xref: /openbmc/linux/mm/swap_state.c (revision e33bbe69149b802c0c77bfb822685772f85388ca)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/swap_state.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  *
8  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
9  */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24 
25 #include <asm/pgtable.h>
26 
27 /*
28  * swapper_space is a fiction, retained to simplify the path through
29  * vmscan's shrink_page_list.
30  */
31 static const struct address_space_operations swap_aops = {
32 	.writepage	= swap_writepage,
33 	.set_page_dirty	= swap_set_page_dirty,
34 #ifdef CONFIG_MIGRATION
35 	.migratepage	= migrate_page,
36 #endif
37 };
38 
39 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
40 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 static bool enable_vma_readahead __read_mostly = true;
42 
43 #define SWAP_RA_WIN_SHIFT	(PAGE_SHIFT / 2)
44 #define SWAP_RA_HITS_MASK	((1UL << SWAP_RA_WIN_SHIFT) - 1)
45 #define SWAP_RA_HITS_MAX	SWAP_RA_HITS_MASK
46 #define SWAP_RA_WIN_MASK	(~PAGE_MASK & ~SWAP_RA_HITS_MASK)
47 
48 #define SWAP_RA_HITS(v)		((v) & SWAP_RA_HITS_MASK)
49 #define SWAP_RA_WIN(v)		(((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
50 #define SWAP_RA_ADDR(v)		((v) & PAGE_MASK)
51 
52 #define SWAP_RA_VAL(addr, win, hits)				\
53 	(((addr) & PAGE_MASK) |					\
54 	 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |	\
55 	 ((hits) & SWAP_RA_HITS_MASK))
56 
57 /* Initial readahead hits is 4 to start up with a small window */
58 #define GET_SWAP_RA_VAL(vma)					\
59 	(atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
60 
61 #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
62 #define ADD_CACHE_INFO(x, nr)	do { swap_cache_info.x += (nr); } while (0)
63 
64 static struct {
65 	unsigned long add_total;
66 	unsigned long del_total;
67 	unsigned long find_success;
68 	unsigned long find_total;
69 } swap_cache_info;
70 
71 unsigned long total_swapcache_pages(void)
72 {
73 	unsigned int i, j, nr;
74 	unsigned long ret = 0;
75 	struct address_space *spaces;
76 
77 	rcu_read_lock();
78 	for (i = 0; i < MAX_SWAPFILES; i++) {
79 		/*
80 		 * The corresponding entries in nr_swapper_spaces and
81 		 * swapper_spaces will be reused only after at least
82 		 * one grace period.  So it is impossible for them
83 		 * belongs to different usage.
84 		 */
85 		nr = nr_swapper_spaces[i];
86 		spaces = rcu_dereference(swapper_spaces[i]);
87 		if (!nr || !spaces)
88 			continue;
89 		for (j = 0; j < nr; j++)
90 			ret += spaces[j].nrpages;
91 	}
92 	rcu_read_unlock();
93 	return ret;
94 }
95 
96 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
97 
98 void show_swap_cache_info(void)
99 {
100 	printk("%lu pages in swap cache\n", total_swapcache_pages());
101 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
102 		swap_cache_info.add_total, swap_cache_info.del_total,
103 		swap_cache_info.find_success, swap_cache_info.find_total);
104 	printk("Free swap  = %ldkB\n",
105 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
106 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
107 }
108 
109 /*
110  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
111  * but sets SwapCache flag and private instead of mapping and index.
112  */
113 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
114 {
115 	int error, i, nr = hpage_nr_pages(page);
116 	struct address_space *address_space;
117 	pgoff_t idx = swp_offset(entry);
118 
119 	VM_BUG_ON_PAGE(!PageLocked(page), page);
120 	VM_BUG_ON_PAGE(PageSwapCache(page), page);
121 	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
122 
123 	page_ref_add(page, nr);
124 	SetPageSwapCache(page);
125 
126 	address_space = swap_address_space(entry);
127 	xa_lock_irq(&address_space->i_pages);
128 	for (i = 0; i < nr; i++) {
129 		set_page_private(page + i, entry.val + i);
130 		error = radix_tree_insert(&address_space->i_pages,
131 					  idx + i, page + i);
132 		if (unlikely(error))
133 			break;
134 	}
135 	if (likely(!error)) {
136 		address_space->nrpages += nr;
137 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
138 		ADD_CACHE_INFO(add_total, nr);
139 	} else {
140 		/*
141 		 * Only the context which have set SWAP_HAS_CACHE flag
142 		 * would call add_to_swap_cache().
143 		 * So add_to_swap_cache() doesn't returns -EEXIST.
144 		 */
145 		VM_BUG_ON(error == -EEXIST);
146 		set_page_private(page + i, 0UL);
147 		while (i--) {
148 			radix_tree_delete(&address_space->i_pages, idx + i);
149 			set_page_private(page + i, 0UL);
150 		}
151 		ClearPageSwapCache(page);
152 		page_ref_sub(page, nr);
153 	}
154 	xa_unlock_irq(&address_space->i_pages);
155 
156 	return error;
157 }
158 
159 
160 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
161 {
162 	int error;
163 
164 	error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page));
165 	if (!error) {
166 		error = __add_to_swap_cache(page, entry);
167 		radix_tree_preload_end();
168 	}
169 	return error;
170 }
171 
172 /*
173  * This must be called only on pages that have
174  * been verified to be in the swap cache.
175  */
176 void __delete_from_swap_cache(struct page *page)
177 {
178 	struct address_space *address_space;
179 	int i, nr = hpage_nr_pages(page);
180 	swp_entry_t entry;
181 	pgoff_t idx;
182 
183 	VM_BUG_ON_PAGE(!PageLocked(page), page);
184 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
185 	VM_BUG_ON_PAGE(PageWriteback(page), page);
186 
187 	entry.val = page_private(page);
188 	address_space = swap_address_space(entry);
189 	idx = swp_offset(entry);
190 	for (i = 0; i < nr; i++) {
191 		radix_tree_delete(&address_space->i_pages, idx + i);
192 		set_page_private(page + i, 0);
193 	}
194 	ClearPageSwapCache(page);
195 	address_space->nrpages -= nr;
196 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
197 	ADD_CACHE_INFO(del_total, nr);
198 }
199 
200 /**
201  * add_to_swap - allocate swap space for a page
202  * @page: page we want to move to swap
203  *
204  * Allocate swap space for the page and add the page to the
205  * swap cache.  Caller needs to hold the page lock.
206  */
207 int add_to_swap(struct page *page)
208 {
209 	swp_entry_t entry;
210 	int err;
211 
212 	VM_BUG_ON_PAGE(!PageLocked(page), page);
213 	VM_BUG_ON_PAGE(!PageUptodate(page), page);
214 
215 	entry = get_swap_page(page);
216 	if (!entry.val)
217 		return 0;
218 
219 	if (mem_cgroup_try_charge_swap(page, entry))
220 		goto fail;
221 
222 	/*
223 	 * Radix-tree node allocations from PF_MEMALLOC contexts could
224 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
225 	 * stops emergency reserves from being allocated.
226 	 *
227 	 * TODO: this could cause a theoretical memory reclaim
228 	 * deadlock in the swap out path.
229 	 */
230 	/*
231 	 * Add it to the swap cache.
232 	 */
233 	err = add_to_swap_cache(page, entry,
234 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
235 	/* -ENOMEM radix-tree allocation failure */
236 	if (err)
237 		/*
238 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
239 		 * clear SWAP_HAS_CACHE flag.
240 		 */
241 		goto fail;
242 	/*
243 	 * Normally the page will be dirtied in unmap because its pte should be
244 	 * dirty. A special case is MADV_FREE page. The page'e pte could have
245 	 * dirty bit cleared but the page's SwapBacked bit is still set because
246 	 * clearing the dirty bit and SwapBacked bit has no lock protected. For
247 	 * such page, unmap will not set dirty bit for it, so page reclaim will
248 	 * not write the page out. This can cause data corruption when the page
249 	 * is swap in later. Always setting the dirty bit for the page solves
250 	 * the problem.
251 	 */
252 	set_page_dirty(page);
253 
254 	return 1;
255 
256 fail:
257 	put_swap_page(page, entry);
258 	return 0;
259 }
260 
261 /*
262  * This must be called only on pages that have
263  * been verified to be in the swap cache and locked.
264  * It will never put the page into the free list,
265  * the caller has a reference on the page.
266  */
267 void delete_from_swap_cache(struct page *page)
268 {
269 	swp_entry_t entry;
270 	struct address_space *address_space;
271 
272 	entry.val = page_private(page);
273 
274 	address_space = swap_address_space(entry);
275 	xa_lock_irq(&address_space->i_pages);
276 	__delete_from_swap_cache(page);
277 	xa_unlock_irq(&address_space->i_pages);
278 
279 	put_swap_page(page, entry);
280 	page_ref_sub(page, hpage_nr_pages(page));
281 }
282 
283 /*
284  * If we are the only user, then try to free up the swap cache.
285  *
286  * Its ok to check for PageSwapCache without the page lock
287  * here because we are going to recheck again inside
288  * try_to_free_swap() _with_ the lock.
289  * 					- Marcelo
290  */
291 static inline void free_swap_cache(struct page *page)
292 {
293 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
294 		try_to_free_swap(page);
295 		unlock_page(page);
296 	}
297 }
298 
299 /*
300  * Perform a free_page(), also freeing any swap cache associated with
301  * this page if it is the last user of the page.
302  */
303 void free_page_and_swap_cache(struct page *page)
304 {
305 	free_swap_cache(page);
306 	if (!is_huge_zero_page(page))
307 		put_page(page);
308 }
309 
310 /*
311  * Passed an array of pages, drop them all from swapcache and then release
312  * them.  They are removed from the LRU and freed if this is their last use.
313  */
314 void free_pages_and_swap_cache(struct page **pages, int nr)
315 {
316 	struct page **pagep = pages;
317 	int i;
318 
319 	lru_add_drain();
320 	for (i = 0; i < nr; i++)
321 		free_swap_cache(pagep[i]);
322 	release_pages(pagep, nr);
323 }
324 
325 static inline bool swap_use_vma_readahead(void)
326 {
327 	return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
328 }
329 
330 /*
331  * Lookup a swap entry in the swap cache. A found page will be returned
332  * unlocked and with its refcount incremented - we rely on the kernel
333  * lock getting page table operations atomic even if we drop the page
334  * lock before returning.
335  */
336 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
337 			       unsigned long addr)
338 {
339 	struct page *page;
340 
341 	page = find_get_page(swap_address_space(entry), swp_offset(entry));
342 
343 	INC_CACHE_INFO(find_total);
344 	if (page) {
345 		bool vma_ra = swap_use_vma_readahead();
346 		bool readahead;
347 
348 		INC_CACHE_INFO(find_success);
349 		/*
350 		 * At the moment, we don't support PG_readahead for anon THP
351 		 * so let's bail out rather than confusing the readahead stat.
352 		 */
353 		if (unlikely(PageTransCompound(page)))
354 			return page;
355 
356 		readahead = TestClearPageReadahead(page);
357 		if (vma && vma_ra) {
358 			unsigned long ra_val;
359 			int win, hits;
360 
361 			ra_val = GET_SWAP_RA_VAL(vma);
362 			win = SWAP_RA_WIN(ra_val);
363 			hits = SWAP_RA_HITS(ra_val);
364 			if (readahead)
365 				hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
366 			atomic_long_set(&vma->swap_readahead_info,
367 					SWAP_RA_VAL(addr, win, hits));
368 		}
369 
370 		if (readahead) {
371 			count_vm_event(SWAP_RA_HIT);
372 			if (!vma || !vma_ra)
373 				atomic_inc(&swapin_readahead_hits);
374 		}
375 	}
376 
377 	return page;
378 }
379 
380 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
381 			struct vm_area_struct *vma, unsigned long addr,
382 			bool *new_page_allocated)
383 {
384 	struct page *found_page, *new_page = NULL;
385 	struct address_space *swapper_space = swap_address_space(entry);
386 	int err;
387 	*new_page_allocated = false;
388 
389 	do {
390 		/*
391 		 * First check the swap cache.  Since this is normally
392 		 * called after lookup_swap_cache() failed, re-calling
393 		 * that would confuse statistics.
394 		 */
395 		found_page = find_get_page(swapper_space, swp_offset(entry));
396 		if (found_page)
397 			break;
398 
399 		/*
400 		 * Just skip read ahead for unused swap slot.
401 		 * During swap_off when swap_slot_cache is disabled,
402 		 * we have to handle the race between putting
403 		 * swap entry in swap cache and marking swap slot
404 		 * as SWAP_HAS_CACHE.  That's done in later part of code or
405 		 * else swap_off will be aborted if we return NULL.
406 		 */
407 		if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
408 			break;
409 
410 		/*
411 		 * Get a new page to read into from swap.
412 		 */
413 		if (!new_page) {
414 			new_page = alloc_page_vma(gfp_mask, vma, addr);
415 			if (!new_page)
416 				break;		/* Out of memory */
417 		}
418 
419 		/*
420 		 * call radix_tree_preload() while we can wait.
421 		 */
422 		err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
423 		if (err)
424 			break;
425 
426 		/*
427 		 * Swap entry may have been freed since our caller observed it.
428 		 */
429 		err = swapcache_prepare(entry);
430 		if (err == -EEXIST) {
431 			radix_tree_preload_end();
432 			/*
433 			 * We might race against get_swap_page() and stumble
434 			 * across a SWAP_HAS_CACHE swap_map entry whose page
435 			 * has not been brought into the swapcache yet.
436 			 */
437 			cond_resched();
438 			continue;
439 		}
440 		if (err) {		/* swp entry is obsolete ? */
441 			radix_tree_preload_end();
442 			break;
443 		}
444 
445 		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
446 		__SetPageLocked(new_page);
447 		__SetPageSwapBacked(new_page);
448 		err = __add_to_swap_cache(new_page, entry);
449 		if (likely(!err)) {
450 			radix_tree_preload_end();
451 			/*
452 			 * Initiate read into locked page and return.
453 			 */
454 			lru_cache_add_anon(new_page);
455 			*new_page_allocated = true;
456 			return new_page;
457 		}
458 		radix_tree_preload_end();
459 		__ClearPageLocked(new_page);
460 		/*
461 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
462 		 * clear SWAP_HAS_CACHE flag.
463 		 */
464 		put_swap_page(new_page, entry);
465 	} while (err != -ENOMEM);
466 
467 	if (new_page)
468 		put_page(new_page);
469 	return found_page;
470 }
471 
472 /*
473  * Locate a page of swap in physical memory, reserving swap cache space
474  * and reading the disk if it is not already cached.
475  * A failure return means that either the page allocation failed or that
476  * the swap entry is no longer in use.
477  */
478 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
479 		struct vm_area_struct *vma, unsigned long addr, bool do_poll)
480 {
481 	bool page_was_allocated;
482 	struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
483 			vma, addr, &page_was_allocated);
484 
485 	if (page_was_allocated)
486 		swap_readpage(retpage, do_poll);
487 
488 	return retpage;
489 }
490 
491 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
492 				      unsigned long offset,
493 				      int hits,
494 				      int max_pages,
495 				      int prev_win)
496 {
497 	unsigned int pages, last_ra;
498 
499 	/*
500 	 * This heuristic has been found to work well on both sequential and
501 	 * random loads, swapping to hard disk or to SSD: please don't ask
502 	 * what the "+ 2" means, it just happens to work well, that's all.
503 	 */
504 	pages = hits + 2;
505 	if (pages == 2) {
506 		/*
507 		 * We can have no readahead hits to judge by: but must not get
508 		 * stuck here forever, so check for an adjacent offset instead
509 		 * (and don't even bother to check whether swap type is same).
510 		 */
511 		if (offset != prev_offset + 1 && offset != prev_offset - 1)
512 			pages = 1;
513 	} else {
514 		unsigned int roundup = 4;
515 		while (roundup < pages)
516 			roundup <<= 1;
517 		pages = roundup;
518 	}
519 
520 	if (pages > max_pages)
521 		pages = max_pages;
522 
523 	/* Don't shrink readahead too fast */
524 	last_ra = prev_win / 2;
525 	if (pages < last_ra)
526 		pages = last_ra;
527 
528 	return pages;
529 }
530 
531 static unsigned long swapin_nr_pages(unsigned long offset)
532 {
533 	static unsigned long prev_offset;
534 	unsigned int hits, pages, max_pages;
535 	static atomic_t last_readahead_pages;
536 
537 	max_pages = 1 << READ_ONCE(page_cluster);
538 	if (max_pages <= 1)
539 		return 1;
540 
541 	hits = atomic_xchg(&swapin_readahead_hits, 0);
542 	pages = __swapin_nr_pages(prev_offset, offset, hits, max_pages,
543 				  atomic_read(&last_readahead_pages));
544 	if (!hits)
545 		prev_offset = offset;
546 	atomic_set(&last_readahead_pages, pages);
547 
548 	return pages;
549 }
550 
551 /**
552  * swap_cluster_readahead - swap in pages in hope we need them soon
553  * @entry: swap entry of this memory
554  * @gfp_mask: memory allocation flags
555  * @vmf: fault information
556  *
557  * Returns the struct page for entry and addr, after queueing swapin.
558  *
559  * Primitive swap readahead code. We simply read an aligned block of
560  * (1 << page_cluster) entries in the swap area. This method is chosen
561  * because it doesn't cost us any seek time.  We also make sure to queue
562  * the 'original' request together with the readahead ones...
563  *
564  * This has been extended to use the NUMA policies from the mm triggering
565  * the readahead.
566  *
567  * Caller must hold down_read on the vma->vm_mm if vmf->vma is not NULL.
568  */
569 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
570 				struct vm_fault *vmf)
571 {
572 	struct page *page;
573 	unsigned long entry_offset = swp_offset(entry);
574 	unsigned long offset = entry_offset;
575 	unsigned long start_offset, end_offset;
576 	unsigned long mask;
577 	struct swap_info_struct *si = swp_swap_info(entry);
578 	struct blk_plug plug;
579 	bool do_poll = true, page_allocated;
580 	struct vm_area_struct *vma = vmf->vma;
581 	unsigned long addr = vmf->address;
582 
583 	mask = swapin_nr_pages(offset) - 1;
584 	if (!mask)
585 		goto skip;
586 
587 	do_poll = false;
588 	/* Read a page_cluster sized and aligned cluster around offset. */
589 	start_offset = offset & ~mask;
590 	end_offset = offset | mask;
591 	if (!start_offset)	/* First page is swap header. */
592 		start_offset++;
593 	if (end_offset >= si->max)
594 		end_offset = si->max - 1;
595 
596 	blk_start_plug(&plug);
597 	for (offset = start_offset; offset <= end_offset ; offset++) {
598 		/* Ok, do the async read-ahead now */
599 		page = __read_swap_cache_async(
600 			swp_entry(swp_type(entry), offset),
601 			gfp_mask, vma, addr, &page_allocated);
602 		if (!page)
603 			continue;
604 		if (page_allocated) {
605 			swap_readpage(page, false);
606 			if (offset != entry_offset) {
607 				SetPageReadahead(page);
608 				count_vm_event(SWAP_RA);
609 			}
610 		}
611 		put_page(page);
612 	}
613 	blk_finish_plug(&plug);
614 
615 	lru_add_drain();	/* Push any new pages onto the LRU now */
616 skip:
617 	return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
618 }
619 
620 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
621 {
622 	struct address_space *spaces, *space;
623 	unsigned int i, nr;
624 
625 	nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
626 	spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL);
627 	if (!spaces)
628 		return -ENOMEM;
629 	for (i = 0; i < nr; i++) {
630 		space = spaces + i;
631 		INIT_RADIX_TREE(&space->i_pages, GFP_ATOMIC|__GFP_NOWARN);
632 		atomic_set(&space->i_mmap_writable, 0);
633 		space->a_ops = &swap_aops;
634 		/* swap cache doesn't use writeback related tags */
635 		mapping_set_no_writeback_tags(space);
636 	}
637 	nr_swapper_spaces[type] = nr;
638 	rcu_assign_pointer(swapper_spaces[type], spaces);
639 
640 	return 0;
641 }
642 
643 void exit_swap_address_space(unsigned int type)
644 {
645 	struct address_space *spaces;
646 
647 	spaces = swapper_spaces[type];
648 	nr_swapper_spaces[type] = 0;
649 	rcu_assign_pointer(swapper_spaces[type], NULL);
650 	synchronize_rcu();
651 	kvfree(spaces);
652 }
653 
654 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
655 				     unsigned long faddr,
656 				     unsigned long lpfn,
657 				     unsigned long rpfn,
658 				     unsigned long *start,
659 				     unsigned long *end)
660 {
661 	*start = max3(lpfn, PFN_DOWN(vma->vm_start),
662 		      PFN_DOWN(faddr & PMD_MASK));
663 	*end = min3(rpfn, PFN_DOWN(vma->vm_end),
664 		    PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
665 }
666 
667 static void swap_ra_info(struct vm_fault *vmf,
668 			struct vma_swap_readahead *ra_info)
669 {
670 	struct vm_area_struct *vma = vmf->vma;
671 	unsigned long ra_val;
672 	swp_entry_t entry;
673 	unsigned long faddr, pfn, fpfn;
674 	unsigned long start, end;
675 	pte_t *pte, *orig_pte;
676 	unsigned int max_win, hits, prev_win, win, left;
677 #ifndef CONFIG_64BIT
678 	pte_t *tpte;
679 #endif
680 
681 	max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
682 			     SWAP_RA_ORDER_CEILING);
683 	if (max_win == 1) {
684 		ra_info->win = 1;
685 		return;
686 	}
687 
688 	faddr = vmf->address;
689 	orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
690 	entry = pte_to_swp_entry(*pte);
691 	if ((unlikely(non_swap_entry(entry)))) {
692 		pte_unmap(orig_pte);
693 		return;
694 	}
695 
696 	fpfn = PFN_DOWN(faddr);
697 	ra_val = GET_SWAP_RA_VAL(vma);
698 	pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
699 	prev_win = SWAP_RA_WIN(ra_val);
700 	hits = SWAP_RA_HITS(ra_val);
701 	ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
702 					       max_win, prev_win);
703 	atomic_long_set(&vma->swap_readahead_info,
704 			SWAP_RA_VAL(faddr, win, 0));
705 
706 	if (win == 1) {
707 		pte_unmap(orig_pte);
708 		return;
709 	}
710 
711 	/* Copy the PTEs because the page table may be unmapped */
712 	if (fpfn == pfn + 1)
713 		swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
714 	else if (pfn == fpfn + 1)
715 		swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
716 				  &start, &end);
717 	else {
718 		left = (win - 1) / 2;
719 		swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
720 				  &start, &end);
721 	}
722 	ra_info->nr_pte = end - start;
723 	ra_info->offset = fpfn - start;
724 	pte -= ra_info->offset;
725 #ifdef CONFIG_64BIT
726 	ra_info->ptes = pte;
727 #else
728 	tpte = ra_info->ptes;
729 	for (pfn = start; pfn != end; pfn++)
730 		*tpte++ = *pte++;
731 #endif
732 	pte_unmap(orig_pte);
733 }
734 
735 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
736 				       struct vm_fault *vmf)
737 {
738 	struct blk_plug plug;
739 	struct vm_area_struct *vma = vmf->vma;
740 	struct page *page;
741 	pte_t *pte, pentry;
742 	swp_entry_t entry;
743 	unsigned int i;
744 	bool page_allocated;
745 	struct vma_swap_readahead ra_info = {0,};
746 
747 	swap_ra_info(vmf, &ra_info);
748 	if (ra_info.win == 1)
749 		goto skip;
750 
751 	blk_start_plug(&plug);
752 	for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
753 	     i++, pte++) {
754 		pentry = *pte;
755 		if (pte_none(pentry))
756 			continue;
757 		if (pte_present(pentry))
758 			continue;
759 		entry = pte_to_swp_entry(pentry);
760 		if (unlikely(non_swap_entry(entry)))
761 			continue;
762 		page = __read_swap_cache_async(entry, gfp_mask, vma,
763 					       vmf->address, &page_allocated);
764 		if (!page)
765 			continue;
766 		if (page_allocated) {
767 			swap_readpage(page, false);
768 			if (i != ra_info.offset) {
769 				SetPageReadahead(page);
770 				count_vm_event(SWAP_RA);
771 			}
772 		}
773 		put_page(page);
774 	}
775 	blk_finish_plug(&plug);
776 	lru_add_drain();
777 skip:
778 	return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
779 				     ra_info.win == 1);
780 }
781 
782 /**
783  * swapin_readahead - swap in pages in hope we need them soon
784  * @entry: swap entry of this memory
785  * @gfp_mask: memory allocation flags
786  * @vmf: fault information
787  *
788  * Returns the struct page for entry and addr, after queueing swapin.
789  *
790  * It's a main entry function for swap readahead. By the configuration,
791  * it will read ahead blocks by cluster-based(ie, physical disk based)
792  * or vma-based(ie, virtual address based on faulty address) readahead.
793  */
794 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
795 				struct vm_fault *vmf)
796 {
797 	return swap_use_vma_readahead() ?
798 			swap_vma_readahead(entry, gfp_mask, vmf) :
799 			swap_cluster_readahead(entry, gfp_mask, vmf);
800 }
801 
802 #ifdef CONFIG_SYSFS
803 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
804 				     struct kobj_attribute *attr, char *buf)
805 {
806 	return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false");
807 }
808 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
809 				      struct kobj_attribute *attr,
810 				      const char *buf, size_t count)
811 {
812 	if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
813 		enable_vma_readahead = true;
814 	else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
815 		enable_vma_readahead = false;
816 	else
817 		return -EINVAL;
818 
819 	return count;
820 }
821 static struct kobj_attribute vma_ra_enabled_attr =
822 	__ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
823 	       vma_ra_enabled_store);
824 
825 static struct attribute *swap_attrs[] = {
826 	&vma_ra_enabled_attr.attr,
827 	NULL,
828 };
829 
830 static struct attribute_group swap_attr_group = {
831 	.attrs = swap_attrs,
832 };
833 
834 static int __init swap_init_sysfs(void)
835 {
836 	int err;
837 	struct kobject *swap_kobj;
838 
839 	swap_kobj = kobject_create_and_add("swap", mm_kobj);
840 	if (!swap_kobj) {
841 		pr_err("failed to create swap kobject\n");
842 		return -ENOMEM;
843 	}
844 	err = sysfs_create_group(swap_kobj, &swap_attr_group);
845 	if (err) {
846 		pr_err("failed to register swap group\n");
847 		goto delete_obj;
848 	}
849 	return 0;
850 
851 delete_obj:
852 	kobject_put(swap_kobj);
853 	return err;
854 }
855 subsys_initcall(swap_init_sysfs);
856 #endif
857