1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/swap_state.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * Swap reorganised 29.12.95, Stephen Tweedie 7 * 8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie 9 */ 10 #include <linux/mm.h> 11 #include <linux/gfp.h> 12 #include <linux/kernel_stat.h> 13 #include <linux/swap.h> 14 #include <linux/swapops.h> 15 #include <linux/init.h> 16 #include <linux/pagemap.h> 17 #include <linux/backing-dev.h> 18 #include <linux/blkdev.h> 19 #include <linux/pagevec.h> 20 #include <linux/migrate.h> 21 #include <linux/vmalloc.h> 22 #include <linux/swap_slots.h> 23 #include <linux/huge_mm.h> 24 #include <linux/shmem_fs.h> 25 #include "internal.h" 26 #include "swap.h" 27 28 /* 29 * swapper_space is a fiction, retained to simplify the path through 30 * vmscan's shrink_page_list. 31 */ 32 static const struct address_space_operations swap_aops = { 33 .writepage = swap_writepage, 34 .dirty_folio = noop_dirty_folio, 35 #ifdef CONFIG_MIGRATION 36 .migratepage = migrate_page, 37 #endif 38 }; 39 40 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly; 41 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly; 42 static bool enable_vma_readahead __read_mostly = true; 43 44 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2) 45 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1) 46 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK 47 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK) 48 49 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK) 50 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT) 51 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK) 52 53 #define SWAP_RA_VAL(addr, win, hits) \ 54 (((addr) & PAGE_MASK) | \ 55 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \ 56 ((hits) & SWAP_RA_HITS_MASK)) 57 58 /* Initial readahead hits is 4 to start up with a small window */ 59 #define GET_SWAP_RA_VAL(vma) \ 60 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4) 61 62 #define INC_CACHE_INFO(x) data_race(swap_cache_info.x++) 63 #define ADD_CACHE_INFO(x, nr) data_race(swap_cache_info.x += (nr)) 64 65 static struct { 66 unsigned long add_total; 67 unsigned long del_total; 68 unsigned long find_success; 69 unsigned long find_total; 70 } swap_cache_info; 71 72 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4); 73 74 void show_swap_cache_info(void) 75 { 76 printk("%lu pages in swap cache\n", total_swapcache_pages()); 77 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n", 78 swap_cache_info.add_total, swap_cache_info.del_total, 79 swap_cache_info.find_success, swap_cache_info.find_total); 80 printk("Free swap = %ldkB\n", 81 get_nr_swap_pages() << (PAGE_SHIFT - 10)); 82 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10)); 83 } 84 85 void *get_shadow_from_swap_cache(swp_entry_t entry) 86 { 87 struct address_space *address_space = swap_address_space(entry); 88 pgoff_t idx = swp_offset(entry); 89 struct page *page; 90 91 page = xa_load(&address_space->i_pages, idx); 92 if (xa_is_value(page)) 93 return page; 94 return NULL; 95 } 96 97 /* 98 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space, 99 * but sets SwapCache flag and private instead of mapping and index. 100 */ 101 int add_to_swap_cache(struct page *page, swp_entry_t entry, 102 gfp_t gfp, void **shadowp) 103 { 104 struct address_space *address_space = swap_address_space(entry); 105 pgoff_t idx = swp_offset(entry); 106 XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page)); 107 unsigned long i, nr = thp_nr_pages(page); 108 void *old; 109 110 VM_BUG_ON_PAGE(!PageLocked(page), page); 111 VM_BUG_ON_PAGE(PageSwapCache(page), page); 112 VM_BUG_ON_PAGE(!PageSwapBacked(page), page); 113 114 page_ref_add(page, nr); 115 SetPageSwapCache(page); 116 117 do { 118 xas_lock_irq(&xas); 119 xas_create_range(&xas); 120 if (xas_error(&xas)) 121 goto unlock; 122 for (i = 0; i < nr; i++) { 123 VM_BUG_ON_PAGE(xas.xa_index != idx + i, page); 124 old = xas_load(&xas); 125 if (xa_is_value(old)) { 126 if (shadowp) 127 *shadowp = old; 128 } 129 set_page_private(page + i, entry.val + i); 130 xas_store(&xas, page); 131 xas_next(&xas); 132 } 133 address_space->nrpages += nr; 134 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr); 135 __mod_lruvec_page_state(page, NR_SWAPCACHE, nr); 136 ADD_CACHE_INFO(add_total, nr); 137 unlock: 138 xas_unlock_irq(&xas); 139 } while (xas_nomem(&xas, gfp)); 140 141 if (!xas_error(&xas)) 142 return 0; 143 144 ClearPageSwapCache(page); 145 page_ref_sub(page, nr); 146 return xas_error(&xas); 147 } 148 149 /* 150 * This must be called only on pages that have 151 * been verified to be in the swap cache. 152 */ 153 void __delete_from_swap_cache(struct page *page, 154 swp_entry_t entry, void *shadow) 155 { 156 struct address_space *address_space = swap_address_space(entry); 157 int i, nr = thp_nr_pages(page); 158 pgoff_t idx = swp_offset(entry); 159 XA_STATE(xas, &address_space->i_pages, idx); 160 161 VM_BUG_ON_PAGE(!PageLocked(page), page); 162 VM_BUG_ON_PAGE(!PageSwapCache(page), page); 163 VM_BUG_ON_PAGE(PageWriteback(page), page); 164 165 for (i = 0; i < nr; i++) { 166 void *entry = xas_store(&xas, shadow); 167 VM_BUG_ON_PAGE(entry != page, entry); 168 set_page_private(page + i, 0); 169 xas_next(&xas); 170 } 171 ClearPageSwapCache(page); 172 address_space->nrpages -= nr; 173 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 174 __mod_lruvec_page_state(page, NR_SWAPCACHE, -nr); 175 ADD_CACHE_INFO(del_total, nr); 176 } 177 178 /** 179 * add_to_swap - allocate swap space for a folio 180 * @folio: folio we want to move to swap 181 * 182 * Allocate swap space for the folio and add the folio to the 183 * swap cache. 184 * 185 * Context: Caller needs to hold the folio lock. 186 * Return: Whether the folio was added to the swap cache. 187 */ 188 bool add_to_swap(struct folio *folio) 189 { 190 swp_entry_t entry; 191 int err; 192 193 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 194 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio); 195 196 entry = folio_alloc_swap(folio); 197 if (!entry.val) 198 return false; 199 200 /* 201 * XArray node allocations from PF_MEMALLOC contexts could 202 * completely exhaust the page allocator. __GFP_NOMEMALLOC 203 * stops emergency reserves from being allocated. 204 * 205 * TODO: this could cause a theoretical memory reclaim 206 * deadlock in the swap out path. 207 */ 208 /* 209 * Add it to the swap cache. 210 */ 211 err = add_to_swap_cache(&folio->page, entry, 212 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL); 213 if (err) 214 /* 215 * add_to_swap_cache() doesn't return -EEXIST, so we can safely 216 * clear SWAP_HAS_CACHE flag. 217 */ 218 goto fail; 219 /* 220 * Normally the folio will be dirtied in unmap because its 221 * pte should be dirty. A special case is MADV_FREE page. The 222 * page's pte could have dirty bit cleared but the folio's 223 * SwapBacked flag is still set because clearing the dirty bit 224 * and SwapBacked flag has no lock protected. For such folio, 225 * unmap will not set dirty bit for it, so folio reclaim will 226 * not write the folio out. This can cause data corruption when 227 * the folio is swapped in later. Always setting the dirty flag 228 * for the folio solves the problem. 229 */ 230 folio_mark_dirty(folio); 231 232 return true; 233 234 fail: 235 put_swap_page(&folio->page, entry); 236 return false; 237 } 238 239 /* 240 * This must be called only on pages that have 241 * been verified to be in the swap cache and locked. 242 * It will never put the page into the free list, 243 * the caller has a reference on the page. 244 */ 245 void delete_from_swap_cache(struct page *page) 246 { 247 swp_entry_t entry = { .val = page_private(page) }; 248 struct address_space *address_space = swap_address_space(entry); 249 250 xa_lock_irq(&address_space->i_pages); 251 __delete_from_swap_cache(page, entry, NULL); 252 xa_unlock_irq(&address_space->i_pages); 253 254 put_swap_page(page, entry); 255 page_ref_sub(page, thp_nr_pages(page)); 256 } 257 258 void clear_shadow_from_swap_cache(int type, unsigned long begin, 259 unsigned long end) 260 { 261 unsigned long curr = begin; 262 void *old; 263 264 for (;;) { 265 swp_entry_t entry = swp_entry(type, curr); 266 struct address_space *address_space = swap_address_space(entry); 267 XA_STATE(xas, &address_space->i_pages, curr); 268 269 xa_lock_irq(&address_space->i_pages); 270 xas_for_each(&xas, old, end) { 271 if (!xa_is_value(old)) 272 continue; 273 xas_store(&xas, NULL); 274 } 275 xa_unlock_irq(&address_space->i_pages); 276 277 /* search the next swapcache until we meet end */ 278 curr >>= SWAP_ADDRESS_SPACE_SHIFT; 279 curr++; 280 curr <<= SWAP_ADDRESS_SPACE_SHIFT; 281 if (curr > end) 282 break; 283 } 284 } 285 286 /* 287 * If we are the only user, then try to free up the swap cache. 288 * 289 * Its ok to check for PageSwapCache without the page lock 290 * here because we are going to recheck again inside 291 * try_to_free_swap() _with_ the lock. 292 * - Marcelo 293 */ 294 void free_swap_cache(struct page *page) 295 { 296 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) { 297 try_to_free_swap(page); 298 unlock_page(page); 299 } 300 } 301 302 /* 303 * Perform a free_page(), also freeing any swap cache associated with 304 * this page if it is the last user of the page. 305 */ 306 void free_page_and_swap_cache(struct page *page) 307 { 308 free_swap_cache(page); 309 if (!is_huge_zero_page(page)) 310 put_page(page); 311 } 312 313 /* 314 * Passed an array of pages, drop them all from swapcache and then release 315 * them. They are removed from the LRU and freed if this is their last use. 316 */ 317 void free_pages_and_swap_cache(struct page **pages, int nr) 318 { 319 struct page **pagep = pages; 320 int i; 321 322 lru_add_drain(); 323 for (i = 0; i < nr; i++) 324 free_swap_cache(pagep[i]); 325 release_pages(pagep, nr); 326 } 327 328 static inline bool swap_use_vma_readahead(void) 329 { 330 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap); 331 } 332 333 /* 334 * Lookup a swap entry in the swap cache. A found page will be returned 335 * unlocked and with its refcount incremented - we rely on the kernel 336 * lock getting page table operations atomic even if we drop the page 337 * lock before returning. 338 */ 339 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma, 340 unsigned long addr) 341 { 342 struct page *page; 343 struct swap_info_struct *si; 344 345 si = get_swap_device(entry); 346 if (!si) 347 return NULL; 348 page = find_get_page(swap_address_space(entry), swp_offset(entry)); 349 put_swap_device(si); 350 351 INC_CACHE_INFO(find_total); 352 if (page) { 353 bool vma_ra = swap_use_vma_readahead(); 354 bool readahead; 355 356 INC_CACHE_INFO(find_success); 357 /* 358 * At the moment, we don't support PG_readahead for anon THP 359 * so let's bail out rather than confusing the readahead stat. 360 */ 361 if (unlikely(PageTransCompound(page))) 362 return page; 363 364 readahead = TestClearPageReadahead(page); 365 if (vma && vma_ra) { 366 unsigned long ra_val; 367 int win, hits; 368 369 ra_val = GET_SWAP_RA_VAL(vma); 370 win = SWAP_RA_WIN(ra_val); 371 hits = SWAP_RA_HITS(ra_val); 372 if (readahead) 373 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX); 374 atomic_long_set(&vma->swap_readahead_info, 375 SWAP_RA_VAL(addr, win, hits)); 376 } 377 378 if (readahead) { 379 count_vm_event(SWAP_RA_HIT); 380 if (!vma || !vma_ra) 381 atomic_inc(&swapin_readahead_hits); 382 } 383 } 384 385 return page; 386 } 387 388 /** 389 * find_get_incore_page - Find and get a page from the page or swap caches. 390 * @mapping: The address_space to search. 391 * @index: The page cache index. 392 * 393 * This differs from find_get_page() in that it will also look for the 394 * page in the swap cache. 395 * 396 * Return: The found page or %NULL. 397 */ 398 struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index) 399 { 400 swp_entry_t swp; 401 struct swap_info_struct *si; 402 struct page *page = pagecache_get_page(mapping, index, 403 FGP_ENTRY | FGP_HEAD, 0); 404 405 if (!page) 406 return page; 407 if (!xa_is_value(page)) 408 return find_subpage(page, index); 409 if (!shmem_mapping(mapping)) 410 return NULL; 411 412 swp = radix_to_swp_entry(page); 413 /* There might be swapin error entries in shmem mapping. */ 414 if (non_swap_entry(swp)) 415 return NULL; 416 /* Prevent swapoff from happening to us */ 417 si = get_swap_device(swp); 418 if (!si) 419 return NULL; 420 page = find_get_page(swap_address_space(swp), swp_offset(swp)); 421 put_swap_device(si); 422 return page; 423 } 424 425 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 426 struct vm_area_struct *vma, unsigned long addr, 427 bool *new_page_allocated) 428 { 429 struct swap_info_struct *si; 430 struct page *page; 431 void *shadow = NULL; 432 433 *new_page_allocated = false; 434 435 for (;;) { 436 int err; 437 /* 438 * First check the swap cache. Since this is normally 439 * called after lookup_swap_cache() failed, re-calling 440 * that would confuse statistics. 441 */ 442 si = get_swap_device(entry); 443 if (!si) 444 return NULL; 445 page = find_get_page(swap_address_space(entry), 446 swp_offset(entry)); 447 put_swap_device(si); 448 if (page) 449 return page; 450 451 /* 452 * Just skip read ahead for unused swap slot. 453 * During swap_off when swap_slot_cache is disabled, 454 * we have to handle the race between putting 455 * swap entry in swap cache and marking swap slot 456 * as SWAP_HAS_CACHE. That's done in later part of code or 457 * else swap_off will be aborted if we return NULL. 458 */ 459 if (!__swp_swapcount(entry) && swap_slot_cache_enabled) 460 return NULL; 461 462 /* 463 * Get a new page to read into from swap. Allocate it now, 464 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will 465 * cause any racers to loop around until we add it to cache. 466 */ 467 page = alloc_page_vma(gfp_mask, vma, addr); 468 if (!page) 469 return NULL; 470 471 /* 472 * Swap entry may have been freed since our caller observed it. 473 */ 474 err = swapcache_prepare(entry); 475 if (!err) 476 break; 477 478 put_page(page); 479 if (err != -EEXIST) 480 return NULL; 481 482 /* 483 * We might race against __delete_from_swap_cache(), and 484 * stumble across a swap_map entry whose SWAP_HAS_CACHE 485 * has not yet been cleared. Or race against another 486 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE 487 * in swap_map, but not yet added its page to swap cache. 488 */ 489 schedule_timeout_uninterruptible(1); 490 } 491 492 /* 493 * The swap entry is ours to swap in. Prepare the new page. 494 */ 495 496 __SetPageLocked(page); 497 __SetPageSwapBacked(page); 498 499 if (mem_cgroup_swapin_charge_page(page, NULL, gfp_mask, entry)) 500 goto fail_unlock; 501 502 /* May fail (-ENOMEM) if XArray node allocation failed. */ 503 if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow)) 504 goto fail_unlock; 505 506 mem_cgroup_swapin_uncharge_swap(entry); 507 508 if (shadow) 509 workingset_refault(page_folio(page), shadow); 510 511 /* Caller will initiate read into locked page */ 512 lru_cache_add(page); 513 *new_page_allocated = true; 514 return page; 515 516 fail_unlock: 517 put_swap_page(page, entry); 518 unlock_page(page); 519 put_page(page); 520 return NULL; 521 } 522 523 /* 524 * Locate a page of swap in physical memory, reserving swap cache space 525 * and reading the disk if it is not already cached. 526 * A failure return means that either the page allocation failed or that 527 * the swap entry is no longer in use. 528 */ 529 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask, 530 struct vm_area_struct *vma, 531 unsigned long addr, bool do_poll, 532 struct swap_iocb **plug) 533 { 534 bool page_was_allocated; 535 struct page *retpage = __read_swap_cache_async(entry, gfp_mask, 536 vma, addr, &page_was_allocated); 537 538 if (page_was_allocated) 539 swap_readpage(retpage, do_poll, plug); 540 541 return retpage; 542 } 543 544 static unsigned int __swapin_nr_pages(unsigned long prev_offset, 545 unsigned long offset, 546 int hits, 547 int max_pages, 548 int prev_win) 549 { 550 unsigned int pages, last_ra; 551 552 /* 553 * This heuristic has been found to work well on both sequential and 554 * random loads, swapping to hard disk or to SSD: please don't ask 555 * what the "+ 2" means, it just happens to work well, that's all. 556 */ 557 pages = hits + 2; 558 if (pages == 2) { 559 /* 560 * We can have no readahead hits to judge by: but must not get 561 * stuck here forever, so check for an adjacent offset instead 562 * (and don't even bother to check whether swap type is same). 563 */ 564 if (offset != prev_offset + 1 && offset != prev_offset - 1) 565 pages = 1; 566 } else { 567 unsigned int roundup = 4; 568 while (roundup < pages) 569 roundup <<= 1; 570 pages = roundup; 571 } 572 573 if (pages > max_pages) 574 pages = max_pages; 575 576 /* Don't shrink readahead too fast */ 577 last_ra = prev_win / 2; 578 if (pages < last_ra) 579 pages = last_ra; 580 581 return pages; 582 } 583 584 static unsigned long swapin_nr_pages(unsigned long offset) 585 { 586 static unsigned long prev_offset; 587 unsigned int hits, pages, max_pages; 588 static atomic_t last_readahead_pages; 589 590 max_pages = 1 << READ_ONCE(page_cluster); 591 if (max_pages <= 1) 592 return 1; 593 594 hits = atomic_xchg(&swapin_readahead_hits, 0); 595 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits, 596 max_pages, 597 atomic_read(&last_readahead_pages)); 598 if (!hits) 599 WRITE_ONCE(prev_offset, offset); 600 atomic_set(&last_readahead_pages, pages); 601 602 return pages; 603 } 604 605 /** 606 * swap_cluster_readahead - swap in pages in hope we need them soon 607 * @entry: swap entry of this memory 608 * @gfp_mask: memory allocation flags 609 * @vmf: fault information 610 * 611 * Returns the struct page for entry and addr, after queueing swapin. 612 * 613 * Primitive swap readahead code. We simply read an aligned block of 614 * (1 << page_cluster) entries in the swap area. This method is chosen 615 * because it doesn't cost us any seek time. We also make sure to queue 616 * the 'original' request together with the readahead ones... 617 * 618 * This has been extended to use the NUMA policies from the mm triggering 619 * the readahead. 620 * 621 * Caller must hold read mmap_lock if vmf->vma is not NULL. 622 */ 623 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask, 624 struct vm_fault *vmf) 625 { 626 struct page *page; 627 unsigned long entry_offset = swp_offset(entry); 628 unsigned long offset = entry_offset; 629 unsigned long start_offset, end_offset; 630 unsigned long mask; 631 struct swap_info_struct *si = swp_swap_info(entry); 632 struct blk_plug plug; 633 struct swap_iocb *splug = NULL; 634 bool do_poll = true, page_allocated; 635 struct vm_area_struct *vma = vmf->vma; 636 unsigned long addr = vmf->address; 637 638 mask = swapin_nr_pages(offset) - 1; 639 if (!mask) 640 goto skip; 641 642 do_poll = false; 643 /* Read a page_cluster sized and aligned cluster around offset. */ 644 start_offset = offset & ~mask; 645 end_offset = offset | mask; 646 if (!start_offset) /* First page is swap header. */ 647 start_offset++; 648 if (end_offset >= si->max) 649 end_offset = si->max - 1; 650 651 blk_start_plug(&plug); 652 for (offset = start_offset; offset <= end_offset ; offset++) { 653 /* Ok, do the async read-ahead now */ 654 page = __read_swap_cache_async( 655 swp_entry(swp_type(entry), offset), 656 gfp_mask, vma, addr, &page_allocated); 657 if (!page) 658 continue; 659 if (page_allocated) { 660 swap_readpage(page, false, &splug); 661 if (offset != entry_offset) { 662 SetPageReadahead(page); 663 count_vm_event(SWAP_RA); 664 } 665 } 666 put_page(page); 667 } 668 blk_finish_plug(&plug); 669 swap_read_unplug(splug); 670 671 lru_add_drain(); /* Push any new pages onto the LRU now */ 672 skip: 673 /* The page was likely read above, so no need for plugging here */ 674 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll, NULL); 675 } 676 677 int init_swap_address_space(unsigned int type, unsigned long nr_pages) 678 { 679 struct address_space *spaces, *space; 680 unsigned int i, nr; 681 682 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); 683 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL); 684 if (!spaces) 685 return -ENOMEM; 686 for (i = 0; i < nr; i++) { 687 space = spaces + i; 688 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ); 689 atomic_set(&space->i_mmap_writable, 0); 690 space->a_ops = &swap_aops; 691 /* swap cache doesn't use writeback related tags */ 692 mapping_set_no_writeback_tags(space); 693 } 694 nr_swapper_spaces[type] = nr; 695 swapper_spaces[type] = spaces; 696 697 return 0; 698 } 699 700 void exit_swap_address_space(unsigned int type) 701 { 702 int i; 703 struct address_space *spaces = swapper_spaces[type]; 704 705 for (i = 0; i < nr_swapper_spaces[type]; i++) 706 VM_WARN_ON_ONCE(!mapping_empty(&spaces[i])); 707 kvfree(spaces); 708 nr_swapper_spaces[type] = 0; 709 swapper_spaces[type] = NULL; 710 } 711 712 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma, 713 unsigned long faddr, 714 unsigned long lpfn, 715 unsigned long rpfn, 716 unsigned long *start, 717 unsigned long *end) 718 { 719 *start = max3(lpfn, PFN_DOWN(vma->vm_start), 720 PFN_DOWN(faddr & PMD_MASK)); 721 *end = min3(rpfn, PFN_DOWN(vma->vm_end), 722 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE)); 723 } 724 725 static void swap_ra_info(struct vm_fault *vmf, 726 struct vma_swap_readahead *ra_info) 727 { 728 struct vm_area_struct *vma = vmf->vma; 729 unsigned long ra_val; 730 unsigned long faddr, pfn, fpfn; 731 unsigned long start, end; 732 pte_t *pte, *orig_pte; 733 unsigned int max_win, hits, prev_win, win, left; 734 #ifndef CONFIG_64BIT 735 pte_t *tpte; 736 #endif 737 738 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster), 739 SWAP_RA_ORDER_CEILING); 740 if (max_win == 1) { 741 ra_info->win = 1; 742 return; 743 } 744 745 faddr = vmf->address; 746 orig_pte = pte = pte_offset_map(vmf->pmd, faddr); 747 748 fpfn = PFN_DOWN(faddr); 749 ra_val = GET_SWAP_RA_VAL(vma); 750 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val)); 751 prev_win = SWAP_RA_WIN(ra_val); 752 hits = SWAP_RA_HITS(ra_val); 753 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits, 754 max_win, prev_win); 755 atomic_long_set(&vma->swap_readahead_info, 756 SWAP_RA_VAL(faddr, win, 0)); 757 758 if (win == 1) { 759 pte_unmap(orig_pte); 760 return; 761 } 762 763 /* Copy the PTEs because the page table may be unmapped */ 764 if (fpfn == pfn + 1) 765 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end); 766 else if (pfn == fpfn + 1) 767 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1, 768 &start, &end); 769 else { 770 left = (win - 1) / 2; 771 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left, 772 &start, &end); 773 } 774 ra_info->nr_pte = end - start; 775 ra_info->offset = fpfn - start; 776 pte -= ra_info->offset; 777 #ifdef CONFIG_64BIT 778 ra_info->ptes = pte; 779 #else 780 tpte = ra_info->ptes; 781 for (pfn = start; pfn != end; pfn++) 782 *tpte++ = *pte++; 783 #endif 784 pte_unmap(orig_pte); 785 } 786 787 /** 788 * swap_vma_readahead - swap in pages in hope we need them soon 789 * @fentry: swap entry of this memory 790 * @gfp_mask: memory allocation flags 791 * @vmf: fault information 792 * 793 * Returns the struct page for entry and addr, after queueing swapin. 794 * 795 * Primitive swap readahead code. We simply read in a few pages whose 796 * virtual addresses are around the fault address in the same vma. 797 * 798 * Caller must hold read mmap_lock if vmf->vma is not NULL. 799 * 800 */ 801 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask, 802 struct vm_fault *vmf) 803 { 804 struct blk_plug plug; 805 struct swap_iocb *splug = NULL; 806 struct vm_area_struct *vma = vmf->vma; 807 struct page *page; 808 pte_t *pte, pentry; 809 swp_entry_t entry; 810 unsigned int i; 811 bool page_allocated; 812 struct vma_swap_readahead ra_info = { 813 .win = 1, 814 }; 815 816 swap_ra_info(vmf, &ra_info); 817 if (ra_info.win == 1) 818 goto skip; 819 820 blk_start_plug(&plug); 821 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte; 822 i++, pte++) { 823 pentry = *pte; 824 if (!is_swap_pte(pentry)) 825 continue; 826 entry = pte_to_swp_entry(pentry); 827 if (unlikely(non_swap_entry(entry))) 828 continue; 829 page = __read_swap_cache_async(entry, gfp_mask, vma, 830 vmf->address, &page_allocated); 831 if (!page) 832 continue; 833 if (page_allocated) { 834 swap_readpage(page, false, &splug); 835 if (i != ra_info.offset) { 836 SetPageReadahead(page); 837 count_vm_event(SWAP_RA); 838 } 839 } 840 put_page(page); 841 } 842 blk_finish_plug(&plug); 843 swap_read_unplug(splug); 844 lru_add_drain(); 845 skip: 846 /* The page was likely read above, so no need for plugging here */ 847 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address, 848 ra_info.win == 1, NULL); 849 } 850 851 /** 852 * swapin_readahead - swap in pages in hope we need them soon 853 * @entry: swap entry of this memory 854 * @gfp_mask: memory allocation flags 855 * @vmf: fault information 856 * 857 * Returns the struct page for entry and addr, after queueing swapin. 858 * 859 * It's a main entry function for swap readahead. By the configuration, 860 * it will read ahead blocks by cluster-based(ie, physical disk based) 861 * or vma-based(ie, virtual address based on faulty address) readahead. 862 */ 863 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask, 864 struct vm_fault *vmf) 865 { 866 return swap_use_vma_readahead() ? 867 swap_vma_readahead(entry, gfp_mask, vmf) : 868 swap_cluster_readahead(entry, gfp_mask, vmf); 869 } 870 871 #ifdef CONFIG_SYSFS 872 static ssize_t vma_ra_enabled_show(struct kobject *kobj, 873 struct kobj_attribute *attr, char *buf) 874 { 875 return sysfs_emit(buf, "%s\n", 876 enable_vma_readahead ? "true" : "false"); 877 } 878 static ssize_t vma_ra_enabled_store(struct kobject *kobj, 879 struct kobj_attribute *attr, 880 const char *buf, size_t count) 881 { 882 ssize_t ret; 883 884 ret = kstrtobool(buf, &enable_vma_readahead); 885 if (ret) 886 return ret; 887 888 return count; 889 } 890 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled); 891 892 static struct attribute *swap_attrs[] = { 893 &vma_ra_enabled_attr.attr, 894 NULL, 895 }; 896 897 static const struct attribute_group swap_attr_group = { 898 .attrs = swap_attrs, 899 }; 900 901 static int __init swap_init_sysfs(void) 902 { 903 int err; 904 struct kobject *swap_kobj; 905 906 swap_kobj = kobject_create_and_add("swap", mm_kobj); 907 if (!swap_kobj) { 908 pr_err("failed to create swap kobject\n"); 909 return -ENOMEM; 910 } 911 err = sysfs_create_group(swap_kobj, &swap_attr_group); 912 if (err) { 913 pr_err("failed to register swap group\n"); 914 goto delete_obj; 915 } 916 return 0; 917 918 delete_obj: 919 kobject_put(swap_kobj); 920 return err; 921 } 922 subsys_initcall(swap_init_sysfs); 923 #endif 924