xref: /openbmc/linux/mm/swapfile.c (revision 0be3ff0c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/frontswap.h>
39 #include <linux/swapfile.h>
40 #include <linux/export.h>
41 #include <linux/swap_slots.h>
42 #include <linux/sort.h>
43 #include <linux/completion.h>
44 
45 #include <asm/tlbflush.h>
46 #include <linux/swapops.h>
47 #include <linux/swap_cgroup.h>
48 
49 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
50 				 unsigned char);
51 static void free_swap_count_continuations(struct swap_info_struct *);
52 
53 static DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57  * Some modules use swappable objects and may try to swap them out under
58  * memory pressure (via the shrinker). Before doing so, they may wish to
59  * check to see if any swap space is available.
60  */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65 
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70 
71 /*
72  * all active swap_info_structs
73  * protected with swap_lock, and ordered by priority.
74  */
75 static PLIST_HEAD(swap_active_head);
76 
77 /*
78  * all available (active, not full) swap_info_structs
79  * protected with swap_avail_lock, ordered by priority.
80  * This is used by get_swap_page() instead of swap_active_head
81  * because swap_active_head includes all swap_info_structs,
82  * but get_swap_page() doesn't need to look at full ones.
83  * This uses its own lock instead of swap_lock because when a
84  * swap_info_struct changes between not-full/full, it needs to
85  * add/remove itself to/from this list, but the swap_info_struct->lock
86  * is held and the locking order requires swap_lock to be taken
87  * before any swap_info_struct->lock.
88  */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91 
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93 
94 static DEFINE_MUTEX(swapon_mutex);
95 
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99 
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101 
102 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104 	if (type >= MAX_SWAPFILES)
105 		return NULL;
106 
107 	return READ_ONCE(swap_info[type]); /* rcu_dereference() */
108 }
109 
110 static inline unsigned char swap_count(unsigned char ent)
111 {
112 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
113 }
114 
115 /* Reclaim the swap entry anyway if possible */
116 #define TTRS_ANYWAY		0x1
117 /*
118  * Reclaim the swap entry if there are no more mappings of the
119  * corresponding page
120  */
121 #define TTRS_UNMAPPED		0x2
122 /* Reclaim the swap entry if swap is getting full*/
123 #define TTRS_FULL		0x4
124 
125 /* returns 1 if swap entry is freed */
126 static int __try_to_reclaim_swap(struct swap_info_struct *si,
127 				 unsigned long offset, unsigned long flags)
128 {
129 	swp_entry_t entry = swp_entry(si->type, offset);
130 	struct page *page;
131 	int ret = 0;
132 
133 	page = find_get_page(swap_address_space(entry), offset);
134 	if (!page)
135 		return 0;
136 	/*
137 	 * When this function is called from scan_swap_map_slots() and it's
138 	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139 	 * here. We have to use trylock for avoiding deadlock. This is a special
140 	 * case and you should use try_to_free_swap() with explicit lock_page()
141 	 * in usual operations.
142 	 */
143 	if (trylock_page(page)) {
144 		if ((flags & TTRS_ANYWAY) ||
145 		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147 			ret = try_to_free_swap(page);
148 		unlock_page(page);
149 	}
150 	put_page(page);
151 	return ret;
152 }
153 
154 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155 {
156 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
157 	return rb_entry(rb, struct swap_extent, rb_node);
158 }
159 
160 static inline struct swap_extent *next_se(struct swap_extent *se)
161 {
162 	struct rb_node *rb = rb_next(&se->rb_node);
163 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
164 }
165 
166 /*
167  * swapon tell device that all the old swap contents can be discarded,
168  * to allow the swap device to optimize its wear-levelling.
169  */
170 static int discard_swap(struct swap_info_struct *si)
171 {
172 	struct swap_extent *se;
173 	sector_t start_block;
174 	sector_t nr_blocks;
175 	int err = 0;
176 
177 	/* Do not discard the swap header page! */
178 	se = first_se(si);
179 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181 	if (nr_blocks) {
182 		err = blkdev_issue_discard(si->bdev, start_block,
183 				nr_blocks, GFP_KERNEL);
184 		if (err)
185 			return err;
186 		cond_resched();
187 	}
188 
189 	for (se = next_se(se); se; se = next_se(se)) {
190 		start_block = se->start_block << (PAGE_SHIFT - 9);
191 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
192 
193 		err = blkdev_issue_discard(si->bdev, start_block,
194 				nr_blocks, GFP_KERNEL);
195 		if (err)
196 			break;
197 
198 		cond_resched();
199 	}
200 	return err;		/* That will often be -EOPNOTSUPP */
201 }
202 
203 static struct swap_extent *
204 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205 {
206 	struct swap_extent *se;
207 	struct rb_node *rb;
208 
209 	rb = sis->swap_extent_root.rb_node;
210 	while (rb) {
211 		se = rb_entry(rb, struct swap_extent, rb_node);
212 		if (offset < se->start_page)
213 			rb = rb->rb_left;
214 		else if (offset >= se->start_page + se->nr_pages)
215 			rb = rb->rb_right;
216 		else
217 			return se;
218 	}
219 	/* It *must* be present */
220 	BUG();
221 }
222 
223 sector_t swap_page_sector(struct page *page)
224 {
225 	struct swap_info_struct *sis = page_swap_info(page);
226 	struct swap_extent *se;
227 	sector_t sector;
228 	pgoff_t offset;
229 
230 	offset = __page_file_index(page);
231 	se = offset_to_swap_extent(sis, offset);
232 	sector = se->start_block + (offset - se->start_page);
233 	return sector << (PAGE_SHIFT - 9);
234 }
235 
236 /*
237  * swap allocation tell device that a cluster of swap can now be discarded,
238  * to allow the swap device to optimize its wear-levelling.
239  */
240 static void discard_swap_cluster(struct swap_info_struct *si,
241 				 pgoff_t start_page, pgoff_t nr_pages)
242 {
243 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
244 
245 	while (nr_pages) {
246 		pgoff_t offset = start_page - se->start_page;
247 		sector_t start_block = se->start_block + offset;
248 		sector_t nr_blocks = se->nr_pages - offset;
249 
250 		if (nr_blocks > nr_pages)
251 			nr_blocks = nr_pages;
252 		start_page += nr_blocks;
253 		nr_pages -= nr_blocks;
254 
255 		start_block <<= PAGE_SHIFT - 9;
256 		nr_blocks <<= PAGE_SHIFT - 9;
257 		if (blkdev_issue_discard(si->bdev, start_block,
258 					nr_blocks, GFP_NOIO))
259 			break;
260 
261 		se = next_se(se);
262 	}
263 }
264 
265 #ifdef CONFIG_THP_SWAP
266 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
267 
268 #define swap_entry_size(size)	(size)
269 #else
270 #define SWAPFILE_CLUSTER	256
271 
272 /*
273  * Define swap_entry_size() as constant to let compiler to optimize
274  * out some code if !CONFIG_THP_SWAP
275  */
276 #define swap_entry_size(size)	1
277 #endif
278 #define LATENCY_LIMIT		256
279 
280 static inline void cluster_set_flag(struct swap_cluster_info *info,
281 	unsigned int flag)
282 {
283 	info->flags = flag;
284 }
285 
286 static inline unsigned int cluster_count(struct swap_cluster_info *info)
287 {
288 	return info->data;
289 }
290 
291 static inline void cluster_set_count(struct swap_cluster_info *info,
292 				     unsigned int c)
293 {
294 	info->data = c;
295 }
296 
297 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
298 					 unsigned int c, unsigned int f)
299 {
300 	info->flags = f;
301 	info->data = c;
302 }
303 
304 static inline unsigned int cluster_next(struct swap_cluster_info *info)
305 {
306 	return info->data;
307 }
308 
309 static inline void cluster_set_next(struct swap_cluster_info *info,
310 				    unsigned int n)
311 {
312 	info->data = n;
313 }
314 
315 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
316 					 unsigned int n, unsigned int f)
317 {
318 	info->flags = f;
319 	info->data = n;
320 }
321 
322 static inline bool cluster_is_free(struct swap_cluster_info *info)
323 {
324 	return info->flags & CLUSTER_FLAG_FREE;
325 }
326 
327 static inline bool cluster_is_null(struct swap_cluster_info *info)
328 {
329 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
330 }
331 
332 static inline void cluster_set_null(struct swap_cluster_info *info)
333 {
334 	info->flags = CLUSTER_FLAG_NEXT_NULL;
335 	info->data = 0;
336 }
337 
338 static inline bool cluster_is_huge(struct swap_cluster_info *info)
339 {
340 	if (IS_ENABLED(CONFIG_THP_SWAP))
341 		return info->flags & CLUSTER_FLAG_HUGE;
342 	return false;
343 }
344 
345 static inline void cluster_clear_huge(struct swap_cluster_info *info)
346 {
347 	info->flags &= ~CLUSTER_FLAG_HUGE;
348 }
349 
350 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
351 						     unsigned long offset)
352 {
353 	struct swap_cluster_info *ci;
354 
355 	ci = si->cluster_info;
356 	if (ci) {
357 		ci += offset / SWAPFILE_CLUSTER;
358 		spin_lock(&ci->lock);
359 	}
360 	return ci;
361 }
362 
363 static inline void unlock_cluster(struct swap_cluster_info *ci)
364 {
365 	if (ci)
366 		spin_unlock(&ci->lock);
367 }
368 
369 /*
370  * Determine the locking method in use for this device.  Return
371  * swap_cluster_info if SSD-style cluster-based locking is in place.
372  */
373 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
374 		struct swap_info_struct *si, unsigned long offset)
375 {
376 	struct swap_cluster_info *ci;
377 
378 	/* Try to use fine-grained SSD-style locking if available: */
379 	ci = lock_cluster(si, offset);
380 	/* Otherwise, fall back to traditional, coarse locking: */
381 	if (!ci)
382 		spin_lock(&si->lock);
383 
384 	return ci;
385 }
386 
387 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
388 					       struct swap_cluster_info *ci)
389 {
390 	if (ci)
391 		unlock_cluster(ci);
392 	else
393 		spin_unlock(&si->lock);
394 }
395 
396 static inline bool cluster_list_empty(struct swap_cluster_list *list)
397 {
398 	return cluster_is_null(&list->head);
399 }
400 
401 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
402 {
403 	return cluster_next(&list->head);
404 }
405 
406 static void cluster_list_init(struct swap_cluster_list *list)
407 {
408 	cluster_set_null(&list->head);
409 	cluster_set_null(&list->tail);
410 }
411 
412 static void cluster_list_add_tail(struct swap_cluster_list *list,
413 				  struct swap_cluster_info *ci,
414 				  unsigned int idx)
415 {
416 	if (cluster_list_empty(list)) {
417 		cluster_set_next_flag(&list->head, idx, 0);
418 		cluster_set_next_flag(&list->tail, idx, 0);
419 	} else {
420 		struct swap_cluster_info *ci_tail;
421 		unsigned int tail = cluster_next(&list->tail);
422 
423 		/*
424 		 * Nested cluster lock, but both cluster locks are
425 		 * only acquired when we held swap_info_struct->lock
426 		 */
427 		ci_tail = ci + tail;
428 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
429 		cluster_set_next(ci_tail, idx);
430 		spin_unlock(&ci_tail->lock);
431 		cluster_set_next_flag(&list->tail, idx, 0);
432 	}
433 }
434 
435 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
436 					   struct swap_cluster_info *ci)
437 {
438 	unsigned int idx;
439 
440 	idx = cluster_next(&list->head);
441 	if (cluster_next(&list->tail) == idx) {
442 		cluster_set_null(&list->head);
443 		cluster_set_null(&list->tail);
444 	} else
445 		cluster_set_next_flag(&list->head,
446 				      cluster_next(&ci[idx]), 0);
447 
448 	return idx;
449 }
450 
451 /* Add a cluster to discard list and schedule it to do discard */
452 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
453 		unsigned int idx)
454 {
455 	/*
456 	 * If scan_swap_map_slots() can't find a free cluster, it will check
457 	 * si->swap_map directly. To make sure the discarding cluster isn't
458 	 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
459 	 * It will be cleared after discard
460 	 */
461 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
462 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
463 
464 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
465 
466 	schedule_work(&si->discard_work);
467 }
468 
469 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
470 {
471 	struct swap_cluster_info *ci = si->cluster_info;
472 
473 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
474 	cluster_list_add_tail(&si->free_clusters, ci, idx);
475 }
476 
477 /*
478  * Doing discard actually. After a cluster discard is finished, the cluster
479  * will be added to free cluster list. caller should hold si->lock.
480 */
481 static void swap_do_scheduled_discard(struct swap_info_struct *si)
482 {
483 	struct swap_cluster_info *info, *ci;
484 	unsigned int idx;
485 
486 	info = si->cluster_info;
487 
488 	while (!cluster_list_empty(&si->discard_clusters)) {
489 		idx = cluster_list_del_first(&si->discard_clusters, info);
490 		spin_unlock(&si->lock);
491 
492 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
493 				SWAPFILE_CLUSTER);
494 
495 		spin_lock(&si->lock);
496 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
497 		__free_cluster(si, idx);
498 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
499 				0, SWAPFILE_CLUSTER);
500 		unlock_cluster(ci);
501 	}
502 }
503 
504 static void swap_discard_work(struct work_struct *work)
505 {
506 	struct swap_info_struct *si;
507 
508 	si = container_of(work, struct swap_info_struct, discard_work);
509 
510 	spin_lock(&si->lock);
511 	swap_do_scheduled_discard(si);
512 	spin_unlock(&si->lock);
513 }
514 
515 static void swap_users_ref_free(struct percpu_ref *ref)
516 {
517 	struct swap_info_struct *si;
518 
519 	si = container_of(ref, struct swap_info_struct, users);
520 	complete(&si->comp);
521 }
522 
523 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
524 {
525 	struct swap_cluster_info *ci = si->cluster_info;
526 
527 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
528 	cluster_list_del_first(&si->free_clusters, ci);
529 	cluster_set_count_flag(ci + idx, 0, 0);
530 }
531 
532 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
533 {
534 	struct swap_cluster_info *ci = si->cluster_info + idx;
535 
536 	VM_BUG_ON(cluster_count(ci) != 0);
537 	/*
538 	 * If the swap is discardable, prepare discard the cluster
539 	 * instead of free it immediately. The cluster will be freed
540 	 * after discard.
541 	 */
542 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
543 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
544 		swap_cluster_schedule_discard(si, idx);
545 		return;
546 	}
547 
548 	__free_cluster(si, idx);
549 }
550 
551 /*
552  * The cluster corresponding to page_nr will be used. The cluster will be
553  * removed from free cluster list and its usage counter will be increased.
554  */
555 static void inc_cluster_info_page(struct swap_info_struct *p,
556 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
557 {
558 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
559 
560 	if (!cluster_info)
561 		return;
562 	if (cluster_is_free(&cluster_info[idx]))
563 		alloc_cluster(p, idx);
564 
565 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
566 	cluster_set_count(&cluster_info[idx],
567 		cluster_count(&cluster_info[idx]) + 1);
568 }
569 
570 /*
571  * The cluster corresponding to page_nr decreases one usage. If the usage
572  * counter becomes 0, which means no page in the cluster is in using, we can
573  * optionally discard the cluster and add it to free cluster list.
574  */
575 static void dec_cluster_info_page(struct swap_info_struct *p,
576 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
577 {
578 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
579 
580 	if (!cluster_info)
581 		return;
582 
583 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
584 	cluster_set_count(&cluster_info[idx],
585 		cluster_count(&cluster_info[idx]) - 1);
586 
587 	if (cluster_count(&cluster_info[idx]) == 0)
588 		free_cluster(p, idx);
589 }
590 
591 /*
592  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
593  * cluster list. Avoiding such abuse to avoid list corruption.
594  */
595 static bool
596 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
597 	unsigned long offset)
598 {
599 	struct percpu_cluster *percpu_cluster;
600 	bool conflict;
601 
602 	offset /= SWAPFILE_CLUSTER;
603 	conflict = !cluster_list_empty(&si->free_clusters) &&
604 		offset != cluster_list_first(&si->free_clusters) &&
605 		cluster_is_free(&si->cluster_info[offset]);
606 
607 	if (!conflict)
608 		return false;
609 
610 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
611 	cluster_set_null(&percpu_cluster->index);
612 	return true;
613 }
614 
615 /*
616  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
617  * might involve allocating a new cluster for current CPU too.
618  */
619 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
620 	unsigned long *offset, unsigned long *scan_base)
621 {
622 	struct percpu_cluster *cluster;
623 	struct swap_cluster_info *ci;
624 	unsigned long tmp, max;
625 
626 new_cluster:
627 	cluster = this_cpu_ptr(si->percpu_cluster);
628 	if (cluster_is_null(&cluster->index)) {
629 		if (!cluster_list_empty(&si->free_clusters)) {
630 			cluster->index = si->free_clusters.head;
631 			cluster->next = cluster_next(&cluster->index) *
632 					SWAPFILE_CLUSTER;
633 		} else if (!cluster_list_empty(&si->discard_clusters)) {
634 			/*
635 			 * we don't have free cluster but have some clusters in
636 			 * discarding, do discard now and reclaim them, then
637 			 * reread cluster_next_cpu since we dropped si->lock
638 			 */
639 			swap_do_scheduled_discard(si);
640 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
641 			*offset = *scan_base;
642 			goto new_cluster;
643 		} else
644 			return false;
645 	}
646 
647 	/*
648 	 * Other CPUs can use our cluster if they can't find a free cluster,
649 	 * check if there is still free entry in the cluster
650 	 */
651 	tmp = cluster->next;
652 	max = min_t(unsigned long, si->max,
653 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
654 	if (tmp < max) {
655 		ci = lock_cluster(si, tmp);
656 		while (tmp < max) {
657 			if (!si->swap_map[tmp])
658 				break;
659 			tmp++;
660 		}
661 		unlock_cluster(ci);
662 	}
663 	if (tmp >= max) {
664 		cluster_set_null(&cluster->index);
665 		goto new_cluster;
666 	}
667 	cluster->next = tmp + 1;
668 	*offset = tmp;
669 	*scan_base = tmp;
670 	return true;
671 }
672 
673 static void __del_from_avail_list(struct swap_info_struct *p)
674 {
675 	int nid;
676 
677 	for_each_node(nid)
678 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
679 }
680 
681 static void del_from_avail_list(struct swap_info_struct *p)
682 {
683 	spin_lock(&swap_avail_lock);
684 	__del_from_avail_list(p);
685 	spin_unlock(&swap_avail_lock);
686 }
687 
688 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
689 			     unsigned int nr_entries)
690 {
691 	unsigned int end = offset + nr_entries - 1;
692 
693 	if (offset == si->lowest_bit)
694 		si->lowest_bit += nr_entries;
695 	if (end == si->highest_bit)
696 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
697 	si->inuse_pages += nr_entries;
698 	if (si->inuse_pages == si->pages) {
699 		si->lowest_bit = si->max;
700 		si->highest_bit = 0;
701 		del_from_avail_list(si);
702 	}
703 }
704 
705 static void add_to_avail_list(struct swap_info_struct *p)
706 {
707 	int nid;
708 
709 	spin_lock(&swap_avail_lock);
710 	for_each_node(nid) {
711 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
712 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
713 	}
714 	spin_unlock(&swap_avail_lock);
715 }
716 
717 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
718 			    unsigned int nr_entries)
719 {
720 	unsigned long begin = offset;
721 	unsigned long end = offset + nr_entries - 1;
722 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
723 
724 	if (offset < si->lowest_bit)
725 		si->lowest_bit = offset;
726 	if (end > si->highest_bit) {
727 		bool was_full = !si->highest_bit;
728 
729 		WRITE_ONCE(si->highest_bit, end);
730 		if (was_full && (si->flags & SWP_WRITEOK))
731 			add_to_avail_list(si);
732 	}
733 	atomic_long_add(nr_entries, &nr_swap_pages);
734 	si->inuse_pages -= nr_entries;
735 	if (si->flags & SWP_BLKDEV)
736 		swap_slot_free_notify =
737 			si->bdev->bd_disk->fops->swap_slot_free_notify;
738 	else
739 		swap_slot_free_notify = NULL;
740 	while (offset <= end) {
741 		arch_swap_invalidate_page(si->type, offset);
742 		frontswap_invalidate_page(si->type, offset);
743 		if (swap_slot_free_notify)
744 			swap_slot_free_notify(si->bdev, offset);
745 		offset++;
746 	}
747 	clear_shadow_from_swap_cache(si->type, begin, end);
748 }
749 
750 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
751 {
752 	unsigned long prev;
753 
754 	if (!(si->flags & SWP_SOLIDSTATE)) {
755 		si->cluster_next = next;
756 		return;
757 	}
758 
759 	prev = this_cpu_read(*si->cluster_next_cpu);
760 	/*
761 	 * Cross the swap address space size aligned trunk, choose
762 	 * another trunk randomly to avoid lock contention on swap
763 	 * address space if possible.
764 	 */
765 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
766 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
767 		/* No free swap slots available */
768 		if (si->highest_bit <= si->lowest_bit)
769 			return;
770 		next = si->lowest_bit +
771 			prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
772 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
773 		next = max_t(unsigned int, next, si->lowest_bit);
774 	}
775 	this_cpu_write(*si->cluster_next_cpu, next);
776 }
777 
778 static int scan_swap_map_slots(struct swap_info_struct *si,
779 			       unsigned char usage, int nr,
780 			       swp_entry_t slots[])
781 {
782 	struct swap_cluster_info *ci;
783 	unsigned long offset;
784 	unsigned long scan_base;
785 	unsigned long last_in_cluster = 0;
786 	int latency_ration = LATENCY_LIMIT;
787 	int n_ret = 0;
788 	bool scanned_many = false;
789 
790 	/*
791 	 * We try to cluster swap pages by allocating them sequentially
792 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
793 	 * way, however, we resort to first-free allocation, starting
794 	 * a new cluster.  This prevents us from scattering swap pages
795 	 * all over the entire swap partition, so that we reduce
796 	 * overall disk seek times between swap pages.  -- sct
797 	 * But we do now try to find an empty cluster.  -Andrea
798 	 * And we let swap pages go all over an SSD partition.  Hugh
799 	 */
800 
801 	si->flags += SWP_SCANNING;
802 	/*
803 	 * Use percpu scan base for SSD to reduce lock contention on
804 	 * cluster and swap cache.  For HDD, sequential access is more
805 	 * important.
806 	 */
807 	if (si->flags & SWP_SOLIDSTATE)
808 		scan_base = this_cpu_read(*si->cluster_next_cpu);
809 	else
810 		scan_base = si->cluster_next;
811 	offset = scan_base;
812 
813 	/* SSD algorithm */
814 	if (si->cluster_info) {
815 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
816 			goto scan;
817 	} else if (unlikely(!si->cluster_nr--)) {
818 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
819 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
820 			goto checks;
821 		}
822 
823 		spin_unlock(&si->lock);
824 
825 		/*
826 		 * If seek is expensive, start searching for new cluster from
827 		 * start of partition, to minimize the span of allocated swap.
828 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
829 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
830 		 */
831 		scan_base = offset = si->lowest_bit;
832 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
833 
834 		/* Locate the first empty (unaligned) cluster */
835 		for (; last_in_cluster <= si->highest_bit; offset++) {
836 			if (si->swap_map[offset])
837 				last_in_cluster = offset + SWAPFILE_CLUSTER;
838 			else if (offset == last_in_cluster) {
839 				spin_lock(&si->lock);
840 				offset -= SWAPFILE_CLUSTER - 1;
841 				si->cluster_next = offset;
842 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
843 				goto checks;
844 			}
845 			if (unlikely(--latency_ration < 0)) {
846 				cond_resched();
847 				latency_ration = LATENCY_LIMIT;
848 			}
849 		}
850 
851 		offset = scan_base;
852 		spin_lock(&si->lock);
853 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
854 	}
855 
856 checks:
857 	if (si->cluster_info) {
858 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
859 		/* take a break if we already got some slots */
860 			if (n_ret)
861 				goto done;
862 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
863 							&scan_base))
864 				goto scan;
865 		}
866 	}
867 	if (!(si->flags & SWP_WRITEOK))
868 		goto no_page;
869 	if (!si->highest_bit)
870 		goto no_page;
871 	if (offset > si->highest_bit)
872 		scan_base = offset = si->lowest_bit;
873 
874 	ci = lock_cluster(si, offset);
875 	/* reuse swap entry of cache-only swap if not busy. */
876 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
877 		int swap_was_freed;
878 		unlock_cluster(ci);
879 		spin_unlock(&si->lock);
880 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
881 		spin_lock(&si->lock);
882 		/* entry was freed successfully, try to use this again */
883 		if (swap_was_freed)
884 			goto checks;
885 		goto scan; /* check next one */
886 	}
887 
888 	if (si->swap_map[offset]) {
889 		unlock_cluster(ci);
890 		if (!n_ret)
891 			goto scan;
892 		else
893 			goto done;
894 	}
895 	WRITE_ONCE(si->swap_map[offset], usage);
896 	inc_cluster_info_page(si, si->cluster_info, offset);
897 	unlock_cluster(ci);
898 
899 	swap_range_alloc(si, offset, 1);
900 	slots[n_ret++] = swp_entry(si->type, offset);
901 
902 	/* got enough slots or reach max slots? */
903 	if ((n_ret == nr) || (offset >= si->highest_bit))
904 		goto done;
905 
906 	/* search for next available slot */
907 
908 	/* time to take a break? */
909 	if (unlikely(--latency_ration < 0)) {
910 		if (n_ret)
911 			goto done;
912 		spin_unlock(&si->lock);
913 		cond_resched();
914 		spin_lock(&si->lock);
915 		latency_ration = LATENCY_LIMIT;
916 	}
917 
918 	/* try to get more slots in cluster */
919 	if (si->cluster_info) {
920 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
921 			goto checks;
922 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
923 		/* non-ssd case, still more slots in cluster? */
924 		--si->cluster_nr;
925 		goto checks;
926 	}
927 
928 	/*
929 	 * Even if there's no free clusters available (fragmented),
930 	 * try to scan a little more quickly with lock held unless we
931 	 * have scanned too many slots already.
932 	 */
933 	if (!scanned_many) {
934 		unsigned long scan_limit;
935 
936 		if (offset < scan_base)
937 			scan_limit = scan_base;
938 		else
939 			scan_limit = si->highest_bit;
940 		for (; offset <= scan_limit && --latency_ration > 0;
941 		     offset++) {
942 			if (!si->swap_map[offset])
943 				goto checks;
944 		}
945 	}
946 
947 done:
948 	set_cluster_next(si, offset + 1);
949 	si->flags -= SWP_SCANNING;
950 	return n_ret;
951 
952 scan:
953 	spin_unlock(&si->lock);
954 	while (++offset <= READ_ONCE(si->highest_bit)) {
955 		if (data_race(!si->swap_map[offset])) {
956 			spin_lock(&si->lock);
957 			goto checks;
958 		}
959 		if (vm_swap_full() &&
960 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
961 			spin_lock(&si->lock);
962 			goto checks;
963 		}
964 		if (unlikely(--latency_ration < 0)) {
965 			cond_resched();
966 			latency_ration = LATENCY_LIMIT;
967 			scanned_many = true;
968 		}
969 	}
970 	offset = si->lowest_bit;
971 	while (offset < scan_base) {
972 		if (data_race(!si->swap_map[offset])) {
973 			spin_lock(&si->lock);
974 			goto checks;
975 		}
976 		if (vm_swap_full() &&
977 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
978 			spin_lock(&si->lock);
979 			goto checks;
980 		}
981 		if (unlikely(--latency_ration < 0)) {
982 			cond_resched();
983 			latency_ration = LATENCY_LIMIT;
984 			scanned_many = true;
985 		}
986 		offset++;
987 	}
988 	spin_lock(&si->lock);
989 
990 no_page:
991 	si->flags -= SWP_SCANNING;
992 	return n_ret;
993 }
994 
995 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
996 {
997 	unsigned long idx;
998 	struct swap_cluster_info *ci;
999 	unsigned long offset;
1000 
1001 	/*
1002 	 * Should not even be attempting cluster allocations when huge
1003 	 * page swap is disabled.  Warn and fail the allocation.
1004 	 */
1005 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1006 		VM_WARN_ON_ONCE(1);
1007 		return 0;
1008 	}
1009 
1010 	if (cluster_list_empty(&si->free_clusters))
1011 		return 0;
1012 
1013 	idx = cluster_list_first(&si->free_clusters);
1014 	offset = idx * SWAPFILE_CLUSTER;
1015 	ci = lock_cluster(si, offset);
1016 	alloc_cluster(si, idx);
1017 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1018 
1019 	memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1020 	unlock_cluster(ci);
1021 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1022 	*slot = swp_entry(si->type, offset);
1023 
1024 	return 1;
1025 }
1026 
1027 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1028 {
1029 	unsigned long offset = idx * SWAPFILE_CLUSTER;
1030 	struct swap_cluster_info *ci;
1031 
1032 	ci = lock_cluster(si, offset);
1033 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1034 	cluster_set_count_flag(ci, 0, 0);
1035 	free_cluster(si, idx);
1036 	unlock_cluster(ci);
1037 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1038 }
1039 
1040 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1041 {
1042 	unsigned long size = swap_entry_size(entry_size);
1043 	struct swap_info_struct *si, *next;
1044 	long avail_pgs;
1045 	int n_ret = 0;
1046 	int node;
1047 
1048 	/* Only single cluster request supported */
1049 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1050 
1051 	spin_lock(&swap_avail_lock);
1052 
1053 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1054 	if (avail_pgs <= 0) {
1055 		spin_unlock(&swap_avail_lock);
1056 		goto noswap;
1057 	}
1058 
1059 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1060 
1061 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1062 
1063 start_over:
1064 	node = numa_node_id();
1065 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1066 		/* requeue si to after same-priority siblings */
1067 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1068 		spin_unlock(&swap_avail_lock);
1069 		spin_lock(&si->lock);
1070 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1071 			spin_lock(&swap_avail_lock);
1072 			if (plist_node_empty(&si->avail_lists[node])) {
1073 				spin_unlock(&si->lock);
1074 				goto nextsi;
1075 			}
1076 			WARN(!si->highest_bit,
1077 			     "swap_info %d in list but !highest_bit\n",
1078 			     si->type);
1079 			WARN(!(si->flags & SWP_WRITEOK),
1080 			     "swap_info %d in list but !SWP_WRITEOK\n",
1081 			     si->type);
1082 			__del_from_avail_list(si);
1083 			spin_unlock(&si->lock);
1084 			goto nextsi;
1085 		}
1086 		if (size == SWAPFILE_CLUSTER) {
1087 			if (si->flags & SWP_BLKDEV)
1088 				n_ret = swap_alloc_cluster(si, swp_entries);
1089 		} else
1090 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1091 						    n_goal, swp_entries);
1092 		spin_unlock(&si->lock);
1093 		if (n_ret || size == SWAPFILE_CLUSTER)
1094 			goto check_out;
1095 		pr_debug("scan_swap_map of si %d failed to find offset\n",
1096 			si->type);
1097 
1098 		spin_lock(&swap_avail_lock);
1099 nextsi:
1100 		/*
1101 		 * if we got here, it's likely that si was almost full before,
1102 		 * and since scan_swap_map_slots() can drop the si->lock,
1103 		 * multiple callers probably all tried to get a page from the
1104 		 * same si and it filled up before we could get one; or, the si
1105 		 * filled up between us dropping swap_avail_lock and taking
1106 		 * si->lock. Since we dropped the swap_avail_lock, the
1107 		 * swap_avail_head list may have been modified; so if next is
1108 		 * still in the swap_avail_head list then try it, otherwise
1109 		 * start over if we have not gotten any slots.
1110 		 */
1111 		if (plist_node_empty(&next->avail_lists[node]))
1112 			goto start_over;
1113 	}
1114 
1115 	spin_unlock(&swap_avail_lock);
1116 
1117 check_out:
1118 	if (n_ret < n_goal)
1119 		atomic_long_add((long)(n_goal - n_ret) * size,
1120 				&nr_swap_pages);
1121 noswap:
1122 	return n_ret;
1123 }
1124 
1125 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1126 {
1127 	struct swap_info_struct *p;
1128 	unsigned long offset;
1129 
1130 	if (!entry.val)
1131 		goto out;
1132 	p = swp_swap_info(entry);
1133 	if (!p)
1134 		goto bad_nofile;
1135 	if (data_race(!(p->flags & SWP_USED)))
1136 		goto bad_device;
1137 	offset = swp_offset(entry);
1138 	if (offset >= p->max)
1139 		goto bad_offset;
1140 	return p;
1141 
1142 bad_offset:
1143 	pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1144 	goto out;
1145 bad_device:
1146 	pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1147 	goto out;
1148 bad_nofile:
1149 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1150 out:
1151 	return NULL;
1152 }
1153 
1154 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1155 {
1156 	struct swap_info_struct *p;
1157 
1158 	p = __swap_info_get(entry);
1159 	if (!p)
1160 		goto out;
1161 	if (data_race(!p->swap_map[swp_offset(entry)]))
1162 		goto bad_free;
1163 	return p;
1164 
1165 bad_free:
1166 	pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1167 out:
1168 	return NULL;
1169 }
1170 
1171 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1172 					struct swap_info_struct *q)
1173 {
1174 	struct swap_info_struct *p;
1175 
1176 	p = _swap_info_get(entry);
1177 
1178 	if (p != q) {
1179 		if (q != NULL)
1180 			spin_unlock(&q->lock);
1181 		if (p != NULL)
1182 			spin_lock(&p->lock);
1183 	}
1184 	return p;
1185 }
1186 
1187 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1188 					      unsigned long offset,
1189 					      unsigned char usage)
1190 {
1191 	unsigned char count;
1192 	unsigned char has_cache;
1193 
1194 	count = p->swap_map[offset];
1195 
1196 	has_cache = count & SWAP_HAS_CACHE;
1197 	count &= ~SWAP_HAS_CACHE;
1198 
1199 	if (usage == SWAP_HAS_CACHE) {
1200 		VM_BUG_ON(!has_cache);
1201 		has_cache = 0;
1202 	} else if (count == SWAP_MAP_SHMEM) {
1203 		/*
1204 		 * Or we could insist on shmem.c using a special
1205 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1206 		 */
1207 		count = 0;
1208 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1209 		if (count == COUNT_CONTINUED) {
1210 			if (swap_count_continued(p, offset, count))
1211 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1212 			else
1213 				count = SWAP_MAP_MAX;
1214 		} else
1215 			count--;
1216 	}
1217 
1218 	usage = count | has_cache;
1219 	if (usage)
1220 		WRITE_ONCE(p->swap_map[offset], usage);
1221 	else
1222 		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1223 
1224 	return usage;
1225 }
1226 
1227 /*
1228  * Check whether swap entry is valid in the swap device.  If so,
1229  * return pointer to swap_info_struct, and keep the swap entry valid
1230  * via preventing the swap device from being swapoff, until
1231  * put_swap_device() is called.  Otherwise return NULL.
1232  *
1233  * Notice that swapoff or swapoff+swapon can still happen before the
1234  * percpu_ref_tryget_live() in get_swap_device() or after the
1235  * percpu_ref_put() in put_swap_device() if there isn't any other way
1236  * to prevent swapoff, such as page lock, page table lock, etc.  The
1237  * caller must be prepared for that.  For example, the following
1238  * situation is possible.
1239  *
1240  *   CPU1				CPU2
1241  *   do_swap_page()
1242  *     ...				swapoff+swapon
1243  *     __read_swap_cache_async()
1244  *       swapcache_prepare()
1245  *         __swap_duplicate()
1246  *           // check swap_map
1247  *     // verify PTE not changed
1248  *
1249  * In __swap_duplicate(), the swap_map need to be checked before
1250  * changing partly because the specified swap entry may be for another
1251  * swap device which has been swapoff.  And in do_swap_page(), after
1252  * the page is read from the swap device, the PTE is verified not
1253  * changed with the page table locked to check whether the swap device
1254  * has been swapoff or swapoff+swapon.
1255  */
1256 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1257 {
1258 	struct swap_info_struct *si;
1259 	unsigned long offset;
1260 
1261 	if (!entry.val)
1262 		goto out;
1263 	si = swp_swap_info(entry);
1264 	if (!si)
1265 		goto bad_nofile;
1266 	if (!percpu_ref_tryget_live(&si->users))
1267 		goto out;
1268 	/*
1269 	 * Guarantee the si->users are checked before accessing other
1270 	 * fields of swap_info_struct.
1271 	 *
1272 	 * Paired with the spin_unlock() after setup_swap_info() in
1273 	 * enable_swap_info().
1274 	 */
1275 	smp_rmb();
1276 	offset = swp_offset(entry);
1277 	if (offset >= si->max)
1278 		goto put_out;
1279 
1280 	return si;
1281 bad_nofile:
1282 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1283 out:
1284 	return NULL;
1285 put_out:
1286 	percpu_ref_put(&si->users);
1287 	return NULL;
1288 }
1289 
1290 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1291 				       swp_entry_t entry)
1292 {
1293 	struct swap_cluster_info *ci;
1294 	unsigned long offset = swp_offset(entry);
1295 	unsigned char usage;
1296 
1297 	ci = lock_cluster_or_swap_info(p, offset);
1298 	usage = __swap_entry_free_locked(p, offset, 1);
1299 	unlock_cluster_or_swap_info(p, ci);
1300 	if (!usage)
1301 		free_swap_slot(entry);
1302 
1303 	return usage;
1304 }
1305 
1306 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1307 {
1308 	struct swap_cluster_info *ci;
1309 	unsigned long offset = swp_offset(entry);
1310 	unsigned char count;
1311 
1312 	ci = lock_cluster(p, offset);
1313 	count = p->swap_map[offset];
1314 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1315 	p->swap_map[offset] = 0;
1316 	dec_cluster_info_page(p, p->cluster_info, offset);
1317 	unlock_cluster(ci);
1318 
1319 	mem_cgroup_uncharge_swap(entry, 1);
1320 	swap_range_free(p, offset, 1);
1321 }
1322 
1323 /*
1324  * Caller has made sure that the swap device corresponding to entry
1325  * is still around or has not been recycled.
1326  */
1327 void swap_free(swp_entry_t entry)
1328 {
1329 	struct swap_info_struct *p;
1330 
1331 	p = _swap_info_get(entry);
1332 	if (p)
1333 		__swap_entry_free(p, entry);
1334 }
1335 
1336 /*
1337  * Called after dropping swapcache to decrease refcnt to swap entries.
1338  */
1339 void put_swap_page(struct page *page, swp_entry_t entry)
1340 {
1341 	unsigned long offset = swp_offset(entry);
1342 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1343 	struct swap_cluster_info *ci;
1344 	struct swap_info_struct *si;
1345 	unsigned char *map;
1346 	unsigned int i, free_entries = 0;
1347 	unsigned char val;
1348 	int size = swap_entry_size(thp_nr_pages(page));
1349 
1350 	si = _swap_info_get(entry);
1351 	if (!si)
1352 		return;
1353 
1354 	ci = lock_cluster_or_swap_info(si, offset);
1355 	if (size == SWAPFILE_CLUSTER) {
1356 		VM_BUG_ON(!cluster_is_huge(ci));
1357 		map = si->swap_map + offset;
1358 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1359 			val = map[i];
1360 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1361 			if (val == SWAP_HAS_CACHE)
1362 				free_entries++;
1363 		}
1364 		cluster_clear_huge(ci);
1365 		if (free_entries == SWAPFILE_CLUSTER) {
1366 			unlock_cluster_or_swap_info(si, ci);
1367 			spin_lock(&si->lock);
1368 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1369 			swap_free_cluster(si, idx);
1370 			spin_unlock(&si->lock);
1371 			return;
1372 		}
1373 	}
1374 	for (i = 0; i < size; i++, entry.val++) {
1375 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1376 			unlock_cluster_or_swap_info(si, ci);
1377 			free_swap_slot(entry);
1378 			if (i == size - 1)
1379 				return;
1380 			lock_cluster_or_swap_info(si, offset);
1381 		}
1382 	}
1383 	unlock_cluster_or_swap_info(si, ci);
1384 }
1385 
1386 #ifdef CONFIG_THP_SWAP
1387 int split_swap_cluster(swp_entry_t entry)
1388 {
1389 	struct swap_info_struct *si;
1390 	struct swap_cluster_info *ci;
1391 	unsigned long offset = swp_offset(entry);
1392 
1393 	si = _swap_info_get(entry);
1394 	if (!si)
1395 		return -EBUSY;
1396 	ci = lock_cluster(si, offset);
1397 	cluster_clear_huge(ci);
1398 	unlock_cluster(ci);
1399 	return 0;
1400 }
1401 #endif
1402 
1403 static int swp_entry_cmp(const void *ent1, const void *ent2)
1404 {
1405 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1406 
1407 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1408 }
1409 
1410 void swapcache_free_entries(swp_entry_t *entries, int n)
1411 {
1412 	struct swap_info_struct *p, *prev;
1413 	int i;
1414 
1415 	if (n <= 0)
1416 		return;
1417 
1418 	prev = NULL;
1419 	p = NULL;
1420 
1421 	/*
1422 	 * Sort swap entries by swap device, so each lock is only taken once.
1423 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1424 	 * so low that it isn't necessary to optimize further.
1425 	 */
1426 	if (nr_swapfiles > 1)
1427 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1428 	for (i = 0; i < n; ++i) {
1429 		p = swap_info_get_cont(entries[i], prev);
1430 		if (p)
1431 			swap_entry_free(p, entries[i]);
1432 		prev = p;
1433 	}
1434 	if (p)
1435 		spin_unlock(&p->lock);
1436 }
1437 
1438 /*
1439  * How many references to page are currently swapped out?
1440  * This does not give an exact answer when swap count is continued,
1441  * but does include the high COUNT_CONTINUED flag to allow for that.
1442  */
1443 int page_swapcount(struct page *page)
1444 {
1445 	int count = 0;
1446 	struct swap_info_struct *p;
1447 	struct swap_cluster_info *ci;
1448 	swp_entry_t entry;
1449 	unsigned long offset;
1450 
1451 	entry.val = page_private(page);
1452 	p = _swap_info_get(entry);
1453 	if (p) {
1454 		offset = swp_offset(entry);
1455 		ci = lock_cluster_or_swap_info(p, offset);
1456 		count = swap_count(p->swap_map[offset]);
1457 		unlock_cluster_or_swap_info(p, ci);
1458 	}
1459 	return count;
1460 }
1461 
1462 int __swap_count(swp_entry_t entry)
1463 {
1464 	struct swap_info_struct *si;
1465 	pgoff_t offset = swp_offset(entry);
1466 	int count = 0;
1467 
1468 	si = get_swap_device(entry);
1469 	if (si) {
1470 		count = swap_count(si->swap_map[offset]);
1471 		put_swap_device(si);
1472 	}
1473 	return count;
1474 }
1475 
1476 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1477 {
1478 	int count = 0;
1479 	pgoff_t offset = swp_offset(entry);
1480 	struct swap_cluster_info *ci;
1481 
1482 	ci = lock_cluster_or_swap_info(si, offset);
1483 	count = swap_count(si->swap_map[offset]);
1484 	unlock_cluster_or_swap_info(si, ci);
1485 	return count;
1486 }
1487 
1488 /*
1489  * How many references to @entry are currently swapped out?
1490  * This does not give an exact answer when swap count is continued,
1491  * but does include the high COUNT_CONTINUED flag to allow for that.
1492  */
1493 int __swp_swapcount(swp_entry_t entry)
1494 {
1495 	int count = 0;
1496 	struct swap_info_struct *si;
1497 
1498 	si = get_swap_device(entry);
1499 	if (si) {
1500 		count = swap_swapcount(si, entry);
1501 		put_swap_device(si);
1502 	}
1503 	return count;
1504 }
1505 
1506 /*
1507  * How many references to @entry are currently swapped out?
1508  * This considers COUNT_CONTINUED so it returns exact answer.
1509  */
1510 int swp_swapcount(swp_entry_t entry)
1511 {
1512 	int count, tmp_count, n;
1513 	struct swap_info_struct *p;
1514 	struct swap_cluster_info *ci;
1515 	struct page *page;
1516 	pgoff_t offset;
1517 	unsigned char *map;
1518 
1519 	p = _swap_info_get(entry);
1520 	if (!p)
1521 		return 0;
1522 
1523 	offset = swp_offset(entry);
1524 
1525 	ci = lock_cluster_or_swap_info(p, offset);
1526 
1527 	count = swap_count(p->swap_map[offset]);
1528 	if (!(count & COUNT_CONTINUED))
1529 		goto out;
1530 
1531 	count &= ~COUNT_CONTINUED;
1532 	n = SWAP_MAP_MAX + 1;
1533 
1534 	page = vmalloc_to_page(p->swap_map + offset);
1535 	offset &= ~PAGE_MASK;
1536 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1537 
1538 	do {
1539 		page = list_next_entry(page, lru);
1540 		map = kmap_atomic(page);
1541 		tmp_count = map[offset];
1542 		kunmap_atomic(map);
1543 
1544 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1545 		n *= (SWAP_CONT_MAX + 1);
1546 	} while (tmp_count & COUNT_CONTINUED);
1547 out:
1548 	unlock_cluster_or_swap_info(p, ci);
1549 	return count;
1550 }
1551 
1552 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1553 					 swp_entry_t entry)
1554 {
1555 	struct swap_cluster_info *ci;
1556 	unsigned char *map = si->swap_map;
1557 	unsigned long roffset = swp_offset(entry);
1558 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1559 	int i;
1560 	bool ret = false;
1561 
1562 	ci = lock_cluster_or_swap_info(si, offset);
1563 	if (!ci || !cluster_is_huge(ci)) {
1564 		if (swap_count(map[roffset]))
1565 			ret = true;
1566 		goto unlock_out;
1567 	}
1568 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1569 		if (swap_count(map[offset + i])) {
1570 			ret = true;
1571 			break;
1572 		}
1573 	}
1574 unlock_out:
1575 	unlock_cluster_or_swap_info(si, ci);
1576 	return ret;
1577 }
1578 
1579 static bool page_swapped(struct page *page)
1580 {
1581 	swp_entry_t entry;
1582 	struct swap_info_struct *si;
1583 
1584 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1585 		return page_swapcount(page) != 0;
1586 
1587 	page = compound_head(page);
1588 	entry.val = page_private(page);
1589 	si = _swap_info_get(entry);
1590 	if (si)
1591 		return swap_page_trans_huge_swapped(si, entry);
1592 	return false;
1593 }
1594 
1595 /*
1596  * If swap is getting full, or if there are no more mappings of this page,
1597  * then try_to_free_swap is called to free its swap space.
1598  */
1599 int try_to_free_swap(struct page *page)
1600 {
1601 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1602 
1603 	if (!PageSwapCache(page))
1604 		return 0;
1605 	if (PageWriteback(page))
1606 		return 0;
1607 	if (page_swapped(page))
1608 		return 0;
1609 
1610 	/*
1611 	 * Once hibernation has begun to create its image of memory,
1612 	 * there's a danger that one of the calls to try_to_free_swap()
1613 	 * - most probably a call from __try_to_reclaim_swap() while
1614 	 * hibernation is allocating its own swap pages for the image,
1615 	 * but conceivably even a call from memory reclaim - will free
1616 	 * the swap from a page which has already been recorded in the
1617 	 * image as a clean swapcache page, and then reuse its swap for
1618 	 * another page of the image.  On waking from hibernation, the
1619 	 * original page might be freed under memory pressure, then
1620 	 * later read back in from swap, now with the wrong data.
1621 	 *
1622 	 * Hibernation suspends storage while it is writing the image
1623 	 * to disk so check that here.
1624 	 */
1625 	if (pm_suspended_storage())
1626 		return 0;
1627 
1628 	page = compound_head(page);
1629 	delete_from_swap_cache(page);
1630 	SetPageDirty(page);
1631 	return 1;
1632 }
1633 
1634 /*
1635  * Free the swap entry like above, but also try to
1636  * free the page cache entry if it is the last user.
1637  */
1638 int free_swap_and_cache(swp_entry_t entry)
1639 {
1640 	struct swap_info_struct *p;
1641 	unsigned char count;
1642 
1643 	if (non_swap_entry(entry))
1644 		return 1;
1645 
1646 	p = _swap_info_get(entry);
1647 	if (p) {
1648 		count = __swap_entry_free(p, entry);
1649 		if (count == SWAP_HAS_CACHE &&
1650 		    !swap_page_trans_huge_swapped(p, entry))
1651 			__try_to_reclaim_swap(p, swp_offset(entry),
1652 					      TTRS_UNMAPPED | TTRS_FULL);
1653 	}
1654 	return p != NULL;
1655 }
1656 
1657 #ifdef CONFIG_HIBERNATION
1658 
1659 swp_entry_t get_swap_page_of_type(int type)
1660 {
1661 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1662 	swp_entry_t entry = {0};
1663 
1664 	if (!si)
1665 		goto fail;
1666 
1667 	/* This is called for allocating swap entry, not cache */
1668 	spin_lock(&si->lock);
1669 	if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1670 		atomic_long_dec(&nr_swap_pages);
1671 	spin_unlock(&si->lock);
1672 fail:
1673 	return entry;
1674 }
1675 
1676 /*
1677  * Find the swap type that corresponds to given device (if any).
1678  *
1679  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1680  * from 0, in which the swap header is expected to be located.
1681  *
1682  * This is needed for the suspend to disk (aka swsusp).
1683  */
1684 int swap_type_of(dev_t device, sector_t offset)
1685 {
1686 	int type;
1687 
1688 	if (!device)
1689 		return -1;
1690 
1691 	spin_lock(&swap_lock);
1692 	for (type = 0; type < nr_swapfiles; type++) {
1693 		struct swap_info_struct *sis = swap_info[type];
1694 
1695 		if (!(sis->flags & SWP_WRITEOK))
1696 			continue;
1697 
1698 		if (device == sis->bdev->bd_dev) {
1699 			struct swap_extent *se = first_se(sis);
1700 
1701 			if (se->start_block == offset) {
1702 				spin_unlock(&swap_lock);
1703 				return type;
1704 			}
1705 		}
1706 	}
1707 	spin_unlock(&swap_lock);
1708 	return -ENODEV;
1709 }
1710 
1711 int find_first_swap(dev_t *device)
1712 {
1713 	int type;
1714 
1715 	spin_lock(&swap_lock);
1716 	for (type = 0; type < nr_swapfiles; type++) {
1717 		struct swap_info_struct *sis = swap_info[type];
1718 
1719 		if (!(sis->flags & SWP_WRITEOK))
1720 			continue;
1721 		*device = sis->bdev->bd_dev;
1722 		spin_unlock(&swap_lock);
1723 		return type;
1724 	}
1725 	spin_unlock(&swap_lock);
1726 	return -ENODEV;
1727 }
1728 
1729 /*
1730  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1731  * corresponding to given index in swap_info (swap type).
1732  */
1733 sector_t swapdev_block(int type, pgoff_t offset)
1734 {
1735 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1736 	struct swap_extent *se;
1737 
1738 	if (!si || !(si->flags & SWP_WRITEOK))
1739 		return 0;
1740 	se = offset_to_swap_extent(si, offset);
1741 	return se->start_block + (offset - se->start_page);
1742 }
1743 
1744 /*
1745  * Return either the total number of swap pages of given type, or the number
1746  * of free pages of that type (depending on @free)
1747  *
1748  * This is needed for software suspend
1749  */
1750 unsigned int count_swap_pages(int type, int free)
1751 {
1752 	unsigned int n = 0;
1753 
1754 	spin_lock(&swap_lock);
1755 	if ((unsigned int)type < nr_swapfiles) {
1756 		struct swap_info_struct *sis = swap_info[type];
1757 
1758 		spin_lock(&sis->lock);
1759 		if (sis->flags & SWP_WRITEOK) {
1760 			n = sis->pages;
1761 			if (free)
1762 				n -= sis->inuse_pages;
1763 		}
1764 		spin_unlock(&sis->lock);
1765 	}
1766 	spin_unlock(&swap_lock);
1767 	return n;
1768 }
1769 #endif /* CONFIG_HIBERNATION */
1770 
1771 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1772 {
1773 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1774 }
1775 
1776 /*
1777  * No need to decide whether this PTE shares the swap entry with others,
1778  * just let do_wp_page work it out if a write is requested later - to
1779  * force COW, vm_page_prot omits write permission from any private vma.
1780  */
1781 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1782 		unsigned long addr, swp_entry_t entry, struct page *page)
1783 {
1784 	struct page *swapcache;
1785 	spinlock_t *ptl;
1786 	pte_t *pte;
1787 	int ret = 1;
1788 
1789 	swapcache = page;
1790 	page = ksm_might_need_to_copy(page, vma, addr);
1791 	if (unlikely(!page))
1792 		return -ENOMEM;
1793 
1794 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1795 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1796 		ret = 0;
1797 		goto out;
1798 	}
1799 
1800 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1801 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1802 	get_page(page);
1803 	if (page == swapcache) {
1804 		page_add_anon_rmap(page, vma, addr, false);
1805 	} else { /* ksm created a completely new copy */
1806 		page_add_new_anon_rmap(page, vma, addr, false);
1807 		lru_cache_add_inactive_or_unevictable(page, vma);
1808 	}
1809 	set_pte_at(vma->vm_mm, addr, pte,
1810 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1811 	swap_free(entry);
1812 out:
1813 	pte_unmap_unlock(pte, ptl);
1814 	if (page != swapcache) {
1815 		unlock_page(page);
1816 		put_page(page);
1817 	}
1818 	return ret;
1819 }
1820 
1821 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1822 			unsigned long addr, unsigned long end,
1823 			unsigned int type)
1824 {
1825 	struct page *page;
1826 	swp_entry_t entry;
1827 	pte_t *pte;
1828 	struct swap_info_struct *si;
1829 	unsigned long offset;
1830 	int ret = 0;
1831 	volatile unsigned char *swap_map;
1832 
1833 	si = swap_info[type];
1834 	pte = pte_offset_map(pmd, addr);
1835 	do {
1836 		if (!is_swap_pte(*pte))
1837 			continue;
1838 
1839 		entry = pte_to_swp_entry(*pte);
1840 		if (swp_type(entry) != type)
1841 			continue;
1842 
1843 		offset = swp_offset(entry);
1844 		pte_unmap(pte);
1845 		swap_map = &si->swap_map[offset];
1846 		page = lookup_swap_cache(entry, vma, addr);
1847 		if (!page) {
1848 			struct vm_fault vmf = {
1849 				.vma = vma,
1850 				.address = addr,
1851 				.real_address = addr,
1852 				.pmd = pmd,
1853 			};
1854 
1855 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1856 						&vmf);
1857 		}
1858 		if (!page) {
1859 			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1860 				goto try_next;
1861 			return -ENOMEM;
1862 		}
1863 
1864 		lock_page(page);
1865 		wait_on_page_writeback(page);
1866 		ret = unuse_pte(vma, pmd, addr, entry, page);
1867 		if (ret < 0) {
1868 			unlock_page(page);
1869 			put_page(page);
1870 			goto out;
1871 		}
1872 
1873 		try_to_free_swap(page);
1874 		unlock_page(page);
1875 		put_page(page);
1876 try_next:
1877 		pte = pte_offset_map(pmd, addr);
1878 	} while (pte++, addr += PAGE_SIZE, addr != end);
1879 	pte_unmap(pte - 1);
1880 
1881 	ret = 0;
1882 out:
1883 	return ret;
1884 }
1885 
1886 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1887 				unsigned long addr, unsigned long end,
1888 				unsigned int type)
1889 {
1890 	pmd_t *pmd;
1891 	unsigned long next;
1892 	int ret;
1893 
1894 	pmd = pmd_offset(pud, addr);
1895 	do {
1896 		cond_resched();
1897 		next = pmd_addr_end(addr, end);
1898 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1899 			continue;
1900 		ret = unuse_pte_range(vma, pmd, addr, next, type);
1901 		if (ret)
1902 			return ret;
1903 	} while (pmd++, addr = next, addr != end);
1904 	return 0;
1905 }
1906 
1907 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1908 				unsigned long addr, unsigned long end,
1909 				unsigned int type)
1910 {
1911 	pud_t *pud;
1912 	unsigned long next;
1913 	int ret;
1914 
1915 	pud = pud_offset(p4d, addr);
1916 	do {
1917 		next = pud_addr_end(addr, end);
1918 		if (pud_none_or_clear_bad(pud))
1919 			continue;
1920 		ret = unuse_pmd_range(vma, pud, addr, next, type);
1921 		if (ret)
1922 			return ret;
1923 	} while (pud++, addr = next, addr != end);
1924 	return 0;
1925 }
1926 
1927 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1928 				unsigned long addr, unsigned long end,
1929 				unsigned int type)
1930 {
1931 	p4d_t *p4d;
1932 	unsigned long next;
1933 	int ret;
1934 
1935 	p4d = p4d_offset(pgd, addr);
1936 	do {
1937 		next = p4d_addr_end(addr, end);
1938 		if (p4d_none_or_clear_bad(p4d))
1939 			continue;
1940 		ret = unuse_pud_range(vma, p4d, addr, next, type);
1941 		if (ret)
1942 			return ret;
1943 	} while (p4d++, addr = next, addr != end);
1944 	return 0;
1945 }
1946 
1947 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1948 {
1949 	pgd_t *pgd;
1950 	unsigned long addr, end, next;
1951 	int ret;
1952 
1953 	addr = vma->vm_start;
1954 	end = vma->vm_end;
1955 
1956 	pgd = pgd_offset(vma->vm_mm, addr);
1957 	do {
1958 		next = pgd_addr_end(addr, end);
1959 		if (pgd_none_or_clear_bad(pgd))
1960 			continue;
1961 		ret = unuse_p4d_range(vma, pgd, addr, next, type);
1962 		if (ret)
1963 			return ret;
1964 	} while (pgd++, addr = next, addr != end);
1965 	return 0;
1966 }
1967 
1968 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1969 {
1970 	struct vm_area_struct *vma;
1971 	int ret = 0;
1972 
1973 	mmap_read_lock(mm);
1974 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
1975 		if (vma->anon_vma) {
1976 			ret = unuse_vma(vma, type);
1977 			if (ret)
1978 				break;
1979 		}
1980 		cond_resched();
1981 	}
1982 	mmap_read_unlock(mm);
1983 	return ret;
1984 }
1985 
1986 /*
1987  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1988  * from current position to next entry still in use. Return 0
1989  * if there are no inuse entries after prev till end of the map.
1990  */
1991 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1992 					unsigned int prev)
1993 {
1994 	unsigned int i;
1995 	unsigned char count;
1996 
1997 	/*
1998 	 * No need for swap_lock here: we're just looking
1999 	 * for whether an entry is in use, not modifying it; false
2000 	 * hits are okay, and sys_swapoff() has already prevented new
2001 	 * allocations from this area (while holding swap_lock).
2002 	 */
2003 	for (i = prev + 1; i < si->max; i++) {
2004 		count = READ_ONCE(si->swap_map[i]);
2005 		if (count && swap_count(count) != SWAP_MAP_BAD)
2006 			break;
2007 		if ((i % LATENCY_LIMIT) == 0)
2008 			cond_resched();
2009 	}
2010 
2011 	if (i == si->max)
2012 		i = 0;
2013 
2014 	return i;
2015 }
2016 
2017 static int try_to_unuse(unsigned int type)
2018 {
2019 	struct mm_struct *prev_mm;
2020 	struct mm_struct *mm;
2021 	struct list_head *p;
2022 	int retval = 0;
2023 	struct swap_info_struct *si = swap_info[type];
2024 	struct page *page;
2025 	swp_entry_t entry;
2026 	unsigned int i;
2027 
2028 	if (!READ_ONCE(si->inuse_pages))
2029 		return 0;
2030 
2031 retry:
2032 	retval = shmem_unuse(type);
2033 	if (retval)
2034 		return retval;
2035 
2036 	prev_mm = &init_mm;
2037 	mmget(prev_mm);
2038 
2039 	spin_lock(&mmlist_lock);
2040 	p = &init_mm.mmlist;
2041 	while (READ_ONCE(si->inuse_pages) &&
2042 	       !signal_pending(current) &&
2043 	       (p = p->next) != &init_mm.mmlist) {
2044 
2045 		mm = list_entry(p, struct mm_struct, mmlist);
2046 		if (!mmget_not_zero(mm))
2047 			continue;
2048 		spin_unlock(&mmlist_lock);
2049 		mmput(prev_mm);
2050 		prev_mm = mm;
2051 		retval = unuse_mm(mm, type);
2052 		if (retval) {
2053 			mmput(prev_mm);
2054 			return retval;
2055 		}
2056 
2057 		/*
2058 		 * Make sure that we aren't completely killing
2059 		 * interactive performance.
2060 		 */
2061 		cond_resched();
2062 		spin_lock(&mmlist_lock);
2063 	}
2064 	spin_unlock(&mmlist_lock);
2065 
2066 	mmput(prev_mm);
2067 
2068 	i = 0;
2069 	while (READ_ONCE(si->inuse_pages) &&
2070 	       !signal_pending(current) &&
2071 	       (i = find_next_to_unuse(si, i)) != 0) {
2072 
2073 		entry = swp_entry(type, i);
2074 		page = find_get_page(swap_address_space(entry), i);
2075 		if (!page)
2076 			continue;
2077 
2078 		/*
2079 		 * It is conceivable that a racing task removed this page from
2080 		 * swap cache just before we acquired the page lock. The page
2081 		 * might even be back in swap cache on another swap area. But
2082 		 * that is okay, try_to_free_swap() only removes stale pages.
2083 		 */
2084 		lock_page(page);
2085 		wait_on_page_writeback(page);
2086 		try_to_free_swap(page);
2087 		unlock_page(page);
2088 		put_page(page);
2089 	}
2090 
2091 	/*
2092 	 * Lets check again to see if there are still swap entries in the map.
2093 	 * If yes, we would need to do retry the unuse logic again.
2094 	 * Under global memory pressure, swap entries can be reinserted back
2095 	 * into process space after the mmlist loop above passes over them.
2096 	 *
2097 	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2098 	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2099 	 * at its own independent pace; and even shmem_writepage() could have
2100 	 * been preempted after get_swap_page(), temporarily hiding that swap.
2101 	 * It's easy and robust (though cpu-intensive) just to keep retrying.
2102 	 */
2103 	if (READ_ONCE(si->inuse_pages)) {
2104 		if (!signal_pending(current))
2105 			goto retry;
2106 		return -EINTR;
2107 	}
2108 
2109 	return 0;
2110 }
2111 
2112 /*
2113  * After a successful try_to_unuse, if no swap is now in use, we know
2114  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2115  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2116  * added to the mmlist just after page_duplicate - before would be racy.
2117  */
2118 static void drain_mmlist(void)
2119 {
2120 	struct list_head *p, *next;
2121 	unsigned int type;
2122 
2123 	for (type = 0; type < nr_swapfiles; type++)
2124 		if (swap_info[type]->inuse_pages)
2125 			return;
2126 	spin_lock(&mmlist_lock);
2127 	list_for_each_safe(p, next, &init_mm.mmlist)
2128 		list_del_init(p);
2129 	spin_unlock(&mmlist_lock);
2130 }
2131 
2132 /*
2133  * Free all of a swapdev's extent information
2134  */
2135 static void destroy_swap_extents(struct swap_info_struct *sis)
2136 {
2137 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2138 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2139 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2140 
2141 		rb_erase(rb, &sis->swap_extent_root);
2142 		kfree(se);
2143 	}
2144 
2145 	if (sis->flags & SWP_ACTIVATED) {
2146 		struct file *swap_file = sis->swap_file;
2147 		struct address_space *mapping = swap_file->f_mapping;
2148 
2149 		sis->flags &= ~SWP_ACTIVATED;
2150 		if (mapping->a_ops->swap_deactivate)
2151 			mapping->a_ops->swap_deactivate(swap_file);
2152 	}
2153 }
2154 
2155 /*
2156  * Add a block range (and the corresponding page range) into this swapdev's
2157  * extent tree.
2158  *
2159  * This function rather assumes that it is called in ascending page order.
2160  */
2161 int
2162 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2163 		unsigned long nr_pages, sector_t start_block)
2164 {
2165 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2166 	struct swap_extent *se;
2167 	struct swap_extent *new_se;
2168 
2169 	/*
2170 	 * place the new node at the right most since the
2171 	 * function is called in ascending page order.
2172 	 */
2173 	while (*link) {
2174 		parent = *link;
2175 		link = &parent->rb_right;
2176 	}
2177 
2178 	if (parent) {
2179 		se = rb_entry(parent, struct swap_extent, rb_node);
2180 		BUG_ON(se->start_page + se->nr_pages != start_page);
2181 		if (se->start_block + se->nr_pages == start_block) {
2182 			/* Merge it */
2183 			se->nr_pages += nr_pages;
2184 			return 0;
2185 		}
2186 	}
2187 
2188 	/* No merge, insert a new extent. */
2189 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2190 	if (new_se == NULL)
2191 		return -ENOMEM;
2192 	new_se->start_page = start_page;
2193 	new_se->nr_pages = nr_pages;
2194 	new_se->start_block = start_block;
2195 
2196 	rb_link_node(&new_se->rb_node, parent, link);
2197 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2198 	return 1;
2199 }
2200 EXPORT_SYMBOL_GPL(add_swap_extent);
2201 
2202 /*
2203  * A `swap extent' is a simple thing which maps a contiguous range of pages
2204  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2205  * is built at swapon time and is then used at swap_writepage/swap_readpage
2206  * time for locating where on disk a page belongs.
2207  *
2208  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2209  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2210  * swap files identically.
2211  *
2212  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2213  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2214  * swapfiles are handled *identically* after swapon time.
2215  *
2216  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2217  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2218  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2219  * requirements, they are simply tossed out - we will never use those blocks
2220  * for swapping.
2221  *
2222  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2223  * prevents users from writing to the swap device, which will corrupt memory.
2224  *
2225  * The amount of disk space which a single swap extent represents varies.
2226  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2227  * extents in the list.  To avoid much list walking, we cache the previous
2228  * search location in `curr_swap_extent', and start new searches from there.
2229  * This is extremely effective.  The average number of iterations in
2230  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2231  */
2232 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2233 {
2234 	struct file *swap_file = sis->swap_file;
2235 	struct address_space *mapping = swap_file->f_mapping;
2236 	struct inode *inode = mapping->host;
2237 	int ret;
2238 
2239 	if (S_ISBLK(inode->i_mode)) {
2240 		ret = add_swap_extent(sis, 0, sis->max, 0);
2241 		*span = sis->pages;
2242 		return ret;
2243 	}
2244 
2245 	if (mapping->a_ops->swap_activate) {
2246 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2247 		if (ret >= 0)
2248 			sis->flags |= SWP_ACTIVATED;
2249 		if (!ret) {
2250 			sis->flags |= SWP_FS_OPS;
2251 			ret = add_swap_extent(sis, 0, sis->max, 0);
2252 			*span = sis->pages;
2253 		}
2254 		return ret;
2255 	}
2256 
2257 	return generic_swapfile_activate(sis, swap_file, span);
2258 }
2259 
2260 static int swap_node(struct swap_info_struct *p)
2261 {
2262 	struct block_device *bdev;
2263 
2264 	if (p->bdev)
2265 		bdev = p->bdev;
2266 	else
2267 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2268 
2269 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2270 }
2271 
2272 static void setup_swap_info(struct swap_info_struct *p, int prio,
2273 			    unsigned char *swap_map,
2274 			    struct swap_cluster_info *cluster_info)
2275 {
2276 	int i;
2277 
2278 	if (prio >= 0)
2279 		p->prio = prio;
2280 	else
2281 		p->prio = --least_priority;
2282 	/*
2283 	 * the plist prio is negated because plist ordering is
2284 	 * low-to-high, while swap ordering is high-to-low
2285 	 */
2286 	p->list.prio = -p->prio;
2287 	for_each_node(i) {
2288 		if (p->prio >= 0)
2289 			p->avail_lists[i].prio = -p->prio;
2290 		else {
2291 			if (swap_node(p) == i)
2292 				p->avail_lists[i].prio = 1;
2293 			else
2294 				p->avail_lists[i].prio = -p->prio;
2295 		}
2296 	}
2297 	p->swap_map = swap_map;
2298 	p->cluster_info = cluster_info;
2299 }
2300 
2301 static void _enable_swap_info(struct swap_info_struct *p)
2302 {
2303 	p->flags |= SWP_WRITEOK;
2304 	atomic_long_add(p->pages, &nr_swap_pages);
2305 	total_swap_pages += p->pages;
2306 
2307 	assert_spin_locked(&swap_lock);
2308 	/*
2309 	 * both lists are plists, and thus priority ordered.
2310 	 * swap_active_head needs to be priority ordered for swapoff(),
2311 	 * which on removal of any swap_info_struct with an auto-assigned
2312 	 * (i.e. negative) priority increments the auto-assigned priority
2313 	 * of any lower-priority swap_info_structs.
2314 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2315 	 * which allocates swap pages from the highest available priority
2316 	 * swap_info_struct.
2317 	 */
2318 	plist_add(&p->list, &swap_active_head);
2319 	add_to_avail_list(p);
2320 }
2321 
2322 static void enable_swap_info(struct swap_info_struct *p, int prio,
2323 				unsigned char *swap_map,
2324 				struct swap_cluster_info *cluster_info,
2325 				unsigned long *frontswap_map)
2326 {
2327 	if (IS_ENABLED(CONFIG_FRONTSWAP))
2328 		frontswap_init(p->type, frontswap_map);
2329 	spin_lock(&swap_lock);
2330 	spin_lock(&p->lock);
2331 	setup_swap_info(p, prio, swap_map, cluster_info);
2332 	spin_unlock(&p->lock);
2333 	spin_unlock(&swap_lock);
2334 	/*
2335 	 * Finished initializing swap device, now it's safe to reference it.
2336 	 */
2337 	percpu_ref_resurrect(&p->users);
2338 	spin_lock(&swap_lock);
2339 	spin_lock(&p->lock);
2340 	_enable_swap_info(p);
2341 	spin_unlock(&p->lock);
2342 	spin_unlock(&swap_lock);
2343 }
2344 
2345 static void reinsert_swap_info(struct swap_info_struct *p)
2346 {
2347 	spin_lock(&swap_lock);
2348 	spin_lock(&p->lock);
2349 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2350 	_enable_swap_info(p);
2351 	spin_unlock(&p->lock);
2352 	spin_unlock(&swap_lock);
2353 }
2354 
2355 bool has_usable_swap(void)
2356 {
2357 	bool ret = true;
2358 
2359 	spin_lock(&swap_lock);
2360 	if (plist_head_empty(&swap_active_head))
2361 		ret = false;
2362 	spin_unlock(&swap_lock);
2363 	return ret;
2364 }
2365 
2366 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2367 {
2368 	struct swap_info_struct *p = NULL;
2369 	unsigned char *swap_map;
2370 	struct swap_cluster_info *cluster_info;
2371 	unsigned long *frontswap_map;
2372 	struct file *swap_file, *victim;
2373 	struct address_space *mapping;
2374 	struct inode *inode;
2375 	struct filename *pathname;
2376 	int err, found = 0;
2377 	unsigned int old_block_size;
2378 
2379 	if (!capable(CAP_SYS_ADMIN))
2380 		return -EPERM;
2381 
2382 	BUG_ON(!current->mm);
2383 
2384 	pathname = getname(specialfile);
2385 	if (IS_ERR(pathname))
2386 		return PTR_ERR(pathname);
2387 
2388 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2389 	err = PTR_ERR(victim);
2390 	if (IS_ERR(victim))
2391 		goto out;
2392 
2393 	mapping = victim->f_mapping;
2394 	spin_lock(&swap_lock);
2395 	plist_for_each_entry(p, &swap_active_head, list) {
2396 		if (p->flags & SWP_WRITEOK) {
2397 			if (p->swap_file->f_mapping == mapping) {
2398 				found = 1;
2399 				break;
2400 			}
2401 		}
2402 	}
2403 	if (!found) {
2404 		err = -EINVAL;
2405 		spin_unlock(&swap_lock);
2406 		goto out_dput;
2407 	}
2408 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2409 		vm_unacct_memory(p->pages);
2410 	else {
2411 		err = -ENOMEM;
2412 		spin_unlock(&swap_lock);
2413 		goto out_dput;
2414 	}
2415 	del_from_avail_list(p);
2416 	spin_lock(&p->lock);
2417 	if (p->prio < 0) {
2418 		struct swap_info_struct *si = p;
2419 		int nid;
2420 
2421 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2422 			si->prio++;
2423 			si->list.prio--;
2424 			for_each_node(nid) {
2425 				if (si->avail_lists[nid].prio != 1)
2426 					si->avail_lists[nid].prio--;
2427 			}
2428 		}
2429 		least_priority++;
2430 	}
2431 	plist_del(&p->list, &swap_active_head);
2432 	atomic_long_sub(p->pages, &nr_swap_pages);
2433 	total_swap_pages -= p->pages;
2434 	p->flags &= ~SWP_WRITEOK;
2435 	spin_unlock(&p->lock);
2436 	spin_unlock(&swap_lock);
2437 
2438 	disable_swap_slots_cache_lock();
2439 
2440 	set_current_oom_origin();
2441 	err = try_to_unuse(p->type);
2442 	clear_current_oom_origin();
2443 
2444 	if (err) {
2445 		/* re-insert swap space back into swap_list */
2446 		reinsert_swap_info(p);
2447 		reenable_swap_slots_cache_unlock();
2448 		goto out_dput;
2449 	}
2450 
2451 	reenable_swap_slots_cache_unlock();
2452 
2453 	/*
2454 	 * Wait for swap operations protected by get/put_swap_device()
2455 	 * to complete.
2456 	 *
2457 	 * We need synchronize_rcu() here to protect the accessing to
2458 	 * the swap cache data structure.
2459 	 */
2460 	percpu_ref_kill(&p->users);
2461 	synchronize_rcu();
2462 	wait_for_completion(&p->comp);
2463 
2464 	flush_work(&p->discard_work);
2465 
2466 	destroy_swap_extents(p);
2467 	if (p->flags & SWP_CONTINUED)
2468 		free_swap_count_continuations(p);
2469 
2470 	if (!p->bdev || !bdev_nonrot(p->bdev))
2471 		atomic_dec(&nr_rotate_swap);
2472 
2473 	mutex_lock(&swapon_mutex);
2474 	spin_lock(&swap_lock);
2475 	spin_lock(&p->lock);
2476 	drain_mmlist();
2477 
2478 	/* wait for anyone still in scan_swap_map_slots */
2479 	p->highest_bit = 0;		/* cuts scans short */
2480 	while (p->flags >= SWP_SCANNING) {
2481 		spin_unlock(&p->lock);
2482 		spin_unlock(&swap_lock);
2483 		schedule_timeout_uninterruptible(1);
2484 		spin_lock(&swap_lock);
2485 		spin_lock(&p->lock);
2486 	}
2487 
2488 	swap_file = p->swap_file;
2489 	old_block_size = p->old_block_size;
2490 	p->swap_file = NULL;
2491 	p->max = 0;
2492 	swap_map = p->swap_map;
2493 	p->swap_map = NULL;
2494 	cluster_info = p->cluster_info;
2495 	p->cluster_info = NULL;
2496 	frontswap_map = frontswap_map_get(p);
2497 	spin_unlock(&p->lock);
2498 	spin_unlock(&swap_lock);
2499 	arch_swap_invalidate_area(p->type);
2500 	frontswap_invalidate_area(p->type);
2501 	frontswap_map_set(p, NULL);
2502 	mutex_unlock(&swapon_mutex);
2503 	free_percpu(p->percpu_cluster);
2504 	p->percpu_cluster = NULL;
2505 	free_percpu(p->cluster_next_cpu);
2506 	p->cluster_next_cpu = NULL;
2507 	vfree(swap_map);
2508 	kvfree(cluster_info);
2509 	kvfree(frontswap_map);
2510 	/* Destroy swap account information */
2511 	swap_cgroup_swapoff(p->type);
2512 	exit_swap_address_space(p->type);
2513 
2514 	inode = mapping->host;
2515 	if (S_ISBLK(inode->i_mode)) {
2516 		struct block_device *bdev = I_BDEV(inode);
2517 
2518 		set_blocksize(bdev, old_block_size);
2519 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2520 	}
2521 
2522 	inode_lock(inode);
2523 	inode->i_flags &= ~S_SWAPFILE;
2524 	inode_unlock(inode);
2525 	filp_close(swap_file, NULL);
2526 
2527 	/*
2528 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2529 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2530 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2531 	 */
2532 	spin_lock(&swap_lock);
2533 	p->flags = 0;
2534 	spin_unlock(&swap_lock);
2535 
2536 	err = 0;
2537 	atomic_inc(&proc_poll_event);
2538 	wake_up_interruptible(&proc_poll_wait);
2539 
2540 out_dput:
2541 	filp_close(victim, NULL);
2542 out:
2543 	putname(pathname);
2544 	return err;
2545 }
2546 
2547 #ifdef CONFIG_PROC_FS
2548 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2549 {
2550 	struct seq_file *seq = file->private_data;
2551 
2552 	poll_wait(file, &proc_poll_wait, wait);
2553 
2554 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2555 		seq->poll_event = atomic_read(&proc_poll_event);
2556 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2557 	}
2558 
2559 	return EPOLLIN | EPOLLRDNORM;
2560 }
2561 
2562 /* iterator */
2563 static void *swap_start(struct seq_file *swap, loff_t *pos)
2564 {
2565 	struct swap_info_struct *si;
2566 	int type;
2567 	loff_t l = *pos;
2568 
2569 	mutex_lock(&swapon_mutex);
2570 
2571 	if (!l)
2572 		return SEQ_START_TOKEN;
2573 
2574 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2575 		if (!(si->flags & SWP_USED) || !si->swap_map)
2576 			continue;
2577 		if (!--l)
2578 			return si;
2579 	}
2580 
2581 	return NULL;
2582 }
2583 
2584 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2585 {
2586 	struct swap_info_struct *si = v;
2587 	int type;
2588 
2589 	if (v == SEQ_START_TOKEN)
2590 		type = 0;
2591 	else
2592 		type = si->type + 1;
2593 
2594 	++(*pos);
2595 	for (; (si = swap_type_to_swap_info(type)); type++) {
2596 		if (!(si->flags & SWP_USED) || !si->swap_map)
2597 			continue;
2598 		return si;
2599 	}
2600 
2601 	return NULL;
2602 }
2603 
2604 static void swap_stop(struct seq_file *swap, void *v)
2605 {
2606 	mutex_unlock(&swapon_mutex);
2607 }
2608 
2609 static int swap_show(struct seq_file *swap, void *v)
2610 {
2611 	struct swap_info_struct *si = v;
2612 	struct file *file;
2613 	int len;
2614 	unsigned long bytes, inuse;
2615 
2616 	if (si == SEQ_START_TOKEN) {
2617 		seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2618 		return 0;
2619 	}
2620 
2621 	bytes = si->pages << (PAGE_SHIFT - 10);
2622 	inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2623 
2624 	file = si->swap_file;
2625 	len = seq_file_path(swap, file, " \t\n\\");
2626 	seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2627 			len < 40 ? 40 - len : 1, " ",
2628 			S_ISBLK(file_inode(file)->i_mode) ?
2629 				"partition" : "file\t",
2630 			bytes, bytes < 10000000 ? "\t" : "",
2631 			inuse, inuse < 10000000 ? "\t" : "",
2632 			si->prio);
2633 	return 0;
2634 }
2635 
2636 static const struct seq_operations swaps_op = {
2637 	.start =	swap_start,
2638 	.next =		swap_next,
2639 	.stop =		swap_stop,
2640 	.show =		swap_show
2641 };
2642 
2643 static int swaps_open(struct inode *inode, struct file *file)
2644 {
2645 	struct seq_file *seq;
2646 	int ret;
2647 
2648 	ret = seq_open(file, &swaps_op);
2649 	if (ret)
2650 		return ret;
2651 
2652 	seq = file->private_data;
2653 	seq->poll_event = atomic_read(&proc_poll_event);
2654 	return 0;
2655 }
2656 
2657 static const struct proc_ops swaps_proc_ops = {
2658 	.proc_flags	= PROC_ENTRY_PERMANENT,
2659 	.proc_open	= swaps_open,
2660 	.proc_read	= seq_read,
2661 	.proc_lseek	= seq_lseek,
2662 	.proc_release	= seq_release,
2663 	.proc_poll	= swaps_poll,
2664 };
2665 
2666 static int __init procswaps_init(void)
2667 {
2668 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2669 	return 0;
2670 }
2671 __initcall(procswaps_init);
2672 #endif /* CONFIG_PROC_FS */
2673 
2674 #ifdef MAX_SWAPFILES_CHECK
2675 static int __init max_swapfiles_check(void)
2676 {
2677 	MAX_SWAPFILES_CHECK();
2678 	return 0;
2679 }
2680 late_initcall(max_swapfiles_check);
2681 #endif
2682 
2683 static struct swap_info_struct *alloc_swap_info(void)
2684 {
2685 	struct swap_info_struct *p;
2686 	struct swap_info_struct *defer = NULL;
2687 	unsigned int type;
2688 	int i;
2689 
2690 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2691 	if (!p)
2692 		return ERR_PTR(-ENOMEM);
2693 
2694 	if (percpu_ref_init(&p->users, swap_users_ref_free,
2695 			    PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2696 		kvfree(p);
2697 		return ERR_PTR(-ENOMEM);
2698 	}
2699 
2700 	spin_lock(&swap_lock);
2701 	for (type = 0; type < nr_swapfiles; type++) {
2702 		if (!(swap_info[type]->flags & SWP_USED))
2703 			break;
2704 	}
2705 	if (type >= MAX_SWAPFILES) {
2706 		spin_unlock(&swap_lock);
2707 		percpu_ref_exit(&p->users);
2708 		kvfree(p);
2709 		return ERR_PTR(-EPERM);
2710 	}
2711 	if (type >= nr_swapfiles) {
2712 		p->type = type;
2713 		/*
2714 		 * Publish the swap_info_struct after initializing it.
2715 		 * Note that kvzalloc() above zeroes all its fields.
2716 		 */
2717 		smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2718 		nr_swapfiles++;
2719 	} else {
2720 		defer = p;
2721 		p = swap_info[type];
2722 		/*
2723 		 * Do not memset this entry: a racing procfs swap_next()
2724 		 * would be relying on p->type to remain valid.
2725 		 */
2726 	}
2727 	p->swap_extent_root = RB_ROOT;
2728 	plist_node_init(&p->list, 0);
2729 	for_each_node(i)
2730 		plist_node_init(&p->avail_lists[i], 0);
2731 	p->flags = SWP_USED;
2732 	spin_unlock(&swap_lock);
2733 	if (defer) {
2734 		percpu_ref_exit(&defer->users);
2735 		kvfree(defer);
2736 	}
2737 	spin_lock_init(&p->lock);
2738 	spin_lock_init(&p->cont_lock);
2739 	init_completion(&p->comp);
2740 
2741 	return p;
2742 }
2743 
2744 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2745 {
2746 	int error;
2747 
2748 	if (S_ISBLK(inode->i_mode)) {
2749 		p->bdev = blkdev_get_by_dev(inode->i_rdev,
2750 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2751 		if (IS_ERR(p->bdev)) {
2752 			error = PTR_ERR(p->bdev);
2753 			p->bdev = NULL;
2754 			return error;
2755 		}
2756 		p->old_block_size = block_size(p->bdev);
2757 		error = set_blocksize(p->bdev, PAGE_SIZE);
2758 		if (error < 0)
2759 			return error;
2760 		/*
2761 		 * Zoned block devices contain zones that have a sequential
2762 		 * write only restriction.  Hence zoned block devices are not
2763 		 * suitable for swapping.  Disallow them here.
2764 		 */
2765 		if (bdev_is_zoned(p->bdev))
2766 			return -EINVAL;
2767 		p->flags |= SWP_BLKDEV;
2768 	} else if (S_ISREG(inode->i_mode)) {
2769 		p->bdev = inode->i_sb->s_bdev;
2770 	}
2771 
2772 	return 0;
2773 }
2774 
2775 
2776 /*
2777  * Find out how many pages are allowed for a single swap device. There
2778  * are two limiting factors:
2779  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2780  * 2) the number of bits in the swap pte, as defined by the different
2781  * architectures.
2782  *
2783  * In order to find the largest possible bit mask, a swap entry with
2784  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2785  * decoded to a swp_entry_t again, and finally the swap offset is
2786  * extracted.
2787  *
2788  * This will mask all the bits from the initial ~0UL mask that can't
2789  * be encoded in either the swp_entry_t or the architecture definition
2790  * of a swap pte.
2791  */
2792 unsigned long generic_max_swapfile_size(void)
2793 {
2794 	return swp_offset(pte_to_swp_entry(
2795 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2796 }
2797 
2798 /* Can be overridden by an architecture for additional checks. */
2799 __weak unsigned long max_swapfile_size(void)
2800 {
2801 	return generic_max_swapfile_size();
2802 }
2803 
2804 static unsigned long read_swap_header(struct swap_info_struct *p,
2805 					union swap_header *swap_header,
2806 					struct inode *inode)
2807 {
2808 	int i;
2809 	unsigned long maxpages;
2810 	unsigned long swapfilepages;
2811 	unsigned long last_page;
2812 
2813 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2814 		pr_err("Unable to find swap-space signature\n");
2815 		return 0;
2816 	}
2817 
2818 	/* swap partition endianness hack... */
2819 	if (swab32(swap_header->info.version) == 1) {
2820 		swab32s(&swap_header->info.version);
2821 		swab32s(&swap_header->info.last_page);
2822 		swab32s(&swap_header->info.nr_badpages);
2823 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2824 			return 0;
2825 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2826 			swab32s(&swap_header->info.badpages[i]);
2827 	}
2828 	/* Check the swap header's sub-version */
2829 	if (swap_header->info.version != 1) {
2830 		pr_warn("Unable to handle swap header version %d\n",
2831 			swap_header->info.version);
2832 		return 0;
2833 	}
2834 
2835 	p->lowest_bit  = 1;
2836 	p->cluster_next = 1;
2837 	p->cluster_nr = 0;
2838 
2839 	maxpages = max_swapfile_size();
2840 	last_page = swap_header->info.last_page;
2841 	if (!last_page) {
2842 		pr_warn("Empty swap-file\n");
2843 		return 0;
2844 	}
2845 	if (last_page > maxpages) {
2846 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2847 			maxpages << (PAGE_SHIFT - 10),
2848 			last_page << (PAGE_SHIFT - 10));
2849 	}
2850 	if (maxpages > last_page) {
2851 		maxpages = last_page + 1;
2852 		/* p->max is an unsigned int: don't overflow it */
2853 		if ((unsigned int)maxpages == 0)
2854 			maxpages = UINT_MAX;
2855 	}
2856 	p->highest_bit = maxpages - 1;
2857 
2858 	if (!maxpages)
2859 		return 0;
2860 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2861 	if (swapfilepages && maxpages > swapfilepages) {
2862 		pr_warn("Swap area shorter than signature indicates\n");
2863 		return 0;
2864 	}
2865 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2866 		return 0;
2867 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2868 		return 0;
2869 
2870 	return maxpages;
2871 }
2872 
2873 #define SWAP_CLUSTER_INFO_COLS						\
2874 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2875 #define SWAP_CLUSTER_SPACE_COLS						\
2876 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2877 #define SWAP_CLUSTER_COLS						\
2878 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2879 
2880 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2881 					union swap_header *swap_header,
2882 					unsigned char *swap_map,
2883 					struct swap_cluster_info *cluster_info,
2884 					unsigned long maxpages,
2885 					sector_t *span)
2886 {
2887 	unsigned int j, k;
2888 	unsigned int nr_good_pages;
2889 	int nr_extents;
2890 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2891 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2892 	unsigned long i, idx;
2893 
2894 	nr_good_pages = maxpages - 1;	/* omit header page */
2895 
2896 	cluster_list_init(&p->free_clusters);
2897 	cluster_list_init(&p->discard_clusters);
2898 
2899 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
2900 		unsigned int page_nr = swap_header->info.badpages[i];
2901 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
2902 			return -EINVAL;
2903 		if (page_nr < maxpages) {
2904 			swap_map[page_nr] = SWAP_MAP_BAD;
2905 			nr_good_pages--;
2906 			/*
2907 			 * Haven't marked the cluster free yet, no list
2908 			 * operation involved
2909 			 */
2910 			inc_cluster_info_page(p, cluster_info, page_nr);
2911 		}
2912 	}
2913 
2914 	/* Haven't marked the cluster free yet, no list operation involved */
2915 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2916 		inc_cluster_info_page(p, cluster_info, i);
2917 
2918 	if (nr_good_pages) {
2919 		swap_map[0] = SWAP_MAP_BAD;
2920 		/*
2921 		 * Not mark the cluster free yet, no list
2922 		 * operation involved
2923 		 */
2924 		inc_cluster_info_page(p, cluster_info, 0);
2925 		p->max = maxpages;
2926 		p->pages = nr_good_pages;
2927 		nr_extents = setup_swap_extents(p, span);
2928 		if (nr_extents < 0)
2929 			return nr_extents;
2930 		nr_good_pages = p->pages;
2931 	}
2932 	if (!nr_good_pages) {
2933 		pr_warn("Empty swap-file\n");
2934 		return -EINVAL;
2935 	}
2936 
2937 	if (!cluster_info)
2938 		return nr_extents;
2939 
2940 
2941 	/*
2942 	 * Reduce false cache line sharing between cluster_info and
2943 	 * sharing same address space.
2944 	 */
2945 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2946 		j = (k + col) % SWAP_CLUSTER_COLS;
2947 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2948 			idx = i * SWAP_CLUSTER_COLS + j;
2949 			if (idx >= nr_clusters)
2950 				continue;
2951 			if (cluster_count(&cluster_info[idx]))
2952 				continue;
2953 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2954 			cluster_list_add_tail(&p->free_clusters, cluster_info,
2955 					      idx);
2956 		}
2957 	}
2958 	return nr_extents;
2959 }
2960 
2961 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2962 {
2963 	struct swap_info_struct *p;
2964 	struct filename *name;
2965 	struct file *swap_file = NULL;
2966 	struct address_space *mapping;
2967 	struct dentry *dentry;
2968 	int prio;
2969 	int error;
2970 	union swap_header *swap_header;
2971 	int nr_extents;
2972 	sector_t span;
2973 	unsigned long maxpages;
2974 	unsigned char *swap_map = NULL;
2975 	struct swap_cluster_info *cluster_info = NULL;
2976 	unsigned long *frontswap_map = NULL;
2977 	struct page *page = NULL;
2978 	struct inode *inode = NULL;
2979 	bool inced_nr_rotate_swap = false;
2980 
2981 	if (swap_flags & ~SWAP_FLAGS_VALID)
2982 		return -EINVAL;
2983 
2984 	if (!capable(CAP_SYS_ADMIN))
2985 		return -EPERM;
2986 
2987 	if (!swap_avail_heads)
2988 		return -ENOMEM;
2989 
2990 	p = alloc_swap_info();
2991 	if (IS_ERR(p))
2992 		return PTR_ERR(p);
2993 
2994 	INIT_WORK(&p->discard_work, swap_discard_work);
2995 
2996 	name = getname(specialfile);
2997 	if (IS_ERR(name)) {
2998 		error = PTR_ERR(name);
2999 		name = NULL;
3000 		goto bad_swap;
3001 	}
3002 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3003 	if (IS_ERR(swap_file)) {
3004 		error = PTR_ERR(swap_file);
3005 		swap_file = NULL;
3006 		goto bad_swap;
3007 	}
3008 
3009 	p->swap_file = swap_file;
3010 	mapping = swap_file->f_mapping;
3011 	dentry = swap_file->f_path.dentry;
3012 	inode = mapping->host;
3013 
3014 	error = claim_swapfile(p, inode);
3015 	if (unlikely(error))
3016 		goto bad_swap;
3017 
3018 	inode_lock(inode);
3019 	if (d_unlinked(dentry) || cant_mount(dentry)) {
3020 		error = -ENOENT;
3021 		goto bad_swap_unlock_inode;
3022 	}
3023 	if (IS_SWAPFILE(inode)) {
3024 		error = -EBUSY;
3025 		goto bad_swap_unlock_inode;
3026 	}
3027 
3028 	/*
3029 	 * Read the swap header.
3030 	 */
3031 	if (!mapping->a_ops->readpage) {
3032 		error = -EINVAL;
3033 		goto bad_swap_unlock_inode;
3034 	}
3035 	page = read_mapping_page(mapping, 0, swap_file);
3036 	if (IS_ERR(page)) {
3037 		error = PTR_ERR(page);
3038 		goto bad_swap_unlock_inode;
3039 	}
3040 	swap_header = kmap(page);
3041 
3042 	maxpages = read_swap_header(p, swap_header, inode);
3043 	if (unlikely(!maxpages)) {
3044 		error = -EINVAL;
3045 		goto bad_swap_unlock_inode;
3046 	}
3047 
3048 	/* OK, set up the swap map and apply the bad block list */
3049 	swap_map = vzalloc(maxpages);
3050 	if (!swap_map) {
3051 		error = -ENOMEM;
3052 		goto bad_swap_unlock_inode;
3053 	}
3054 
3055 	if (p->bdev && bdev_stable_writes(p->bdev))
3056 		p->flags |= SWP_STABLE_WRITES;
3057 
3058 	if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3059 		p->flags |= SWP_SYNCHRONOUS_IO;
3060 
3061 	if (p->bdev && bdev_nonrot(p->bdev)) {
3062 		int cpu;
3063 		unsigned long ci, nr_cluster;
3064 
3065 		p->flags |= SWP_SOLIDSTATE;
3066 		p->cluster_next_cpu = alloc_percpu(unsigned int);
3067 		if (!p->cluster_next_cpu) {
3068 			error = -ENOMEM;
3069 			goto bad_swap_unlock_inode;
3070 		}
3071 		/*
3072 		 * select a random position to start with to help wear leveling
3073 		 * SSD
3074 		 */
3075 		for_each_possible_cpu(cpu) {
3076 			per_cpu(*p->cluster_next_cpu, cpu) =
3077 				1 + prandom_u32_max(p->highest_bit);
3078 		}
3079 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3080 
3081 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3082 					GFP_KERNEL);
3083 		if (!cluster_info) {
3084 			error = -ENOMEM;
3085 			goto bad_swap_unlock_inode;
3086 		}
3087 
3088 		for (ci = 0; ci < nr_cluster; ci++)
3089 			spin_lock_init(&((cluster_info + ci)->lock));
3090 
3091 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3092 		if (!p->percpu_cluster) {
3093 			error = -ENOMEM;
3094 			goto bad_swap_unlock_inode;
3095 		}
3096 		for_each_possible_cpu(cpu) {
3097 			struct percpu_cluster *cluster;
3098 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3099 			cluster_set_null(&cluster->index);
3100 		}
3101 	} else {
3102 		atomic_inc(&nr_rotate_swap);
3103 		inced_nr_rotate_swap = true;
3104 	}
3105 
3106 	error = swap_cgroup_swapon(p->type, maxpages);
3107 	if (error)
3108 		goto bad_swap_unlock_inode;
3109 
3110 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3111 		cluster_info, maxpages, &span);
3112 	if (unlikely(nr_extents < 0)) {
3113 		error = nr_extents;
3114 		goto bad_swap_unlock_inode;
3115 	}
3116 	/* frontswap enabled? set up bit-per-page map for frontswap */
3117 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3118 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3119 					 sizeof(long),
3120 					 GFP_KERNEL);
3121 
3122 	if ((swap_flags & SWAP_FLAG_DISCARD) &&
3123 	    p->bdev && bdev_max_discard_sectors(p->bdev)) {
3124 		/*
3125 		 * When discard is enabled for swap with no particular
3126 		 * policy flagged, we set all swap discard flags here in
3127 		 * order to sustain backward compatibility with older
3128 		 * swapon(8) releases.
3129 		 */
3130 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3131 			     SWP_PAGE_DISCARD);
3132 
3133 		/*
3134 		 * By flagging sys_swapon, a sysadmin can tell us to
3135 		 * either do single-time area discards only, or to just
3136 		 * perform discards for released swap page-clusters.
3137 		 * Now it's time to adjust the p->flags accordingly.
3138 		 */
3139 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3140 			p->flags &= ~SWP_PAGE_DISCARD;
3141 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3142 			p->flags &= ~SWP_AREA_DISCARD;
3143 
3144 		/* issue a swapon-time discard if it's still required */
3145 		if (p->flags & SWP_AREA_DISCARD) {
3146 			int err = discard_swap(p);
3147 			if (unlikely(err))
3148 				pr_err("swapon: discard_swap(%p): %d\n",
3149 					p, err);
3150 		}
3151 	}
3152 
3153 	error = init_swap_address_space(p->type, maxpages);
3154 	if (error)
3155 		goto bad_swap_unlock_inode;
3156 
3157 	/*
3158 	 * Flush any pending IO and dirty mappings before we start using this
3159 	 * swap device.
3160 	 */
3161 	inode->i_flags |= S_SWAPFILE;
3162 	error = inode_drain_writes(inode);
3163 	if (error) {
3164 		inode->i_flags &= ~S_SWAPFILE;
3165 		goto free_swap_address_space;
3166 	}
3167 
3168 	mutex_lock(&swapon_mutex);
3169 	prio = -1;
3170 	if (swap_flags & SWAP_FLAG_PREFER)
3171 		prio =
3172 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3173 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3174 
3175 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3176 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3177 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3178 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3179 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3180 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3181 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3182 		(frontswap_map) ? "FS" : "");
3183 
3184 	mutex_unlock(&swapon_mutex);
3185 	atomic_inc(&proc_poll_event);
3186 	wake_up_interruptible(&proc_poll_wait);
3187 
3188 	error = 0;
3189 	goto out;
3190 free_swap_address_space:
3191 	exit_swap_address_space(p->type);
3192 bad_swap_unlock_inode:
3193 	inode_unlock(inode);
3194 bad_swap:
3195 	free_percpu(p->percpu_cluster);
3196 	p->percpu_cluster = NULL;
3197 	free_percpu(p->cluster_next_cpu);
3198 	p->cluster_next_cpu = NULL;
3199 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3200 		set_blocksize(p->bdev, p->old_block_size);
3201 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3202 	}
3203 	inode = NULL;
3204 	destroy_swap_extents(p);
3205 	swap_cgroup_swapoff(p->type);
3206 	spin_lock(&swap_lock);
3207 	p->swap_file = NULL;
3208 	p->flags = 0;
3209 	spin_unlock(&swap_lock);
3210 	vfree(swap_map);
3211 	kvfree(cluster_info);
3212 	kvfree(frontswap_map);
3213 	if (inced_nr_rotate_swap)
3214 		atomic_dec(&nr_rotate_swap);
3215 	if (swap_file)
3216 		filp_close(swap_file, NULL);
3217 out:
3218 	if (page && !IS_ERR(page)) {
3219 		kunmap(page);
3220 		put_page(page);
3221 	}
3222 	if (name)
3223 		putname(name);
3224 	if (inode)
3225 		inode_unlock(inode);
3226 	if (!error)
3227 		enable_swap_slots_cache();
3228 	return error;
3229 }
3230 
3231 void si_swapinfo(struct sysinfo *val)
3232 {
3233 	unsigned int type;
3234 	unsigned long nr_to_be_unused = 0;
3235 
3236 	spin_lock(&swap_lock);
3237 	for (type = 0; type < nr_swapfiles; type++) {
3238 		struct swap_info_struct *si = swap_info[type];
3239 
3240 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3241 			nr_to_be_unused += si->inuse_pages;
3242 	}
3243 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3244 	val->totalswap = total_swap_pages + nr_to_be_unused;
3245 	spin_unlock(&swap_lock);
3246 }
3247 
3248 /*
3249  * Verify that a swap entry is valid and increment its swap map count.
3250  *
3251  * Returns error code in following case.
3252  * - success -> 0
3253  * - swp_entry is invalid -> EINVAL
3254  * - swp_entry is migration entry -> EINVAL
3255  * - swap-cache reference is requested but there is already one. -> EEXIST
3256  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3257  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3258  */
3259 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3260 {
3261 	struct swap_info_struct *p;
3262 	struct swap_cluster_info *ci;
3263 	unsigned long offset;
3264 	unsigned char count;
3265 	unsigned char has_cache;
3266 	int err;
3267 
3268 	p = get_swap_device(entry);
3269 	if (!p)
3270 		return -EINVAL;
3271 
3272 	offset = swp_offset(entry);
3273 	ci = lock_cluster_or_swap_info(p, offset);
3274 
3275 	count = p->swap_map[offset];
3276 
3277 	/*
3278 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3279 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3280 	 */
3281 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3282 		err = -ENOENT;
3283 		goto unlock_out;
3284 	}
3285 
3286 	has_cache = count & SWAP_HAS_CACHE;
3287 	count &= ~SWAP_HAS_CACHE;
3288 	err = 0;
3289 
3290 	if (usage == SWAP_HAS_CACHE) {
3291 
3292 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3293 		if (!has_cache && count)
3294 			has_cache = SWAP_HAS_CACHE;
3295 		else if (has_cache)		/* someone else added cache */
3296 			err = -EEXIST;
3297 		else				/* no users remaining */
3298 			err = -ENOENT;
3299 
3300 	} else if (count || has_cache) {
3301 
3302 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3303 			count += usage;
3304 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3305 			err = -EINVAL;
3306 		else if (swap_count_continued(p, offset, count))
3307 			count = COUNT_CONTINUED;
3308 		else
3309 			err = -ENOMEM;
3310 	} else
3311 		err = -ENOENT;			/* unused swap entry */
3312 
3313 	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3314 
3315 unlock_out:
3316 	unlock_cluster_or_swap_info(p, ci);
3317 	if (p)
3318 		put_swap_device(p);
3319 	return err;
3320 }
3321 
3322 /*
3323  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3324  * (in which case its reference count is never incremented).
3325  */
3326 void swap_shmem_alloc(swp_entry_t entry)
3327 {
3328 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3329 }
3330 
3331 /*
3332  * Increase reference count of swap entry by 1.
3333  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3334  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3335  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3336  * might occur if a page table entry has got corrupted.
3337  */
3338 int swap_duplicate(swp_entry_t entry)
3339 {
3340 	int err = 0;
3341 
3342 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3343 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3344 	return err;
3345 }
3346 
3347 /*
3348  * @entry: swap entry for which we allocate swap cache.
3349  *
3350  * Called when allocating swap cache for existing swap entry,
3351  * This can return error codes. Returns 0 at success.
3352  * -EEXIST means there is a swap cache.
3353  * Note: return code is different from swap_duplicate().
3354  */
3355 int swapcache_prepare(swp_entry_t entry)
3356 {
3357 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3358 }
3359 
3360 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3361 {
3362 	return swap_type_to_swap_info(swp_type(entry));
3363 }
3364 
3365 struct swap_info_struct *page_swap_info(struct page *page)
3366 {
3367 	swp_entry_t entry = { .val = page_private(page) };
3368 	return swp_swap_info(entry);
3369 }
3370 
3371 /*
3372  * out-of-line methods to avoid include hell.
3373  */
3374 struct address_space *swapcache_mapping(struct folio *folio)
3375 {
3376 	return page_swap_info(&folio->page)->swap_file->f_mapping;
3377 }
3378 EXPORT_SYMBOL_GPL(swapcache_mapping);
3379 
3380 pgoff_t __page_file_index(struct page *page)
3381 {
3382 	swp_entry_t swap = { .val = page_private(page) };
3383 	return swp_offset(swap);
3384 }
3385 EXPORT_SYMBOL_GPL(__page_file_index);
3386 
3387 /*
3388  * add_swap_count_continuation - called when a swap count is duplicated
3389  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3390  * page of the original vmalloc'ed swap_map, to hold the continuation count
3391  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3392  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3393  *
3394  * These continuation pages are seldom referenced: the common paths all work
3395  * on the original swap_map, only referring to a continuation page when the
3396  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3397  *
3398  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3399  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3400  * can be called after dropping locks.
3401  */
3402 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3403 {
3404 	struct swap_info_struct *si;
3405 	struct swap_cluster_info *ci;
3406 	struct page *head;
3407 	struct page *page;
3408 	struct page *list_page;
3409 	pgoff_t offset;
3410 	unsigned char count;
3411 	int ret = 0;
3412 
3413 	/*
3414 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3415 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3416 	 */
3417 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3418 
3419 	si = get_swap_device(entry);
3420 	if (!si) {
3421 		/*
3422 		 * An acceptable race has occurred since the failing
3423 		 * __swap_duplicate(): the swap device may be swapoff
3424 		 */
3425 		goto outer;
3426 	}
3427 	spin_lock(&si->lock);
3428 
3429 	offset = swp_offset(entry);
3430 
3431 	ci = lock_cluster(si, offset);
3432 
3433 	count = swap_count(si->swap_map[offset]);
3434 
3435 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3436 		/*
3437 		 * The higher the swap count, the more likely it is that tasks
3438 		 * will race to add swap count continuation: we need to avoid
3439 		 * over-provisioning.
3440 		 */
3441 		goto out;
3442 	}
3443 
3444 	if (!page) {
3445 		ret = -ENOMEM;
3446 		goto out;
3447 	}
3448 
3449 	/*
3450 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3451 	 * no architecture is using highmem pages for kernel page tables: so it
3452 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3453 	 */
3454 	head = vmalloc_to_page(si->swap_map + offset);
3455 	offset &= ~PAGE_MASK;
3456 
3457 	spin_lock(&si->cont_lock);
3458 	/*
3459 	 * Page allocation does not initialize the page's lru field,
3460 	 * but it does always reset its private field.
3461 	 */
3462 	if (!page_private(head)) {
3463 		BUG_ON(count & COUNT_CONTINUED);
3464 		INIT_LIST_HEAD(&head->lru);
3465 		set_page_private(head, SWP_CONTINUED);
3466 		si->flags |= SWP_CONTINUED;
3467 	}
3468 
3469 	list_for_each_entry(list_page, &head->lru, lru) {
3470 		unsigned char *map;
3471 
3472 		/*
3473 		 * If the previous map said no continuation, but we've found
3474 		 * a continuation page, free our allocation and use this one.
3475 		 */
3476 		if (!(count & COUNT_CONTINUED))
3477 			goto out_unlock_cont;
3478 
3479 		map = kmap_atomic(list_page) + offset;
3480 		count = *map;
3481 		kunmap_atomic(map);
3482 
3483 		/*
3484 		 * If this continuation count now has some space in it,
3485 		 * free our allocation and use this one.
3486 		 */
3487 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3488 			goto out_unlock_cont;
3489 	}
3490 
3491 	list_add_tail(&page->lru, &head->lru);
3492 	page = NULL;			/* now it's attached, don't free it */
3493 out_unlock_cont:
3494 	spin_unlock(&si->cont_lock);
3495 out:
3496 	unlock_cluster(ci);
3497 	spin_unlock(&si->lock);
3498 	put_swap_device(si);
3499 outer:
3500 	if (page)
3501 		__free_page(page);
3502 	return ret;
3503 }
3504 
3505 /*
3506  * swap_count_continued - when the original swap_map count is incremented
3507  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3508  * into, carry if so, or else fail until a new continuation page is allocated;
3509  * when the original swap_map count is decremented from 0 with continuation,
3510  * borrow from the continuation and report whether it still holds more.
3511  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3512  * lock.
3513  */
3514 static bool swap_count_continued(struct swap_info_struct *si,
3515 				 pgoff_t offset, unsigned char count)
3516 {
3517 	struct page *head;
3518 	struct page *page;
3519 	unsigned char *map;
3520 	bool ret;
3521 
3522 	head = vmalloc_to_page(si->swap_map + offset);
3523 	if (page_private(head) != SWP_CONTINUED) {
3524 		BUG_ON(count & COUNT_CONTINUED);
3525 		return false;		/* need to add count continuation */
3526 	}
3527 
3528 	spin_lock(&si->cont_lock);
3529 	offset &= ~PAGE_MASK;
3530 	page = list_next_entry(head, lru);
3531 	map = kmap_atomic(page) + offset;
3532 
3533 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3534 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3535 
3536 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3537 		/*
3538 		 * Think of how you add 1 to 999
3539 		 */
3540 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3541 			kunmap_atomic(map);
3542 			page = list_next_entry(page, lru);
3543 			BUG_ON(page == head);
3544 			map = kmap_atomic(page) + offset;
3545 		}
3546 		if (*map == SWAP_CONT_MAX) {
3547 			kunmap_atomic(map);
3548 			page = list_next_entry(page, lru);
3549 			if (page == head) {
3550 				ret = false;	/* add count continuation */
3551 				goto out;
3552 			}
3553 			map = kmap_atomic(page) + offset;
3554 init_map:		*map = 0;		/* we didn't zero the page */
3555 		}
3556 		*map += 1;
3557 		kunmap_atomic(map);
3558 		while ((page = list_prev_entry(page, lru)) != head) {
3559 			map = kmap_atomic(page) + offset;
3560 			*map = COUNT_CONTINUED;
3561 			kunmap_atomic(map);
3562 		}
3563 		ret = true;			/* incremented */
3564 
3565 	} else {				/* decrementing */
3566 		/*
3567 		 * Think of how you subtract 1 from 1000
3568 		 */
3569 		BUG_ON(count != COUNT_CONTINUED);
3570 		while (*map == COUNT_CONTINUED) {
3571 			kunmap_atomic(map);
3572 			page = list_next_entry(page, lru);
3573 			BUG_ON(page == head);
3574 			map = kmap_atomic(page) + offset;
3575 		}
3576 		BUG_ON(*map == 0);
3577 		*map -= 1;
3578 		if (*map == 0)
3579 			count = 0;
3580 		kunmap_atomic(map);
3581 		while ((page = list_prev_entry(page, lru)) != head) {
3582 			map = kmap_atomic(page) + offset;
3583 			*map = SWAP_CONT_MAX | count;
3584 			count = COUNT_CONTINUED;
3585 			kunmap_atomic(map);
3586 		}
3587 		ret = count == COUNT_CONTINUED;
3588 	}
3589 out:
3590 	spin_unlock(&si->cont_lock);
3591 	return ret;
3592 }
3593 
3594 /*
3595  * free_swap_count_continuations - swapoff free all the continuation pages
3596  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3597  */
3598 static void free_swap_count_continuations(struct swap_info_struct *si)
3599 {
3600 	pgoff_t offset;
3601 
3602 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3603 		struct page *head;
3604 		head = vmalloc_to_page(si->swap_map + offset);
3605 		if (page_private(head)) {
3606 			struct page *page, *next;
3607 
3608 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3609 				list_del(&page->lru);
3610 				__free_page(page);
3611 			}
3612 		}
3613 	}
3614 }
3615 
3616 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3617 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3618 {
3619 	struct swap_info_struct *si, *next;
3620 	int nid = page_to_nid(page);
3621 
3622 	if (!(gfp_mask & __GFP_IO))
3623 		return;
3624 
3625 	if (!blk_cgroup_congested())
3626 		return;
3627 
3628 	/*
3629 	 * We've already scheduled a throttle, avoid taking the global swap
3630 	 * lock.
3631 	 */
3632 	if (current->throttle_queue)
3633 		return;
3634 
3635 	spin_lock(&swap_avail_lock);
3636 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3637 				  avail_lists[nid]) {
3638 		if (si->bdev) {
3639 			blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3640 			break;
3641 		}
3642 	}
3643 	spin_unlock(&swap_avail_lock);
3644 }
3645 #endif
3646 
3647 static int __init swapfile_init(void)
3648 {
3649 	int nid;
3650 
3651 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3652 					 GFP_KERNEL);
3653 	if (!swap_avail_heads) {
3654 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3655 		return -ENOMEM;
3656 	}
3657 
3658 	for_each_node(nid)
3659 		plist_head_init(&swap_avail_heads[nid]);
3660 
3661 	return 0;
3662 }
3663 subsys_initcall(swapfile_init);
3664