xref: /openbmc/linux/mm/swap_state.c (revision c4ee0af3)
1 /*
2  *  linux/mm/swap_state.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  *
7  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
8  */
9 #include <linux/mm.h>
10 #include <linux/gfp.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/init.h>
15 #include <linux/pagemap.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/pagevec.h>
19 #include <linux/migrate.h>
20 #include <linux/page_cgroup.h>
21 
22 #include <asm/pgtable.h>
23 
24 /*
25  * swapper_space is a fiction, retained to simplify the path through
26  * vmscan's shrink_page_list.
27  */
28 static const struct address_space_operations swap_aops = {
29 	.writepage	= swap_writepage,
30 	.set_page_dirty	= swap_set_page_dirty,
31 	.migratepage	= migrate_page,
32 };
33 
34 static struct backing_dev_info swap_backing_dev_info = {
35 	.name		= "swap",
36 	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK | BDI_CAP_SWAP_BACKED,
37 };
38 
39 struct address_space swapper_spaces[MAX_SWAPFILES] = {
40 	[0 ... MAX_SWAPFILES - 1] = {
41 		.page_tree	= RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
42 		.a_ops		= &swap_aops,
43 		.backing_dev_info = &swap_backing_dev_info,
44 	}
45 };
46 
47 #define INC_CACHE_INFO(x)	do { swap_cache_info.x++; } while (0)
48 
49 static struct {
50 	unsigned long add_total;
51 	unsigned long del_total;
52 	unsigned long find_success;
53 	unsigned long find_total;
54 } swap_cache_info;
55 
56 unsigned long total_swapcache_pages(void)
57 {
58 	int i;
59 	unsigned long ret = 0;
60 
61 	for (i = 0; i < MAX_SWAPFILES; i++)
62 		ret += swapper_spaces[i].nrpages;
63 	return ret;
64 }
65 
66 void show_swap_cache_info(void)
67 {
68 	printk("%lu pages in swap cache\n", total_swapcache_pages());
69 	printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
70 		swap_cache_info.add_total, swap_cache_info.del_total,
71 		swap_cache_info.find_success, swap_cache_info.find_total);
72 	printk("Free swap  = %ldkB\n",
73 		get_nr_swap_pages() << (PAGE_SHIFT - 10));
74 	printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
75 }
76 
77 /*
78  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
79  * but sets SwapCache flag and private instead of mapping and index.
80  */
81 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
82 {
83 	int error;
84 	struct address_space *address_space;
85 
86 	VM_BUG_ON(!PageLocked(page));
87 	VM_BUG_ON(PageSwapCache(page));
88 	VM_BUG_ON(!PageSwapBacked(page));
89 
90 	page_cache_get(page);
91 	SetPageSwapCache(page);
92 	set_page_private(page, entry.val);
93 
94 	address_space = swap_address_space(entry);
95 	spin_lock_irq(&address_space->tree_lock);
96 	error = radix_tree_insert(&address_space->page_tree,
97 					entry.val, page);
98 	if (likely(!error)) {
99 		address_space->nrpages++;
100 		__inc_zone_page_state(page, NR_FILE_PAGES);
101 		INC_CACHE_INFO(add_total);
102 	}
103 	spin_unlock_irq(&address_space->tree_lock);
104 
105 	if (unlikely(error)) {
106 		/*
107 		 * Only the context which have set SWAP_HAS_CACHE flag
108 		 * would call add_to_swap_cache().
109 		 * So add_to_swap_cache() doesn't returns -EEXIST.
110 		 */
111 		VM_BUG_ON(error == -EEXIST);
112 		set_page_private(page, 0UL);
113 		ClearPageSwapCache(page);
114 		page_cache_release(page);
115 	}
116 
117 	return error;
118 }
119 
120 
121 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
122 {
123 	int error;
124 
125 	error = radix_tree_maybe_preload(gfp_mask);
126 	if (!error) {
127 		error = __add_to_swap_cache(page, entry);
128 		radix_tree_preload_end();
129 	}
130 	return error;
131 }
132 
133 /*
134  * This must be called only on pages that have
135  * been verified to be in the swap cache.
136  */
137 void __delete_from_swap_cache(struct page *page)
138 {
139 	swp_entry_t entry;
140 	struct address_space *address_space;
141 
142 	VM_BUG_ON(!PageLocked(page));
143 	VM_BUG_ON(!PageSwapCache(page));
144 	VM_BUG_ON(PageWriteback(page));
145 
146 	entry.val = page_private(page);
147 	address_space = swap_address_space(entry);
148 	radix_tree_delete(&address_space->page_tree, page_private(page));
149 	set_page_private(page, 0);
150 	ClearPageSwapCache(page);
151 	address_space->nrpages--;
152 	__dec_zone_page_state(page, NR_FILE_PAGES);
153 	INC_CACHE_INFO(del_total);
154 }
155 
156 /**
157  * add_to_swap - allocate swap space for a page
158  * @page: page we want to move to swap
159  *
160  * Allocate swap space for the page and add the page to the
161  * swap cache.  Caller needs to hold the page lock.
162  */
163 int add_to_swap(struct page *page, struct list_head *list)
164 {
165 	swp_entry_t entry;
166 	int err;
167 
168 	VM_BUG_ON(!PageLocked(page));
169 	VM_BUG_ON(!PageUptodate(page));
170 
171 	entry = get_swap_page();
172 	if (!entry.val)
173 		return 0;
174 
175 	if (unlikely(PageTransHuge(page)))
176 		if (unlikely(split_huge_page_to_list(page, list))) {
177 			swapcache_free(entry, NULL);
178 			return 0;
179 		}
180 
181 	/*
182 	 * Radix-tree node allocations from PF_MEMALLOC contexts could
183 	 * completely exhaust the page allocator. __GFP_NOMEMALLOC
184 	 * stops emergency reserves from being allocated.
185 	 *
186 	 * TODO: this could cause a theoretical memory reclaim
187 	 * deadlock in the swap out path.
188 	 */
189 	/*
190 	 * Add it to the swap cache and mark it dirty
191 	 */
192 	err = add_to_swap_cache(page, entry,
193 			__GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
194 
195 	if (!err) {	/* Success */
196 		SetPageDirty(page);
197 		return 1;
198 	} else {	/* -ENOMEM radix-tree allocation failure */
199 		/*
200 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
201 		 * clear SWAP_HAS_CACHE flag.
202 		 */
203 		swapcache_free(entry, NULL);
204 		return 0;
205 	}
206 }
207 
208 /*
209  * This must be called only on pages that have
210  * been verified to be in the swap cache and locked.
211  * It will never put the page into the free list,
212  * the caller has a reference on the page.
213  */
214 void delete_from_swap_cache(struct page *page)
215 {
216 	swp_entry_t entry;
217 	struct address_space *address_space;
218 
219 	entry.val = page_private(page);
220 
221 	address_space = swap_address_space(entry);
222 	spin_lock_irq(&address_space->tree_lock);
223 	__delete_from_swap_cache(page);
224 	spin_unlock_irq(&address_space->tree_lock);
225 
226 	swapcache_free(entry, page);
227 	page_cache_release(page);
228 }
229 
230 /*
231  * If we are the only user, then try to free up the swap cache.
232  *
233  * Its ok to check for PageSwapCache without the page lock
234  * here because we are going to recheck again inside
235  * try_to_free_swap() _with_ the lock.
236  * 					- Marcelo
237  */
238 static inline void free_swap_cache(struct page *page)
239 {
240 	if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
241 		try_to_free_swap(page);
242 		unlock_page(page);
243 	}
244 }
245 
246 /*
247  * Perform a free_page(), also freeing any swap cache associated with
248  * this page if it is the last user of the page.
249  */
250 void free_page_and_swap_cache(struct page *page)
251 {
252 	free_swap_cache(page);
253 	page_cache_release(page);
254 }
255 
256 /*
257  * Passed an array of pages, drop them all from swapcache and then release
258  * them.  They are removed from the LRU and freed if this is their last use.
259  */
260 void free_pages_and_swap_cache(struct page **pages, int nr)
261 {
262 	struct page **pagep = pages;
263 
264 	lru_add_drain();
265 	while (nr) {
266 		int todo = min(nr, PAGEVEC_SIZE);
267 		int i;
268 
269 		for (i = 0; i < todo; i++)
270 			free_swap_cache(pagep[i]);
271 		release_pages(pagep, todo, 0);
272 		pagep += todo;
273 		nr -= todo;
274 	}
275 }
276 
277 /*
278  * Lookup a swap entry in the swap cache. A found page will be returned
279  * unlocked and with its refcount incremented - we rely on the kernel
280  * lock getting page table operations atomic even if we drop the page
281  * lock before returning.
282  */
283 struct page * lookup_swap_cache(swp_entry_t entry)
284 {
285 	struct page *page;
286 
287 	page = find_get_page(swap_address_space(entry), entry.val);
288 
289 	if (page)
290 		INC_CACHE_INFO(find_success);
291 
292 	INC_CACHE_INFO(find_total);
293 	return page;
294 }
295 
296 /*
297  * Locate a page of swap in physical memory, reserving swap cache space
298  * and reading the disk if it is not already cached.
299  * A failure return means that either the page allocation failed or that
300  * the swap entry is no longer in use.
301  */
302 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
303 			struct vm_area_struct *vma, unsigned long addr)
304 {
305 	struct page *found_page, *new_page = NULL;
306 	int err;
307 
308 	do {
309 		/*
310 		 * First check the swap cache.  Since this is normally
311 		 * called after lookup_swap_cache() failed, re-calling
312 		 * that would confuse statistics.
313 		 */
314 		found_page = find_get_page(swap_address_space(entry),
315 					entry.val);
316 		if (found_page)
317 			break;
318 
319 		/*
320 		 * Get a new page to read into from swap.
321 		 */
322 		if (!new_page) {
323 			new_page = alloc_page_vma(gfp_mask, vma, addr);
324 			if (!new_page)
325 				break;		/* Out of memory */
326 		}
327 
328 		/*
329 		 * call radix_tree_preload() while we can wait.
330 		 */
331 		err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
332 		if (err)
333 			break;
334 
335 		/*
336 		 * Swap entry may have been freed since our caller observed it.
337 		 */
338 		err = swapcache_prepare(entry);
339 		if (err == -EEXIST) {
340 			radix_tree_preload_end();
341 			/*
342 			 * We might race against get_swap_page() and stumble
343 			 * across a SWAP_HAS_CACHE swap_map entry whose page
344 			 * has not been brought into the swapcache yet, while
345 			 * the other end is scheduled away waiting on discard
346 			 * I/O completion at scan_swap_map().
347 			 *
348 			 * In order to avoid turning this transitory state
349 			 * into a permanent loop around this -EEXIST case
350 			 * if !CONFIG_PREEMPT and the I/O completion happens
351 			 * to be waiting on the CPU waitqueue where we are now
352 			 * busy looping, we just conditionally invoke the
353 			 * scheduler here, if there are some more important
354 			 * tasks to run.
355 			 */
356 			cond_resched();
357 			continue;
358 		}
359 		if (err) {		/* swp entry is obsolete ? */
360 			radix_tree_preload_end();
361 			break;
362 		}
363 
364 		/* May fail (-ENOMEM) if radix-tree node allocation failed. */
365 		__set_page_locked(new_page);
366 		SetPageSwapBacked(new_page);
367 		err = __add_to_swap_cache(new_page, entry);
368 		if (likely(!err)) {
369 			radix_tree_preload_end();
370 			/*
371 			 * Initiate read into locked page and return.
372 			 */
373 			lru_cache_add_anon(new_page);
374 			swap_readpage(new_page);
375 			return new_page;
376 		}
377 		radix_tree_preload_end();
378 		ClearPageSwapBacked(new_page);
379 		__clear_page_locked(new_page);
380 		/*
381 		 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
382 		 * clear SWAP_HAS_CACHE flag.
383 		 */
384 		swapcache_free(entry, NULL);
385 	} while (err != -ENOMEM);
386 
387 	if (new_page)
388 		page_cache_release(new_page);
389 	return found_page;
390 }
391 
392 /**
393  * swapin_readahead - swap in pages in hope we need them soon
394  * @entry: swap entry of this memory
395  * @gfp_mask: memory allocation flags
396  * @vma: user vma this address belongs to
397  * @addr: target address for mempolicy
398  *
399  * Returns the struct page for entry and addr, after queueing swapin.
400  *
401  * Primitive swap readahead code. We simply read an aligned block of
402  * (1 << page_cluster) entries in the swap area. This method is chosen
403  * because it doesn't cost us any seek time.  We also make sure to queue
404  * the 'original' request together with the readahead ones...
405  *
406  * This has been extended to use the NUMA policies from the mm triggering
407  * the readahead.
408  *
409  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
410  */
411 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
412 			struct vm_area_struct *vma, unsigned long addr)
413 {
414 	struct page *page;
415 	unsigned long offset = swp_offset(entry);
416 	unsigned long start_offset, end_offset;
417 	unsigned long mask = (1UL << page_cluster) - 1;
418 	struct blk_plug plug;
419 
420 	/* Read a page_cluster sized and aligned cluster around offset. */
421 	start_offset = offset & ~mask;
422 	end_offset = offset | mask;
423 	if (!start_offset)	/* First page is swap header. */
424 		start_offset++;
425 
426 	blk_start_plug(&plug);
427 	for (offset = start_offset; offset <= end_offset ; offset++) {
428 		/* Ok, do the async read-ahead now */
429 		page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
430 						gfp_mask, vma, addr);
431 		if (!page)
432 			continue;
433 		page_cache_release(page);
434 	}
435 	blk_finish_plug(&plug);
436 
437 	lru_add_drain();	/* Push any new pages onto the LRU now */
438 	return read_swap_cache_async(entry, gfp_mask, vma, addr);
439 }
440