1346 }
1347 
1348 /*
1349  * Caller has made sure that the swap device corresponding to entry
1350  * is still around or has not been recycled.
1351  */
1352 void swap_free(swp_entry_t entry)
1353 {
1354 	struct swap_info_struct *p;
1355 
1356 	p = _swap_info_get(entry);
1357 	if (p)
1358 		__swap_entry_free(p, entry);
1359 }
1360 
1361 /*
1362  * Called after dropping swapcache to decrease refcnt to swap entries.
1363  */
1364 void put_swap_page(struct page *page, swp_entry_t entry)
1365 {
1366 	unsigned long offset = swp_offset(entry);
1367 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1368 	struct swap_cluster_info *ci;
1369 	struct swap_info_struct *si;
1370 	unsigned char *map;
1371 	unsigned int i, free_entries = 0;
1372 	unsigned char val;
1373 	int size = swap_entry_size(hpage_nr_pages(page));
1374 
1375 	si = _swap_info_get(entry);
1376 	if (!si)
1377 		return;
1378 
1379 	ci = lock_cluster_or_swap_info(si, offset);
1380 	if (size == SWAPFILE_CLUSTER) {
1381 		VM_BUG_ON(!cluster_is_huge(ci));
1382 		map = si->swap_map + offset;
1383 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1384 			val = map[i];
1385 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1386 			if (val == SWAP_HAS_CACHE)
1387 				free_entries++;
1388 		}
1389 		cluster_clear_huge(ci);
1390 		if (free_entries == SWAPFILE_CLUSTER) {
1391 			unlock_cluster_or_swap_info(si, ci);
1392 			spin_lock(&si->lock);
1393 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1394 			swap_free_cluster(si, idx);
1395 			spin_unlock(&si->lock);
1396 			return;
1397 		}
1398 	}
1399 	for (i = 0; i < size; i++, entry.val++) {
1400 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1401 			unlock_cluster_or_swap_info(si, ci);
1402 			free_swap_slot(entry);
1403 			if (i == size - 1)
1404 				return;
1405 			lock_cluster_or_swap_info(si, offset);
1406 		}
1407 	}
1408 	unlock_cluster_or_swap_info(si, ci);
1409 }
1410 
1411 #ifdef CONFIG_THP_SWAP
1412 int split_swap_cluster(swp_entry_t entry)
1413 {
1414 	struct swap_info_struct *si;
1415 	struct swap_cluster_info *ci;
1416 	unsigned long offset = swp_offset(entry);
1417 
1418 	si = _swap_info_get(entry);
1419 	if (!si)
1420 		return -EBUSY;
1421 	ci = lock_cluster(si, offset);
1422 	cluster_clear_huge(ci);
1423 	unlock_cluster(ci);
1424 	return 0;
1425 }
1426 #endif
1427 
1428 static int swp_entry_cmp(const void *ent1, const void *ent2)
1429 {
1430 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1431 
1432 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1433 }
1434 
1435 void swapcache_free_entries(swp_entry_t *entries, int n)
1436 {
1437 	struct swap_info_struct *p, *prev;
1438 	int i;
1439 
1440 	if (n <= 0)
1441 		return;
1442 
1443 	prev = NULL;
1444 	p = NULL;
1445 
1446 	/*
1447 	 * Sort swap entries by swap device, so each lock is only taken once.
1448 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1449 	 * so low that it isn't necessary to optimize further.
1450 	 */
1451 	if (nr_swapfiles > 1)
1452 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1453 	for (i = 0; i < n; ++i) {
1454 		p = swap_info_get_cont(entries[i], prev);
1455 		if (p)
1456 			swap_entry_free(p, entries[i]);
1457 		prev = p;
1458 	}
1459 	if (p)
1460 		spin_unlock(&p->lock);
1461 }
1462 
1463 /*
1464  * How many references to page are currently swapped out?
1465  * This does not give an exact answer when swap count is continued,
1466  * but does include the high COUNT_CONTINUED flag to allow for that.
1467  */
1468 int page_swapcount(struct page *page)
1469 {
1470 	int count = 0;
1471 	struct swap_info_struct *p;
1472 	struct swap_cluster_info *ci;
1473 	swp_entry_t entry;
1474 	unsigned long offset;
1475 
1476 	entry.val = page_private(page);
1477 	p = _swap_info_get(entry);
1478 	if (p) {
1479 		offset = swp_offset(entry);
1480 		ci = lock_cluster_or_swap_info(p, offset);
1481 		count = swap_count(p->swap_map[offset]);
1482 		unlock_cluster_or_swap_info(p, ci);
1483 	}
1484 	return count;
1485 }
1486 
1487 int __swap_count(swp_entry_t entry)
1488 {
1489 	struct swap_info_struct *si;
1490 	pgoff_t offset = swp_offset(entry);
1491 	int count = 0;
1492 
1493 	si = get_swap_device(entry);
1494 	if (si) {
1495 		count = swap_count(si->swap_map[offset]);
1496 		put_swap_device(si);
1497 	}
1498 	return count;
1499 }
1500 
1501 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1502 {
1503 	int count = 0;
1504 	pgoff_t offset = swp_offset(entry);
1505 	struct swap_cluster_info *ci;
1506 
1507 	ci = lock_cluster_or_swap_info(si, offset);
1508 	count = swap_count(si->swap_map[offset]);
1509 	unlock_cluster_or_swap_info(si, ci);
1510 	return count;
1511 }
1512 
1513 /*
1514  * How many references to @entry are currently swapped out?
1515  * This does not give an exact answer when swap count is continued,
1516  * but does include the high COUNT_CONTINUED flag to allow for that.
1517  */
1518 int __swp_swapcount(swp_entry_t entry)
1519 {
1520 	int count = 0;
1521 	struct swap_info_struct *si;
1522 
1523 	si = get_swap_device(entry);
1524 	if (si) {
1525 		count = swap_swapcount(si, entry);
1526 		put_swap_device(si);
1527 	}
1528 	return count;
1529 }
1530 
1531 /*
1532  * How many references to @entry are currently swapped out?
1533  * This considers COUNT_CONTINUED so it returns exact answer.
1534  */
1535 int swp_swapcount(swp_entry_t entry)
1536 {
1537 	int count, tmp_count, n;
1538 	struct swap_info_struct *p;
1539 	struct swap_cluster_info *ci;
1540 	struct page *page;
1541 	pgoff_t offset;
1542 	unsigned char *map;
1543 
1544 	p = _swap_info_get(entry);
1545 	if (!p)
1546 		return 0;
1547 
1548 	offset = swp_offset(entry);
1549 
1550 	ci = lock_cluster_or_swap_info(p, offset);
1551 
1552 	count = swap_count(p->swap_map[offset]);
1553 	if (!(count & COUNT_CONTINUED))
1554 		goto out;
1555 
1556 	count &= ~COUNT_CONTINUED;
1557 	n = SWAP_MAP_MAX + 1;
1558 
1559 	page = vmalloc_to_page(p->swap_map + offset);
1560 	offset &= ~PAGE_MASK;
1561 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1562 
1563 	do {
1564 		page = list_next_entry(page, lru);
1565 		map = kmap_atomic(page);
1566 		tmp_count = map[offset];
1567 		kunmap_atomic(map);
1568 
1569 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1570 		n *= (SWAP_CONT_MAX + 1);
1571 	} while (tmp_count & COUNT_CONTINUED);
1572 out:
1573 	unlock_cluster_or_swap_info(p, ci);
1574 	return count;
1575 }
1576 
1577 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1578 					 swp_entry_t entry)
1579 {
1580 	struct swap_cluster_info *ci;
1581 	unsigned char *map = si->swap_map;
1582 	unsigned long roffset = swp_offset(entry);
1583 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1584 	int i;
1585 	bool ret = false;
1586 
1587 	ci = lock_cluster_or_swap_info(si, offset);
1588 	if (!ci || !cluster_is_huge(ci)) {
1589 		if (swap_count(map[roffset]))
1590 			ret = true;
1591 		goto unlock_out;
1592 	}
1593 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1594 		if (swap_count(map[offset + i])) {
1595 			ret = true;
1596 			break;
1597 		}
1598 	}
1599 unlock_out:
1600 	unlock_cluster_or_swap_info(si, ci);
1601 	return ret;
1602 }
1603 
1604 static bool page_swapped(struct page *page)
1605 {
1606 	swp_entry_t entry;
1607 	struct swap_info_struct *si;
1608 
1609 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1610 		return page_swapcount(page) != 0;
1611 
1612 	page = compound_head(page);
1613 	entry.val = page_private(page);
1614 	si = _swap_info_get(entry);
1615 	if (si)
1616 		return swap_page_trans_huge_swapped(si, entry);
1617 	return false;
1618 }
1619 
1620 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1621 					 int *total_swapcount)
1622 {
1623 	int i, map_swapcount, _total_mapcount, _total_swapcount;
1624 	unsigned long offset = 0;
1625 	struct swap_info_struct *si;
1626 	struct swap_cluster_info *ci = NULL;
1627 	unsigned char *map = NULL;
1628 	int mapcount, swapcount = 0;
1629 
1630 	/* hugetlbfs shouldn't call it */
1631 	VM_BUG_ON_PAGE(PageHuge(page), page);
1632 
1633 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1634 		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1635 		if (PageSwapCache(page))
1636 			swapcount = page_swapcount(page);
1637 		if (total_swapcount)
1638 			*total_swapcount = swapcount;
1639 		return mapcount + swapcount;
1640 	}
1641 
1642 	page = compound_head(page);
1643 
1644 	_total_mapcount = _total_swapcount = map_swapcount = 0;
1645 	if (PageSwapCache(page)) {
1646 		swp_entry_t entry;
1647 
1648 		entry.val = page_private(page);
1649 		si = _swap_info_get(entry);
1650 		if (si) {
1651 			map = si->swap_map;
1652 			offset = swp_offset(entry);
1653 		}
1654 	}
1655 	if (map)
1656 		ci = lock_cluster(si, offset);
1657 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1658 		mapcount = atomic_read(&page[i]._mapcount) + 1;
1659 		_total_mapcount += mapcount;
1660 		if (map) {
1661 			swapcount = swap_count(map[offset + i]);
1662 			_total_swapcount += swapcount;
1663 		}
1664 		map_swapcount = max(map_swapcount, mapcount + swapcount);
1665 	}
1666 	unlock_cluster(ci);
1667 	if (PageDoubleMap(page)) {
1668 		map_swapcount -= 1;
1669 		_total_mapcount -= HPAGE_PMD_NR;
1670 	}
1671 	mapcount = compound_mapcount(page);
1672 	map_swapcount += mapcount;
1673 	_total_mapcount += mapcount;
1674 	if (total_mapcount)
1675 		*total_mapcount = _total_mapcount;
1676 	if (total_swapcount)
1677 		*total_swapcount = _total_swapcount;
1678 
1679 	return map_swapcount;
1680 }
1681 
1682 /*
1683  * We can write to an anon page without COW if there are no other references
1684  * to it.  And as a side-effect, free up its swap: because the old content
1685  * on disk will never be read, and seeking back there to write new content
1686  * later would only waste time away from clustering.
1687  *
1688  * NOTE: total_map_swapcount should not be relied upon by the caller if
1689  * reuse_swap_page() returns false, but it may be always overwritten
1690  * (see the other implementation for CONFIG_SWAP=n).
1691  */
1692 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1693 {
1694 	int count, total_mapcount, total_swapcount;
1695 
1696 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1697 	if (unlikely(PageKsm(page)))
1698 		return false;
1699 	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1700 					      &total_swapcount);
1701 	if (total_map_swapcount)
1702 		*total_map_swapcount = total_mapcount + total_swapcount;
1703 	if (count == 1 && PageSwapCache(page) &&
1704 	    (likely(!PageTransCompound(page)) ||
1705 	     /* The remaining swap count will be freed soon */
1706 	     total_swapcount == page_swapcount(page))) {
1707 		if (!PageWriteback(page)) {
1708 			page = compound_head(page);
1709 			delete_from_swap_cache(page);
1710 			SetPageDirty(page);
1711 		} else {
1712 			swp_entry_t entry;
1713 			struct swap_info_struct *p;
1714 
1715 			entry.val = page_private(page);
1716 			p = swap_info_get(entry);
1717 			if (p->flags & SWP_STABLE_WRITES) {
1718 				spin_unlock(&p->lock);
1719 				return false;
1720 			}
1721 			spin_unlock(&p->lock);
1722 		}
1723 	}
1724 
1725 	return count <= 1;
1726 }
1727 
1728 /*
1729  * If swap is getting full, or if there are no more mappings of this page,
1730  * then try_to_free_swap is called to free its swap space.
1731  */
1732 int try_to_free_swap(struct page *page)
1733 {
1734 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1735 
1736 	if (!PageSwapCache(page))
1737 		return 0;
1738 	if (PageWriteback(page))
1739 		return 0;
1740 	if (page_swapped(page))
1741 		return 0;
1742 
1743 	/*
1744 	 * Once hibernation has begun to create its image of memory,
1745 	 * there's a danger that one of the calls to try_to_free_swap()
1746 	 * - most probably a call from __try_to_reclaim_swap() while
1747 	 * hibernation is allocating its own swap pages for the image,
1748 	 * but conceivably even a call from memory reclaim - will free
1749 	 * the swap from a page which has already been recorded in the
1750 	 * image as a clean swapcache page, and then reuse its swap for
1751 	 * another page of the image.  On waking from hibernation, the
1752 	 * original page might be freed under memory pressure, then
1753 	 * later read back in from swap, now with the wrong data.
1754 	 *
1755 	 * Hibernation suspends storage while it is writing the image
1756 	 * to disk so check that here.
1757 	 */
1758 	if (pm_suspended_storage())
1759 		return 0;
1760 
1761 	page = compound_head(page);
1762 	delete_from_swap_cache(page);
1763 	SetPageDirty(page);
1764 	return 1;
1765 }
1766 
1767 /*
1768  * Free the swap entry like above, but also try to
1769  * free the page cache entry if it is the last user.
1770  */
1771 int free_swap_and_cache(swp_entry_t entry)
1772 {
1773 	struct swap_info_struct *p;
1774 	unsigned char count;
1775 
1776 	if (non_swap_entry(entry))
1777 		return 1;
1778 
1779 	p = _swap_info_get(entry);
1780 	if (p) {
1781 		count = __swap_entry_free(p, entry);
1782 		if (count == SWAP_HAS_CACHE &&
1783 		    !swap_page_trans_huge_swapped(p, entry))
1784 			__try_to_reclaim_swap(p, swp_offset(entry),
1785 					      TTRS_UNMAPPED | TTRS_FULL);
1786 	}
1787 	return p != NULL;
1788 }
1789 
1790 #ifdef CONFIG_HIBERNATION
1791 /*
1792  * Find the swap type that corresponds to given device (if any).
1793  *
1794  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1795  * from 0, in which the swap header is expected to be located.
1796  *
1797  * This is needed for the suspend to disk (aka swsusp).
1798  */
1799 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1800 {
1801 	struct block_device *bdev = NULL;
1802 	int type;
1803 
1804 	if (device)
1805 		bdev = bdget(device);
1806 
1807 	spin_lock(&swap_lock);
1808 	for (type = 0; type < nr_swapfiles; type++) {
1809 		struct swap_info_struct *sis = swap_info[type];
1810 
1811 		if (!(sis->flags & SWP_WRITEOK))
1812 			continue;
1813 
1814 		if (!bdev) {
1815 			if (bdev_p)
1816 				*bdev_p = bdgrab(sis->bdev);
1817 
1818 			spin_unlock(&swap_lock);
1819 			return type;
1820 		}
1821 		if (bdev == sis->bdev) {
1822 			struct swap_extent *se = first_se(sis);
1823 
1824 			if (se->start_block == offset) {
1825 				if (bdev_p)
1826 					*bdev_p = bdgrab(sis->bdev);
1827 
1828 				spin_unlock(&swap_lock);
1829 				bdput(bdev);
1830 				return type;
1831 			}
1832 		}
1833 	}
1834 	spin_unlock(&swap_lock);
1835 	if (bdev)
1836 		bdput(bdev);
1837 
1838 	return -ENODEV;
1839 }
1840 
1841 /*
1842  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1843  * corresponding to given index in swap_info (swap type).
1844  */
1845 sector_t swapdev_block(int type, pgoff_t offset)
1846 {
1847 	struct block_device *bdev;
1848 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1849 
1850 	if (!si || !(si->flags & SWP_WRITEOK))
1851 		return 0;
1852 	return map_swap_entry(swp_entry(type, offset), &bdev);
1853 }
1854 
1855 /*
1856  * Return either the total number of swap pages of given type, or the number
1857  * of free pages of that type (depending on @free)
1858  *
1859  * This is needed for software suspend
1860  */
1861 unsigned int count_swap_pages(int type, int free)
1862 {
1863 	unsigned int n = 0;
1864 
1865 	spin_lock(&swap_lock);
1866 	if ((unsigned int)type < nr_swapfiles) {
1867 		struct swap_info_struct *sis = swap_info[type];
1868 
1869 		spin_lock(&sis->lock);
1870 		if (sis->flags & SWP_WRITEOK) {
1871 			n = sis->pages;
1872 			if (free)
1873 				n -= sis->inuse_pages;
1874 		}
1875 		spin_unlock(&sis->lock);
1876 	}
1877 	spin_unlock(&swap_lock);
1878 	return n;
1879 }
1880 #endif /* CONFIG_HIBERNATION */
1881 
1882 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1883 {
1884 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1885 }
1886 
1887 /*
1888  * No need to decide whether this PTE shares the swap entry with others,
1889  * just let do_wp_page work it out if a write is requested later - to
1890  * force COW, vm_page_prot omits write permission from any private vma.
1891  */
1892 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1893 		unsigned long addr, swp_entry_t entry, struct page *page)
1894 {
1895 	struct page *swapcache;
1896 	spinlock_t *ptl;
1897 	pte_t *pte;
1898 	int ret = 1;
1899 
1900 	swapcache = page;
1901 	page = ksm_might_need_to_copy(page, vma, addr);
1902 	if (unlikely(!page))
1903 		return -ENOMEM;
1904 
1905 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1906 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1907 		ret = 0;
1908 		goto out;
1909 	}
1910 
1911 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1912 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1913 	get_page(page);
1914 	set_pte_at(vma->vm_mm, addr, pte,
1915 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1916 	if (page == swapcache) {
1917 		page_add_anon_rmap(page, vma, addr, false);
1918 	} else { /* ksm created a completely new copy */
1919 		page_add_new_anon_rmap(page, vma, addr, false);
1920 		lru_cache_add_inactive_or_unevictable(page, vma);
1921 	}
1922 	swap_free(entry);
1923 	/*
1924 	 * Move the page to the active list so it is not
1925 	 * immediately swapped out again after swapon.
1926 	 */
1927 	activate_page(page);
1928 out:
1929 	pte_unmap_unlock(pte, ptl);
1930 	if (page != swapcache) {
1931 		unlock_page(page);
1932 		put_page(page);
1933 	}
1934 	return ret;
1935 }
1936 
1937 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1938 			unsigned long addr, unsigned long end,
1939 			unsigned int type, bool frontswap,
1940 			unsigned long *fs_pages_to_unuse)
1941 {
1942 	struct page *page;
1943 	swp_entry_t entry;
1944 	pte_t *pte;
1945 	struct swap_info_struct *si;
1946 	unsigned long offset;
1947 	int ret = 0;
1948 	volatile unsigned char *swap_map;
1949 
1950 	si = swap_info[type];
1951 	pte = pte_offset_map(pmd, addr);
1952 	do {
1953 		struct vm_fault vmf;
1954 
1955 		if (!is_swap_pte(*pte))
1956 			continue;
1957 
1958 		entry = pte_to_swp_entry(*pte);
1959 		if (swp_type(entry) != type)
1960 			continue;
1961 
1962 		offset = swp_offset(entry);
1963 		if (frontswap && !frontswap_test(si, offset))
1964 			continue;
1965 
1966 		pte_unmap(pte);
1967 		swap_map = &si->swap_map[offset];
1968 		page = lookup_swap_cache(entry, vma, addr);
1969 		if (!page) {
1970 			vmf.vma = vma;
1971 			vmf.address = addr;
1972 			vmf.pmd = pmd;
1973 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1974 						&vmf);
1975 		}
1976 		if (!page) {
1977 			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1978 				goto try_next;
1979 			return -ENOMEM;
1980 		}
1981 
1982 		lock_page(page);
1983 		wait_on_page_writeback(page);
1984 		ret = unuse_pte(vma, pmd, addr, entry, page);
1985 		if (ret < 0) {
1986 			unlock_page(page);
1987 			put_page(page);
1988 			goto out;
1989 		}
1990 
1991 		try_to_free_swap(page);
1992 		unlock_page(page);
1993 		put_page(page);
1994 
1995 		if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1996 			ret = FRONTSWAP_PAGES_UNUSED;
1997 			goto out;
1998 		}
1999 try_next:
2000 		pte = pte_offset_map(pmd, addr);
2001 	} while (pte++, addr += PAGE_SIZE, addr != end);
2002 	pte_unmap(pte - 1);
2003 
2004 	ret = 0;
2005 out:
2006 	return ret;
2007 }
2008 
2009 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2010 				unsigned long addr, unsigned long end,
2011 				unsigned int type, bool frontswap,
2012 				unsigned long *fs_pages_to_unuse)
2013 {
2014 	pmd_t *pmd;
2015 	unsigned long next;
2016 	int ret;
2017 
2018 	pmd = pmd_offset(pud, addr);
2019 	do {
2020 		cond_resched();
2021 		next = pmd_addr_end(addr, end);
2022 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2023 			continue;
2024 		ret = unuse_pte_range(vma, pmd, addr, next, type,
2025 				      frontswap, fs_pages_to_unuse);
2026 		if (ret)
2027 			return ret;
2028 	} while (pmd++, addr = next, addr != end);
2029 	return 0;
2030 }
2031 
2032 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2033 				unsigned long addr, unsigned long end,
2034 				unsigned int type, bool frontswap,
2035 				unsigned long *fs_pages_to_unuse)
2036 {
2037 	pud_t *pud;
2038 	unsigned long next;
2039 	int ret;
2040 
2041 	pud = pud_offset(p4d, addr);
2042 	do {
2043 		next = pud_addr_end(addr, end);
2044 		if (pud_none_or_clear_bad(pud))
2045 			continue;
2046 		ret = unuse_pmd_range(vma, pud, addr, next, type,
2047 				      frontswap, fs_pages_to_unuse);
2048 		if (ret)
2049 			return ret;
2050 	} while (pud++, addr = next, addr != end);
2051 	return 0;
2052 }
2053 
2054 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2055 				unsigned long addr, unsigned long end,
2056 				unsigned int type, bool frontswap,
2057 				unsigned long *fs_pages_to_unuse)
2058 {
2059 	p4d_t *p4d;
2060 	unsigned long next;
2061 	int ret;
2062 
2063 	p4d = p4d_offset(pgd, addr);
2064 	do {
2065 		next = p4d_addr_end(addr, end);
2066 		if (p4d_none_or_clear_bad(p4d))
2067 			continue;
2068 		ret = unuse_pud_range(vma, p4d, addr, next, type,
2069 				      frontswap, fs_pages_to_unuse);
2070 		if (ret)
2071 			return ret;
2072 	} while (p4d++, addr = next, addr != end);
2073 	return 0;
2074 }
2075 
2076 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2077 		     bool frontswap, unsigned long *fs_pages_to_unuse)
2078 {
2079 	pgd_t *pgd;
2080 	unsigned long addr, end, next;
2081 	int ret;
2082 
2083 	addr = vma->vm_start;
2084 	end = vma->vm_end;
2085 
2086 	pgd = pgd_offset(vma->vm_mm, addr);
2087 	do {
2088 		next = pgd_addr_end(addr, end);
2089 		if (pgd_none_or_clear_bad(pgd))
2090 			continue;
2091 		ret = unuse_p4d_range(vma, pgd, addr, next, type,
2092 				      frontswap, fs_pages_to_unuse);
2093 		if (ret)
2094 			return ret;
2095 	} while (pgd++, addr = next, addr != end);
2096 	return 0;
2097 }
2098 
2099 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2100 		    bool frontswap, unsigned long *fs_pages_to_unuse)
2101 {
2102 	struct vm_area_struct *vma;
2103 	int ret = 0;
2104 
2105 	mmap_read_lock(mm);
2106 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2107 		if (vma->anon_vma) {
2108 			ret = unuse_vma(vma, type, frontswap,
2109 					fs_pages_to_unuse);
2110 			if (ret)
2111 				break;
2112 		}
2113 		cond_resched();
2114 	}
2115 	mmap_read_unlock(mm);
2116 	return ret;
2117 }
2118 
2119 /*
2120  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2121  * from current position to next entry still in use. Return 0
2122  * if there are no inuse entries after prev till end of the map.
2123  */
2124 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2125 					unsigned int prev, bool frontswap)
2126 {
2127 	unsigned int i;
2128 	unsigned char count;
2129 
2130 	/*
2131 	 * No need for swap_lock here: we're just looking
2132 	 * for whether an entry is in use, not modifying it; false
2133 	 * hits are okay, and sys_swapoff() has already prevented new
2134 	 * allocations from this area (while holding swap_lock).
2135 	 */
2136 	for (i = prev + 1; i < si->max; i++) {
2137 		count = READ_ONCE(si->swap_map[i]);
2138 		if (count && swap_count(count) != SWAP_MAP_BAD)
2139 			if (!frontswap || frontswap_test(si, i))
2140 				break;
2141 		if ((i % LATENCY_LIMIT) == 0)
2142 			cond_resched();
2143 	}
2144 
2145 	if (i == si->max)
2146 		i = 0;
2147 
2148 	return i;
2149 }
2150 
2151 /*
2152  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2153  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2154  */
2155 int try_to_unuse(unsigned int type, bool frontswap,
2156 		 unsigned long pages_to_unuse)
2157 {
2158 	struct mm_struct *prev_mm;
2159 	struct mm_struct *mm;
2160 	struct list_head *p;
2161 	int retval = 0;
2162 	struct swap_info_struct *si = swap_info[type];
2163 	struct page *page;
2164 	swp_entry_t entry;
2165 	unsigned int i;
2166 
2167 	if (!READ_ONCE(si->inuse_pages))
2168 		return 0;
2169 
2170 	if (!frontswap)
2171 		pages_to_unuse = 0;
2172 
2173 retry:
2174 	retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2175 	if (retval)
2176 		goto out;
2177 
2178 	prev_mm = &init_mm;
2179 	mmget(prev_mm);
2180 
2181 	spin_lock(&mmlist_lock);
2182 	p = &init_mm.mmlist;
2183 	while (READ_ONCE(si->inuse_pages) &&
2184 	       !signal_pending(current) &&
2185 	       (p = p->next) != &init_mm.mmlist) {
2186 
2187 		mm = list_entry(p, struct mm_struct, mmlist);
2188 		if (!mmget_not_zero(mm))
2189 			continue;
2190 		spin_unlock(&mmlist_lock);
2191 		mmput(prev_mm);
2192 		prev_mm = mm;
2193 		retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2194 
2195 		if (retval) {
2196 			mmput(prev_mm);
2197 			goto out;
2198 		}
2199 
2200 		/*
2201 		 * Make sure that we aren't completely killing
2202 		 * interactive performance.
2203 		 */
2204 		cond_resched();
2205 		spin_lock(&mmlist_lock);
2206 	}
2207 	spin_unlock(&mmlist_lock);
2208 
2209 	mmput(prev_mm);
2210 
2211 	i = 0;
2212 	while (READ_ONCE(si->inuse_pages) &&
2213 	       !signal_pending(current) &&
2214 	       (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2215 
2216 		entry = swp_entry(type, i);
2217 		page = find_get_page(swap_address_space(entry), i);
2218 		if (!page)
2219 			continue;
2220 
2221 		/*
2222 		 * It is conceivable that a racing task removed this page from
2223 		 * swap cache just before we acquired the page lock. The page
2224 		 * might even be back in swap cache on another swap area. But
2225 		 * that is okay, try_to_free_swap() only removes stale pages.
2226 		 */
2227 		lock_page(page);
2228 		wait_on_page_writeback(page);
2229 		try_to_free_swap(page);
2230 		unlock_page(page);
2231 		put_page(page);
2232 
2233 		/*
2234 		 * For frontswap, we just need to unuse pages_to_unuse, if
2235 		 * it was specified. Need not check frontswap again here as
2236 		 * we already zeroed out pages_to_unuse if not frontswap.
2237 		 */
2238 		if (pages_to_unuse && --pages_to_unuse == 0)
2239 			goto out;
2240 	}
2241 
2242 	/*
2243 	 * Lets check again to see if there are still swap entries in the map.
2244 	 * If yes, we would need to do retry the unuse logic again.
2245 	 * Under global memory pressure, swap entries can be reinserted back
2246 	 * into process space after the mmlist loop above passes over them.
2247 	 *
2248 	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2249 	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2250 	 * at its own independent pace; and even shmem_writepage() could have
2251 	 * been preempted after get_swap_page(), temporarily hiding that swap.
2252 	 * It's easy and robust (though cpu-intensive) just to keep retrying.
2253 	 */
2254 	if (READ_ONCE(si->inuse_pages)) {
2255 		if (!signal_pending(current))
2256 			goto retry;
2257 		retval = -EINTR;
2258 	}
2259 out:
2260 	return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2261 }
2262 
2263 /*
2264  * After a successful try_to_unuse, if no swap is now in use, we know
2265  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2266  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2267  * added to the mmlist just after page_duplicate - before would be racy.
2268  */
2269 static void drain_mmlist(void)
2270 {
2271 	struct list_head *p, *next;
2272 	unsigned int type;
2273 
2274 	for (type = 0; type < nr_swapfiles; type++)
2275 		if (swap_info[type]->inuse_pages)
2276 			return;
2277 	spin_lock(&mmlist_lock);
2278 	list_for_each_safe(p, next, &init_mm.mmlist)
2279 		list_del_init(p);
2280 	spin_unlock(&mmlist_lock);
2281 }
2282 
2283 /*
2284  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2285  * corresponds to page offset for the specified swap entry.
2286  * Note that the type of this function is sector_t, but it returns page offset
2287  * into the bdev, not sector offset.
2288  */
2289 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2290 {
2291 	struct swap_info_struct *sis;
2292 	struct swap_extent *se;
2293 	pgoff_t offset;
2294 
2295 	sis = swp_swap_info(entry);
2296 	*bdev = sis->bdev;
2297 
2298 	offset = swp_offset(entry);
2299 	se = offset_to_swap_extent(sis, offset);
2300 	return se->start_block + (offset - se->start_page);
2301 }
2302 
2303 /*
2304  * Returns the page offset into bdev for the specified page's swap entry.
2305  */
2306 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2307 {
2308 	swp_entry_t entry;
2309 	entry.val = page_private(page);
2310 	return map_swap_entry(entry, bdev);
2311 }
2312 
2313 /*
2314  * Free all of a swapdev's extent information
2315  */
2316 static void destroy_swap_extents(struct swap_info_struct *sis)
2317 {
2318 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2319 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2320 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2321 
2322 		rb_erase(rb, &sis->swap_extent_root);
2323 		kfree(se);
2324 	}
2325 
2326 	if (sis->flags & SWP_ACTIVATED) {
2327 		struct file *swap_file = sis->swap_file;
2328 		struct address_space *mapping = swap_file->f_mapping;
2329 
2330 		sis->flags &= ~SWP_ACTIVATED;
2331 		if (mapping->a_ops->swap_deactivate)
2332 			mapping->a_ops->swap_deactivate(swap_file);
2333 	}
2334 }
2335 
2336 /*
2337  * Add a block range (and the corresponding page range) into this swapdev's
2338  * extent tree.
2339  *
2340  * This function rather assumes that it is called in ascending page order.
2341  */
2342 int
2343 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2344 		unsigned long nr_pages, sector_t start_block)
2345 {
2346 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2347 	struct swap_extent *se;
2348 	struct swap_extent *new_se;
2349 
2350 	/*
2351 	 * place the new node at the right most since the
2352 	 * function is called in ascending page order.
2353 	 */
2354 	while (*link) {
2355 		parent = *link;
2356 		link = &parent->rb_right;
2357 	}
2358 
2359 	if (parent) {
2360 		se = rb_entry(parent, struct swap_extent, rb_node);
2361 		BUG_ON(se->start_page + se->nr_pages != start_page);
2362 		if (se->start_block + se->nr_pages == start_block) {
2363 			/* Merge it */
2364 			se->nr_pages += nr_pages;
2365 			return 0;
2366 		}
2367 	}
2368 
2369 	/* No merge, insert a new extent. */
2370 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2371 	if (new_se == NULL)
2372 		return -ENOMEM;
2373 	new_se->start_page = start_page;
2374 	new_se->nr_pages = nr_pages;
2375 	new_se->start_block = start_block;
2376 
2377 	rb_link_node(&new_se->rb_node, parent, link);
2378 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2379 	return 1;
2380 }
2381 EXPORT_SYMBOL_GPL(add_swap_extent);
2382 
2383 /*
2384  * A `swap extent' is a simple thing which maps a contiguous range of pages
2385  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2386  * is built at swapon time and is then used at swap_writepage/swap_readpage
2387  * time for locating where on disk a page belongs.
2388  *
2389  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2390  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2391  * swap files identically.
2392  *
2393  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2394  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2395  * swapfiles are handled *identically* after swapon time.
2396  *
2397  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2398  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2399  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2400  * requirements, they are simply tossed out - we will never use those blocks
2401  * for swapping.
2402  *
2403  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2404  * prevents users from writing to the swap device, which will corrupt memory.
2405  *
2406  * The amount of disk space which a single swap extent represents varies.
2407  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2408  * extents in the list.  To avoid much list walking, we cache the previous
2409  * search location in `curr_swap_extent', and start new searches from there.
2410  * This is extremely effective.  The average number of iterations in
2411  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2412  */
2413 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2414 {
2415 	struct file *swap_file = sis->swap_file;
2416 	struct address_space *mapping = swap_file->f_mapping;
2417 	struct inode *inode = mapping->host;
2418 	int ret;
2419 
2420 	if (S_ISBLK(inode->i_mode)) {
2421 		ret = add_swap_extent(sis, 0, sis->max, 0);
2422 		*span = sis->pages;
2423 		return ret;
2424 	}
2425 
2426 	if (mapping->a_ops->swap_activate) {
2427 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2428 		if (ret >= 0)
2429 			sis->flags |= SWP_ACTIVATED;
2430 		if (!ret) {
2431 			sis->flags |= SWP_FS;
2432 			ret = add_swap_extent(sis, 0, sis->max, 0);
2433 			*span = sis->pages;
2434 		}
2435 		return ret;
2436 	}
2437 
2438 	return generic_swapfile_activate(sis, swap_file, span);
2439 }
2440 
2441 static int swap_node(struct swap_info_struct *p)
2442 {
2443 	struct block_device *bdev;
2444 
2445 	if (p->bdev)
2446 		bdev = p->bdev;
2447 	else
2448 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2449 
2450 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2451 }
2452 
2453 static void setup_swap_info(struct swap_info_struct *p, int prio,
2454 			    unsigned char *swap_map,
2455 			    struct swap_cluster_info *cluster_info)
2456 {
2457 	int i;
2458 
2459 	if (prio >= 0)
2460 		p->prio = prio;
2461 	else
2462 		p->prio = --least_priority;
2463 	/*
2464 	 * the plist prio is negated because plist ordering is
2465 	 * low-to-high, while swap ordering is high-to-low
2466 	 */
2467 	p->list.prio = -p->prio;
2468 	for_each_node(i) {
2469 		if (p->prio >= 0)
2470 			p->avail_lists[i].prio = -p->prio;
2471 		else {
2472 			if (swap_node(p) == i)
2473 				p->avail_lists[i].prio = 1;
2474 			else
2475 				p->avail_lists[i].prio = -p->prio;
2476 		}
2477 	}
2478 	p->swap_map = swap_map;
2479 	p->cluster_info = cluster_info;
2480 }
2481 
2482 static void _enable_swap_info(struct swap_info_struct *p)
2483 {
2484 	p->flags |= SWP_WRITEOK | SWP_VALID;
2485 	atomic_long_add(p->pages, &nr_swap_pages);
2486 	total_swap_pages += p->pages;
2487 
2488 	assert_spin_locked(&swap_lock);
2489 	/*
2490 	 * both lists are plists, and thus priority ordered.
2491 	 * swap_active_head needs to be priority ordered for swapoff(),
2492 	 * which on removal of any swap_info_struct with an auto-assigned
2493 	 * (i.e. negative) priority increments the auto-assigned priority
2494 	 * of any lower-priority swap_info_structs.
2495 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2496 	 * which allocates swap pages from the highest available priority
2497 	 * swap_info_struct.
2498 	 */
2499 	plist_add(&p->list, &swap_active_head);
2500 	add_to_avail_list(p);
2501 }
2502 
2503 static void enable_swap_info(struct swap_info_struct *p, int prio,
2504 				unsigned char *swap_map,
2505 				struct swap_cluster_info *cluster_info,
2506 				unsigned long *frontswap_map)
2507 {
2508 	frontswap_init(p->type, frontswap_map);
2509 	spin_lock(&swap_lock);
2510 	spin_lock(&p->lock);
2511 	setup_swap_info(p, prio, swap_map, cluster_info);
2512 	spin_unlock(&p->lock);
2513 	spin_unlock(&swap_lock);
2514 	/*
2515 	 * Guarantee swap_map, cluster_info, etc. fields are valid
2516 	 * between get/put_swap_device() if SWP_VALID bit is set
2517 	 */
2518 	synchronize_rcu();
2519 	spin_lock(&swap_lock);
2520 	spin_lock(&p->lock);
2521 	_enable_swap_info(p);
2522 	spin_unlock(&p->lock);
2523 	spin_unlock(&swap_lock);
2524 }
2525 
2526 static void reinsert_swap_info(struct swap_info_struct *p)
2527 {
2528 	spin_lock(&swap_lock);
2529 	spin_lock(&p->lock);
2530 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2531 	_enable_swap_info(p);
2532 	spin_unlock(&p->lock);
2533 	spin_unlock(&swap_lock);
2534 }
2535 
2536 bool has_usable_swap(void)
2537 {
2538 	bool ret = true;
2539 
2540 	spin_lock(&swap_lock);
2541 	if (plist_head_empty(&swap_active_head))
2542 		ret = false;
2543 	spin_unlock(&swap_lock);
2544 	return ret;
2545 }
2546 
2547 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2548 {
2549 	struct swap_info_struct *p = NULL;
2550 	unsigned char *swap_map;
2551 	struct swap_cluster_info *cluster_info;
2552 	unsigned long *frontswap_map;
2553 	struct file *swap_file, *victim;
2554 	struct address_space *mapping;
2555 	struct inode *inode;
2556 	struct filename *pathname;
2557 	int err, found = 0;
2558 	unsigned int old_block_size;
2559 
2560 	if (!capable(CAP_SYS_ADMIN))
2561 		return -EPERM;
2562 
2563 	BUG_ON(!current->mm);
2564 
2565 	pathname = getname(specialfile);
2566 	if (IS_ERR(pathname))
2567 		return PTR_ERR(pathname);
2568 
2569 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2570 	err = PTR_ERR(victim);
2571 	if (IS_ERR(victim))
2572 		goto out;
2573 
2574 	mapping = victim->f_mapping;
2575 	spin_lock(&swap_lock);
2576 	plist_for_each_entry(p, &swap_active_head, list) {
2577 		if (p->flags & SWP_WRITEOK) {
2578 			if (p->swap_file->f_mapping == mapping) {
2579 				found = 1;
2580 				break;
2581 			}
2582 		}
2583 	}
2584 	if (!found) {
2585 		err = -EINVAL;
2586 		spin_unlock(&swap_lock);
2587 		goto out_dput;
2588 	}
2589 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2590 		vm_unacct_memory(p->pages);
2591 	else {
2592 		err = -ENOMEM;
2593 		spin_unlock(&swap_lock);
2594 		goto out_dput;
2595 	}
2596 	del_from_avail_list(p);
2597 	spin_lock(&p->lock);
2598 	if (p->prio < 0) {
2599 		struct swap_info_struct *si = p;
2600 		int nid;
2601 
2602 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2603 			si->prio++;
2604 			si->list.prio--;
2605 			for_each_node(nid) {
2606 				if (si->avail_lists[nid].prio != 1)
2607 					si->avail_lists[nid].prio--;
2608 			}
2609 		}
2610 		least_priority++;
2611 	}
2612 	plist_del(&p->list, &swap_active_head);
2613 	atomic_long_sub(p->pages, &nr_swap_pages);
2614 	total_swap_pages -= p->pages;
2615 	p->flags &= ~SWP_WRITEOK;
2616 	spin_unlock(&p->lock);
2617 	spin_unlock(&swap_lock);
2618 
2619 	disable_swap_slots_cache_lock();
2620 
2621 	set_current_oom_origin();
2622 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2623 	clear_current_oom_origin();
2624 
2625 	if (err) {
2626 		/* re-insert swap space back into swap_list */
2627 		reinsert_swap_info(p);
2628 		reenable_swap_slots_cache_unlock();
2629 		goto out_dput;
2630 	}
2631 
2632 	reenable_swap_slots_cache_unlock();
2633 
2634 	spin_lock(&swap_lock);
2635 	spin_lock(&p->lock);
2636 	p->flags &= ~SWP_VALID;		/* mark swap device as invalid */
2637 	spin_unlock(&p->lock);
2638 	spin_unlock(&swap_lock);
2639 	/*
2640 	 * wait for swap operations protected by get/put_swap_device()
2641 	 * to complete
2642 	 */
2643 	synchronize_rcu();
2644 
2645 	flush_work(&p->discard_work);
2646 
2647 	destroy_swap_extents(p);
2648 	if (p->flags & SWP_CONTINUED)
2649 		free_swap_count_continuations(p);
2650 
2651 	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2652 		atomic_dec(&nr_rotate_swap);
2653 
2654 	mutex_lock(&swapon_mutex);
2655 	spin_lock(&swap_lock);
2656 	spin_lock(&p->lock);
2657 	drain_mmlist();
2658 
2659 	/* wait for anyone still in scan_swap_map */
2660 	p->highest_bit = 0;		/* cuts scans short */
2661 	while (p->flags >= SWP_SCANNING) {
2662 		spin_unlock(&p->lock);
2663 		spin_unlock(&swap_lock);
2664 		schedule_timeout_uninterruptible(1);
2665 		spin_lock(&swap_lock);
2666 		spin_lock(&p->lock);
2667 	}
2668 
2669 	swap_file = p->swap_file;
2670 	old_block_size = p->old_block_size;
2671 	p->swap_file = NULL;
2672 	p->max = 0;
2673 	swap_map = p->swap_map;
2674 	p->swap_map = NULL;
2675 	cluster_info = p->cluster_info;
2676 	p->cluster_info = NULL;
2677 	frontswap_map = frontswap_map_get(p);
2678 	spin_unlock(&p->lock);
2679 	spin_unlock(&swap_lock);
2680 	frontswap_invalidate_area(p->type);
2681 	frontswap_map_set(p, NULL);
2682 	mutex_unlock(&swapon_mutex);
2683 	free_percpu(p->percpu_cluster);
2684 	p->percpu_cluster = NULL;
2685 	free_percpu(p->cluster_next_cpu);
2686 	p->cluster_next_cpu = NULL;
2687 	vfree(swap_map);
2688 	kvfree(cluster_info);
2689 	kvfree(frontswap_map);
2690 	/* Destroy swap account information */
2691 	swap_cgroup_swapoff(p->type);
2692 	exit_swap_address_space(p->type);
2693 
2694 	inode = mapping->host;
2695 	if (S_ISBLK(inode->i_mode)) {
2696 		struct block_device *bdev = I_BDEV(inode);
2697 
2698 		set_blocksize(bdev, old_block_size);
2699 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2700 	}
2701 
2702 	inode_lock(inode);
2703 	inode->i_flags &= ~S_SWAPFILE;
2704 	inode_unlock(inode);
2705 	filp_close(swap_file, NULL);
2706 
2707 	/*
2708 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2709 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2710 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2711 	 */
2712 	spin_lock(&swap_lock);
2713 	p->flags = 0;
2714 	spin_unlock(&swap_lock);
2715 
2716 	err = 0;
2717 	atomic_inc(&proc_poll_event);
2718 	wake_up_interruptible(&proc_poll_wait);
2719 
2720 out_dput:
2721 	filp_close(victim, NULL);
2722 out:
2723 	putname(pathname);
2724 	return err;
2725 }
2726 
2727 #ifdef CONFIG_PROC_FS
2728 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2729 {
2730 	struct seq_file *seq = file->private_data;
2731 
2732 	poll_wait(file, &proc_poll_wait, wait);
2733 
2734 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2735 		seq->poll_event = atomic_read(&proc_poll_event);
2736 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2737 	}
2738 
2739 	return EPOLLIN | EPOLLRDNORM;
2740 }
2741 
2742 /* iterator */
2743 static void *swap_start(struct seq_file *swap, loff_t *pos)
2744 {
2745 	struct swap_info_struct *si;
2746 	int type;
2747 	loff_t l = *pos;
2748 
2749 	mutex_lock(&swapon_mutex);
2750 
2751 	if (!l)
2752 		return SEQ_START_TOKEN;
2753 
2754 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2755 		if (!(si->flags & SWP_USED) || !si->swap_map)
2756 			continue;
2757 		if (!--l)
2758 			return si;
2759 	}
2760 
2761 	return NULL;
2762 }
2763 
2764 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2765 {
2766 	struct swap_info_struct *si = v;
2767 	int type;
2768 
2769 	if (v == SEQ_START_TOKEN)
2770 		type = 0;
2771 	else
2772 		type = si->type + 1;
2773 
2774 	++(*pos);
2775 	for (; (si = swap_type_to_swap_info(type)); type++) {
2776 		if (!(si->flags & SWP_USED) || !si->swap_map)
2777 			continue;
2778 		return si;
2779 	}
2780 
2781 	return NULL;
2782 }
2783 
2784 static void swap_stop(struct seq_file *swap, void *v)
2785 {
2786 	mutex_unlock(&swapon_mutex);
2787 }
2788 
2789 static int swap_show(struct seq_file *swap, void *v)
2790 {
2791 	struct swap_info_struct *si = v;
2792 	struct file *file;
2793 	int len;
2794 	unsigned int bytes, inuse;
2795 
2796 	if (si == SEQ_START_TOKEN) {
2797 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2798 		return 0;
2799 	}
2800 
2801 	bytes = si->pages << (PAGE_SHIFT - 10);
2802 	inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2803 
2804 	file = si->swap_file;
2805 	len = seq_file_path(swap, file, " \t\n\\");
2806 	seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2807 			len < 40 ? 40 - len : 1, " ",
2808 			S_ISBLK(file_inode(file)->i_mode) ?
2809 				"partition" : "file\t",
2810 			bytes, bytes < 10000000 ? "\t" : "",
2811 			inuse, inuse < 10000000 ? "\t" : "",
2812 			si->prio);
2813 	return 0;
2814 }
2815 
2816 static const struct seq_operations swaps_op = {
2817 	.start =	swap_start,
2818 	.next =		swap_next,
2819 	.stop =		swap_stop,
2820 	.show =		swap_show
2821 };
2822 
2823 static int swaps_open(struct inode *inode, struct file *file)
2824 {
2825 	struct seq_file *seq;
2826 	int ret;
2827 
2828 	ret = seq_open(file, &swaps_op);
2829 	if (ret)
2830 		return ret;
2831 
2832 	seq = file->private_data;
2833 	seq->poll_event = atomic_read(&proc_poll_event);
2834 	return 0;
2835 }
2836 
2837 static const struct proc_ops swaps_proc_ops = {
2838 	.proc_flags	= PROC_ENTRY_PERMANENT,
2839 	.proc_open	= swaps_open,
2840 	.proc_read	= seq_read,
2841 	.proc_lseek	= seq_lseek,
2842 	.proc_release	= seq_release,
2843 	.proc_poll	= swaps_poll,
2844 };
2845 
2846 static int __init procswaps_init(void)
2847 {
2848 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2849 	return 0;
2850 }
2851 __initcall(procswaps_init);
2852 #endif /* CONFIG_PROC_FS */
2853 
2854 #ifdef MAX_SWAPFILES_CHECK
2855 static int __init max_swapfiles_check(void)
2856 {
2857 	MAX_SWAPFILES_CHECK();
2858 	return 0;
2859 }
2860 late_initcall(max_swapfiles_check);
2861 #endif
2862 
2863 static struct swap_info_struct *alloc_swap_info(void)
2864 {
2865 	struct swap_info_struct *p;
2866 	unsigned int type;
2867 	int i;
2868 
2869 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2870 	if (!p)
2871 		return ERR_PTR(-ENOMEM);
2872 
2873 	spin_lock(&swap_lock);
2874 	for (type = 0; type < nr_swapfiles; type++) {
2875 		if (!(swap_info[type]->flags & SWP_USED))
2876 			break;
2877 	}
2878 	if (type >= MAX_SWAPFILES) {
2879 		spin_unlock(&swap_lock);
2880 		kvfree(p);
2881 		return ERR_PTR(-EPERM);
2882 	}
2883 	if (type >= nr_swapfiles) {
2884 		p->type = type;
2885 		WRITE_ONCE(swap_info[type], p);
2886 		/*
2887 		 * Write swap_info[type] before nr_swapfiles, in case a
2888 		 * racing procfs swap_start() or swap_next() is reading them.
2889 		 * (We never shrink nr_swapfiles, we never free this entry.)
2890 		 */
2891 		smp_wmb();
2892 		WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2893 	} else {
2894 		kvfree(p);
2895 		p = swap_info[type];
2896 		/*
2897 		 * Do not memset this entry: a racing procfs swap_next()
2898 		 * would be relying on p->type to remain valid.
2899 		 */
2900 	}
2901 	p->swap_extent_root = RB_ROOT;
2902 	plist_node_init(&p->list, 0);
2903 	for_each_node(i)
2904 		plist_node_init(&p->avail_lists[i], 0);
2905 	p->flags = SWP_USED;
2906 	spin_unlock(&swap_lock);
2907 	spin_lock_init(&p->lock);
2908 	spin_lock_init(&p->cont_lock);
2909 
2910 	return p;
2911 }
2912 
2913 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2914 {
2915 	int error;
2916 
2917 	if (S_ISBLK(inode->i_mode)) {
2918 		p->bdev = bdgrab(I_BDEV(inode));
2919 		error = blkdev_get(p->bdev,
2920 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2921 		if (error < 0) {
2922 			p->bdev = NULL;
2923 			return error;
2924 		}
2925 		p->old_block_size = block_size(p->bdev);
2926 		error = set_blocksize(p->bdev, PAGE_SIZE);
2927 		if (error < 0)
2928 			return error;
2929 		/*
2930 		 * Zoned block devices contain zones that have a sequential
2931 		 * write only restriction.  Hence zoned block devices are not
2932 		 * suitable for swapping.  Disallow them here.
2933 		 */
2934 		if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2935 			return -EINVAL;
2936 		p->flags |= SWP_BLKDEV;
2937 	} else if (S_ISREG(inode->i_mode)) {
2938 		p->bdev = inode->i_sb->s_bdev;
2939 	}
2940 
2941 	return 0;
2942 }
2943 
2944 
2945 /*
2946  * Find out how many pages are allowed for a single swap device. There
2947  * are two limiting factors:
2948  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2949  * 2) the number of bits in the swap pte, as defined by the different
2950  * architectures.
2951  *
2952  * In order to find the largest possible bit mask, a swap entry with
2953  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2954  * decoded to a swp_entry_t again, and finally the swap offset is
2955  * extracted.
2956  *
2957  * This will mask all the bits from the initial ~0UL mask that can't
2958  * be encoded in either the swp_entry_t or the architecture definition
2959  * of a swap pte.
2960  */
2961 unsigned long generic_max_swapfile_size(void)
2962 {
2963 	return swp_offset(pte_to_swp_entry(
2964 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2965 }
2966 
2967 /* Can be overridden by an architecture for additional checks. */
2968 __weak unsigned long max_swapfile_size(void)
2969 {
2970 	return generic_max_swapfile_size();
2971 }
2972 
2973 static unsigned long read_swap_header(struct swap_info_struct *p,
2974 					union swap_header *swap_header,
2975 					struct inode *inode)
2976 {
2977 	int i;
2978 	unsigned long maxpages;
2979 	unsigned long swapfilepages;
2980 	unsigned long last_page;
2981 
2982 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2983 		pr_err("Unable to find swap-space signature\n");
2984 		return 0;
2985 	}
2986 
2987 	/* swap partition endianess hack... */
2988 	if (swab32(swap_header->info.version) == 1) {
2989 		swab32s(&swap_header->info.version);
2990 		swab32s(&swap_header->info.last_page);
2991 		swab32s(&swap_header->info.nr_badpages);
2992 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2993 			return 0;
2994 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2995 			swab32s(&swap_header->info.badpages[i]);
2996 	}
2997 	/* Check the swap header's sub-version */
2998 	if (swap_header->info.version != 1) {
2999 		pr_warn("Unable to handle swap header version %d\n",
3000 			swap_header->info.version);
3001 		return 0;
3002 	}
3003 
3004 	p->lowest_bit  = 1;
3005 	p->cluster_next = 1;
3006 	p->cluster_nr = 0;
3007 
3008 	maxpages = max_swapfile_size();
3009 	last_page = swap_header->info.last_page;
3010 	if (!last_page) {
3011 		pr_warn("Empty swap-file\n");
3012 		return 0;
3013 	}
3014 	if (last_page > maxpages) {
3015 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3016 			maxpages << (PAGE_SHIFT - 10),
3017 			last_page << (PAGE_SHIFT - 10));
3018 	}
3019 	if (maxpages > last_page) {
3020 		maxpages = last_page + 1;
3021 		/* p->max is an unsigned int: don't overflow it */
3022 		if ((unsigned int)maxpages == 0)
3023 			maxpages = UINT_MAX;
3024 	}
3025 	p->highest_bit = maxpages - 1;
3026 
3027 	if (!maxpages)
3028 		return 0;
3029 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3030 	if (swapfilepages && maxpages > swapfilepages) {
3031 		pr_warn("Swap area shorter than signature indicates\n");
3032 		return 0;
3033 	}
3034 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3035 		return 0;
3036 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3037 		return 0;
3038 
3039 	return maxpages;
3040 }
3041 
3042 #define SWAP_CLUSTER_INFO_COLS						\
3043 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3044 #define SWAP_CLUSTER_SPACE_COLS						\
3045 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3046 #define SWAP_CLUSTER_COLS						\
3047 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3048 
3049 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3050 					union swap_header *swap_header,
3051 					unsigned char *swap_map,
3052 					struct swap_cluster_info *cluster_info,
3053 					unsigned long maxpages,
3054 					sector_t *span)
3055 {
3056 	unsigned int j, k;
3057 	unsigned int nr_good_pages;
3058 	int nr_extents;
3059 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3060 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3061 	unsigned long i, idx;
3062 
3063 	nr_good_pages = maxpages - 1;	/* omit header page */
3064 
3065 	cluster_list_init(&p->free_clusters);
3066 	cluster_list_init(&p->discard_clusters);
3067 
3068 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3069 		unsigned int page_nr = swap_header->info.badpages[i];
3070 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3071 			return -EINVAL;
3072 		if (page_nr < maxpages) {
3073 			swap_map[page_nr] = SWAP_MAP_BAD;
3074 			nr_good_pages--;
3075 			/*
3076 			 * Haven't marked the cluster free yet, no list
3077 			 * operation involved
3078 			 */
3079 			inc_cluster_info_page(p, cluster_info, page_nr);
3080 		}
3081 	}
3082 
3083 	/* Haven't marked the cluster free yet, no list operation involved */
3084 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3085 		inc_cluster_info_page(p, cluster_info, i);
3086 
3087 	if (nr_good_pages) {
3088 		swap_map[0] = SWAP_MAP_BAD;
3089 		/*
3090 		 * Not mark the cluster free yet, no list
3091 		 * operation involved
3092 		 */
3093 		inc_cluster_info_page(p, cluster_info, 0);
3094 		p->max = maxpages;
3095 		p->pages = nr_good_pages;
3096 		nr_extents = setup_swap_extents(p, span);
3097 		if (nr_extents < 0)
3098 			return nr_extents;
3099 		nr_good_pages = p->pages;
3100 	}
3101 	if (!nr_good_pages) {
3102 		pr_warn("Empty swap-file\n");
3103 		return -EINVAL;
3104 	}
3105 
3106 	if (!cluster_info)
3107 		return nr_extents;
3108 
3109 
3110 	/*
3111 	 * Reduce false cache line sharing between cluster_info and
3112 	 * sharing same address space.
3113 	 */
3114 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3115 		j = (k + col) % SWAP_CLUSTER_COLS;
3116 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3117 			idx = i * SWAP_CLUSTER_COLS + j;
3118 			if (idx >= nr_clusters)
3119 				continue;
3120 			if (cluster_count(&cluster_info[idx]))
3121 				continue;
3122 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3123 			cluster_list_add_tail(&p->free_clusters, cluster_info,
3124 					      idx);
3125 		}
3126 	}
3127 	return nr_extents;
3128 }
3129 
3130 /*
3131  * Helper to sys_swapon determining if a given swap
3132  * backing device queue supports DISCARD operations.
3133  */
3134 static bool swap_discardable(struct swap_info_struct *si)
3135 {
3136 	struct request_queue *q = bdev_get_queue(si->bdev);
3137 
3138 	if (!q || !blk_queue_discard(q))
3139 		return false;
3140 
3141 	return true;
3142 }
3143 
3144 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3145 {
3146 	struct swap_info_struct *p;
3147 	struct filename *name;
3148 	struct file *swap_file = NULL;
3149 	struct address_space *mapping;
3150 	int prio;
3151 	int error;
3152 	union swap_header *swap_header;
3153 	int nr_extents;
3154 	sector_t span;
3155 	unsigned long maxpages;
3156 	unsigned char *swap_map = NULL;
3157 	struct swap_cluster_info *cluster_info = NULL;
3158 	unsigned long *frontswap_map = NULL;
3159 	struct page *page = NULL;
3160 	struct inode *inode = NULL;
3161 	bool inced_nr_rotate_swap = false;
3162 
3163 	if (swap_flags & ~SWAP_FLAGS_VALID)
3164 		return -EINVAL;
3165 
3166 	if (!capable(CAP_SYS_ADMIN))
3167 		return -EPERM;
3168 
3169 	if (!swap_avail_heads)
3170 		return -ENOMEM;
3171 
3172 	p = alloc_swap_info();
3173 	if (IS_ERR(p))
3174 		return PTR_ERR(p);
3175 
3176 	INIT_WORK(&p->discard_work, swap_discard_work);
3177 
3178 	name = getname(specialfile);
3179 	if (IS_ERR(name)) {
3180 		error = PTR_ERR(name);
3181 		name = NULL;
3182 		goto bad_swap;
3183 	}
3184 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3185 	if (IS_ERR(swap_file)) {
3186 		error = PTR_ERR(swap_file);
3187 		swap_file = NULL;
3188 		goto bad_swap;
3189 	}
3190 
3191 	p->swap_file = swap_file;
3192 	mapping = swap_file->f_mapping;
3193 	inode = mapping->host;
3194 
3195 	error = claim_swapfile(p, inode);
3196 	if (unlikely(error))
3197 		goto bad_swap;
3198 
3199 	inode_lock(inode);
3200 	if (IS_SWAPFILE(inode)) {
3201 		error = -EBUSY;
3202 		goto bad_swap_unlock_inode;
3203 	}
3204 
3205 	/*
3206 	 * Read the swap header.
3207 	 */
3208 	if (!mapping->a_ops->readpage) {
3209 		error = -EINVAL;
3210 		goto bad_swap_unlock_inode;
3211 	}
3212 	page = read_mapping_page(mapping, 0, swap_file);
3213 	if (IS_ERR(page)) {
3214 		error = PTR_ERR(page);
3215 		goto bad_swap_unlock_inode;
3216 	}
3217 	swap_header = kmap(page);
3218 
3219 	maxpages = read_swap_header(p, swap_header, inode);
3220 	if (unlikely(!maxpages)) {
3221 		error = -EINVAL;
3222 		goto bad_swap_unlock_inode;
3223 	}
3224 
3225 	/* OK, set up the swap map and apply the bad block list */
3226 	swap_map = vzalloc(maxpages);
3227 	if (!swap_map) {
3228 		error = -ENOMEM;
3229 		goto bad_swap_unlock_inode;
3230 	}
3231 
3232 	if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3233 		p->flags |= SWP_STABLE_WRITES;
3234 
3235 	if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3236 		p->flags |= SWP_SYNCHRONOUS_IO;
3237 
3238 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3239 		int cpu;
3240 		unsigned long ci, nr_cluster;
3241 
3242 		p->flags |= SWP_SOLIDSTATE;
3243 		p->cluster_next_cpu = alloc_percpu(unsigned int);
3244 		if (!p->cluster_next_cpu) {
3245 			error = -ENOMEM;
3246 			goto bad_swap_unlock_inode;
3247 		}
3248 		/*
3249 		 * select a random position to start with to help wear leveling
3250 		 * SSD
3251 		 */
3252 		for_each_possible_cpu(cpu) {
3253 			per_cpu(*p->cluster_next_cpu, cpu) =
3254 				1 + prandom_u32_max(p->highest_bit);
3255 		}
3256 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3257 
3258 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3259 					GFP_KERNEL);
3260 		if (!cluster_info) {
3261 			error = -ENOMEM;
3262 			goto bad_swap_unlock_inode;
3263 		}
3264 
3265 		for (ci = 0; ci < nr_cluster; ci++)
3266 			spin_lock_init(&((cluster_info + ci)->lock));
3267 
3268 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3269 		if (!p->percpu_cluster) {
3270 			error = -ENOMEM;
3271 			goto bad_swap_unlock_inode;
3272 		}
3273 		for_each_possible_cpu(cpu) {
3274 			struct percpu_cluster *cluster;
3275 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3276 			cluster_set_null(&cluster->index);
3277 		}
3278 	} else {
3279 		atomic_inc(&nr_rotate_swap);
3280 		inced_nr_rotate_swap = true;
3281 	}
3282 
3283 	error = swap_cgroup_swapon(p->type, maxpages);
3284 	if (error)
3285 		goto bad_swap_unlock_inode;
3286 
3287 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3288 		cluster_info, maxpages, &span);
3289 	if (unlikely(nr_extents < 0)) {
3290 		error = nr_extents;
3291 		goto bad_swap_unlock_inode;
3292 	}
3293 	/* frontswap enabled? set up bit-per-page map for frontswap */
3294 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3295 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3296 					 sizeof(long),
3297 					 GFP_KERNEL);
3298 
3299 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3300 		/*
3301 		 * When discard is enabled for swap with no particular
3302 		 * policy flagged, we set all swap discard flags here in
3303 		 * order to sustain backward compatibility with older
3304 		 * swapon(8) releases.
3305 		 */
3306 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3307 			     SWP_PAGE_DISCARD);
3308 
3309 		/*
3310 		 * By flagging sys_swapon, a sysadmin can tell us to
3311 		 * either do single-time area discards only, or to just
3312 		 * perform discards for released swap page-clusters.
3313 		 * Now it's time to adjust the p->flags accordingly.
3314 		 */
3315 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3316 			p->flags &= ~SWP_PAGE_DISCARD;
3317 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3318 			p->flags &= ~SWP_AREA_DISCARD;
3319 
3320 		/* issue a swapon-time discard if it's still required */
3321 		if (p->flags & SWP_AREA_DISCARD) {
3322 			int err = discard_swap(p);
3323 			if (unlikely(err))
3324 				pr_err("swapon: discard_swap(%p): %d\n",
3325 					p, err);
3326 		}
3327 	}
3328 
3329 	error = init_swap_address_space(p->type, maxpages);
3330 	if (error)
3331 		goto bad_swap_unlock_inode;
3332 
3333 	/*
3334 	 * Flush any pending IO and dirty mappings before we start using this
3335 	 * swap device.
3336 	 */
3337 	inode->i_flags |= S_SWAPFILE;
3338 	error = inode_drain_writes(inode);
3339 	if (error) {
3340 		inode->i_flags &= ~S_SWAPFILE;
3341 		goto bad_swap_unlock_inode;
3342 	}
3343 
3344 	mutex_lock(&swapon_mutex);
3345 	prio = -1;
3346 	if (swap_flags & SWAP_FLAG_PREFER)
3347 		prio =
3348 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3349 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3350 
3351 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3352 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3353 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3354 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3355 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3356 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3357 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3358 		(frontswap_map) ? "FS" : "");
3359 
3360 	mutex_unlock(&swapon_mutex);
3361 	atomic_inc(&proc_poll_event);
3362 	wake_up_interruptible(&proc_poll_wait);
3363 
3364 	error = 0;
3365 	goto out;
3366 bad_swap_unlock_inode:
3367 	inode_unlock(inode);
3368 bad_swap:
3369 	free_percpu(p->percpu_cluster);
3370 	p->percpu_cluster = NULL;
3371 	free_percpu(p->cluster_next_cpu);
3372 	p->cluster_next_cpu = NULL;
3373 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3374 		set_blocksize(p->bdev, p->old_block_size);
3375 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3376 	}
3377 	inode = NULL;
3378 	destroy_swap_extents(p);
3379 	swap_cgroup_swapoff(p->type);
3380 	spin_lock(&swap_lock);
3381 	p->swap_file = NULL;
3382 	p->flags = 0;
3383 	spin_unlock(&swap_lock);
3384 	vfree(swap_map);
3385 	kvfree(cluster_info);
3386 	kvfree(frontswap_map);
3387 	if (inced_nr_rotate_swap)
3388 		atomic_dec(&nr_rotate_swap);
3389 	if (swap_file)
3390 		filp_close(swap_file, NULL);
3391 out:
3392 	if (page && !IS_ERR(page)) {
3393 		kunmap(page);
3394 		put_page(page);
3395 	}
3396 	if (name)
3397 		putname(name);
3398 	if (inode)
3399 		inode_unlock(inode);
3400 	if (!error)
3401 		enable_swap_slots_cache();
3402 	return error;
3403 }
3404 
3405 void si_swapinfo(struct sysinfo *val)
3406 {
3407 	unsigned int type;
3408 	unsigned long nr_to_be_unused = 0;
3409 
3410 	spin_lock(&swap_lock);
3411 	for (type = 0; type < nr_swapfiles; type++) {
3412 		struct swap_info_struct *si = swap_info[type];
3413 
3414 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3415 			nr_to_be_unused += si->inuse_pages;
3416 	}
3417 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3418 	val->totalswap = total_swap_pages + nr_to_be_unused;
3419 	spin_unlock(&swap_lock);
3420 }
3421 
3422 /*
3423  * Verify that a swap entry is valid and increment its swap map count.
3424  *
3425  * Returns error code in following case.
3426  * - success -> 0
3427  * - swp_entry is invalid -> EINVAL
3428  * - swp_entry is migration entry -> EINVAL
3429  * - swap-cache reference is requested but there is already one. -> EEXIST
3430  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3431  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3432  */
3433 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3434 {
3435 	struct swap_info_struct *p;
3436 	struct swap_cluster_info *ci;
3437 	unsigned long offset;
3438 	unsigned char count;
3439 	unsigned char has_cache;
3440 	int err = -EINVAL;
3441 
3442 	p = get_swap_device(entry);
3443 	if (!p)
3444 		goto out;
3445 
3446 	offset = swp_offset(entry);
3447 	ci = lock_cluster_or_swap_info(p, offset);
3448 
3449 	count = p->swap_map[offset];
3450 
3451 	/*
3452 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3453 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3454 	 */
3455 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3456 		err = -ENOENT;
3457 		goto unlock_out;
3458 	}
3459 
3460 	has_cache = count & SWAP_HAS_CACHE;
3461 	count &= ~SWAP_HAS_CACHE;
3462 	err = 0;
3463 
3464 	if (usage == SWAP_HAS_CACHE) {
3465 
3466 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3467 		if (!has_cache && count)
3468 			has_cache = SWAP_HAS_CACHE;
3469 		else if (has_cache)		/* someone else added cache */
3470 			err = -EEXIST;
3471 		else				/* no users remaining */
3472 			err = -ENOENT;
3473 
3474 	} else if (count || has_cache) {
3475 
3476 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3477 			count += usage;
3478 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3479 			err = -EINVAL;
3480 		else if (swap_count_continued(p, offset, count))
3481 			count = COUNT_CONTINUED;
3482 		else
3483 			err = -ENOMEM;
3484 	} else
3485 		err = -ENOENT;			/* unused swap entry */
3486 
3487 	p->swap_map[offset] = count | has_cache;
3488 
3489 unlock_out:
3490 	unlock_cluster_or_swap_info(p, ci);
3491 out:
3492 	if (p)
3493 		put_swap_device(p);
3494 	return err;
3495 }
3496 
3497 /*
3498  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3499  * (in which case its reference count is never incremented).
3500  */
3501 void swap_shmem_alloc(swp_entry_t entry)
3502 {
3503 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3504 }
3505 
3506 /*
3507  * Increase reference count of swap entry by 1.
3508  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3509  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3510  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3511  * might occur if a page table entry has got corrupted.
3512  */
3513 int swap_duplicate(swp_entry_t entry)
3514 {
3515 	int err = 0;
3516 
3517 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3518 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3519 	return err;
3520 }
3521 
3522 /*
3523  * @entry: swap entry for which we allocate swap cache.
3524  *
3525  * Called when allocating swap cache for existing swap entry,
3526  * This can return error codes. Returns 0 at success.
3527  * -EEXIST means there is a swap cache.
3528  * Note: return code is different from swap_duplicate().
3529  */
3530 int swapcache_prepare(swp_entry_t entry)
3531 {
3532 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3533 }
3534 
3535 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3536 {
3537 	return swap_type_to_swap_info(swp_type(entry));
3538 }
3539 
3540 struct swap_info_struct *page_swap_info(struct page *page)
3541 {
3542 	swp_entry_t entry = { .val = page_private(page) };
3543 	return swp_swap_info(entry);
3544 }
3545 
3546 /*
3547  * out-of-line __page_file_ methods to avoid include hell.
3548  */
3549 struct address_space *__page_file_mapping(struct page *page)
3550 {
3551 	return page_swap_info(page)->swap_file->f_mapping;
3552 }
3553 EXPORT_SYMBOL_GPL(__page_file_mapping);
3554 
3555 pgoff_t __page_file_index(struct page *page)
3556 {
3557 	swp_entry_t swap = { .val = page_private(page) };
3558 	return swp_offset(swap);
3559 }
3560 EXPORT_SYMBOL_GPL(__page_file_index);
3561 
3562 /*
3563  * add_swap_count_continuation - called when a swap count is duplicated
3564  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3565  * page of the original vmalloc'ed swap_map, to hold the continuation count
3566  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3567  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3568  *
3569  * These continuation pages are seldom referenced: the common paths all work
3570  * on the original swap_map, only referring to a continuation page when the
3571  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3572  *
3573  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3574  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3575  * can be called after dropping locks.
3576  */
3577 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3578 {
3579 	struct swap_info_struct *si;
3580 	struct swap_cluster_info *ci;
3581 	struct page *head;
3582 	struct page *page;
3583 	struct page *list_page;
3584 	pgoff_t offset;
3585 	unsigned char count;
3586 	int ret = 0;
3587 
3588 	/*
3589 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3590 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3591 	 */
3592 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3593 
3594 	si = get_swap_device(entry);
3595 	if (!si) {
3596 		/*
3597 		 * An acceptable race has occurred since the failing
3598 		 * __swap_duplicate(): the swap device may be swapoff
3599 		 */
3600 		goto outer;
3601 	}
3602 	spin_lock(&si->lock);
3603 
3604 	offset = swp_offset(entry);
3605 
3606 	ci = lock_cluster(si, offset);
3607 
3608 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3609 
3610 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3611 		/*
3612 		 * The higher the swap count, the more likely it is that tasks
3613 		 * will race to add swap count continuation: we need to avoid
3614 		 * over-provisioning.
3615 		 */
3616 		goto out;
3617 	}
3618 
3619 	if (!page) {
3620 		ret = -ENOMEM;
3621 		goto out;
3622 	}
3623 
3624 	/*
3625 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3626 	 * no architecture is using highmem pages for kernel page tables: so it
3627 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3628 	 */
3629 	head = vmalloc_to_page(si->swap_map + offset);
3630 	offset &= ~PAGE_MASK;
3631 
3632 	spin_lock(&si->cont_lock);
3633 	/*
3634 	 * Page allocation does not initialize the page's lru field,
3635 	 * but it does always reset its private field.
3636 	 */
3637 	if (!page_private(head)) {
3638 		BUG_ON(count & COUNT_CONTINUED);
3639 		INIT_LIST_HEAD(&head->lru);
3640 		set_page_private(head, SWP_CONTINUED);
3641 		si->flags |= SWP_CONTINUED;
3642 	}
3643 
3644 	list_for_each_entry(list_page, &head->lru, lru) {
3645 		unsigned char *map;
3646 
3647 		/*
3648 		 * If the previous map said no continuation, but we've found
3649 		 * a continuation page, free our allocation and use this one.
3650 		 */
3651 		if (!(count & COUNT_CONTINUED))
3652 			goto out_unlock_cont;
3653 
3654 		map = kmap_atomic(list_page) + offset;
3655 		count = *map;
3656 		kunmap_atomic(map);
3657 
3658 		/*
3659 		 * If this continuation count now has some space in it,
3660 		 * free our allocation and use this one.
3661 		 */
3662 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3663 			goto out_unlock_cont;
3664 	}
3665 
3666 	list_add_tail(&page->lru, &head->lru);
3667 	page = NULL;			/* now it's attached, don't free it */
3668 out_unlock_cont:
3669 	spin_unlock(&si->cont_lock);
3670 out:
3671 	unlock_cluster(ci);
3672 	spin_unlock(&si->lock);
3673 	put_swap_device(si);
3674 outer:
3675 	if (page)
3676 		__free_page(page);
3677 	return ret;
3678 }
3679 
3680 /*
3681  * swap_count_continued - when the original swap_map count is incremented
3682  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3683  * into, carry if so, or else fail until a new continuation page is allocated;
3684  * when the original swap_map count is decremented from 0 with continuation,
3685  * borrow from the continuation and report whether it still holds more.
3686  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3687  * lock.
3688  */
3689 static bool swap_count_continued(struct swap_info_struct *si,
3690 				 pgoff_t offset, unsigned char count)
3691 {
3692 	struct page *head;
3693 	struct page *page;
3694 	unsigned char *map;
3695 	bool ret;
3696 
3697 	head = vmalloc_to_page(si->swap_map + offset);
3698 	if (page_private(head) != SWP_CONTINUED) {
3699 		BUG_ON(count & COUNT_CONTINUED);
3700 		return false;		/* need to add count continuation */
3701 	}
3702 
3703 	spin_lock(&si->cont_lock);
3704 	offset &= ~PAGE_MASK;
3705 	page = list_next_entry(head, lru);
3706 	map = kmap_atomic(page) + offset;
3707 
3708 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3709 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3710 
3711 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3712 		/*
3713 		 * Think of how you add 1 to 999
3714 		 */
3715 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3716 			kunmap_atomic(map);
3717 			page = list_next_entry(page, lru);
3718 			BUG_ON(page == head);
3719 			map = kmap_atomic(page) + offset;
3720 		}
3721 		if (*map == SWAP_CONT_MAX) {
3722 			kunmap_atomic(map);
3723 			page = list_next_entry(page, lru);
3724 			if (page == head) {
3725 				ret = false;	/* add count continuation */
3726 				goto out;
3727 			}
3728 			map = kmap_atomic(page) + offset;
3729 init_map:		*map = 0;		/* we didn't zero the page */
3730 		}
3731 		*map += 1;
3732 		kunmap_atomic(map);
3733 		while ((page = list_prev_entry(page, lru)) != head) {
3734 			map = kmap_atomic(page) + offset;
3735 			*map = COUNT_CONTINUED;
3736 			kunmap_atomic(map);
3737 		}
3738 		ret = true;			/* incremented */
3739 
3740 	} else {				/* decrementing */
3741 		/*
3742 		 * Think of how you subtract 1 from 1000
3743 		 */
3744 		BUG_ON(count != COUNT_CONTINUED);
3745 		while (*map == COUNT_CONTINUED) {
3746 			kunmap_atomic(map);
3747 			page = list_next_entry(page, lru);
3748 			BUG_ON(page == head);
3749 			map = kmap_atomic(page) + offset;
3750 		}
3751 		BUG_ON(*map == 0);
3752 		*map -= 1;
3753 		if (*map == 0)
3754 			count = 0;
3755 		kunmap_atomic(map);
3756 		while ((page = list_prev_entry(page, lru)) != head) {
3757 			map = kmap_atomic(page) + offset;
3758 			*map = SWAP_CONT_MAX | count;
3759 			count = COUNT_CONTINUED;
3760 			kunmap_atomic(map);
3761 		}
3762 		ret = count == COUNT_CONTINUED;
3763 	}
3764 out:
3765 	spin_unlock(&si->cont_lock);
3766 	return ret;
3767 }
3768 
3769 /*
3770  * free_swap_count_continuations - swapoff free all the continuation pages
3771  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3772  */
3773 static void free_swap_count_continuations(struct swap_info_struct *si)
3774 {
3775 	pgoff_t offset;
3776 
3777 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3778 		struct page *head;
3779 		head = vmalloc_to_page(si->swap_map + offset);
3780 		if (page_private(head)) {
3781 			struct page *page, *next;
3782 
3783 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3784 				list_del(&page->lru);
3785 				__free_page(page);
3786 			}
3787 		}
3788 	}
3789 }
3790 
3791 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3792 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3793 {
3794 	struct swap_info_struct *si, *next;
3795 	int nid = page_to_nid(page);
3796 
3797 	if (!(gfp_mask & __GFP_IO))
3798 		return;
3799 
3800 	if (!blk_cgroup_congested())
3801 		return;
3802 
3803 	/*
3804 	 * We've already scheduled a throttle, avoid taking the global swap
3805 	 * lock.
3806 	 */
3807 	if (current->throttle_queue)
3808 		return;
3809 
3810 	spin_lock(&swap_avail_lock);
3811 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3812 				  avail_lists[nid]) {
3813 		if (si->bdev) {
3814 			blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3815 			break;
3816 		}
3817 	}
3818 	spin_unlock(&swap_avail_lock);
3819 }
3820 #endif
3821 
3822 static int __init swapfile_init(void)
3823 {
3824 	int nid;
3825 
3826 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3827 					 GFP_KERNEL);
3828 	if (!swap_avail_heads) {
3829 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3830 		return -ENOMEM;
3831 	}
3832 
3833 	for_each_node(nid)
3834 		plist_head_init(&swap_avail_heads[nid]);
3835 
3836 	return 0;
3837 }
3838 subsys_initcall(swapfile_init);
3839