xref: /openbmc/linux/mm/swapfile.c (revision 002dff36)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46 
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 				 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51 
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64 
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69 
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75 
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90 
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92 
93 static DEFINE_MUTEX(swapon_mutex);
94 
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98 
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100 
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103 	if (type >= READ_ONCE(nr_swapfiles))
104 		return NULL;
105 
106 	smp_rmb();	/* Pairs with smp_wmb in alloc_swap_info. */
107 	return READ_ONCE(swap_info[type]);
108 }
109 
110 static inline unsigned char swap_count(unsigned char ent)
111 {
112 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
113 }
114 
115 /* Reclaim the swap entry anyway if possible */
116 #define TTRS_ANYWAY		0x1
117 /*
118  * Reclaim the swap entry if there are no more mappings of the
119  * corresponding page
120  */
121 #define TTRS_UNMAPPED		0x2
122 /* Reclaim the swap entry if swap is getting full*/
123 #define TTRS_FULL		0x4
124 
125 /* returns 1 if swap entry is freed */
126 static int __try_to_reclaim_swap(struct swap_info_struct *si,
127 				 unsigned long offset, unsigned long flags)
128 {
129 	swp_entry_t entry = swp_entry(si->type, offset);
130 	struct page *page;
131 	int ret = 0;
132 
133 	page = find_get_page(swap_address_space(entry), offset);
134 	if (!page)
135 		return 0;
136 	/*
137 	 * When this function is called from scan_swap_map_slots() and it's
138 	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139 	 * here. We have to use trylock for avoiding deadlock. This is a special
140 	 * case and you should use try_to_free_swap() with explicit lock_page()
141 	 * in usual operations.
142 	 */
143 	if (trylock_page(page)) {
144 		if ((flags & TTRS_ANYWAY) ||
145 		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147 			ret = try_to_free_swap(page);
148 		unlock_page(page);
149 	}
150 	put_page(page);
151 	return ret;
152 }
153 
154 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155 {
156 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
157 	return rb_entry(rb, struct swap_extent, rb_node);
158 }
159 
160 static inline struct swap_extent *next_se(struct swap_extent *se)
161 {
162 	struct rb_node *rb = rb_next(&se->rb_node);
163 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
164 }
165 
166 /*
167  * swapon tell device that all the old swap contents can be discarded,
168  * to allow the swap device to optimize its wear-levelling.
169  */
170 static int discard_swap(struct swap_info_struct *si)
171 {
172 	struct swap_extent *se;
173 	sector_t start_block;
174 	sector_t nr_blocks;
175 	int err = 0;
176 
177 	/* Do not discard the swap header page! */
178 	se = first_se(si);
179 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
180 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181 	if (nr_blocks) {
182 		err = blkdev_issue_discard(si->bdev, start_block,
183 				nr_blocks, GFP_KERNEL, 0);
184 		if (err)
185 			return err;
186 		cond_resched();
187 	}
188 
189 	for (se = next_se(se); se; se = next_se(se)) {
190 		start_block = se->start_block << (PAGE_SHIFT - 9);
191 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
192 
193 		err = blkdev_issue_discard(si->bdev, start_block,
194 				nr_blocks, GFP_KERNEL, 0);
195 		if (err)
196 			break;
197 
198 		cond_resched();
199 	}
200 	return err;		/* That will often be -EOPNOTSUPP */
201 }
202 
203 static struct swap_extent *
204 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205 {
206 	struct swap_extent *se;
207 	struct rb_node *rb;
208 
209 	rb = sis->swap_extent_root.rb_node;
210 	while (rb) {
211 		se = rb_entry(rb, struct swap_extent, rb_node);
212 		if (offset < se->start_page)
213 			rb = rb->rb_left;
214 		else if (offset >= se->start_page + se->nr_pages)
215 			rb = rb->rb_right;
216 		else
217 			return se;
218 	}
219 	/* It *must* be present */
220 	BUG();
221 }
222 
223 /*
224  * swap allocation tell device that a cluster of swap can now be discarded,
225  * to allow the swap device to optimize its wear-levelling.
226  */
227 static void discard_swap_cluster(struct swap_info_struct *si,
228 				 pgoff_t start_page, pgoff_t nr_pages)
229 {
230 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
231 
232 	while (nr_pages) {
233 		pgoff_t offset = start_page - se->start_page;
234 		sector_t start_block = se->start_block + offset;
235 		sector_t nr_blocks = se->nr_pages - offset;
236 
237 		if (nr_blocks > nr_pages)
238 			nr_blocks = nr_pages;
239 		start_page += nr_blocks;
240 		nr_pages -= nr_blocks;
241 
242 		start_block <<= PAGE_SHIFT - 9;
243 		nr_blocks <<= PAGE_SHIFT - 9;
244 		if (blkdev_issue_discard(si->bdev, start_block,
245 					nr_blocks, GFP_NOIO, 0))
246 			break;
247 
248 		se = next_se(se);
249 	}
250 }
251 
252 #ifdef CONFIG_THP_SWAP
253 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
254 
255 #define swap_entry_size(size)	(size)
256 #else
257 #define SWAPFILE_CLUSTER	256
258 
259 /*
260  * Define swap_entry_size() as constant to let compiler to optimize
261  * out some code if !CONFIG_THP_SWAP
262  */
263 #define swap_entry_size(size)	1
264 #endif
265 #define LATENCY_LIMIT		256
266 
267 static inline void cluster_set_flag(struct swap_cluster_info *info,
268 	unsigned int flag)
269 {
270 	info->flags = flag;
271 }
272 
273 static inline unsigned int cluster_count(struct swap_cluster_info *info)
274 {
275 	return info->data;
276 }
277 
278 static inline void cluster_set_count(struct swap_cluster_info *info,
279 				     unsigned int c)
280 {
281 	info->data = c;
282 }
283 
284 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
285 					 unsigned int c, unsigned int f)
286 {
287 	info->flags = f;
288 	info->data = c;
289 }
290 
291 static inline unsigned int cluster_next(struct swap_cluster_info *info)
292 {
293 	return info->data;
294 }
295 
296 static inline void cluster_set_next(struct swap_cluster_info *info,
297 				    unsigned int n)
298 {
299 	info->data = n;
300 }
301 
302 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
303 					 unsigned int n, unsigned int f)
304 {
305 	info->flags = f;
306 	info->data = n;
307 }
308 
309 static inline bool cluster_is_free(struct swap_cluster_info *info)
310 {
311 	return info->flags & CLUSTER_FLAG_FREE;
312 }
313 
314 static inline bool cluster_is_null(struct swap_cluster_info *info)
315 {
316 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
317 }
318 
319 static inline void cluster_set_null(struct swap_cluster_info *info)
320 {
321 	info->flags = CLUSTER_FLAG_NEXT_NULL;
322 	info->data = 0;
323 }
324 
325 static inline bool cluster_is_huge(struct swap_cluster_info *info)
326 {
327 	if (IS_ENABLED(CONFIG_THP_SWAP))
328 		return info->flags & CLUSTER_FLAG_HUGE;
329 	return false;
330 }
331 
332 static inline void cluster_clear_huge(struct swap_cluster_info *info)
333 {
334 	info->flags &= ~CLUSTER_FLAG_HUGE;
335 }
336 
337 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
338 						     unsigned long offset)
339 {
340 	struct swap_cluster_info *ci;
341 
342 	ci = si->cluster_info;
343 	if (ci) {
344 		ci += offset / SWAPFILE_CLUSTER;
345 		spin_lock(&ci->lock);
346 	}
347 	return ci;
348 }
349 
350 static inline void unlock_cluster(struct swap_cluster_info *ci)
351 {
352 	if (ci)
353 		spin_unlock(&ci->lock);
354 }
355 
356 /*
357  * Determine the locking method in use for this device.  Return
358  * swap_cluster_info if SSD-style cluster-based locking is in place.
359  */
360 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
361 		struct swap_info_struct *si, unsigned long offset)
362 {
363 	struct swap_cluster_info *ci;
364 
365 	/* Try to use fine-grained SSD-style locking if available: */
366 	ci = lock_cluster(si, offset);
367 	/* Otherwise, fall back to traditional, coarse locking: */
368 	if (!ci)
369 		spin_lock(&si->lock);
370 
371 	return ci;
372 }
373 
374 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
375 					       struct swap_cluster_info *ci)
376 {
377 	if (ci)
378 		unlock_cluster(ci);
379 	else
380 		spin_unlock(&si->lock);
381 }
382 
383 static inline bool cluster_list_empty(struct swap_cluster_list *list)
384 {
385 	return cluster_is_null(&list->head);
386 }
387 
388 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
389 {
390 	return cluster_next(&list->head);
391 }
392 
393 static void cluster_list_init(struct swap_cluster_list *list)
394 {
395 	cluster_set_null(&list->head);
396 	cluster_set_null(&list->tail);
397 }
398 
399 static void cluster_list_add_tail(struct swap_cluster_list *list,
400 				  struct swap_cluster_info *ci,
401 				  unsigned int idx)
402 {
403 	if (cluster_list_empty(list)) {
404 		cluster_set_next_flag(&list->head, idx, 0);
405 		cluster_set_next_flag(&list->tail, idx, 0);
406 	} else {
407 		struct swap_cluster_info *ci_tail;
408 		unsigned int tail = cluster_next(&list->tail);
409 
410 		/*
411 		 * Nested cluster lock, but both cluster locks are
412 		 * only acquired when we held swap_info_struct->lock
413 		 */
414 		ci_tail = ci + tail;
415 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
416 		cluster_set_next(ci_tail, idx);
417 		spin_unlock(&ci_tail->lock);
418 		cluster_set_next_flag(&list->tail, idx, 0);
419 	}
420 }
421 
422 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
423 					   struct swap_cluster_info *ci)
424 {
425 	unsigned int idx;
426 
427 	idx = cluster_next(&list->head);
428 	if (cluster_next(&list->tail) == idx) {
429 		cluster_set_null(&list->head);
430 		cluster_set_null(&list->tail);
431 	} else
432 		cluster_set_next_flag(&list->head,
433 				      cluster_next(&ci[idx]), 0);
434 
435 	return idx;
436 }
437 
438 /* Add a cluster to discard list and schedule it to do discard */
439 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
440 		unsigned int idx)
441 {
442 	/*
443 	 * If scan_swap_map() can't find a free cluster, it will check
444 	 * si->swap_map directly. To make sure the discarding cluster isn't
445 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
446 	 * will be cleared after discard
447 	 */
448 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
449 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
450 
451 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
452 
453 	schedule_work(&si->discard_work);
454 }
455 
456 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
457 {
458 	struct swap_cluster_info *ci = si->cluster_info;
459 
460 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
461 	cluster_list_add_tail(&si->free_clusters, ci, idx);
462 }
463 
464 /*
465  * Doing discard actually. After a cluster discard is finished, the cluster
466  * will be added to free cluster list. caller should hold si->lock.
467 */
468 static void swap_do_scheduled_discard(struct swap_info_struct *si)
469 {
470 	struct swap_cluster_info *info, *ci;
471 	unsigned int idx;
472 
473 	info = si->cluster_info;
474 
475 	while (!cluster_list_empty(&si->discard_clusters)) {
476 		idx = cluster_list_del_first(&si->discard_clusters, info);
477 		spin_unlock(&si->lock);
478 
479 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
480 				SWAPFILE_CLUSTER);
481 
482 		spin_lock(&si->lock);
483 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
484 		__free_cluster(si, idx);
485 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
486 				0, SWAPFILE_CLUSTER);
487 		unlock_cluster(ci);
488 	}
489 }
490 
491 static void swap_discard_work(struct work_struct *work)
492 {
493 	struct swap_info_struct *si;
494 
495 	si = container_of(work, struct swap_info_struct, discard_work);
496 
497 	spin_lock(&si->lock);
498 	swap_do_scheduled_discard(si);
499 	spin_unlock(&si->lock);
500 }
501 
502 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
503 {
504 	struct swap_cluster_info *ci = si->cluster_info;
505 
506 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
507 	cluster_list_del_first(&si->free_clusters, ci);
508 	cluster_set_count_flag(ci + idx, 0, 0);
509 }
510 
511 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
512 {
513 	struct swap_cluster_info *ci = si->cluster_info + idx;
514 
515 	VM_BUG_ON(cluster_count(ci) != 0);
516 	/*
517 	 * If the swap is discardable, prepare discard the cluster
518 	 * instead of free it immediately. The cluster will be freed
519 	 * after discard.
520 	 */
521 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
522 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
523 		swap_cluster_schedule_discard(si, idx);
524 		return;
525 	}
526 
527 	__free_cluster(si, idx);
528 }
529 
530 /*
531  * The cluster corresponding to page_nr will be used. The cluster will be
532  * removed from free cluster list and its usage counter will be increased.
533  */
534 static void inc_cluster_info_page(struct swap_info_struct *p,
535 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
536 {
537 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
538 
539 	if (!cluster_info)
540 		return;
541 	if (cluster_is_free(&cluster_info[idx]))
542 		alloc_cluster(p, idx);
543 
544 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
545 	cluster_set_count(&cluster_info[idx],
546 		cluster_count(&cluster_info[idx]) + 1);
547 }
548 
549 /*
550  * The cluster corresponding to page_nr decreases one usage. If the usage
551  * counter becomes 0, which means no page in the cluster is in using, we can
552  * optionally discard the cluster and add it to free cluster list.
553  */
554 static void dec_cluster_info_page(struct swap_info_struct *p,
555 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
556 {
557 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
558 
559 	if (!cluster_info)
560 		return;
561 
562 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
563 	cluster_set_count(&cluster_info[idx],
564 		cluster_count(&cluster_info[idx]) - 1);
565 
566 	if (cluster_count(&cluster_info[idx]) == 0)
567 		free_cluster(p, idx);
568 }
569 
570 /*
571  * It's possible scan_swap_map() uses a free cluster in the middle of free
572  * cluster list. Avoiding such abuse to avoid list corruption.
573  */
574 static bool
575 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
576 	unsigned long offset)
577 {
578 	struct percpu_cluster *percpu_cluster;
579 	bool conflict;
580 
581 	offset /= SWAPFILE_CLUSTER;
582 	conflict = !cluster_list_empty(&si->free_clusters) &&
583 		offset != cluster_list_first(&si->free_clusters) &&
584 		cluster_is_free(&si->cluster_info[offset]);
585 
586 	if (!conflict)
587 		return false;
588 
589 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
590 	cluster_set_null(&percpu_cluster->index);
591 	return true;
592 }
593 
594 /*
595  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
596  * might involve allocating a new cluster for current CPU too.
597  */
598 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
599 	unsigned long *offset, unsigned long *scan_base)
600 {
601 	struct percpu_cluster *cluster;
602 	struct swap_cluster_info *ci;
603 	unsigned long tmp, max;
604 
605 new_cluster:
606 	cluster = this_cpu_ptr(si->percpu_cluster);
607 	if (cluster_is_null(&cluster->index)) {
608 		if (!cluster_list_empty(&si->free_clusters)) {
609 			cluster->index = si->free_clusters.head;
610 			cluster->next = cluster_next(&cluster->index) *
611 					SWAPFILE_CLUSTER;
612 		} else if (!cluster_list_empty(&si->discard_clusters)) {
613 			/*
614 			 * we don't have free cluster but have some clusters in
615 			 * discarding, do discard now and reclaim them, then
616 			 * reread cluster_next_cpu since we dropped si->lock
617 			 */
618 			swap_do_scheduled_discard(si);
619 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
620 			*offset = *scan_base;
621 			goto new_cluster;
622 		} else
623 			return false;
624 	}
625 
626 	/*
627 	 * Other CPUs can use our cluster if they can't find a free cluster,
628 	 * check if there is still free entry in the cluster
629 	 */
630 	tmp = cluster->next;
631 	max = min_t(unsigned long, si->max,
632 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
633 	if (tmp < max) {
634 		ci = lock_cluster(si, tmp);
635 		while (tmp < max) {
636 			if (!si->swap_map[tmp])
637 				break;
638 			tmp++;
639 		}
640 		unlock_cluster(ci);
641 	}
642 	if (tmp >= max) {
643 		cluster_set_null(&cluster->index);
644 		goto new_cluster;
645 	}
646 	cluster->next = tmp + 1;
647 	*offset = tmp;
648 	*scan_base = tmp;
649 	return true;
650 }
651 
652 static void __del_from_avail_list(struct swap_info_struct *p)
653 {
654 	int nid;
655 
656 	for_each_node(nid)
657 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
658 }
659 
660 static void del_from_avail_list(struct swap_info_struct *p)
661 {
662 	spin_lock(&swap_avail_lock);
663 	__del_from_avail_list(p);
664 	spin_unlock(&swap_avail_lock);
665 }
666 
667 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
668 			     unsigned int nr_entries)
669 {
670 	unsigned int end = offset + nr_entries - 1;
671 
672 	if (offset == si->lowest_bit)
673 		si->lowest_bit += nr_entries;
674 	if (end == si->highest_bit)
675 		si->highest_bit -= nr_entries;
676 	si->inuse_pages += nr_entries;
677 	if (si->inuse_pages == si->pages) {
678 		si->lowest_bit = si->max;
679 		si->highest_bit = 0;
680 		del_from_avail_list(si);
681 	}
682 }
683 
684 static void add_to_avail_list(struct swap_info_struct *p)
685 {
686 	int nid;
687 
688 	spin_lock(&swap_avail_lock);
689 	for_each_node(nid) {
690 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
691 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
692 	}
693 	spin_unlock(&swap_avail_lock);
694 }
695 
696 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
697 			    unsigned int nr_entries)
698 {
699 	unsigned long end = offset + nr_entries - 1;
700 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
701 
702 	if (offset < si->lowest_bit)
703 		si->lowest_bit = offset;
704 	if (end > si->highest_bit) {
705 		bool was_full = !si->highest_bit;
706 
707 		si->highest_bit = end;
708 		if (was_full && (si->flags & SWP_WRITEOK))
709 			add_to_avail_list(si);
710 	}
711 	atomic_long_add(nr_entries, &nr_swap_pages);
712 	si->inuse_pages -= nr_entries;
713 	if (si->flags & SWP_BLKDEV)
714 		swap_slot_free_notify =
715 			si->bdev->bd_disk->fops->swap_slot_free_notify;
716 	else
717 		swap_slot_free_notify = NULL;
718 	while (offset <= end) {
719 		frontswap_invalidate_page(si->type, offset);
720 		if (swap_slot_free_notify)
721 			swap_slot_free_notify(si->bdev, offset);
722 		offset++;
723 	}
724 }
725 
726 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
727 {
728 	unsigned long prev;
729 
730 	if (!(si->flags & SWP_SOLIDSTATE)) {
731 		si->cluster_next = next;
732 		return;
733 	}
734 
735 	prev = this_cpu_read(*si->cluster_next_cpu);
736 	/*
737 	 * Cross the swap address space size aligned trunk, choose
738 	 * another trunk randomly to avoid lock contention on swap
739 	 * address space if possible.
740 	 */
741 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
742 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
743 		/* No free swap slots available */
744 		if (si->highest_bit <= si->lowest_bit)
745 			return;
746 		next = si->lowest_bit +
747 			prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
748 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
749 		next = max_t(unsigned int, next, si->lowest_bit);
750 	}
751 	this_cpu_write(*si->cluster_next_cpu, next);
752 }
753 
754 static int scan_swap_map_slots(struct swap_info_struct *si,
755 			       unsigned char usage, int nr,
756 			       swp_entry_t slots[])
757 {
758 	struct swap_cluster_info *ci;
759 	unsigned long offset;
760 	unsigned long scan_base;
761 	unsigned long last_in_cluster = 0;
762 	int latency_ration = LATENCY_LIMIT;
763 	int n_ret = 0;
764 	bool scanned_many = false;
765 
766 	/*
767 	 * We try to cluster swap pages by allocating them sequentially
768 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
769 	 * way, however, we resort to first-free allocation, starting
770 	 * a new cluster.  This prevents us from scattering swap pages
771 	 * all over the entire swap partition, so that we reduce
772 	 * overall disk seek times between swap pages.  -- sct
773 	 * But we do now try to find an empty cluster.  -Andrea
774 	 * And we let swap pages go all over an SSD partition.  Hugh
775 	 */
776 
777 	si->flags += SWP_SCANNING;
778 	/*
779 	 * Use percpu scan base for SSD to reduce lock contention on
780 	 * cluster and swap cache.  For HDD, sequential access is more
781 	 * important.
782 	 */
783 	if (si->flags & SWP_SOLIDSTATE)
784 		scan_base = this_cpu_read(*si->cluster_next_cpu);
785 	else
786 		scan_base = si->cluster_next;
787 	offset = scan_base;
788 
789 	/* SSD algorithm */
790 	if (si->cluster_info) {
791 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
792 			goto scan;
793 	} else if (unlikely(!si->cluster_nr--)) {
794 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
795 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
796 			goto checks;
797 		}
798 
799 		spin_unlock(&si->lock);
800 
801 		/*
802 		 * If seek is expensive, start searching for new cluster from
803 		 * start of partition, to minimize the span of allocated swap.
804 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
805 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
806 		 */
807 		scan_base = offset = si->lowest_bit;
808 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
809 
810 		/* Locate the first empty (unaligned) cluster */
811 		for (; last_in_cluster <= si->highest_bit; offset++) {
812 			if (si->swap_map[offset])
813 				last_in_cluster = offset + SWAPFILE_CLUSTER;
814 			else if (offset == last_in_cluster) {
815 				spin_lock(&si->lock);
816 				offset -= SWAPFILE_CLUSTER - 1;
817 				si->cluster_next = offset;
818 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
819 				goto checks;
820 			}
821 			if (unlikely(--latency_ration < 0)) {
822 				cond_resched();
823 				latency_ration = LATENCY_LIMIT;
824 			}
825 		}
826 
827 		offset = scan_base;
828 		spin_lock(&si->lock);
829 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
830 	}
831 
832 checks:
833 	if (si->cluster_info) {
834 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
835 		/* take a break if we already got some slots */
836 			if (n_ret)
837 				goto done;
838 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
839 							&scan_base))
840 				goto scan;
841 		}
842 	}
843 	if (!(si->flags & SWP_WRITEOK))
844 		goto no_page;
845 	if (!si->highest_bit)
846 		goto no_page;
847 	if (offset > si->highest_bit)
848 		scan_base = offset = si->lowest_bit;
849 
850 	ci = lock_cluster(si, offset);
851 	/* reuse swap entry of cache-only swap if not busy. */
852 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
853 		int swap_was_freed;
854 		unlock_cluster(ci);
855 		spin_unlock(&si->lock);
856 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
857 		spin_lock(&si->lock);
858 		/* entry was freed successfully, try to use this again */
859 		if (swap_was_freed)
860 			goto checks;
861 		goto scan; /* check next one */
862 	}
863 
864 	if (si->swap_map[offset]) {
865 		unlock_cluster(ci);
866 		if (!n_ret)
867 			goto scan;
868 		else
869 			goto done;
870 	}
871 	si->swap_map[offset] = usage;
872 	inc_cluster_info_page(si, si->cluster_info, offset);
873 	unlock_cluster(ci);
874 
875 	swap_range_alloc(si, offset, 1);
876 	slots[n_ret++] = swp_entry(si->type, offset);
877 
878 	/* got enough slots or reach max slots? */
879 	if ((n_ret == nr) || (offset >= si->highest_bit))
880 		goto done;
881 
882 	/* search for next available slot */
883 
884 	/* time to take a break? */
885 	if (unlikely(--latency_ration < 0)) {
886 		if (n_ret)
887 			goto done;
888 		spin_unlock(&si->lock);
889 		cond_resched();
890 		spin_lock(&si->lock);
891 		latency_ration = LATENCY_LIMIT;
892 	}
893 
894 	/* try to get more slots in cluster */
895 	if (si->cluster_info) {
896 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
897 			goto checks;
898 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
899 		/* non-ssd case, still more slots in cluster? */
900 		--si->cluster_nr;
901 		goto checks;
902 	}
903 
904 	/*
905 	 * Even if there's no free clusters available (fragmented),
906 	 * try to scan a little more quickly with lock held unless we
907 	 * have scanned too many slots already.
908 	 */
909 	if (!scanned_many) {
910 		unsigned long scan_limit;
911 
912 		if (offset < scan_base)
913 			scan_limit = scan_base;
914 		else
915 			scan_limit = si->highest_bit;
916 		for (; offset <= scan_limit && --latency_ration > 0;
917 		     offset++) {
918 			if (!si->swap_map[offset])
919 				goto checks;
920 		}
921 	}
922 
923 done:
924 	set_cluster_next(si, offset + 1);
925 	si->flags -= SWP_SCANNING;
926 	return n_ret;
927 
928 scan:
929 	spin_unlock(&si->lock);
930 	while (++offset <= si->highest_bit) {
931 		if (!si->swap_map[offset]) {
932 			spin_lock(&si->lock);
933 			goto checks;
934 		}
935 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
936 			spin_lock(&si->lock);
937 			goto checks;
938 		}
939 		if (unlikely(--latency_ration < 0)) {
940 			cond_resched();
941 			latency_ration = LATENCY_LIMIT;
942 			scanned_many = true;
943 		}
944 	}
945 	offset = si->lowest_bit;
946 	while (offset < scan_base) {
947 		if (!si->swap_map[offset]) {
948 			spin_lock(&si->lock);
949 			goto checks;
950 		}
951 		if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
952 			spin_lock(&si->lock);
953 			goto checks;
954 		}
955 		if (unlikely(--latency_ration < 0)) {
956 			cond_resched();
957 			latency_ration = LATENCY_LIMIT;
958 			scanned_many = true;
959 		}
960 		offset++;
961 	}
962 	spin_lock(&si->lock);
963 
964 no_page:
965 	si->flags -= SWP_SCANNING;
966 	return n_ret;
967 }
968 
969 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
970 {
971 	unsigned long idx;
972 	struct swap_cluster_info *ci;
973 	unsigned long offset, i;
974 	unsigned char *map;
975 
976 	/*
977 	 * Should not even be attempting cluster allocations when huge
978 	 * page swap is disabled.  Warn and fail the allocation.
979 	 */
980 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
981 		VM_WARN_ON_ONCE(1);
982 		return 0;
983 	}
984 
985 	if (cluster_list_empty(&si->free_clusters))
986 		return 0;
987 
988 	idx = cluster_list_first(&si->free_clusters);
989 	offset = idx * SWAPFILE_CLUSTER;
990 	ci = lock_cluster(si, offset);
991 	alloc_cluster(si, idx);
992 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
993 
994 	map = si->swap_map + offset;
995 	for (i = 0; i < SWAPFILE_CLUSTER; i++)
996 		map[i] = SWAP_HAS_CACHE;
997 	unlock_cluster(ci);
998 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
999 	*slot = swp_entry(si->type, offset);
1000 
1001 	return 1;
1002 }
1003 
1004 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1005 {
1006 	unsigned long offset = idx * SWAPFILE_CLUSTER;
1007 	struct swap_cluster_info *ci;
1008 
1009 	ci = lock_cluster(si, offset);
1010 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1011 	cluster_set_count_flag(ci, 0, 0);
1012 	free_cluster(si, idx);
1013 	unlock_cluster(ci);
1014 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1015 }
1016 
1017 static unsigned long scan_swap_map(struct swap_info_struct *si,
1018 				   unsigned char usage)
1019 {
1020 	swp_entry_t entry;
1021 	int n_ret;
1022 
1023 	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1024 
1025 	if (n_ret)
1026 		return swp_offset(entry);
1027 	else
1028 		return 0;
1029 
1030 }
1031 
1032 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1033 {
1034 	unsigned long size = swap_entry_size(entry_size);
1035 	struct swap_info_struct *si, *next;
1036 	long avail_pgs;
1037 	int n_ret = 0;
1038 	int node;
1039 
1040 	/* Only single cluster request supported */
1041 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1042 
1043 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1044 	if (avail_pgs <= 0)
1045 		goto noswap;
1046 
1047 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1048 
1049 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1050 
1051 	spin_lock(&swap_avail_lock);
1052 
1053 start_over:
1054 	node = numa_node_id();
1055 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1056 		/* requeue si to after same-priority siblings */
1057 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1058 		spin_unlock(&swap_avail_lock);
1059 		spin_lock(&si->lock);
1060 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1061 			spin_lock(&swap_avail_lock);
1062 			if (plist_node_empty(&si->avail_lists[node])) {
1063 				spin_unlock(&si->lock);
1064 				goto nextsi;
1065 			}
1066 			WARN(!si->highest_bit,
1067 			     "swap_info %d in list but !highest_bit\n",
1068 			     si->type);
1069 			WARN(!(si->flags & SWP_WRITEOK),
1070 			     "swap_info %d in list but !SWP_WRITEOK\n",
1071 			     si->type);
1072 			__del_from_avail_list(si);
1073 			spin_unlock(&si->lock);
1074 			goto nextsi;
1075 		}
1076 		if (size == SWAPFILE_CLUSTER) {
1077 			if (!(si->flags & SWP_FS))
1078 				n_ret = swap_alloc_cluster(si, swp_entries);
1079 		} else
1080 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1081 						    n_goal, swp_entries);
1082 		spin_unlock(&si->lock);
1083 		if (n_ret || size == SWAPFILE_CLUSTER)
1084 			goto check_out;
1085 		pr_debug("scan_swap_map of si %d failed to find offset\n",
1086 			si->type);
1087 
1088 		spin_lock(&swap_avail_lock);
1089 nextsi:
1090 		/*
1091 		 * if we got here, it's likely that si was almost full before,
1092 		 * and since scan_swap_map() can drop the si->lock, multiple
1093 		 * callers probably all tried to get a page from the same si
1094 		 * and it filled up before we could get one; or, the si filled
1095 		 * up between us dropping swap_avail_lock and taking si->lock.
1096 		 * Since we dropped the swap_avail_lock, the swap_avail_head
1097 		 * list may have been modified; so if next is still in the
1098 		 * swap_avail_head list then try it, otherwise start over
1099 		 * if we have not gotten any slots.
1100 		 */
1101 		if (plist_node_empty(&next->avail_lists[node]))
1102 			goto start_over;
1103 	}
1104 
1105 	spin_unlock(&swap_avail_lock);
1106 
1107 check_out:
1108 	if (n_ret < n_goal)
1109 		atomic_long_add((long)(n_goal - n_ret) * size,
1110 				&nr_swap_pages);
1111 noswap:
1112 	return n_ret;
1113 }
1114 
1115 /* The only caller of this function is now suspend routine */
1116 swp_entry_t get_swap_page_of_type(int type)
1117 {
1118 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1119 	pgoff_t offset;
1120 
1121 	if (!si)
1122 		goto fail;
1123 
1124 	spin_lock(&si->lock);
1125 	if (si->flags & SWP_WRITEOK) {
1126 		atomic_long_dec(&nr_swap_pages);
1127 		/* This is called for allocating swap entry, not cache */
1128 		offset = scan_swap_map(si, 1);
1129 		if (offset) {
1130 			spin_unlock(&si->lock);
1131 			return swp_entry(type, offset);
1132 		}
1133 		atomic_long_inc(&nr_swap_pages);
1134 	}
1135 	spin_unlock(&si->lock);
1136 fail:
1137 	return (swp_entry_t) {0};
1138 }
1139 
1140 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1141 {
1142 	struct swap_info_struct *p;
1143 	unsigned long offset;
1144 
1145 	if (!entry.val)
1146 		goto out;
1147 	p = swp_swap_info(entry);
1148 	if (!p)
1149 		goto bad_nofile;
1150 	if (!(p->flags & SWP_USED))
1151 		goto bad_device;
1152 	offset = swp_offset(entry);
1153 	if (offset >= p->max)
1154 		goto bad_offset;
1155 	return p;
1156 
1157 bad_offset:
1158 	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1159 	goto out;
1160 bad_device:
1161 	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1162 	goto out;
1163 bad_nofile:
1164 	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1165 out:
1166 	return NULL;
1167 }
1168 
1169 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1170 {
1171 	struct swap_info_struct *p;
1172 
1173 	p = __swap_info_get(entry);
1174 	if (!p)
1175 		goto out;
1176 	if (!p->swap_map[swp_offset(entry)])
1177 		goto bad_free;
1178 	return p;
1179 
1180 bad_free:
1181 	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1182 	goto out;
1183 out:
1184 	return NULL;
1185 }
1186 
1187 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1188 {
1189 	struct swap_info_struct *p;
1190 
1191 	p = _swap_info_get(entry);
1192 	if (p)
1193 		spin_lock(&p->lock);
1194 	return p;
1195 }
1196 
1197 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1198 					struct swap_info_struct *q)
1199 {
1200 	struct swap_info_struct *p;
1201 
1202 	p = _swap_info_get(entry);
1203 
1204 	if (p != q) {
1205 		if (q != NULL)
1206 			spin_unlock(&q->lock);
1207 		if (p != NULL)
1208 			spin_lock(&p->lock);
1209 	}
1210 	return p;
1211 }
1212 
1213 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1214 					      unsigned long offset,
1215 					      unsigned char usage)
1216 {
1217 	unsigned char count;
1218 	unsigned char has_cache;
1219 
1220 	count = p->swap_map[offset];
1221 
1222 	has_cache = count & SWAP_HAS_CACHE;
1223 	count &= ~SWAP_HAS_CACHE;
1224 
1225 	if (usage == SWAP_HAS_CACHE) {
1226 		VM_BUG_ON(!has_cache);
1227 		has_cache = 0;
1228 	} else if (count == SWAP_MAP_SHMEM) {
1229 		/*
1230 		 * Or we could insist on shmem.c using a special
1231 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1232 		 */
1233 		count = 0;
1234 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1235 		if (count == COUNT_CONTINUED) {
1236 			if (swap_count_continued(p, offset, count))
1237 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1238 			else
1239 				count = SWAP_MAP_MAX;
1240 		} else
1241 			count--;
1242 	}
1243 
1244 	usage = count | has_cache;
1245 	p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1246 
1247 	return usage;
1248 }
1249 
1250 /*
1251  * Check whether swap entry is valid in the swap device.  If so,
1252  * return pointer to swap_info_struct, and keep the swap entry valid
1253  * via preventing the swap device from being swapoff, until
1254  * put_swap_device() is called.  Otherwise return NULL.
1255  *
1256  * The entirety of the RCU read critical section must come before the
1257  * return from or after the call to synchronize_rcu() in
1258  * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1259  * true, the si->map, si->cluster_info, etc. must be valid in the
1260  * critical section.
1261  *
1262  * Notice that swapoff or swapoff+swapon can still happen before the
1263  * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1264  * in put_swap_device() if there isn't any other way to prevent
1265  * swapoff, such as page lock, page table lock, etc.  The caller must
1266  * be prepared for that.  For example, the following situation is
1267  * possible.
1268  *
1269  *   CPU1				CPU2
1270  *   do_swap_page()
1271  *     ...				swapoff+swapon
1272  *     __read_swap_cache_async()
1273  *       swapcache_prepare()
1274  *         __swap_duplicate()
1275  *           // check swap_map
1276  *     // verify PTE not changed
1277  *
1278  * In __swap_duplicate(), the swap_map need to be checked before
1279  * changing partly because the specified swap entry may be for another
1280  * swap device which has been swapoff.  And in do_swap_page(), after
1281  * the page is read from the swap device, the PTE is verified not
1282  * changed with the page table locked to check whether the swap device
1283  * has been swapoff or swapoff+swapon.
1284  */
1285 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1286 {
1287 	struct swap_info_struct *si;
1288 	unsigned long offset;
1289 
1290 	if (!entry.val)
1291 		goto out;
1292 	si = swp_swap_info(entry);
1293 	if (!si)
1294 		goto bad_nofile;
1295 
1296 	rcu_read_lock();
1297 	if (!(si->flags & SWP_VALID))
1298 		goto unlock_out;
1299 	offset = swp_offset(entry);
1300 	if (offset >= si->max)
1301 		goto unlock_out;
1302 
1303 	return si;
1304 bad_nofile:
1305 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1306 out:
1307 	return NULL;
1308 unlock_out:
1309 	rcu_read_unlock();
1310 	return NULL;
1311 }
1312 
1313 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1314 				       swp_entry_t entry)
1315 {
1316 	struct swap_cluster_info *ci;
1317 	unsigned long offset = swp_offset(entry);
1318 	unsigned char usage;
1319 
1320 	ci = lock_cluster_or_swap_info(p, offset);
1321 	usage = __swap_entry_free_locked(p, offset, 1);
1322 	unlock_cluster_or_swap_info(p, ci);
1323 	if (!usage)
1324 		free_swap_slot(entry);
1325 
1326 	return usage;
1327 }
1328 
1329 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1330 {
1331 	struct swap_cluster_info *ci;
1332 	unsigned long offset = swp_offset(entry);
1333 	unsigned char count;
1334 
1335 	ci = lock_cluster(p, offset);
1336 	count = p->swap_map[offset];
1337 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1338 	p->swap_map[offset] = 0;
1339 	dec_cluster_info_page(p, p->cluster_info, offset);
1340 	unlock_cluster(ci);
1341 
1342 	mem_cgroup_uncharge_swap(entry, 1);
1343 	swap_range_free(p, offset, 1);
1344 }
1345 
1346 /*
1347  * Caller has made sure that the swap device corresponding to entry
1348  * is still around or has not been recycled.
1349  */
1350 void swap_free(swp_entry_t entry)
1351 {
1352 	struct swap_info_struct *p;
1353 
1354 	p = _swap_info_get(entry);
1355 	if (p)
1356 		__swap_entry_free(p, entry);
1357 }
1358 
1359 /*
1360  * Called after dropping swapcache to decrease refcnt to swap entries.
1361  */
1362 void put_swap_page(struct page *page, swp_entry_t entry)
1363 {
1364 	unsigned long offset = swp_offset(entry);
1365 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1366 	struct swap_cluster_info *ci;
1367 	struct swap_info_struct *si;
1368 	unsigned char *map;
1369 	unsigned int i, free_entries = 0;
1370 	unsigned char val;
1371 	int size = swap_entry_size(hpage_nr_pages(page));
1372 
1373 	si = _swap_info_get(entry);
1374 	if (!si)
1375 		return;
1376 
1377 	ci = lock_cluster_or_swap_info(si, offset);
1378 	if (size == SWAPFILE_CLUSTER) {
1379 		VM_BUG_ON(!cluster_is_huge(ci));
1380 		map = si->swap_map + offset;
1381 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1382 			val = map[i];
1383 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1384 			if (val == SWAP_HAS_CACHE)
1385 				free_entries++;
1386 		}
1387 		cluster_clear_huge(ci);
1388 		if (free_entries == SWAPFILE_CLUSTER) {
1389 			unlock_cluster_or_swap_info(si, ci);
1390 			spin_lock(&si->lock);
1391 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1392 			swap_free_cluster(si, idx);
1393 			spin_unlock(&si->lock);
1394 			return;
1395 		}
1396 	}
1397 	for (i = 0; i < size; i++, entry.val++) {
1398 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1399 			unlock_cluster_or_swap_info(si, ci);
1400 			free_swap_slot(entry);
1401 			if (i == size - 1)
1402 				return;
1403 			lock_cluster_or_swap_info(si, offset);
1404 		}
1405 	}
1406 	unlock_cluster_or_swap_info(si, ci);
1407 }
1408 
1409 #ifdef CONFIG_THP_SWAP
1410 int split_swap_cluster(swp_entry_t entry)
1411 {
1412 	struct swap_info_struct *si;
1413 	struct swap_cluster_info *ci;
1414 	unsigned long offset = swp_offset(entry);
1415 
1416 	si = _swap_info_get(entry);
1417 	if (!si)
1418 		return -EBUSY;
1419 	ci = lock_cluster(si, offset);
1420 	cluster_clear_huge(ci);
1421 	unlock_cluster(ci);
1422 	return 0;
1423 }
1424 #endif
1425 
1426 static int swp_entry_cmp(const void *ent1, const void *ent2)
1427 {
1428 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1429 
1430 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1431 }
1432 
1433 void swapcache_free_entries(swp_entry_t *entries, int n)
1434 {
1435 	struct swap_info_struct *p, *prev;
1436 	int i;
1437 
1438 	if (n <= 0)
1439 		return;
1440 
1441 	prev = NULL;
1442 	p = NULL;
1443 
1444 	/*
1445 	 * Sort swap entries by swap device, so each lock is only taken once.
1446 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1447 	 * so low that it isn't necessary to optimize further.
1448 	 */
1449 	if (nr_swapfiles > 1)
1450 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1451 	for (i = 0; i < n; ++i) {
1452 		p = swap_info_get_cont(entries[i], prev);
1453 		if (p)
1454 			swap_entry_free(p, entries[i]);
1455 		prev = p;
1456 	}
1457 	if (p)
1458 		spin_unlock(&p->lock);
1459 }
1460 
1461 /*
1462  * How many references to page are currently swapped out?
1463  * This does not give an exact answer when swap count is continued,
1464  * but does include the high COUNT_CONTINUED flag to allow for that.
1465  */
1466 int page_swapcount(struct page *page)
1467 {
1468 	int count = 0;
1469 	struct swap_info_struct *p;
1470 	struct swap_cluster_info *ci;
1471 	swp_entry_t entry;
1472 	unsigned long offset;
1473 
1474 	entry.val = page_private(page);
1475 	p = _swap_info_get(entry);
1476 	if (p) {
1477 		offset = swp_offset(entry);
1478 		ci = lock_cluster_or_swap_info(p, offset);
1479 		count = swap_count(p->swap_map[offset]);
1480 		unlock_cluster_or_swap_info(p, ci);
1481 	}
1482 	return count;
1483 }
1484 
1485 int __swap_count(swp_entry_t entry)
1486 {
1487 	struct swap_info_struct *si;
1488 	pgoff_t offset = swp_offset(entry);
1489 	int count = 0;
1490 
1491 	si = get_swap_device(entry);
1492 	if (si) {
1493 		count = swap_count(si->swap_map[offset]);
1494 		put_swap_device(si);
1495 	}
1496 	return count;
1497 }
1498 
1499 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1500 {
1501 	int count = 0;
1502 	pgoff_t offset = swp_offset(entry);
1503 	struct swap_cluster_info *ci;
1504 
1505 	ci = lock_cluster_or_swap_info(si, offset);
1506 	count = swap_count(si->swap_map[offset]);
1507 	unlock_cluster_or_swap_info(si, ci);
1508 	return count;
1509 }
1510 
1511 /*
1512  * How many references to @entry are currently swapped out?
1513  * This does not give an exact answer when swap count is continued,
1514  * but does include the high COUNT_CONTINUED flag to allow for that.
1515  */
1516 int __swp_swapcount(swp_entry_t entry)
1517 {
1518 	int count = 0;
1519 	struct swap_info_struct *si;
1520 
1521 	si = get_swap_device(entry);
1522 	if (si) {
1523 		count = swap_swapcount(si, entry);
1524 		put_swap_device(si);
1525 	}
1526 	return count;
1527 }
1528 
1529 /*
1530  * How many references to @entry are currently swapped out?
1531  * This considers COUNT_CONTINUED so it returns exact answer.
1532  */
1533 int swp_swapcount(swp_entry_t entry)
1534 {
1535 	int count, tmp_count, n;
1536 	struct swap_info_struct *p;
1537 	struct swap_cluster_info *ci;
1538 	struct page *page;
1539 	pgoff_t offset;
1540 	unsigned char *map;
1541 
1542 	p = _swap_info_get(entry);
1543 	if (!p)
1544 		return 0;
1545 
1546 	offset = swp_offset(entry);
1547 
1548 	ci = lock_cluster_or_swap_info(p, offset);
1549 
1550 	count = swap_count(p->swap_map[offset]);
1551 	if (!(count & COUNT_CONTINUED))
1552 		goto out;
1553 
1554 	count &= ~COUNT_CONTINUED;
1555 	n = SWAP_MAP_MAX + 1;
1556 
1557 	page = vmalloc_to_page(p->swap_map + offset);
1558 	offset &= ~PAGE_MASK;
1559 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1560 
1561 	do {
1562 		page = list_next_entry(page, lru);
1563 		map = kmap_atomic(page);
1564 		tmp_count = map[offset];
1565 		kunmap_atomic(map);
1566 
1567 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1568 		n *= (SWAP_CONT_MAX + 1);
1569 	} while (tmp_count & COUNT_CONTINUED);
1570 out:
1571 	unlock_cluster_or_swap_info(p, ci);
1572 	return count;
1573 }
1574 
1575 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1576 					 swp_entry_t entry)
1577 {
1578 	struct swap_cluster_info *ci;
1579 	unsigned char *map = si->swap_map;
1580 	unsigned long roffset = swp_offset(entry);
1581 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1582 	int i;
1583 	bool ret = false;
1584 
1585 	ci = lock_cluster_or_swap_info(si, offset);
1586 	if (!ci || !cluster_is_huge(ci)) {
1587 		if (swap_count(map[roffset]))
1588 			ret = true;
1589 		goto unlock_out;
1590 	}
1591 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1592 		if (swap_count(map[offset + i])) {
1593 			ret = true;
1594 			break;
1595 		}
1596 	}
1597 unlock_out:
1598 	unlock_cluster_or_swap_info(si, ci);
1599 	return ret;
1600 }
1601 
1602 static bool page_swapped(struct page *page)
1603 {
1604 	swp_entry_t entry;
1605 	struct swap_info_struct *si;
1606 
1607 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1608 		return page_swapcount(page) != 0;
1609 
1610 	page = compound_head(page);
1611 	entry.val = page_private(page);
1612 	si = _swap_info_get(entry);
1613 	if (si)
1614 		return swap_page_trans_huge_swapped(si, entry);
1615 	return false;
1616 }
1617 
1618 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1619 					 int *total_swapcount)
1620 {
1621 	int i, map_swapcount, _total_mapcount, _total_swapcount;
1622 	unsigned long offset = 0;
1623 	struct swap_info_struct *si;
1624 	struct swap_cluster_info *ci = NULL;
1625 	unsigned char *map = NULL;
1626 	int mapcount, swapcount = 0;
1627 
1628 	/* hugetlbfs shouldn't call it */
1629 	VM_BUG_ON_PAGE(PageHuge(page), page);
1630 
1631 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1632 		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1633 		if (PageSwapCache(page))
1634 			swapcount = page_swapcount(page);
1635 		if (total_swapcount)
1636 			*total_swapcount = swapcount;
1637 		return mapcount + swapcount;
1638 	}
1639 
1640 	page = compound_head(page);
1641 
1642 	_total_mapcount = _total_swapcount = map_swapcount = 0;
1643 	if (PageSwapCache(page)) {
1644 		swp_entry_t entry;
1645 
1646 		entry.val = page_private(page);
1647 		si = _swap_info_get(entry);
1648 		if (si) {
1649 			map = si->swap_map;
1650 			offset = swp_offset(entry);
1651 		}
1652 	}
1653 	if (map)
1654 		ci = lock_cluster(si, offset);
1655 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1656 		mapcount = atomic_read(&page[i]._mapcount) + 1;
1657 		_total_mapcount += mapcount;
1658 		if (map) {
1659 			swapcount = swap_count(map[offset + i]);
1660 			_total_swapcount += swapcount;
1661 		}
1662 		map_swapcount = max(map_swapcount, mapcount + swapcount);
1663 	}
1664 	unlock_cluster(ci);
1665 	if (PageDoubleMap(page)) {
1666 		map_swapcount -= 1;
1667 		_total_mapcount -= HPAGE_PMD_NR;
1668 	}
1669 	mapcount = compound_mapcount(page);
1670 	map_swapcount += mapcount;
1671 	_total_mapcount += mapcount;
1672 	if (total_mapcount)
1673 		*total_mapcount = _total_mapcount;
1674 	if (total_swapcount)
1675 		*total_swapcount = _total_swapcount;
1676 
1677 	return map_swapcount;
1678 }
1679 
1680 /*
1681  * We can write to an anon page without COW if there are no other references
1682  * to it.  And as a side-effect, free up its swap: because the old content
1683  * on disk will never be read, and seeking back there to write new content
1684  * later would only waste time away from clustering.
1685  *
1686  * NOTE: total_map_swapcount should not be relied upon by the caller if
1687  * reuse_swap_page() returns false, but it may be always overwritten
1688  * (see the other implementation for CONFIG_SWAP=n).
1689  */
1690 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1691 {
1692 	int count, total_mapcount, total_swapcount;
1693 
1694 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1695 	if (unlikely(PageKsm(page)))
1696 		return false;
1697 	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1698 					      &total_swapcount);
1699 	if (total_map_swapcount)
1700 		*total_map_swapcount = total_mapcount + total_swapcount;
1701 	if (count == 1 && PageSwapCache(page) &&
1702 	    (likely(!PageTransCompound(page)) ||
1703 	     /* The remaining swap count will be freed soon */
1704 	     total_swapcount == page_swapcount(page))) {
1705 		if (!PageWriteback(page)) {
1706 			page = compound_head(page);
1707 			delete_from_swap_cache(page);
1708 			SetPageDirty(page);
1709 		} else {
1710 			swp_entry_t entry;
1711 			struct swap_info_struct *p;
1712 
1713 			entry.val = page_private(page);
1714 			p = swap_info_get(entry);
1715 			if (p->flags & SWP_STABLE_WRITES) {
1716 				spin_unlock(&p->lock);
1717 				return false;
1718 			}
1719 			spin_unlock(&p->lock);
1720 		}
1721 	}
1722 
1723 	return count <= 1;
1724 }
1725 
1726 /*
1727  * If swap is getting full, or if there are no more mappings of this page,
1728  * then try_to_free_swap is called to free its swap space.
1729  */
1730 int try_to_free_swap(struct page *page)
1731 {
1732 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1733 
1734 	if (!PageSwapCache(page))
1735 		return 0;
1736 	if (PageWriteback(page))
1737 		return 0;
1738 	if (page_swapped(page))
1739 		return 0;
1740 
1741 	/*
1742 	 * Once hibernation has begun to create its image of memory,
1743 	 * there's a danger that one of the calls to try_to_free_swap()
1744 	 * - most probably a call from __try_to_reclaim_swap() while
1745 	 * hibernation is allocating its own swap pages for the image,
1746 	 * but conceivably even a call from memory reclaim - will free
1747 	 * the swap from a page which has already been recorded in the
1748 	 * image as a clean swapcache page, and then reuse its swap for
1749 	 * another page of the image.  On waking from hibernation, the
1750 	 * original page might be freed under memory pressure, then
1751 	 * later read back in from swap, now with the wrong data.
1752 	 *
1753 	 * Hibernation suspends storage while it is writing the image
1754 	 * to disk so check that here.
1755 	 */
1756 	if (pm_suspended_storage())
1757 		return 0;
1758 
1759 	page = compound_head(page);
1760 	delete_from_swap_cache(page);
1761 	SetPageDirty(page);
1762 	return 1;
1763 }
1764 
1765 /*
1766  * Free the swap entry like above, but also try to
1767  * free the page cache entry if it is the last user.
1768  */
1769 int free_swap_and_cache(swp_entry_t entry)
1770 {
1771 	struct swap_info_struct *p;
1772 	unsigned char count;
1773 
1774 	if (non_swap_entry(entry))
1775 		return 1;
1776 
1777 	p = _swap_info_get(entry);
1778 	if (p) {
1779 		count = __swap_entry_free(p, entry);
1780 		if (count == SWAP_HAS_CACHE &&
1781 		    !swap_page_trans_huge_swapped(p, entry))
1782 			__try_to_reclaim_swap(p, swp_offset(entry),
1783 					      TTRS_UNMAPPED | TTRS_FULL);
1784 	}
1785 	return p != NULL;
1786 }
1787 
1788 #ifdef CONFIG_HIBERNATION
1789 /*
1790  * Find the swap type that corresponds to given device (if any).
1791  *
1792  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1793  * from 0, in which the swap header is expected to be located.
1794  *
1795  * This is needed for the suspend to disk (aka swsusp).
1796  */
1797 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1798 {
1799 	struct block_device *bdev = NULL;
1800 	int type;
1801 
1802 	if (device)
1803 		bdev = bdget(device);
1804 
1805 	spin_lock(&swap_lock);
1806 	for (type = 0; type < nr_swapfiles; type++) {
1807 		struct swap_info_struct *sis = swap_info[type];
1808 
1809 		if (!(sis->flags & SWP_WRITEOK))
1810 			continue;
1811 
1812 		if (!bdev) {
1813 			if (bdev_p)
1814 				*bdev_p = bdgrab(sis->bdev);
1815 
1816 			spin_unlock(&swap_lock);
1817 			return type;
1818 		}
1819 		if (bdev == sis->bdev) {
1820 			struct swap_extent *se = first_se(sis);
1821 
1822 			if (se->start_block == offset) {
1823 				if (bdev_p)
1824 					*bdev_p = bdgrab(sis->bdev);
1825 
1826 				spin_unlock(&swap_lock);
1827 				bdput(bdev);
1828 				return type;
1829 			}
1830 		}
1831 	}
1832 	spin_unlock(&swap_lock);
1833 	if (bdev)
1834 		bdput(bdev);
1835 
1836 	return -ENODEV;
1837 }
1838 
1839 /*
1840  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1841  * corresponding to given index in swap_info (swap type).
1842  */
1843 sector_t swapdev_block(int type, pgoff_t offset)
1844 {
1845 	struct block_device *bdev;
1846 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1847 
1848 	if (!si || !(si->flags & SWP_WRITEOK))
1849 		return 0;
1850 	return map_swap_entry(swp_entry(type, offset), &bdev);
1851 }
1852 
1853 /*
1854  * Return either the total number of swap pages of given type, or the number
1855  * of free pages of that type (depending on @free)
1856  *
1857  * This is needed for software suspend
1858  */
1859 unsigned int count_swap_pages(int type, int free)
1860 {
1861 	unsigned int n = 0;
1862 
1863 	spin_lock(&swap_lock);
1864 	if ((unsigned int)type < nr_swapfiles) {
1865 		struct swap_info_struct *sis = swap_info[type];
1866 
1867 		spin_lock(&sis->lock);
1868 		if (sis->flags & SWP_WRITEOK) {
1869 			n = sis->pages;
1870 			if (free)
1871 				n -= sis->inuse_pages;
1872 		}
1873 		spin_unlock(&sis->lock);
1874 	}
1875 	spin_unlock(&swap_lock);
1876 	return n;
1877 }
1878 #endif /* CONFIG_HIBERNATION */
1879 
1880 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1881 {
1882 	return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1883 }
1884 
1885 /*
1886  * No need to decide whether this PTE shares the swap entry with others,
1887  * just let do_wp_page work it out if a write is requested later - to
1888  * force COW, vm_page_prot omits write permission from any private vma.
1889  */
1890 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1891 		unsigned long addr, swp_entry_t entry, struct page *page)
1892 {
1893 	struct page *swapcache;
1894 	spinlock_t *ptl;
1895 	pte_t *pte;
1896 	int ret = 1;
1897 
1898 	swapcache = page;
1899 	page = ksm_might_need_to_copy(page, vma, addr);
1900 	if (unlikely(!page))
1901 		return -ENOMEM;
1902 
1903 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1904 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1905 		ret = 0;
1906 		goto out;
1907 	}
1908 
1909 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1910 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1911 	get_page(page);
1912 	set_pte_at(vma->vm_mm, addr, pte,
1913 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1914 	if (page == swapcache) {
1915 		page_add_anon_rmap(page, vma, addr, false);
1916 	} else { /* ksm created a completely new copy */
1917 		page_add_new_anon_rmap(page, vma, addr, false);
1918 		lru_cache_add_active_or_unevictable(page, vma);
1919 	}
1920 	swap_free(entry);
1921 	/*
1922 	 * Move the page to the active list so it is not
1923 	 * immediately swapped out again after swapon.
1924 	 */
1925 	activate_page(page);
1926 out:
1927 	pte_unmap_unlock(pte, ptl);
1928 	if (page != swapcache) {
1929 		unlock_page(page);
1930 		put_page(page);
1931 	}
1932 	return ret;
1933 }
1934 
1935 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1936 			unsigned long addr, unsigned long end,
1937 			unsigned int type, bool frontswap,
1938 			unsigned long *fs_pages_to_unuse)
1939 {
1940 	struct page *page;
1941 	swp_entry_t entry;
1942 	pte_t *pte;
1943 	struct swap_info_struct *si;
1944 	unsigned long offset;
1945 	int ret = 0;
1946 	volatile unsigned char *swap_map;
1947 
1948 	si = swap_info[type];
1949 	pte = pte_offset_map(pmd, addr);
1950 	do {
1951 		struct vm_fault vmf;
1952 
1953 		if (!is_swap_pte(*pte))
1954 			continue;
1955 
1956 		entry = pte_to_swp_entry(*pte);
1957 		if (swp_type(entry) != type)
1958 			continue;
1959 
1960 		offset = swp_offset(entry);
1961 		if (frontswap && !frontswap_test(si, offset))
1962 			continue;
1963 
1964 		pte_unmap(pte);
1965 		swap_map = &si->swap_map[offset];
1966 		page = lookup_swap_cache(entry, vma, addr);
1967 		if (!page) {
1968 			vmf.vma = vma;
1969 			vmf.address = addr;
1970 			vmf.pmd = pmd;
1971 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1972 						&vmf);
1973 		}
1974 		if (!page) {
1975 			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1976 				goto try_next;
1977 			return -ENOMEM;
1978 		}
1979 
1980 		lock_page(page);
1981 		wait_on_page_writeback(page);
1982 		ret = unuse_pte(vma, pmd, addr, entry, page);
1983 		if (ret < 0) {
1984 			unlock_page(page);
1985 			put_page(page);
1986 			goto out;
1987 		}
1988 
1989 		try_to_free_swap(page);
1990 		unlock_page(page);
1991 		put_page(page);
1992 
1993 		if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1994 			ret = FRONTSWAP_PAGES_UNUSED;
1995 			goto out;
1996 		}
1997 try_next:
1998 		pte = pte_offset_map(pmd, addr);
1999 	} while (pte++, addr += PAGE_SIZE, addr != end);
2000 	pte_unmap(pte - 1);
2001 
2002 	ret = 0;
2003 out:
2004 	return ret;
2005 }
2006 
2007 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2008 				unsigned long addr, unsigned long end,
2009 				unsigned int type, bool frontswap,
2010 				unsigned long *fs_pages_to_unuse)
2011 {
2012 	pmd_t *pmd;
2013 	unsigned long next;
2014 	int ret;
2015 
2016 	pmd = pmd_offset(pud, addr);
2017 	do {
2018 		cond_resched();
2019 		next = pmd_addr_end(addr, end);
2020 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2021 			continue;
2022 		ret = unuse_pte_range(vma, pmd, addr, next, type,
2023 				      frontswap, fs_pages_to_unuse);
2024 		if (ret)
2025 			return ret;
2026 	} while (pmd++, addr = next, addr != end);
2027 	return 0;
2028 }
2029 
2030 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2031 				unsigned long addr, unsigned long end,
2032 				unsigned int type, bool frontswap,
2033 				unsigned long *fs_pages_to_unuse)
2034 {
2035 	pud_t *pud;
2036 	unsigned long next;
2037 	int ret;
2038 
2039 	pud = pud_offset(p4d, addr);
2040 	do {
2041 		next = pud_addr_end(addr, end);
2042 		if (pud_none_or_clear_bad(pud))
2043 			continue;
2044 		ret = unuse_pmd_range(vma, pud, addr, next, type,
2045 				      frontswap, fs_pages_to_unuse);
2046 		if (ret)
2047 			return ret;
2048 	} while (pud++, addr = next, addr != end);
2049 	return 0;
2050 }
2051 
2052 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2053 				unsigned long addr, unsigned long end,
2054 				unsigned int type, bool frontswap,
2055 				unsigned long *fs_pages_to_unuse)
2056 {
2057 	p4d_t *p4d;
2058 	unsigned long next;
2059 	int ret;
2060 
2061 	p4d = p4d_offset(pgd, addr);
2062 	do {
2063 		next = p4d_addr_end(addr, end);
2064 		if (p4d_none_or_clear_bad(p4d))
2065 			continue;
2066 		ret = unuse_pud_range(vma, p4d, addr, next, type,
2067 				      frontswap, fs_pages_to_unuse);
2068 		if (ret)
2069 			return ret;
2070 	} while (p4d++, addr = next, addr != end);
2071 	return 0;
2072 }
2073 
2074 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2075 		     bool frontswap, unsigned long *fs_pages_to_unuse)
2076 {
2077 	pgd_t *pgd;
2078 	unsigned long addr, end, next;
2079 	int ret;
2080 
2081 	addr = vma->vm_start;
2082 	end = vma->vm_end;
2083 
2084 	pgd = pgd_offset(vma->vm_mm, addr);
2085 	do {
2086 		next = pgd_addr_end(addr, end);
2087 		if (pgd_none_or_clear_bad(pgd))
2088 			continue;
2089 		ret = unuse_p4d_range(vma, pgd, addr, next, type,
2090 				      frontswap, fs_pages_to_unuse);
2091 		if (ret)
2092 			return ret;
2093 	} while (pgd++, addr = next, addr != end);
2094 	return 0;
2095 }
2096 
2097 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2098 		    bool frontswap, unsigned long *fs_pages_to_unuse)
2099 {
2100 	struct vm_area_struct *vma;
2101 	int ret = 0;
2102 
2103 	mmap_read_lock(mm);
2104 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2105 		if (vma->anon_vma) {
2106 			ret = unuse_vma(vma, type, frontswap,
2107 					fs_pages_to_unuse);
2108 			if (ret)
2109 				break;
2110 		}
2111 		cond_resched();
2112 	}
2113 	mmap_read_unlock(mm);
2114 	return ret;
2115 }
2116 
2117 /*
2118  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2119  * from current position to next entry still in use. Return 0
2120  * if there are no inuse entries after prev till end of the map.
2121  */
2122 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2123 					unsigned int prev, bool frontswap)
2124 {
2125 	unsigned int i;
2126 	unsigned char count;
2127 
2128 	/*
2129 	 * No need for swap_lock here: we're just looking
2130 	 * for whether an entry is in use, not modifying it; false
2131 	 * hits are okay, and sys_swapoff() has already prevented new
2132 	 * allocations from this area (while holding swap_lock).
2133 	 */
2134 	for (i = prev + 1; i < si->max; i++) {
2135 		count = READ_ONCE(si->swap_map[i]);
2136 		if (count && swap_count(count) != SWAP_MAP_BAD)
2137 			if (!frontswap || frontswap_test(si, i))
2138 				break;
2139 		if ((i % LATENCY_LIMIT) == 0)
2140 			cond_resched();
2141 	}
2142 
2143 	if (i == si->max)
2144 		i = 0;
2145 
2146 	return i;
2147 }
2148 
2149 /*
2150  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2151  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2152  */
2153 int try_to_unuse(unsigned int type, bool frontswap,
2154 		 unsigned long pages_to_unuse)
2155 {
2156 	struct mm_struct *prev_mm;
2157 	struct mm_struct *mm;
2158 	struct list_head *p;
2159 	int retval = 0;
2160 	struct swap_info_struct *si = swap_info[type];
2161 	struct page *page;
2162 	swp_entry_t entry;
2163 	unsigned int i;
2164 
2165 	if (!READ_ONCE(si->inuse_pages))
2166 		return 0;
2167 
2168 	if (!frontswap)
2169 		pages_to_unuse = 0;
2170 
2171 retry:
2172 	retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2173 	if (retval)
2174 		goto out;
2175 
2176 	prev_mm = &init_mm;
2177 	mmget(prev_mm);
2178 
2179 	spin_lock(&mmlist_lock);
2180 	p = &init_mm.mmlist;
2181 	while (READ_ONCE(si->inuse_pages) &&
2182 	       !signal_pending(current) &&
2183 	       (p = p->next) != &init_mm.mmlist) {
2184 
2185 		mm = list_entry(p, struct mm_struct, mmlist);
2186 		if (!mmget_not_zero(mm))
2187 			continue;
2188 		spin_unlock(&mmlist_lock);
2189 		mmput(prev_mm);
2190 		prev_mm = mm;
2191 		retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2192 
2193 		if (retval) {
2194 			mmput(prev_mm);
2195 			goto out;
2196 		}
2197 
2198 		/*
2199 		 * Make sure that we aren't completely killing
2200 		 * interactive performance.
2201 		 */
2202 		cond_resched();
2203 		spin_lock(&mmlist_lock);
2204 	}
2205 	spin_unlock(&mmlist_lock);
2206 
2207 	mmput(prev_mm);
2208 
2209 	i = 0;
2210 	while (READ_ONCE(si->inuse_pages) &&
2211 	       !signal_pending(current) &&
2212 	       (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2213 
2214 		entry = swp_entry(type, i);
2215 		page = find_get_page(swap_address_space(entry), i);
2216 		if (!page)
2217 			continue;
2218 
2219 		/*
2220 		 * It is conceivable that a racing task removed this page from
2221 		 * swap cache just before we acquired the page lock. The page
2222 		 * might even be back in swap cache on another swap area. But
2223 		 * that is okay, try_to_free_swap() only removes stale pages.
2224 		 */
2225 		lock_page(page);
2226 		wait_on_page_writeback(page);
2227 		try_to_free_swap(page);
2228 		unlock_page(page);
2229 		put_page(page);
2230 
2231 		/*
2232 		 * For frontswap, we just need to unuse pages_to_unuse, if
2233 		 * it was specified. Need not check frontswap again here as
2234 		 * we already zeroed out pages_to_unuse if not frontswap.
2235 		 */
2236 		if (pages_to_unuse && --pages_to_unuse == 0)
2237 			goto out;
2238 	}
2239 
2240 	/*
2241 	 * Lets check again to see if there are still swap entries in the map.
2242 	 * If yes, we would need to do retry the unuse logic again.
2243 	 * Under global memory pressure, swap entries can be reinserted back
2244 	 * into process space after the mmlist loop above passes over them.
2245 	 *
2246 	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2247 	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2248 	 * at its own independent pace; and even shmem_writepage() could have
2249 	 * been preempted after get_swap_page(), temporarily hiding that swap.
2250 	 * It's easy and robust (though cpu-intensive) just to keep retrying.
2251 	 */
2252 	if (READ_ONCE(si->inuse_pages)) {
2253 		if (!signal_pending(current))
2254 			goto retry;
2255 		retval = -EINTR;
2256 	}
2257 out:
2258 	return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2259 }
2260 
2261 /*
2262  * After a successful try_to_unuse, if no swap is now in use, we know
2263  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2264  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2265  * added to the mmlist just after page_duplicate - before would be racy.
2266  */
2267 static void drain_mmlist(void)
2268 {
2269 	struct list_head *p, *next;
2270 	unsigned int type;
2271 
2272 	for (type = 0; type < nr_swapfiles; type++)
2273 		if (swap_info[type]->inuse_pages)
2274 			return;
2275 	spin_lock(&mmlist_lock);
2276 	list_for_each_safe(p, next, &init_mm.mmlist)
2277 		list_del_init(p);
2278 	spin_unlock(&mmlist_lock);
2279 }
2280 
2281 /*
2282  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2283  * corresponds to page offset for the specified swap entry.
2284  * Note that the type of this function is sector_t, but it returns page offset
2285  * into the bdev, not sector offset.
2286  */
2287 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2288 {
2289 	struct swap_info_struct *sis;
2290 	struct swap_extent *se;
2291 	pgoff_t offset;
2292 
2293 	sis = swp_swap_info(entry);
2294 	*bdev = sis->bdev;
2295 
2296 	offset = swp_offset(entry);
2297 	se = offset_to_swap_extent(sis, offset);
2298 	return se->start_block + (offset - se->start_page);
2299 }
2300 
2301 /*
2302  * Returns the page offset into bdev for the specified page's swap entry.
2303  */
2304 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2305 {
2306 	swp_entry_t entry;
2307 	entry.val = page_private(page);
2308 	return map_swap_entry(entry, bdev);
2309 }
2310 
2311 /*
2312  * Free all of a swapdev's extent information
2313  */
2314 static void destroy_swap_extents(struct swap_info_struct *sis)
2315 {
2316 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2317 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2318 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2319 
2320 		rb_erase(rb, &sis->swap_extent_root);
2321 		kfree(se);
2322 	}
2323 
2324 	if (sis->flags & SWP_ACTIVATED) {
2325 		struct file *swap_file = sis->swap_file;
2326 		struct address_space *mapping = swap_file->f_mapping;
2327 
2328 		sis->flags &= ~SWP_ACTIVATED;
2329 		if (mapping->a_ops->swap_deactivate)
2330 			mapping->a_ops->swap_deactivate(swap_file);
2331 	}
2332 }
2333 
2334 /*
2335  * Add a block range (and the corresponding page range) into this swapdev's
2336  * extent tree.
2337  *
2338  * This function rather assumes that it is called in ascending page order.
2339  */
2340 int
2341 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2342 		unsigned long nr_pages, sector_t start_block)
2343 {
2344 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2345 	struct swap_extent *se;
2346 	struct swap_extent *new_se;
2347 
2348 	/*
2349 	 * place the new node at the right most since the
2350 	 * function is called in ascending page order.
2351 	 */
2352 	while (*link) {
2353 		parent = *link;
2354 		link = &parent->rb_right;
2355 	}
2356 
2357 	if (parent) {
2358 		se = rb_entry(parent, struct swap_extent, rb_node);
2359 		BUG_ON(se->start_page + se->nr_pages != start_page);
2360 		if (se->start_block + se->nr_pages == start_block) {
2361 			/* Merge it */
2362 			se->nr_pages += nr_pages;
2363 			return 0;
2364 		}
2365 	}
2366 
2367 	/* No merge, insert a new extent. */
2368 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2369 	if (new_se == NULL)
2370 		return -ENOMEM;
2371 	new_se->start_page = start_page;
2372 	new_se->nr_pages = nr_pages;
2373 	new_se->start_block = start_block;
2374 
2375 	rb_link_node(&new_se->rb_node, parent, link);
2376 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2377 	return 1;
2378 }
2379 EXPORT_SYMBOL_GPL(add_swap_extent);
2380 
2381 /*
2382  * A `swap extent' is a simple thing which maps a contiguous range of pages
2383  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2384  * is built at swapon time and is then used at swap_writepage/swap_readpage
2385  * time for locating where on disk a page belongs.
2386  *
2387  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2388  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2389  * swap files identically.
2390  *
2391  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2392  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2393  * swapfiles are handled *identically* after swapon time.
2394  *
2395  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2396  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2397  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2398  * requirements, they are simply tossed out - we will never use those blocks
2399  * for swapping.
2400  *
2401  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2402  * prevents users from writing to the swap device, which will corrupt memory.
2403  *
2404  * The amount of disk space which a single swap extent represents varies.
2405  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2406  * extents in the list.  To avoid much list walking, we cache the previous
2407  * search location in `curr_swap_extent', and start new searches from there.
2408  * This is extremely effective.  The average number of iterations in
2409  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2410  */
2411 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2412 {
2413 	struct file *swap_file = sis->swap_file;
2414 	struct address_space *mapping = swap_file->f_mapping;
2415 	struct inode *inode = mapping->host;
2416 	int ret;
2417 
2418 	if (S_ISBLK(inode->i_mode)) {
2419 		ret = add_swap_extent(sis, 0, sis->max, 0);
2420 		*span = sis->pages;
2421 		return ret;
2422 	}
2423 
2424 	if (mapping->a_ops->swap_activate) {
2425 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2426 		if (ret >= 0)
2427 			sis->flags |= SWP_ACTIVATED;
2428 		if (!ret) {
2429 			sis->flags |= SWP_FS;
2430 			ret = add_swap_extent(sis, 0, sis->max, 0);
2431 			*span = sis->pages;
2432 		}
2433 		return ret;
2434 	}
2435 
2436 	return generic_swapfile_activate(sis, swap_file, span);
2437 }
2438 
2439 static int swap_node(struct swap_info_struct *p)
2440 {
2441 	struct block_device *bdev;
2442 
2443 	if (p->bdev)
2444 		bdev = p->bdev;
2445 	else
2446 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2447 
2448 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2449 }
2450 
2451 static void setup_swap_info(struct swap_info_struct *p, int prio,
2452 			    unsigned char *swap_map,
2453 			    struct swap_cluster_info *cluster_info)
2454 {
2455 	int i;
2456 
2457 	if (prio >= 0)
2458 		p->prio = prio;
2459 	else
2460 		p->prio = --least_priority;
2461 	/*
2462 	 * the plist prio is negated because plist ordering is
2463 	 * low-to-high, while swap ordering is high-to-low
2464 	 */
2465 	p->list.prio = -p->prio;
2466 	for_each_node(i) {
2467 		if (p->prio >= 0)
2468 			p->avail_lists[i].prio = -p->prio;
2469 		else {
2470 			if (swap_node(p) == i)
2471 				p->avail_lists[i].prio = 1;
2472 			else
2473 				p->avail_lists[i].prio = -p->prio;
2474 		}
2475 	}
2476 	p->swap_map = swap_map;
2477 	p->cluster_info = cluster_info;
2478 }
2479 
2480 static void _enable_swap_info(struct swap_info_struct *p)
2481 {
2482 	p->flags |= SWP_WRITEOK | SWP_VALID;
2483 	atomic_long_add(p->pages, &nr_swap_pages);
2484 	total_swap_pages += p->pages;
2485 
2486 	assert_spin_locked(&swap_lock);
2487 	/*
2488 	 * both lists are plists, and thus priority ordered.
2489 	 * swap_active_head needs to be priority ordered for swapoff(),
2490 	 * which on removal of any swap_info_struct with an auto-assigned
2491 	 * (i.e. negative) priority increments the auto-assigned priority
2492 	 * of any lower-priority swap_info_structs.
2493 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2494 	 * which allocates swap pages from the highest available priority
2495 	 * swap_info_struct.
2496 	 */
2497 	plist_add(&p->list, &swap_active_head);
2498 	add_to_avail_list(p);
2499 }
2500 
2501 static void enable_swap_info(struct swap_info_struct *p, int prio,
2502 				unsigned char *swap_map,
2503 				struct swap_cluster_info *cluster_info,
2504 				unsigned long *frontswap_map)
2505 {
2506 	frontswap_init(p->type, frontswap_map);
2507 	spin_lock(&swap_lock);
2508 	spin_lock(&p->lock);
2509 	setup_swap_info(p, prio, swap_map, cluster_info);
2510 	spin_unlock(&p->lock);
2511 	spin_unlock(&swap_lock);
2512 	/*
2513 	 * Guarantee swap_map, cluster_info, etc. fields are valid
2514 	 * between get/put_swap_device() if SWP_VALID bit is set
2515 	 */
2516 	synchronize_rcu();
2517 	spin_lock(&swap_lock);
2518 	spin_lock(&p->lock);
2519 	_enable_swap_info(p);
2520 	spin_unlock(&p->lock);
2521 	spin_unlock(&swap_lock);
2522 }
2523 
2524 static void reinsert_swap_info(struct swap_info_struct *p)
2525 {
2526 	spin_lock(&swap_lock);
2527 	spin_lock(&p->lock);
2528 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2529 	_enable_swap_info(p);
2530 	spin_unlock(&p->lock);
2531 	spin_unlock(&swap_lock);
2532 }
2533 
2534 bool has_usable_swap(void)
2535 {
2536 	bool ret = true;
2537 
2538 	spin_lock(&swap_lock);
2539 	if (plist_head_empty(&swap_active_head))
2540 		ret = false;
2541 	spin_unlock(&swap_lock);
2542 	return ret;
2543 }
2544 
2545 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2546 {
2547 	struct swap_info_struct *p = NULL;
2548 	unsigned char *swap_map;
2549 	struct swap_cluster_info *cluster_info;
2550 	unsigned long *frontswap_map;
2551 	struct file *swap_file, *victim;
2552 	struct address_space *mapping;
2553 	struct inode *inode;
2554 	struct filename *pathname;
2555 	int err, found = 0;
2556 	unsigned int old_block_size;
2557 
2558 	if (!capable(CAP_SYS_ADMIN))
2559 		return -EPERM;
2560 
2561 	BUG_ON(!current->mm);
2562 
2563 	pathname = getname(specialfile);
2564 	if (IS_ERR(pathname))
2565 		return PTR_ERR(pathname);
2566 
2567 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2568 	err = PTR_ERR(victim);
2569 	if (IS_ERR(victim))
2570 		goto out;
2571 
2572 	mapping = victim->f_mapping;
2573 	spin_lock(&swap_lock);
2574 	plist_for_each_entry(p, &swap_active_head, list) {
2575 		if (p->flags & SWP_WRITEOK) {
2576 			if (p->swap_file->f_mapping == mapping) {
2577 				found = 1;
2578 				break;
2579 			}
2580 		}
2581 	}
2582 	if (!found) {
2583 		err = -EINVAL;
2584 		spin_unlock(&swap_lock);
2585 		goto out_dput;
2586 	}
2587 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2588 		vm_unacct_memory(p->pages);
2589 	else {
2590 		err = -ENOMEM;
2591 		spin_unlock(&swap_lock);
2592 		goto out_dput;
2593 	}
2594 	del_from_avail_list(p);
2595 	spin_lock(&p->lock);
2596 	if (p->prio < 0) {
2597 		struct swap_info_struct *si = p;
2598 		int nid;
2599 
2600 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2601 			si->prio++;
2602 			si->list.prio--;
2603 			for_each_node(nid) {
2604 				if (si->avail_lists[nid].prio != 1)
2605 					si->avail_lists[nid].prio--;
2606 			}
2607 		}
2608 		least_priority++;
2609 	}
2610 	plist_del(&p->list, &swap_active_head);
2611 	atomic_long_sub(p->pages, &nr_swap_pages);
2612 	total_swap_pages -= p->pages;
2613 	p->flags &= ~SWP_WRITEOK;
2614 	spin_unlock(&p->lock);
2615 	spin_unlock(&swap_lock);
2616 
2617 	disable_swap_slots_cache_lock();
2618 
2619 	set_current_oom_origin();
2620 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2621 	clear_current_oom_origin();
2622 
2623 	if (err) {
2624 		/* re-insert swap space back into swap_list */
2625 		reinsert_swap_info(p);
2626 		reenable_swap_slots_cache_unlock();
2627 		goto out_dput;
2628 	}
2629 
2630 	reenable_swap_slots_cache_unlock();
2631 
2632 	spin_lock(&swap_lock);
2633 	spin_lock(&p->lock);
2634 	p->flags &= ~SWP_VALID;		/* mark swap device as invalid */
2635 	spin_unlock(&p->lock);
2636 	spin_unlock(&swap_lock);
2637 	/*
2638 	 * wait for swap operations protected by get/put_swap_device()
2639 	 * to complete
2640 	 */
2641 	synchronize_rcu();
2642 
2643 	flush_work(&p->discard_work);
2644 
2645 	destroy_swap_extents(p);
2646 	if (p->flags & SWP_CONTINUED)
2647 		free_swap_count_continuations(p);
2648 
2649 	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2650 		atomic_dec(&nr_rotate_swap);
2651 
2652 	mutex_lock(&swapon_mutex);
2653 	spin_lock(&swap_lock);
2654 	spin_lock(&p->lock);
2655 	drain_mmlist();
2656 
2657 	/* wait for anyone still in scan_swap_map */
2658 	p->highest_bit = 0;		/* cuts scans short */
2659 	while (p->flags >= SWP_SCANNING) {
2660 		spin_unlock(&p->lock);
2661 		spin_unlock(&swap_lock);
2662 		schedule_timeout_uninterruptible(1);
2663 		spin_lock(&swap_lock);
2664 		spin_lock(&p->lock);
2665 	}
2666 
2667 	swap_file = p->swap_file;
2668 	old_block_size = p->old_block_size;
2669 	p->swap_file = NULL;
2670 	p->max = 0;
2671 	swap_map = p->swap_map;
2672 	p->swap_map = NULL;
2673 	cluster_info = p->cluster_info;
2674 	p->cluster_info = NULL;
2675 	frontswap_map = frontswap_map_get(p);
2676 	spin_unlock(&p->lock);
2677 	spin_unlock(&swap_lock);
2678 	frontswap_invalidate_area(p->type);
2679 	frontswap_map_set(p, NULL);
2680 	mutex_unlock(&swapon_mutex);
2681 	free_percpu(p->percpu_cluster);
2682 	p->percpu_cluster = NULL;
2683 	free_percpu(p->cluster_next_cpu);
2684 	p->cluster_next_cpu = NULL;
2685 	vfree(swap_map);
2686 	kvfree(cluster_info);
2687 	kvfree(frontswap_map);
2688 	/* Destroy swap account information */
2689 	swap_cgroup_swapoff(p->type);
2690 	exit_swap_address_space(p->type);
2691 
2692 	inode = mapping->host;
2693 	if (S_ISBLK(inode->i_mode)) {
2694 		struct block_device *bdev = I_BDEV(inode);
2695 
2696 		set_blocksize(bdev, old_block_size);
2697 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2698 	}
2699 
2700 	inode_lock(inode);
2701 	inode->i_flags &= ~S_SWAPFILE;
2702 	inode_unlock(inode);
2703 	filp_close(swap_file, NULL);
2704 
2705 	/*
2706 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2707 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2708 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2709 	 */
2710 	spin_lock(&swap_lock);
2711 	p->flags = 0;
2712 	spin_unlock(&swap_lock);
2713 
2714 	err = 0;
2715 	atomic_inc(&proc_poll_event);
2716 	wake_up_interruptible(&proc_poll_wait);
2717 
2718 out_dput:
2719 	filp_close(victim, NULL);
2720 out:
2721 	putname(pathname);
2722 	return err;
2723 }
2724 
2725 #ifdef CONFIG_PROC_FS
2726 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2727 {
2728 	struct seq_file *seq = file->private_data;
2729 
2730 	poll_wait(file, &proc_poll_wait, wait);
2731 
2732 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2733 		seq->poll_event = atomic_read(&proc_poll_event);
2734 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2735 	}
2736 
2737 	return EPOLLIN | EPOLLRDNORM;
2738 }
2739 
2740 /* iterator */
2741 static void *swap_start(struct seq_file *swap, loff_t *pos)
2742 {
2743 	struct swap_info_struct *si;
2744 	int type;
2745 	loff_t l = *pos;
2746 
2747 	mutex_lock(&swapon_mutex);
2748 
2749 	if (!l)
2750 		return SEQ_START_TOKEN;
2751 
2752 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2753 		if (!(si->flags & SWP_USED) || !si->swap_map)
2754 			continue;
2755 		if (!--l)
2756 			return si;
2757 	}
2758 
2759 	return NULL;
2760 }
2761 
2762 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2763 {
2764 	struct swap_info_struct *si = v;
2765 	int type;
2766 
2767 	if (v == SEQ_START_TOKEN)
2768 		type = 0;
2769 	else
2770 		type = si->type + 1;
2771 
2772 	++(*pos);
2773 	for (; (si = swap_type_to_swap_info(type)); type++) {
2774 		if (!(si->flags & SWP_USED) || !si->swap_map)
2775 			continue;
2776 		return si;
2777 	}
2778 
2779 	return NULL;
2780 }
2781 
2782 static void swap_stop(struct seq_file *swap, void *v)
2783 {
2784 	mutex_unlock(&swapon_mutex);
2785 }
2786 
2787 static int swap_show(struct seq_file *swap, void *v)
2788 {
2789 	struct swap_info_struct *si = v;
2790 	struct file *file;
2791 	int len;
2792 	unsigned int bytes, inuse;
2793 
2794 	if (si == SEQ_START_TOKEN) {
2795 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2796 		return 0;
2797 	}
2798 
2799 	bytes = si->pages << (PAGE_SHIFT - 10);
2800 	inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2801 
2802 	file = si->swap_file;
2803 	len = seq_file_path(swap, file, " \t\n\\");
2804 	seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2805 			len < 40 ? 40 - len : 1, " ",
2806 			S_ISBLK(file_inode(file)->i_mode) ?
2807 				"partition" : "file\t",
2808 			bytes, bytes < 10000000 ? "\t" : "",
2809 			inuse, inuse < 10000000 ? "\t" : "",
2810 			si->prio);
2811 	return 0;
2812 }
2813 
2814 static const struct seq_operations swaps_op = {
2815 	.start =	swap_start,
2816 	.next =		swap_next,
2817 	.stop =		swap_stop,
2818 	.show =		swap_show
2819 };
2820 
2821 static int swaps_open(struct inode *inode, struct file *file)
2822 {
2823 	struct seq_file *seq;
2824 	int ret;
2825 
2826 	ret = seq_open(file, &swaps_op);
2827 	if (ret)
2828 		return ret;
2829 
2830 	seq = file->private_data;
2831 	seq->poll_event = atomic_read(&proc_poll_event);
2832 	return 0;
2833 }
2834 
2835 static const struct proc_ops swaps_proc_ops = {
2836 	.proc_flags	= PROC_ENTRY_PERMANENT,
2837 	.proc_open	= swaps_open,
2838 	.proc_read	= seq_read,
2839 	.proc_lseek	= seq_lseek,
2840 	.proc_release	= seq_release,
2841 	.proc_poll	= swaps_poll,
2842 };
2843 
2844 static int __init procswaps_init(void)
2845 {
2846 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2847 	return 0;
2848 }
2849 __initcall(procswaps_init);
2850 #endif /* CONFIG_PROC_FS */
2851 
2852 #ifdef MAX_SWAPFILES_CHECK
2853 static int __init max_swapfiles_check(void)
2854 {
2855 	MAX_SWAPFILES_CHECK();
2856 	return 0;
2857 }
2858 late_initcall(max_swapfiles_check);
2859 #endif
2860 
2861 static struct swap_info_struct *alloc_swap_info(void)
2862 {
2863 	struct swap_info_struct *p;
2864 	unsigned int type;
2865 	int i;
2866 
2867 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2868 	if (!p)
2869 		return ERR_PTR(-ENOMEM);
2870 
2871 	spin_lock(&swap_lock);
2872 	for (type = 0; type < nr_swapfiles; type++) {
2873 		if (!(swap_info[type]->flags & SWP_USED))
2874 			break;
2875 	}
2876 	if (type >= MAX_SWAPFILES) {
2877 		spin_unlock(&swap_lock);
2878 		kvfree(p);
2879 		return ERR_PTR(-EPERM);
2880 	}
2881 	if (type >= nr_swapfiles) {
2882 		p->type = type;
2883 		WRITE_ONCE(swap_info[type], p);
2884 		/*
2885 		 * Write swap_info[type] before nr_swapfiles, in case a
2886 		 * racing procfs swap_start() or swap_next() is reading them.
2887 		 * (We never shrink nr_swapfiles, we never free this entry.)
2888 		 */
2889 		smp_wmb();
2890 		WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2891 	} else {
2892 		kvfree(p);
2893 		p = swap_info[type];
2894 		/*
2895 		 * Do not memset this entry: a racing procfs swap_next()
2896 		 * would be relying on p->type to remain valid.
2897 		 */
2898 	}
2899 	p->swap_extent_root = RB_ROOT;
2900 	plist_node_init(&p->list, 0);
2901 	for_each_node(i)
2902 		plist_node_init(&p->avail_lists[i], 0);
2903 	p->flags = SWP_USED;
2904 	spin_unlock(&swap_lock);
2905 	spin_lock_init(&p->lock);
2906 	spin_lock_init(&p->cont_lock);
2907 
2908 	return p;
2909 }
2910 
2911 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2912 {
2913 	int error;
2914 
2915 	if (S_ISBLK(inode->i_mode)) {
2916 		p->bdev = bdgrab(I_BDEV(inode));
2917 		error = blkdev_get(p->bdev,
2918 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2919 		if (error < 0) {
2920 			p->bdev = NULL;
2921 			return error;
2922 		}
2923 		p->old_block_size = block_size(p->bdev);
2924 		error = set_blocksize(p->bdev, PAGE_SIZE);
2925 		if (error < 0)
2926 			return error;
2927 		/*
2928 		 * Zoned block devices contain zones that have a sequential
2929 		 * write only restriction.  Hence zoned block devices are not
2930 		 * suitable for swapping.  Disallow them here.
2931 		 */
2932 		if (blk_queue_is_zoned(p->bdev->bd_queue))
2933 			return -EINVAL;
2934 		p->flags |= SWP_BLKDEV;
2935 	} else if (S_ISREG(inode->i_mode)) {
2936 		p->bdev = inode->i_sb->s_bdev;
2937 	}
2938 
2939 	return 0;
2940 }
2941 
2942 
2943 /*
2944  * Find out how many pages are allowed for a single swap device. There
2945  * are two limiting factors:
2946  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2947  * 2) the number of bits in the swap pte, as defined by the different
2948  * architectures.
2949  *
2950  * In order to find the largest possible bit mask, a swap entry with
2951  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2952  * decoded to a swp_entry_t again, and finally the swap offset is
2953  * extracted.
2954  *
2955  * This will mask all the bits from the initial ~0UL mask that can't
2956  * be encoded in either the swp_entry_t or the architecture definition
2957  * of a swap pte.
2958  */
2959 unsigned long generic_max_swapfile_size(void)
2960 {
2961 	return swp_offset(pte_to_swp_entry(
2962 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2963 }
2964 
2965 /* Can be overridden by an architecture for additional checks. */
2966 __weak unsigned long max_swapfile_size(void)
2967 {
2968 	return generic_max_swapfile_size();
2969 }
2970 
2971 static unsigned long read_swap_header(struct swap_info_struct *p,
2972 					union swap_header *swap_header,
2973 					struct inode *inode)
2974 {
2975 	int i;
2976 	unsigned long maxpages;
2977 	unsigned long swapfilepages;
2978 	unsigned long last_page;
2979 
2980 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2981 		pr_err("Unable to find swap-space signature\n");
2982 		return 0;
2983 	}
2984 
2985 	/* swap partition endianess hack... */
2986 	if (swab32(swap_header->info.version) == 1) {
2987 		swab32s(&swap_header->info.version);
2988 		swab32s(&swap_header->info.last_page);
2989 		swab32s(&swap_header->info.nr_badpages);
2990 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2991 			return 0;
2992 		for (i = 0; i < swap_header->info.nr_badpages; i++)
2993 			swab32s(&swap_header->info.badpages[i]);
2994 	}
2995 	/* Check the swap header's sub-version */
2996 	if (swap_header->info.version != 1) {
2997 		pr_warn("Unable to handle swap header version %d\n",
2998 			swap_header->info.version);
2999 		return 0;
3000 	}
3001 
3002 	p->lowest_bit  = 1;
3003 	p->cluster_next = 1;
3004 	p->cluster_nr = 0;
3005 
3006 	maxpages = max_swapfile_size();
3007 	last_page = swap_header->info.last_page;
3008 	if (!last_page) {
3009 		pr_warn("Empty swap-file\n");
3010 		return 0;
3011 	}
3012 	if (last_page > maxpages) {
3013 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3014 			maxpages << (PAGE_SHIFT - 10),
3015 			last_page << (PAGE_SHIFT - 10));
3016 	}
3017 	if (maxpages > last_page) {
3018 		maxpages = last_page + 1;
3019 		/* p->max is an unsigned int: don't overflow it */
3020 		if ((unsigned int)maxpages == 0)
3021 			maxpages = UINT_MAX;
3022 	}
3023 	p->highest_bit = maxpages - 1;
3024 
3025 	if (!maxpages)
3026 		return 0;
3027 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3028 	if (swapfilepages && maxpages > swapfilepages) {
3029 		pr_warn("Swap area shorter than signature indicates\n");
3030 		return 0;
3031 	}
3032 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3033 		return 0;
3034 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3035 		return 0;
3036 
3037 	return maxpages;
3038 }
3039 
3040 #define SWAP_CLUSTER_INFO_COLS						\
3041 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3042 #define SWAP_CLUSTER_SPACE_COLS						\
3043 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3044 #define SWAP_CLUSTER_COLS						\
3045 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3046 
3047 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3048 					union swap_header *swap_header,
3049 					unsigned char *swap_map,
3050 					struct swap_cluster_info *cluster_info,
3051 					unsigned long maxpages,
3052 					sector_t *span)
3053 {
3054 	unsigned int j, k;
3055 	unsigned int nr_good_pages;
3056 	int nr_extents;
3057 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3058 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3059 	unsigned long i, idx;
3060 
3061 	nr_good_pages = maxpages - 1;	/* omit header page */
3062 
3063 	cluster_list_init(&p->free_clusters);
3064 	cluster_list_init(&p->discard_clusters);
3065 
3066 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3067 		unsigned int page_nr = swap_header->info.badpages[i];
3068 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3069 			return -EINVAL;
3070 		if (page_nr < maxpages) {
3071 			swap_map[page_nr] = SWAP_MAP_BAD;
3072 			nr_good_pages--;
3073 			/*
3074 			 * Haven't marked the cluster free yet, no list
3075 			 * operation involved
3076 			 */
3077 			inc_cluster_info_page(p, cluster_info, page_nr);
3078 		}
3079 	}
3080 
3081 	/* Haven't marked the cluster free yet, no list operation involved */
3082 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3083 		inc_cluster_info_page(p, cluster_info, i);
3084 
3085 	if (nr_good_pages) {
3086 		swap_map[0] = SWAP_MAP_BAD;
3087 		/*
3088 		 * Not mark the cluster free yet, no list
3089 		 * operation involved
3090 		 */
3091 		inc_cluster_info_page(p, cluster_info, 0);
3092 		p->max = maxpages;
3093 		p->pages = nr_good_pages;
3094 		nr_extents = setup_swap_extents(p, span);
3095 		if (nr_extents < 0)
3096 			return nr_extents;
3097 		nr_good_pages = p->pages;
3098 	}
3099 	if (!nr_good_pages) {
3100 		pr_warn("Empty swap-file\n");
3101 		return -EINVAL;
3102 	}
3103 
3104 	if (!cluster_info)
3105 		return nr_extents;
3106 
3107 
3108 	/*
3109 	 * Reduce false cache line sharing between cluster_info and
3110 	 * sharing same address space.
3111 	 */
3112 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3113 		j = (k + col) % SWAP_CLUSTER_COLS;
3114 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3115 			idx = i * SWAP_CLUSTER_COLS + j;
3116 			if (idx >= nr_clusters)
3117 				continue;
3118 			if (cluster_count(&cluster_info[idx]))
3119 				continue;
3120 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3121 			cluster_list_add_tail(&p->free_clusters, cluster_info,
3122 					      idx);
3123 		}
3124 	}
3125 	return nr_extents;
3126 }
3127 
3128 /*
3129  * Helper to sys_swapon determining if a given swap
3130  * backing device queue supports DISCARD operations.
3131  */
3132 static bool swap_discardable(struct swap_info_struct *si)
3133 {
3134 	struct request_queue *q = bdev_get_queue(si->bdev);
3135 
3136 	if (!q || !blk_queue_discard(q))
3137 		return false;
3138 
3139 	return true;
3140 }
3141 
3142 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3143 {
3144 	struct swap_info_struct *p;
3145 	struct filename *name;
3146 	struct file *swap_file = NULL;
3147 	struct address_space *mapping;
3148 	int prio;
3149 	int error;
3150 	union swap_header *swap_header;
3151 	int nr_extents;
3152 	sector_t span;
3153 	unsigned long maxpages;
3154 	unsigned char *swap_map = NULL;
3155 	struct swap_cluster_info *cluster_info = NULL;
3156 	unsigned long *frontswap_map = NULL;
3157 	struct page *page = NULL;
3158 	struct inode *inode = NULL;
3159 	bool inced_nr_rotate_swap = false;
3160 
3161 	if (swap_flags & ~SWAP_FLAGS_VALID)
3162 		return -EINVAL;
3163 
3164 	if (!capable(CAP_SYS_ADMIN))
3165 		return -EPERM;
3166 
3167 	if (!swap_avail_heads)
3168 		return -ENOMEM;
3169 
3170 	p = alloc_swap_info();
3171 	if (IS_ERR(p))
3172 		return PTR_ERR(p);
3173 
3174 	INIT_WORK(&p->discard_work, swap_discard_work);
3175 
3176 	name = getname(specialfile);
3177 	if (IS_ERR(name)) {
3178 		error = PTR_ERR(name);
3179 		name = NULL;
3180 		goto bad_swap;
3181 	}
3182 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3183 	if (IS_ERR(swap_file)) {
3184 		error = PTR_ERR(swap_file);
3185 		swap_file = NULL;
3186 		goto bad_swap;
3187 	}
3188 
3189 	p->swap_file = swap_file;
3190 	mapping = swap_file->f_mapping;
3191 	inode = mapping->host;
3192 
3193 	error = claim_swapfile(p, inode);
3194 	if (unlikely(error))
3195 		goto bad_swap;
3196 
3197 	inode_lock(inode);
3198 	if (IS_SWAPFILE(inode)) {
3199 		error = -EBUSY;
3200 		goto bad_swap_unlock_inode;
3201 	}
3202 
3203 	/*
3204 	 * Read the swap header.
3205 	 */
3206 	if (!mapping->a_ops->readpage) {
3207 		error = -EINVAL;
3208 		goto bad_swap_unlock_inode;
3209 	}
3210 	page = read_mapping_page(mapping, 0, swap_file);
3211 	if (IS_ERR(page)) {
3212 		error = PTR_ERR(page);
3213 		goto bad_swap_unlock_inode;
3214 	}
3215 	swap_header = kmap(page);
3216 
3217 	maxpages = read_swap_header(p, swap_header, inode);
3218 	if (unlikely(!maxpages)) {
3219 		error = -EINVAL;
3220 		goto bad_swap_unlock_inode;
3221 	}
3222 
3223 	/* OK, set up the swap map and apply the bad block list */
3224 	swap_map = vzalloc(maxpages);
3225 	if (!swap_map) {
3226 		error = -ENOMEM;
3227 		goto bad_swap_unlock_inode;
3228 	}
3229 
3230 	if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3231 		p->flags |= SWP_STABLE_WRITES;
3232 
3233 	if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3234 		p->flags |= SWP_SYNCHRONOUS_IO;
3235 
3236 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3237 		int cpu;
3238 		unsigned long ci, nr_cluster;
3239 
3240 		p->flags |= SWP_SOLIDSTATE;
3241 		p->cluster_next_cpu = alloc_percpu(unsigned int);
3242 		if (!p->cluster_next_cpu) {
3243 			error = -ENOMEM;
3244 			goto bad_swap_unlock_inode;
3245 		}
3246 		/*
3247 		 * select a random position to start with to help wear leveling
3248 		 * SSD
3249 		 */
3250 		for_each_possible_cpu(cpu) {
3251 			per_cpu(*p->cluster_next_cpu, cpu) =
3252 				1 + prandom_u32_max(p->highest_bit);
3253 		}
3254 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3255 
3256 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3257 					GFP_KERNEL);
3258 		if (!cluster_info) {
3259 			error = -ENOMEM;
3260 			goto bad_swap_unlock_inode;
3261 		}
3262 
3263 		for (ci = 0; ci < nr_cluster; ci++)
3264 			spin_lock_init(&((cluster_info + ci)->lock));
3265 
3266 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3267 		if (!p->percpu_cluster) {
3268 			error = -ENOMEM;
3269 			goto bad_swap_unlock_inode;
3270 		}
3271 		for_each_possible_cpu(cpu) {
3272 			struct percpu_cluster *cluster;
3273 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3274 			cluster_set_null(&cluster->index);
3275 		}
3276 	} else {
3277 		atomic_inc(&nr_rotate_swap);
3278 		inced_nr_rotate_swap = true;
3279 	}
3280 
3281 	error = swap_cgroup_swapon(p->type, maxpages);
3282 	if (error)
3283 		goto bad_swap_unlock_inode;
3284 
3285 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3286 		cluster_info, maxpages, &span);
3287 	if (unlikely(nr_extents < 0)) {
3288 		error = nr_extents;
3289 		goto bad_swap_unlock_inode;
3290 	}
3291 	/* frontswap enabled? set up bit-per-page map for frontswap */
3292 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3293 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3294 					 sizeof(long),
3295 					 GFP_KERNEL);
3296 
3297 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3298 		/*
3299 		 * When discard is enabled for swap with no particular
3300 		 * policy flagged, we set all swap discard flags here in
3301 		 * order to sustain backward compatibility with older
3302 		 * swapon(8) releases.
3303 		 */
3304 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3305 			     SWP_PAGE_DISCARD);
3306 
3307 		/*
3308 		 * By flagging sys_swapon, a sysadmin can tell us to
3309 		 * either do single-time area discards only, or to just
3310 		 * perform discards for released swap page-clusters.
3311 		 * Now it's time to adjust the p->flags accordingly.
3312 		 */
3313 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3314 			p->flags &= ~SWP_PAGE_DISCARD;
3315 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3316 			p->flags &= ~SWP_AREA_DISCARD;
3317 
3318 		/* issue a swapon-time discard if it's still required */
3319 		if (p->flags & SWP_AREA_DISCARD) {
3320 			int err = discard_swap(p);
3321 			if (unlikely(err))
3322 				pr_err("swapon: discard_swap(%p): %d\n",
3323 					p, err);
3324 		}
3325 	}
3326 
3327 	error = init_swap_address_space(p->type, maxpages);
3328 	if (error)
3329 		goto bad_swap_unlock_inode;
3330 
3331 	/*
3332 	 * Flush any pending IO and dirty mappings before we start using this
3333 	 * swap device.
3334 	 */
3335 	inode->i_flags |= S_SWAPFILE;
3336 	error = inode_drain_writes(inode);
3337 	if (error) {
3338 		inode->i_flags &= ~S_SWAPFILE;
3339 		goto bad_swap_unlock_inode;
3340 	}
3341 
3342 	mutex_lock(&swapon_mutex);
3343 	prio = -1;
3344 	if (swap_flags & SWAP_FLAG_PREFER)
3345 		prio =
3346 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3347 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3348 
3349 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3350 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3351 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3352 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3353 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3354 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3355 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3356 		(frontswap_map) ? "FS" : "");
3357 
3358 	mutex_unlock(&swapon_mutex);
3359 	atomic_inc(&proc_poll_event);
3360 	wake_up_interruptible(&proc_poll_wait);
3361 
3362 	error = 0;
3363 	goto out;
3364 bad_swap_unlock_inode:
3365 	inode_unlock(inode);
3366 bad_swap:
3367 	free_percpu(p->percpu_cluster);
3368 	p->percpu_cluster = NULL;
3369 	free_percpu(p->cluster_next_cpu);
3370 	p->cluster_next_cpu = NULL;
3371 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3372 		set_blocksize(p->bdev, p->old_block_size);
3373 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3374 	}
3375 	inode = NULL;
3376 	destroy_swap_extents(p);
3377 	swap_cgroup_swapoff(p->type);
3378 	spin_lock(&swap_lock);
3379 	p->swap_file = NULL;
3380 	p->flags = 0;
3381 	spin_unlock(&swap_lock);
3382 	vfree(swap_map);
3383 	kvfree(cluster_info);
3384 	kvfree(frontswap_map);
3385 	if (inced_nr_rotate_swap)
3386 		atomic_dec(&nr_rotate_swap);
3387 	if (swap_file)
3388 		filp_close(swap_file, NULL);
3389 out:
3390 	if (page && !IS_ERR(page)) {
3391 		kunmap(page);
3392 		put_page(page);
3393 	}
3394 	if (name)
3395 		putname(name);
3396 	if (inode)
3397 		inode_unlock(inode);
3398 	if (!error)
3399 		enable_swap_slots_cache();
3400 	return error;
3401 }
3402 
3403 void si_swapinfo(struct sysinfo *val)
3404 {
3405 	unsigned int type;
3406 	unsigned long nr_to_be_unused = 0;
3407 
3408 	spin_lock(&swap_lock);
3409 	for (type = 0; type < nr_swapfiles; type++) {
3410 		struct swap_info_struct *si = swap_info[type];
3411 
3412 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3413 			nr_to_be_unused += si->inuse_pages;
3414 	}
3415 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3416 	val->totalswap = total_swap_pages + nr_to_be_unused;
3417 	spin_unlock(&swap_lock);
3418 }
3419 
3420 /*
3421  * Verify that a swap entry is valid and increment its swap map count.
3422  *
3423  * Returns error code in following case.
3424  * - success -> 0
3425  * - swp_entry is invalid -> EINVAL
3426  * - swp_entry is migration entry -> EINVAL
3427  * - swap-cache reference is requested but there is already one. -> EEXIST
3428  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3429  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3430  */
3431 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3432 {
3433 	struct swap_info_struct *p;
3434 	struct swap_cluster_info *ci;
3435 	unsigned long offset;
3436 	unsigned char count;
3437 	unsigned char has_cache;
3438 	int err = -EINVAL;
3439 
3440 	p = get_swap_device(entry);
3441 	if (!p)
3442 		goto out;
3443 
3444 	offset = swp_offset(entry);
3445 	ci = lock_cluster_or_swap_info(p, offset);
3446 
3447 	count = p->swap_map[offset];
3448 
3449 	/*
3450 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3451 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3452 	 */
3453 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3454 		err = -ENOENT;
3455 		goto unlock_out;
3456 	}
3457 
3458 	has_cache = count & SWAP_HAS_CACHE;
3459 	count &= ~SWAP_HAS_CACHE;
3460 	err = 0;
3461 
3462 	if (usage == SWAP_HAS_CACHE) {
3463 
3464 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3465 		if (!has_cache && count)
3466 			has_cache = SWAP_HAS_CACHE;
3467 		else if (has_cache)		/* someone else added cache */
3468 			err = -EEXIST;
3469 		else				/* no users remaining */
3470 			err = -ENOENT;
3471 
3472 	} else if (count || has_cache) {
3473 
3474 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3475 			count += usage;
3476 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3477 			err = -EINVAL;
3478 		else if (swap_count_continued(p, offset, count))
3479 			count = COUNT_CONTINUED;
3480 		else
3481 			err = -ENOMEM;
3482 	} else
3483 		err = -ENOENT;			/* unused swap entry */
3484 
3485 	p->swap_map[offset] = count | has_cache;
3486 
3487 unlock_out:
3488 	unlock_cluster_or_swap_info(p, ci);
3489 out:
3490 	if (p)
3491 		put_swap_device(p);
3492 	return err;
3493 }
3494 
3495 /*
3496  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3497  * (in which case its reference count is never incremented).
3498  */
3499 void swap_shmem_alloc(swp_entry_t entry)
3500 {
3501 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3502 }
3503 
3504 /*
3505  * Increase reference count of swap entry by 1.
3506  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3507  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3508  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3509  * might occur if a page table entry has got corrupted.
3510  */
3511 int swap_duplicate(swp_entry_t entry)
3512 {
3513 	int err = 0;
3514 
3515 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3516 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3517 	return err;
3518 }
3519 
3520 /*
3521  * @entry: swap entry for which we allocate swap cache.
3522  *
3523  * Called when allocating swap cache for existing swap entry,
3524  * This can return error codes. Returns 0 at success.
3525  * -EEXIST means there is a swap cache.
3526  * Note: return code is different from swap_duplicate().
3527  */
3528 int swapcache_prepare(swp_entry_t entry)
3529 {
3530 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3531 }
3532 
3533 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3534 {
3535 	return swap_type_to_swap_info(swp_type(entry));
3536 }
3537 
3538 struct swap_info_struct *page_swap_info(struct page *page)
3539 {
3540 	swp_entry_t entry = { .val = page_private(page) };
3541 	return swp_swap_info(entry);
3542 }
3543 
3544 /*
3545  * out-of-line __page_file_ methods to avoid include hell.
3546  */
3547 struct address_space *__page_file_mapping(struct page *page)
3548 {
3549 	return page_swap_info(page)->swap_file->f_mapping;
3550 }
3551 EXPORT_SYMBOL_GPL(__page_file_mapping);
3552 
3553 pgoff_t __page_file_index(struct page *page)
3554 {
3555 	swp_entry_t swap = { .val = page_private(page) };
3556 	return swp_offset(swap);
3557 }
3558 EXPORT_SYMBOL_GPL(__page_file_index);
3559 
3560 /*
3561  * add_swap_count_continuation - called when a swap count is duplicated
3562  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3563  * page of the original vmalloc'ed swap_map, to hold the continuation count
3564  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3565  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3566  *
3567  * These continuation pages are seldom referenced: the common paths all work
3568  * on the original swap_map, only referring to a continuation page when the
3569  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3570  *
3571  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3572  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3573  * can be called after dropping locks.
3574  */
3575 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3576 {
3577 	struct swap_info_struct *si;
3578 	struct swap_cluster_info *ci;
3579 	struct page *head;
3580 	struct page *page;
3581 	struct page *list_page;
3582 	pgoff_t offset;
3583 	unsigned char count;
3584 	int ret = 0;
3585 
3586 	/*
3587 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3588 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3589 	 */
3590 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3591 
3592 	si = get_swap_device(entry);
3593 	if (!si) {
3594 		/*
3595 		 * An acceptable race has occurred since the failing
3596 		 * __swap_duplicate(): the swap device may be swapoff
3597 		 */
3598 		goto outer;
3599 	}
3600 	spin_lock(&si->lock);
3601 
3602 	offset = swp_offset(entry);
3603 
3604 	ci = lock_cluster(si, offset);
3605 
3606 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3607 
3608 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3609 		/*
3610 		 * The higher the swap count, the more likely it is that tasks
3611 		 * will race to add swap count continuation: we need to avoid
3612 		 * over-provisioning.
3613 		 */
3614 		goto out;
3615 	}
3616 
3617 	if (!page) {
3618 		ret = -ENOMEM;
3619 		goto out;
3620 	}
3621 
3622 	/*
3623 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3624 	 * no architecture is using highmem pages for kernel page tables: so it
3625 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3626 	 */
3627 	head = vmalloc_to_page(si->swap_map + offset);
3628 	offset &= ~PAGE_MASK;
3629 
3630 	spin_lock(&si->cont_lock);
3631 	/*
3632 	 * Page allocation does not initialize the page's lru field,
3633 	 * but it does always reset its private field.
3634 	 */
3635 	if (!page_private(head)) {
3636 		BUG_ON(count & COUNT_CONTINUED);
3637 		INIT_LIST_HEAD(&head->lru);
3638 		set_page_private(head, SWP_CONTINUED);
3639 		si->flags |= SWP_CONTINUED;
3640 	}
3641 
3642 	list_for_each_entry(list_page, &head->lru, lru) {
3643 		unsigned char *map;
3644 
3645 		/*
3646 		 * If the previous map said no continuation, but we've found
3647 		 * a continuation page, free our allocation and use this one.
3648 		 */
3649 		if (!(count & COUNT_CONTINUED))
3650 			goto out_unlock_cont;
3651 
3652 		map = kmap_atomic(list_page) + offset;
3653 		count = *map;
3654 		kunmap_atomic(map);
3655 
3656 		/*
3657 		 * If this continuation count now has some space in it,
3658 		 * free our allocation and use this one.
3659 		 */
3660 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3661 			goto out_unlock_cont;
3662 	}
3663 
3664 	list_add_tail(&page->lru, &head->lru);
3665 	page = NULL;			/* now it's attached, don't free it */
3666 out_unlock_cont:
3667 	spin_unlock(&si->cont_lock);
3668 out:
3669 	unlock_cluster(ci);
3670 	spin_unlock(&si->lock);
3671 	put_swap_device(si);
3672 outer:
3673 	if (page)
3674 		__free_page(page);
3675 	return ret;
3676 }
3677 
3678 /*
3679  * swap_count_continued - when the original swap_map count is incremented
3680  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3681  * into, carry if so, or else fail until a new continuation page is allocated;
3682  * when the original swap_map count is decremented from 0 with continuation,
3683  * borrow from the continuation and report whether it still holds more.
3684  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3685  * lock.
3686  */
3687 static bool swap_count_continued(struct swap_info_struct *si,
3688 				 pgoff_t offset, unsigned char count)
3689 {
3690 	struct page *head;
3691 	struct page *page;
3692 	unsigned char *map;
3693 	bool ret;
3694 
3695 	head = vmalloc_to_page(si->swap_map + offset);
3696 	if (page_private(head) != SWP_CONTINUED) {
3697 		BUG_ON(count & COUNT_CONTINUED);
3698 		return false;		/* need to add count continuation */
3699 	}
3700 
3701 	spin_lock(&si->cont_lock);
3702 	offset &= ~PAGE_MASK;
3703 	page = list_next_entry(head, lru);
3704 	map = kmap_atomic(page) + offset;
3705 
3706 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3707 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3708 
3709 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3710 		/*
3711 		 * Think of how you add 1 to 999
3712 		 */
3713 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3714 			kunmap_atomic(map);
3715 			page = list_next_entry(page, lru);
3716 			BUG_ON(page == head);
3717 			map = kmap_atomic(page) + offset;
3718 		}
3719 		if (*map == SWAP_CONT_MAX) {
3720 			kunmap_atomic(map);
3721 			page = list_next_entry(page, lru);
3722 			if (page == head) {
3723 				ret = false;	/* add count continuation */
3724 				goto out;
3725 			}
3726 			map = kmap_atomic(page) + offset;
3727 init_map:		*map = 0;		/* we didn't zero the page */
3728 		}
3729 		*map += 1;
3730 		kunmap_atomic(map);
3731 		while ((page = list_prev_entry(page, lru)) != head) {
3732 			map = kmap_atomic(page) + offset;
3733 			*map = COUNT_CONTINUED;
3734 			kunmap_atomic(map);
3735 		}
3736 		ret = true;			/* incremented */
3737 
3738 	} else {				/* decrementing */
3739 		/*
3740 		 * Think of how you subtract 1 from 1000
3741 		 */
3742 		BUG_ON(count != COUNT_CONTINUED);
3743 		while (*map == COUNT_CONTINUED) {
3744 			kunmap_atomic(map);
3745 			page = list_next_entry(page, lru);
3746 			BUG_ON(page == head);
3747 			map = kmap_atomic(page) + offset;
3748 		}
3749 		BUG_ON(*map == 0);
3750 		*map -= 1;
3751 		if (*map == 0)
3752 			count = 0;
3753 		kunmap_atomic(map);
3754 		while ((page = list_prev_entry(page, lru)) != head) {
3755 			map = kmap_atomic(page) + offset;
3756 			*map = SWAP_CONT_MAX | count;
3757 			count = COUNT_CONTINUED;
3758 			kunmap_atomic(map);
3759 		}
3760 		ret = count == COUNT_CONTINUED;
3761 	}
3762 out:
3763 	spin_unlock(&si->cont_lock);
3764 	return ret;
3765 }
3766 
3767 /*
3768  * free_swap_count_continuations - swapoff free all the continuation pages
3769  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3770  */
3771 static void free_swap_count_continuations(struct swap_info_struct *si)
3772 {
3773 	pgoff_t offset;
3774 
3775 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3776 		struct page *head;
3777 		head = vmalloc_to_page(si->swap_map + offset);
3778 		if (page_private(head)) {
3779 			struct page *page, *next;
3780 
3781 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3782 				list_del(&page->lru);
3783 				__free_page(page);
3784 			}
3785 		}
3786 	}
3787 }
3788 
3789 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3790 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3791 {
3792 	struct swap_info_struct *si, *next;
3793 	int nid = page_to_nid(page);
3794 
3795 	if (!(gfp_mask & __GFP_IO))
3796 		return;
3797 
3798 	if (!blk_cgroup_congested())
3799 		return;
3800 
3801 	/*
3802 	 * We've already scheduled a throttle, avoid taking the global swap
3803 	 * lock.
3804 	 */
3805 	if (current->throttle_queue)
3806 		return;
3807 
3808 	spin_lock(&swap_avail_lock);
3809 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3810 				  avail_lists[nid]) {
3811 		if (si->bdev) {
3812 			blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3813 			break;
3814 		}
3815 	}
3816 	spin_unlock(&swap_avail_lock);
3817 }
3818 #endif
3819 
3820 static int __init swapfile_init(void)
3821 {
3822 	int nid;
3823 
3824 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3825 					 GFP_KERNEL);
3826 	if (!swap_avail_heads) {
3827 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3828 		return -ENOMEM;
3829 	}
3830 
3831 	for_each_node(nid)
3832 		plist_head_init(&swap_avail_heads[nid]);
3833 
3834 	return 0;
3835 }
3836 subsys_initcall(swapfile_init);
3837