1 /* 2 * linux/mm/swap_state.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 * 7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 8 */ 9 #include <linux/mm.h> 10 #include <linux/gfp.h> 11 #include <linux/kernel_stat.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/init.h> 15 #include <linux/pagemap.h> 16 #include <linux/backing-dev.h> 17 #include <linux/blkdev.h> 18 #include <linux/pagevec.h> 19 #include <linux/migrate.h> 20 #include <linux/vmalloc.h> 21 #include <linux/swap_slots.h> 22 23 #include <asm/pgtable.h> 24 25 /* 26 * swapper_space is a fiction, retained to simplify the path through 27 * vmscan's shrink_page_list. 28 */ 29 static const struct address_space_operations swap_aops = { 30 .writepage = swap_writepage, 31 .set_page_dirty = swap_set_page_dirty, 32 #ifdef CONFIG_MIGRATION 33 .migratepage = migrate_page, 34 #endif 35 }; 36 37 struct address_space *swapper_spaces[MAX_SWAPFILES]; 38 static unsigned int nr_swapper_spaces[MAX_SWAPFILES]; 39 40 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0) 41 42 static struct { 43 unsigned long add_total; 44 unsigned long del_total; 45 unsigned long find_success; 46 unsigned long find_total; 47 } swap_cache_info; 48 49 unsigned long total_swapcache_pages(void) 50 { 51 unsigned int i, j, nr; 52 unsigned long ret = 0; 53 struct address_space *spaces; 54 55 rcu_read_lock(); 56 for (i = 0; i < MAX_SWAPFILES; i++) { 57 /* 58 * The corresponding entries in nr_swapper_spaces and 59 * swapper_spaces will be reused only after at least 60 * one grace period. So it is impossible for them 61 * belongs to different usage. 62 */ 63 nr = nr_swapper_spaces[i]; 64 spaces = rcu_dereference(swapper_spaces[i]); 65 if (!nr || !spaces) 66 continue; 67 for (j = 0; j < nr; j++) 68 ret += spaces[j].nrpages; 69 } 70 rcu_read_unlock(); 71 return ret; 72 } 73 74 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); 75 76 void show_swap_cache_info(void) 77 { 78 printk("%lu pages in swap cache\n", total_swapcache_pages()); 79 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", 80 swap_cache_info.add_total, swap_cache_info.del_total, 81 swap_cache_info.find_success, swap_cache_info.find_total); 82 printk("Free swap = %ldkB\n", 83 get_nr_swap_pages() << (PAGE_SHIFT - 10)); 84 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); 85 } 86 87 /* 88 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, 89 * but sets SwapCache flag and private instead of mapping and index. 90 */ 91 int __add_to_swap_cache(struct page *page, swp_entry_t entry) 92 { 93 int error; 94 struct address_space *address_space; 95 96 VM_BUG_ON_PAGE(!PageLocked(page), page); 97 VM_BUG_ON_PAGE(PageSwapCache(page), page); 98 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 99 100 get_page(page); 101 SetPageSwapCache(page); 102 set_page_private(page, entry.val); 103 104 address_space = swap_address_space(entry); 105 spin_lock_irq(&address_space->tree_lock); 106 error = radix_tree_insert(&address_space->page_tree, 107 swp_offset(entry), page); 108 if (likely(!error)) { 109 address_space->nrpages++; 110 __inc_node_page_state(page, NR_FILE_PAGES); 111 INC_CACHE_INFO(add_total); 112 } 113 spin_unlock_irq(&address_space->tree_lock); 114 115 if (unlikely(error)) { 116 /* 117 * Only the context which have set SWAP_HAS_CACHE flag 118 * would call add_to_swap_cache(). 119 * So add_to_swap_cache() doesn't returns -EEXIST. 120 */ 121 VM_BUG_ON(error == -EEXIST); 122 set_page_private(page, 0UL); 123 ClearPageSwapCache(page); 124 put_page(page); 125 } 126 127 return error; 128 } 129 130 131 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) 132 { 133 int error; 134 135 error = radix_tree_maybe_preload(gfp_mask); 136 if (!error) { 137 error = __add_to_swap_cache(page, entry); 138 radix_tree_preload_end(); 139 } 140 return error; 141 } 142 143 /* 144 * This must be called only on pages that have 145 * been verified to be in the swap cache. 146 */ 147 void __delete_from_swap_cache(struct page *page) 148 { 149 swp_entry_t entry; 150 struct address_space *address_space; 151 152 VM_BUG_ON_PAGE(!PageLocked(page), page); 153 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 154 VM_BUG_ON_PAGE(PageWriteback(page), page); 155 156 entry.val = page_private(page); 157 address_space = swap_address_space(entry); 158 radix_tree_delete(&address_space->page_tree, swp_offset(entry)); 159 set_page_private(page, 0); 160 ClearPageSwapCache(page); 161 address_space->nrpages--; 162 __dec_node_page_state(page, NR_FILE_PAGES); 163 INC_CACHE_INFO(del_total); 164 } 165 166 /** 167 * add_to_swap - allocate swap space for a page 168 * @page: page we want to move to swap 169 * 170 * Allocate swap space for the page and add the page to the 171 * swap cache. Caller needs to hold the page lock. 172 */ 173 int add_to_swap(struct page *page, struct list_head *list) 174 { 175 swp_entry_t entry; 176 int err; 177 178 VM_BUG_ON_PAGE(!PageLocked(page), page); 179 VM_BUG_ON_PAGE(!PageUptodate(page), page); 180 181 entry = get_swap_page(); 182 if (!entry.val) 183 return 0; 184 185 if (mem_cgroup_try_charge_swap(page, entry)) { 186 swapcache_free(entry); 187 return 0; 188 } 189 190 if (unlikely(PageTransHuge(page))) 191 if (unlikely(split_huge_page_to_list(page, list))) { 192 swapcache_free(entry); 193 return 0; 194 } 195 196 /* 197 * Radix-tree node allocations from PF_MEMALLOC contexts could 198 * completely exhaust the page allocator. __GFP_NOMEMALLOC 199 * stops emergency reserves from being allocated. 200 * 201 * TODO: this could cause a theoretical memory reclaim 202 * deadlock in the swap out path. 203 */ 204 /* 205 * Add it to the swap cache. 206 */ 207 err = add_to_swap_cache(page, entry, 208 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN); 209 210 if (!err) { 211 return 1; 212 } else { /* -ENOMEM radix-tree allocation failure */ 213 /* 214 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 215 * clear SWAP_HAS_CACHE flag. 216 */ 217 swapcache_free(entry); 218 return 0; 219 } 220 } 221 222 /* 223 * This must be called only on pages that have 224 * been verified to be in the swap cache and locked. 225 * It will never put the page into the free list, 226 * the caller has a reference on the page. 227 */ 228 void delete_from_swap_cache(struct page *page) 229 { 230 swp_entry_t entry; 231 struct address_space *address_space; 232 233 entry.val = page_private(page); 234 235 address_space = swap_address_space(entry); 236 spin_lock_irq(&address_space->tree_lock); 237 __delete_from_swap_cache(page); 238 spin_unlock_irq(&address_space->tree_lock); 239 240 swapcache_free(entry); 241 put_page(page); 242 } 243 244 /* 245 * If we are the only user, then try to free up the swap cache. 246 * 247 * Its ok to check for PageSwapCache without the page lock 248 * here because we are going to recheck again inside 249 * try_to_free_swap() _with_ the lock. 250 * - Marcelo 251 */ 252 static inline void free_swap_cache(struct page *page) 253 { 254 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { 255 try_to_free_swap(page); 256 unlock_page(page); 257 } 258 } 259 260 /* 261 * Perform a free_page(), also freeing any swap cache associated with 262 * this page if it is the last user of the page. 263 */ 264 void free_page_and_swap_cache(struct page *page) 265 { 266 free_swap_cache(page); 267 if (!is_huge_zero_page(page)) 268 put_page(page); 269 } 270 271 /* 272 * Passed an array of pages, drop them all from swapcache and then release 273 * them. They are removed from the LRU and freed if this is their last use. 274 */ 275 void free_pages_and_swap_cache(struct page **pages, int nr) 276 { 277 struct page **pagep = pages; 278 int i; 279 280 lru_add_drain(); 281 for (i = 0; i < nr; i++) 282 free_swap_cache(pagep[i]); 283 release_pages(pagep, nr, false); 284 } 285 286 /* 287 * Lookup a swap entry in the swap cache. A found page will be returned 288 * unlocked and with its refcount incremented - we rely on the kernel 289 * lock getting page table operations atomic even if we drop the page 290 * lock before returning. 291 */ 292 struct page * lookup_swap_cache(swp_entry_t entry) 293 { 294 struct page *page; 295 296 page = find_get_page(swap_address_space(entry), swp_offset(entry)); 297 298 if (page) { 299 INC_CACHE_INFO(find_success); 300 if (TestClearPageReadahead(page)) 301 atomic_inc(&swapin_readahead_hits); 302 } 303 304 INC_CACHE_INFO(find_total); 305 return page; 306 } 307 308 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 309 struct vm_area_struct *vma, unsigned long addr, 310 bool *new_page_allocated) 311 { 312 struct page *found_page, *new_page = NULL; 313 struct address_space *swapper_space = swap_address_space(entry); 314 int err; 315 *new_page_allocated = false; 316 317 do { 318 /* 319 * First check the swap cache. Since this is normally 320 * called after lookup_swap_cache() failed, re-calling 321 * that would confuse statistics. 322 */ 323 found_page = find_get_page(swapper_space, swp_offset(entry)); 324 if (found_page) 325 break; 326 327 /* 328 * Just skip read ahead for unused swap slot. 329 * During swap_off when swap_slot_cache is disabled, 330 * we have to handle the race between putting 331 * swap entry in swap cache and marking swap slot 332 * as SWAP_HAS_CACHE. That's done in later part of code or 333 * else swap_off will be aborted if we return NULL. 334 */ 335 if (!__swp_swapcount(entry) && swap_slot_cache_enabled) 336 break; 337 338 /* 339 * Get a new page to read into from swap. 340 */ 341 if (!new_page) { 342 new_page = alloc_page_vma(gfp_mask, vma, addr); 343 if (!new_page) 344 break; /* Out of memory */ 345 } 346 347 /* 348 * call radix_tree_preload() while we can wait. 349 */ 350 err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL); 351 if (err) 352 break; 353 354 /* 355 * Swap entry may have been freed since our caller observed it. 356 */ 357 err = swapcache_prepare(entry); 358 if (err == -EEXIST) { 359 radix_tree_preload_end(); 360 /* 361 * We might race against get_swap_page() and stumble 362 * across a SWAP_HAS_CACHE swap_map entry whose page 363 * has not been brought into the swapcache yet. 364 */ 365 cond_resched(); 366 continue; 367 } 368 if (err) { /* swp entry is obsolete ? */ 369 radix_tree_preload_end(); 370 break; 371 } 372 373 /* May fail (-ENOMEM) if radix-tree node allocation failed. */ 374 __SetPageLocked(new_page); 375 __SetPageSwapBacked(new_page); 376 err = __add_to_swap_cache(new_page, entry); 377 if (likely(!err)) { 378 radix_tree_preload_end(); 379 /* 380 * Initiate read into locked page and return. 381 */ 382 lru_cache_add_anon(new_page); 383 *new_page_allocated = true; 384 return new_page; 385 } 386 radix_tree_preload_end(); 387 __ClearPageLocked(new_page); 388 /* 389 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 390 * clear SWAP_HAS_CACHE flag. 391 */ 392 swapcache_free(entry); 393 } while (err != -ENOMEM); 394 395 if (new_page) 396 put_page(new_page); 397 return found_page; 398 } 399 400 /* 401 * Locate a page of swap in physical memory, reserving swap cache space 402 * and reading the disk if it is not already cached. 403 * A failure return means that either the page allocation failed or that 404 * the swap entry is no longer in use. 405 */ 406 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 407 struct vm_area_struct *vma, unsigned long addr) 408 { 409 bool page_was_allocated; 410 struct page *retpage = __read_swap_cache_async(entry, gfp_mask, 411 vma, addr, &page_was_allocated); 412 413 if (page_was_allocated) 414 swap_readpage(retpage); 415 416 return retpage; 417 } 418 419 static unsigned long swapin_nr_pages(unsigned long offset) 420 { 421 static unsigned long prev_offset; 422 unsigned int pages, max_pages, last_ra; 423 static atomic_t last_readahead_pages; 424 425 max_pages = 1 << READ_ONCE(page_cluster); 426 if (max_pages <= 1) 427 return 1; 428 429 /* 430 * This heuristic has been found to work well on both sequential and 431 * random loads, swapping to hard disk or to SSD: please don't ask 432 * what the "+ 2" means, it just happens to work well, that's all. 433 */ 434 pages = atomic_xchg(&swapin_readahead_hits, 0) + 2; 435 if (pages == 2) { 436 /* 437 * We can have no readahead hits to judge by: but must not get 438 * stuck here forever, so check for an adjacent offset instead 439 * (and don't even bother to check whether swap type is same). 440 */ 441 if (offset != prev_offset + 1 && offset != prev_offset - 1) 442 pages = 1; 443 prev_offset = offset; 444 } else { 445 unsigned int roundup = 4; 446 while (roundup < pages) 447 roundup <<= 1; 448 pages = roundup; 449 } 450 451 if (pages > max_pages) 452 pages = max_pages; 453 454 /* Don't shrink readahead too fast */ 455 last_ra = atomic_read(&last_readahead_pages) / 2; 456 if (pages < last_ra) 457 pages = last_ra; 458 atomic_set(&last_readahead_pages, pages); 459 460 return pages; 461 } 462 463 /** 464 * swapin_readahead - swap in pages in hope we need them soon 465 * @entry: swap entry of this memory 466 * @gfp_mask: memory allocation flags 467 * @vma: user vma this address belongs to 468 * @addr: target address for mempolicy 469 * 470 * Returns the struct page for entry and addr, after queueing swapin. 471 * 472 * Primitive swap readahead code. We simply read an aligned block of 473 * (1 << page_cluster) entries in the swap area. This method is chosen 474 * because it doesn't cost us any seek time. We also make sure to queue 475 * the 'original' request together with the readahead ones... 476 * 477 * This has been extended to use the NUMA policies from the mm triggering 478 * the readahead. 479 * 480 * Caller must hold down_read on the vma->vm_mm if vma is not NULL. 481 */ 482 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 483 struct vm_area_struct *vma, unsigned long addr) 484 { 485 struct page *page; 486 unsigned long entry_offset = swp_offset(entry); 487 unsigned long offset = entry_offset; 488 unsigned long start_offset, end_offset; 489 unsigned long mask; 490 struct blk_plug plug; 491 492 mask = swapin_nr_pages(offset) - 1; 493 if (!mask) 494 goto skip; 495 496 /* Read a page_cluster sized and aligned cluster around offset. */ 497 start_offset = offset & ~mask; 498 end_offset = offset | mask; 499 if (!start_offset) /* First page is swap header. */ 500 start_offset++; 501 502 blk_start_plug(&plug); 503 for (offset = start_offset; offset <= end_offset ; offset++) { 504 /* Ok, do the async read-ahead now */ 505 page = read_swap_cache_async(swp_entry(swp_type(entry), offset), 506 gfp_mask, vma, addr); 507 if (!page) 508 continue; 509 if (offset != entry_offset) 510 SetPageReadahead(page); 511 put_page(page); 512 } 513 blk_finish_plug(&plug); 514 515 lru_add_drain(); /* Push any new pages onto the LRU now */ 516 skip: 517 return read_swap_cache_async(entry, gfp_mask, vma, addr); 518 } 519 520 int init_swap_address_space(unsigned int type, unsigned long nr_pages) 521 { 522 struct address_space *spaces, *space; 523 unsigned int i, nr; 524 525 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); 526 spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL); 527 if (!spaces) 528 return -ENOMEM; 529 for (i = 0; i < nr; i++) { 530 space = spaces + i; 531 INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN); 532 atomic_set(&space->i_mmap_writable, 0); 533 space->a_ops = &swap_aops; 534 /* swap cache doesn't use writeback related tags */ 535 mapping_set_no_writeback_tags(space); 536 spin_lock_init(&space->tree_lock); 537 } 538 nr_swapper_spaces[type] = nr; 539 rcu_assign_pointer(swapper_spaces[type], spaces); 540 541 return 0; 542 } 543 544 void exit_swap_address_space(unsigned int type) 545 { 546 struct address_space *spaces; 547 548 spaces = swapper_spaces[type]; 549 nr_swapper_spaces[type] = 0; 550 rcu_assign_pointer(swapper_spaces[type], NULL); 551 synchronize_rcu(); 552 kvfree(spaces); 553 } 554