xref: /openbmc/linux/mm/swap_state.c (revision e5c86679)
1 /*
2  *  linux/mm/swap_state.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  *
7  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8  */
9 #include <linux/mm.h>
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/vmalloc.h>
21 #include <linux/swap_slots.h>
22 
23 #include <asm/pgtable.h>
24 
25 /*
26  * swapper_space is a fiction, retained to simplify the path through
27  * vmscan's shrink_page_list.
28  */
29 static const struct address_space_operations swap_aops = {
30 	.writepage	= swap_writepage,
31 	.set_page_dirty	= swap_set_page_dirty,
32 #ifdef CONFIG_MIGRATION
33 	.migratepage	= migrate_page,
34 #endif
35 };
36 
37 struct address_space *swapper_spaces[MAX_SWAPFILES];
38 static unsigned int nr_swapper_spaces[MAX_SWAPFILES];
39 
40 #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
41 
42 static struct {
43 	unsigned long add_total;
44 	unsigned long del_total;
45 	unsigned long find_success;
46 	unsigned long find_total;
47 } swap_cache_info;
48 
49 unsigned long total_swapcache_pages(void)
50 {
51 	unsigned int i, j, nr;
52 	unsigned long ret = 0;
53 	struct address_space *spaces;
54 
55 	rcu_read_lock();
56 	for (i = 0; i < MAX_SWAPFILES; i++) {
57 		/*
58 		 * The corresponding entries in nr_swapper_spaces and
59 		 * swapper_spaces will be reused only after at least
60 		 * one grace period.  So it is impossible for them
61 		 * belongs to different usage.
62 		 */
63 		nr = nr_swapper_spaces[i];
64 		spaces = rcu_dereference(swapper_spaces[i]);
65 		if (!nr || !spaces)
66 			continue;
67 		for (j = 0; j < nr; j++)
68 			ret += spaces[j].nrpages;
69 	}
70 	rcu_read_unlock();
71 	return ret;
72 }
73 
74 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
75 
76 void show_swap_cache_info(void)
77 {
78 	printk("%lu pages in swap cache\n", total_swapcache_pages());
79 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
80 		swap_cache_info.add_total, swap_cache_info.del_total,
81 		swap_cache_info.find_success, swap_cache_info.find_total);
82 	printk("Free swap  = %ldkB\n",
83 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
84 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
85 }
86 
87 /*
88  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
89  * but sets SwapCache flag and private instead of mapping and index.
90  */
91 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
92 {
93 	int error;
94 	struct address_space *address_space;
95 
96 	VM_BUG_ON_PAGE(!PageLocked(page), page);
97 	VM_BUG_ON_PAGE(PageSwapCache(page), page);
98 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
99 
100 	get_page(page);
101 	SetPageSwapCache(page);
102 	set_page_private(page, entry.val);
103 
104 	address_space = swap_address_space(entry);
105 	spin_lock_irq(&address_space->tree_lock);
106 	error = radix_tree_insert(&address_space->page_tree,
107 				  swp_offset(entry), page);
108 	if (likely(!error)) {
109 		address_space->nrpages++;
110 		__inc_node_page_state(page, NR_FILE_PAGES);
111 		INC_CACHE_INFO(add_total);
112 	}
113 	spin_unlock_irq(&address_space->tree_lock);
114 
115 	if (unlikely(error)) {
116 		/*
117 		 * Only the context which have set SWAP_HAS_CACHE flag
118 		 * would call add_to_swap_cache().
119 		 * So add_to_swap_cache() doesn't returns -EEXIST.
120 		 */
121 		VM_BUG_ON(error == -EEXIST);
122 		set_page_private(page, 0UL);
123 		ClearPageSwapCache(page);
124 		put_page(page);
125 	}
126 
127 	return error;
128 }
129 
130 
131 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
132 {
133 	int error;
134 
135 	error = radix_tree_maybe_preload(gfp_mask);
136 	if (!error) {
137 		error = __add_to_swap_cache(page, entry);
138 		radix_tree_preload_end();
139 	}
140 	return error;
141 }
142 
143 /*
144  * This must be called only on pages that have
145  * been verified to be in the swap cache.
146  */
147 void __delete_from_swap_cache(struct page *page)
148 {
149 	swp_entry_t entry;
150 	struct address_space *address_space;
151 
152 	VM_BUG_ON_PAGE(!PageLocked(page), page);
153 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
154 	VM_BUG_ON_PAGE(PageWriteback(page), page);
155 
156 	entry.val = page_private(page);
157 	address_space = swap_address_space(entry);
158 	radix_tree_delete(&address_space->page_tree, swp_offset(entry));
159 	set_page_private(page, 0);
160 	ClearPageSwapCache(page);
161 	address_space->nrpages--;
162 	__dec_node_page_state(page, NR_FILE_PAGES);
163 	INC_CACHE_INFO(del_total);
164 }
165 
166 /**
167  * add_to_swap - allocate swap space for a page
168  * @page: page we want to move to swap
169  *
170  * Allocate swap space for the page and add the page to the
171  * swap cache.  Caller needs to hold the page lock.
172  */
173 int add_to_swap(struct page *page, struct list_head *list)
174 {
175 	swp_entry_t entry;
176 	int err;
177 
178 	VM_BUG_ON_PAGE(!PageLocked(page), page);
179 	VM_BUG_ON_PAGE(!PageUptodate(page), page);
180 
181 	entry = get_swap_page();
182 	if (!entry.val)
183 		return 0;
184 
185 	if (mem_cgroup_try_charge_swap(page, entry)) {
186 		swapcache_free(entry);
187 		return 0;
188 	}
189 
190 	if (unlikely(PageTransHuge(page)))
191 		if (unlikely(split_huge_page_to_list(page, list))) {
192 			swapcache_free(entry);
193 			return 0;
194 		}
195 
196 	/*
197 	 * Radix-tree node allocations from PF_MEMALLOC contexts could
198 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
199 	 * stops emergency reserves from being allocated.
200 	 *
201 	 * TODO: this could cause a theoretical memory reclaim
202 	 * deadlock in the swap out path.
203 	 */
204 	/*
205 	 * Add it to the swap cache.
206 	 */
207 	err = add_to_swap_cache(page, entry,
208 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
209 
210 	if (!err) {
211 		return 1;
212 	} else {	/* -ENOMEM radix-tree allocation failure */
213 		/*
214 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
215 		 * clear SWAP_HAS_CACHE flag.
216 		 */
217 		swapcache_free(entry);
218 		return 0;
219 	}
220 }
221 
222 /*
223  * This must be called only on pages that have
224  * been verified to be in the swap cache and locked.
225  * It will never put the page into the free list,
226  * the caller has a reference on the page.
227  */
228 void delete_from_swap_cache(struct page *page)
229 {
230 	swp_entry_t entry;
231 	struct address_space *address_space;
232 
233 	entry.val = page_private(page);
234 
235 	address_space = swap_address_space(entry);
236 	spin_lock_irq(&address_space->tree_lock);
237 	__delete_from_swap_cache(page);
238 	spin_unlock_irq(&address_space->tree_lock);
239 
240 	swapcache_free(entry);
241 	put_page(page);
242 }
243 
244 /*
245  * If we are the only user, then try to free up the swap cache.
246  *
247  * Its ok to check for PageSwapCache without the page lock
248  * here because we are going to recheck again inside
249  * try_to_free_swap() _with_ the lock.
250  * 					- Marcelo
251  */
252 static inline void free_swap_cache(struct page *page)
253 {
254 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
255 		try_to_free_swap(page);
256 		unlock_page(page);
257 	}
258 }
259 
260 /*
261  * Perform a free_page(), also freeing any swap cache associated with
262  * this page if it is the last user of the page.
263  */
264 void free_page_and_swap_cache(struct page *page)
265 {
266 	free_swap_cache(page);
267 	if (!is_huge_zero_page(page))
268 		put_page(page);
269 }
270 
271 /*
272  * Passed an array of pages, drop them all from swapcache and then release
273  * them.  They are removed from the LRU and freed if this is their last use.
274  */
275 void free_pages_and_swap_cache(struct page **pages, int nr)
276 {
277 	struct page **pagep = pages;
278 	int i;
279 
280 	lru_add_drain();
281 	for (i = 0; i < nr; i++)
282 		free_swap_cache(pagep[i]);
283 	release_pages(pagep, nr, false);
284 }
285 
286 /*
287  * Lookup a swap entry in the swap cache. A found page will be returned
288  * unlocked and with its refcount incremented - we rely on the kernel
289  * lock getting page table operations atomic even if we drop the page
290  * lock before returning.
291  */
292 struct page * lookup_swap_cache(swp_entry_t entry)
293 {
294 	struct page *page;
295 
296 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
297 
298 	if (page) {
299 		INC_CACHE_INFO(find_success);
300 		if (TestClearPageReadahead(page))
301 			atomic_inc(&swapin_readahead_hits);
302 	}
303 
304 	INC_CACHE_INFO(find_total);
305 	return page;
306 }
307 
308 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
309 			struct vm_area_struct *vma, unsigned long addr,
310 			bool *new_page_allocated)
311 {
312 	struct page *found_page, *new_page = NULL;
313 	struct address_space *swapper_space = swap_address_space(entry);
314 	int err;
315 	*new_page_allocated = false;
316 
317 	do {
318 		/*
319 		 * First check the swap cache.  Since this is normally
320 		 * called after lookup_swap_cache() failed, re-calling
321 		 * that would confuse statistics.
322 		 */
323 		found_page = find_get_page(swapper_space, swp_offset(entry));
324 		if (found_page)
325 			break;
326 
327 		/*
328 		 * Just skip read ahead for unused swap slot.
329 		 * During swap_off when swap_slot_cache is disabled,
330 		 * we have to handle the race between putting
331 		 * swap entry in swap cache and marking swap slot
332 		 * as SWAP_HAS_CACHE.  That's done in later part of code or
333 		 * else swap_off will be aborted if we return NULL.
334 		 */
335 		if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
336 			break;
337 
338 		/*
339 		 * Get a new page to read into from swap.
340 		 */
341 		if (!new_page) {
342 			new_page = alloc_page_vma(gfp_mask, vma, addr);
343 			if (!new_page)
344 				break;		/* Out of memory */
345 		}
346 
347 		/*
348 		 * call radix_tree_preload() while we can wait.
349 		 */
350 		err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
351 		if (err)
352 			break;
353 
354 		/*
355 		 * Swap entry may have been freed since our caller observed it.
356 		 */
357 		err = swapcache_prepare(entry);
358 		if (err == -EEXIST) {
359 			radix_tree_preload_end();
360 			/*
361 			 * We might race against get_swap_page() and stumble
362 			 * across a SWAP_HAS_CACHE swap_map entry whose page
363 			 * has not been brought into the swapcache yet, while
364 			 * the other end is scheduled away waiting on discard
365 			 * I/O completion at scan_swap_map().
366 			 *
367 			 * In order to avoid turning this transitory state
368 			 * into a permanent loop around this -EEXIST case
369 			 * if !CONFIG_PREEMPT and the I/O completion happens
370 			 * to be waiting on the CPU waitqueue where we are now
371 			 * busy looping, we just conditionally invoke the
372 			 * scheduler here, if there are some more important
373 			 * tasks to run.
374 			 */
375 			cond_resched();
376 			continue;
377 		}
378 		if (err) {		/* swp entry is obsolete ? */
379 			radix_tree_preload_end();
380 			break;
381 		}
382 
383 		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
384 		__SetPageLocked(new_page);
385 		__SetPageSwapBacked(new_page);
386 		err = __add_to_swap_cache(new_page, entry);
387 		if (likely(!err)) {
388 			radix_tree_preload_end();
389 			/*
390 			 * Initiate read into locked page and return.
391 			 */
392 			lru_cache_add_anon(new_page);
393 			*new_page_allocated = true;
394 			return new_page;
395 		}
396 		radix_tree_preload_end();
397 		__ClearPageLocked(new_page);
398 		/*
399 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
400 		 * clear SWAP_HAS_CACHE flag.
401 		 */
402 		swapcache_free(entry);
403 	} while (err != -ENOMEM);
404 
405 	if (new_page)
406 		put_page(new_page);
407 	return found_page;
408 }
409 
410 /*
411  * Locate a page of swap in physical memory, reserving swap cache space
412  * and reading the disk if it is not already cached.
413  * A failure return means that either the page allocation failed or that
414  * the swap entry is no longer in use.
415  */
416 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
417 			struct vm_area_struct *vma, unsigned long addr)
418 {
419 	bool page_was_allocated;
420 	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
421 			vma, addr, &page_was_allocated);
422 
423 	if (page_was_allocated)
424 		swap_readpage(retpage);
425 
426 	return retpage;
427 }
428 
429 static unsigned long swapin_nr_pages(unsigned long offset)
430 {
431 	static unsigned long prev_offset;
432 	unsigned int pages, max_pages, last_ra;
433 	static atomic_t last_readahead_pages;
434 
435 	max_pages = 1 << READ_ONCE(page_cluster);
436 	if (max_pages <= 1)
437 		return 1;
438 
439 	/*
440 	 * This heuristic has been found to work well on both sequential and
441 	 * random loads, swapping to hard disk or to SSD: please don't ask
442 	 * what the "+ 2" means, it just happens to work well, that's all.
443 	 */
444 	pages = atomic_xchg(&swapin_readahead_hits, 0) + 2;
445 	if (pages == 2) {
446 		/*
447 		 * We can have no readahead hits to judge by: but must not get
448 		 * stuck here forever, so check for an adjacent offset instead
449 		 * (and don't even bother to check whether swap type is same).
450 		 */
451 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
452 			pages = 1;
453 		prev_offset = offset;
454 	} else {
455 		unsigned int roundup = 4;
456 		while (roundup < pages)
457 			roundup <<= 1;
458 		pages = roundup;
459 	}
460 
461 	if (pages > max_pages)
462 		pages = max_pages;
463 
464 	/* Don't shrink readahead too fast */
465 	last_ra = atomic_read(&last_readahead_pages) / 2;
466 	if (pages < last_ra)
467 		pages = last_ra;
468 	atomic_set(&last_readahead_pages, pages);
469 
470 	return pages;
471 }
472 
473 /**
474  * swapin_readahead - swap in pages in hope we need them soon
475  * @entry: swap entry of this memory
476  * @gfp_mask: memory allocation flags
477  * @vma: user vma this address belongs to
478  * @addr: target address for mempolicy
479  *
480  * Returns the struct page for entry and addr, after queueing swapin.
481  *
482  * Primitive swap readahead code. We simply read an aligned block of
483  * (1 << page_cluster) entries in the swap area. This method is chosen
484  * because it doesn't cost us any seek time.  We also make sure to queue
485  * the 'original' request together with the readahead ones...
486  *
487  * This has been extended to use the NUMA policies from the mm triggering
488  * the readahead.
489  *
490  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
491  */
492 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
493 			struct vm_area_struct *vma, unsigned long addr)
494 {
495 	struct page *page;
496 	unsigned long entry_offset = swp_offset(entry);
497 	unsigned long offset = entry_offset;
498 	unsigned long start_offset, end_offset;
499 	unsigned long mask;
500 	struct blk_plug plug;
501 
502 	mask = swapin_nr_pages(offset) - 1;
503 	if (!mask)
504 		goto skip;
505 
506 	/* Read a page_cluster sized and aligned cluster around offset. */
507 	start_offset = offset & ~mask;
508 	end_offset = offset | mask;
509 	if (!start_offset)	/* First page is swap header. */
510 		start_offset++;
511 
512 	blk_start_plug(&plug);
513 	for (offset = start_offset; offset <= end_offset ; offset++) {
514 		/* Ok, do the async read-ahead now */
515 		page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
516 						gfp_mask, vma, addr);
517 		if (!page)
518 			continue;
519 		if (offset != entry_offset)
520 			SetPageReadahead(page);
521 		put_page(page);
522 	}
523 	blk_finish_plug(&plug);
524 
525 	lru_add_drain();	/* Push any new pages onto the LRU now */
526 skip:
527 	return read_swap_cache_async(entry, gfp_mask, vma, addr);
528 }
529 
530 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
531 {
532 	struct address_space *spaces, *space;
533 	unsigned int i, nr;
534 
535 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
536 	spaces = vzalloc(sizeof(struct address_space) * nr);
537 	if (!spaces)
538 		return -ENOMEM;
539 	for (i = 0; i < nr; i++) {
540 		space = spaces + i;
541 		INIT_RADIX_TREE(&space->page_tree, GFP_ATOMIC|__GFP_NOWARN);
542 		atomic_set(&space->i_mmap_writable, 0);
543 		space->a_ops = &swap_aops;
544 		/* swap cache doesn't use writeback related tags */
545 		mapping_set_no_writeback_tags(space);
546 		spin_lock_init(&space->tree_lock);
547 	}
548 	nr_swapper_spaces[type] = nr;
549 	rcu_assign_pointer(swapper_spaces[type], spaces);
550 
551 	return 0;
552 }
553 
554 void exit_swap_address_space(unsigned int type)
555 {
556 	struct address_space *spaces;
557 
558 	spaces = swapper_spaces[type];
559 	nr_swapper_spaces[type] = 0;
560 	rcu_assign_pointer(swapper_spaces[type], NULL);
561 	synchronize_rcu();
562 	kvfree(spaces);
563 }
564