1 /* 2 * linux/mm/swap_state.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 * Swap reorganised 29.12.95, Stephen Tweedie 6 * 7 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 8 */ 9 #include <linux/module.h> 10 #include <linux/mm.h> 11 #include <linux/kernel_stat.h> 12 #include <linux/swap.h> 13 #include <linux/swapops.h> 14 #include <linux/init.h> 15 #include <linux/pagemap.h> 16 #include <linux/buffer_head.h> 17 #include <linux/backing-dev.h> 18 #include <linux/pagevec.h> 19 #include <linux/migrate.h> 20 21 #include <asm/pgtable.h> 22 23 /* 24 * swapper_space is a fiction, retained to simplify the path through 25 * vmscan's shrink_page_list, to make sync_page look nicer, and to allow 26 * future use of radix_tree tags in the swap cache. 27 */ 28 static const struct address_space_operations swap_aops = { 29 .writepage = swap_writepage, 30 .sync_page = block_sync_page, 31 .set_page_dirty = __set_page_dirty_nobuffers, 32 .migratepage = migrate_page, 33 }; 34 35 static struct backing_dev_info swap_backing_dev_info = { 36 .capabilities = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK, 37 .unplug_io_fn = swap_unplug_io_fn, 38 }; 39 40 struct address_space swapper_space = { 41 .page_tree = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN), 42 .tree_lock = __RW_LOCK_UNLOCKED(swapper_space.tree_lock), 43 .a_ops = &swap_aops, 44 .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear), 45 .backing_dev_info = &swap_backing_dev_info, 46 }; 47 48 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0) 49 50 static struct { 51 unsigned long add_total; 52 unsigned long del_total; 53 unsigned long find_success; 54 unsigned long find_total; 55 } swap_cache_info; 56 57 void show_swap_cache_info(void) 58 { 59 printk("Swap cache: add %lu, delete %lu, find %lu/%lu\n", 60 swap_cache_info.add_total, swap_cache_info.del_total, 61 swap_cache_info.find_success, swap_cache_info.find_total); 62 printk("Free swap = %lukB\n", nr_swap_pages << (PAGE_SHIFT - 10)); 63 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); 64 } 65 66 /* 67 * add_to_swap_cache resembles add_to_page_cache on swapper_space, 68 * but sets SwapCache flag and private instead of mapping and index. 69 */ 70 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) 71 { 72 int error; 73 74 BUG_ON(!PageLocked(page)); 75 BUG_ON(PageSwapCache(page)); 76 BUG_ON(PagePrivate(page)); 77 error = radix_tree_preload(gfp_mask); 78 if (!error) { 79 write_lock_irq(&swapper_space.tree_lock); 80 error = radix_tree_insert(&swapper_space.page_tree, 81 entry.val, page); 82 if (!error) { 83 page_cache_get(page); 84 SetPageSwapCache(page); 85 set_page_private(page, entry.val); 86 total_swapcache_pages++; 87 __inc_zone_page_state(page, NR_FILE_PAGES); 88 INC_CACHE_INFO(add_total); 89 } 90 write_unlock_irq(&swapper_space.tree_lock); 91 radix_tree_preload_end(); 92 } 93 return error; 94 } 95 96 /* 97 * This must be called only on pages that have 98 * been verified to be in the swap cache. 99 */ 100 void __delete_from_swap_cache(struct page *page) 101 { 102 BUG_ON(!PageLocked(page)); 103 BUG_ON(!PageSwapCache(page)); 104 BUG_ON(PageWriteback(page)); 105 BUG_ON(PagePrivate(page)); 106 107 radix_tree_delete(&swapper_space.page_tree, page_private(page)); 108 set_page_private(page, 0); 109 ClearPageSwapCache(page); 110 total_swapcache_pages--; 111 __dec_zone_page_state(page, NR_FILE_PAGES); 112 INC_CACHE_INFO(del_total); 113 } 114 115 /** 116 * add_to_swap - allocate swap space for a page 117 * @page: page we want to move to swap 118 * @gfp_mask: memory allocation flags 119 * 120 * Allocate swap space for the page and add the page to the 121 * swap cache. Caller needs to hold the page lock. 122 */ 123 int add_to_swap(struct page * page, gfp_t gfp_mask) 124 { 125 swp_entry_t entry; 126 int err; 127 128 BUG_ON(!PageLocked(page)); 129 BUG_ON(!PageUptodate(page)); 130 131 for (;;) { 132 entry = get_swap_page(); 133 if (!entry.val) 134 return 0; 135 136 /* 137 * Radix-tree node allocations from PF_MEMALLOC contexts could 138 * completely exhaust the page allocator. __GFP_NOMEMALLOC 139 * stops emergency reserves from being allocated. 140 * 141 * TODO: this could cause a theoretical memory reclaim 142 * deadlock in the swap out path. 143 */ 144 /* 145 * Add it to the swap cache and mark it dirty 146 */ 147 err = add_to_swap_cache(page, entry, 148 gfp_mask|__GFP_NOMEMALLOC|__GFP_NOWARN); 149 150 switch (err) { 151 case 0: /* Success */ 152 SetPageDirty(page); 153 return 1; 154 case -EEXIST: 155 /* Raced with "speculative" read_swap_cache_async */ 156 swap_free(entry); 157 continue; 158 default: 159 /* -ENOMEM radix-tree allocation failure */ 160 swap_free(entry); 161 return 0; 162 } 163 } 164 } 165 166 /* 167 * This must be called only on pages that have 168 * been verified to be in the swap cache and locked. 169 * It will never put the page into the free list, 170 * the caller has a reference on the page. 171 */ 172 void delete_from_swap_cache(struct page *page) 173 { 174 swp_entry_t entry; 175 176 entry.val = page_private(page); 177 178 write_lock_irq(&swapper_space.tree_lock); 179 __delete_from_swap_cache(page); 180 write_unlock_irq(&swapper_space.tree_lock); 181 182 swap_free(entry); 183 page_cache_release(page); 184 } 185 186 /* 187 * If we are the only user, then try to free up the swap cache. 188 * 189 * Its ok to check for PageSwapCache without the page lock 190 * here because we are going to recheck again inside 191 * exclusive_swap_page() _with_ the lock. 192 * - Marcelo 193 */ 194 static inline void free_swap_cache(struct page *page) 195 { 196 if (PageSwapCache(page) && !TestSetPageLocked(page)) { 197 remove_exclusive_swap_page(page); 198 unlock_page(page); 199 } 200 } 201 202 /* 203 * Perform a free_page(), also freeing any swap cache associated with 204 * this page if it is the last user of the page. 205 */ 206 void free_page_and_swap_cache(struct page *page) 207 { 208 free_swap_cache(page); 209 page_cache_release(page); 210 } 211 212 /* 213 * Passed an array of pages, drop them all from swapcache and then release 214 * them. They are removed from the LRU and freed if this is their last use. 215 */ 216 void free_pages_and_swap_cache(struct page **pages, int nr) 217 { 218 struct page **pagep = pages; 219 220 lru_add_drain(); 221 while (nr) { 222 int todo = min(nr, PAGEVEC_SIZE); 223 int i; 224 225 for (i = 0; i < todo; i++) 226 free_swap_cache(pagep[i]); 227 release_pages(pagep, todo, 0); 228 pagep += todo; 229 nr -= todo; 230 } 231 } 232 233 /* 234 * Lookup a swap entry in the swap cache. A found page will be returned 235 * unlocked and with its refcount incremented - we rely on the kernel 236 * lock getting page table operations atomic even if we drop the page 237 * lock before returning. 238 */ 239 struct page * lookup_swap_cache(swp_entry_t entry) 240 { 241 struct page *page; 242 243 page = find_get_page(&swapper_space, entry.val); 244 245 if (page) 246 INC_CACHE_INFO(find_success); 247 248 INC_CACHE_INFO(find_total); 249 return page; 250 } 251 252 /* 253 * Locate a page of swap in physical memory, reserving swap cache space 254 * and reading the disk if it is not already cached. 255 * A failure return means that either the page allocation failed or that 256 * the swap entry is no longer in use. 257 */ 258 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 259 struct vm_area_struct *vma, unsigned long addr) 260 { 261 struct page *found_page, *new_page = NULL; 262 int err; 263 264 do { 265 /* 266 * First check the swap cache. Since this is normally 267 * called after lookup_swap_cache() failed, re-calling 268 * that would confuse statistics. 269 */ 270 found_page = find_get_page(&swapper_space, entry.val); 271 if (found_page) 272 break; 273 274 /* 275 * Get a new page to read into from swap. 276 */ 277 if (!new_page) { 278 new_page = alloc_page_vma(gfp_mask, vma, addr); 279 if (!new_page) 280 break; /* Out of memory */ 281 } 282 283 /* 284 * Swap entry may have been freed since our caller observed it. 285 */ 286 if (!swap_duplicate(entry)) 287 break; 288 289 /* 290 * Associate the page with swap entry in the swap cache. 291 * May fail (-EEXIST) if there is already a page associated 292 * with this entry in the swap cache: added by a racing 293 * read_swap_cache_async, or add_to_swap or shmem_writepage 294 * re-using the just freed swap entry for an existing page. 295 * May fail (-ENOMEM) if radix-tree node allocation failed. 296 */ 297 SetPageLocked(new_page); 298 err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL); 299 if (!err) { 300 /* 301 * Initiate read into locked page and return. 302 */ 303 lru_cache_add_active(new_page); 304 swap_readpage(NULL, new_page); 305 return new_page; 306 } 307 ClearPageLocked(new_page); 308 swap_free(entry); 309 } while (err != -ENOMEM); 310 311 if (new_page) 312 page_cache_release(new_page); 313 return found_page; 314 } 315 316 /** 317 * swapin_readahead - swap in pages in hope we need them soon 318 * @entry: swap entry of this memory 319 * @gfp_mask: memory allocation flags 320 * @vma: user vma this address belongs to 321 * @addr: target address for mempolicy 322 * 323 * Returns the struct page for entry and addr, after queueing swapin. 324 * 325 * Primitive swap readahead code. We simply read an aligned block of 326 * (1 << page_cluster) entries in the swap area. This method is chosen 327 * because it doesn't cost us any seek time. We also make sure to queue 328 * the 'original' request together with the readahead ones... 329 * 330 * This has been extended to use the NUMA policies from the mm triggering 331 * the readahead. 332 * 333 * Caller must hold down_read on the vma->vm_mm if vma is not NULL. 334 */ 335 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 336 struct vm_area_struct *vma, unsigned long addr) 337 { 338 int nr_pages; 339 struct page *page; 340 unsigned long offset; 341 unsigned long end_offset; 342 343 /* 344 * Get starting offset for readaround, and number of pages to read. 345 * Adjust starting address by readbehind (for NUMA interleave case)? 346 * No, it's very unlikely that swap layout would follow vma layout, 347 * more likely that neighbouring swap pages came from the same node: 348 * so use the same "addr" to choose the same node for each swap read. 349 */ 350 nr_pages = valid_swaphandles(entry, &offset); 351 for (end_offset = offset + nr_pages; offset < end_offset; offset++) { 352 /* Ok, do the async read-ahead now */ 353 page = read_swap_cache_async(swp_entry(swp_type(entry), offset), 354 gfp_mask, vma, addr); 355 if (!page) 356 break; 357 page_cache_release(page); 358 } 359 lru_add_drain(); /* Push any new pages onto the LRU now */ 360 return read_swap_cache_async(entry, gfp_mask, vma, addr); 361 } 362