xref: /openbmc/linux/mm/swap_state.c (revision eb3fcf007fffe5830d815e713591f3e858f2a365)
1 /*
2  *  linux/mm/swap_state.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  *
7  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8  */
9 #include <linux/mm.h>
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 
21 #include <asm/pgtable.h>
22 
23 /*
24  * swapper_space is a fiction, retained to simplify the path through
25  * vmscan's shrink_page_list.
26  */
27 static const struct address_space_operations swap_aops = {
28 	.writepage	= swap_writepage,
29 	.set_page_dirty	= swap_set_page_dirty,
30 #ifdef CONFIG_MIGRATION
31 	.migratepage	= migrate_page,
32 #endif
33 };
34 
35 struct address_space swapper_spaces[MAX_SWAPFILES] = {
36 	[0 ... MAX_SWAPFILES - 1] = {
37 		.page_tree	= RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
38 		.i_mmap_writable = ATOMIC_INIT(0),
39 		.a_ops		= &swap_aops,
40 	}
41 };
42 
43 #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
44 
45 static struct {
46 	unsigned long add_total;
47 	unsigned long del_total;
48 	unsigned long find_success;
49 	unsigned long find_total;
50 } swap_cache_info;
51 
52 unsigned long total_swapcache_pages(void)
53 {
54 	int i;
55 	unsigned long ret = 0;
56 
57 	for (i = 0; i < MAX_SWAPFILES; i++)
58 		ret += swapper_spaces[i].nrpages;
59 	return ret;
60 }
61 
62 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
63 
64 void show_swap_cache_info(void)
65 {
66 	printk("%lu pages in swap cache\n", total_swapcache_pages());
67 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
68 		swap_cache_info.add_total, swap_cache_info.del_total,
69 		swap_cache_info.find_success, swap_cache_info.find_total);
70 	printk("Free swap  = %ldkB\n",
71 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
72 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
73 }
74 
75 /*
76  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
77  * but sets SwapCache flag and private instead of mapping and index.
78  */
79 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
80 {
81 	int error;
82 	struct address_space *address_space;
83 
84 	VM_BUG_ON_PAGE(!PageLocked(page), page);
85 	VM_BUG_ON_PAGE(PageSwapCache(page), page);
86 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
87 
88 	page_cache_get(page);
89 	SetPageSwapCache(page);
90 	set_page_private(page, entry.val);
91 
92 	address_space = swap_address_space(entry);
93 	spin_lock_irq(&address_space->tree_lock);
94 	error = radix_tree_insert(&address_space->page_tree,
95 					entry.val, page);
96 	if (likely(!error)) {
97 		address_space->nrpages++;
98 		__inc_zone_page_state(page, NR_FILE_PAGES);
99 		INC_CACHE_INFO(add_total);
100 	}
101 	spin_unlock_irq(&address_space->tree_lock);
102 
103 	if (unlikely(error)) {
104 		/*
105 		 * Only the context which have set SWAP_HAS_CACHE flag
106 		 * would call add_to_swap_cache().
107 		 * So add_to_swap_cache() doesn't returns -EEXIST.
108 		 */
109 		VM_BUG_ON(error == -EEXIST);
110 		set_page_private(page, 0UL);
111 		ClearPageSwapCache(page);
112 		page_cache_release(page);
113 	}
114 
115 	return error;
116 }
117 
118 
119 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
120 {
121 	int error;
122 
123 	error = radix_tree_maybe_preload(gfp_mask);
124 	if (!error) {
125 		error = __add_to_swap_cache(page, entry);
126 		radix_tree_preload_end();
127 	}
128 	return error;
129 }
130 
131 /*
132  * This must be called only on pages that have
133  * been verified to be in the swap cache.
134  */
135 void __delete_from_swap_cache(struct page *page)
136 {
137 	swp_entry_t entry;
138 	struct address_space *address_space;
139 
140 	VM_BUG_ON_PAGE(!PageLocked(page), page);
141 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
142 	VM_BUG_ON_PAGE(PageWriteback(page), page);
143 
144 	entry.val = page_private(page);
145 	address_space = swap_address_space(entry);
146 	radix_tree_delete(&address_space->page_tree, page_private(page));
147 	set_page_private(page, 0);
148 	ClearPageSwapCache(page);
149 	address_space->nrpages--;
150 	__dec_zone_page_state(page, NR_FILE_PAGES);
151 	INC_CACHE_INFO(del_total);
152 }
153 
154 /**
155  * add_to_swap - allocate swap space for a page
156  * @page: page we want to move to swap
157  *
158  * Allocate swap space for the page and add the page to the
159  * swap cache.  Caller needs to hold the page lock.
160  */
161 int add_to_swap(struct page *page, struct list_head *list)
162 {
163 	swp_entry_t entry;
164 	int err;
165 
166 	VM_BUG_ON_PAGE(!PageLocked(page), page);
167 	VM_BUG_ON_PAGE(!PageUptodate(page), page);
168 
169 	entry = get_swap_page();
170 	if (!entry.val)
171 		return 0;
172 
173 	if (unlikely(PageTransHuge(page)))
174 		if (unlikely(split_huge_page_to_list(page, list))) {
175 			swapcache_free(entry);
176 			return 0;
177 		}
178 
179 	/*
180 	 * Radix-tree node allocations from PF_MEMALLOC contexts could
181 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
182 	 * stops emergency reserves from being allocated.
183 	 *
184 	 * TODO: this could cause a theoretical memory reclaim
185 	 * deadlock in the swap out path.
186 	 */
187 	/*
188 	 * Add it to the swap cache and mark it dirty
189 	 */
190 	err = add_to_swap_cache(page, entry,
191 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
192 
193 	if (!err) {	/* Success */
194 		SetPageDirty(page);
195 		return 1;
196 	} else {	/* -ENOMEM radix-tree allocation failure */
197 		/*
198 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
199 		 * clear SWAP_HAS_CACHE flag.
200 		 */
201 		swapcache_free(entry);
202 		return 0;
203 	}
204 }
205 
206 /*
207  * This must be called only on pages that have
208  * been verified to be in the swap cache and locked.
209  * It will never put the page into the free list,
210  * the caller has a reference on the page.
211  */
212 void delete_from_swap_cache(struct page *page)
213 {
214 	swp_entry_t entry;
215 	struct address_space *address_space;
216 
217 	entry.val = page_private(page);
218 
219 	address_space = swap_address_space(entry);
220 	spin_lock_irq(&address_space->tree_lock);
221 	__delete_from_swap_cache(page);
222 	spin_unlock_irq(&address_space->tree_lock);
223 
224 	swapcache_free(entry);
225 	page_cache_release(page);
226 }
227 
228 /*
229  * If we are the only user, then try to free up the swap cache.
230  *
231  * Its ok to check for PageSwapCache without the page lock
232  * here because we are going to recheck again inside
233  * try_to_free_swap() _with_ the lock.
234  * 					- Marcelo
235  */
236 static inline void free_swap_cache(struct page *page)
237 {
238 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
239 		try_to_free_swap(page);
240 		unlock_page(page);
241 	}
242 }
243 
244 /*
245  * Perform a free_page(), also freeing any swap cache associated with
246  * this page if it is the last user of the page.
247  */
248 void free_page_and_swap_cache(struct page *page)
249 {
250 	free_swap_cache(page);
251 	page_cache_release(page);
252 }
253 
254 /*
255  * Passed an array of pages, drop them all from swapcache and then release
256  * them.  They are removed from the LRU and freed if this is their last use.
257  */
258 void free_pages_and_swap_cache(struct page **pages, int nr)
259 {
260 	struct page **pagep = pages;
261 	int i;
262 
263 	lru_add_drain();
264 	for (i = 0; i < nr; i++)
265 		free_swap_cache(pagep[i]);
266 	release_pages(pagep, nr, false);
267 }
268 
269 /*
270  * Lookup a swap entry in the swap cache. A found page will be returned
271  * unlocked and with its refcount incremented - we rely on the kernel
272  * lock getting page table operations atomic even if we drop the page
273  * lock before returning.
274  */
275 struct page * lookup_swap_cache(swp_entry_t entry)
276 {
277 	struct page *page;
278 
279 	page = find_get_page(swap_address_space(entry), entry.val);
280 
281 	if (page) {
282 		INC_CACHE_INFO(find_success);
283 		if (TestClearPageReadahead(page))
284 			atomic_inc(&swapin_readahead_hits);
285 	}
286 
287 	INC_CACHE_INFO(find_total);
288 	return page;
289 }
290 
291 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
292 			struct vm_area_struct *vma, unsigned long addr,
293 			bool *new_page_allocated)
294 {
295 	struct page *found_page, *new_page = NULL;
296 	struct address_space *swapper_space = swap_address_space(entry);
297 	int err;
298 	*new_page_allocated = false;
299 
300 	do {
301 		/*
302 		 * First check the swap cache.  Since this is normally
303 		 * called after lookup_swap_cache() failed, re-calling
304 		 * that would confuse statistics.
305 		 */
306 		found_page = find_get_page(swapper_space, entry.val);
307 		if (found_page)
308 			break;
309 
310 		/*
311 		 * Get a new page to read into from swap.
312 		 */
313 		if (!new_page) {
314 			new_page = alloc_page_vma(gfp_mask, vma, addr);
315 			if (!new_page)
316 				break;		/* Out of memory */
317 		}
318 
319 		/*
320 		 * call radix_tree_preload() while we can wait.
321 		 */
322 		err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
323 		if (err)
324 			break;
325 
326 		/*
327 		 * Swap entry may have been freed since our caller observed it.
328 		 */
329 		err = swapcache_prepare(entry);
330 		if (err == -EEXIST) {
331 			radix_tree_preload_end();
332 			/*
333 			 * We might race against get_swap_page() and stumble
334 			 * across a SWAP_HAS_CACHE swap_map entry whose page
335 			 * has not been brought into the swapcache yet, while
336 			 * the other end is scheduled away waiting on discard
337 			 * I/O completion at scan_swap_map().
338 			 *
339 			 * In order to avoid turning this transitory state
340 			 * into a permanent loop around this -EEXIST case
341 			 * if !CONFIG_PREEMPT and the I/O completion happens
342 			 * to be waiting on the CPU waitqueue where we are now
343 			 * busy looping, we just conditionally invoke the
344 			 * scheduler here, if there are some more important
345 			 * tasks to run.
346 			 */
347 			cond_resched();
348 			continue;
349 		}
350 		if (err) {		/* swp entry is obsolete ? */
351 			radix_tree_preload_end();
352 			break;
353 		}
354 
355 		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
356 		__set_page_locked(new_page);
357 		SetPageSwapBacked(new_page);
358 		err = __add_to_swap_cache(new_page, entry);
359 		if (likely(!err)) {
360 			radix_tree_preload_end();
361 			/*
362 			 * Initiate read into locked page and return.
363 			 */
364 			lru_cache_add_anon(new_page);
365 			*new_page_allocated = true;
366 			return new_page;
367 		}
368 		radix_tree_preload_end();
369 		ClearPageSwapBacked(new_page);
370 		__clear_page_locked(new_page);
371 		/*
372 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
373 		 * clear SWAP_HAS_CACHE flag.
374 		 */
375 		swapcache_free(entry);
376 	} while (err != -ENOMEM);
377 
378 	if (new_page)
379 		page_cache_release(new_page);
380 	return found_page;
381 }
382 
383 /*
384  * Locate a page of swap in physical memory, reserving swap cache space
385  * and reading the disk if it is not already cached.
386  * A failure return means that either the page allocation failed or that
387  * the swap entry is no longer in use.
388  */
389 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
390 			struct vm_area_struct *vma, unsigned long addr)
391 {
392 	bool page_was_allocated;
393 	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
394 			vma, addr, &page_was_allocated);
395 
396 	if (page_was_allocated)
397 		swap_readpage(retpage);
398 
399 	return retpage;
400 }
401 
402 static unsigned long swapin_nr_pages(unsigned long offset)
403 {
404 	static unsigned long prev_offset;
405 	unsigned int pages, max_pages, last_ra;
406 	static atomic_t last_readahead_pages;
407 
408 	max_pages = 1 << READ_ONCE(page_cluster);
409 	if (max_pages <= 1)
410 		return 1;
411 
412 	/*
413 	 * This heuristic has been found to work well on both sequential and
414 	 * random loads, swapping to hard disk or to SSD: please don't ask
415 	 * what the "+ 2" means, it just happens to work well, that's all.
416 	 */
417 	pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
418 	if (pages == 2) {
419 		/*
420 		 * We can have no readahead hits to judge by: but must not get
421 		 * stuck here forever, so check for an adjacent offset instead
422 		 * (and don't even bother to check whether swap type is same).
423 		 */
424 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
425 			pages = 1;
426 		prev_offset = offset;
427 	} else {
428 		unsigned int roundup = 4;
429 		while (roundup < pages)
430 			roundup <<= 1;
431 		pages = roundup;
432 	}
433 
434 	if (pages > max_pages)
435 		pages = max_pages;
436 
437 	/* Don't shrink readahead too fast */
438 	last_ra = atomic_read(&last_readahead_pages) / 2;
439 	if (pages < last_ra)
440 		pages = last_ra;
441 	atomic_set(&last_readahead_pages, pages);
442 
443 	return pages;
444 }
445 
446 /**
447  * swapin_readahead - swap in pages in hope we need them soon
448  * @entry: swap entry of this memory
449  * @gfp_mask: memory allocation flags
450  * @vma: user vma this address belongs to
451  * @addr: target address for mempolicy
452  *
453  * Returns the struct page for entry and addr, after queueing swapin.
454  *
455  * Primitive swap readahead code. We simply read an aligned block of
456  * (1 << page_cluster) entries in the swap area. This method is chosen
457  * because it doesn't cost us any seek time.  We also make sure to queue
458  * the 'original' request together with the readahead ones...
459  *
460  * This has been extended to use the NUMA policies from the mm triggering
461  * the readahead.
462  *
463  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
464  */
465 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
466 			struct vm_area_struct *vma, unsigned long addr)
467 {
468 	struct page *page;
469 	unsigned long entry_offset = swp_offset(entry);
470 	unsigned long offset = entry_offset;
471 	unsigned long start_offset, end_offset;
472 	unsigned long mask;
473 	struct blk_plug plug;
474 
475 	mask = swapin_nr_pages(offset) - 1;
476 	if (!mask)
477 		goto skip;
478 
479 	/* Read a page_cluster sized and aligned cluster around offset. */
480 	start_offset = offset & ~mask;
481 	end_offset = offset | mask;
482 	if (!start_offset)	/* First page is swap header. */
483 		start_offset++;
484 
485 	blk_start_plug(&plug);
486 	for (offset = start_offset; offset <= end_offset ; offset++) {
487 		/* Ok, do the async read-ahead now */
488 		page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
489 						gfp_mask, vma, addr);
490 		if (!page)
491 			continue;
492 		if (offset != entry_offset)
493 			SetPageReadahead(page);
494 		page_cache_release(page);
495 	}
496 	blk_finish_plug(&plug);
497 
498 	lru_add_drain();	/* Push any new pages onto the LRU now */
499 skip:
500 	return read_swap_cache_async(entry, gfp_mask, vma, addr);
501 }
502