1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/swap_state.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 * 8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 9 */ 10 #include <linux/mm.h> 11 #include <linux/gfp.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/init.h> 16 #include <linux/pagemap.h> 17 #include <linux/backing-dev.h> 18 #include <linux/blkdev.h> 19 #include <linux/migrate.h> 20 #include <linux/vmalloc.h> 21 #include <linux/swap_slots.h> 22 #include <linux/huge_mm.h> 23 #include <linux/shmem_fs.h> 24 #include "internal.h" 25 #include "swap.h" 26 27 /* 28 * swapper_space is a fiction, retained to simplify the path through 29 * vmscan's shrink_page_list. 30 */ 31 static const struct address_space_operations swap_aops = { 32 .writepage = swap_writepage, 33 .dirty_folio = noop_dirty_folio, 34 #ifdef CONFIG_MIGRATION 35 .migrate_folio = migrate_folio, 36 #endif 37 }; 38 39 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly; 40 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly; 41 static bool enable_vma_readahead __read_mostly = true; 42 43 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2) 44 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1) 45 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK 46 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK) 47 48 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK) 49 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) 50 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK) 51 52 #define SWAP_RA_VAL(addr, win, hits) \ 53 (((addr) & PAGE_MASK) | \ 54 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \ 55 ((hits) & SWAP_RA_HITS_MASK)) 56 57 /* Initial readahead hits is 4 to start up with a small window */ 58 #define GET_SWAP_RA_VAL(vma) \ 59 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) 60 61 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); 62 63 void show_swap_cache_info(void) 64 { 65 printk("%lu pages in swap cache\n", total_swapcache_pages()); 66 printk("Free swap = %ldkB\n", 67 get_nr_swap_pages() << (PAGE_SHIFT - 10)); 68 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); 69 } 70 71 void *get_shadow_from_swap_cache(swp_entry_t entry) 72 { 73 struct address_space *address_space = swap_address_space(entry); 74 pgoff_t idx = swp_offset(entry); 75 struct page *page; 76 77 page = xa_load(&address_space->i_pages, idx); 78 if (xa_is_value(page)) 79 return page; 80 return NULL; 81 } 82 83 /* 84 * add_to_swap_cache resembles filemap_add_folio on swapper_space, 85 * but sets SwapCache flag and private instead of mapping and index. 86 */ 87 int add_to_swap_cache(struct folio *folio, swp_entry_t entry, 88 gfp_t gfp, void **shadowp) 89 { 90 struct address_space *address_space = swap_address_space(entry); 91 pgoff_t idx = swp_offset(entry); 92 XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio)); 93 unsigned long i, nr = folio_nr_pages(folio); 94 void *old; 95 96 xas_set_update(&xas, workingset_update_node); 97 98 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 99 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio); 100 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio); 101 102 folio_ref_add(folio, nr); 103 folio_set_swapcache(folio); 104 105 do { 106 xas_lock_irq(&xas); 107 xas_create_range(&xas); 108 if (xas_error(&xas)) 109 goto unlock; 110 for (i = 0; i < nr; i++) { 111 VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio); 112 old = xas_load(&xas); 113 if (xa_is_value(old)) { 114 if (shadowp) 115 *shadowp = old; 116 } 117 set_page_private(folio_page(folio, i), entry.val + i); 118 xas_store(&xas, folio); 119 xas_next(&xas); 120 } 121 address_space->nrpages += nr; 122 __node_stat_mod_folio(folio, NR_FILE_PAGES, nr); 123 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr); 124 unlock: 125 xas_unlock_irq(&xas); 126 } while (xas_nomem(&xas, gfp)); 127 128 if (!xas_error(&xas)) 129 return 0; 130 131 folio_clear_swapcache(folio); 132 folio_ref_sub(folio, nr); 133 return xas_error(&xas); 134 } 135 136 /* 137 * This must be called only on folios that have 138 * been verified to be in the swap cache. 139 */ 140 void __delete_from_swap_cache(struct folio *folio, 141 swp_entry_t entry, void *shadow) 142 { 143 struct address_space *address_space = swap_address_space(entry); 144 int i; 145 long nr = folio_nr_pages(folio); 146 pgoff_t idx = swp_offset(entry); 147 XA_STATE(xas, &address_space->i_pages, idx); 148 149 xas_set_update(&xas, workingset_update_node); 150 151 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 152 VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio); 153 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); 154 155 for (i = 0; i < nr; i++) { 156 void *entry = xas_store(&xas, shadow); 157 VM_BUG_ON_PAGE(entry != folio, entry); 158 set_page_private(folio_page(folio, i), 0); 159 xas_next(&xas); 160 } 161 folio_clear_swapcache(folio); 162 address_space->nrpages -= nr; 163 __node_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 164 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr); 165 } 166 167 /** 168 * add_to_swap - allocate swap space for a folio 169 * @folio: folio we want to move to swap 170 * 171 * Allocate swap space for the folio and add the folio to the 172 * swap cache. 173 * 174 * Context: Caller needs to hold the folio lock. 175 * Return: Whether the folio was added to the swap cache. 176 */ 177 bool add_to_swap(struct folio *folio) 178 { 179 swp_entry_t entry; 180 int err; 181 182 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 183 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio); 184 185 entry = folio_alloc_swap(folio); 186 if (!entry.val) 187 return false; 188 189 /* 190 * XArray node allocations from PF_MEMALLOC contexts could 191 * completely exhaust the page allocator. __GFP_NOMEMALLOC 192 * stops emergency reserves from being allocated. 193 * 194 * TODO: this could cause a theoretical memory reclaim 195 * deadlock in the swap out path. 196 */ 197 /* 198 * Add it to the swap cache. 199 */ 200 err = add_to_swap_cache(folio, entry, 201 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL); 202 if (err) 203 /* 204 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 205 * clear SWAP_HAS_CACHE flag. 206 */ 207 goto fail; 208 /* 209 * Normally the folio will be dirtied in unmap because its 210 * pte should be dirty. A special case is MADV_FREE page. The 211 * page's pte could have dirty bit cleared but the folio's 212 * SwapBacked flag is still set because clearing the dirty bit 213 * and SwapBacked flag has no lock protected. For such folio, 214 * unmap will not set dirty bit for it, so folio reclaim will 215 * not write the folio out. This can cause data corruption when 216 * the folio is swapped in later. Always setting the dirty flag 217 * for the folio solves the problem. 218 */ 219 folio_mark_dirty(folio); 220 221 return true; 222 223 fail: 224 put_swap_folio(folio, entry); 225 return false; 226 } 227 228 /* 229 * This must be called only on folios that have 230 * been verified to be in the swap cache and locked. 231 * It will never put the folio into the free list, 232 * the caller has a reference on the folio. 233 */ 234 void delete_from_swap_cache(struct folio *folio) 235 { 236 swp_entry_t entry = folio_swap_entry(folio); 237 struct address_space *address_space = swap_address_space(entry); 238 239 xa_lock_irq(&address_space->i_pages); 240 __delete_from_swap_cache(folio, entry, NULL); 241 xa_unlock_irq(&address_space->i_pages); 242 243 put_swap_folio(folio, entry); 244 folio_ref_sub(folio, folio_nr_pages(folio)); 245 } 246 247 void clear_shadow_from_swap_cache(int type, unsigned long begin, 248 unsigned long end) 249 { 250 unsigned long curr = begin; 251 void *old; 252 253 for (;;) { 254 swp_entry_t entry = swp_entry(type, curr); 255 struct address_space *address_space = swap_address_space(entry); 256 XA_STATE(xas, &address_space->i_pages, curr); 257 258 xas_set_update(&xas, workingset_update_node); 259 260 xa_lock_irq(&address_space->i_pages); 261 xas_for_each(&xas, old, end) { 262 if (!xa_is_value(old)) 263 continue; 264 xas_store(&xas, NULL); 265 } 266 xa_unlock_irq(&address_space->i_pages); 267 268 /* search the next swapcache until we meet end */ 269 curr >>= SWAP_ADDRESS_SPACE_SHIFT; 270 curr++; 271 curr <<= SWAP_ADDRESS_SPACE_SHIFT; 272 if (curr > end) 273 break; 274 } 275 } 276 277 /* 278 * If we are the only user, then try to free up the swap cache. 279 * 280 * Its ok to check the swapcache flag without the folio lock 281 * here because we are going to recheck again inside 282 * folio_free_swap() _with_ the lock. 283 * - Marcelo 284 */ 285 void free_swap_cache(struct page *page) 286 { 287 struct folio *folio = page_folio(page); 288 289 if (folio_test_swapcache(folio) && !folio_mapped(folio) && 290 folio_trylock(folio)) { 291 folio_free_swap(folio); 292 folio_unlock(folio); 293 } 294 } 295 296 /* 297 * Perform a free_page(), also freeing any swap cache associated with 298 * this page if it is the last user of the page. 299 */ 300 void free_page_and_swap_cache(struct page *page) 301 { 302 free_swap_cache(page); 303 if (!is_huge_zero_page(page)) 304 put_page(page); 305 } 306 307 /* 308 * Passed an array of pages, drop them all from swapcache and then release 309 * them. They are removed from the LRU and freed if this is their last use. 310 */ 311 void free_pages_and_swap_cache(struct encoded_page **pages, int nr) 312 { 313 lru_add_drain(); 314 for (int i = 0; i < nr; i++) 315 free_swap_cache(encoded_page_ptr(pages[i])); 316 release_pages(pages, nr); 317 } 318 319 static inline bool swap_use_vma_readahead(void) 320 { 321 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap); 322 } 323 324 /* 325 * Lookup a swap entry in the swap cache. A found folio will be returned 326 * unlocked and with its refcount incremented - we rely on the kernel 327 * lock getting page table operations atomic even if we drop the folio 328 * lock before returning. 329 * 330 * Caller must lock the swap device or hold a reference to keep it valid. 331 */ 332 struct folio *swap_cache_get_folio(swp_entry_t entry, 333 struct vm_area_struct *vma, unsigned long addr) 334 { 335 struct folio *folio; 336 337 folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry)); 338 if (!IS_ERR(folio)) { 339 bool vma_ra = swap_use_vma_readahead(); 340 bool readahead; 341 342 /* 343 * At the moment, we don't support PG_readahead for anon THP 344 * so let's bail out rather than confusing the readahead stat. 345 */ 346 if (unlikely(folio_test_large(folio))) 347 return folio; 348 349 readahead = folio_test_clear_readahead(folio); 350 if (vma && vma_ra) { 351 unsigned long ra_val; 352 int win, hits; 353 354 ra_val = GET_SWAP_RA_VAL(vma); 355 win = SWAP_RA_WIN(ra_val); 356 hits = SWAP_RA_HITS(ra_val); 357 if (readahead) 358 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); 359 atomic_long_set(&vma->swap_readahead_info, 360 SWAP_RA_VAL(addr, win, hits)); 361 } 362 363 if (readahead) { 364 count_vm_event(SWAP_RA_HIT); 365 if (!vma || !vma_ra) 366 atomic_inc(&swapin_readahead_hits); 367 } 368 } else { 369 folio = NULL; 370 } 371 372 return folio; 373 } 374 375 /** 376 * filemap_get_incore_folio - Find and get a folio from the page or swap caches. 377 * @mapping: The address_space to search. 378 * @index: The page cache index. 379 * 380 * This differs from filemap_get_folio() in that it will also look for the 381 * folio in the swap cache. 382 * 383 * Return: The found folio or %NULL. 384 */ 385 struct folio *filemap_get_incore_folio(struct address_space *mapping, 386 pgoff_t index) 387 { 388 swp_entry_t swp; 389 struct swap_info_struct *si; 390 struct folio *folio = filemap_get_entry(mapping, index); 391 392 if (!folio) 393 return ERR_PTR(-ENOENT); 394 if (!xa_is_value(folio)) 395 return folio; 396 if (!shmem_mapping(mapping)) 397 return ERR_PTR(-ENOENT); 398 399 swp = radix_to_swp_entry(folio); 400 /* There might be swapin error entries in shmem mapping. */ 401 if (non_swap_entry(swp)) 402 return ERR_PTR(-ENOENT); 403 /* Prevent swapoff from happening to us */ 404 si = get_swap_device(swp); 405 if (!si) 406 return ERR_PTR(-ENOENT); 407 index = swp_offset(swp); 408 folio = filemap_get_folio(swap_address_space(swp), index); 409 put_swap_device(si); 410 return folio; 411 } 412 413 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 414 struct vm_area_struct *vma, unsigned long addr, 415 bool *new_page_allocated) 416 { 417 struct swap_info_struct *si; 418 struct folio *folio; 419 struct page *page; 420 void *shadow = NULL; 421 422 *new_page_allocated = false; 423 si = get_swap_device(entry); 424 if (!si) 425 return NULL; 426 427 for (;;) { 428 int err; 429 /* 430 * First check the swap cache. Since this is normally 431 * called after swap_cache_get_folio() failed, re-calling 432 * that would confuse statistics. 433 */ 434 folio = filemap_get_folio(swap_address_space(entry), 435 swp_offset(entry)); 436 if (!IS_ERR(folio)) { 437 page = folio_file_page(folio, swp_offset(entry)); 438 goto got_page; 439 } 440 441 /* 442 * Just skip read ahead for unused swap slot. 443 * During swap_off when swap_slot_cache is disabled, 444 * we have to handle the race between putting 445 * swap entry in swap cache and marking swap slot 446 * as SWAP_HAS_CACHE. That's done in later part of code or 447 * else swap_off will be aborted if we return NULL. 448 */ 449 if (!swap_swapcount(si, entry) && swap_slot_cache_enabled) 450 goto fail_put_swap; 451 452 /* 453 * Get a new page to read into from swap. Allocate it now, 454 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will 455 * cause any racers to loop around until we add it to cache. 456 */ 457 folio = vma_alloc_folio(gfp_mask, 0, vma, addr, false); 458 if (!folio) 459 goto fail_put_swap; 460 461 /* 462 * Swap entry may have been freed since our caller observed it. 463 */ 464 err = swapcache_prepare(entry); 465 if (!err) 466 break; 467 468 folio_put(folio); 469 if (err != -EEXIST) 470 goto fail_put_swap; 471 472 /* 473 * We might race against __delete_from_swap_cache(), and 474 * stumble across a swap_map entry whose SWAP_HAS_CACHE 475 * has not yet been cleared. Or race against another 476 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE 477 * in swap_map, but not yet added its page to swap cache. 478 */ 479 schedule_timeout_uninterruptible(1); 480 } 481 482 /* 483 * The swap entry is ours to swap in. Prepare the new page. 484 */ 485 486 __folio_set_locked(folio); 487 __folio_set_swapbacked(folio); 488 489 if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry)) 490 goto fail_unlock; 491 492 /* May fail (-ENOMEM) if XArray node allocation failed. */ 493 if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow)) 494 goto fail_unlock; 495 496 mem_cgroup_swapin_uncharge_swap(entry); 497 498 if (shadow) 499 workingset_refault(folio, shadow); 500 501 /* Caller will initiate read into locked folio */ 502 folio_add_lru(folio); 503 *new_page_allocated = true; 504 page = &folio->page; 505 got_page: 506 put_swap_device(si); 507 return page; 508 509 fail_unlock: 510 put_swap_folio(folio, entry); 511 folio_unlock(folio); 512 folio_put(folio); 513 fail_put_swap: 514 put_swap_device(si); 515 return NULL; 516 } 517 518 /* 519 * Locate a page of swap in physical memory, reserving swap cache space 520 * and reading the disk if it is not already cached. 521 * A failure return means that either the page allocation failed or that 522 * the swap entry is no longer in use. 523 * 524 * get/put_swap_device() aren't needed to call this function, because 525 * __read_swap_cache_async() call them and swap_readpage() holds the 526 * swap cache folio lock. 527 */ 528 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 529 struct vm_area_struct *vma, 530 unsigned long addr, bool do_poll, 531 struct swap_iocb **plug) 532 { 533 bool page_was_allocated; 534 struct page *retpage = __read_swap_cache_async(entry, gfp_mask, 535 vma, addr, &page_was_allocated); 536 537 if (page_was_allocated) 538 swap_readpage(retpage, do_poll, plug); 539 540 return retpage; 541 } 542 543 static unsigned int __swapin_nr_pages(unsigned long prev_offset, 544 unsigned long offset, 545 int hits, 546 int max_pages, 547 int prev_win) 548 { 549 unsigned int pages, last_ra; 550 551 /* 552 * This heuristic has been found to work well on both sequential and 553 * random loads, swapping to hard disk or to SSD: please don't ask 554 * what the "+ 2" means, it just happens to work well, that's all. 555 */ 556 pages = hits + 2; 557 if (pages == 2) { 558 /* 559 * We can have no readahead hits to judge by: but must not get 560 * stuck here forever, so check for an adjacent offset instead 561 * (and don't even bother to check whether swap type is same). 562 */ 563 if (offset != prev_offset + 1 && offset != prev_offset - 1) 564 pages = 1; 565 } else { 566 unsigned int roundup = 4; 567 while (roundup < pages) 568 roundup <<= 1; 569 pages = roundup; 570 } 571 572 if (pages > max_pages) 573 pages = max_pages; 574 575 /* Don't shrink readahead too fast */ 576 last_ra = prev_win / 2; 577 if (pages < last_ra) 578 pages = last_ra; 579 580 return pages; 581 } 582 583 static unsigned long swapin_nr_pages(unsigned long offset) 584 { 585 static unsigned long prev_offset; 586 unsigned int hits, pages, max_pages; 587 static atomic_t last_readahead_pages; 588 589 max_pages = 1 << READ_ONCE(page_cluster); 590 if (max_pages <= 1) 591 return 1; 592 593 hits = atomic_xchg(&swapin_readahead_hits, 0); 594 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits, 595 max_pages, 596 atomic_read(&last_readahead_pages)); 597 if (!hits) 598 WRITE_ONCE(prev_offset, offset); 599 atomic_set(&last_readahead_pages, pages); 600 601 return pages; 602 } 603 604 /** 605 * swap_cluster_readahead - swap in pages in hope we need them soon 606 * @entry: swap entry of this memory 607 * @gfp_mask: memory allocation flags 608 * @vmf: fault information 609 * 610 * Returns the struct page for entry and addr, after queueing swapin. 611 * 612 * Primitive swap readahead code. We simply read an aligned block of 613 * (1 << page_cluster) entries in the swap area. This method is chosen 614 * because it doesn't cost us any seek time. We also make sure to queue 615 * the 'original' request together with the readahead ones... 616 * 617 * This has been extended to use the NUMA policies from the mm triggering 618 * the readahead. 619 * 620 * Caller must hold read mmap_lock if vmf->vma is not NULL. 621 */ 622 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, 623 struct vm_fault *vmf) 624 { 625 struct page *page; 626 unsigned long entry_offset = swp_offset(entry); 627 unsigned long offset = entry_offset; 628 unsigned long start_offset, end_offset; 629 unsigned long mask; 630 struct swap_info_struct *si = swp_swap_info(entry); 631 struct blk_plug plug; 632 struct swap_iocb *splug = NULL; 633 bool do_poll = true, page_allocated; 634 struct vm_area_struct *vma = vmf->vma; 635 unsigned long addr = vmf->address; 636 637 mask = swapin_nr_pages(offset) - 1; 638 if (!mask) 639 goto skip; 640 641 do_poll = false; 642 /* Read a page_cluster sized and aligned cluster around offset. */ 643 start_offset = offset & ~mask; 644 end_offset = offset | mask; 645 if (!start_offset) /* First page is swap header. */ 646 start_offset++; 647 if (end_offset >= si->max) 648 end_offset = si->max - 1; 649 650 blk_start_plug(&plug); 651 for (offset = start_offset; offset <= end_offset ; offset++) { 652 /* Ok, do the async read-ahead now */ 653 page = __read_swap_cache_async( 654 swp_entry(swp_type(entry), offset), 655 gfp_mask, vma, addr, &page_allocated); 656 if (!page) 657 continue; 658 if (page_allocated) { 659 swap_readpage(page, false, &splug); 660 if (offset != entry_offset) { 661 SetPageReadahead(page); 662 count_vm_event(SWAP_RA); 663 } 664 } 665 put_page(page); 666 } 667 blk_finish_plug(&plug); 668 swap_read_unplug(splug); 669 670 lru_add_drain(); /* Push any new pages onto the LRU now */ 671 skip: 672 /* The page was likely read above, so no need for plugging here */ 673 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll, NULL); 674 } 675 676 int init_swap_address_space(unsigned int type, unsigned long nr_pages) 677 { 678 struct address_space *spaces, *space; 679 unsigned int i, nr; 680 681 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); 682 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL); 683 if (!spaces) 684 return -ENOMEM; 685 for (i = 0; i < nr; i++) { 686 space = spaces + i; 687 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ); 688 atomic_set(&space->i_mmap_writable, 0); 689 space->a_ops = &swap_aops; 690 /* swap cache doesn't use writeback related tags */ 691 mapping_set_no_writeback_tags(space); 692 } 693 nr_swapper_spaces[type] = nr; 694 swapper_spaces[type] = spaces; 695 696 return 0; 697 } 698 699 void exit_swap_address_space(unsigned int type) 700 { 701 int i; 702 struct address_space *spaces = swapper_spaces[type]; 703 704 for (i = 0; i < nr_swapper_spaces[type]; i++) 705 VM_WARN_ON_ONCE(!mapping_empty(&spaces[i])); 706 kvfree(spaces); 707 nr_swapper_spaces[type] = 0; 708 swapper_spaces[type] = NULL; 709 } 710 711 #define SWAP_RA_ORDER_CEILING 5 712 713 struct vma_swap_readahead { 714 unsigned short win; 715 unsigned short offset; 716 unsigned short nr_pte; 717 }; 718 719 static void swap_ra_info(struct vm_fault *vmf, 720 struct vma_swap_readahead *ra_info) 721 { 722 struct vm_area_struct *vma = vmf->vma; 723 unsigned long ra_val; 724 unsigned long faddr, pfn, fpfn, lpfn, rpfn; 725 unsigned long start, end; 726 unsigned int max_win, hits, prev_win, win; 727 728 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster), 729 SWAP_RA_ORDER_CEILING); 730 if (max_win == 1) { 731 ra_info->win = 1; 732 return; 733 } 734 735 faddr = vmf->address; 736 fpfn = PFN_DOWN(faddr); 737 ra_val = GET_SWAP_RA_VAL(vma); 738 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val)); 739 prev_win = SWAP_RA_WIN(ra_val); 740 hits = SWAP_RA_HITS(ra_val); 741 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits, 742 max_win, prev_win); 743 atomic_long_set(&vma->swap_readahead_info, 744 SWAP_RA_VAL(faddr, win, 0)); 745 if (win == 1) 746 return; 747 748 if (fpfn == pfn + 1) { 749 lpfn = fpfn; 750 rpfn = fpfn + win; 751 } else if (pfn == fpfn + 1) { 752 lpfn = fpfn - win + 1; 753 rpfn = fpfn + 1; 754 } else { 755 unsigned int left = (win - 1) / 2; 756 757 lpfn = fpfn - left; 758 rpfn = fpfn + win - left; 759 } 760 start = max3(lpfn, PFN_DOWN(vma->vm_start), 761 PFN_DOWN(faddr & PMD_MASK)); 762 end = min3(rpfn, PFN_DOWN(vma->vm_end), 763 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE)); 764 765 ra_info->nr_pte = end - start; 766 ra_info->offset = fpfn - start; 767 } 768 769 /** 770 * swap_vma_readahead - swap in pages in hope we need them soon 771 * @fentry: swap entry of this memory 772 * @gfp_mask: memory allocation flags 773 * @vmf: fault information 774 * 775 * Returns the struct page for entry and addr, after queueing swapin. 776 * 777 * Primitive swap readahead code. We simply read in a few pages whose 778 * virtual addresses are around the fault address in the same vma. 779 * 780 * Caller must hold read mmap_lock if vmf->vma is not NULL. 781 * 782 */ 783 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask, 784 struct vm_fault *vmf) 785 { 786 struct blk_plug plug; 787 struct swap_iocb *splug = NULL; 788 struct vm_area_struct *vma = vmf->vma; 789 struct page *page; 790 pte_t *pte = NULL, pentry; 791 unsigned long addr; 792 swp_entry_t entry; 793 unsigned int i; 794 bool page_allocated; 795 struct vma_swap_readahead ra_info = { 796 .win = 1, 797 }; 798 799 swap_ra_info(vmf, &ra_info); 800 if (ra_info.win == 1) 801 goto skip; 802 803 addr = vmf->address - (ra_info.offset * PAGE_SIZE); 804 805 blk_start_plug(&plug); 806 for (i = 0; i < ra_info.nr_pte; i++, addr += PAGE_SIZE) { 807 if (!pte++) { 808 pte = pte_offset_map(vmf->pmd, addr); 809 if (!pte) 810 break; 811 } 812 pentry = ptep_get_lockless(pte); 813 if (!is_swap_pte(pentry)) 814 continue; 815 entry = pte_to_swp_entry(pentry); 816 if (unlikely(non_swap_entry(entry))) 817 continue; 818 pte_unmap(pte); 819 pte = NULL; 820 page = __read_swap_cache_async(entry, gfp_mask, vma, 821 addr, &page_allocated); 822 if (!page) 823 continue; 824 if (page_allocated) { 825 swap_readpage(page, false, &splug); 826 if (i != ra_info.offset) { 827 SetPageReadahead(page); 828 count_vm_event(SWAP_RA); 829 } 830 } 831 put_page(page); 832 } 833 if (pte) 834 pte_unmap(pte); 835 blk_finish_plug(&plug); 836 swap_read_unplug(splug); 837 lru_add_drain(); 838 skip: 839 /* The page was likely read above, so no need for plugging here */ 840 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address, 841 ra_info.win == 1, NULL); 842 } 843 844 /** 845 * swapin_readahead - swap in pages in hope we need them soon 846 * @entry: swap entry of this memory 847 * @gfp_mask: memory allocation flags 848 * @vmf: fault information 849 * 850 * Returns the struct page for entry and addr, after queueing swapin. 851 * 852 * It's a main entry function for swap readahead. By the configuration, 853 * it will read ahead blocks by cluster-based(ie, physical disk based) 854 * or vma-based(ie, virtual address based on faulty address) readahead. 855 */ 856 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 857 struct vm_fault *vmf) 858 { 859 return swap_use_vma_readahead() ? 860 swap_vma_readahead(entry, gfp_mask, vmf) : 861 swap_cluster_readahead(entry, gfp_mask, vmf); 862 } 863 864 #ifdef CONFIG_SYSFS 865 static ssize_t vma_ra_enabled_show(struct kobject *kobj, 866 struct kobj_attribute *attr, char *buf) 867 { 868 return sysfs_emit(buf, "%s\n", 869 enable_vma_readahead ? "true" : "false"); 870 } 871 static ssize_t vma_ra_enabled_store(struct kobject *kobj, 872 struct kobj_attribute *attr, 873 const char *buf, size_t count) 874 { 875 ssize_t ret; 876 877 ret = kstrtobool(buf, &enable_vma_readahead); 878 if (ret) 879 return ret; 880 881 return count; 882 } 883 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled); 884 885 static struct attribute *swap_attrs[] = { 886 &vma_ra_enabled_attr.attr, 887 NULL, 888 }; 889 890 static const struct attribute_group swap_attr_group = { 891 .attrs = swap_attrs, 892 }; 893 894 static int __init swap_init_sysfs(void) 895 { 896 int err; 897 struct kobject *swap_kobj; 898 899 swap_kobj = kobject_create_and_add("swap", mm_kobj); 900 if (!swap_kobj) { 901 pr_err("failed to create swap kobject\n"); 902 return -ENOMEM; 903 } 904 err = sysfs_create_group(swap_kobj, &swap_attr_group); 905 if (err) { 906 pr_err("failed to register swap group\n"); 907 goto delete_obj; 908 } 909 return 0; 910 911 delete_obj: 912 kobject_put(swap_kobj); 913 return err; 914 } 915 subsys_initcall(swap_init_sysfs); 916 #endif 917