1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/swapfile.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 */ 8 9 #include <linux/blkdev.h> 10 #include <linux/mm.h> 11 #include <linux/sched/mm.h> 12 #include <linux/sched/task.h> 13 #include <linux/hugetlb.h> 14 #include <linux/mman.h> 15 #include <linux/slab.h> 16 #include <linux/kernel_stat.h> 17 #include <linux/swap.h> 18 #include <linux/vmalloc.h> 19 #include <linux/pagemap.h> 20 #include <linux/namei.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/blk-cgroup.h> 23 #include <linux/random.h> 24 #include <linux/writeback.h> 25 #include <linux/proc_fs.h> 26 #include <linux/seq_file.h> 27 #include <linux/init.h> 28 #include <linux/ksm.h> 29 #include <linux/rmap.h> 30 #include <linux/security.h> 31 #include <linux/backing-dev.h> 32 #include <linux/mutex.h> 33 #include <linux/capability.h> 34 #include <linux/syscalls.h> 35 #include <linux/memcontrol.h> 36 #include <linux/poll.h> 37 #include <linux/oom.h> 38 #include <linux/frontswap.h> 39 #include <linux/swapfile.h> 40 #include <linux/export.h> 41 #include <linux/swap_slots.h> 42 #include <linux/sort.h> 43 #include <linux/completion.h> 44 45 #include <asm/tlbflush.h> 46 #include <linux/swapops.h> 47 #include <linux/swap_cgroup.h> 48 #include "swap.h" 49 50 static bool swap_count_continued(struct swap_info_struct *, pgoff_t, 51 unsigned char); 52 static void free_swap_count_continuations(struct swap_info_struct *); 53 54 static DEFINE_SPINLOCK(swap_lock); 55 static unsigned int nr_swapfiles; 56 atomic_long_t nr_swap_pages; 57 /* 58 * Some modules use swappable objects and may try to swap them out under 59 * memory pressure (via the shrinker). Before doing so, they may wish to 60 * check to see if any swap space is available. 61 */ 62 EXPORT_SYMBOL_GPL(nr_swap_pages); 63 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */ 64 long total_swap_pages; 65 static int least_priority = -1; 66 unsigned long swapfile_maximum_size; 67 #ifdef CONFIG_MIGRATION 68 bool swap_migration_ad_supported; 69 #endif /* CONFIG_MIGRATION */ 70 71 static const char Bad_file[] = "Bad swap file entry "; 72 static const char Unused_file[] = "Unused swap file entry "; 73 static const char Bad_offset[] = "Bad swap offset entry "; 74 static const char Unused_offset[] = "Unused swap offset entry "; 75 76 /* 77 * all active swap_info_structs 78 * protected with swap_lock, and ordered by priority. 79 */ 80 static PLIST_HEAD(swap_active_head); 81 82 /* 83 * all available (active, not full) swap_info_structs 84 * protected with swap_avail_lock, ordered by priority. 85 * This is used by folio_alloc_swap() instead of swap_active_head 86 * because swap_active_head includes all swap_info_structs, 87 * but folio_alloc_swap() doesn't need to look at full ones. 88 * This uses its own lock instead of swap_lock because when a 89 * swap_info_struct changes between not-full/full, it needs to 90 * add/remove itself to/from this list, but the swap_info_struct->lock 91 * is held and the locking order requires swap_lock to be taken 92 * before any swap_info_struct->lock. 93 */ 94 static struct plist_head *swap_avail_heads; 95 static DEFINE_SPINLOCK(swap_avail_lock); 96 97 struct swap_info_struct *swap_info[MAX_SWAPFILES]; 98 99 static DEFINE_MUTEX(swapon_mutex); 100 101 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait); 102 /* Activity counter to indicate that a swapon or swapoff has occurred */ 103 static atomic_t proc_poll_event = ATOMIC_INIT(0); 104 105 atomic_t nr_rotate_swap = ATOMIC_INIT(0); 106 107 static struct swap_info_struct *swap_type_to_swap_info(int type) 108 { 109 if (type >= MAX_SWAPFILES) 110 return NULL; 111 112 return READ_ONCE(swap_info[type]); /* rcu_dereference() */ 113 } 114 115 static inline unsigned char swap_count(unsigned char ent) 116 { 117 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */ 118 } 119 120 /* Reclaim the swap entry anyway if possible */ 121 #define TTRS_ANYWAY 0x1 122 /* 123 * Reclaim the swap entry if there are no more mappings of the 124 * corresponding page 125 */ 126 #define TTRS_UNMAPPED 0x2 127 /* Reclaim the swap entry if swap is getting full*/ 128 #define TTRS_FULL 0x4 129 130 /* returns 1 if swap entry is freed */ 131 static int __try_to_reclaim_swap(struct swap_info_struct *si, 132 unsigned long offset, unsigned long flags) 133 { 134 swp_entry_t entry = swp_entry(si->type, offset); 135 struct folio *folio; 136 int ret = 0; 137 138 folio = filemap_get_folio(swap_address_space(entry), offset); 139 if (!folio) 140 return 0; 141 /* 142 * When this function is called from scan_swap_map_slots() and it's 143 * called by vmscan.c at reclaiming folios. So we hold a folio lock 144 * here. We have to use trylock for avoiding deadlock. This is a special 145 * case and you should use folio_free_swap() with explicit folio_lock() 146 * in usual operations. 147 */ 148 if (folio_trylock(folio)) { 149 if ((flags & TTRS_ANYWAY) || 150 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) || 151 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio))) 152 ret = folio_free_swap(folio); 153 folio_unlock(folio); 154 } 155 folio_put(folio); 156 return ret; 157 } 158 159 static inline struct swap_extent *first_se(struct swap_info_struct *sis) 160 { 161 struct rb_node *rb = rb_first(&sis->swap_extent_root); 162 return rb_entry(rb, struct swap_extent, rb_node); 163 } 164 165 static inline struct swap_extent *next_se(struct swap_extent *se) 166 { 167 struct rb_node *rb = rb_next(&se->rb_node); 168 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL; 169 } 170 171 /* 172 * swapon tell device that all the old swap contents can be discarded, 173 * to allow the swap device to optimize its wear-levelling. 174 */ 175 static int discard_swap(struct swap_info_struct *si) 176 { 177 struct swap_extent *se; 178 sector_t start_block; 179 sector_t nr_blocks; 180 int err = 0; 181 182 /* Do not discard the swap header page! */ 183 se = first_se(si); 184 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9); 185 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9); 186 if (nr_blocks) { 187 err = blkdev_issue_discard(si->bdev, start_block, 188 nr_blocks, GFP_KERNEL); 189 if (err) 190 return err; 191 cond_resched(); 192 } 193 194 for (se = next_se(se); se; se = next_se(se)) { 195 start_block = se->start_block << (PAGE_SHIFT - 9); 196 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9); 197 198 err = blkdev_issue_discard(si->bdev, start_block, 199 nr_blocks, GFP_KERNEL); 200 if (err) 201 break; 202 203 cond_resched(); 204 } 205 return err; /* That will often be -EOPNOTSUPP */ 206 } 207 208 static struct swap_extent * 209 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset) 210 { 211 struct swap_extent *se; 212 struct rb_node *rb; 213 214 rb = sis->swap_extent_root.rb_node; 215 while (rb) { 216 se = rb_entry(rb, struct swap_extent, rb_node); 217 if (offset < se->start_page) 218 rb = rb->rb_left; 219 else if (offset >= se->start_page + se->nr_pages) 220 rb = rb->rb_right; 221 else 222 return se; 223 } 224 /* It *must* be present */ 225 BUG(); 226 } 227 228 sector_t swap_page_sector(struct page *page) 229 { 230 struct swap_info_struct *sis = page_swap_info(page); 231 struct swap_extent *se; 232 sector_t sector; 233 pgoff_t offset; 234 235 offset = __page_file_index(page); 236 se = offset_to_swap_extent(sis, offset); 237 sector = se->start_block + (offset - se->start_page); 238 return sector << (PAGE_SHIFT - 9); 239 } 240 241 /* 242 * swap allocation tell device that a cluster of swap can now be discarded, 243 * to allow the swap device to optimize its wear-levelling. 244 */ 245 static void discard_swap_cluster(struct swap_info_struct *si, 246 pgoff_t start_page, pgoff_t nr_pages) 247 { 248 struct swap_extent *se = offset_to_swap_extent(si, start_page); 249 250 while (nr_pages) { 251 pgoff_t offset = start_page - se->start_page; 252 sector_t start_block = se->start_block + offset; 253 sector_t nr_blocks = se->nr_pages - offset; 254 255 if (nr_blocks > nr_pages) 256 nr_blocks = nr_pages; 257 start_page += nr_blocks; 258 nr_pages -= nr_blocks; 259 260 start_block <<= PAGE_SHIFT - 9; 261 nr_blocks <<= PAGE_SHIFT - 9; 262 if (blkdev_issue_discard(si->bdev, start_block, 263 nr_blocks, GFP_NOIO)) 264 break; 265 266 se = next_se(se); 267 } 268 } 269 270 #ifdef CONFIG_THP_SWAP 271 #define SWAPFILE_CLUSTER HPAGE_PMD_NR 272 273 #define swap_entry_size(size) (size) 274 #else 275 #define SWAPFILE_CLUSTER 256 276 277 /* 278 * Define swap_entry_size() as constant to let compiler to optimize 279 * out some code if !CONFIG_THP_SWAP 280 */ 281 #define swap_entry_size(size) 1 282 #endif 283 #define LATENCY_LIMIT 256 284 285 static inline void cluster_set_flag(struct swap_cluster_info *info, 286 unsigned int flag) 287 { 288 info->flags = flag; 289 } 290 291 static inline unsigned int cluster_count(struct swap_cluster_info *info) 292 { 293 return info->data; 294 } 295 296 static inline void cluster_set_count(struct swap_cluster_info *info, 297 unsigned int c) 298 { 299 info->data = c; 300 } 301 302 static inline void cluster_set_count_flag(struct swap_cluster_info *info, 303 unsigned int c, unsigned int f) 304 { 305 info->flags = f; 306 info->data = c; 307 } 308 309 static inline unsigned int cluster_next(struct swap_cluster_info *info) 310 { 311 return info->data; 312 } 313 314 static inline void cluster_set_next(struct swap_cluster_info *info, 315 unsigned int n) 316 { 317 info->data = n; 318 } 319 320 static inline void cluster_set_next_flag(struct swap_cluster_info *info, 321 unsigned int n, unsigned int f) 322 { 323 info->flags = f; 324 info->data = n; 325 } 326 327 static inline bool cluster_is_free(struct swap_cluster_info *info) 328 { 329 return info->flags & CLUSTER_FLAG_FREE; 330 } 331 332 static inline bool cluster_is_null(struct swap_cluster_info *info) 333 { 334 return info->flags & CLUSTER_FLAG_NEXT_NULL; 335 } 336 337 static inline void cluster_set_null(struct swap_cluster_info *info) 338 { 339 info->flags = CLUSTER_FLAG_NEXT_NULL; 340 info->data = 0; 341 } 342 343 static inline bool cluster_is_huge(struct swap_cluster_info *info) 344 { 345 if (IS_ENABLED(CONFIG_THP_SWAP)) 346 return info->flags & CLUSTER_FLAG_HUGE; 347 return false; 348 } 349 350 static inline void cluster_clear_huge(struct swap_cluster_info *info) 351 { 352 info->flags &= ~CLUSTER_FLAG_HUGE; 353 } 354 355 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si, 356 unsigned long offset) 357 { 358 struct swap_cluster_info *ci; 359 360 ci = si->cluster_info; 361 if (ci) { 362 ci += offset / SWAPFILE_CLUSTER; 363 spin_lock(&ci->lock); 364 } 365 return ci; 366 } 367 368 static inline void unlock_cluster(struct swap_cluster_info *ci) 369 { 370 if (ci) 371 spin_unlock(&ci->lock); 372 } 373 374 /* 375 * Determine the locking method in use for this device. Return 376 * swap_cluster_info if SSD-style cluster-based locking is in place. 377 */ 378 static inline struct swap_cluster_info *lock_cluster_or_swap_info( 379 struct swap_info_struct *si, unsigned long offset) 380 { 381 struct swap_cluster_info *ci; 382 383 /* Try to use fine-grained SSD-style locking if available: */ 384 ci = lock_cluster(si, offset); 385 /* Otherwise, fall back to traditional, coarse locking: */ 386 if (!ci) 387 spin_lock(&si->lock); 388 389 return ci; 390 } 391 392 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si, 393 struct swap_cluster_info *ci) 394 { 395 if (ci) 396 unlock_cluster(ci); 397 else 398 spin_unlock(&si->lock); 399 } 400 401 static inline bool cluster_list_empty(struct swap_cluster_list *list) 402 { 403 return cluster_is_null(&list->head); 404 } 405 406 static inline unsigned int cluster_list_first(struct swap_cluster_list *list) 407 { 408 return cluster_next(&list->head); 409 } 410 411 static void cluster_list_init(struct swap_cluster_list *list) 412 { 413 cluster_set_null(&list->head); 414 cluster_set_null(&list->tail); 415 } 416 417 static void cluster_list_add_tail(struct swap_cluster_list *list, 418 struct swap_cluster_info *ci, 419 unsigned int idx) 420 { 421 if (cluster_list_empty(list)) { 422 cluster_set_next_flag(&list->head, idx, 0); 423 cluster_set_next_flag(&list->tail, idx, 0); 424 } else { 425 struct swap_cluster_info *ci_tail; 426 unsigned int tail = cluster_next(&list->tail); 427 428 /* 429 * Nested cluster lock, but both cluster locks are 430 * only acquired when we held swap_info_struct->lock 431 */ 432 ci_tail = ci + tail; 433 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING); 434 cluster_set_next(ci_tail, idx); 435 spin_unlock(&ci_tail->lock); 436 cluster_set_next_flag(&list->tail, idx, 0); 437 } 438 } 439 440 static unsigned int cluster_list_del_first(struct swap_cluster_list *list, 441 struct swap_cluster_info *ci) 442 { 443 unsigned int idx; 444 445 idx = cluster_next(&list->head); 446 if (cluster_next(&list->tail) == idx) { 447 cluster_set_null(&list->head); 448 cluster_set_null(&list->tail); 449 } else 450 cluster_set_next_flag(&list->head, 451 cluster_next(&ci[idx]), 0); 452 453 return idx; 454 } 455 456 /* Add a cluster to discard list and schedule it to do discard */ 457 static void swap_cluster_schedule_discard(struct swap_info_struct *si, 458 unsigned int idx) 459 { 460 /* 461 * If scan_swap_map_slots() can't find a free cluster, it will check 462 * si->swap_map directly. To make sure the discarding cluster isn't 463 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied). 464 * It will be cleared after discard 465 */ 466 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 467 SWAP_MAP_BAD, SWAPFILE_CLUSTER); 468 469 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx); 470 471 schedule_work(&si->discard_work); 472 } 473 474 static void __free_cluster(struct swap_info_struct *si, unsigned long idx) 475 { 476 struct swap_cluster_info *ci = si->cluster_info; 477 478 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE); 479 cluster_list_add_tail(&si->free_clusters, ci, idx); 480 } 481 482 /* 483 * Doing discard actually. After a cluster discard is finished, the cluster 484 * will be added to free cluster list. caller should hold si->lock. 485 */ 486 static void swap_do_scheduled_discard(struct swap_info_struct *si) 487 { 488 struct swap_cluster_info *info, *ci; 489 unsigned int idx; 490 491 info = si->cluster_info; 492 493 while (!cluster_list_empty(&si->discard_clusters)) { 494 idx = cluster_list_del_first(&si->discard_clusters, info); 495 spin_unlock(&si->lock); 496 497 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER, 498 SWAPFILE_CLUSTER); 499 500 spin_lock(&si->lock); 501 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER); 502 __free_cluster(si, idx); 503 memset(si->swap_map + idx * SWAPFILE_CLUSTER, 504 0, SWAPFILE_CLUSTER); 505 unlock_cluster(ci); 506 } 507 } 508 509 static void swap_discard_work(struct work_struct *work) 510 { 511 struct swap_info_struct *si; 512 513 si = container_of(work, struct swap_info_struct, discard_work); 514 515 spin_lock(&si->lock); 516 swap_do_scheduled_discard(si); 517 spin_unlock(&si->lock); 518 } 519 520 static void swap_users_ref_free(struct percpu_ref *ref) 521 { 522 struct swap_info_struct *si; 523 524 si = container_of(ref, struct swap_info_struct, users); 525 complete(&si->comp); 526 } 527 528 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx) 529 { 530 struct swap_cluster_info *ci = si->cluster_info; 531 532 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx); 533 cluster_list_del_first(&si->free_clusters, ci); 534 cluster_set_count_flag(ci + idx, 0, 0); 535 } 536 537 static void free_cluster(struct swap_info_struct *si, unsigned long idx) 538 { 539 struct swap_cluster_info *ci = si->cluster_info + idx; 540 541 VM_BUG_ON(cluster_count(ci) != 0); 542 /* 543 * If the swap is discardable, prepare discard the cluster 544 * instead of free it immediately. The cluster will be freed 545 * after discard. 546 */ 547 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) == 548 (SWP_WRITEOK | SWP_PAGE_DISCARD)) { 549 swap_cluster_schedule_discard(si, idx); 550 return; 551 } 552 553 __free_cluster(si, idx); 554 } 555 556 /* 557 * The cluster corresponding to page_nr will be used. The cluster will be 558 * removed from free cluster list and its usage counter will be increased. 559 */ 560 static void inc_cluster_info_page(struct swap_info_struct *p, 561 struct swap_cluster_info *cluster_info, unsigned long page_nr) 562 { 563 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 564 565 if (!cluster_info) 566 return; 567 if (cluster_is_free(&cluster_info[idx])) 568 alloc_cluster(p, idx); 569 570 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER); 571 cluster_set_count(&cluster_info[idx], 572 cluster_count(&cluster_info[idx]) + 1); 573 } 574 575 /* 576 * The cluster corresponding to page_nr decreases one usage. If the usage 577 * counter becomes 0, which means no page in the cluster is in using, we can 578 * optionally discard the cluster and add it to free cluster list. 579 */ 580 static void dec_cluster_info_page(struct swap_info_struct *p, 581 struct swap_cluster_info *cluster_info, unsigned long page_nr) 582 { 583 unsigned long idx = page_nr / SWAPFILE_CLUSTER; 584 585 if (!cluster_info) 586 return; 587 588 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0); 589 cluster_set_count(&cluster_info[idx], 590 cluster_count(&cluster_info[idx]) - 1); 591 592 if (cluster_count(&cluster_info[idx]) == 0) 593 free_cluster(p, idx); 594 } 595 596 /* 597 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free 598 * cluster list. Avoiding such abuse to avoid list corruption. 599 */ 600 static bool 601 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si, 602 unsigned long offset) 603 { 604 struct percpu_cluster *percpu_cluster; 605 bool conflict; 606 607 offset /= SWAPFILE_CLUSTER; 608 conflict = !cluster_list_empty(&si->free_clusters) && 609 offset != cluster_list_first(&si->free_clusters) && 610 cluster_is_free(&si->cluster_info[offset]); 611 612 if (!conflict) 613 return false; 614 615 percpu_cluster = this_cpu_ptr(si->percpu_cluster); 616 cluster_set_null(&percpu_cluster->index); 617 return true; 618 } 619 620 /* 621 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This 622 * might involve allocating a new cluster for current CPU too. 623 */ 624 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si, 625 unsigned long *offset, unsigned long *scan_base) 626 { 627 struct percpu_cluster *cluster; 628 struct swap_cluster_info *ci; 629 unsigned long tmp, max; 630 631 new_cluster: 632 cluster = this_cpu_ptr(si->percpu_cluster); 633 if (cluster_is_null(&cluster->index)) { 634 if (!cluster_list_empty(&si->free_clusters)) { 635 cluster->index = si->free_clusters.head; 636 cluster->next = cluster_next(&cluster->index) * 637 SWAPFILE_CLUSTER; 638 } else if (!cluster_list_empty(&si->discard_clusters)) { 639 /* 640 * we don't have free cluster but have some clusters in 641 * discarding, do discard now and reclaim them, then 642 * reread cluster_next_cpu since we dropped si->lock 643 */ 644 swap_do_scheduled_discard(si); 645 *scan_base = this_cpu_read(*si->cluster_next_cpu); 646 *offset = *scan_base; 647 goto new_cluster; 648 } else 649 return false; 650 } 651 652 /* 653 * Other CPUs can use our cluster if they can't find a free cluster, 654 * check if there is still free entry in the cluster 655 */ 656 tmp = cluster->next; 657 max = min_t(unsigned long, si->max, 658 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER); 659 if (tmp < max) { 660 ci = lock_cluster(si, tmp); 661 while (tmp < max) { 662 if (!si->swap_map[tmp]) 663 break; 664 tmp++; 665 } 666 unlock_cluster(ci); 667 } 668 if (tmp >= max) { 669 cluster_set_null(&cluster->index); 670 goto new_cluster; 671 } 672 cluster->next = tmp + 1; 673 *offset = tmp; 674 *scan_base = tmp; 675 return true; 676 } 677 678 static void __del_from_avail_list(struct swap_info_struct *p) 679 { 680 int nid; 681 682 for_each_node(nid) 683 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]); 684 } 685 686 static void del_from_avail_list(struct swap_info_struct *p) 687 { 688 spin_lock(&swap_avail_lock); 689 __del_from_avail_list(p); 690 spin_unlock(&swap_avail_lock); 691 } 692 693 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset, 694 unsigned int nr_entries) 695 { 696 unsigned int end = offset + nr_entries - 1; 697 698 if (offset == si->lowest_bit) 699 si->lowest_bit += nr_entries; 700 if (end == si->highest_bit) 701 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries); 702 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries); 703 if (si->inuse_pages == si->pages) { 704 si->lowest_bit = si->max; 705 si->highest_bit = 0; 706 del_from_avail_list(si); 707 } 708 } 709 710 static void add_to_avail_list(struct swap_info_struct *p) 711 { 712 int nid; 713 714 spin_lock(&swap_avail_lock); 715 for_each_node(nid) { 716 WARN_ON(!plist_node_empty(&p->avail_lists[nid])); 717 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]); 718 } 719 spin_unlock(&swap_avail_lock); 720 } 721 722 static void swap_range_free(struct swap_info_struct *si, unsigned long offset, 723 unsigned int nr_entries) 724 { 725 unsigned long begin = offset; 726 unsigned long end = offset + nr_entries - 1; 727 void (*swap_slot_free_notify)(struct block_device *, unsigned long); 728 729 if (offset < si->lowest_bit) 730 si->lowest_bit = offset; 731 if (end > si->highest_bit) { 732 bool was_full = !si->highest_bit; 733 734 WRITE_ONCE(si->highest_bit, end); 735 if (was_full && (si->flags & SWP_WRITEOK)) 736 add_to_avail_list(si); 737 } 738 atomic_long_add(nr_entries, &nr_swap_pages); 739 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries); 740 if (si->flags & SWP_BLKDEV) 741 swap_slot_free_notify = 742 si->bdev->bd_disk->fops->swap_slot_free_notify; 743 else 744 swap_slot_free_notify = NULL; 745 while (offset <= end) { 746 arch_swap_invalidate_page(si->type, offset); 747 frontswap_invalidate_page(si->type, offset); 748 if (swap_slot_free_notify) 749 swap_slot_free_notify(si->bdev, offset); 750 offset++; 751 } 752 clear_shadow_from_swap_cache(si->type, begin, end); 753 } 754 755 static void set_cluster_next(struct swap_info_struct *si, unsigned long next) 756 { 757 unsigned long prev; 758 759 if (!(si->flags & SWP_SOLIDSTATE)) { 760 si->cluster_next = next; 761 return; 762 } 763 764 prev = this_cpu_read(*si->cluster_next_cpu); 765 /* 766 * Cross the swap address space size aligned trunk, choose 767 * another trunk randomly to avoid lock contention on swap 768 * address space if possible. 769 */ 770 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) != 771 (next >> SWAP_ADDRESS_SPACE_SHIFT)) { 772 /* No free swap slots available */ 773 if (si->highest_bit <= si->lowest_bit) 774 return; 775 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit); 776 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES); 777 next = max_t(unsigned int, next, si->lowest_bit); 778 } 779 this_cpu_write(*si->cluster_next_cpu, next); 780 } 781 782 static bool swap_offset_available_and_locked(struct swap_info_struct *si, 783 unsigned long offset) 784 { 785 if (data_race(!si->swap_map[offset])) { 786 spin_lock(&si->lock); 787 return true; 788 } 789 790 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) { 791 spin_lock(&si->lock); 792 return true; 793 } 794 795 return false; 796 } 797 798 static int scan_swap_map_slots(struct swap_info_struct *si, 799 unsigned char usage, int nr, 800 swp_entry_t slots[]) 801 { 802 struct swap_cluster_info *ci; 803 unsigned long offset; 804 unsigned long scan_base; 805 unsigned long last_in_cluster = 0; 806 int latency_ration = LATENCY_LIMIT; 807 int n_ret = 0; 808 bool scanned_many = false; 809 810 /* 811 * We try to cluster swap pages by allocating them sequentially 812 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this 813 * way, however, we resort to first-free allocation, starting 814 * a new cluster. This prevents us from scattering swap pages 815 * all over the entire swap partition, so that we reduce 816 * overall disk seek times between swap pages. -- sct 817 * But we do now try to find an empty cluster. -Andrea 818 * And we let swap pages go all over an SSD partition. Hugh 819 */ 820 821 si->flags += SWP_SCANNING; 822 /* 823 * Use percpu scan base for SSD to reduce lock contention on 824 * cluster and swap cache. For HDD, sequential access is more 825 * important. 826 */ 827 if (si->flags & SWP_SOLIDSTATE) 828 scan_base = this_cpu_read(*si->cluster_next_cpu); 829 else 830 scan_base = si->cluster_next; 831 offset = scan_base; 832 833 /* SSD algorithm */ 834 if (si->cluster_info) { 835 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 836 goto scan; 837 } else if (unlikely(!si->cluster_nr--)) { 838 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) { 839 si->cluster_nr = SWAPFILE_CLUSTER - 1; 840 goto checks; 841 } 842 843 spin_unlock(&si->lock); 844 845 /* 846 * If seek is expensive, start searching for new cluster from 847 * start of partition, to minimize the span of allocated swap. 848 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info 849 * case, just handled by scan_swap_map_try_ssd_cluster() above. 850 */ 851 scan_base = offset = si->lowest_bit; 852 last_in_cluster = offset + SWAPFILE_CLUSTER - 1; 853 854 /* Locate the first empty (unaligned) cluster */ 855 for (; last_in_cluster <= si->highest_bit; offset++) { 856 if (si->swap_map[offset]) 857 last_in_cluster = offset + SWAPFILE_CLUSTER; 858 else if (offset == last_in_cluster) { 859 spin_lock(&si->lock); 860 offset -= SWAPFILE_CLUSTER - 1; 861 si->cluster_next = offset; 862 si->cluster_nr = SWAPFILE_CLUSTER - 1; 863 goto checks; 864 } 865 if (unlikely(--latency_ration < 0)) { 866 cond_resched(); 867 latency_ration = LATENCY_LIMIT; 868 } 869 } 870 871 offset = scan_base; 872 spin_lock(&si->lock); 873 si->cluster_nr = SWAPFILE_CLUSTER - 1; 874 } 875 876 checks: 877 if (si->cluster_info) { 878 while (scan_swap_map_ssd_cluster_conflict(si, offset)) { 879 /* take a break if we already got some slots */ 880 if (n_ret) 881 goto done; 882 if (!scan_swap_map_try_ssd_cluster(si, &offset, 883 &scan_base)) 884 goto scan; 885 } 886 } 887 if (!(si->flags & SWP_WRITEOK)) 888 goto no_page; 889 if (!si->highest_bit) 890 goto no_page; 891 if (offset > si->highest_bit) 892 scan_base = offset = si->lowest_bit; 893 894 ci = lock_cluster(si, offset); 895 /* reuse swap entry of cache-only swap if not busy. */ 896 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) { 897 int swap_was_freed; 898 unlock_cluster(ci); 899 spin_unlock(&si->lock); 900 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY); 901 spin_lock(&si->lock); 902 /* entry was freed successfully, try to use this again */ 903 if (swap_was_freed) 904 goto checks; 905 goto scan; /* check next one */ 906 } 907 908 if (si->swap_map[offset]) { 909 unlock_cluster(ci); 910 if (!n_ret) 911 goto scan; 912 else 913 goto done; 914 } 915 WRITE_ONCE(si->swap_map[offset], usage); 916 inc_cluster_info_page(si, si->cluster_info, offset); 917 unlock_cluster(ci); 918 919 swap_range_alloc(si, offset, 1); 920 slots[n_ret++] = swp_entry(si->type, offset); 921 922 /* got enough slots or reach max slots? */ 923 if ((n_ret == nr) || (offset >= si->highest_bit)) 924 goto done; 925 926 /* search for next available slot */ 927 928 /* time to take a break? */ 929 if (unlikely(--latency_ration < 0)) { 930 if (n_ret) 931 goto done; 932 spin_unlock(&si->lock); 933 cond_resched(); 934 spin_lock(&si->lock); 935 latency_ration = LATENCY_LIMIT; 936 } 937 938 /* try to get more slots in cluster */ 939 if (si->cluster_info) { 940 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base)) 941 goto checks; 942 } else if (si->cluster_nr && !si->swap_map[++offset]) { 943 /* non-ssd case, still more slots in cluster? */ 944 --si->cluster_nr; 945 goto checks; 946 } 947 948 /* 949 * Even if there's no free clusters available (fragmented), 950 * try to scan a little more quickly with lock held unless we 951 * have scanned too many slots already. 952 */ 953 if (!scanned_many) { 954 unsigned long scan_limit; 955 956 if (offset < scan_base) 957 scan_limit = scan_base; 958 else 959 scan_limit = si->highest_bit; 960 for (; offset <= scan_limit && --latency_ration > 0; 961 offset++) { 962 if (!si->swap_map[offset]) 963 goto checks; 964 } 965 } 966 967 done: 968 set_cluster_next(si, offset + 1); 969 si->flags -= SWP_SCANNING; 970 return n_ret; 971 972 scan: 973 spin_unlock(&si->lock); 974 while (++offset <= READ_ONCE(si->highest_bit)) { 975 if (unlikely(--latency_ration < 0)) { 976 cond_resched(); 977 latency_ration = LATENCY_LIMIT; 978 scanned_many = true; 979 } 980 if (swap_offset_available_and_locked(si, offset)) 981 goto checks; 982 } 983 offset = si->lowest_bit; 984 while (offset < scan_base) { 985 if (unlikely(--latency_ration < 0)) { 986 cond_resched(); 987 latency_ration = LATENCY_LIMIT; 988 scanned_many = true; 989 } 990 if (swap_offset_available_and_locked(si, offset)) 991 goto checks; 992 offset++; 993 } 994 spin_lock(&si->lock); 995 996 no_page: 997 si->flags -= SWP_SCANNING; 998 return n_ret; 999 } 1000 1001 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot) 1002 { 1003 unsigned long idx; 1004 struct swap_cluster_info *ci; 1005 unsigned long offset; 1006 1007 /* 1008 * Should not even be attempting cluster allocations when huge 1009 * page swap is disabled. Warn and fail the allocation. 1010 */ 1011 if (!IS_ENABLED(CONFIG_THP_SWAP)) { 1012 VM_WARN_ON_ONCE(1); 1013 return 0; 1014 } 1015 1016 if (cluster_list_empty(&si->free_clusters)) 1017 return 0; 1018 1019 idx = cluster_list_first(&si->free_clusters); 1020 offset = idx * SWAPFILE_CLUSTER; 1021 ci = lock_cluster(si, offset); 1022 alloc_cluster(si, idx); 1023 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE); 1024 1025 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER); 1026 unlock_cluster(ci); 1027 swap_range_alloc(si, offset, SWAPFILE_CLUSTER); 1028 *slot = swp_entry(si->type, offset); 1029 1030 return 1; 1031 } 1032 1033 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx) 1034 { 1035 unsigned long offset = idx * SWAPFILE_CLUSTER; 1036 struct swap_cluster_info *ci; 1037 1038 ci = lock_cluster(si, offset); 1039 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER); 1040 cluster_set_count_flag(ci, 0, 0); 1041 free_cluster(si, idx); 1042 unlock_cluster(ci); 1043 swap_range_free(si, offset, SWAPFILE_CLUSTER); 1044 } 1045 1046 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size) 1047 { 1048 unsigned long size = swap_entry_size(entry_size); 1049 struct swap_info_struct *si, *next; 1050 long avail_pgs; 1051 int n_ret = 0; 1052 int node; 1053 1054 /* Only single cluster request supported */ 1055 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER); 1056 1057 spin_lock(&swap_avail_lock); 1058 1059 avail_pgs = atomic_long_read(&nr_swap_pages) / size; 1060 if (avail_pgs <= 0) { 1061 spin_unlock(&swap_avail_lock); 1062 goto noswap; 1063 } 1064 1065 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs); 1066 1067 atomic_long_sub(n_goal * size, &nr_swap_pages); 1068 1069 start_over: 1070 node = numa_node_id(); 1071 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) { 1072 /* requeue si to after same-priority siblings */ 1073 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]); 1074 spin_unlock(&swap_avail_lock); 1075 spin_lock(&si->lock); 1076 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) { 1077 spin_lock(&swap_avail_lock); 1078 if (plist_node_empty(&si->avail_lists[node])) { 1079 spin_unlock(&si->lock); 1080 goto nextsi; 1081 } 1082 WARN(!si->highest_bit, 1083 "swap_info %d in list but !highest_bit\n", 1084 si->type); 1085 WARN(!(si->flags & SWP_WRITEOK), 1086 "swap_info %d in list but !SWP_WRITEOK\n", 1087 si->type); 1088 __del_from_avail_list(si); 1089 spin_unlock(&si->lock); 1090 goto nextsi; 1091 } 1092 if (size == SWAPFILE_CLUSTER) { 1093 if (si->flags & SWP_BLKDEV) 1094 n_ret = swap_alloc_cluster(si, swp_entries); 1095 } else 1096 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE, 1097 n_goal, swp_entries); 1098 spin_unlock(&si->lock); 1099 if (n_ret || size == SWAPFILE_CLUSTER) 1100 goto check_out; 1101 cond_resched(); 1102 1103 spin_lock(&swap_avail_lock); 1104 nextsi: 1105 /* 1106 * if we got here, it's likely that si was almost full before, 1107 * and since scan_swap_map_slots() can drop the si->lock, 1108 * multiple callers probably all tried to get a page from the 1109 * same si and it filled up before we could get one; or, the si 1110 * filled up between us dropping swap_avail_lock and taking 1111 * si->lock. Since we dropped the swap_avail_lock, the 1112 * swap_avail_head list may have been modified; so if next is 1113 * still in the swap_avail_head list then try it, otherwise 1114 * start over if we have not gotten any slots. 1115 */ 1116 if (plist_node_empty(&next->avail_lists[node])) 1117 goto start_over; 1118 } 1119 1120 spin_unlock(&swap_avail_lock); 1121 1122 check_out: 1123 if (n_ret < n_goal) 1124 atomic_long_add((long)(n_goal - n_ret) * size, 1125 &nr_swap_pages); 1126 noswap: 1127 return n_ret; 1128 } 1129 1130 static struct swap_info_struct *_swap_info_get(swp_entry_t entry) 1131 { 1132 struct swap_info_struct *p; 1133 unsigned long offset; 1134 1135 if (!entry.val) 1136 goto out; 1137 p = swp_swap_info(entry); 1138 if (!p) 1139 goto bad_nofile; 1140 if (data_race(!(p->flags & SWP_USED))) 1141 goto bad_device; 1142 offset = swp_offset(entry); 1143 if (offset >= p->max) 1144 goto bad_offset; 1145 if (data_race(!p->swap_map[swp_offset(entry)])) 1146 goto bad_free; 1147 return p; 1148 1149 bad_free: 1150 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val); 1151 goto out; 1152 bad_offset: 1153 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1154 goto out; 1155 bad_device: 1156 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val); 1157 goto out; 1158 bad_nofile: 1159 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1160 out: 1161 return NULL; 1162 } 1163 1164 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry, 1165 struct swap_info_struct *q) 1166 { 1167 struct swap_info_struct *p; 1168 1169 p = _swap_info_get(entry); 1170 1171 if (p != q) { 1172 if (q != NULL) 1173 spin_unlock(&q->lock); 1174 if (p != NULL) 1175 spin_lock(&p->lock); 1176 } 1177 return p; 1178 } 1179 1180 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p, 1181 unsigned long offset, 1182 unsigned char usage) 1183 { 1184 unsigned char count; 1185 unsigned char has_cache; 1186 1187 count = p->swap_map[offset]; 1188 1189 has_cache = count & SWAP_HAS_CACHE; 1190 count &= ~SWAP_HAS_CACHE; 1191 1192 if (usage == SWAP_HAS_CACHE) { 1193 VM_BUG_ON(!has_cache); 1194 has_cache = 0; 1195 } else if (count == SWAP_MAP_SHMEM) { 1196 /* 1197 * Or we could insist on shmem.c using a special 1198 * swap_shmem_free() and free_shmem_swap_and_cache()... 1199 */ 1200 count = 0; 1201 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) { 1202 if (count == COUNT_CONTINUED) { 1203 if (swap_count_continued(p, offset, count)) 1204 count = SWAP_MAP_MAX | COUNT_CONTINUED; 1205 else 1206 count = SWAP_MAP_MAX; 1207 } else 1208 count--; 1209 } 1210 1211 usage = count | has_cache; 1212 if (usage) 1213 WRITE_ONCE(p->swap_map[offset], usage); 1214 else 1215 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE); 1216 1217 return usage; 1218 } 1219 1220 /* 1221 * Check whether swap entry is valid in the swap device. If so, 1222 * return pointer to swap_info_struct, and keep the swap entry valid 1223 * via preventing the swap device from being swapoff, until 1224 * put_swap_device() is called. Otherwise return NULL. 1225 * 1226 * Notice that swapoff or swapoff+swapon can still happen before the 1227 * percpu_ref_tryget_live() in get_swap_device() or after the 1228 * percpu_ref_put() in put_swap_device() if there isn't any other way 1229 * to prevent swapoff, such as page lock, page table lock, etc. The 1230 * caller must be prepared for that. For example, the following 1231 * situation is possible. 1232 * 1233 * CPU1 CPU2 1234 * do_swap_page() 1235 * ... swapoff+swapon 1236 * __read_swap_cache_async() 1237 * swapcache_prepare() 1238 * __swap_duplicate() 1239 * // check swap_map 1240 * // verify PTE not changed 1241 * 1242 * In __swap_duplicate(), the swap_map need to be checked before 1243 * changing partly because the specified swap entry may be for another 1244 * swap device which has been swapoff. And in do_swap_page(), after 1245 * the page is read from the swap device, the PTE is verified not 1246 * changed with the page table locked to check whether the swap device 1247 * has been swapoff or swapoff+swapon. 1248 */ 1249 struct swap_info_struct *get_swap_device(swp_entry_t entry) 1250 { 1251 struct swap_info_struct *si; 1252 unsigned long offset; 1253 1254 if (!entry.val) 1255 goto out; 1256 si = swp_swap_info(entry); 1257 if (!si) 1258 goto bad_nofile; 1259 if (!percpu_ref_tryget_live(&si->users)) 1260 goto out; 1261 /* 1262 * Guarantee the si->users are checked before accessing other 1263 * fields of swap_info_struct. 1264 * 1265 * Paired with the spin_unlock() after setup_swap_info() in 1266 * enable_swap_info(). 1267 */ 1268 smp_rmb(); 1269 offset = swp_offset(entry); 1270 if (offset >= si->max) 1271 goto put_out; 1272 1273 return si; 1274 bad_nofile: 1275 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val); 1276 out: 1277 return NULL; 1278 put_out: 1279 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val); 1280 percpu_ref_put(&si->users); 1281 return NULL; 1282 } 1283 1284 static unsigned char __swap_entry_free(struct swap_info_struct *p, 1285 swp_entry_t entry) 1286 { 1287 struct swap_cluster_info *ci; 1288 unsigned long offset = swp_offset(entry); 1289 unsigned char usage; 1290 1291 ci = lock_cluster_or_swap_info(p, offset); 1292 usage = __swap_entry_free_locked(p, offset, 1); 1293 unlock_cluster_or_swap_info(p, ci); 1294 if (!usage) 1295 free_swap_slot(entry); 1296 1297 return usage; 1298 } 1299 1300 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry) 1301 { 1302 struct swap_cluster_info *ci; 1303 unsigned long offset = swp_offset(entry); 1304 unsigned char count; 1305 1306 ci = lock_cluster(p, offset); 1307 count = p->swap_map[offset]; 1308 VM_BUG_ON(count != SWAP_HAS_CACHE); 1309 p->swap_map[offset] = 0; 1310 dec_cluster_info_page(p, p->cluster_info, offset); 1311 unlock_cluster(ci); 1312 1313 mem_cgroup_uncharge_swap(entry, 1); 1314 swap_range_free(p, offset, 1); 1315 } 1316 1317 /* 1318 * Caller has made sure that the swap device corresponding to entry 1319 * is still around or has not been recycled. 1320 */ 1321 void swap_free(swp_entry_t entry) 1322 { 1323 struct swap_info_struct *p; 1324 1325 p = _swap_info_get(entry); 1326 if (p) 1327 __swap_entry_free(p, entry); 1328 } 1329 1330 /* 1331 * Called after dropping swapcache to decrease refcnt to swap entries. 1332 */ 1333 void put_swap_folio(struct folio *folio, swp_entry_t entry) 1334 { 1335 unsigned long offset = swp_offset(entry); 1336 unsigned long idx = offset / SWAPFILE_CLUSTER; 1337 struct swap_cluster_info *ci; 1338 struct swap_info_struct *si; 1339 unsigned char *map; 1340 unsigned int i, free_entries = 0; 1341 unsigned char val; 1342 int size = swap_entry_size(folio_nr_pages(folio)); 1343 1344 si = _swap_info_get(entry); 1345 if (!si) 1346 return; 1347 1348 ci = lock_cluster_or_swap_info(si, offset); 1349 if (size == SWAPFILE_CLUSTER) { 1350 VM_BUG_ON(!cluster_is_huge(ci)); 1351 map = si->swap_map + offset; 1352 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1353 val = map[i]; 1354 VM_BUG_ON(!(val & SWAP_HAS_CACHE)); 1355 if (val == SWAP_HAS_CACHE) 1356 free_entries++; 1357 } 1358 cluster_clear_huge(ci); 1359 if (free_entries == SWAPFILE_CLUSTER) { 1360 unlock_cluster_or_swap_info(si, ci); 1361 spin_lock(&si->lock); 1362 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER); 1363 swap_free_cluster(si, idx); 1364 spin_unlock(&si->lock); 1365 return; 1366 } 1367 } 1368 for (i = 0; i < size; i++, entry.val++) { 1369 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) { 1370 unlock_cluster_or_swap_info(si, ci); 1371 free_swap_slot(entry); 1372 if (i == size - 1) 1373 return; 1374 lock_cluster_or_swap_info(si, offset); 1375 } 1376 } 1377 unlock_cluster_or_swap_info(si, ci); 1378 } 1379 1380 #ifdef CONFIG_THP_SWAP 1381 int split_swap_cluster(swp_entry_t entry) 1382 { 1383 struct swap_info_struct *si; 1384 struct swap_cluster_info *ci; 1385 unsigned long offset = swp_offset(entry); 1386 1387 si = _swap_info_get(entry); 1388 if (!si) 1389 return -EBUSY; 1390 ci = lock_cluster(si, offset); 1391 cluster_clear_huge(ci); 1392 unlock_cluster(ci); 1393 return 0; 1394 } 1395 #endif 1396 1397 static int swp_entry_cmp(const void *ent1, const void *ent2) 1398 { 1399 const swp_entry_t *e1 = ent1, *e2 = ent2; 1400 1401 return (int)swp_type(*e1) - (int)swp_type(*e2); 1402 } 1403 1404 void swapcache_free_entries(swp_entry_t *entries, int n) 1405 { 1406 struct swap_info_struct *p, *prev; 1407 int i; 1408 1409 if (n <= 0) 1410 return; 1411 1412 prev = NULL; 1413 p = NULL; 1414 1415 /* 1416 * Sort swap entries by swap device, so each lock is only taken once. 1417 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is 1418 * so low that it isn't necessary to optimize further. 1419 */ 1420 if (nr_swapfiles > 1) 1421 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL); 1422 for (i = 0; i < n; ++i) { 1423 p = swap_info_get_cont(entries[i], prev); 1424 if (p) 1425 swap_entry_free(p, entries[i]); 1426 prev = p; 1427 } 1428 if (p) 1429 spin_unlock(&p->lock); 1430 } 1431 1432 int __swap_count(swp_entry_t entry) 1433 { 1434 struct swap_info_struct *si; 1435 pgoff_t offset = swp_offset(entry); 1436 int count = 0; 1437 1438 si = get_swap_device(entry); 1439 if (si) { 1440 count = swap_count(si->swap_map[offset]); 1441 put_swap_device(si); 1442 } 1443 return count; 1444 } 1445 1446 /* 1447 * How many references to @entry are currently swapped out? 1448 * This does not give an exact answer when swap count is continued, 1449 * but does include the high COUNT_CONTINUED flag to allow for that. 1450 */ 1451 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry) 1452 { 1453 pgoff_t offset = swp_offset(entry); 1454 struct swap_cluster_info *ci; 1455 int count; 1456 1457 ci = lock_cluster_or_swap_info(si, offset); 1458 count = swap_count(si->swap_map[offset]); 1459 unlock_cluster_or_swap_info(si, ci); 1460 return count; 1461 } 1462 1463 /* 1464 * How many references to @entry are currently swapped out? 1465 * This does not give an exact answer when swap count is continued, 1466 * but does include the high COUNT_CONTINUED flag to allow for that. 1467 */ 1468 int __swp_swapcount(swp_entry_t entry) 1469 { 1470 int count = 0; 1471 struct swap_info_struct *si; 1472 1473 si = get_swap_device(entry); 1474 if (si) { 1475 count = swap_swapcount(si, entry); 1476 put_swap_device(si); 1477 } 1478 return count; 1479 } 1480 1481 /* 1482 * How many references to @entry are currently swapped out? 1483 * This considers COUNT_CONTINUED so it returns exact answer. 1484 */ 1485 int swp_swapcount(swp_entry_t entry) 1486 { 1487 int count, tmp_count, n; 1488 struct swap_info_struct *p; 1489 struct swap_cluster_info *ci; 1490 struct page *page; 1491 pgoff_t offset; 1492 unsigned char *map; 1493 1494 p = _swap_info_get(entry); 1495 if (!p) 1496 return 0; 1497 1498 offset = swp_offset(entry); 1499 1500 ci = lock_cluster_or_swap_info(p, offset); 1501 1502 count = swap_count(p->swap_map[offset]); 1503 if (!(count & COUNT_CONTINUED)) 1504 goto out; 1505 1506 count &= ~COUNT_CONTINUED; 1507 n = SWAP_MAP_MAX + 1; 1508 1509 page = vmalloc_to_page(p->swap_map + offset); 1510 offset &= ~PAGE_MASK; 1511 VM_BUG_ON(page_private(page) != SWP_CONTINUED); 1512 1513 do { 1514 page = list_next_entry(page, lru); 1515 map = kmap_atomic(page); 1516 tmp_count = map[offset]; 1517 kunmap_atomic(map); 1518 1519 count += (tmp_count & ~COUNT_CONTINUED) * n; 1520 n *= (SWAP_CONT_MAX + 1); 1521 } while (tmp_count & COUNT_CONTINUED); 1522 out: 1523 unlock_cluster_or_swap_info(p, ci); 1524 return count; 1525 } 1526 1527 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si, 1528 swp_entry_t entry) 1529 { 1530 struct swap_cluster_info *ci; 1531 unsigned char *map = si->swap_map; 1532 unsigned long roffset = swp_offset(entry); 1533 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER); 1534 int i; 1535 bool ret = false; 1536 1537 ci = lock_cluster_or_swap_info(si, offset); 1538 if (!ci || !cluster_is_huge(ci)) { 1539 if (swap_count(map[roffset])) 1540 ret = true; 1541 goto unlock_out; 1542 } 1543 for (i = 0; i < SWAPFILE_CLUSTER; i++) { 1544 if (swap_count(map[offset + i])) { 1545 ret = true; 1546 break; 1547 } 1548 } 1549 unlock_out: 1550 unlock_cluster_or_swap_info(si, ci); 1551 return ret; 1552 } 1553 1554 static bool folio_swapped(struct folio *folio) 1555 { 1556 swp_entry_t entry = folio_swap_entry(folio); 1557 struct swap_info_struct *si = _swap_info_get(entry); 1558 1559 if (!si) 1560 return false; 1561 1562 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio))) 1563 return swap_swapcount(si, entry) != 0; 1564 1565 return swap_page_trans_huge_swapped(si, entry); 1566 } 1567 1568 /** 1569 * folio_free_swap() - Free the swap space used for this folio. 1570 * @folio: The folio to remove. 1571 * 1572 * If swap is getting full, or if there are no more mappings of this folio, 1573 * then call folio_free_swap to free its swap space. 1574 * 1575 * Return: true if we were able to release the swap space. 1576 */ 1577 bool folio_free_swap(struct folio *folio) 1578 { 1579 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1580 1581 if (!folio_test_swapcache(folio)) 1582 return false; 1583 if (folio_test_writeback(folio)) 1584 return false; 1585 if (folio_swapped(folio)) 1586 return false; 1587 1588 /* 1589 * Once hibernation has begun to create its image of memory, 1590 * there's a danger that one of the calls to folio_free_swap() 1591 * - most probably a call from __try_to_reclaim_swap() while 1592 * hibernation is allocating its own swap pages for the image, 1593 * but conceivably even a call from memory reclaim - will free 1594 * the swap from a folio which has already been recorded in the 1595 * image as a clean swapcache folio, and then reuse its swap for 1596 * another page of the image. On waking from hibernation, the 1597 * original folio might be freed under memory pressure, then 1598 * later read back in from swap, now with the wrong data. 1599 * 1600 * Hibernation suspends storage while it is writing the image 1601 * to disk so check that here. 1602 */ 1603 if (pm_suspended_storage()) 1604 return false; 1605 1606 delete_from_swap_cache(folio); 1607 folio_set_dirty(folio); 1608 return true; 1609 } 1610 1611 /* 1612 * Free the swap entry like above, but also try to 1613 * free the page cache entry if it is the last user. 1614 */ 1615 int free_swap_and_cache(swp_entry_t entry) 1616 { 1617 struct swap_info_struct *p; 1618 unsigned char count; 1619 1620 if (non_swap_entry(entry)) 1621 return 1; 1622 1623 p = _swap_info_get(entry); 1624 if (p) { 1625 count = __swap_entry_free(p, entry); 1626 if (count == SWAP_HAS_CACHE && 1627 !swap_page_trans_huge_swapped(p, entry)) 1628 __try_to_reclaim_swap(p, swp_offset(entry), 1629 TTRS_UNMAPPED | TTRS_FULL); 1630 } 1631 return p != NULL; 1632 } 1633 1634 #ifdef CONFIG_HIBERNATION 1635 1636 swp_entry_t get_swap_page_of_type(int type) 1637 { 1638 struct swap_info_struct *si = swap_type_to_swap_info(type); 1639 swp_entry_t entry = {0}; 1640 1641 if (!si) 1642 goto fail; 1643 1644 /* This is called for allocating swap entry, not cache */ 1645 spin_lock(&si->lock); 1646 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry)) 1647 atomic_long_dec(&nr_swap_pages); 1648 spin_unlock(&si->lock); 1649 fail: 1650 return entry; 1651 } 1652 1653 /* 1654 * Find the swap type that corresponds to given device (if any). 1655 * 1656 * @offset - number of the PAGE_SIZE-sized block of the device, starting 1657 * from 0, in which the swap header is expected to be located. 1658 * 1659 * This is needed for the suspend to disk (aka swsusp). 1660 */ 1661 int swap_type_of(dev_t device, sector_t offset) 1662 { 1663 int type; 1664 1665 if (!device) 1666 return -1; 1667 1668 spin_lock(&swap_lock); 1669 for (type = 0; type < nr_swapfiles; type++) { 1670 struct swap_info_struct *sis = swap_info[type]; 1671 1672 if (!(sis->flags & SWP_WRITEOK)) 1673 continue; 1674 1675 if (device == sis->bdev->bd_dev) { 1676 struct swap_extent *se = first_se(sis); 1677 1678 if (se->start_block == offset) { 1679 spin_unlock(&swap_lock); 1680 return type; 1681 } 1682 } 1683 } 1684 spin_unlock(&swap_lock); 1685 return -ENODEV; 1686 } 1687 1688 int find_first_swap(dev_t *device) 1689 { 1690 int type; 1691 1692 spin_lock(&swap_lock); 1693 for (type = 0; type < nr_swapfiles; type++) { 1694 struct swap_info_struct *sis = swap_info[type]; 1695 1696 if (!(sis->flags & SWP_WRITEOK)) 1697 continue; 1698 *device = sis->bdev->bd_dev; 1699 spin_unlock(&swap_lock); 1700 return type; 1701 } 1702 spin_unlock(&swap_lock); 1703 return -ENODEV; 1704 } 1705 1706 /* 1707 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev 1708 * corresponding to given index in swap_info (swap type). 1709 */ 1710 sector_t swapdev_block(int type, pgoff_t offset) 1711 { 1712 struct swap_info_struct *si = swap_type_to_swap_info(type); 1713 struct swap_extent *se; 1714 1715 if (!si || !(si->flags & SWP_WRITEOK)) 1716 return 0; 1717 se = offset_to_swap_extent(si, offset); 1718 return se->start_block + (offset - se->start_page); 1719 } 1720 1721 /* 1722 * Return either the total number of swap pages of given type, or the number 1723 * of free pages of that type (depending on @free) 1724 * 1725 * This is needed for software suspend 1726 */ 1727 unsigned int count_swap_pages(int type, int free) 1728 { 1729 unsigned int n = 0; 1730 1731 spin_lock(&swap_lock); 1732 if ((unsigned int)type < nr_swapfiles) { 1733 struct swap_info_struct *sis = swap_info[type]; 1734 1735 spin_lock(&sis->lock); 1736 if (sis->flags & SWP_WRITEOK) { 1737 n = sis->pages; 1738 if (free) 1739 n -= sis->inuse_pages; 1740 } 1741 spin_unlock(&sis->lock); 1742 } 1743 spin_unlock(&swap_lock); 1744 return n; 1745 } 1746 #endif /* CONFIG_HIBERNATION */ 1747 1748 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte) 1749 { 1750 return pte_same(pte_swp_clear_flags(pte), swp_pte); 1751 } 1752 1753 /* 1754 * No need to decide whether this PTE shares the swap entry with others, 1755 * just let do_wp_page work it out if a write is requested later - to 1756 * force COW, vm_page_prot omits write permission from any private vma. 1757 */ 1758 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd, 1759 unsigned long addr, swp_entry_t entry, struct folio *folio) 1760 { 1761 struct page *page = folio_file_page(folio, swp_offset(entry)); 1762 struct page *swapcache; 1763 spinlock_t *ptl; 1764 pte_t *pte, new_pte; 1765 bool hwposioned = false; 1766 int ret = 1; 1767 1768 swapcache = page; 1769 page = ksm_might_need_to_copy(page, vma, addr); 1770 if (unlikely(!page)) 1771 return -ENOMEM; 1772 else if (unlikely(PTR_ERR(page) == -EHWPOISON)) 1773 hwposioned = true; 1774 1775 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 1776 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) { 1777 ret = 0; 1778 goto out; 1779 } 1780 1781 if (unlikely(hwposioned || !PageUptodate(page))) { 1782 swp_entry_t swp_entry; 1783 1784 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1785 if (hwposioned) { 1786 swp_entry = make_hwpoison_entry(swapcache); 1787 page = swapcache; 1788 } else { 1789 swp_entry = make_swapin_error_entry(); 1790 } 1791 new_pte = swp_entry_to_pte(swp_entry); 1792 ret = 0; 1793 goto setpte; 1794 } 1795 1796 /* See do_swap_page() */ 1797 BUG_ON(!PageAnon(page) && PageMappedToDisk(page)); 1798 BUG_ON(PageAnon(page) && PageAnonExclusive(page)); 1799 1800 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 1801 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 1802 get_page(page); 1803 if (page == swapcache) { 1804 rmap_t rmap_flags = RMAP_NONE; 1805 1806 /* 1807 * See do_swap_page(): PageWriteback() would be problematic. 1808 * However, we do a wait_on_page_writeback() just before this 1809 * call and have the page locked. 1810 */ 1811 VM_BUG_ON_PAGE(PageWriteback(page), page); 1812 if (pte_swp_exclusive(*pte)) 1813 rmap_flags |= RMAP_EXCLUSIVE; 1814 1815 page_add_anon_rmap(page, vma, addr, rmap_flags); 1816 } else { /* ksm created a completely new copy */ 1817 page_add_new_anon_rmap(page, vma, addr); 1818 lru_cache_add_inactive_or_unevictable(page, vma); 1819 } 1820 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot)); 1821 if (pte_swp_soft_dirty(*pte)) 1822 new_pte = pte_mksoft_dirty(new_pte); 1823 if (pte_swp_uffd_wp(*pte)) 1824 new_pte = pte_mkuffd_wp(new_pte); 1825 setpte: 1826 set_pte_at(vma->vm_mm, addr, pte, new_pte); 1827 swap_free(entry); 1828 out: 1829 pte_unmap_unlock(pte, ptl); 1830 if (page != swapcache) { 1831 unlock_page(page); 1832 put_page(page); 1833 } 1834 return ret; 1835 } 1836 1837 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd, 1838 unsigned long addr, unsigned long end, 1839 unsigned int type) 1840 { 1841 swp_entry_t entry; 1842 pte_t *pte; 1843 struct swap_info_struct *si; 1844 int ret = 0; 1845 1846 si = swap_info[type]; 1847 pte = pte_offset_map(pmd, addr); 1848 do { 1849 struct folio *folio; 1850 unsigned long offset; 1851 unsigned char swp_count; 1852 1853 if (!is_swap_pte(*pte)) 1854 continue; 1855 1856 entry = pte_to_swp_entry(*pte); 1857 if (swp_type(entry) != type) 1858 continue; 1859 1860 offset = swp_offset(entry); 1861 pte_unmap(pte); 1862 folio = swap_cache_get_folio(entry, vma, addr); 1863 if (!folio) { 1864 struct page *page; 1865 struct vm_fault vmf = { 1866 .vma = vma, 1867 .address = addr, 1868 .real_address = addr, 1869 .pmd = pmd, 1870 }; 1871 1872 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 1873 &vmf); 1874 if (page) 1875 folio = page_folio(page); 1876 } 1877 if (!folio) { 1878 swp_count = READ_ONCE(si->swap_map[offset]); 1879 if (swp_count == 0 || swp_count == SWAP_MAP_BAD) 1880 goto try_next; 1881 1882 return -ENOMEM; 1883 } 1884 1885 folio_lock(folio); 1886 folio_wait_writeback(folio); 1887 ret = unuse_pte(vma, pmd, addr, entry, folio); 1888 if (ret < 0) { 1889 folio_unlock(folio); 1890 folio_put(folio); 1891 goto out; 1892 } 1893 1894 folio_free_swap(folio); 1895 folio_unlock(folio); 1896 folio_put(folio); 1897 try_next: 1898 pte = pte_offset_map(pmd, addr); 1899 } while (pte++, addr += PAGE_SIZE, addr != end); 1900 pte_unmap(pte - 1); 1901 1902 ret = 0; 1903 out: 1904 return ret; 1905 } 1906 1907 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud, 1908 unsigned long addr, unsigned long end, 1909 unsigned int type) 1910 { 1911 pmd_t *pmd; 1912 unsigned long next; 1913 int ret; 1914 1915 pmd = pmd_offset(pud, addr); 1916 do { 1917 cond_resched(); 1918 next = pmd_addr_end(addr, end); 1919 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1920 continue; 1921 ret = unuse_pte_range(vma, pmd, addr, next, type); 1922 if (ret) 1923 return ret; 1924 } while (pmd++, addr = next, addr != end); 1925 return 0; 1926 } 1927 1928 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d, 1929 unsigned long addr, unsigned long end, 1930 unsigned int type) 1931 { 1932 pud_t *pud; 1933 unsigned long next; 1934 int ret; 1935 1936 pud = pud_offset(p4d, addr); 1937 do { 1938 next = pud_addr_end(addr, end); 1939 if (pud_none_or_clear_bad(pud)) 1940 continue; 1941 ret = unuse_pmd_range(vma, pud, addr, next, type); 1942 if (ret) 1943 return ret; 1944 } while (pud++, addr = next, addr != end); 1945 return 0; 1946 } 1947 1948 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd, 1949 unsigned long addr, unsigned long end, 1950 unsigned int type) 1951 { 1952 p4d_t *p4d; 1953 unsigned long next; 1954 int ret; 1955 1956 p4d = p4d_offset(pgd, addr); 1957 do { 1958 next = p4d_addr_end(addr, end); 1959 if (p4d_none_or_clear_bad(p4d)) 1960 continue; 1961 ret = unuse_pud_range(vma, p4d, addr, next, type); 1962 if (ret) 1963 return ret; 1964 } while (p4d++, addr = next, addr != end); 1965 return 0; 1966 } 1967 1968 static int unuse_vma(struct vm_area_struct *vma, unsigned int type) 1969 { 1970 pgd_t *pgd; 1971 unsigned long addr, end, next; 1972 int ret; 1973 1974 addr = vma->vm_start; 1975 end = vma->vm_end; 1976 1977 pgd = pgd_offset(vma->vm_mm, addr); 1978 do { 1979 next = pgd_addr_end(addr, end); 1980 if (pgd_none_or_clear_bad(pgd)) 1981 continue; 1982 ret = unuse_p4d_range(vma, pgd, addr, next, type); 1983 if (ret) 1984 return ret; 1985 } while (pgd++, addr = next, addr != end); 1986 return 0; 1987 } 1988 1989 static int unuse_mm(struct mm_struct *mm, unsigned int type) 1990 { 1991 struct vm_area_struct *vma; 1992 int ret = 0; 1993 VMA_ITERATOR(vmi, mm, 0); 1994 1995 mmap_read_lock(mm); 1996 for_each_vma(vmi, vma) { 1997 if (vma->anon_vma) { 1998 ret = unuse_vma(vma, type); 1999 if (ret) 2000 break; 2001 } 2002 2003 cond_resched(); 2004 } 2005 mmap_read_unlock(mm); 2006 return ret; 2007 } 2008 2009 /* 2010 * Scan swap_map from current position to next entry still in use. 2011 * Return 0 if there are no inuse entries after prev till end of 2012 * the map. 2013 */ 2014 static unsigned int find_next_to_unuse(struct swap_info_struct *si, 2015 unsigned int prev) 2016 { 2017 unsigned int i; 2018 unsigned char count; 2019 2020 /* 2021 * No need for swap_lock here: we're just looking 2022 * for whether an entry is in use, not modifying it; false 2023 * hits are okay, and sys_swapoff() has already prevented new 2024 * allocations from this area (while holding swap_lock). 2025 */ 2026 for (i = prev + 1; i < si->max; i++) { 2027 count = READ_ONCE(si->swap_map[i]); 2028 if (count && swap_count(count) != SWAP_MAP_BAD) 2029 break; 2030 if ((i % LATENCY_LIMIT) == 0) 2031 cond_resched(); 2032 } 2033 2034 if (i == si->max) 2035 i = 0; 2036 2037 return i; 2038 } 2039 2040 static int try_to_unuse(unsigned int type) 2041 { 2042 struct mm_struct *prev_mm; 2043 struct mm_struct *mm; 2044 struct list_head *p; 2045 int retval = 0; 2046 struct swap_info_struct *si = swap_info[type]; 2047 struct folio *folio; 2048 swp_entry_t entry; 2049 unsigned int i; 2050 2051 if (!READ_ONCE(si->inuse_pages)) 2052 return 0; 2053 2054 retry: 2055 retval = shmem_unuse(type); 2056 if (retval) 2057 return retval; 2058 2059 prev_mm = &init_mm; 2060 mmget(prev_mm); 2061 2062 spin_lock(&mmlist_lock); 2063 p = &init_mm.mmlist; 2064 while (READ_ONCE(si->inuse_pages) && 2065 !signal_pending(current) && 2066 (p = p->next) != &init_mm.mmlist) { 2067 2068 mm = list_entry(p, struct mm_struct, mmlist); 2069 if (!mmget_not_zero(mm)) 2070 continue; 2071 spin_unlock(&mmlist_lock); 2072 mmput(prev_mm); 2073 prev_mm = mm; 2074 retval = unuse_mm(mm, type); 2075 if (retval) { 2076 mmput(prev_mm); 2077 return retval; 2078 } 2079 2080 /* 2081 * Make sure that we aren't completely killing 2082 * interactive performance. 2083 */ 2084 cond_resched(); 2085 spin_lock(&mmlist_lock); 2086 } 2087 spin_unlock(&mmlist_lock); 2088 2089 mmput(prev_mm); 2090 2091 i = 0; 2092 while (READ_ONCE(si->inuse_pages) && 2093 !signal_pending(current) && 2094 (i = find_next_to_unuse(si, i)) != 0) { 2095 2096 entry = swp_entry(type, i); 2097 folio = filemap_get_folio(swap_address_space(entry), i); 2098 if (!folio) 2099 continue; 2100 2101 /* 2102 * It is conceivable that a racing task removed this folio from 2103 * swap cache just before we acquired the page lock. The folio 2104 * might even be back in swap cache on another swap area. But 2105 * that is okay, folio_free_swap() only removes stale folios. 2106 */ 2107 folio_lock(folio); 2108 folio_wait_writeback(folio); 2109 folio_free_swap(folio); 2110 folio_unlock(folio); 2111 folio_put(folio); 2112 } 2113 2114 /* 2115 * Lets check again to see if there are still swap entries in the map. 2116 * If yes, we would need to do retry the unuse logic again. 2117 * Under global memory pressure, swap entries can be reinserted back 2118 * into process space after the mmlist loop above passes over them. 2119 * 2120 * Limit the number of retries? No: when mmget_not_zero() 2121 * above fails, that mm is likely to be freeing swap from 2122 * exit_mmap(), which proceeds at its own independent pace; 2123 * and even shmem_writepage() could have been preempted after 2124 * folio_alloc_swap(), temporarily hiding that swap. It's easy 2125 * and robust (though cpu-intensive) just to keep retrying. 2126 */ 2127 if (READ_ONCE(si->inuse_pages)) { 2128 if (!signal_pending(current)) 2129 goto retry; 2130 return -EINTR; 2131 } 2132 2133 return 0; 2134 } 2135 2136 /* 2137 * After a successful try_to_unuse, if no swap is now in use, we know 2138 * we can empty the mmlist. swap_lock must be held on entry and exit. 2139 * Note that mmlist_lock nests inside swap_lock, and an mm must be 2140 * added to the mmlist just after page_duplicate - before would be racy. 2141 */ 2142 static void drain_mmlist(void) 2143 { 2144 struct list_head *p, *next; 2145 unsigned int type; 2146 2147 for (type = 0; type < nr_swapfiles; type++) 2148 if (swap_info[type]->inuse_pages) 2149 return; 2150 spin_lock(&mmlist_lock); 2151 list_for_each_safe(p, next, &init_mm.mmlist) 2152 list_del_init(p); 2153 spin_unlock(&mmlist_lock); 2154 } 2155 2156 /* 2157 * Free all of a swapdev's extent information 2158 */ 2159 static void destroy_swap_extents(struct swap_info_struct *sis) 2160 { 2161 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) { 2162 struct rb_node *rb = sis->swap_extent_root.rb_node; 2163 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node); 2164 2165 rb_erase(rb, &sis->swap_extent_root); 2166 kfree(se); 2167 } 2168 2169 if (sis->flags & SWP_ACTIVATED) { 2170 struct file *swap_file = sis->swap_file; 2171 struct address_space *mapping = swap_file->f_mapping; 2172 2173 sis->flags &= ~SWP_ACTIVATED; 2174 if (mapping->a_ops->swap_deactivate) 2175 mapping->a_ops->swap_deactivate(swap_file); 2176 } 2177 } 2178 2179 /* 2180 * Add a block range (and the corresponding page range) into this swapdev's 2181 * extent tree. 2182 * 2183 * This function rather assumes that it is called in ascending page order. 2184 */ 2185 int 2186 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, 2187 unsigned long nr_pages, sector_t start_block) 2188 { 2189 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL; 2190 struct swap_extent *se; 2191 struct swap_extent *new_se; 2192 2193 /* 2194 * place the new node at the right most since the 2195 * function is called in ascending page order. 2196 */ 2197 while (*link) { 2198 parent = *link; 2199 link = &parent->rb_right; 2200 } 2201 2202 if (parent) { 2203 se = rb_entry(parent, struct swap_extent, rb_node); 2204 BUG_ON(se->start_page + se->nr_pages != start_page); 2205 if (se->start_block + se->nr_pages == start_block) { 2206 /* Merge it */ 2207 se->nr_pages += nr_pages; 2208 return 0; 2209 } 2210 } 2211 2212 /* No merge, insert a new extent. */ 2213 new_se = kmalloc(sizeof(*se), GFP_KERNEL); 2214 if (new_se == NULL) 2215 return -ENOMEM; 2216 new_se->start_page = start_page; 2217 new_se->nr_pages = nr_pages; 2218 new_se->start_block = start_block; 2219 2220 rb_link_node(&new_se->rb_node, parent, link); 2221 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root); 2222 return 1; 2223 } 2224 EXPORT_SYMBOL_GPL(add_swap_extent); 2225 2226 /* 2227 * A `swap extent' is a simple thing which maps a contiguous range of pages 2228 * onto a contiguous range of disk blocks. A rbtree of swap extents is 2229 * built at swapon time and is then used at swap_writepage/swap_readpage 2230 * time for locating where on disk a page belongs. 2231 * 2232 * If the swapfile is an S_ISBLK block device, a single extent is installed. 2233 * This is done so that the main operating code can treat S_ISBLK and S_ISREG 2234 * swap files identically. 2235 * 2236 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap 2237 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK 2238 * swapfiles are handled *identically* after swapon time. 2239 * 2240 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks 2241 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray 2242 * blocks are found which do not fall within the PAGE_SIZE alignment 2243 * requirements, they are simply tossed out - we will never use those blocks 2244 * for swapping. 2245 * 2246 * For all swap devices we set S_SWAPFILE across the life of the swapon. This 2247 * prevents users from writing to the swap device, which will corrupt memory. 2248 * 2249 * The amount of disk space which a single swap extent represents varies. 2250 * Typically it is in the 1-4 megabyte range. So we can have hundreds of 2251 * extents in the rbtree. - akpm. 2252 */ 2253 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span) 2254 { 2255 struct file *swap_file = sis->swap_file; 2256 struct address_space *mapping = swap_file->f_mapping; 2257 struct inode *inode = mapping->host; 2258 int ret; 2259 2260 if (S_ISBLK(inode->i_mode)) { 2261 ret = add_swap_extent(sis, 0, sis->max, 0); 2262 *span = sis->pages; 2263 return ret; 2264 } 2265 2266 if (mapping->a_ops->swap_activate) { 2267 ret = mapping->a_ops->swap_activate(sis, swap_file, span); 2268 if (ret < 0) 2269 return ret; 2270 sis->flags |= SWP_ACTIVATED; 2271 if ((sis->flags & SWP_FS_OPS) && 2272 sio_pool_init() != 0) { 2273 destroy_swap_extents(sis); 2274 return -ENOMEM; 2275 } 2276 return ret; 2277 } 2278 2279 return generic_swapfile_activate(sis, swap_file, span); 2280 } 2281 2282 static int swap_node(struct swap_info_struct *p) 2283 { 2284 struct block_device *bdev; 2285 2286 if (p->bdev) 2287 bdev = p->bdev; 2288 else 2289 bdev = p->swap_file->f_inode->i_sb->s_bdev; 2290 2291 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE; 2292 } 2293 2294 static void setup_swap_info(struct swap_info_struct *p, int prio, 2295 unsigned char *swap_map, 2296 struct swap_cluster_info *cluster_info) 2297 { 2298 int i; 2299 2300 if (prio >= 0) 2301 p->prio = prio; 2302 else 2303 p->prio = --least_priority; 2304 /* 2305 * the plist prio is negated because plist ordering is 2306 * low-to-high, while swap ordering is high-to-low 2307 */ 2308 p->list.prio = -p->prio; 2309 for_each_node(i) { 2310 if (p->prio >= 0) 2311 p->avail_lists[i].prio = -p->prio; 2312 else { 2313 if (swap_node(p) == i) 2314 p->avail_lists[i].prio = 1; 2315 else 2316 p->avail_lists[i].prio = -p->prio; 2317 } 2318 } 2319 p->swap_map = swap_map; 2320 p->cluster_info = cluster_info; 2321 } 2322 2323 static void _enable_swap_info(struct swap_info_struct *p) 2324 { 2325 p->flags |= SWP_WRITEOK; 2326 atomic_long_add(p->pages, &nr_swap_pages); 2327 total_swap_pages += p->pages; 2328 2329 assert_spin_locked(&swap_lock); 2330 /* 2331 * both lists are plists, and thus priority ordered. 2332 * swap_active_head needs to be priority ordered for swapoff(), 2333 * which on removal of any swap_info_struct with an auto-assigned 2334 * (i.e. negative) priority increments the auto-assigned priority 2335 * of any lower-priority swap_info_structs. 2336 * swap_avail_head needs to be priority ordered for folio_alloc_swap(), 2337 * which allocates swap pages from the highest available priority 2338 * swap_info_struct. 2339 */ 2340 plist_add(&p->list, &swap_active_head); 2341 add_to_avail_list(p); 2342 } 2343 2344 static void enable_swap_info(struct swap_info_struct *p, int prio, 2345 unsigned char *swap_map, 2346 struct swap_cluster_info *cluster_info, 2347 unsigned long *frontswap_map) 2348 { 2349 if (IS_ENABLED(CONFIG_FRONTSWAP)) 2350 frontswap_init(p->type, frontswap_map); 2351 spin_lock(&swap_lock); 2352 spin_lock(&p->lock); 2353 setup_swap_info(p, prio, swap_map, cluster_info); 2354 spin_unlock(&p->lock); 2355 spin_unlock(&swap_lock); 2356 /* 2357 * Finished initializing swap device, now it's safe to reference it. 2358 */ 2359 percpu_ref_resurrect(&p->users); 2360 spin_lock(&swap_lock); 2361 spin_lock(&p->lock); 2362 _enable_swap_info(p); 2363 spin_unlock(&p->lock); 2364 spin_unlock(&swap_lock); 2365 } 2366 2367 static void reinsert_swap_info(struct swap_info_struct *p) 2368 { 2369 spin_lock(&swap_lock); 2370 spin_lock(&p->lock); 2371 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info); 2372 _enable_swap_info(p); 2373 spin_unlock(&p->lock); 2374 spin_unlock(&swap_lock); 2375 } 2376 2377 bool has_usable_swap(void) 2378 { 2379 bool ret = true; 2380 2381 spin_lock(&swap_lock); 2382 if (plist_head_empty(&swap_active_head)) 2383 ret = false; 2384 spin_unlock(&swap_lock); 2385 return ret; 2386 } 2387 2388 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile) 2389 { 2390 struct swap_info_struct *p = NULL; 2391 unsigned char *swap_map; 2392 struct swap_cluster_info *cluster_info; 2393 unsigned long *frontswap_map; 2394 struct file *swap_file, *victim; 2395 struct address_space *mapping; 2396 struct inode *inode; 2397 struct filename *pathname; 2398 int err, found = 0; 2399 unsigned int old_block_size; 2400 2401 if (!capable(CAP_SYS_ADMIN)) 2402 return -EPERM; 2403 2404 BUG_ON(!current->mm); 2405 2406 pathname = getname(specialfile); 2407 if (IS_ERR(pathname)) 2408 return PTR_ERR(pathname); 2409 2410 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0); 2411 err = PTR_ERR(victim); 2412 if (IS_ERR(victim)) 2413 goto out; 2414 2415 mapping = victim->f_mapping; 2416 spin_lock(&swap_lock); 2417 plist_for_each_entry(p, &swap_active_head, list) { 2418 if (p->flags & SWP_WRITEOK) { 2419 if (p->swap_file->f_mapping == mapping) { 2420 found = 1; 2421 break; 2422 } 2423 } 2424 } 2425 if (!found) { 2426 err = -EINVAL; 2427 spin_unlock(&swap_lock); 2428 goto out_dput; 2429 } 2430 if (!security_vm_enough_memory_mm(current->mm, p->pages)) 2431 vm_unacct_memory(p->pages); 2432 else { 2433 err = -ENOMEM; 2434 spin_unlock(&swap_lock); 2435 goto out_dput; 2436 } 2437 del_from_avail_list(p); 2438 spin_lock(&p->lock); 2439 if (p->prio < 0) { 2440 struct swap_info_struct *si = p; 2441 int nid; 2442 2443 plist_for_each_entry_continue(si, &swap_active_head, list) { 2444 si->prio++; 2445 si->list.prio--; 2446 for_each_node(nid) { 2447 if (si->avail_lists[nid].prio != 1) 2448 si->avail_lists[nid].prio--; 2449 } 2450 } 2451 least_priority++; 2452 } 2453 plist_del(&p->list, &swap_active_head); 2454 atomic_long_sub(p->pages, &nr_swap_pages); 2455 total_swap_pages -= p->pages; 2456 p->flags &= ~SWP_WRITEOK; 2457 spin_unlock(&p->lock); 2458 spin_unlock(&swap_lock); 2459 2460 disable_swap_slots_cache_lock(); 2461 2462 set_current_oom_origin(); 2463 err = try_to_unuse(p->type); 2464 clear_current_oom_origin(); 2465 2466 if (err) { 2467 /* re-insert swap space back into swap_list */ 2468 reinsert_swap_info(p); 2469 reenable_swap_slots_cache_unlock(); 2470 goto out_dput; 2471 } 2472 2473 reenable_swap_slots_cache_unlock(); 2474 2475 /* 2476 * Wait for swap operations protected by get/put_swap_device() 2477 * to complete. 2478 * 2479 * We need synchronize_rcu() here to protect the accessing to 2480 * the swap cache data structure. 2481 */ 2482 percpu_ref_kill(&p->users); 2483 synchronize_rcu(); 2484 wait_for_completion(&p->comp); 2485 2486 flush_work(&p->discard_work); 2487 2488 destroy_swap_extents(p); 2489 if (p->flags & SWP_CONTINUED) 2490 free_swap_count_continuations(p); 2491 2492 if (!p->bdev || !bdev_nonrot(p->bdev)) 2493 atomic_dec(&nr_rotate_swap); 2494 2495 mutex_lock(&swapon_mutex); 2496 spin_lock(&swap_lock); 2497 spin_lock(&p->lock); 2498 drain_mmlist(); 2499 2500 /* wait for anyone still in scan_swap_map_slots */ 2501 p->highest_bit = 0; /* cuts scans short */ 2502 while (p->flags >= SWP_SCANNING) { 2503 spin_unlock(&p->lock); 2504 spin_unlock(&swap_lock); 2505 schedule_timeout_uninterruptible(1); 2506 spin_lock(&swap_lock); 2507 spin_lock(&p->lock); 2508 } 2509 2510 swap_file = p->swap_file; 2511 old_block_size = p->old_block_size; 2512 p->swap_file = NULL; 2513 p->max = 0; 2514 swap_map = p->swap_map; 2515 p->swap_map = NULL; 2516 cluster_info = p->cluster_info; 2517 p->cluster_info = NULL; 2518 frontswap_map = frontswap_map_get(p); 2519 spin_unlock(&p->lock); 2520 spin_unlock(&swap_lock); 2521 arch_swap_invalidate_area(p->type); 2522 frontswap_invalidate_area(p->type); 2523 frontswap_map_set(p, NULL); 2524 mutex_unlock(&swapon_mutex); 2525 free_percpu(p->percpu_cluster); 2526 p->percpu_cluster = NULL; 2527 free_percpu(p->cluster_next_cpu); 2528 p->cluster_next_cpu = NULL; 2529 vfree(swap_map); 2530 kvfree(cluster_info); 2531 kvfree(frontswap_map); 2532 /* Destroy swap account information */ 2533 swap_cgroup_swapoff(p->type); 2534 exit_swap_address_space(p->type); 2535 2536 inode = mapping->host; 2537 if (S_ISBLK(inode->i_mode)) { 2538 struct block_device *bdev = I_BDEV(inode); 2539 2540 set_blocksize(bdev, old_block_size); 2541 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 2542 } 2543 2544 inode_lock(inode); 2545 inode->i_flags &= ~S_SWAPFILE; 2546 inode_unlock(inode); 2547 filp_close(swap_file, NULL); 2548 2549 /* 2550 * Clear the SWP_USED flag after all resources are freed so that swapon 2551 * can reuse this swap_info in alloc_swap_info() safely. It is ok to 2552 * not hold p->lock after we cleared its SWP_WRITEOK. 2553 */ 2554 spin_lock(&swap_lock); 2555 p->flags = 0; 2556 spin_unlock(&swap_lock); 2557 2558 err = 0; 2559 atomic_inc(&proc_poll_event); 2560 wake_up_interruptible(&proc_poll_wait); 2561 2562 out_dput: 2563 filp_close(victim, NULL); 2564 out: 2565 putname(pathname); 2566 return err; 2567 } 2568 2569 #ifdef CONFIG_PROC_FS 2570 static __poll_t swaps_poll(struct file *file, poll_table *wait) 2571 { 2572 struct seq_file *seq = file->private_data; 2573 2574 poll_wait(file, &proc_poll_wait, wait); 2575 2576 if (seq->poll_event != atomic_read(&proc_poll_event)) { 2577 seq->poll_event = atomic_read(&proc_poll_event); 2578 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI; 2579 } 2580 2581 return EPOLLIN | EPOLLRDNORM; 2582 } 2583 2584 /* iterator */ 2585 static void *swap_start(struct seq_file *swap, loff_t *pos) 2586 { 2587 struct swap_info_struct *si; 2588 int type; 2589 loff_t l = *pos; 2590 2591 mutex_lock(&swapon_mutex); 2592 2593 if (!l) 2594 return SEQ_START_TOKEN; 2595 2596 for (type = 0; (si = swap_type_to_swap_info(type)); type++) { 2597 if (!(si->flags & SWP_USED) || !si->swap_map) 2598 continue; 2599 if (!--l) 2600 return si; 2601 } 2602 2603 return NULL; 2604 } 2605 2606 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos) 2607 { 2608 struct swap_info_struct *si = v; 2609 int type; 2610 2611 if (v == SEQ_START_TOKEN) 2612 type = 0; 2613 else 2614 type = si->type + 1; 2615 2616 ++(*pos); 2617 for (; (si = swap_type_to_swap_info(type)); type++) { 2618 if (!(si->flags & SWP_USED) || !si->swap_map) 2619 continue; 2620 return si; 2621 } 2622 2623 return NULL; 2624 } 2625 2626 static void swap_stop(struct seq_file *swap, void *v) 2627 { 2628 mutex_unlock(&swapon_mutex); 2629 } 2630 2631 static int swap_show(struct seq_file *swap, void *v) 2632 { 2633 struct swap_info_struct *si = v; 2634 struct file *file; 2635 int len; 2636 unsigned long bytes, inuse; 2637 2638 if (si == SEQ_START_TOKEN) { 2639 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n"); 2640 return 0; 2641 } 2642 2643 bytes = si->pages << (PAGE_SHIFT - 10); 2644 inuse = READ_ONCE(si->inuse_pages) << (PAGE_SHIFT - 10); 2645 2646 file = si->swap_file; 2647 len = seq_file_path(swap, file, " \t\n\\"); 2648 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n", 2649 len < 40 ? 40 - len : 1, " ", 2650 S_ISBLK(file_inode(file)->i_mode) ? 2651 "partition" : "file\t", 2652 bytes, bytes < 10000000 ? "\t" : "", 2653 inuse, inuse < 10000000 ? "\t" : "", 2654 si->prio); 2655 return 0; 2656 } 2657 2658 static const struct seq_operations swaps_op = { 2659 .start = swap_start, 2660 .next = swap_next, 2661 .stop = swap_stop, 2662 .show = swap_show 2663 }; 2664 2665 static int swaps_open(struct inode *inode, struct file *file) 2666 { 2667 struct seq_file *seq; 2668 int ret; 2669 2670 ret = seq_open(file, &swaps_op); 2671 if (ret) 2672 return ret; 2673 2674 seq = file->private_data; 2675 seq->poll_event = atomic_read(&proc_poll_event); 2676 return 0; 2677 } 2678 2679 static const struct proc_ops swaps_proc_ops = { 2680 .proc_flags = PROC_ENTRY_PERMANENT, 2681 .proc_open = swaps_open, 2682 .proc_read = seq_read, 2683 .proc_lseek = seq_lseek, 2684 .proc_release = seq_release, 2685 .proc_poll = swaps_poll, 2686 }; 2687 2688 static int __init procswaps_init(void) 2689 { 2690 proc_create("swaps", 0, NULL, &swaps_proc_ops); 2691 return 0; 2692 } 2693 __initcall(procswaps_init); 2694 #endif /* CONFIG_PROC_FS */ 2695 2696 #ifdef MAX_SWAPFILES_CHECK 2697 static int __init max_swapfiles_check(void) 2698 { 2699 MAX_SWAPFILES_CHECK(); 2700 return 0; 2701 } 2702 late_initcall(max_swapfiles_check); 2703 #endif 2704 2705 static struct swap_info_struct *alloc_swap_info(void) 2706 { 2707 struct swap_info_struct *p; 2708 struct swap_info_struct *defer = NULL; 2709 unsigned int type; 2710 int i; 2711 2712 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL); 2713 if (!p) 2714 return ERR_PTR(-ENOMEM); 2715 2716 if (percpu_ref_init(&p->users, swap_users_ref_free, 2717 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) { 2718 kvfree(p); 2719 return ERR_PTR(-ENOMEM); 2720 } 2721 2722 spin_lock(&swap_lock); 2723 for (type = 0; type < nr_swapfiles; type++) { 2724 if (!(swap_info[type]->flags & SWP_USED)) 2725 break; 2726 } 2727 if (type >= MAX_SWAPFILES) { 2728 spin_unlock(&swap_lock); 2729 percpu_ref_exit(&p->users); 2730 kvfree(p); 2731 return ERR_PTR(-EPERM); 2732 } 2733 if (type >= nr_swapfiles) { 2734 p->type = type; 2735 /* 2736 * Publish the swap_info_struct after initializing it. 2737 * Note that kvzalloc() above zeroes all its fields. 2738 */ 2739 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */ 2740 nr_swapfiles++; 2741 } else { 2742 defer = p; 2743 p = swap_info[type]; 2744 /* 2745 * Do not memset this entry: a racing procfs swap_next() 2746 * would be relying on p->type to remain valid. 2747 */ 2748 } 2749 p->swap_extent_root = RB_ROOT; 2750 plist_node_init(&p->list, 0); 2751 for_each_node(i) 2752 plist_node_init(&p->avail_lists[i], 0); 2753 p->flags = SWP_USED; 2754 spin_unlock(&swap_lock); 2755 if (defer) { 2756 percpu_ref_exit(&defer->users); 2757 kvfree(defer); 2758 } 2759 spin_lock_init(&p->lock); 2760 spin_lock_init(&p->cont_lock); 2761 init_completion(&p->comp); 2762 2763 return p; 2764 } 2765 2766 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode) 2767 { 2768 int error; 2769 2770 if (S_ISBLK(inode->i_mode)) { 2771 p->bdev = blkdev_get_by_dev(inode->i_rdev, 2772 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p); 2773 if (IS_ERR(p->bdev)) { 2774 error = PTR_ERR(p->bdev); 2775 p->bdev = NULL; 2776 return error; 2777 } 2778 p->old_block_size = block_size(p->bdev); 2779 error = set_blocksize(p->bdev, PAGE_SIZE); 2780 if (error < 0) 2781 return error; 2782 /* 2783 * Zoned block devices contain zones that have a sequential 2784 * write only restriction. Hence zoned block devices are not 2785 * suitable for swapping. Disallow them here. 2786 */ 2787 if (bdev_is_zoned(p->bdev)) 2788 return -EINVAL; 2789 p->flags |= SWP_BLKDEV; 2790 } else if (S_ISREG(inode->i_mode)) { 2791 p->bdev = inode->i_sb->s_bdev; 2792 } 2793 2794 return 0; 2795 } 2796 2797 2798 /* 2799 * Find out how many pages are allowed for a single swap device. There 2800 * are two limiting factors: 2801 * 1) the number of bits for the swap offset in the swp_entry_t type, and 2802 * 2) the number of bits in the swap pte, as defined by the different 2803 * architectures. 2804 * 2805 * In order to find the largest possible bit mask, a swap entry with 2806 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte, 2807 * decoded to a swp_entry_t again, and finally the swap offset is 2808 * extracted. 2809 * 2810 * This will mask all the bits from the initial ~0UL mask that can't 2811 * be encoded in either the swp_entry_t or the architecture definition 2812 * of a swap pte. 2813 */ 2814 unsigned long generic_max_swapfile_size(void) 2815 { 2816 return swp_offset(pte_to_swp_entry( 2817 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1; 2818 } 2819 2820 /* Can be overridden by an architecture for additional checks. */ 2821 __weak unsigned long arch_max_swapfile_size(void) 2822 { 2823 return generic_max_swapfile_size(); 2824 } 2825 2826 static unsigned long read_swap_header(struct swap_info_struct *p, 2827 union swap_header *swap_header, 2828 struct inode *inode) 2829 { 2830 int i; 2831 unsigned long maxpages; 2832 unsigned long swapfilepages; 2833 unsigned long last_page; 2834 2835 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) { 2836 pr_err("Unable to find swap-space signature\n"); 2837 return 0; 2838 } 2839 2840 /* swap partition endianness hack... */ 2841 if (swab32(swap_header->info.version) == 1) { 2842 swab32s(&swap_header->info.version); 2843 swab32s(&swap_header->info.last_page); 2844 swab32s(&swap_header->info.nr_badpages); 2845 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2846 return 0; 2847 for (i = 0; i < swap_header->info.nr_badpages; i++) 2848 swab32s(&swap_header->info.badpages[i]); 2849 } 2850 /* Check the swap header's sub-version */ 2851 if (swap_header->info.version != 1) { 2852 pr_warn("Unable to handle swap header version %d\n", 2853 swap_header->info.version); 2854 return 0; 2855 } 2856 2857 p->lowest_bit = 1; 2858 p->cluster_next = 1; 2859 p->cluster_nr = 0; 2860 2861 maxpages = swapfile_maximum_size; 2862 last_page = swap_header->info.last_page; 2863 if (!last_page) { 2864 pr_warn("Empty swap-file\n"); 2865 return 0; 2866 } 2867 if (last_page > maxpages) { 2868 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n", 2869 maxpages << (PAGE_SHIFT - 10), 2870 last_page << (PAGE_SHIFT - 10)); 2871 } 2872 if (maxpages > last_page) { 2873 maxpages = last_page + 1; 2874 /* p->max is an unsigned int: don't overflow it */ 2875 if ((unsigned int)maxpages == 0) 2876 maxpages = UINT_MAX; 2877 } 2878 p->highest_bit = maxpages - 1; 2879 2880 if (!maxpages) 2881 return 0; 2882 swapfilepages = i_size_read(inode) >> PAGE_SHIFT; 2883 if (swapfilepages && maxpages > swapfilepages) { 2884 pr_warn("Swap area shorter than signature indicates\n"); 2885 return 0; 2886 } 2887 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode)) 2888 return 0; 2889 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES) 2890 return 0; 2891 2892 return maxpages; 2893 } 2894 2895 #define SWAP_CLUSTER_INFO_COLS \ 2896 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info)) 2897 #define SWAP_CLUSTER_SPACE_COLS \ 2898 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER) 2899 #define SWAP_CLUSTER_COLS \ 2900 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS) 2901 2902 static int setup_swap_map_and_extents(struct swap_info_struct *p, 2903 union swap_header *swap_header, 2904 unsigned char *swap_map, 2905 struct swap_cluster_info *cluster_info, 2906 unsigned long maxpages, 2907 sector_t *span) 2908 { 2909 unsigned int j, k; 2910 unsigned int nr_good_pages; 2911 int nr_extents; 2912 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 2913 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS; 2914 unsigned long i, idx; 2915 2916 nr_good_pages = maxpages - 1; /* omit header page */ 2917 2918 cluster_list_init(&p->free_clusters); 2919 cluster_list_init(&p->discard_clusters); 2920 2921 for (i = 0; i < swap_header->info.nr_badpages; i++) { 2922 unsigned int page_nr = swap_header->info.badpages[i]; 2923 if (page_nr == 0 || page_nr > swap_header->info.last_page) 2924 return -EINVAL; 2925 if (page_nr < maxpages) { 2926 swap_map[page_nr] = SWAP_MAP_BAD; 2927 nr_good_pages--; 2928 /* 2929 * Haven't marked the cluster free yet, no list 2930 * operation involved 2931 */ 2932 inc_cluster_info_page(p, cluster_info, page_nr); 2933 } 2934 } 2935 2936 /* Haven't marked the cluster free yet, no list operation involved */ 2937 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++) 2938 inc_cluster_info_page(p, cluster_info, i); 2939 2940 if (nr_good_pages) { 2941 swap_map[0] = SWAP_MAP_BAD; 2942 /* 2943 * Not mark the cluster free yet, no list 2944 * operation involved 2945 */ 2946 inc_cluster_info_page(p, cluster_info, 0); 2947 p->max = maxpages; 2948 p->pages = nr_good_pages; 2949 nr_extents = setup_swap_extents(p, span); 2950 if (nr_extents < 0) 2951 return nr_extents; 2952 nr_good_pages = p->pages; 2953 } 2954 if (!nr_good_pages) { 2955 pr_warn("Empty swap-file\n"); 2956 return -EINVAL; 2957 } 2958 2959 if (!cluster_info) 2960 return nr_extents; 2961 2962 2963 /* 2964 * Reduce false cache line sharing between cluster_info and 2965 * sharing same address space. 2966 */ 2967 for (k = 0; k < SWAP_CLUSTER_COLS; k++) { 2968 j = (k + col) % SWAP_CLUSTER_COLS; 2969 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) { 2970 idx = i * SWAP_CLUSTER_COLS + j; 2971 if (idx >= nr_clusters) 2972 continue; 2973 if (cluster_count(&cluster_info[idx])) 2974 continue; 2975 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE); 2976 cluster_list_add_tail(&p->free_clusters, cluster_info, 2977 idx); 2978 } 2979 } 2980 return nr_extents; 2981 } 2982 2983 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags) 2984 { 2985 struct swap_info_struct *p; 2986 struct filename *name; 2987 struct file *swap_file = NULL; 2988 struct address_space *mapping; 2989 struct dentry *dentry; 2990 int prio; 2991 int error; 2992 union swap_header *swap_header; 2993 int nr_extents; 2994 sector_t span; 2995 unsigned long maxpages; 2996 unsigned char *swap_map = NULL; 2997 struct swap_cluster_info *cluster_info = NULL; 2998 unsigned long *frontswap_map = NULL; 2999 struct page *page = NULL; 3000 struct inode *inode = NULL; 3001 bool inced_nr_rotate_swap = false; 3002 3003 if (swap_flags & ~SWAP_FLAGS_VALID) 3004 return -EINVAL; 3005 3006 if (!capable(CAP_SYS_ADMIN)) 3007 return -EPERM; 3008 3009 if (!swap_avail_heads) 3010 return -ENOMEM; 3011 3012 p = alloc_swap_info(); 3013 if (IS_ERR(p)) 3014 return PTR_ERR(p); 3015 3016 INIT_WORK(&p->discard_work, swap_discard_work); 3017 3018 name = getname(specialfile); 3019 if (IS_ERR(name)) { 3020 error = PTR_ERR(name); 3021 name = NULL; 3022 goto bad_swap; 3023 } 3024 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0); 3025 if (IS_ERR(swap_file)) { 3026 error = PTR_ERR(swap_file); 3027 swap_file = NULL; 3028 goto bad_swap; 3029 } 3030 3031 p->swap_file = swap_file; 3032 mapping = swap_file->f_mapping; 3033 dentry = swap_file->f_path.dentry; 3034 inode = mapping->host; 3035 3036 error = claim_swapfile(p, inode); 3037 if (unlikely(error)) 3038 goto bad_swap; 3039 3040 inode_lock(inode); 3041 if (d_unlinked(dentry) || cant_mount(dentry)) { 3042 error = -ENOENT; 3043 goto bad_swap_unlock_inode; 3044 } 3045 if (IS_SWAPFILE(inode)) { 3046 error = -EBUSY; 3047 goto bad_swap_unlock_inode; 3048 } 3049 3050 /* 3051 * Read the swap header. 3052 */ 3053 if (!mapping->a_ops->read_folio) { 3054 error = -EINVAL; 3055 goto bad_swap_unlock_inode; 3056 } 3057 page = read_mapping_page(mapping, 0, swap_file); 3058 if (IS_ERR(page)) { 3059 error = PTR_ERR(page); 3060 goto bad_swap_unlock_inode; 3061 } 3062 swap_header = kmap(page); 3063 3064 maxpages = read_swap_header(p, swap_header, inode); 3065 if (unlikely(!maxpages)) { 3066 error = -EINVAL; 3067 goto bad_swap_unlock_inode; 3068 } 3069 3070 /* OK, set up the swap map and apply the bad block list */ 3071 swap_map = vzalloc(maxpages); 3072 if (!swap_map) { 3073 error = -ENOMEM; 3074 goto bad_swap_unlock_inode; 3075 } 3076 3077 if (p->bdev && bdev_stable_writes(p->bdev)) 3078 p->flags |= SWP_STABLE_WRITES; 3079 3080 if (p->bdev && bdev_synchronous(p->bdev)) 3081 p->flags |= SWP_SYNCHRONOUS_IO; 3082 3083 if (p->bdev && bdev_nonrot(p->bdev)) { 3084 int cpu; 3085 unsigned long ci, nr_cluster; 3086 3087 p->flags |= SWP_SOLIDSTATE; 3088 p->cluster_next_cpu = alloc_percpu(unsigned int); 3089 if (!p->cluster_next_cpu) { 3090 error = -ENOMEM; 3091 goto bad_swap_unlock_inode; 3092 } 3093 /* 3094 * select a random position to start with to help wear leveling 3095 * SSD 3096 */ 3097 for_each_possible_cpu(cpu) { 3098 per_cpu(*p->cluster_next_cpu, cpu) = 3099 get_random_u32_inclusive(1, p->highest_bit); 3100 } 3101 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER); 3102 3103 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info), 3104 GFP_KERNEL); 3105 if (!cluster_info) { 3106 error = -ENOMEM; 3107 goto bad_swap_unlock_inode; 3108 } 3109 3110 for (ci = 0; ci < nr_cluster; ci++) 3111 spin_lock_init(&((cluster_info + ci)->lock)); 3112 3113 p->percpu_cluster = alloc_percpu(struct percpu_cluster); 3114 if (!p->percpu_cluster) { 3115 error = -ENOMEM; 3116 goto bad_swap_unlock_inode; 3117 } 3118 for_each_possible_cpu(cpu) { 3119 struct percpu_cluster *cluster; 3120 cluster = per_cpu_ptr(p->percpu_cluster, cpu); 3121 cluster_set_null(&cluster->index); 3122 } 3123 } else { 3124 atomic_inc(&nr_rotate_swap); 3125 inced_nr_rotate_swap = true; 3126 } 3127 3128 error = swap_cgroup_swapon(p->type, maxpages); 3129 if (error) 3130 goto bad_swap_unlock_inode; 3131 3132 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map, 3133 cluster_info, maxpages, &span); 3134 if (unlikely(nr_extents < 0)) { 3135 error = nr_extents; 3136 goto bad_swap_unlock_inode; 3137 } 3138 /* frontswap enabled? set up bit-per-page map for frontswap */ 3139 if (IS_ENABLED(CONFIG_FRONTSWAP)) 3140 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages), 3141 sizeof(long), 3142 GFP_KERNEL); 3143 3144 if ((swap_flags & SWAP_FLAG_DISCARD) && 3145 p->bdev && bdev_max_discard_sectors(p->bdev)) { 3146 /* 3147 * When discard is enabled for swap with no particular 3148 * policy flagged, we set all swap discard flags here in 3149 * order to sustain backward compatibility with older 3150 * swapon(8) releases. 3151 */ 3152 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD | 3153 SWP_PAGE_DISCARD); 3154 3155 /* 3156 * By flagging sys_swapon, a sysadmin can tell us to 3157 * either do single-time area discards only, or to just 3158 * perform discards for released swap page-clusters. 3159 * Now it's time to adjust the p->flags accordingly. 3160 */ 3161 if (swap_flags & SWAP_FLAG_DISCARD_ONCE) 3162 p->flags &= ~SWP_PAGE_DISCARD; 3163 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES) 3164 p->flags &= ~SWP_AREA_DISCARD; 3165 3166 /* issue a swapon-time discard if it's still required */ 3167 if (p->flags & SWP_AREA_DISCARD) { 3168 int err = discard_swap(p); 3169 if (unlikely(err)) 3170 pr_err("swapon: discard_swap(%p): %d\n", 3171 p, err); 3172 } 3173 } 3174 3175 error = init_swap_address_space(p->type, maxpages); 3176 if (error) 3177 goto bad_swap_unlock_inode; 3178 3179 /* 3180 * Flush any pending IO and dirty mappings before we start using this 3181 * swap device. 3182 */ 3183 inode->i_flags |= S_SWAPFILE; 3184 error = inode_drain_writes(inode); 3185 if (error) { 3186 inode->i_flags &= ~S_SWAPFILE; 3187 goto free_swap_address_space; 3188 } 3189 3190 mutex_lock(&swapon_mutex); 3191 prio = -1; 3192 if (swap_flags & SWAP_FLAG_PREFER) 3193 prio = 3194 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT; 3195 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map); 3196 3197 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n", 3198 p->pages<<(PAGE_SHIFT-10), name->name, p->prio, 3199 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10), 3200 (p->flags & SWP_SOLIDSTATE) ? "SS" : "", 3201 (p->flags & SWP_DISCARDABLE) ? "D" : "", 3202 (p->flags & SWP_AREA_DISCARD) ? "s" : "", 3203 (p->flags & SWP_PAGE_DISCARD) ? "c" : "", 3204 (frontswap_map) ? "FS" : ""); 3205 3206 mutex_unlock(&swapon_mutex); 3207 atomic_inc(&proc_poll_event); 3208 wake_up_interruptible(&proc_poll_wait); 3209 3210 error = 0; 3211 goto out; 3212 free_swap_address_space: 3213 exit_swap_address_space(p->type); 3214 bad_swap_unlock_inode: 3215 inode_unlock(inode); 3216 bad_swap: 3217 free_percpu(p->percpu_cluster); 3218 p->percpu_cluster = NULL; 3219 free_percpu(p->cluster_next_cpu); 3220 p->cluster_next_cpu = NULL; 3221 if (inode && S_ISBLK(inode->i_mode) && p->bdev) { 3222 set_blocksize(p->bdev, p->old_block_size); 3223 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); 3224 } 3225 inode = NULL; 3226 destroy_swap_extents(p); 3227 swap_cgroup_swapoff(p->type); 3228 spin_lock(&swap_lock); 3229 p->swap_file = NULL; 3230 p->flags = 0; 3231 spin_unlock(&swap_lock); 3232 vfree(swap_map); 3233 kvfree(cluster_info); 3234 kvfree(frontswap_map); 3235 if (inced_nr_rotate_swap) 3236 atomic_dec(&nr_rotate_swap); 3237 if (swap_file) 3238 filp_close(swap_file, NULL); 3239 out: 3240 if (page && !IS_ERR(page)) { 3241 kunmap(page); 3242 put_page(page); 3243 } 3244 if (name) 3245 putname(name); 3246 if (inode) 3247 inode_unlock(inode); 3248 if (!error) 3249 enable_swap_slots_cache(); 3250 return error; 3251 } 3252 3253 void si_swapinfo(struct sysinfo *val) 3254 { 3255 unsigned int type; 3256 unsigned long nr_to_be_unused = 0; 3257 3258 spin_lock(&swap_lock); 3259 for (type = 0; type < nr_swapfiles; type++) { 3260 struct swap_info_struct *si = swap_info[type]; 3261 3262 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK)) 3263 nr_to_be_unused += READ_ONCE(si->inuse_pages); 3264 } 3265 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused; 3266 val->totalswap = total_swap_pages + nr_to_be_unused; 3267 spin_unlock(&swap_lock); 3268 } 3269 3270 /* 3271 * Verify that a swap entry is valid and increment its swap map count. 3272 * 3273 * Returns error code in following case. 3274 * - success -> 0 3275 * - swp_entry is invalid -> EINVAL 3276 * - swp_entry is migration entry -> EINVAL 3277 * - swap-cache reference is requested but there is already one. -> EEXIST 3278 * - swap-cache reference is requested but the entry is not used. -> ENOENT 3279 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM 3280 */ 3281 static int __swap_duplicate(swp_entry_t entry, unsigned char usage) 3282 { 3283 struct swap_info_struct *p; 3284 struct swap_cluster_info *ci; 3285 unsigned long offset; 3286 unsigned char count; 3287 unsigned char has_cache; 3288 int err; 3289 3290 p = get_swap_device(entry); 3291 if (!p) 3292 return -EINVAL; 3293 3294 offset = swp_offset(entry); 3295 ci = lock_cluster_or_swap_info(p, offset); 3296 3297 count = p->swap_map[offset]; 3298 3299 /* 3300 * swapin_readahead() doesn't check if a swap entry is valid, so the 3301 * swap entry could be SWAP_MAP_BAD. Check here with lock held. 3302 */ 3303 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) { 3304 err = -ENOENT; 3305 goto unlock_out; 3306 } 3307 3308 has_cache = count & SWAP_HAS_CACHE; 3309 count &= ~SWAP_HAS_CACHE; 3310 err = 0; 3311 3312 if (usage == SWAP_HAS_CACHE) { 3313 3314 /* set SWAP_HAS_CACHE if there is no cache and entry is used */ 3315 if (!has_cache && count) 3316 has_cache = SWAP_HAS_CACHE; 3317 else if (has_cache) /* someone else added cache */ 3318 err = -EEXIST; 3319 else /* no users remaining */ 3320 err = -ENOENT; 3321 3322 } else if (count || has_cache) { 3323 3324 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX) 3325 count += usage; 3326 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX) 3327 err = -EINVAL; 3328 else if (swap_count_continued(p, offset, count)) 3329 count = COUNT_CONTINUED; 3330 else 3331 err = -ENOMEM; 3332 } else 3333 err = -ENOENT; /* unused swap entry */ 3334 3335 WRITE_ONCE(p->swap_map[offset], count | has_cache); 3336 3337 unlock_out: 3338 unlock_cluster_or_swap_info(p, ci); 3339 put_swap_device(p); 3340 return err; 3341 } 3342 3343 /* 3344 * Help swapoff by noting that swap entry belongs to shmem/tmpfs 3345 * (in which case its reference count is never incremented). 3346 */ 3347 void swap_shmem_alloc(swp_entry_t entry) 3348 { 3349 __swap_duplicate(entry, SWAP_MAP_SHMEM); 3350 } 3351 3352 /* 3353 * Increase reference count of swap entry by 1. 3354 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required 3355 * but could not be atomically allocated. Returns 0, just as if it succeeded, 3356 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which 3357 * might occur if a page table entry has got corrupted. 3358 */ 3359 int swap_duplicate(swp_entry_t entry) 3360 { 3361 int err = 0; 3362 3363 while (!err && __swap_duplicate(entry, 1) == -ENOMEM) 3364 err = add_swap_count_continuation(entry, GFP_ATOMIC); 3365 return err; 3366 } 3367 3368 /* 3369 * @entry: swap entry for which we allocate swap cache. 3370 * 3371 * Called when allocating swap cache for existing swap entry, 3372 * This can return error codes. Returns 0 at success. 3373 * -EEXIST means there is a swap cache. 3374 * Note: return code is different from swap_duplicate(). 3375 */ 3376 int swapcache_prepare(swp_entry_t entry) 3377 { 3378 return __swap_duplicate(entry, SWAP_HAS_CACHE); 3379 } 3380 3381 struct swap_info_struct *swp_swap_info(swp_entry_t entry) 3382 { 3383 return swap_type_to_swap_info(swp_type(entry)); 3384 } 3385 3386 struct swap_info_struct *page_swap_info(struct page *page) 3387 { 3388 swp_entry_t entry = { .val = page_private(page) }; 3389 return swp_swap_info(entry); 3390 } 3391 3392 /* 3393 * out-of-line methods to avoid include hell. 3394 */ 3395 struct address_space *swapcache_mapping(struct folio *folio) 3396 { 3397 return page_swap_info(&folio->page)->swap_file->f_mapping; 3398 } 3399 EXPORT_SYMBOL_GPL(swapcache_mapping); 3400 3401 pgoff_t __page_file_index(struct page *page) 3402 { 3403 swp_entry_t swap = { .val = page_private(page) }; 3404 return swp_offset(swap); 3405 } 3406 EXPORT_SYMBOL_GPL(__page_file_index); 3407 3408 /* 3409 * add_swap_count_continuation - called when a swap count is duplicated 3410 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's 3411 * page of the original vmalloc'ed swap_map, to hold the continuation count 3412 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called 3413 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc. 3414 * 3415 * These continuation pages are seldom referenced: the common paths all work 3416 * on the original swap_map, only referring to a continuation page when the 3417 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX. 3418 * 3419 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding 3420 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL) 3421 * can be called after dropping locks. 3422 */ 3423 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask) 3424 { 3425 struct swap_info_struct *si; 3426 struct swap_cluster_info *ci; 3427 struct page *head; 3428 struct page *page; 3429 struct page *list_page; 3430 pgoff_t offset; 3431 unsigned char count; 3432 int ret = 0; 3433 3434 /* 3435 * When debugging, it's easier to use __GFP_ZERO here; but it's better 3436 * for latency not to zero a page while GFP_ATOMIC and holding locks. 3437 */ 3438 page = alloc_page(gfp_mask | __GFP_HIGHMEM); 3439 3440 si = get_swap_device(entry); 3441 if (!si) { 3442 /* 3443 * An acceptable race has occurred since the failing 3444 * __swap_duplicate(): the swap device may be swapoff 3445 */ 3446 goto outer; 3447 } 3448 spin_lock(&si->lock); 3449 3450 offset = swp_offset(entry); 3451 3452 ci = lock_cluster(si, offset); 3453 3454 count = swap_count(si->swap_map[offset]); 3455 3456 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) { 3457 /* 3458 * The higher the swap count, the more likely it is that tasks 3459 * will race to add swap count continuation: we need to avoid 3460 * over-provisioning. 3461 */ 3462 goto out; 3463 } 3464 3465 if (!page) { 3466 ret = -ENOMEM; 3467 goto out; 3468 } 3469 3470 /* 3471 * We are fortunate that although vmalloc_to_page uses pte_offset_map, 3472 * no architecture is using highmem pages for kernel page tables: so it 3473 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps. 3474 */ 3475 head = vmalloc_to_page(si->swap_map + offset); 3476 offset &= ~PAGE_MASK; 3477 3478 spin_lock(&si->cont_lock); 3479 /* 3480 * Page allocation does not initialize the page's lru field, 3481 * but it does always reset its private field. 3482 */ 3483 if (!page_private(head)) { 3484 BUG_ON(count & COUNT_CONTINUED); 3485 INIT_LIST_HEAD(&head->lru); 3486 set_page_private(head, SWP_CONTINUED); 3487 si->flags |= SWP_CONTINUED; 3488 } 3489 3490 list_for_each_entry(list_page, &head->lru, lru) { 3491 unsigned char *map; 3492 3493 /* 3494 * If the previous map said no continuation, but we've found 3495 * a continuation page, free our allocation and use this one. 3496 */ 3497 if (!(count & COUNT_CONTINUED)) 3498 goto out_unlock_cont; 3499 3500 map = kmap_atomic(list_page) + offset; 3501 count = *map; 3502 kunmap_atomic(map); 3503 3504 /* 3505 * If this continuation count now has some space in it, 3506 * free our allocation and use this one. 3507 */ 3508 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX) 3509 goto out_unlock_cont; 3510 } 3511 3512 list_add_tail(&page->lru, &head->lru); 3513 page = NULL; /* now it's attached, don't free it */ 3514 out_unlock_cont: 3515 spin_unlock(&si->cont_lock); 3516 out: 3517 unlock_cluster(ci); 3518 spin_unlock(&si->lock); 3519 put_swap_device(si); 3520 outer: 3521 if (page) 3522 __free_page(page); 3523 return ret; 3524 } 3525 3526 /* 3527 * swap_count_continued - when the original swap_map count is incremented 3528 * from SWAP_MAP_MAX, check if there is already a continuation page to carry 3529 * into, carry if so, or else fail until a new continuation page is allocated; 3530 * when the original swap_map count is decremented from 0 with continuation, 3531 * borrow from the continuation and report whether it still holds more. 3532 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster 3533 * lock. 3534 */ 3535 static bool swap_count_continued(struct swap_info_struct *si, 3536 pgoff_t offset, unsigned char count) 3537 { 3538 struct page *head; 3539 struct page *page; 3540 unsigned char *map; 3541 bool ret; 3542 3543 head = vmalloc_to_page(si->swap_map + offset); 3544 if (page_private(head) != SWP_CONTINUED) { 3545 BUG_ON(count & COUNT_CONTINUED); 3546 return false; /* need to add count continuation */ 3547 } 3548 3549 spin_lock(&si->cont_lock); 3550 offset &= ~PAGE_MASK; 3551 page = list_next_entry(head, lru); 3552 map = kmap_atomic(page) + offset; 3553 3554 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */ 3555 goto init_map; /* jump over SWAP_CONT_MAX checks */ 3556 3557 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */ 3558 /* 3559 * Think of how you add 1 to 999 3560 */ 3561 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) { 3562 kunmap_atomic(map); 3563 page = list_next_entry(page, lru); 3564 BUG_ON(page == head); 3565 map = kmap_atomic(page) + offset; 3566 } 3567 if (*map == SWAP_CONT_MAX) { 3568 kunmap_atomic(map); 3569 page = list_next_entry(page, lru); 3570 if (page == head) { 3571 ret = false; /* add count continuation */ 3572 goto out; 3573 } 3574 map = kmap_atomic(page) + offset; 3575 init_map: *map = 0; /* we didn't zero the page */ 3576 } 3577 *map += 1; 3578 kunmap_atomic(map); 3579 while ((page = list_prev_entry(page, lru)) != head) { 3580 map = kmap_atomic(page) + offset; 3581 *map = COUNT_CONTINUED; 3582 kunmap_atomic(map); 3583 } 3584 ret = true; /* incremented */ 3585 3586 } else { /* decrementing */ 3587 /* 3588 * Think of how you subtract 1 from 1000 3589 */ 3590 BUG_ON(count != COUNT_CONTINUED); 3591 while (*map == COUNT_CONTINUED) { 3592 kunmap_atomic(map); 3593 page = list_next_entry(page, lru); 3594 BUG_ON(page == head); 3595 map = kmap_atomic(page) + offset; 3596 } 3597 BUG_ON(*map == 0); 3598 *map -= 1; 3599 if (*map == 0) 3600 count = 0; 3601 kunmap_atomic(map); 3602 while ((page = list_prev_entry(page, lru)) != head) { 3603 map = kmap_atomic(page) + offset; 3604 *map = SWAP_CONT_MAX | count; 3605 count = COUNT_CONTINUED; 3606 kunmap_atomic(map); 3607 } 3608 ret = count == COUNT_CONTINUED; 3609 } 3610 out: 3611 spin_unlock(&si->cont_lock); 3612 return ret; 3613 } 3614 3615 /* 3616 * free_swap_count_continuations - swapoff free all the continuation pages 3617 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it. 3618 */ 3619 static void free_swap_count_continuations(struct swap_info_struct *si) 3620 { 3621 pgoff_t offset; 3622 3623 for (offset = 0; offset < si->max; offset += PAGE_SIZE) { 3624 struct page *head; 3625 head = vmalloc_to_page(si->swap_map + offset); 3626 if (page_private(head)) { 3627 struct page *page, *next; 3628 3629 list_for_each_entry_safe(page, next, &head->lru, lru) { 3630 list_del(&page->lru); 3631 __free_page(page); 3632 } 3633 } 3634 } 3635 } 3636 3637 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 3638 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask) 3639 { 3640 struct swap_info_struct *si, *next; 3641 int nid = page_to_nid(page); 3642 3643 if (!(gfp_mask & __GFP_IO)) 3644 return; 3645 3646 if (!blk_cgroup_congested()) 3647 return; 3648 3649 /* 3650 * We've already scheduled a throttle, avoid taking the global swap 3651 * lock. 3652 */ 3653 if (current->throttle_disk) 3654 return; 3655 3656 spin_lock(&swap_avail_lock); 3657 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid], 3658 avail_lists[nid]) { 3659 if (si->bdev) { 3660 blkcg_schedule_throttle(si->bdev->bd_disk, true); 3661 break; 3662 } 3663 } 3664 spin_unlock(&swap_avail_lock); 3665 } 3666 #endif 3667 3668 static int __init swapfile_init(void) 3669 { 3670 int nid; 3671 3672 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head), 3673 GFP_KERNEL); 3674 if (!swap_avail_heads) { 3675 pr_emerg("Not enough memory for swap heads, swap is disabled\n"); 3676 return -ENOMEM; 3677 } 3678 3679 for_each_node(nid) 3680 plist_head_init(&swap_avail_heads[nid]); 3681 3682 swapfile_maximum_size = arch_max_swapfile_size(); 3683 3684 #ifdef CONFIG_MIGRATION 3685 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS)) 3686 swap_migration_ad_supported = true; 3687 #endif /* CONFIG_MIGRATION */ 3688 3689 return 0; 3690 } 3691 subsys_initcall(swapfile_init); 3692